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ABSTRACT

Ubiquitous sensing from smartphones and wearable devices have proven to be useful for

a variety of applications, from sports to modern medicine. These devices are embedded

with powerful sensors which track the motion of an object in real time. From this data,

quantitative measures of motion can be extracted while also assessing the quality of that

movement.

Motor function assessments are designed to evaluate human performance, but the out-

come measures of these assessments are often based on subjective or ordinal rating scales

that do not keep track of motion quantitatively. In this dissertation, we leverage ubiqui-

tous sensing and signal-based curve matching to quantify the quality of motion through the

development of an objective scoring measure . We then validate our measure with a novel

study involving the functional assessment of patients with neuromuscular disorders.

We also demonstrate the feasibility of ubiquitous sensing combined with signal feature

analysis to detect and assess rehabilitation progress in patients post-ACL reconstruction

surgery. Finally, we present a visualization framework that combines analytical modeling

with comparative trajectory analysis to model motion data into meaningful information

related to the quantity and quality of motion.
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Chapter 1

Introduction

Advancements in ubiquitous sensing have redefined the landscape for human activity recog-

nition (HAR) by enabling the emergence of personal, group, and community scale sensing

applications. These technologies are already revolutionizing many sectors of our economy,

including business, healthcare, social networks, environmental monitoring, and transporta-

tion. Specifically, smartphones and wearable devices with embedded inertial measurement

units (IMUs) can be leveraged with machine learning techniques to detect and assess behav-

ioral performance, as noted by [3]. Living in a data-driven age, these commercially available

devices provide valuable information into a person’s health and wellness, that can be used

for recreational activities and medical applications [4, 5, 6, 7, 8].

According to CCS Insight, the demand for smart wearable devices is expected to grow 24%

worldwide from 2020 to 2021, with an estimated 1.2 billion devices by 2025 [9]. Wearable

IMUs offer many advantages in their inherent design (compact, comfortable, inexpensive,

waterproof, etc) and are able to track users in a natural environment. IMUs are embedded

with a suite of sensors, that may include a triaxial accelerometer, a triaxial gyroscope, surface

electromyography (sEMG), and a variety of other sensors [7]. Motion capture with these

devices are becoming essential for research areas focused on sports performance analysis,

rehabilitation, and various medical applications. One of the leading companies for motion

capture analysis, Vicon Motion Systems ©, maintains that IMU-based motion analysis is
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driving human motion optimization, both in the field and in the lab. Motion analysis is

more than just measuring one’s movement, but also visualizing and analyzing the data in

a manner that provides feedback for understanding differences, such as left versus right or

current status to a baseline. The best motion tracking systems rely on a combination of

devices (wearables, cameras, etc.) which are costly and impractical for capturing everyday

motion. Quantitative feedback from IMUs can inform coaching, assist in monitoring training

performance, and help evaluate the quality of a movement [10].

Quality of motion is defined as the manner in which a motion is performed, usually

in comparison to an established reference. Then, measuring the quality of motion pro-

vides the means to evaluate the effectiveness of interventions (or lack thereof) and monitor

progress in more detail [11]. For healthcare applications, clinical researchers will be able to

measure the efficacy of investigative therapies, adjust focus and investments to promising

developments, and mitigate future investments on non-performing studies, thereby speeding

discovery. Then, the development of a more objective scoring measure could be deployed for

continuous, home-based monitoring, through the use of wearable ubiquitous solutions.

Motor function assessments provide a quantitative baseline for evaluating human perfor-

mance, which can aid in understanding the severity of impairment and monitoring recovery

during rehabilitation. Most motion assessments have been developed to evaluate a user

performing a specific set of motions, where the outcome measures of these assessments are

based on subjective or ordinal rating scales that do not keep track of quantitative measures

of motion quality. This causes the outcome measures to be susceptible to a ceiling effect [12].

Clinicians and researchers alike recognize that the reliance on the human eye to facilitate

and score a user’s motion is not the most effective means for detecting small changes in pa-

tient progress, which often go unnoticed [13]. For example, for patients with neuromuscular

disorders, these assessments are generally performed in the clinic, with the motions bearing

no resemblance to activities of daily living (ADLs) [14, 15]. Some of these assessments are

no longer relevant, as treatments have enabled patients to live longer and be able to gain
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function [15]. Additionally, the current metrics are not sensitive to smaller changes, where

fine motor skills of the hands and fingers may be the remaining ability [15]. These limita-

tions also extend to traditional rehabilitation assessments, where a patient may be asked

to perform a motion they are unable to complete, and may not receive credit the motion

they could accomplish. Yet, these limitations can be mitigated by quantifying the quality of

motion.

There has also been little emphasis on developing new visualizations for IMU motion

trajectory. Erbaugh [16] noted that visual feedback plays a pivotal role in one’s ability to

make correct movements. In the case of range of motion (ROM) assessment, visualization

empowers both the doctor and patient to be more informed on one’s motion that would

otherwise be lost in a single quantitative number. Therefore, by visualizing deviations in

motion trajectory, quantitative measures of motion can be interpreted while also assessing

the quality of that movement.

This dissertation is focused on leveraging ubiquitous sensing to quantify the quality of

motion through the development of an objective scoring measure and develop a graphical

approach to visualize deviations along a motion trajectory. We accomplish this by addressing

the following research questions:

Research Question 1: Is it feasible to leverage ubiquitous sensing to quantify

the quality of motion?

Research Question 2: Which features can be derived from ubiquitous sensors

to characterize the quality of motion?

Research Question 3: How to model deviations in motion trajectory patterns?

The remainder of this work is presented as follows. In chapter 2, we summarize related works

on motion quality assessments, ubiquitous sensing, and quantitative motion modeling. In

chapter 3, we first present our novel scoring measure to quantify the quality of motion that

3



builds upon the foundation of curve matching. To validate our measure, we introduce our

study on using wearable sensors to track upper extremity motor function in patients with

neuromuscular disorders. In chapter 4, we present our work on leveraging wearable sensors

to detect and assess rehabilitation progress for patients recovering from ACL reconstruction

surgery. In chapter 5, we present our framework for modeling deviations in motion trajectory.

Finally, in chapter 7, we discuss the clinical relevance of our work, the limitations, future

research directions, and conclusion.
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Chapter 2

Literature Review

2.1 Summary

To understand the limitations of quantifying motion with wearable sensors, we first begin

with a review of existing ubiquitous modalities in section 2.2. Section 2.3 describes two

overarching methods for analyzing motion data, Signal Feature Analysis and Curve Matching.

We then discuss motion quality assessments in section 2.4, focusing on those relevant to the

applications we will be covering in this thesis.

2.2 Ubiquitous Sensing

Human activity recognition (HAR) with ubiquitous sensors is a growing field revolutionizing

many sectors of the world, including business, healthcare, social networks, environmental

monitoring, and transportation. Specifically, mobile sensing systems such as smartphones

and wearable inertial measurement units (IMUs) have proven to be an effective means for

motion tracking applications. Embedded with a suite of powerful sensors, such as accelerom-

eter, gyroscope, and magnetometer, these devices leverage pervasive computing to provide

valuable information into a person’s health and wellness, that can be used for recreational

activities and medical applications [4, 5, 6, 7, 8].

Accelerometers measure the linear acceleration in a specific direction and are primar-

ily used to estimate velocity and position through integration. However, the standard ac-
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celerometer reading includes the force of gravity which Gyroscopes measure angular velocity

to describe the rotational movement of a device while magnetometers measure the force of

Earth’s magnetic field on the device. These sensors are designed to measure the static and

dynamic states of object. Static state parameters include spatial position, orientation, an-

gles between parts, etc. while dynamic state parameters consist of displacement, trajectory,

velocity, acceleration, etc [17]

Fig 2.1. Illustration of sensor-based HAR [1]

The illustration shown in in 2.1 shows the process of how modern technology classifies

human motions, by collecting data from a multitude of senors, extracting representative

features, training a model, and inferring the associated activities. Most research on motion

analysis with IMUs either uses multiple devices (combination of wearables, cameras, and

edge devices) or focuses on a set of gestures for classification [18, 19, 20, 21].

As wearable technology becomes more ubiquitous, mHealth applications have grown im-

mensely. Wearable IMUs sensors are often embedded in smartphones, smartwatches, and

many application specific devices. The number of commercially available IMU devices is

growing exponentially and often include other sensors of interest such as GPS, EMG, ECG,

heart rate, etc. The wrist-worn device space is extremely saturated with more companies

developing smartwatches and fitness trackers. Surface Electromyography (sEMG) devices

are another ubiquitous device gaining more traction as they have been shown to recognize
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hand and arm gestures while worn on the forearm by recording electrical impulses stemming

from muscular contractions through the use of surface electrodes [22]. Often times, sEMGs

are paired with accelerometers or IMUs to better capture motion. The list of IMU embed-

ded devices continues to grow, as more are created for specific applications, such as gait

biomechanics and swimming performance analysis.

The advantages of using a wearable IMU include mobility, ease of use, reduced cost,

and ubiquitous nature. However, IMUs are not without their own limitations where an

accelerometer accumulates error over time or "drifts" while a magnetometer may suffer from

magnetic interference. IMUs are also limited in their ability to recognize and track fine-

grained movements with one’s hands and fingers. Camera based systems are considered the

"gold standard" for HAR but issues of privacy, cost and lack of mobility make have limited

their widespread adoption outside a research space.

Ubiquitous sensing also includes the use of camera based technologies. Vision-based

activity recognition systems, such as the Microsoft Kinect and Leap Motion systems, use

a camera, IR sensor, and IR depth sensor to extract features that can be used for object

detection, motion analysis, and other characteristics. While many motion tracking cameras

exist in the commercial sector, the vast majority of research for skeletal motion tracking

leverages the Microsoft Kinect (v1 and v2) [23, 6, 24, 25, 26]. The "gold standard" for

camera based motion analysis is utilizing optical motion tracking through technologies found

in the Vicon MX® motion capture system that uses 20 cameras to track a series of reflective

markers placed all over an individual’s body. The main limitations with systems such as

these are their cost, confinement to a specific area, and privacy, making them impractical

for capturing everyday motion.

The authors in [27] also recognized the lack of attention on the development of metrics

for performance evaluation. Vakanski et al [28] proposed a series metrics for use in physical

therapy, based on using a reference model as ground truth for comparison. Su et al [29]

leveraged the Microsoft Kinect system with Dynamic Time Warping (DTW) and fuzzy logic

7



to build a fuzzy inference model that includes a physician’s subjective evaluation of a patient’s

performance for home-based rehabilitation. Similarly, Yu and Xiong [30] use the Kinect along

with Xsens wearable sensors to capture exergame motion. Their work mapped bone vectors

in 3D space and applied DTW to yield a quantitative score. However, they also developed

a performance score by converting the DTW distance to a percentage based on the number

of their problem set.

For sports, there has been plenty of research focused on gait analysis [8], with favorable

results for the increase in performance due to wearable IMU feedback. However, limited

work has focused directly on upper extremity movements. "Advancements in wearables have

allowed individual athletes, sports teams, and physicians to monitor functional movements,

workloads, and biometric markers to maximize performance. Coaches can utilize this data

to personalize training and conditioning to match the athlete’s current physical status based

on trends on their data. [31]"

Medical applications leveraging IMUs for motion tracking have become quite prevalent

over the last decade. One medical application for 3D motion analysis includes measuring

the quantity and quality of movement for extremity rehabilitation and motor function as-

sessments. In the case of neuromuscular diseases, many patients suffer from reduced upper

extremity function. Current motor function assessments do not capture all positive progress

and only concerned on whether a patient can or cannot complete a specific task. This tech-

nology has the ability to measure ROM while also capturing micro-movements that have

previously gone overlooked. Similarly, ROM assessments extend to clinical orthopaedics as

studied by [32], where an IMU deice can aid in goniometer evaluations by providing accurate

measurements and eliminating the inter-rater reliability issue. Additionally, this technology

allows a patient to perform these motor function assessments in the comfort of their own

home, rather than in a clinical environment. As [33] stated, wearable IMUs allow "for real-

time movement tracking in real-world settings." Especially when providing care to young

children, a clinical setting may affect their demeanor, which may inaccurately reflect their
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progress on an assessment.

Telemedicine, the practice of evaluating, diagnosing, and treating patients remotely, is

becoming more of a viable option due to the proliferation of motion capture devices. The

benefits of telemedicine include less travel time, lower costs, and more comfort for the pa-

tient. One form of telerehabilitation is through exergames, exercise combined with games)

that leverages wearable IMUs to track user movement of personalized exercises for a speci-

fied treatment plan [3]. One example, the MIRA (Medical Interactive Recovery Assistant)

rehabilitation platform, [34] leverages the Kinect sensor to capture user’s movements of ther-

apeutic exercises, tracking the trajectories of the joints. However, there are limitations with

the current platforms not able to track micro-movements or specific motions. However, these

exergames would benefit from the addition of IMU sensors that would provide more accurate

position and orientation information for each movement.

Pairing quantitative outcomes with metrics on the quality of the movements can provide

informative data for rehabilitation interventions and monitoring recovery. The following

section will provide a more in depth review on the quantification of motion.

2.3 Quantitative Motion Modeling using Time Series Analysis

2.3.1 Signal Feature Analysis

Time series signal feature analysis for quantitative motion modeling can be done through

two main approaches: knowledge-driven and data-driven.

2.3.1.1 Knowledge-driven

Knowledge-driven techniques are generally rule-based or case-based to produce a model that

structurally represents the context of the data. This approach is based on the notion of

leveraging expert knowledge about the motion to detect known behavior, or the expected

ranges the motion will occur. The expert would extract specific features for classification

related to an attribute. For example, one could compute the standard deviation of speed as

a measure of motion smoothness and then visually identify the trajectories based on a set of
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rules or conditions that have been learned from experience. In addition, the expert may able

to provide situational context by incorporating information not available to the sensor. The

advantages of using knowledge-driven techniques include interpretability, low-false positive

rate, and are context-aware [35]. However, they are limited in their ability to adapt to new

data or anomalies and require human effort to maintain.

Feature Extraction Feature extraction is a technique used by both approaches, varying

in the manner the features are derived. These features are quantitative measures, usually

based on a time window [4]. With a knowledge-driven approach, the features are selected

from experience and domain knowledge, causing them to be data specific. For gait motion

analysis, typical features include stride length, stride duration, gait velocity, step counts,

etc. Then for upper extremity motor function analysis, standard features include the mean,

variance, peak velocity, range of motion (RoM), pairwise correlation, spectral energy, and

mean absolute deviation.

The set of features can then be compared directly, yielding a vector of difference values

between two trajectories. However, the problem with using these features are that they do

not necessarily capture the quality of the motion. Quality of motion describes the movement

smoothness and whether the movement was performed correctly. Motion quality features

may include movement efficacy, shape tracing, log dimensionless jerk (LDLJ), spectral arc

length (SPARC), range of motion (RoM), etc. Despite several attempts to define quantitative

measure of movement smoothness, there is no consensus on the best technologies nor the

most appropriate measures to use for a specific motion [36].

Traditional time series analysis focuses on signal classification techniques, which first

extract a set of features or transform the signal into a new representation. Then, a distance

metric is used to measure the similarity between two signals. The extracted features, whether

they are in the time or frequency domain, can either be representative of the entire trajectory

or they can be based on sets of points that span the trajectory. Features derived from

the time domain include mean absolute value (MAV), zero crossing rate, autoregressive
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model coefficients while features in the frequency domain include mean frequency (MNF)

and median frequency (MDF) [18, 37]. Other common features include signal norm, signal

energy, signal variance, frequency analysis, zero crossing rate, entropy, etc. The set of features

can then be compared directly, yielding a vector of difference values between two trajectories.

However, the problem with using these features are that they do not necessarily capture the

quality of the motion. Quality of motion describes the movement smoothness and whether

the movement was performed correctly. Motion quality features may include movement

efficacy, shape tracing, log dimensionless jerk (LDLJ), spectral arc length (SPARC), range

of motion (RoM), etc. Despite several attempts to define quantitative measure of movement

smoothness, there is no consensus on the best technologies nor the most appropriate measures

to use for a specific motion [36].

2.3.1.2 Data-driven

Feature extraction from data-driven techniques derive features and patterns from the data

directly through machine learning (ML) and data mining [38]. ML approaches can gener-

ally be categorized as supervised, unsupervised, and semi-supervised learning. Unlike the

knowledge-driven approach, this technique can be generalized to new data, allowing the

analysis to be replicated across multiple conditions and patients. However, data-driven ap-

proaches tend to have more false positives, may be uninterpretable, and can require large

amounts of data for training the model. To understand what data-driven methods should

be considered for time series analysis, we will first make clear the type of data that we are

working with. In our case, the data is discrete, equally spaced, and stochastic. Generally,

this type of time series data can be analysed through the following techniques: discrete point

analysis, feature extraction, transformation or representation, and curve matching.

The two approaches do not need to be mutually exclusive, as the integration of knowledge-

driven models with data-driven or machine learning models can overcome the limitations to

produce an informed, dynamic model [38].

While many features can be extracted, the number of features need to be considered as
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high dimensionality increases run time and complexity. Dimensionality reduction techniques

such as factor analysis and Principal Components Analysis (PCA) can be used to find the

optimal features, while t-stochastic neighbor embedding (t-SNE) plots can aid in visualizing

the high dimensional features for clusters. The PCA algorithm is able to process all the

extracted features and project them into vectors relative to their variance. These new vectors

can then be treated as features for classification.

Classification techniques can then be used for analyzing sensor data. Some common

classifiers include decision trees (DT), k-nearest neighbors (kNN), random forests (RF),

support vector machine (SVM), bootstrap aggregation classification and regression trees

(Bagged CART), boosted logistic regression (BLG), gradient boosting machines (GBM), and

neural networks (NN). One of the main strengths for deep learning through neural networks

is in “its ability to automatically extract features in task dependent manner” instead of the

reliance on hand-crafted features [39]. A drawback for deep learning stems from its “black

box” approach, where interpretability of the model is lost.

Discrete Point Analysis Discrete point analysis relies on finding specific points on a

curve and comparing their magnitude, such as the max, min, inflection points, etc. This

type of analysis is good for instances when one already knows that those specific points are

of interest. However, this method ignores a vast majority of the data and may not provide

enough information if condensed to single number.

Time Series Representation Wearable IMUs have the potential to fill the gap where

video based motion tracking falters. Many attempts have been made to use a IMU de-

vices for tracking motion but very few focus on visualizing the trajectory of that motion.

Through information visualization, quantitative measures of motion can be evaluated while

also assessing the quality of that movement. In the case of range of motion assessment,

visualization empowers both the doctor and patient to be more informed on one’s motion

that would otherwise be lost in a single quantitative number. Erbaugh [16] noted that visual

feedback plays a pivotal role in one’s ability to make correct movements.
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2.3.2 Curve Matching

Given two trajectories, two trajectories can be compared directly through the use of a dis-

tance metric to produce a single value that represents the similarity between them. However,

there must be careful consideration when selecting a distance metric. The chosen distance

metric should have the capability to handle noisy sample points and trajectory shifts, such

as time stretch shifts and scale suppresses. By appropriately handling these circumstances,

a distance metric can accurately distinguish between two trajectories along a path with sim-

ilar shapes [29]. Su et al conducted a survey of trajectory distance measures, evaluating 15

distance measures based on data type (discrete versus continuous) and whether the measure

considers temporal information [29].

One similarity metric that can be used is the cross-correlation as defined by Equation 2.1.

This equation, commonly recognized as the Pearson product-moment correlation coefficient,

measures the temporal similarity of two curves [40].

ρxy(ℓ) =

∑N−1
i=0 (xi − x̄) ∗ (yi−ℓ − ȳ)√∑N−1

i=0 (xi − x̄)2
√∑N−1

i=0 (yi−ℓ − ȳ)2
(2.1)

This metric can be good for detecting phase shifts between two curves, but requires them to

be of equal length.

If looking at the sequences directly or spatially, one can use distance measures like ED,

Dynamic Time Warping (DTW) or derivative DTW. These measures find sample point

pairs along two trajectories by minimizing the transformation cost. Then, the cumulative

cost yields the final distance. The matching process can either be complete matches where

every point is matched, including duplicates, or partial matches which means some points

are not paired at all. Within the complete matching metrics, the most common are ED and

DTW. ED is defined as the summation of the ordered point pair distances, shown below:

13



dED =

√√√√ P∑
k=1

(xik − vjk)2 (2.2)

However, ED has several limitations, especially in its ability to handle signal transfor-

mations, such as shifting and scaling, and the requirement for the sequences to be the same

length. Möller-Levet et al. [41] introduced a novel similarity measure, short time series

distance (STS), that leverages temporal information from time-series data by treating each

time-series as piece-wise linear functions and calculating the difference of the slopes. Math-

ematically, it is defined as:

dSTS =

√√√√ P∑
k=1

(
vj(k+1) − vjk
t(k+1) − tk

−
xi(k+1) − xik
t(k+1) − tk

)2

(2.3)

Similar to ED, STS is sensitive to scaling but can be overcome with a z-score stan-

dardization of the time-series. Since equal length trajectories are a rare occurrence, the

length limitation can be overcome through either the use of sliding windows or more flexible

measurements. DTW overcomes the length limitation by calculating a warping path that

minimize the distance between pairs of indices, subject to a few restrictions [42]. These re-

strictions include monotonicity, continuity, and boundary conditions (constrained endpoints).

dtw(i, j) = c(xi, yj) +min


dtw(i− 1, j)

dtw(i, j − 1)

dtw(i− 1, j − 1)

 (2.4)

Equation 2.4 [43] details the recurrence relation of the DTW method, which allows it to be

robust to shifts in the data. Thus, sum of the distance between the indices is reported as the

similarity distance. The two main limitations with DTW are its computational complexity

and alignment singularities. One solution to overcoming the singularities issue is to take

the derivative [44]. Rather than using ED as the distance measure between two points,

derivative DTW (DDTW) takes the square of the distance of the derivatives for the two
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matched points.

Time Alignment Measurement (TAM), proposed by Folgado et al. [45], is a similarity

measurement designed to "characterize temporal misalignment" between two signals, by in-

corporating temporal information rather than signal amplitude. Their work first introduces

an adjustment to DTW with the inclusion of sliding windows (SW-DTW) to account for

singularities by aligning distinct features, such as local minima, maxima or valleys. By

changing the cost function from element-to-element distance to a window distance, the num-

ber of singularities are reduced and a better alignment is achieved.Then, TAM computes the

cost to warp the optimal path by characterizing the windows when "the series are in phase,

advance or delay" [45]. The formal definition for this measurement is:

Γ =
−→
ψ +

←−
ψ + (1− ψ), Γ ∈

{
R+

0 |Γ ∈ [0 : 3]
}

(2.5)

where
−→
ψ is the fraction of advance,

←−
ψ is the delay, and ψ is the phase. TAM can be

calculated from the result of any signal alignment technique, given that each element of the

series has a pairwise relation. Despite the focus on TAM, the author’s use of SW-DTW may

prove to be more useful for the alignment of the two signals.

Wang et al. proposed an IMU-based gait normalcy index (INI) that leveraged gait vari-

ables and kinematics to measure the similarity between a patient and the normal mean of

healthy persons [46]. Their INI was based off a PCA method developed by Schutte et al.[47]

that is sensitive to both the deviation of each gait variable and the overall relationship

between the variables. By leveraging PCA, the method is able to remove the correlation

between variables that would otherwise occur if distance values were directly assessed from

the original variables.

2.4 Motion Quality Assessments

The assessment of motion quality has garnered significant interest as it can provide coaches,

trainers, and clinicians with valuable information regarding an individual’s ability to perform
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a specific movement. Motor function assessments can provide a quantitative baseline for

evaluating the performance and are essential to monitoring recovery during rehabilitation.

This has led to the development of several assessments tools, many of which are designed for a

specific population or objective. These tools often use simple Likert-scale scoring systems (i.e.

0-5) which limits their sensitivity to small changes in movement quantity and quality [14]. To

quantify motion within a medical setting, clinicians have developed several motor function

assessments for specific use cases. For example, upper extremity impairment commonly

affects patients with varying medical conditions, including cerebral palsy, spinal muscular

atrophy (SMA), Duchenne muscular dystrophy (DMD), Parkinson’s, and hemiplegia, as well

those recovering from surgery as in the case of breast cancer survivors and spinal-cord related

injuries. With the varying degree of impairment for each of those conditions mentioned,

researchers and clinicians have developed assessments for each condition. Understandably,

the motions that matter most will differ across some of the diagnoses, hence the need for

separate assessments, but the motions will also vary from patient-to-patient. The patient-to-

patient variation here does not refer to the individualized preference of motion for increased

quality of life, but rather the difference in severity of a patient’s underlying diagnosis. For

example,the range of motor function impairment for children with SMA include those who

can move independently and those whose only movement is a small flexion of the wrist.

Some of the most common tools include the Children’s Hospital of Philadelphia Infant

Test of Neuromuscular Disorders (CHOP-INTEND) [48], Hammersmith Functional Motor

Scale Expanded (HFMSE) [49], the Brooke upper extremity scale [50], Fugl-Meyer Assess-

ment (FMA) [51], Wolf Motor Function Test (WMFT) [52], Shriner’s Hospital for Children

Upper Extremity Evaluation (SHUEE) [53], Upper Limb Module (ULM), and many more

Likert-type scales.. Some assessments are self administered surverys, such as the Disabil-

ities of Arm, Shoulder, and Hand (DASH) questionnaire. Each assessment has its own

set of motions to perform along with its own evaluation process, and clinicians often have

differing opinions on which assessment is the "gold standard". These tests are conducted
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and scored by human examiners, which introduces variability and uncertainty in evaluation

scores. Traditional assessments can be tedious and time consuming, which is why previous

and ongoing research have tried to implement ubiquitous technologies, such as smartphones,

smartwatches, cameras and other wearable sensors, to aid in the evaluation process and

provide a path toward home-based assessment evaluations [54, 55, 56, 57, 58, 59, 6, 60, 61].

The DASH [62] is a self report questionnaire consisting of 30 questions with the goal of

measuring symptoms and functional status of upper extremity musculoskeletal conditions

[62]. The questions vary between asking a patient if they are able to perform a variety of

activities, such as opening a jar, turning a key, and push open a door, as well as subjective

questions about whether they are in pain or have been limited in their daily activities. The

responses for this questionnaire range from 1 to 5, where 1 coincides with "No Difficulty"

while a 5 represents "Unable". The assessment generally lasts for 5-10 minutes and is in-

tended for patients over 18 years old. While the DASH can be used for a quick determination

of a patient having an impairment, it does not capture any movements, thus it is extremely

limited in its use for rehabilitation recommendation and recovery progress.

The FMA [51] is an evaluation tool that assesses voluntary movement, reflex activity,

grasp, and coordination. This particular assessment contains both upper and lower extremity

portions. A few of the movements included within the upper extremity portion are shoulder

abduction, gripping a tennis ball, elbow extension, and bicep reflex activity. Due to its

large adaptation within the medical and research communities, it is frequently referred to

as the "gold standard" in upper extremity motor function assessment. However, as [52]

mention, the FMA can be difficult to use and has become outdated for new rehabilitation

treatments. The time to complete this assessment ranges from 30-35 minutes. A clinician

observes the performance of each movement and provides a score from 0 to 2, where a value

of 0 indicates the patient could not perform the movement, a value of 1 if the movement

was performed partially, and a value of 2 if the movement was performed fully. While

these movements provide a broad evaluation of each upper extremity joint, there are no
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functional tasks associated with the evaluation. Since the movements are not measured

on a quantitative scale nor are they timed, the assessment provides little information for

tracking improvements over time. The WMFT [52] is a tool that quantifies upper extremity

movement through timed motions and functional tasks [58]. With a total of 17 tasks and

a time limit of 120 seconds per task, each are listed in order of complexity to assess overall

movements and the speed at which they are performed. Thus, two scores are recorded: 1)

WMFT-Time, the time required to complete the tasks; and 2) WMFT-Functional Ability

Scale (FAS), scores ranging from 0 to 5 based on a patient’s functional capacity to perform

each task. On average, the test has a duration between 30-45 minutes and is performed

on a single side. Some of the tasks include, placing one’s had on a box, lifting a pencil,

and turning a key. As a requirement, the WMFT must be video recorded as the FAS

scores are determined post hoc by a trained clinician. The Upper Limb Module (ULM)

that was developed as an international effort between clinicians, physical therapists, and

researchers to address the shortcomings in previous SMA motor function assessments [63].

The ULM was targeted towards younger children and overcame the flooring effects found

in the Hammersmith Functional Motor Scale-Expanded (HFMSE). However, the ULM had

issues with the ceiling effect which led to the Revised Upper Limb Module (RULM) [63]. A

few of the tasks that were added in the RULM include picking up coins, pushing a button

light with one hand, and raising a 200 gram cup to the mouth. While the tasks were related

to ADLs and allowed for complete ROM with the different joints, the RLM does not explicitly

measure each task.

Next, we turn to motion quality assessments for sports. Traditional sports performance

analysis is done through the process of a coach or expert watching the every move of an

athlete to assess their strengths, weaknesses, and technical form. With the vast amount of

data available from motion analysis, an athlete’s performance can be optimized to determine

how, when, and where a player should move. The difference of a second or an inch could

have a substantial effect, which is why the interpretation of that data is so crucial. For

18



swing analysis in sports such as golf, baseball, and tennis, an athlete would wear an IMU

device on their dominate wrist to gather data as they swing to hit the ball. Motion quality

would assess characteristics of wrist position and orientation, acceleration profile, and various

angles. Similarly, the applications for swim stroke motion assessment have expanded as

smartwatches from Garmin, Apple, and Samsung and other IMU devices can measure various

swimming metrics such as stroke count, velocity, and biomechanical performance [64]. For

ACL related injuries, functional assessments revolve around leg isolated tests so that the

results of each leg can be compared against one another, known as an limb symmetry index

(LSI). Sports therapists use a threshold of 90% as part of the criteria for clearing a patient to

return-to-sport (RSI). The isolated tests include muscle strength testing with an isokinetic

dynamometer (Biodex Medical Systems Inc., NY, USA), hop tests, single leg squat, 6 meter

hop for time, and others. Some functional assessment exercises assess both legs, like the box

jump landing to vertical jump, but are reserved for patients who are much further along in

their rehabilitation.

However, sports medicine specialists also rely on patient reported functional assessment

surveys, like the International Knee Documentation Committee subjective form (IKDC) and

Knee Injury and Osteoarthritis Outcome Score (KOOS). Both assessments have been found

to be reliable measures for patients who have undergone ACLR surgery [65, 66, 67, 68].

The IKDC is based on 0-to-100 scale, with higher scores translating to more knee function

while the KOOS is the combination of five subscales: pain, symptoms, activities of daily

living, sport and recreation activities, and quality of life. Each subscale has questions scored

between 0 and 5, which are then aggregated on a 0-to-100 scale, with higher scores indicating

less knee issues.

2.5 Current Gaps and Limitations

To grasp the need for our work presented in this thesis, this section will discuss the limitations

of existing studies in relation to wearable sensors and motion quality assessments. Given

the current technology available for wearable devices, the largest criticism is drawn from the
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reported data measuring inaccurately, whether it s from lack of proper calibration or the

accumulation of error from sensor drift. Other factors to consider when looking at a single

IMU are the current limitation of single limb tracking, placement sensitivity, and lack of

whole body analysis. Despite these limitations, the feasibility of IMUs for motion tracking

is already apparent in the vast amount of work surrounding gesture recognition.

The motivation for this work stems from the three main limitations that hinder the

widespread use of current motion assessments for clinical use cases. First, most assessment

tools only focus on quantifying a movement with an assessed score, rather than focusing on

the recorded values of the movement as well as the quality of that movement. An example

of this can be seen in the form shown in Figure 2.2, where a physician can circle one of three

options for a given exercise: none, partial, or full.

Fig 2.2. Example of a current motor function assessment form

The purpose of rehabilitation is to improve one’s ability to perform a particular motion or

activity, such as increase in range of motion or the decrease of tremors. However, assessments

such as these provide no record of how much movement was performed, how well it was

performed, or how much change has occurred between the previous assessment.

Second, is that most assessments are performed in a clinical setting, usually in physical
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therapy, and may not translate to activities of daily living. Often times, these rooms are

furnished with expensive equipment, like that shown in Figure 2.3. After speaking with

parents and physicians, many note that the performance of the patient in the clinic is not

always representative of their true functional ability. Therefore, a decrease in performance

can be attributed to fatigue, nerves, or anxiety stemming from the environment the patient

is testing in.

Fig 2.3. Example of a clinical setting for motor function assessment

The third main limitation is complexity. The "gold standard" for motion analysis is

optical motion tracking through technologies found in the Vicon MX® motion capture system

that uses 20 cameras to track a series of reflective markers placed all over an individual’s

body. An example of this is shown in Figure 2.4. Systems such as these are complex,

expensive, confined to a specific area, and are impractical for capturing everyday motion.
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Fig 2.4. Vicon MX® Motion Capture System.
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Chapter 3

A Framework for Modeling Deviations in Motion

Trajectories

3.1 Background and Motivation

Modeling motion trajectory is important in a variety of applications such as sports perfor-

mance analysis, gaming, animation, and healthcare. Though cost and the adoption of new

technologies are barriers to entry for most healthcare applications, low-cost wearable inertial

measurement units (IMUs) have proven to be an ideal solution for tracking motion [69].

Healthcare practitioners can leverage this technology through progress-based applications

such as motor function analysis and rehabilitation. However, despite emerging support for

the effectiveness of IMU enabled mobile health applications, there is little emphasis on de-

veloping new visualizations for IMU motion trajectory [70, 33]. Erbaugh noted that visual

feedback plays a pivotal role in one’s ability to make correct movements. In the case of

range of motion (ROM) assessment, visualization empowers both the doctor and patient to

be more informed on one’s motion that would otherwise be lost in a single quantitative num-

ber [16]. Therefore, by visualizing the motion trajectory, quantitative measures of motion

can be evaluated while also assessing the quality of that movement.

Specifically, identifying the points in time when a patient’s motion is deviating from an

accepted reference trajectory can aid in understanding fatigue, ROM limitations, and various
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movement qualities relevant to the exercise. Then, by leveraging analytical modeling, we can

derive quantitative measures on the quality of movement to capture activity performance.

As the motions that matter most will differ across diagnoses and applications, there will

also be variance across the patients. The patient-to-patient variation here does not refer to

the individualized preference of motion for increased quality of life, but rather the difference

in severity of a patient’s underlying diagnosis. For example, the range of motor function

impairment for children with SMA include those who can move independently and those

whose only movement is a small flexion of the wrist. Comparative trajectory analysis is

one method that can assess motion quality characteristics of wrist position and orientation,

acceleration profile, and various angles.

In this work, we propose a new visualization framework that combines analytical modeling

with comparative trajectory analysis to model IMU motion data into meaningful information

related to the quantity and quality of motion.

3.2 Methodology

Fig 3.1. MISTA Framework. Our novel visualization framework can models deviations
in motion trajectory.

In this section, we describe the steps of our framework, as seen in Figure 3.1. Note that

our framework assumes the following conditions:

1. Trajectories are heterogeneous (reported in the same time reference)
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2. Movement is along one axis

3. The signal is continuous

3.2.1 Feature Representation of Motion Data

Prior to the use of our framework, we recommend an exploratory analysis of the features

for the data. This may include box plots, kernel density estimation (KDE) plots, summary

statistics, correlation heatmaps, etc. In doing so, this provides the foundation necessary to

understand specific features of interest for comparing between trajectories.

3.2.2 Motion Alignment with Curve Matching

The first step of our framework is to select an appropriate algorithm that compares two time

series sequences through curve matching, as discussed in Section 2.3.2. Some common curve

matching algorithms include ED, DTW, STS, TAM, and Longest Common Subsequence

(LCSS). Though the occurrence of equal length trajectories is rare to happen in the wild,

the length limitation for using ED as a distance metric can be overcome through the use

of more robust distance measures, such as DTW. The algorithm selected must be able to

compare the two sequences through ordered pairs and provide those ordered pairs as output.

3.2.3 Time Window and Statistical Feature Selection

Index

Next, we use the indices of the ordered pairs as breakpoints for creating time windows.

The user selects As the framework iterates through the ordered pairs, These linearly spaced

points become the initial x-coordinate values in our graph. However, we found that it is more

informative to show the elapsed time for a given movement of the query sequence. Using the

timestamps of the query trajectory, we find the time delta between the time window indices,

to show an elapsed time.

Statistical Feature Selection

Since the time windows are an aggregation of multiple points, the user must select a statistical

feature to represent each time window, which will become the Y-coordinate values. Based
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on the exploratory analysis, this may drive the decision of which feature to select, though,

simple features such as maximum, minimum, mean, and standard deviation are good places

to start. Other values can also be selected, such as the first, last, or median value of the

time window as well.

3.2.4 Trajectory Divergence Analysis

The final step of our framework involves comparing the time window features from the query

sequence to the reference sequence by either computing the absolute difference or through

the use of a distance metric. This will determine the dot size. Figure 3.2 (a) depicts the

absolute difference between the mean values of sample set of trajectories.

Statistical Tests

Furthermore, a statistical test can also be used to adjust the dot size if the difference is

found to be significant at the desired alpha level. Figure 3.2 (b) illustrates how the use of a

statistical test, such as the one-way ANOVA, can influence the dot size, providing a clearer

picture of where the most important deviations occur along the trajectory.

3.2.5 Visualization

After completeting the steps above, we can now plot the aligned query and template se-

quences with the Matching Index Statistical feature Trajectory Analysis (MISTA) dots. To

achieve the best results, this process may need to be repeated for several features as the dif-

ferences between the sequences will vary. MISTA will aid in the discovery of distinct points

in time when the two trajectories are not in sync.

To demonstrate how our framework can be used, we use gait analysis case study. Imagine

there is a participant walking on a treadmill and we place a sensor on each thigh. From the

accelerometer data, we extract one full gait cycle where we identify when the toe come off

the ground, swings forward, makes contact with the ground, and becomes flat just before the

toe comes off the ground again. For this case study, we purposely kept the non-dominant

foot on the ground longer at two time points, to introduce distinct differences that should be
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(a) Relative Divergence

(b) Statistically Significant Divergence
Fig 3.2. Divergence Analysis. The dot size can be changed depending on the user’s

choice for comparing the statistical feature. The top plot (a) shows the dot size relative to
the absolute difference between the time windows of the template and query trajectories.

The bottom plot (b) illustrates larger dots for the time windows that are deemed
statistically significant after applying a statistical test to compare the time windows. Here,
we show the use of a one-way ANOVA test with α = 0.05 to increase the dot size by 3x.
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captured. The goal of the case study was to compare the symmetry between the acceleration

profile of the participant’s dominant and non-dominant leg.

Fig 3.3. MISTA Gait Example. As an example, we apply MISTA to a healthy
participant’s gait cycle as they walk on the treadmill.

The scenario mentioned is seen in Figure 3.3, which shows phases from healthy participant

1’s gait cycle with the corresponding MISTA framework plot that compares the symmetry

between the acceleration of their dominant and non-dominant leg. The black line is the

template or reference trajectory (participant’s dominant leg) while the blue line is the query

trajectory (participant’s non-dominant leg). The MISTA plot in Figure 3.3 uses DTW to

align the trajectories since the lengths were unequal. After extracting the matched indices

to form the time windows, we selected the maximum value as the statistical feature, which

becomes the new y-coordinate values. Then, we found the absolute difference of the max bin

values between the query trajectory and the template trajectory. As an additional measure,

we also computed the one-way ANOVA test and adjusted the dot size three times larger if

the difference was significant at an alpha of 0.05. Finally, we plot the new y values along

the same range as the full trajectories, and use the new bin distance measure output as the

dot size of each bin. The dot size indicates where the largest deviations are along the query
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trajectory.

By applying our framework to the acceleration profile of healthy participant 1’s gait, we

are able to visualize and extract the exact timing of deviations from symmetry. From Figure

3.3, we can see that the participant’s acceleration profile is generally the same for each leg,

with the exception of two peaks from the dominant leg (template). The first peak around

0.493 seconds is in relation to the toe lift phase while the second peak around 1.2 seconds

is the leg coming forward after the foot becomes flat with the ground. The acceleration

and deceleration during the swing phase are nearly identical. The MISTA plot was able to

correctly identify the two time points that were purposely performed different.

3.3 Discussion

MISTA provides researchers and physicians the ability to assess quantitative outcomes paired

with measurable metrics on the quality of the movements, providing informative data for

rehabilitation interventions and monitoring recovery. Our framework could be applied to

a variety of applications, like shape detection, signal processing, other pattern recognition

problems. Healthcare practitioners can leverage MISTA through progress-based applications

such as motor function analysis and rehabilitation. Specifically, identifies the points in time

when a patient’s motion is deviating from an accepted reference trajectory, which can aid

in understanding fatigue, ROM limitations, and various movement qualities relevant to the

exercise.
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Chapter 4

Validation through Human Motion Capture with

Wearable Sensors

4.1 Leveraging Wearable Sensors to Detect and Assess Rehabilita-

tion Progress

4.1.1 Background and Motivation

Anterior cruciate ligament (ACL) rupture is a common and costly musculoskeletal injury,

affecting 250,000 people in the United States and costing over 3 billion annually [71, 72, 73].

Successful return-to-sport (RTS) following ACL reconstruction (ACLR) surgery relies on

the ability to assess muscle function during rehabilitation. Research has shown that young

athletes, especially females, are more likely to experience an ACL injury and are more

prone to sustaining a contralateral ACL injury after the first occurrence [74]. Additionally,

studies have also found that many athletes’ timeline for return-to-sport (RTS) is too soon

[75]. Therefore, the ability to detect and track subtle movement asymmetries in native

environments is essential to track progress early and throughout the course of rehabilitation

and recovery.

To aid in the decision making process for RTS, clinicians rely on performance evalua-

tions and their associated outcomes. Many physical movement evaluations are performed
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using video-graphic or optoelectronic systems integrated with hardware and software sys-

tems. These kinds of systems (e.g., Vicon) involve applying markers to the subject, setting

up and calibrating the reference frame, video or marker recording, digitization, transfor-

mation, smoothing and normalization [76]. These evaluations require elaborate preparation

and set-up, rendering this type of evaluation to be cost and time prohibitive for multiple

evaluations. However, the gold standard evaluation uses an isokinetic dynamometer to as-

sess the quadriceps femoris (QF) strength symmetry. Isokinetic strength testing provides

a limb strength symmetry (LSI) ratio of the involved leg to the uninvolved leg, where 90%

or better is considered a benchmark for progression of rehabilitation toward RTS. Further,

these evaluations are limited to controlled and unrealistic laboratory environments that have

little similarity to “in-field” activity or sport exposure because analysis is limited to one type

of movement patterns during relatively few steps.

Recent advances in ubiquitous sensing have the potential to fill these gaps. Monitoring

physical activity with wearable sensors provides more portability than in-clinic/lab instru-

ments and can be worn over an extended period of time in an unrestricted environment.

Sensors such as accelerometers, gyroscopes and surface electromyography (sEMG) can be

leveraged to assess gait, mobility, and muscle activity characteristics in athletes’ natural

environments. Accelerometers and gyroscopes have been used extensively to monitor gait

and assess athlete performance [7, 3]. The sEMG signal is a measurement of electrical cur-

rent generated in muscles during contraction. Previously, the cost, complexity, and usability

of sEMG devices have prevented clinicians from realizing the benefits of muscle activity

information for assessing their patients. However, recent technological advances and the

availability of more sEMG solution have lowered the barriers to entry. Surface Electromyo-

graphy (sEMG) devices have been shown to recognize hand and arm gestures while worn on

the forearm by recording electrical impulses stemming from muscular contractions through

the use of surface electrodes [22]. Often times, sEMGs are paired with accelerometers or

IMUs to better capture motion. The limitations of these devices are similar to that of
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smartwatches, where they are generally worn on one limb at a time and do not have very

high sampling rates.

Recognizing the applicability of ubiquitous sensing, the UVA Exercise and Sport Injury

Lab sought to leverage advanced sensing technologies and innovative analytics to answer the

following research questions:

Research Question 1: Can body worn sensors be used to differentiate between

healthy and patient populations during rehabilitation?

Research Question 2: How can body worn sensors inform rehabilitation pro-

grams on the status of patient progression?

The study will seek to answer the research questions above through signal feature analy-

sis. We will first describe the study design for the ACLR dataset, and extract a set features

to explore with descriptive analysis. We will then design classification models using the

extracted features to differentiate between the healthy and patient cohorts. We will then

present a correlation analysis using motion based LSI features against the LSI values pro-

vided by the isokinetic dynamometer. Ultimately, this study serves as the initial step in

determining the feasibility of using body worn sensors to aid in treatment decision making

regarding the safety of patients RTS after severe knee joint injuries.

4.1.2 Study Design

Subjects

Our study involved twenty-two participants, with twelve patients (first-time ACL recon-

struction and free from complication) and ten healthy subjects sex: 4F/6M, age: 22–35 yrs,

height: 1.6–1.8 m, weight: 61.2–99.3 kg). Our analysis will focus on twenty-one participants

as one patient’s data was corrupted and unrecoverable. Patients in the study are referred

by their surgeon at the UVA Hospital while healthy participants are young athletes and stu-

dents attending UVA. Each patient completes two self-reported knee function assessments,

the International Knee Documentation Committee subjective knee form (IKDC) and the
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Knee injury and Osteoarthritis Outcome Score (KOOS). Both assessments have been found

to be reliable measures for patients who have undergone ACLR surgery [65, 66, 67, 68]. The

IKDC is based on 0-to-100 scale, with higher scores translating to more knee function while

the KOOS is the combination of five subscales: pain, symptoms, activities of daily living,

sport and recreation activities, and quality of life. Each subscale has questions scored be-

tween 0 and 5, which are then aggregated on a 0-to-100 scale, with higher scores indicating

less knee issues.

Experimental Protocol

The study involves a walking gait analysis, a muscle strength assessment using an isokinetic

dynamometer (Biodex Medical Systems Inc., NY, USA), followed by hopping tests, if able.

The isokinetic dynamometer controls the speed and resistance for a given range of motion

to evaluate muscle strength. Our study involves the placement of a Delsys Trigno™ sensor

(Delsys Inc., MA, USA) on each quadriceps femoris to monitor these physical activities 3-6

months post-surgery. The sensor location was determined by first measuring the distance

from the greater trochanter to the superior-lateral pole of the patella. Then, the sensor was

placed on the vastus lateralis in line with the muscle fiber orientation at the distal 1/3 of

the measured distance, as seen in Fig 4.1.

Each subject began by walking on the treadmill for five minutes, and then performed

a set of isokinetic testing exercises at 90 and 180 deg/s. From the exercises, the muscle

strength is translated into a Limb Symmetry Index (LSI), calculated by Eq 4.1.The LSI

ratio has been found to be a reliable measure for assessing asymmetries [77].

LSI = (involved/uninvolved) (4.1)

Depending on a patient’s progress and pain tolerance, more exercises could be performed,

such as the single leg hop. However, we did not include this exercise in our analysis since

most of the patients were unable to perform the movement.
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Fig 4.1. Sensor placement. Delsys Trigno sensors were applied bilaterally at a
measured distance on the vastus lateralis for tracking gait kinematics and quadriceps

muscle activations.

4.1.3 Methodology

To answer the first question, we use the methodology shown in Fig 4.2. It follows standard

HAR approaches, beginning with data collection and data processing. Next, there is muscle

activation detection followed by feature extraction. Then, the features are summarized with

descriptive analysis modeled with machine learning algorithms for classification.

The accelerometer and sEMG data were sampled at 148 Hz and 1926 Hz, respectively.

Both sensors underwent processing and filtering through Delsys’ proprietary software. To

limit sensor noise, the placement location was first shaved and cleaned on each participant

prior to placement. Then each sensor was wrapped with medical tape to limit movement over

the duration of the exercises. Further data processing and all analyses were accomplished

with python using custom scripts. The sEMG data was reprocessed through a band-pass

filter between 10-500 Hz to remove any remaining noise. Fig 4.3 depicts the sEMG muscle

activations for healthy subject 1 during the iso 180 exercise, where blue represents their

involved leg and orange is their uninvolved leg.
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Fig 4.2. Methodology breakdown. Our methodology begins with data collection,
followed by muscle activation detection, and feature extraction. Then, we provide a

descriptive analysis of the motions, apply predictive modeling to classify the motions into
their respective cohorts, and then apply our MISTA framework for trajectory analysis of

limb symmetry.

Fig 4.3. Iso 180 EMG data The muscle activations for healthy subject 1 during the iso
180 motion are shown with the involved leg on the left and the uninvolved leg on the right.
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Focusing on the isokinetic exercises, we performed our analysis using the sEMG signal

data since the placement of the sensor would cause there to be no acceleration during the

specific exercises. The cyclical pattern found in the sEMG data suggested that the individual

muscle activations could be extracted for comparative analysis. Looking at each subject’s

leg, we separated out the muscle activations during each exercise, as shown in Fig 4.4.

Fig 4.4. Muscle activation separation. The muscle activations of healthy subject 1’s
involved leg during the iso 180 exercise are separated into individual partitions for

comparative analysis.

Then, we extracted the features described in Table 4.1 below for each activation. These

features were chosen based on previous work [78, 79]. Next, we found the average of each

feature to represent the subject’s performance for a given leg on each exercise. Since each

leg was measured independently, we also computed LSI ratios for each feature.

Within each exercise, we perform the 2-sided Mann-Whitney-U statistical test with a

significance level equal to 0.05, to test whether the mean values of each class were equal across

each extracted feature for six scenarios: healthy vs patient, involved vs uninvolved, healthy

involved vs healthy uninvolved, patient involved vs patient uninvolved, healthy involved vs

patient involved, and healthy uninvolved vs patient uninvolved.
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Table 4.1. Extracted features
Feature
Variance
Root Mean Square (RMS)
Integrated EMG (IEMG)
Mean Absolute Value (MAV)
Log Detector (LOG)
Wavelength (WL)
Average Amplitude Change (ACC)
Difference Absolute Std Dev Value (DASDV)
Willison Almplitude (WAMP)
Myopulse Percentage Rate (MYOP)
Frequency Ratio (FR)
Mean Power (MP)
Total Power (TP)
Mean Frequency (MNF)
Median Frequency (MDF)
Peak Frequency (PKF)
H-Wavelet (WENT)

This table lists all the features extracted from each muscle activation that will be used for
comparative analysis.

4.1.4 Results

4.1.4.1 Descriptive Analysis

Iso 180

Beginning with the iso 180 exercise, we notice differences in the extracted features between

the cohorts and the subjects’ legs. These differences are apparent when looking at the

boxplots of the individual features. For example, in Fig 4.5, we see that the median for the

healthy involved and uninvolved legs are very similar, despite their interquartile range being

uneven. For the patient cohort, we see the uninvolved leg has a higher median value and a

much higher upper bound for the 3rd quartile.

To analyze all the remaining features, we applied a scaling function and plotted the

boxplots, as seen in Fig 4.6. Only five of the eighteen features were found to have correlation

values less than 0.75, which included VAR, WL, ZC, WAMP, MYOP and FR. From Fig
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Fig 4.5. Wavelength (WL) feature boxplot for iso 180. For the iso 180 exercise, the
median WL values of the involved and uninvolved legs within the healthy cohort are nearly
identical while the median WL value for the patients’ uninvolved leg is shown to be much

higher than their involved leg.

38



4.6, we observe that the median value of the uninvolved leg for both healthy and patients is

generally higher in the time domain than that of the involved leg. In the frequency domain,

the MNF, MDF, PKF, and WENT features are all inversely related between the cohorts.

With the exception of the WENT feature, the patient’s involved leg has the lowest median

value across all the features.

To determine whether the differences between the features are statistically significant

for the 6 scenarios previously mentioned, we look to Table 4.2 for the results of the Mann-

Whitney-U test. In this table, the values highlighted in gray represent the features found

to be statistically significant in each scenario. From this table, we can clearly see that as a

whole, the patients’ involved leg performs differently than the uninvolved leg for the iso 180

exercise.

Iso 90

Next, we look at the iso 90 exercise. In Fig 4.7 we see that the median and interquartile

range for the healthy involved and uninvolved legs are very close. For the patient cohort, we

see the uninvolved leg has a higher median value, yet the interquartile range is smaller than

the involved leg.

Assessing the remaining features, Fig 4.8 displays the scaled feature boxplots for this

exercise. The set of uncorrelated features were almost identical to the iso 180 exercise, with

VAR, WL, ZC, WAMP, MYOP, FR and PKF having correlation values less than 0.75. With

the exception of the ZC and MYOP features, the healthy uninvolved leg has a higher median

value than the involved leg for all time domain features. The patient uninvolved leg had a

higher median than the involved leg, in all the features except FR. This observation is unlike

that of the iso 180 exercise, where features had an inverse relationship between the cohorts.

Instead, the two cohorts performed similarly, with the exception of the PKF feature.

The results of the statistical tests for the iso 90 features are shown in Table 4.3. The

values highlighted in gray represent the features found to be statistically significant in each

scenario. Similar to the iso 180 exercise, there is a clear indication that the patient involved
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Table 4.2. Iso 180 Mann-Whitney-U Statistical Tests

The results of the Mann-Whitney-U statistical tests for the Iso 180 exercise are presented,
comparing the mean feature values (bold left column) between the 6 scenarios or subsets

shown in the bold on the top row. Highlighted values indicate where the tests are found to
be statistically significant at an alpha of 0.05, thus rejecting the null hypothesis that the

mean values for the two classes are equal.

leg is performing differently than the involved leg.

As we examine the features across the cohorts in Figs 4.6 and 4.8, we can see the same

trends arise between the cohorts for each exercise. Generally, the median values within the

healthy cohort are almost the same, despite the interquartile range of the healthy uninvolved

leg being larger than the involved leg. This observation is validated by the statistical test

results shown in Tables 4.2 and 4.3, where the statistical tests comparing the healthy subjects’

legs for WL (iso 180) and ZC (iso 90) are not significant and the tests for the patients’ are

highlighted as significant. Another trend found by the boxplot analysis is that the upper

bound of the frequency domain features were usually higher for involved leg of the healthy
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Fig 4.7. Zero-Crossing (ZC) feature boxplot for iso 90. Here we see that within the
healthy cohort, the median ZC value is very similar between the involved and uninvolved
leg. However, there appears to be a clear difference between the median ZC values for the

patient cohort.

subjects, which is opposite of the time domain features and contradictory for the patients. In

validating our hypotheses that the healthy subjects would show no difference between their

legs while patients would, we aimed to capitalize on those differences through classification.

4.1.4.2 Predictive Modeling of Limb Symmetry

We propose to leverage supervised machine learning algorithms to determine how well the

derived sEMG features can distinguish between the cohorts as well as between the involved

and uninvolved legs. Following previous work from [80] et al, some of the top ML classifiers

include random forest (RF), linear discriminant analysis (LDA), gradient boosting machine

(GBM), and k-nearest neighbor (KNN). Due to the limited size of the dataset, we used
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Table 4.3. Iso 90 Mann-Whitney-U Statistical Tests

This table displays the results of the Mann-Whitney-U statistical tests for the Iso 90
exercise, comparing the mean feature values (bold left column) between the 6 scenarios or
subsets shown in the bold on the top row. Highlighted values indicate where the tests are
found to be statistically significant at an alpha of 0.05, thus rejecting the null hypothesis

that the mean values for the two classes are equal.

leave-one-out-cross-validation to aid in assessing the performance of each the classification

models.

A RF classification model uses multiple sub-samples of the dataset to fit a set of decision

trees that are then averaged for the output[81]. GBM is similar to random forest, where the

algorithm is built on decision trees, however, the algorithm learns from the previous models

built, to reduce the overall error [82]. LDA is an algorithm that focuses on dimensionality

reduction by transforming the data into a set of component axes that maximize the variance

of the data while also maximizing the separation between multiple classes [83]. KNN is

another supervised learning algorithm designed for classification that aims to predict the
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associated class by selecting the ’K’ nearest points according to a specified distance metric

[84].

Fig 4.9. Classification confusion matrices. Confusion matrices for the top
classification models in the healthy versus patient scenario. The left is the random forest
model for the iso 180 exercise while the right is the random forest model for the iso 90

exercise.

We also present the top performing classification of each exercise using a confusion matrix.

Confusion matrices offer insight into how each algorithm classified the samples and which

classes were predicted most correct. Two scores that can be generated from the confusion

matrix are precision and recall. Precision refers to the ratio of true positives over the total

of true positives and false positives. Recall refers to the ratio of true positives over the total

of true positives and false negatives. Combining the precision and recall into a single metric

yields the F1-score.

For the iso 180 exercise, the classification accuracy for each algorithm is shown in Table

4.4 below. Given that the random forest model achieved the highest classification accuracy,

the confusion matrix is shown on the left in Fig 4.9. From this chart, we see that the model

performed similar for each class, with a F1-score of 0.82 for healthy and 0.85 for patient.

For the iso 90 exercise, the classification accuracy for each algorithm is shown in Table 4.5

below. For the iso 90 exercise, the random forest model also achieved the highest classification

accuracy. From Fig 4.9 (right), we see that the model performed similar for each class, with
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Table 4.4. Classification Accuracy for Iso 180
RF GBM KNN LDA

H v P 83.5% ± 0.4 81.4% ± 0.4 71.4% ± 0.5 67.0% ± 0.4
Inv v Uninv 80.8% ± 0.4 78.8% ± 0.4 66.7% ± 0.5 59.9% ± 0.5

Hinv v Huninv 83.1% ± 0.4 81.5% ± 0.4 69.1% ± 0.5 62.4% ± 0.5
Pinv v Puninv 83.8% ± 0.4 86.2% ± 0.4 79.5% ± 0.4 67.1% ± 0.5
Hinv v Pinv 88.1% ± 0.3 85.1% ± 0.4 77.8% ± 0.4 76.8% ± 0.4

Huninv v Puninv 83.0% ± 0.4 79.4% ± 0.4 77.8% ± 0.4 73.7% ± 0.4

a F1-score of 0.80 for healthy and 0.85 for patient.

Table 4.5. Classification Accuracy for Iso 90
RF GBM KNN LDA

H v P 82.7% ± 0.4 80.7% ± 0.4 70.9% ± 0.5 64.7% ± 0.5
Inv v Uninv 83.5% ± 0.4 80.8% ± 0.4 67.9% ± 0.5 65.2% ± 0.5

Hinv v Huninv 87.4% ± 0.3 81.0% ± 0.4 69.5% ± 0.5 60.9% ± 0.5
Pinv v Puninv 87.9% ± 0.3 86.9% ± 0.3 79.9% ± 0.4 78.5% ± 0.4
Hinv v Pinv 88.1% ± 0.3 86.1% ± 0.3 82.0% ± 0.4 78.9% ± 0.4

Huninv v Puninv 83.0% ± 0.4 82.0% ± 0.4 76.8% ± 0.4 70.1% ± 0.5

The two isokinetic movements had very similar accuracy predicting across the six scenar-

ios. Therefore, we also did a combined classification task, using both exercises to predict the

same scenarios in Table 4.6. For the healthy versus patient scenario, we see an increase in

accuracy across all 4 models, especially in the KNN algorithm. The KNN algorithm showed

improvement in all six scenarios, which suggests that more data was needed to improve the

results. However, the increase in accuracy was not as comprehensive for the remaining sce-

narios. The final scenario, healthy uninvolved versus patient uninvolved, showed the second

most improvement, with changes in the random forest, KNN, and LDA algorithms.

4.1.4.3 Limb Symmetry Index (LSI) Comparison

To answer the second research question of this study, we computed our own set of LSI

values from the extracted features of each exercise, and compared them to the LSI values

provided by the isokinetic dynamometer. We interpreted the LSI values with a kernel density

estimation (KDE) plot, which allows us to visualize the underlying distribution.
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Table 4.6. Classification Accuracy for Combined Exercises
RF GBM KNN LDA

H v P 84.3% ± 0.4 82.1% ± 0.4 84% ± 0.4 66.0% ± 0.5
Inv v Uninv 81.4% ± 0.4 77.6% ± 0.4 76.8% ± 0.4 62.8% ± 0.5

Hinv v Huninv 82.7% ± 0.4 78.7% ± 0.4 81.2% ± 0.4 65.9% ± 0.5
Pinv v Puninv 88.0% ± 0.3 85.4% ± 0.3 82.3% ± 0.4 74.5% ± 0.4
Hinv v Pinv 88.1% ± 0.3 85.6% ± 0.4 84.3% ± 0.4 75.8% ± 0.4

Huninv v Puninv 83.5% ± 0.4 80.2% ± 0.4 83.8% ± 0.4 72.2% ± 0.5

Fig 4.10. KDE plots for variables provided. The top two plots are the distributions
from the IKDC And KOOS self-reported assessments while the bottom plots are the
distributions from the maximal volitional isometric contraction (MVIC) flexion and

extension metrics provided by the Biodex isokinetic dynamometer.

In Figure 4.10, the top two plots are the distributions from the IKDC And KOOS self-

reported assessments, which show a clear difference between the cohorts. For the IKDC

assessment, the healthy participants have a somewhat bimodal distribution, with the ma-

jority having a score near 1 (scaled from 100%), indicating that they have a high level of

function and little to no symptoms. The patient reported scores are more spread out, yet

there are a fair amount of patients reporting scores near 1 as well. The distribution for the
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KOOS assessment is almost identical to the IKDC plot, for both the healthy and patient

cohorts. The bottom plots are the distributions from the LSI of the maximal volitional iso-

metric contraction (MVIC) flexion and extension measures provided by the Biodex isokinetic

dynamometer, which is a measure of muscle strength [85]. The shape of the patient distri-

bution is almost exactly the same between the extension and flexion, yet there is a slightly

wider spread for the extension. We do observe a double bump pattern for the patient and

healthy cohorts, indicating there are two ranges where each cohort generally scored in. It is

interesting to note the mirrored pattern for the healthy cohort between the two measures.

Fig 4.11. KDE plots of iso 180 features. Here we see that within the healthy cohort,
the median ZC value is very similar between the involved and uninvolved leg. However,

there appears to be a clear difference between the median ZC values for the patient cohort.

Next, we look at the iso 180 features and provided LSI measures shown in Figure 4.11.

The top two plots are the distributions from features we generated, zero-crossing and peak

frequency. Both features show a clear difference between the distributions of the cohorts.

The bottom plots are the distributions from the LSI of the peak torque extension and flexion

for the iso 180 exercise, provided by the Biodex isokinetic dynamometer. The peak torque
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is representative of the dynamic component of muscle performance[86]. We can see the shift

in the distributions between the cohorts in the extension plot, but the distributions are very

similar for the flexion. Therefore, since the measures provided by the Biodex are similar for

both cohorts, they would not be as useful to differentiate between the cohorts, unlike the

LSI measures we found for the iso 180 exercise. From the zero-crossing KDE plot, we would

be more likely to choose a patient if their ZC-LSI was near a value of 1.

Fig 4.12. KDE plots of iso 90 features. Here we see that within the healthy cohort,
the median ZC value is very similar between the involved and uninvolved leg. However,

there appears to be a clear difference between the median ZC values for the patient cohort.

Then we looked at the features and provided values for the iso 90. In Figure 4.12, we again

show the distributions from ZC and peak frequency features. As we previously mentioned

for the iso 180 exercise, both features show a clear difference between the distributions of the

cohorts. There would be a high probability of selecting a patient if their ZC-LSI value was

near 1. The bottom plots are the distributions from the LSI of the peak torque extension

and flexion, but for the iso 90 exercise. We observe the shift for the extension measure

and the very similar distribution for the flexion measure. Given the results we shown,
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the measures provided from the isokinetic dynamometer are similarly distributed, whereas

the LSI generated features show vastly different distributions. However, the self-reported

assessment scores also separate the cohorts very well.

4.1.5 Applied MISTA Framework

In this section, we demonstrate how MISTA can be used to visualize motion differences

across cohorts using the ACLR dataset. However, this time we focus on the gait acceleration

data during the treadmill portion of the assessment.

Fig 4.13. Comparison between Patient 1’s involved and uninvolved leg.

Figure 4.13 depicts the symmetry between patient 1’s gait cycle. Analyzing the symmetry

plot further, we used patient 1’s uninjured leg as the template and their injured leg as the

query – patient had undergone ACLR surgery on the right knee. Using the same framework

parameters as in Figure 3.3, we notice the uninjured leg is generally higher throughout the

gait cycle. Then, there is a clear difference in the downward acceleration from the swing

phase, stemming from the patient’s inability to keep their knee elevated. Then, we notice

the number of large dots throughout the framework plot, appearing around most of the

peaks and valleys. The larger dots indicate statistically significant differences of the max
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values during the gait acceleration profile. A key observation occurs just after 1.120 seconds,

where the injured leg appears to show no acceleration. This translates to when the patient

kept their foot on the ground and their leg straighter for a longer amount of time, followed

by a double hitch as they again bring their foot forward. From our observation, Patient 1

had difficulty extending their injured leg and can be detected through our framework plot.

Therefore, the patient’s gait currently lacks good symmetry.

Fig 4.14. Comparison between the average patient involved leg and the average healthy
leg.

Plot B compares the average gait cycles from the injured leg of the 11 patients to the

average gait cycle of both legs of the 10 healthy participants. The lower acceleration exhibited

by the average patients’ involved leg is consistent with the lower acceleration found in Figure

4.13 by patient 1. Again, we can clearly see the differences, to include the lower peak

acceleration exhibited by the average patients involved leg compared to the average healthy

participant.

With the MISTA framework, we can also compare a patient’s leg gait cycle to the average

gait cycle of the healthy or injured. Figure 4.15 patient 1 vs all healthy participants.

Finally, Figure 4.16 compares patient 1’s motion against healthy participant 1’s motion
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Fig 4.15. Comparison between Patient 1’s involved leg and the average healthy leg. Here
we also include all the healthy gait cycles in the background.

Fig 4.16. Comparison of multiple gait cycles between Patient 1’s uninvolved leg and
healthy participant 1’s dominant leg.

across multiple gait cycles, for the uninvolved leg of patient 1 and the dominant leg of healthy

participant 1. Though the plot shows significant differences for the peaks, the overall motion

appears to be very similar which is to be expected for the uninjured leg of the patient. So
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we’ve discussed four different scenarios that can be visualized, but there are many more

possibilities. The comparison can be one gait cycle to another, or across multiple gait cycles.

(a) Healthy 1

(b) Patient 1
Fig 4.17. The sEMG data during the same gait cycle for each participant

To validate these results, we observe the sEMG profiles during the same gait cycle we

analyzed in our results. In Figure 4.17, the top plot shows healthy participant 1 exhibiting

very good symmetry during their gait cycle, while the bottom EMG plot reveals the clear

lack of symmetry of patient 1. Not only is the strength of the involved signal (orange) for

patient 1 much less throughout the motion, but it is also less consistent. The goal would be

to reassess patient 1 in the future to see if their symmetry has improved.
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4.1.6 Discussion

This works presented a descriptive analysis on data from a cohort of healthy subjects and

patients who have are recovering from ACLR surgery, using a wearable sensor during two

rehabilitation exercises. From these exercises, we were able to detect the individual muscle

activations and extract features for comparative analysis. Finally, we leveraged machine

learning techniques in an attempt to classify multiple subsets of the data.

Given the six scenarios, we used four classification algorithms to find the best accuracy

while treating each muscle activation as an individual sample. From our results, the random

forest algorithm provided the best accuracy across all the scenarios. There was a slight

improvement in accuracy when combining the data from both exercises for classification,

however, we suspect that more data would help further improve the results. The two scenar-

ios with the highest accuracy compared the patients’ involved versus uninvolved leg and the

healthy involved versus the patient involved leg. This is inline with our expectation that the

patient’s involved leg should be much different given the recovery time frame post surgery.

We also attempted a four-way classification, treating the cohort and leg as their own class

(i.e. healthy-inv, healthy-uninv, etc.), and achieved an accuracy of 73% with the RF model

for the iso 180 exercise. Overall, the classification algorithms show that the extracted EMG

features are sufficient to distinguish between the cohorts.

To reiterate the results presented when looking at the LSI features, we demonstrated

that the measures we generated have different distributions between the cohorts, unlike the

measures computed by the Biodex isokinetic dynamometer. Future work would include

comparing these LSI generated features to the self-reported assessments with a much larger

dataset. Note that the intent of our work is not to compete with existing practices, such

as the use of the isokinetic dynamometer, but rather to assist in the need for impairment

identification. However, descriptive analysis could be used in combination with or as a

stand-alone evaluation tool.The analyses presented serve as an initial step toward correlating

strength and functional outcomes for improving the RTS decision making process.
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4.1.7 Limitations

Though the results are promising, this work has its limitations. The primary limitation is

the number of participants. Though the broader study has over 1200 subjects, only those

that wore the wearable sensors were included. Additionally, we did not have enough data

to conduct a comparison between the sexes, which would have allowed us to understand if

there is a difference in recovery timeline, strength, etc. Another limitation is the sensor itself,

where the noise from the sEMG may not be filtered completely. Finally, the results presented

are the findings from two of the exercises captured in a clinical setting. The participants

performed a series of other exercises yet all were done in a controlled environment. The next

step would be to analyze more exercises and capture data in a natural setting.

4.1.8 Conclusion

In this study, we characterized the muscle activations during two rehabilitation exercises and

identified the sEMG features that are significantly different between six cohort scenarios.

Our analyses confirm our hypotheses, that 1) healthy subjects can be clearly separated

from patients; 2) the healthy subjects do not show a significant difference between their

involved and uninvolved legs; and 3) a patient’s uninvolved leg is dissimilar to their involved

leg in muscle strength. Though we expected the interquartile ranges to be closer between

the healthy subjects’ legs, the mean and median values were close enough to render the

subject-to-subject variability moot. These results demonstrate the effectiveness of using

wearable sensors to characterize sEMG muscle activations for a set of exercises, paving the

path for future use of wearable technology in ACL rehabilitation assessment. Furthermore,

our findings may be used to help with tracking progress through post operative recovery by

leveraging advanced analytics and technology in making healthcare decisions.

4.2 A Study on Quantifying Motion Quality with Wearable Sensors

We were provided with the opportunity to conduct a study in conjunction with the University

of Virginia’s (UVA) Children’s Hospital. It is through this collaboration that we had the
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opportunity to validate our framework with collected motion data.

4.2.1 Background and Motivation

Spinal Muscular Atrophy (SMA) and Duchenne Muscular Dystrophy (DMD) are two of

many neuromuscular disorders that affect children worldwide. SMA affects approximately 1

in 11,000 babies born each year, with a life expectancy at less than 2 years. DMD affects 1 in

3,500 to 5,000 males, and is the most common fatal, progressive muscle disorder in boys [87].

Though life expectancy has increased from teens to thirties, boys typically lose their ability

to walk in late childhood to early teen years, and have limited use of their arms after their

early teens. New treatments have been developed in recent years [88], yet the assessments

for measuring progress have remained stagnant.

To quantify the severity and limitation of a patient’s motor function loss, researchers

and clinicians have developed several motor function assessments, such as the Children’s

Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND) [48], the

Brooke Upper Extremity Scale [50], and the Hammersmith Functional Motor Scale Expanded

(HFMSE) [49]. However, the outcome measures of these assessments are based on ordinal,

subjective rating scales, that do not account for the quantity and quality of motion. As

Yu et al. [12] pointed out, scaled assessments are susceptible to subjective factors and are

influenced by a ceiling effect, making it difficult to track longitudinal progress. Clinicians

and researchers alike recognize that the reliance on the human eye to facilitate and score

a user’s motion is not the most effective approach for detecting small changes in patient

progress, which often go unnoticed [13].

Recent advances in wearable sensing and mobile computing have the potential to fill

these gaps. Smartwatches and other wearable devices are embedded with sensors such as

accelerometer, gyroscope, magnetometer, etc. that collect a vast amount of data that can

be leveraged for digital healthcare. This technology has the ability to measure motion pat-

terns while also capturing micro-movements that have previously gone overlooked. Then by

combining these technologies with signal processing and machine learning (ML) algorithms,
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motor function assessments and rehabilitation may be performed in the comfort of a pa-

tient’s home [33]. Previous efforts [89, 6] have attempted to score these motion assessments

with various modalities of motion tracking technology, from cameras to inertial measure-

ment units (IMUs). Work such as [90, 61] use cameras and multiple wireless sensors to track

upper limb movement to report angles of motion. Physicians have spent countless hours

manually evaluating a patient’s performance from video recordings. While this provides the

opportunity for a physician to be more thorough in their evaluation, it is still subjected to

intra-rater bias. Vision-based activity recognition systems, such as the Microsoft Kinect and

Leap Motion systems, use a camera, IR sensor, and IR depth sensor to extract features that

can be used for object detection, motion analysis, and other characteristics. While many

motion tracking cameras exist in the commercial sector, the vast majority of research for

skeletal motion tracking leverages the Microsoft Kinect (v1 and v2) [23, 6, 24, 25, 26]. The

Microsoft Kinect SDK provides skeletal joint tracking on a set of 32 joints. The Kinect is able

to distinguish semantic features that recognizes based on the premise of a “semantic space”

that includes human knowledge about a given activity, object, or attribute feature [91]. Pre-

vious and ongoing research are focused on the development of this technology to allow an

occupational therapist to quantify the range of motion for upper limbs in three-dimensional

space.

These studies focused on classifying the movements according to the assessment scale,

rather than quantifying the movement directly which can inject the experimenter’s biases

into the algorithm. The scaled assessments also offer little granularity to the incremental

changes that may occur with the development of new therapies. Furthermore, motion quality

assessment in young children is much more challenging because patients can be nervous or

excited during experiments or simply be too young to follow precise instructions [92]. As

we demonstrate in our results, this can lead to variance in motion quality scores because of

confounding factors such as varying speed of motion, instead of the underlying neuromuscular

disorder.
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The dataset in this study is unlike any previous work on motion quality assessment for

a multitude of factors. First, this study had the largest age range of any study in this field,

with the inclusion of children as young as 2 years old, and adult patients into their thirties.

Second, the range of motor function spans from fully functioning control participants, to

patients with DMD and SMA who cannot fully perform the specified motions. This study

also includes the extremely rare case of a female DMD patient, 1:50,000,000. This research

explores the feasibility of using a minimal set of wearable IMU sensors to develop a score

that objectively measures both the quantity and quality of motion. Leveraging time series

similarity analysis, the scoring measure will also account for confounding factors like varying

motion velocity. Motion quality assessments would benefit from a continuous, quantitative

score for three main reasons. First, it would allow these assessments to move way from

ordinal based scoring measures, that provide relatively low detail on motion performance

and can be affected by the ceiling effect. Second, the score would track most degrees of

movement, thereby giving credit for any movement a patient performs. Last, it moves away

from the reliance of human observers for assessing performance, which is susceptible to bias.

The purpose of this research is to develop a score that relates both how much motion

occurs and how well the motion is performed when performing a movement with wearable

sensors. Ultimately through this effort, we address the first research question of proving

that ubiquitous sensors can be used to quantify the quality of motion. After describing our

methodology, we will introduce a novel study, where we apply our designed score to the data

for validation.

4.2.2 Methodology

Building upon the foundation of curve matching as discussed in section 2.3.2, we present our

measure called MeND, or the Mean Normalized Distance, to quantify the motion quality

for a subject by comparing their motion trajectory to a reference trajectory. This reference

trajectory can either be a standalone baseline or a set of trajectories if obtained from a

control cohort. By comparing the motion trajectory, we can directly quantify the quantity

58



and quality of motion for tracking incremental changes that otherwise go unreported in

traditional motor function assessments. The MeND score generation process can be visually

represented as a diagram in Figure 4.18 and as pseudo-code in Algorithm 1.

Fig 4.18. Visual representation of generating MeND scores

Given a set of query signals V and a set of reference signals H, we must first determine

the axis of motion we are attempting to score. For wearable IMU data, a motion can either

be evaluated by using the angular velocity derived from the gyroscope or by looking at the

acceleration. While there is value in using the acceleration profile or the velocity derived from

the integration of the acceleration, we found that a motion can be assessed by its angular

velocity along the direction of the motion. Then, we aggregate the signals into a single list

S and apply pre-processing techniques, such as a 3rd order Butterworth lowpass filter.

Next, we compare the two sets of signals with the DTW distance metric, just as we

described in section 2.3.2 of curve matching. Equation 4.2 [43] details the formula for DTW,

which states that given two time series i and j, the optimal alignment is defined as the
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minimized cost between pairs of indices, subject to a path that satisfies three conditions:

boundary conditions, monotonicity, and continuity.

dtw(i, j) = d(i, j) +min


dtw(i− 1, j)

dtw(i, j − 1)

dtw(i− 1, j − 1)

(4.2)

where d(i,j) corresponds to the Euclidean distance between the DOF of frame i of one

motion segment and the DOF of frame j of the second motion segment. The optimal path

is then calculated through matrix D(i,j) by starting at the last frames of each of the signals

and moving backwards through the smallest distance values. The DTW distance is then the

sum of the distances along the optimal path, which may also be normalized according to the

new time duration found after alignment.
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Given the calculated distances T, we developed a motion quality score shown in Equation

4.3. We take the mean of the normalized distances (MeND) across the reference signals hϵH

as the performance score, relating all the motions to the reference baseline set.

DTW −MeNDscore(v) =
∑
hϵH

dtw(h, v)

|H|
(4.3)

The final step is to transform the performance scores to z-scores by treating the references

signals as the sample population and filtering out the outliers to compute the sample mean

and standard deviation. Outliers were detected if they were outside 1.5x of the interquartile

range. The Z-score transformation measures how many standard deviations away the given

value is from population mean.

As a comparative measure to the DTW-MeND score, we also computed ED scores based

on the set of statistical features mentioned in Table 4.10. Mathematically, we represent

this score in Equation 4.4, where ϕ(h) is the vector of statistical features extracted from

each trajectory. The ED distances were transformed to z-scores using the same process for

DTW-MeND, where the sample mean and standard deviation were computed from the set

of reference signals.

EDscore(v) =
∑
hϵH

∥(ϕ(h), ϕ(v))∥2
|H|

(4.4)

Through the process outlined above, we have established a quantitative scoring measure

that can now be applied to real world motion data.

4.2.2.1 Subjects

Data was collected from 41 participants from the Pediatric Neuromuscular Clinic at the UVA

Children’s Hospital. Inclusion criteria for patients were that they are currently diagnosed

with SMA or DMD. Control participants were recruited based on enrolled patients, matching

both sex and age (± 1 year). See Table 4.7 for the cohort breakdown. Due to the following

reasons, some patients’ data has been excluded in the presented results:
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1. For two patients, the sensors stopped recording midway through.

2. Two of the younger children’s data was indistinguishable for separate activities.

3. One patient withdrew from the study.

Table 4.7. Cohort Profile
Cohort # of Participants Age Range Sex
Control 13 2 - 35 8 M, 5 F
SMA 7 2 - 19 6 F
DMD 16 4 - 35 15 M, 1 F

Since the two neuromuscular disorders do not use the same motor function assessments,

we evaluated all patients using the Brooke Upper Extremity Scale to provide one standardized

metric for comparison [2]. All control participants received a score of 1, indicating full range

of motion. See Figure 4.19 for the Brooke scores breakdown of each cohort. Due to the

degenerative nature of these disorders, obtaining data from this size of a cohort along with

the wide range of age variability is extremely rare. Furthermore, we did not exclude patients

who were unable to perform the motions.

Table 4.8 shows the most recent assessment scores for a few patients, with the CHOP-

INTEND for kids with SMA and the Brooke Upper Extremity Scale for kids with DMD. We

also report how their score has changed in the last 2 years if available. Since the CHOP-

INTEND involves more than upper extremity movements, we present the 3 items most

related to our motions; however, the scores do not provide any indication of the quality of

movement, nor do the reported changes indicate if they affected the specific items listed.

For the Brooke scale, 2 of the 3 patients with DMD reported no change in the last 2 years,

while the third patient had their score increase by 1, meaning they lost movement. Although

the scores for Patients 2 and 12 did not change, this doesn’t mean their functional ability

hasn’t changed. With DTW-MeND as a continuous score, our metric will detect smaller,

incremental changes to track progress or loss earlier on, which can impact clinical decision
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Fig 4.19. The Brooke Upper Extremity Scale is a 6-point scale used to classify upper
extremity [2]. Higher scores indicate more severe motion impairment. This scale was used

as ground truth for all participants.

making for individualized treatment. Motor function assessments should attempt to capture

as much concrete data as possible to provide a true evaluation of impairment over time.

Table 4.8. Traditional Motor Function Assessment Scores
ID Cohort CHOP Brooke +/-
P1 SMA 46 3 CHOP +2 in 2 years
P2 SMA 58 1 CHOP +6 in 1 year
P3 SMA 41 4 CHOP -3 in 2 years
P4 DMD - 5 No Change
P5 DMD - 4 No Change
P6 DMD - 3 Brooke +1 in 2 years

The study was approved by the UVA Internal Review Board (IRB) for Health Sciences

Research (HSR), protocol #12161. The participants or the parents of the minor participants

provided written informed consent for participation in the study.

4.2.2.2 Experimental Protocol

Figure 4.20 illustrates the full experimental design, with participants sitting in a chair, if able,

with a customized, interactive sensory board resting on a reading stand. One MetaMotionR+
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Fig 4.20. Pilot study set up with two MbientLab MMR+ sensors placed on a
participant’s hands and the Microsoft Kinect v2 on a tripod to record and track

movements. A custom built sensory board was designed to test specific upper extremity
motions related to activities of daily living (ADLs).

(MbientLab, San Francisco, CA, USA) sensor was placed on the top of each of their hand,

attached by double sided adhesive, with athletic wrap placed on the skin for additional

protection and adhesion. The Microsoft Kinect v2 camera, shown in Figure 4.20, was used

to record the movements and indicate the start/stop time for each repetition. Using an iOS

app (MetaBase, mbientlab, United States), the accelerometer and gyroscope sensors recorded

data at 200 Hz and transmitted via Bluetooth to an iPad Pro (Apple Inc., Cupertino, CA,

USA). A high sampling frequency was chosen to aid in the detection of micromovements,

due to the limited motor function abilities of some of the patients. The full set of activities

for this study are shown in Table 4.9. For this analysis, we will focus on two activities, arm

curl (flexion/extension) and forearm rotation (pronation/supination). The participants were

asked to perform an arm curl from the starting position of their palm facing up and forearm

resting on their leg. After the curl motion, each participant was handed a small paddle to

aid in the pronation/supination motion, from a starting position of their forearm resting on

a cushioned block with their palm facing up. Each activity was performed two times.

Table 4.9. List of activities performed by each participant.
Turn Door Knob Finger-to-Thumb Test Cup to Mouth Shoulder Rotation Sideways
Closed Fist Knock Open / Close Fist Bicep Curl Shoulder Rotation Forwards
Paddle Pronation / Supination Piano Key Press Hand Clap Shoulder Rotation Backwards
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4.2.2.3 Data Processing and Feature Extraction

The first data processing step was to sync the timestamp of the sensor motion data with

the video data. This was a necessary step to be able to label the data by each activity. The

activities were manually annotated by playing back the data collection session, and marking

the start and stop time of each activity. Through this process, we identified three patients

who could not be included the analysis, due to a sensor reading error and indistinguishable

motion for the particular activities. Following these procedures, the activities were separated

into their own datasets and subjected to signal pre-processing techniques. Due to the noise

and drift associated with IMU sensors, the data was filtered using a 3rd order, low-pass

Butterworth filter with a cutoff frequency of 0.1 Hz. From the filtered data, trajectory

vectors were developed using features extracted from the time and frequency domains. See

Table 4.10 for the complete list of features and their derivations. Then, the filtered time

series were normalized for further analysis.

4.2.3 Results

4.2.3.1 Mitigation of Confounding Factor: Motion Speed Variation

Collecting quality data from children would prove to be extremely difficult for a variety of

factors. First, within this cohort, many of the patients either have severely limited upper

extremity movement. Second, some of the younger patients either had a very short attention

span or had lack of coordination to perform precise movements. Along the same lines,

the participants may perform the motions at an unpredictable velocity, which could stem

from the emotional difficultly of the clinical environment, travel related factors, or external

circumstances [93]. Therefore, speed was inherently a confounding factor. To illustrate the

confounding effect of speed, we depict the arm curl motion of healthy participant 2 at three

speeds in Figure 4.21: normal (blue), fast (orange), and slow (green). This shows that for a

given motion, the speed at which it is performed can vary dramatically which then influences

the derived statistical features.
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Table 4.10. Extracted features

Feature Formula

Mean x =
∑

xi

N

Standard deviation σ =
√∑

(xi−x)2

N

Maximum xmax = max{x(i)}

Minimum xmin = min{x(i)}

Kurtosis kurt =
∑

(xi−x)4

Nσ4

Peak to Peak value ptop = xmax − xmin

Sample Entropy sent = − log( r√
π
)− ∆2ε(1−ε)

2ζ2b

Power Spectral Density PSD = Sxx(f)

=
∫∞
−∞Rxx(τ)e

−i2πfτ dτ = R̂xx(f)

To assess whether speed is truly a confounding factor, we computed the average ED

and DTW-MeND scores for the arm curl across the variable speeds of each arm from two

healthy participants. Table 4.11 displays the average scores for each speed. The DTW-

MeND scores are very similar in value compared to the large variation shown in the ED

scores. This validates our hypothesis that speed is a confounding factor, especially when

comparing statistical features, but can be mitigated through the use of DTW.

Table 4.11. DTW-MeND vs ED scores for 3 angular velocities.
DTW ED

Normal 106.17 492.81
Fast 112.82 291.77
Slow 124.07 398.66
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Fig 4.21. Arm curl motion performed at 3 different angular velocities (fast/normal/slow).

4.2.3.2 DTW-MeND offers clinically relevant insights

Moving forward, we apply our DTW-MeND score across the arm curl motions and forearm

rotations of the entire dataset. Beginning with the arm curl, Figure 4.22(a) depicts the

DTW scores for the activity while Figure 4.22(b) illustrates the ED scores. We applied the

Mann-Whitney U test [94] with an alpha level of 0.05 to determine if the distributions of

each cohort were equal.

The importance of Figure 4.22 underpins one’s understanding of the three cohorts. For

the curl motion, there should be a significant difference, as the DTW-MeND boxplot suggests,

between the control cohort and the two neuromuscular cohorts. From an observational

standpoint, there were patients in both cohorts that could not get their arms into the proper

starting position, nor could they complete the full motion. However, some of the patients

could perform similar to the control participants. Although the ED boxplot looks like the

there would be a significant difference between the control and SMA cohorts, the p-value for

the ED metric stated otherwise. Similarly, Figure 4.23 displays the DTW-MeND and ED

cohort scores for the rotation motion.

For the ED scores of the forearm rotation, the lack of significance between the cohorts
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(a) DTW-MeND Boxplot for Arm Curl

(b) ED Boxplot for Arm Curl
Fig 4.22. The top boxplot (a) displays the DTW-MeND curl scores for each cohort. With
a p-value < 0.001, there is a significant difference between the control cohort and the DMD
cohort, as well as between the control cohort and the SMA cohort. However, there was no
significant difference found between the DMD and SMA cohorts with a p-value = 0.334.
The bottom boxplot (b) depicts the ED curl scores for each cohort. With a p-value <
0.001, there is a significant difference between the control cohort and the DMD cohort.
There was no significant difference found between the DMD and SMA cohorts with a
p-value = 0.088, nor was there a significant difference between the control and SMA

cohorts with a p-value = 0.095.
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(a) DTW-MeND Boxplot for Rotation

(b) ED Boxplot for Rotation
Fig 4.23. The top boxplot (a) displays the DTW-MeND rotation scores for each cohort.

A significant difference between the Control and DMD cohorts was determined with a
p-value = 0.020, as well as a significant difference between the Control and SMA cohorts
with a p-value = 0.037. However, no significant difference was found between DMD and
SMA cohorts, with a p-value=0.077. The bottom boxplot (b) depicts the ED rotation
scores for each cohort. With p-values > 0.05, there were no significant difference found

between any of the cohorts.
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does not line up with our observations. It is interesting to see the DMD cohort appear

very similar to the control cohort since we anticipated the mean to be higher. However, as

previously stated, there are patients who can perform the motion akin to the control cohort.

Another observation from this graph is the large variation in the SMA cohort. We suspect

this variation may be due to the lack of rotational ability for a few of the patients, which

affects the extracted features.

To gain further insight into how individual participants are scored, we observe Figures

4.24 and 4.25 which depict the scores from a small sample for each of the activities relative

to the cohort average values.

To draw clinically relevant insights at the individual participant level, we first compare

the computed scores to the ground truth video data. In Figure 4.24, we first notice that

the ED scores of some patients did not accurately reflect the quality of their motion. For

instance, the right arm curl motion of SMA patients 1 and 2 appear to be similar to the

motion of the control cohort when using the ED metric. However, the DTW-MeND metric

reflects that the motion was actually dissimilar to the control motion, which is inline with

the motion seen in the video. Along the same lines, we see the opposite effect happen,

where the ED metric for right arm curl motion of DMD patient 3 suggests dissimilarity to

the control cohort, despite the motion being very close to that of the control cohort. The

DTW-MeND metric again correctly identifies this, by scoring the motion closer to that of

the control cohort.

Second, we observed large differences in the DTW-MeND scores between a patient’s left

and right arms, which were cause for further inspection. For SMA patient 1, the DTW-

MeND scores in Figures 4.24 and 4.25 clearly show a stark contrast for the right and left

motions. To assess whether this difference is significant, we performed a T-test to compare

their left arm versus their right, which was found to be statistically significant with a p-value

of 0.0001. Knowing that SMA patient 3 is left arm dominant, both through observation

and patient reported data, we further support this difference as an accurate reflection in
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(a) Sample of DTW-MeND scores

(b) Sample of ED scores
Fig 4.24. Sample comparison of DTW-MeND (a) and ED scores (b) for Arm Curl. The

vertical lines represent the cohort average values for the specific activity and scoring
measure.
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(a) Sample of DTW-MeND scores

(b) Sample of ED scores
Fig 4.25. Sample comparison of DTW-MeND (a) and ED scores (b) for Arm Rotation.
The vertical lines represent the cohort average values for the specific activity and scoring

measure.
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the DTW-MenD score. This same analysis can be applied to other patients, such as SMA

patient 2, DMD patient 2, and a few others, where their DTW-MeND score for either motion

shows distinct differences, and is supported by t-test p-values less than 0.1. These significant

differences hint at another insight to be drawn from the DTW-MeND score, which is arm

dominance. DMD patient 2 claimed to be right arm dominant yet the DTW-MeND score

and video observation suggest otherwise. We found that the difference between their left

arm motion and right arm motion was statistically significant, with a p-value of 0.0030. The

interpretation of arm dominance through the DTW-MeND score offers a data point that

physicians can reference as motor function either progresses or regresses.

Fig 4.26. DTW-MeND quantifies the quality of motion subjectively, to indicate how
similar the motion is to the control cohort. From top to bottom, the patients’ normalized

distance score of the arm curl increases as the quality of the curl motion decreases.

The DTW-MeND score applied to this data is inherently a proxy for understanding the

severity of impairment. Figure 4.26 displays three patients as they attempt to complete

one arm curl. To the right of each patient is their motion trajectory (blue) aligned with the

average control reference trajectory (black) and their computed DTW-MeND score in the top

right corner. An increasing DTW-MeND score corresponds to progressive loss of functional
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ability. Patient 27 (top) has a score of -0.2984 and is able to perform an arm curl completely.

Patient 15 (middle) has a score of 0.0568, which is reflective of their inability to complete

the upper part of the curl and of their inability to rotate their palms face up. Despite the

inverted trajectory, our metric still gives some credit to the patient for the motion they could

perform. Patient 5 (bottom) has severe motor function loss and could barely lift their arm

up, which is echoed both in their score of 2.8127 and in their trajectory.

4.2.3.3 Predictive Modeling of Motion Impairment

Now that the motions have been scored, we then leveraged supervised machine learning

algorithms to determine if our DTW-MeND score can identify the different cohorts better

than the ED score. Classifying DMD and SMA patients can be beneficial to objectively

detect differences in movement patterns between neuromuscular disorders, which can then

be used to provide higher quality feedback to doctors and occupational therapists. As [80]

et al noted, some of the top machine learning classifiers include random forest (RF), linear

discriminant analysis (LDA), support vector machine (SVM), k-nearest neighbor (KNN),

and logistic regression. Due to the limited size of the dataset, it is recommended to use

leave-one-out-cross-validation to aid in assessing the performance of each the classification

models.

A RF classification model fits a number of decision trees with different sub-samples of the

dataset. Then, the predictions are decided by taking the average of the output of the decision

trees. LDA is an algorithm that focuses on dimensionality reduction by transforming the data

into a set of component axes that maximize the variance of the data while also maximizing

the separation between multiple classes. A SVM is a supervised machine learning algorithm

that uses linear decision hyperplanes (or boundaries) to classify points in the feature space,

where each hyperplane attempts to separate the data based on their labels. KNN is another

supervised learning algorithm designed for classification that aims to predict the associated

class by selecting the ’K’ nearest points according to a specified distance metric.

For the arm curl motion, the classification accuracy for each algorithm is shown in Table
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4.12 below. In 3 out of the 5 algorithms, our DTW-MeND score performed better than the

ED score, while the other 2 algorithms performed the same.

Table 4.12. Classification Accuracy for Arm Curl
RF LDA KNN SVM LogR

DTW-MeND 62% 58% 59% 61% 66%
ED 45% 59% 54% 61% 61%

Another useful tool to measure the performance of the classification models is the confu-

sion matrix. Confusion matrices offer insight into how each algorithm classified the samples

and which classes were predicted most correct. Two scores that can be generated from the

confusion matrix are precision and recall. Precision refers to the ratio of true positives over

the total of true positives and false positives. Recall refers to the ratio of true positives over

the total of true positives and false negatives. Since the logistic regression model achieved

the highest classification accuracy for the arm curl motion, we take a closer look at the

confusion matrices in Figures 4.27 and 4.28.

Fig 4.27. Confusion matrices for the arm curl Logistic Regression models. DTW-MeND
on the left and ED on the right.

The results of the logistic regression confusion matrix in Figure 4.27 show that when using

the DTW-MeND scores, the DMD cohort had the highest precision at 70% while the lowest

precision was the SMA cohort at 50%. The control cohort had the highest recall at 85%
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while SMA cohort had the lowest at 28.5%. For the logistic regression ED confusion matrix,

the DMD cohort had the highest precision at 65% but the model was unable to correctly

predict the SMA cohort. Similarly, the cohort with the highest recall was the control at 85%.

The confusion matrices for the arm curl motion make it clear that more data is needed

to better predict the SMA cohort for this exercise. However, one insight we can gather from

these matrices is that most false positives / false negatives appear in the middle left box,

where the models predicted control but the true label was DMD. These misclassifications

are acceptable since the patients predicted as control were the ones who exhibited greater

motor function.

Next, we take a look at the forearm rotation motion, where Table 4.13 displays the

classification accuracy for each algorithm.

Table 4.13. Classification Accuracy for Arm Rotation
RF LDA KNN SVM LogR

DTW-MeND 39% 57% 57% 52% 57%
ED 46% 50% 46% 46% 50%

Fig 4.28. Confusion matrices for the arm rotation Logistic Regression models.
DTW-MeND on the left and ED on the right.

For the forearm rotation, the logistic regression model again achieved the highest accuracy

and thus the associated confusion matrices are shown in Figure 4.28. With the DTW-MeND
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score, the control and SMA cohorts had a precision of 60%, while the DMD precision lagged

behind at 46%. The recall rates were not as close, with the control cohort at 77%, SMA at

50% and DMD at 33%. The ED based model predicted most samples as control, causing the

control cohort to have the highest precision and recall rates of 54% and 95%. The Logistic

Regression ED model did not correctly predict the SMA cohort at all.

While the initial accuracy results of these models may appear to be worrisome, further

analysis reveals that the accuracy should be justifiably higher for two reasons. First, the

model misclassifying patients as control participants is an accurate assessment, given that

those particular patients could perform close to or as good as the control cohort. For those

DMD patients predicted as control, they still retain strong motor function ability and most

have yet to show any decline in their ability. However, the SMA patients classified as control

are those that have received gene therapy and are exhibiting increasing motor function

ability at each visit. Secondly, the classification model shown here is a 3-class problem,

which resulted in DMD patients being predicted as SMA and vice versa. By converting this

to a 2-class problem, the accuracy increases to almost 80%.

4.2.4 MISTA Framework Application

We continue to validate our framework by looking at the arm curl motion of a patient with

SMA from the UEXTEND study. This patient is left arm dominant and has less motor

function ability with her right arm. Specifically, she cannot bring her right arm straight

up, nor can she pronate her arm into the proper curl starting position. Figure 4.29 depicts

the raw arm curl signals of the patient, with the left shown in blue and the right shown

in orange, as well as the reference arm curl signal in black. From this chart alone, we can

immediately see the difference in the performance between her two arms. The first difference

is in the overall lengths of the motion trajectory, which means that the patient took more

time to perform the right arm curl than the left. The second observed difference is between

the troughs of the motion. The right arm trough is much lower than it is for the left arm.

We then applied our MISTA framework to the patient’s left and right arm individually,

77



Fig 4.29. Raw arm curl motions performed by Patient 2, with blue as their left arm and
orange as their right arm. The black line is the average healthy arm curl.

as illustrated in Figure 4.30. The patient’s left arm curl (a) was performed very similar to

the reference trajectory, with the exception of a peak around 1.7 seconds. However, we still

interpret this as excellent motion quality for this movement. Conversely, the patient’s right

arm curl (b) was not performed with the same motion quality, which is noted by the vast

amount of large red dots throughout the trajectory. Since we have the exact times that the

motion deviated from the reference trajectory, we look to the ground truth video data to

understand the cause for the deviation. For the deviation occurring at the top peak, just

after 0.217, this is due to the patient swinging her arm inward, towards her chest, as she

attempted to complete the arm curl. After speaking with the clinician leading this study, this

observed behavior is a compensation technique commonly found in patients with weakened

motor function ability.

4.2.5 Future Work

Future work will expand the number of motions assessed and the number of participants,

combined with statistical significance tests to provide more quantitative results. Our ap-
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(a) Patient 2 left arm curl

(b) Patient 2 right arm curl
Fig 4.30. The MISTA framework applied to Patient 2’s arm curl motions, with the left

arm on top and the right arm on bottom.
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proach will also extend to a longitudinal study, by comparing a patient’s score to their

own baseline for a motor function loss/gain evaluation. This measure will allow us to track

the minimal clinically important difference (MCID) over time to assess progress with novel

treatments. From a clinical standpoint, a doctor could track their patients movements in

reference to the control population, as well as to a patient’s initial baseline. Furthermore,

extracting speed invariant features can be useful for other use cases beyond neuromuscular

disorder function assessments.

4.2.6 Conclusion

We built upon the foundation of DTW to design a scoring measure that quantifies the quality

of motion using signals generated from wearable sensors. We demonstrated that the DTW-

MeND score can effectively mitigate speed as a confounding factor by comparing a motion

performed at three different speeds. We validated our measure by applying it to a novel

upper extremity motor function assessment. This is the first study we are aware of that look

at patients from two neuromuscular disorder cohorts and captures upper extremity motion

related to activities of daily living using wearable sensors. This study has the largest age

range we’ve found in these communities, with the least restrictive eligibility criteria, and

also includes the extremely rate case of female patient with DMD. Our analysis included

clinically relevant insights that can aid in tracking patient progression for micro-level motions.

The results also demonstrated the ability of DTW-MeND scores to reflect the severity of

impairment and infer arm dominance. Finally, we showed how machine learning algorithms

can use the DTW-MeND score to differentiate between the cohorts.

This impact of this work has the potential to revolutionize the way clinical trials are

performed moving forward by recording objective measures of motion rather than subjective,

scaled based measures. The intent is not to replace nor to discredit any of the current motor

function assessments, but rather to suggest a new method of scoring those assessments with

mobile sensing technology on a continuous scale. The authors in [53] recognized that there is

little consensus in the assessment motions and outcomes for upper extremity interventions,
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where many tools only focus on whether a patient can or cannot complete a task. By tracking

incremental changes, this study will also help determine which treatments are, or are not,

supporting progression or sustainment of muscle structure and function, and align effective

therapies appropriately.
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Chapter 5

Discussion

The primary contribution of this research is the proposal of a novel measure for quantifying

the quality of motion. We provided evidence that curve matching was suitable for mitigating

confounding factors, such as motion speed. We then applied our measure to data gathered

from wearable sensors for validation. To our best knowledge, this is the first work that applies

DTW to upper extremity motor function data collected from wearable sensors. We are also

the first work to develop a combined study on patients with Spinal Muscular Atrophy (SMA)

and Duchenne Muscular Dystrophy (DMD), spanning the largest age range and with least

restricting inclusion criteria. This study also included the extremely rare case of a female

patient with DMD. Moreover, this study was the first to attempt to provide quantitative data

for upper extremity motor function assessments in these neuromuscular disorder cohorts.

Secondly, we leveraged signal feature analysis techniques to detect and assess rehabili-

tation progress for patients recovering from ACL reconstruction (ACLR) surgery. Through

descriptive analysis, we used extracted features to interpret the differences between the pa-

tients and healthy controls. We also used these features in an effort to classify the participants

into their respective cohorts, to better understand the threshold where patient performance

mirrors healthy control performance. Then, we produced our own set of limb symmetry in-

dex (LSI) features and correlated them with the current LSI values, as alternative measures

to track rehabilitation progression.
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Lastly, we proposed a novel framework for modeling deviations in motion trajectory,

MISTA, to visualize when those deviations are occurring. We then applied this framework

to gait data collected during the ACLR study, where we observed the differences in a gait

cycle from each participant, and as a collective cohort. Similarly, the MISTA framework

was applied to patient data derived from the neuromuscular disorder study, which confirmed

the patient’s arm dominance and provided insight into how patient’s compensate for lack of

motor function ability. Overall, our proposed framework advances the state-of-the-art for

modeling trajectory analysis.

5.1 Clinical Relevance

As we alluded to throughout this research, our proposed methodologies and analysis demon-

strate clinical relevance. Primarily, the application of our scoring measure to the neuromus-

cular disorder motor function assessment study provides an understanding on impairment

severity, where we can now track micro-level movements that had previously gone unnoticed.

We recognized a critical absence of tools and systems to quantify and objectively capture

meaningful motor function in an inclusive way in this population. Our work provides the

potential for revolutionizing the way clinical trials are performed moving forward, which will

help accelerate the pipeline of new treatments for neuromuscular diseases. Additionally, cur-

rent clinical trials are not inclusive to patients with cognitive challenges due to the current

clinical outcomes requiring strict patient participation. This work is especially important for

pediatrics because standard metrics used for adults do not always translate well to children,

and vice versa. By tracking incremental changes, this study will also aid in the development

of future methodologies to identify which treatments are, or are not, supporting progression

or sustainment of muscle structure and function. The proposed methodology could drive the

development of software and applications to aid occupational and physical therapy and pro-

vide a more objective, quantitative way to evaluate functional upper extremity motions and

the quality of those movements. Additionally, this study will allow us to track the minimal

clinically important difference (MCID) over time to assess progress with novel treatments.
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Further clinically relevant insights were observed during the descriptive analysis of the

ACLR study, where we could interpret how the muscle activations in a person’s quadriceps

can suggest progression status for rehabilitation. We proved the feasibility of including

wearable sensors and their role in ACLR rehabilitation going forward. This is especially

apparent considering the insights drawn from our motion modeling framework, MISTA. By

visually modeling the deviations in motion trajectory, clinicians can better understand range

of motion (RoM) limitations, fatigue, and overall quality of motion during a specific exercise.

Other insights that can be drawn from DTW-MeND and MISTA are limb dominance and

compensation. Limb dominance can be detected by differences in the DTW-MeND score and

validated with MISTA plots for each arm. Detecting compensation is not as straightforward,

as it requires video confirmation. A physician would need to inspect the timestamps when

MISTA had detected significant deviations, and then look at the ground truth video data to

see how the patient was moving at that time.

5.2 Limitations

The primary limitation of our work is the sample size of our studies. Within the neuro-

muscular disorder community, our study is considered to be acceptable as data collection is

driven by the number of patients available within a certain region. The study design also

has its own limitations, with the first being the large range of motor function ability between

the healthy controls and the patients. Comparing control functionality proved to be difficult

since the patient functionality could be vastly different, yet we were focused on capturing

more precision at the lower end of the functional scale and not very concerned about any

potential ceiling effects at the range of higher function. Another limiting factor was patient

participation, which can be affected by neurodevelopmental challenges, such as autism and

intellectual disabilities, resulting in partial or inadequate data collection. This limitation

could be mitigated through the inclusion of additional supports to enable improved partic-

ipation. External factors such as medical illness or additional medical appointments also

played a role in limiting data collection attendance.
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Another limitation of our work is from the sensors themselves. First, there is the accumu-

lation of error from sensor drift that can lead to inaccurate results. Second, is our choice of

sensor, which may not have the most sensitive calibration. The number of sensors used and

the sensor placement location are also limiting factors. The use of a single IMU sensor on

each limb was a trade-off between comfort for the patient, ease of use, and data availability.

Furthermore, our analysis focused on a limited set of the motions we collected, leaving the

potential for more clinical insights to be drawn.

5.3 Future Works

The neuromuscular disorder study presented in this research is part of a multi-modal study

that included the collection of ultrasound images of the bicep and forearm, as well as the

elbow torque using a handheld dynamometer. From that data, a muscle score describing the

structure and function of will be generated and correlated against the motion score we have

computed. With this effort, future work includes the expansion of the number of subjects

longitudinally tracked to further validate our novel functional measures, the inclusion of

additional raters (clinicians, radiographers, physical therapists, and occupational therapists),

the expansion to other broader data collection settings (i.e. at home) and the application of

these measures other neuromuscular disorders.

Further work must be done to either develop a new assessment for upper extremity motor

function or revise the current assessments so the scores are based on the quantifiable measures

of motion, such as ROM. The authors in [53] recognize that there is little consensus in the

assessment motions and outcomes for upper extremity interventions, where many tools only

focus on whether a patient can or cannot complete a task. Therefore, We would like to see

an effort undertaken to develop an all-in-one upper extremity motor function that receives

consensus from the leading health practitioners that rely on these assessment tools.

The integration of next generation technologies, such as LiDAR, with IMUs will advance

telemedicine further than before, with devices readily available like Apple’s new iPad Pro.

The implementation of new technology can expanded beyond traditional evaluations as pa-
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tients have shown significant interest in telerehabilitation via game-based movements. Gam-

ification provides a means to retain the attention span of patients by shifting the motions of

an assessment tool to be associated with movements found in the game or application. Stud-

ies have shown that gamification not only increase motor scale function, but also increase in

muscle memory. Advancements in sensor technology will also make 3D kinematic analysis

for trajectory reconstruction a viable option in future endeavors. The 3D visualization of

one’s motion can show an athlete or patient what they are doing wrong at a specific moment

in their performance so that the proper adjustments can be made. Then, frameworks like

MISTA can move 2D analysis to 3D analysis, which will provide not only when the motion

is deviating, but where in physical space the motion is deviating.
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Chapter 6

Conclusion

Ubiquitous sensing applications are increasing by the day, as technology becomes smaller,

faster, and more readily available. Their ability to capture human motion in real time is

not only dependent upon the methodologies used to process the data, but also the measures

used to quantify those movements. In considering the current landscape of motor function

assessments, pairing quantitative outcomes with measures on the quality of the movements

can provide informative data for rehabilitation interventions and monitoring recovery. In this

thesis, we present a study design that addresses the limitations of current motor function

assessments, where we objectively capture motion performance with wearable sensors. By

applying our measure, we then fill the need for assessing micro-level movements which can

be used as justification for patients to be eligible for and continue to receive novel therapies.

By using the ACLR data collected in our study, we demonstrate how signal feature analysis

can be used to differentiate between the cohorts and the value in visualizing deviations in

motion trajectory. We also provide a brief discussion on the limitations of our work, future

research directions, and the clinical impact of this thesis.
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