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Abstract

Deviations from General Relativity (GR) may become large and detectable in extreme

environments with strong and dynamic gravitational fields, such as those around

rotating black holes. Various parameterized Kerr spacetimes have been proposed

to perform strong-field tests with black hole observations in a theory-agnostic way.

Some of these parameterized Kerr spacetimes are constructed such that the modified

black hole spacetimes still possess certain symmetries of the Kerr black hole. Such

symmetry-preserving spacetimes consist of arbitrary functions of the radial coordinate

that capture deviations from Kerr in GR. Practically, one expands these functions

about infinity and truncates to extract a finite number of deviation parameters. We

find this truncation can introduce pathologies such as nonphysical divergences. To

overcome this, we take two different attempts: (i) rescale the arbitrary functions, and

(ii) treat the non-GR deviations as small perturbations in the parameterized Kerr

spacetime, expand, and keep to linear order in the deviation. We then map black

hole solutions in several example non-GR theories to the refined parameterized metric

and quantify how well the latter can recover the former with a root-mean-square error
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analysis. We find that both the rescaling and small deviation approximation attempts

can remedy the fictitious divergences seen with the original expansion in most cases.

Additionally, we find overall the parameterized metric does fairly well at recovering

the existing beyond-GR metrics in many cases and can even recover some non-GR

solutions exactly.
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Chapter 1

Introduction

1.1 Background

For hundreds of years, Isaac Newton’s law of universal gravitation was widely accepted

as the theory of gravity. Although Newton’s theory very successfully described forces

of attraction between masses, it failed to give explanations for several astronomical

observations. For example, Newtonian gravity could not correctly explain the rate

of precession of Mercury’s perihelion, nor could it explain the apparent deflection of

starlight around the Sun. These shortcomings in Newton’s formulation of gravity

stumped the scientific community until 1915, about 300 years after Newton, with

Albert Einstein’s development of the Theory of General Relativity (GR).

Einstein’s pursuit of a new theory of gravity and his drive to reconcile these

inconsistencies in the existing classical physics is what led him to construct the famous
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CHAPTER 1. INTRODUCTION 10

GR, which revolutionized our understanding of the nature of our universe and has

had a profound impact on modern physics and cosmology. In a nutshell, this complex

theory elegantly describes gravity as a geometric phenomenon – it is the curvature of

spacetime caused by the presence of matter stress-energy.

To everyone’s excitement, this new theory did in fact reconcile many existing

issues in physics, particularly those issues with Newton’s theory of gravity. GR cor-

rectly predicted the precession of Mercury’s orbit and predicted the phenomenon of

gravitational lensing, thus explaining how and why starlight is deflected around the

Sun. It also predicted novel phenomena including gravitational waves – ripples, or

perturbations, in the fabric of spacetime caused by the acceleration of massive objects.

Today, GR has been extensively tested, and has passed every test with flying

colors [1]. GR has been studied with e.g. solar system experiments [1, 2] and binary

pulsar observations [3, 4] that probe gravity in the weak, non-dynamical field regime.

Despite GR’s unprecedented success, we continue to study gravity because a few

issues still remain. GR is incompatible with quantum mechanics and we have been

unable to unite gravity with the three other fundamental forces: the strong inter-

action, the weak interaction, and electromagnetism. This mismatch in fundamental

theories indicates that something is missing. Additionally, we do not understand the

nature of dark energy and dark matter that drive the expansion of the universe and

the rotation of galaxies, respectively, and we do not have an explanation for the ex-

treme matter/anti-matter asymmetry that is present in our universe. A new theory of
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gravity that extends beyond GR can provide answers to these fundamental questions

[5, 6, 7]. Here we find ourselves in a similar position as Einstein found himself in the

early 1900s; unexplained phenomena still drive our pursuit to better understand and

more accurately describe the nature of gravity and our universe.

As mentioned above, GR’s success has been confirmed by experiments that tested

the theory in the weak, non-dynamical field regime – no deviations from GR have been

found where gravity is weak. If deviations from GR do in fact exist, we expect that

more extreme environments, where the gravitational field is strong and dynamic, will

make the deviations more evident and easier to detect. This is because in regions of

intense gravity signatures of even small deviations can be amplified and then detected.

The spacetime surrounding black holes fits this description perfectly and is therefore

a natural choice for where we should look for these deviations from GR.

An important consequence of GR is the no-hair theorem. This theorem states

that isolated, stationary, uncharged black holes are uniquely characterized by the

Kerr metric, which completely describes these objects with only two parameters,

their mass M and their spin, a, where a ≡ J/M , and J is the angular momentum

[8, 9]. In other words, astrophysical black holes only have two “hairs” and are always

described by the Kerr metric. This metric is a vacuum solution to the Einstein field

equations and is stationary, axisymmetric, asymptotically flat, and contains an event

horizon that enshrouds a central singularity. Properties of black holes and the no-hair

theorem have been tested through black hole shadows [10, 11], orbits of supermassive
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black hole (SMBH) stellar companions [12, 13, 14], and quasinormal ringdown modes

of post-merger colliding black holes [15, 16, 17] to name a few.

There are many beyond-GR theories of gravity whose theoretical spacetimes con-

tain deviations from Kerr and describe black holes with more “hairs” than just mass

and spin. The black holes in these theories are thus not described by the Kerr metric.

Studying the spacetime around black holes can allow us to determine if these extra

hairs are present.

An efficient way to test gravity for these potential non-Kerr effects is to construct

a beyond-Kerr spacetime metric in a generic, theory-agnostic way. This spacetime

should deviate from Kerr parametrically and recover Kerr when the deviations them-

selves vanish. Spacetimes like this have been constructed: e.g.) Johannsen [18],

Konoplya [19], and Carson and Yagi [20]. We can take a generic parameterized met-

ric and map it to specific beyond-GR theories to determine if the metric can recover

existing theories of gravity.

1.2 CY Parameterized Black Hole Metric

Let us look at the Carson and Yagi (CY) metric in detail. This metric maintains

Kerr-symmetries: it is stationary, axisymmetric, asymptotically flat, and has a sep-

arable structure [20]. The metric provides separable geodesic equations that lead to

no chaotic orbits, and has four constants of motion, proper mass, energy, angular mo-

mentum, and Carter constant. The CY metric is a generalization of the Johannsen
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metric and the former includes an additional arbitrary function. The CY metric is

given by1

gtt = −
Σ̃
(
∆− a2A2 sin

2 θ
)

ρ̃4
, (1.2)

grr =
Σ̃

A5∆
, (1.3)

gθθ = Σ̃, (1.4)

gϕϕ =
Σ̃ sin2 θ

[
(a2 + r2)

2A1 − a2∆sin2 θ
]

ρ̃4
, (1.5)

gtϕ = −aΣ̃ sin2 θ [(a2 + r2)A0 −∆]

ρ̃4
, (1.6)

where

ρ̃4 = a4A2 sin
4 θ +

(
a2 + r2

)2A1

+a2
(
a2 + r2

)(a2 + r2

∆

(
A2

0 −A1A2

)
− 2A0

)
sin2 θ ,

(1.7)

and

Σ̃ ≡ Σ + f(r) + g(θ) , (1.8)

Σ = r2 + a2 cos2 θ , (1.9)

∆ = r2 − 2Mr + a2 . (1.10)

1The original CY metric used the radial functions Ai(r) while we introduced Ai(r). These two

sets are related by

(A0,A1,A2,A5) = (A0, A
2
1, A

2
2, A5) . (1.1)

This is because A1 and A2 only enter in the metric through A2
1 and A2

2.
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Here M and a are the mass and Kerr spin parameter of the black hole, Ai(r) are

arbitrary functions of r, f(r) and g(θ) are arbitrary functions of r and θ, respectively.

We can set g(θ) = 0 to satisfy solar system bounds. The above metric reduces to the

Kerr black hole when Ai → 1 and f(r) → 0, while it reduces to the Johannsen metric

[18] in the limit A2
0 → A1A2.

The CY metric [20] exhibits pathologies in certain situations. The metric itself

consists of five functions of the radial coordinate, r, that capture the deviations from

Kerr. When mapping this metric to existing beyond-GR theories, these functions are

expanded about r = ∞. The expansion coefficients represent the deviation parame-

ters from Kerr. Naturally, these are infinite expansions, so for practical purposes we

truncate the expansion, so as to have a finite number of beyond-Kerr deviation pa-

rameters. This truncation can introduce pathological behavior, such as nonphysical

divergences, into the spacetime.

As an example, let us look at the tt component of the Braneworld black hole [21]

in the Randall-Sundrum model [22, 23] compared to the tt component of the CY

metric [20] mapped to Braneworld to highlight this pathological behavior, see Figure

1.1. The Braneworld metric has the following form:

ds2 =−
(
1− 2Mr − β

Σ

)
dt2 − 2a(2Mr − β)

Σ
sin2 θdtdϕ

+
Σ

β +∆
dr2 + Σdθ2 +

(
r2 + a2 +

2Mr − β

Σ
a2 sin2 θ

)
sin2 θdϕ2 .

(1.11)

Here, β is the beyond-Kerr parameter for this theory. Specifically, it is a tidal

charge parameter originating from some nonlocal gravitational effects due to a five-
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dimensional bulk spacetime.

One can see in Figure 1.1 the gravitational potential as a function of the radial

coordinate r. Here we show this potential ranging from the event horizon to twice

the event horizon and normalize it to the black hole mass. The true potential is

shown by the solid blue curve and the spacetime from [20] mapped to Braneworld

with a truncated series is shown by the red dashed line. In the truncated param-

eterized spacetime, we see a nonphysical divergence near the event horizon. This

artificial divergence will pose a problem when comparing the parameterized space-

time with spacetimes from black hole observations; there will be a mismatch as there

is a divergence in the model where there should not be any such divergence in real

life.

The goal of this work is to refine the CY metric presented in [20] in such a way

that it no longer exhibits pathological behavior like this nonphysical divergence. In

our attempts to remedy the fictitious divergence, we changed the form of the arbitrary

functions of r in the CY metric in different ways. In the first attempt, we rescaled the

arbitrary functions of r in the CY metric by one of the arbitrary functions themselves

and by a factor of ∆. In the second attempt, we treated the deviations from Kerr as

small perturbations and parameterized the arbitrary functions of r by ∆n with n =

−1, 0, 1. We will describe these in-depth in Chapter 3.

Let us now go through the process of finding the rescaled mapping functions

between CY and a selected existing beyond-GR metric, which we will refer to as
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Figure 1.1: Nonphysical divergence exhibited by the CY metric for the Braneworld

example. We plot the tt component of the metric for the true Braneworld black hole

(blue solid) and the original CY metric with the mapping functions Ai expanded

about r = ∞ (red dashed). We choose parameter values θ = π
2
, a = 0.9,M = 1, and

β = 0.1.
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X. First, equate the refined CY metric components (detailed in Section 1.2) with

the corresponding components of metric X to find a system of equations that we

can solve for A0(r), A1(r), A2(r), A5(r), and f(r) as a function of the beyond-Kerr

parameters present in metric X. These are what we will call the mapping functions.



Chapter 2

Rescaling Ai Mappings

In this attempt to remove the nonphysical divergence, we rescale the Ai(r) functions

by A5(r) and factor out ∆. We make no assumptions about the size of the deviation

from Kerr – in this attempt we do not assume the deviation to be small as we do in

Chapter 3.

2.1 Rescaling

We rescale A5 first by factoring out ∆, and call this Ā5. We then rescale A0, A1,

and A2 by Ā5 and a factor of ∆. We will follow the notation Āi to denote rescaled

functions.

18



CHAPTER 2. RESCALING Ai MAPPINGS 19

A5 →
Ā5

∆
, (2.1)

A0 →
Ā0∆

Ā5

, (2.2)

A1 →
Ā1∆

Ā5

, (2.3)

A2 →
Ā2∆

Ā5

. (2.4)

The CY metric with these rescaled functions becomes

gtt =
Σ̃Ā5 csc

2 θ
(
Ā5 csc

2 θ − a2Ā2

)
ρ̄

, (2.5)

grr =
Σ̃

Ā5

, (2.6)

gθθ = Σ̃, (2.7)

gϕϕ =
Σ̃Ā5 sin

2 θ
[
Ā1(a

2 + r2)2 − a2Ā5 sin
2 θ

]
ρ̄

, (2.8)

gtϕ =
aΣ̃Ā5 csc

2 θ
[
(a2 + r2) Ā0 − Ā5

]
ρ̄

, (2.9)

where

ρ̄ =a4Ā2Ā5 + Ā1Ā5

(
a2 + r2

)2
csc4 θ

+ a2
(
a2 + r2

) [
a2

(
Ā0

2 − Ā1Ā2

)
− 2Ā0Ā5 +

(
Ā0

2 − Ā1Ā2

)
r2
]
csc2 θ,

(2.10)

and Σ̃ is given by Equation (1.8). The Kerr limit is now Ā5 → ∆ while Ā0,1,2 → 1.

The Johannsen limit is still Ā2
0 → Ā1Ā2.

In order to map the CY metric with rescaled arbitrary functions, we solve for the

Āi functions as described at the end of Chapter 1. Then, we expand these rescaled

functions about r = ∞, keep to second order in M/r as an example, and plug these
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truncated expansions back into the rescaled CY metric. This is the CY reconstruction

of beyond-GR metric X.

This rescaling of A5 functions by a factor of ∆ was initially motivated by our

analysis of Braneworld [21] and the rescaling by a factor of A5 was motivated by our

analysis of Kerr-Sen [24]. Let us first look at the Braneworld case to understand the

∆ rescaling. Both the numerator and denominator of the tt component of the CY

metric mapped to Braneworld (using mapping functions exact in r) are proportional

to ∆2, leading to a cancellation of ∆’s, and we therefore find no divergence at the

Kerr horizon (∆ = 0). Appendix A contains the mapping functions for Braneworld

(and other considered metrics).

This ∆ proportionality and cancellation breaks down when we expand the Ai(r)

functions: the numerator of the tt component of CY mapped to Braneworld is pro-

portional to ∆0 while the denominator is proportional to ∆2. The tt component itself

is then proportional to 1
∆2 and so we see a divergence at the Kerr horizon.

The idea is to factor ∆ out of the Ai(r) functions themselves to cancel out the ∆ in

the denominator. This will therefore get rid of the divergence at the Kerr horizon. We

show this cancellation for the A5(r) function in the Braneworld example in Equations

(2.11) and (2.12).

A5Brane =
∆+ β

∆
, (2.11)

Ā5Brane =

(
∆+ β

��∆

)
��∆ = ∆+ β. (2.12)
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Now let us look at the Kerr-Sen case to understand why we also rescale by Ā5.

For the Kerr-Sen case, A2 is proportional to 1/∆̄ where ∆̄ = ∆ + 2br, where b is

the deviation parameter for the Kerr-Sen metric. A2 enters in the numerator of the

tt component of the CY metric with the original parameterization, therefore there

will be a divergence at ∆̄ = 0. To remedy this, we must rescale by ∆̄: Ā5 = ∆̄ for

Kerr-Sen, so we rescale by the Ā5 function.

In this rescaling scheme, we do not rescale the f(r) function, we leave it as is.

Note out of the six existing beyond-GR metrics we consider, f(r) is only nonzero for

Kerr-Sen.

2.2 Results and Discussion

In this section, we report the results of our attempt at removing the fictitious diver-

gences through rescaling the arbitrary functions of r. Ideally, we want the CY metric

to exactly recover the metric of each beyond-GR theory we consider, however, this is

not always the case. To quantify how well the CY metric can recover metric X, we

use a relative root-mean-square error (RMSE) calculation, given by

RMSE =

√√√√∫ NrEH

rEH

[
gXαβ(r)− gCY

αβ (r)
]2
dr∫ NrEH

rEH

[
gXαβ(r)

]2
dr

. (2.13)

Here, gXαβ(r) is the “true” component from metric X and gCY
αβ (r) is the corresponding

component from the CY metric with the rescaled mapping functions given by Equa-
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tions (2.5) - (2.9). We integrate from the event horizon location of the beyond-GR

theory we are considering, rEH , to N event horizon distances, NrEH . We investigated

the RMSE values for two different values of N : 2 and 100. We chose 2rEH as an upper

integration limit to get a sense of how well the CY metric can recover metric X near

the horizon. Conversely, we chose 100rEH as an upper integration limit to investigate

how well the CY metric can recover X far from the horizon. We analyzed how the

upper integration limit affects the RMSE and we found that the RMSE does not vary

much with upper integration limits larger than 100rEH . This indicates that RMSEs

integrated to 100rEH give a good gauge on how well the CY metric can recover X

for large distances. If the CY metric can exactly recover metric X, the RMSE value

will be 0 – the closer the RMSE value is to 0, the better the performance of the CY

metric.

The location of the event horizon, rEH , of the CY metric will be different for each

beyond-GR theory it is mapped to. The event horizon location can be calculated by

equating the inverse of the rr component, 1
grr

, of CY mapped to metric X to 0, and

solving for r. See Appendix A for event horizon locations for CY mapped to each of

the six beyond-GR metrics considered in this work.

From this analysis we found the rescaling method successfully removes the fic-

titious divergences in the original CY metric, see Figure 2.1. Additionally, the CY

metric with rescaling was able to recover Braneworld and Kalb-Ramond exactly. With

the exception of the rr component of EdGB, the RMSE was less than 1.41× 10−1 for



CHAPTER 2. RESCALING Ai MAPPINGS 23

Figure 2.1: Similar to Figure 1.1 but with the result for the rescaled CY metric

added. Notice that there is no longer a divergence in the rescaled CY metric which

recovers the true Braneworld exactly. In this analysis, we again choose the parameter

values θ = π
2
, a = 0.9,M = 1, and β = 0.1.

all components that CY could not recover exactly. The CY metric with the rescaling

method has successfully reproduced the true metrics in most example theories.

Table 2.2 contains the relative RMSE value for each component of the CY metric

mapped to the six metrics listed in Appendix A compared to the corresponding metric

components of each beyond-GR metric. We choose parameter values of M = 1,

a = 0.9, θ = π
2
, and the beyond-GR parameter for each set to 0.1 for these calculations.
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Note RMSE calculations for dCS tt and rr components are not included in Table

2.2. This is because the Āi functions present in those metric components are the

same as those of Kerr, and so there is no possibility for deviation from Kerr to be

present in these metric components. Additionally, EdGB and dCS do not have RMSE

calculations for the ϕϕ metric component. This is because the black hole spacetimes

in these two theories that can be mapped to the CY metric are only valid to first

order in spin, a. To account for this, we expanded the CY metric and kept to first

order in a. This removed deviations from Kerr in the ϕϕ component as the arbitrary

functions of r are only seen in terms containing higher orders of a. And so we did

not include this metric component in our analysis as it contains no deviations from

Kerr and is therefore the same as Kerr for these theories.

Additionally, the rr component of the true EdGB metric diverges as it approaches

the horizon. The rr component of the CY reconstruction of this theory also diverges

as it approaches the horizon, but it does not diverge at the same rate as the true

EdGB rr metric component. Because of this we set the lower integration limit in

the RMSE calculation to be 1.01rEH instead of the horizon distance so as to obtain a

finite value for the RMSE. We also carried out the same analysis for the rr component

of Bardeen because it exhibited a similar issue.

Note the CY metric with rescaling was unable to recover EdGB and dCS exactly

when the Āi functions were expanded and kept to second and fourth order in r, but it

was able to exactly recover them when kept to sixth order. Figure 2.2 shows the EdGB
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Metric UIL [rEH] RMSE tt RMSE rr RMSE ϕϕ RMSE tϕ

Braneworld 2 0 0 0 0

100 0 0 0 0

Kerr-Sen 2 2.04× 10−1 0 4.50× 10−2 1.14× 10−1

100 9.01× 10−3 0 5.09× 10−6 7.72× 10−2

[23.65] 0 [14.75] [2.78]

EdGB 2 8.83× 10−2 1.80 - 4.07× 10−2

100 3.24× 10−3 1.69 - 2.84× 10−2

[0] [0] - [0]

dCS 2 - - - 1.20× 10−2

100 - - - 8.46× 10−3

- - - [0]

Bardeen 2 1.13× 10−4 6.19× 10−3 2.79× 10−6 2.23× 10−5

100 2.37× 10−6 5.30× 10−3 2.02× 10−10 1.58× 10−5

[5.72× 10−11] [1.67× 10−7] [4.88× 10−15] [3.81× 10−10]

Kalb-Ramond 2 0 0 0 0

100 0 0 0 0

Table 2.1: RMSE for each component of the CY metric compared to the corresponding

beyond-GR metric given in the “Metric” column. UIL denotes upper integration limit

in the RMSE calculation in units of event horizons. Dashes denote components that

have no deviation from Kerr. Values in square brackets are RMSE values for Ai

expanded to 6th order with UIL 100rEH .
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tt component as an example of this – keeping to higher orders in the expansion in r

causes the CY metric to better approximate and eventually recover the true metric.

From Table 2.2, we see a new divergence is introduced to CY mapped to Kerr-Sen

when the Āi functions are expanded and kept to sixth order in r. In Figure 2.3, we

show the true tt component of Kerr-Sen compared to the tt component of the CY

metric with original mapping, the CY metric with rescaling kept to second, fourth,

and sixth order in r, and the CY metric with the small deviation approximation

detailed in Chapter 3. We can see the divergence in the original mapping of the CY

metric, the red dashed curve. Both the rescaling method and the small deviation

approximation remove that divergence. However, we do see the CY metric with

rescaling exhibits a new divergence at sixth order in the expansion about r = ∞.

This divergence occurs at r = 1.06. We plan to study what causes this divergence

to emerge at this order and why the emergence of this new divergence is dependent

upon the order kept in the r expansion.
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Figure 2.2: The tt component of the metric for the true EdGB black hole (blue

solid) and the rescaled CY metric with Āi expanded to various orders (dashed). The

CY tt metric component expanded to orders M2

r2
and M4

r4
do not agree well with the

true EdGB metric component. There is more disagreement near the horzion and the

CY metric component approaches the true EdGB as the radial distance increases.

The CY tt metric component expanded to order M6

r6
recovers the true EdGB metric

component exactly. We choose parameter values θ = π
2
, a = 0.9,M = 1, and β = 0.1.
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Figure 2.3: The tt component for the true Kerr-Sen black hole (blue solid), the

CY metric with original mapping (red dashed), the rescaled CY metric to second

order (green solid), fourth order (green dashed), and sixth order (green dash-dotted),

and the CY metric with small deviation approximation with n = −1 exact in r

(magenta dashed). All rescaled CY and CY with small deviation approximation

remove divergence seen in original CY. A new divergence emerges for rescaled CY

expanded to sixth order. We choose parameter values θ = π
2
, a = 0.9,M = 1, and

b = 0.1.



Chapter 3

Small Deviation Approximation

The fictitious divergence seen in the original CY metric by using the truncated Ai

functions arises because of the non-Kerr contribution in the denominators of each

metric component. Therefore, in this chapter, we attempt to remove the nonphysical

divergence by assuming that the deviations from Kerr are small and treat them as

small perturbations. The spirit is similar to what was already done in [25] that con-

structed non-Kerr spacetimes preserving Kerr symmetries under small deviation from

Kerr. We split the Ai functions into Kerr plus correction instead of parameterizing

the Ai functions themselves. We performed this split as follows: Ai = 1 + ϵ∆nδAi

with parameters δAi and n. Here, ϵ is a bookkeeping parameter that we use to count

the order of deviation from Kerr. Below, Approach 1 refers to n = −1, Approach 2

refers to n = 0, and Approach 3 refers to n = 1.

In addition to the Ai functions, we parameterize the f(r) function and perform

29
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similar expansions as we did forAi. It takes a slightly different form, f(r) = ϵ∆nδf(r),

as its Kerr limit is 0. Note, f(r) = 0 for all beyond-GR metrics we considered except

Kerr-Sen.

To summarize, we list the forms of the small deviation approximation parameter-

ization here:

Ai = 1 + ϵ∆nδAi, (3.1)

f(r) = ϵ∆nδf(r), (3.2)

where n takes the value of either −1, 0, or −1 for the analyses below. Notice that if

we use the full expression for δAi, the results are the same for any n. The difference

in n becomes important when we use δAi expanded about r = ∞. We will expand

the metric about ϵ = 0 and only keep to linear order. Here we do not explicitly show

the expression for the the small deviation approximation CY metric as the expression

itself is quite long.

3.1 Finding δAi Mappings

The process for finding the δAi mappings begins with finding the Ai mapping func-

tions for metric X in the same way as described in Section 1.2. Once we have the

Ai mappings, which are a function of the beyond-Kerr parameters of metric X, we

expand them about a small deviation from Kerr. We then equate this expanded Ai

function to the particular parameterization form we are considering, 1+ ϵ∆nδAi with
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ϵ set to 1 and n being either -1, 0, or 1, and solve for δAi. This δAi function is what

we will refer to as the “exact” mapping, as it is exact in r. We also expand δAi about

r = ∞ and kept to sixth order, for example. This is what we will refer to as the

“expanded” mapping, as these δAi are not exact in r.

Next we plug either the exact or expanded δAi mapping back into the CY metric

that has been expanded about ϵ = 0 and kept to linear order in ϵ. We treat the

expansion of the rr component differently than the other components. We first take

the inverse of the rr component, then expand in ϵ and keep to first order, then take

the inverse again. This is to account for nonlinear contributions in ϵ.

For each Approach 1, 2, and 3, we found both the exact and expanded δAi map-

pings of the CY metric to each of the six chosen metrics and listed them in Appendix

A. We quantified how well the CY reconstructions of these metrics were able to recover

each existing beyond-GR metric with a similar RMSE analysis as done in Section 2.2.

3.2 Results and Discussion

In this section, we report the results of our attempt to remedy the fictitious diver-

gences seen in the original CY parameterization with the small deviation approxima-

tion. We find CY with δAi exact in r removes the fictitious divergences seen in the

original CY metric parameterization for all three Approaches (n = −1, 0, 1).

We also report the RMSE values quantifying the CY metric’s ability to recover

the six beyond-GR metrics we considered. We calculated the RMSE for each metric



CHAPTER 3. SMALL DEVIATION APPROXIMATION 32

component of CY mapped to each of the six existing beyond-GR metrics considered

for the three Approaches of n with either the exact or expanded δAi mappings. Like

in the rescaled attempt, we considered two different upper integration limits, 2rEH

and 100rEH in our RMSE analysis. In the tables below, the column denoted “UIL”

still stands for upper integration limit and is again in units of rEH .

Tables 3.1, 3.2, and 3.3 show the values of the RMSE for the components of CY

mapped to each beyond-GR metric that are the largest – out of the tt, rr, tϕ, and

ϕϕ (where applicable) metric components, we report the component that had the

largest RMSE. The component that corresponds to this maximum value is given in

parenthesis next to the RMSE value. In this attempt, we calculated quite a few

RMSE values, so for brevity and clarity, we only report the maximum errors as they

give insight as to where the CY metric is performing the worst. Table 3.1 gives the

maximum RMSE values for Approach 1 (n = −1), Table 3.2 gives the maximum

RMSE values for Approach 2 (n = 0), and Table 3.3 gives the maximum RMSE

values for Approach 3 (n = 1). The RMSE values were calculated using Equation

(2.13) with specific parameter values of M = 1, a = 0.9, θ = π
2
, and the beyond-GR

parameter for each set to 0.1. Let us discuss below the results for each Approach in

more detail.
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Maximum RMSE Values: Approach 1 (n = -1)

Metric UIL [rEH] Exact Expanded

Braneworld 2 0 -

100 0 -

Kerr-Sen 2 1.01× 10−1 (tt) 28.7 (tt)

100 2.08× 10−2 (tt) 1.42 (tϕ)

EdGB 2 0 1.50 (rr)

100 0 1.50 (rr)

dCS 2 0 14.50 (tϕ)

100 0 2.72 (tϕ)

Bardeen 2 1.13× 10−4 (tt) 1.13× 10−4 (tt)

100 2.23× 10−5 (tϕ) 2.23× 10−5 (tϕ)

Kalb-Ramond 2 0 0

100 0 0

Table 3.1: Table of maximum RMSE values for each metric with CY small deviation

approximation parameteriation for Approach 1 (n = −1). dCS has a divergence in

this approach, hence the large RMSE value. The δAi for Braneworld does not depend

on r; dashes indicate that there is no expanded δAi.
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Maximum RMSE Values: Approach 2 (n = 0)

Metric UIL [rEH] Exact Expanded

Braneworld 2 0 1.28× 10−1 (tt)

100 0 1.77× 10−2 (tϕ)

Kerr-Sen 2 1.01× 10−1 (tt) 1.96× 101 (tt)

100 2.08× 10−2 (tt) 6.91× 10−2 (tϕ)

EdGB 2 0 1.01 (rr)

100 0 1.01 (rr)

dCS 2 0 0

100 0 0

Bardeen 2 1.51× 10−5 (tt) 2.00× 10−3 (tt)

100 4.60× 10−6 (tϕ) 6.09× 10−4 (tϕ)

Kalb-Ramond 2 0 2.11× 10−1 (tt)

100 0 3.04× 10−2 (tϕ)

Table 3.2: Table of maximum RMSE values for each metric with CY small deviation

approximation parameteriation for Approach 2 (n = 0).
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Maximum RMSE Values: Approach 3 (n = 1)

Metric UIL [rEH] Exact Expanded

Braneworld 2 0 1.41× 10−1 (tt)

100 0 1.95× 10−2 (tϕ)

Kerr-Sen 2 1.01× 10−1 (tt) 26.5 (rr)

100 2.08× 10−2 (tt) 26.5 (rr)

EdGB 2 0 1.02 (rr)

100 0 1.02 (rr)

dCS 2 0 3.89× 10−3 (tϕ)

100 0 2.76× 10−3 (tϕ)

Bardeen 2 1.51× 10−5 (tt) 4.63× 10−3 (tt)

100 2.23× 10−5 (tϕ) 1.42× 10−3 (tϕ)

Kalb-Ramond 2 0 2.12× 10−1 (tt)

100 0 3.40× 10−2 (tϕ)

Table 3.3: Table of maximum RMSE values for each metric with CY small deviation

approximation parameteriation for Approach 3 (n = 0).
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3.2.1 Approach 1: n = −1

The CY metric with the δAi mapping exact in r exactly recovers four out of the

six beyond-GR metrics we considered: Braneworld, EdGB, dCS, and Kalb-Ramond.

Also, as mentioned above, the exact mapping removes the nonphysical divergence seen

in the original CY parameterization, see Figure 3.1 for the Braneworld tt component

example. From this figure, we can see that the CY metric tt component with the exact

paramterization in Approach 1 no longer shows a divergence at the Kerr horizon. Let

us discuss this example to understand why this divergence goes away for Approach 1

with the exact mapping. The denominator of the tt component of the CY metric for

Approach 1 is proportional to ∆2. The δAi mappings are constant in r. The specific

combination of δAi multiplied by ∆’s in the numerator lead to a cancellation of the

∆2 in the denominator, and thus we see no divergence at the Kerr horizon. Despite its

ability to exactly recover the Braneworld, EdGB, dCS, and Kalb-Ramond, Approach

1 with exact δAi was unable to recover Kerr-Sen and Bardeen exactly; the RMSE

values for those metrics are all less than 1.01× 10−1.

Approach 1 with the expanded δAi successfully removes divergences for the Bardeen

and Kalb-Ramond metrics. It still shows divergences at the Kerr horizon for Kerr-

Sen, EdGB, and dCS. We see these divergences as large RMSE values in Table 3.1.

Let us look at the tϕ component of the CY metric mapped to dCS more in depth,

similarly to how we did above with Braneworld, as an example to understand why

this divergence comes about with the mappings expanded in r. The numerator of the



CHAPTER 3. SMALL DEVIATION APPROXIMATION 37

Figure 3.1: Similar to Figure 1.1 but with the result for the small deviation CY

metric for Approach 1 (n = −1) added. The small deviation CY metric successfully

removed the fictitious divergence and recovered the true Braneworld black hole metric

exactly. Note there is no expanded parameterization for Approach 1 because the

mapping functions δAi are independent of r. In this analysis we choose parameter

values θ = π
2
, a = 0.9,M = 1, and β = 0.1.
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CY metric here is proportional to 1
∆
to first order in spin (the dCS metric that can be

mapped to CY is only valid to first order in spin). δAi exact in r for this Approach

are proportional to ∆, again to first order in spin. This leads to a cancellation of ∆’s

and therefore we see no divergence. The expanded δAi for this Approach, however,

are proportional to ∆0. This means we no longer get a cancellation of ∆’s and so

the tϕ component of the CY metric is proportional to 1
∆

and we see a divergence at

the Kerr horizon. Figure 3.2 shows this remaining nonphysical divergence in the dCS

example. We see divergences in Kerr-Sen and EdGB for the expanded mappings for

a similar reason.

The CY metric with the expanded δAi mapping recovers Kalb-Ramond exactly.

It did not recover Kerr-Sen, EdGB, dCS, and Bardeen exactly.

3.2.2 Approach 2: n = 0

The CY metric with δAi mappings exact in r for this Approach exactly recovers

the same four beyond-GR metrics as Approach 1: Braneworld, EdGB, dCS, and

Kalb-Ramond. As mentioned in Section 3.2, the CY metric with Approach 2 ex-

act δAi parameterization removes the fictitious divergence seen with the CY original

parameterization. Let us go through a similar reasoning as we did for Approach 1

to understand why this parameterization removes the original CY divergence. The

denominator of the tt component of the CY metric with the Approach 2 exact param-

eterization is proportional to ∆. The Braneworld δAi mappings are proportional to
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Figure 3.2: Nonphysical divergence seen in the expanded mapping of Approach 1 (n

= -1) for the tϕ component of the CY metric mapped to dCS. The true dCS tϕ metric

component is shown as the blue solid line, the CY tϕ metric component mapped to

dCS with the exact Approach 1 mapping is shown as the red-dashed line, and the

CY tϕ metric component mapped to dCS with the expanded Approach 1 mapping is

shown as the green-dashed line. We see a nonphysical divergence at r = 2M . In this

analysis we choose parameter values θ = π
2
, a = 0.9,M = 1, and ζ = 0.1.
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1
∆
. This leads to an overall 1

∆2 that cancels out with the ∆2 seen in the numerator of

the CY tt component, thus resulting in no divergence at the Kerr horizon. Figure 3.3

gives a visualization of this divergence remedy in this example and highlights that the

Braneworld metric is recovered exactly with the exact δAi parameterization of CY in

this Approach. From this Figure, we also note that the expanded parameterization

with n = 0 also removes the original CY divergence. Let us now discuss the CY

metric with the δAi mappings expanded in r.

The CY metric with the expanded δAi mappings is unable to exactly recover any of

the six beyond-GR metrics we considered, but all RMSE values are below 1.96×10−1.

It is important to note that we do not see new divergences emerge in the CY metric

here like we did in Approach 1. In Table 3.2, the RMSE for the rr component of

EdGB indicates a divergence because of its large value. The rr component of the

true EdGB metric itself diverges near the horizon. Similar to Approach 1, the CY

reconstruction of the EdGB metric for this Approach 2 also diverges near the horizon,

but at a slightly different rate than that of true EdGB. This causes the large RMSE

value, but is not in fact a new or fictitious divergence.

The CY metric with the exact Approach 2 mappings does not exactly recover the

Kerr-Sen and Bardeen metrics, however they both have small RMSE values below

1.01× 10−1.
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Figure 3.3: Similar to Figure 3.1 but for Approach 2 (n = 0). Both the exact and ex-

panded Approach 2 parameterizations successfully removed the fictitious divergence.

The exact parameterization recovered the true Braneworld metric exactly while the

expanded version approaches the true metric as r increases. Again we choose param-

eter values θ = π
2
, a = 0.9,M = 1, and β = 0.1.
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3.2.3 Approach 3: n = 1

Like both Approach 1 and 2, Approach 3 with δAi exact in r exactly recovers the same

four beyond-GR metrics: Braneworld, EdGB, dCS, and Kalb-Ramond. This parame-

terization was unable to recover Kerr-Sen and Bardeen exactly, and both have RMSE

values below 1.01×10−2. As mentioned earlier, the exact δAi mappings for Approach

3 remove the fictitious divergence seen in the original CY metric parameterization.

We can see this in Figure 3.4 again for the Braneworld tt example. Following a similar

analysis as Sections 3.2.1 and 3.2.2, let us look at how this divergence is removed by

the exact δAi parameterization. The denominator of the tt component of the CY

metric with δAi exact in r with n = 1 is proportional to ∆0. The Braneworld δAi

mapping functions are proportional to 1
∆2 are canceled by the ∆2 in the numerator

of the tt component, leading to no divergence at the Kerr horizon.

From Table 3.3, we again see the RMSE of the rr component of CY reconstruc-

tion of EdGB with the expanded δAi mapping is large. This again is due to the

different rates of divergence in both the true and CY metric components; it is not

a new or nonphysical divergence. We do, however, see a new divergence emerge for

CY mapped to Kerr-Sen expanded in r at the Kerr horizon. Let us take a look at

why this divergence emerges in the expanded parameterization but not in the exact

parameterization. In the exact case, the denominator of the rr component of the CY

metric with n = 1 parameterization is proportional to ∆2. δA5 is in the denominator

of the rr component and is the only mapping function that enters in this component.
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δA5 is proportional to 1
∆2 , which leads to a complete cancellation of ∆s in the de-

nominator and thus there is no divergence at the Kerr horizon for Approach 3 exact

in r. When we expand δA5 about r = ∞, it loses its 1
∆2 form, and so there is no ∆

cancellation in the denominator, leading to a divergence at the Kerr horizon.

3.3 Summary

Approaches 2 and 3 were able to remove the fictitious divergences seen in the original

CY metric parameterization for all six beyond-GR metrics considered here. Approach

1 was able to remove this fictitious divergence for all beyond-GR metrics except the

tϕ component of the dCS metric.

Approach 3 (n = 0) performs best (has the lowest RMSE values) for EdGB, dCS,

and Kerr-Sen. Approach 1 (n = −1) performs best (has the lowest RMSE values) for

Braneworld, Bardeen, and Kalb-Ramond.

It is important to note that the new divergences we saw emerge in the expanded

mappings of Approach 1 and 3 appear when we choose a high spin, a = 0.9. These

new divergences do not appear for small spin like a = 0.3, for example. This will

require further study to understand why these divergences emerge for high spin.

Recall for these RMSE calculations, we chose specific parameter values for θ =

π
2
, a = 0.9,M = 1, and set the beyond-GR parameters to 0.1 in the mapping functions

and metric components. For each Approach 1, 2, and 3, we also varied a and θ

and determined which values of a and θ yield the largest RMSE value for the CY
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Figure 3.4: Similar to Figure 3.1 but for Approach 3 (n = 1). Like Approach

2, both the exact and expanded Approach 3 parameterizations successfully removed

the fictitious divergence. The exact parameterization recovered the true Braneworld

metric exactly while the expanded one approaches the true metric as r increases. We

choose parameter values θ = π
2
, a = 0.9,M = 1, and β = 0.1.
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reconstruction of the Braneworld metric. See Appendix B for a summary of these

calculations. Based on this analysis, θ = 2.61304 and a = 0.918921 give the maximum

RMSE for the tt, rr, and tϕ components of the CY metric mapped to Braneworld and

θ = 1.79845 and a = 0.896642 give the maximum RMSE for the ϕϕ component.
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Conclusion

The goal of this work was to refine the CY metric presented in [20] to remove patho-

logical behaviors including nonphysical divergences. We took two different attempts

to remedy this pathology: rescaling the CYAi mapping functions, and making a small

deviation approximation with three different approaches. We successfully eliminated

the existing pathological behavior when mapping the CY metric to six beyond-GR

metrics with the rescaling attempt and Approaches 2 and 3 of the small deviation

approximation attempt. A nonphysical divergence was still seen in the CY metric

mapped to dCS and Kerr-Sen in Approach 1 of the small deviation approximation,

but CY metric exhibited no such pathologies when mapped to the other four metrics

we considered.

The CY metric with the rescaled Ai functions detailed in Chapter 2 was able to

recover the Braneworld and Kalb-Ramond metrics exactly and outperformed the small

46
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deviation approximation detailed in Chapter 3 for the Kerr-Sen and EdGB metrics. It

comes very close to the small deviation approximation for Bardeen metric; we prefer

the rescaling method for Bardeen to the small deviation approximation because it

performs almost as well while not assuming that the deviation from Kerr is small.

The CY metric with the small deviation approximation Approach 2 with n = 0

parameterization performed the best for dCS as it was able to recover the metric

exactly. This may be due to that the small coupling approximations in the dCS

metric.

The rescaled CY metric was able to remove the divergence in the original CY

metric for the example theories studied here except for the Kerr-Sen black hole,

where the diverging behavior is still present when the expansion for Āi at higher

orders. The divergence is not at the Kerr horizon or the true horizon (this was

cured by our rescaling), but arises because the denominator in the metric component

can vanish at some other points that depend on how many terms one keeps in the

expansion of the mapping functions. To remedy this further, one possibility is to

combine the two refinements we performed. Namely, we first carry out the rescaling,

and then apply the small deviation approximation. The latter will ensure that we will

no longer have divergence, though the approximate metric may not recover well the

true one if non-linear effects due to non-Kerr effects are large. Taking Kerr-Sen as an

example, the non-Kerr parameter b enters both in the numerator and denominator

of the mapping functions Ai for the original CY metric while b only enters in the
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numerator of Āi for the rescaled CY metric, up to second order in b. This implies

that the rescaled mapping functions are simpler and have smaller nonlinear effects in

terms of deviations from Kerr. This could be an interesting avenue for future work.
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Appendix A

Example Theories

This appendix lists the six example beyond-GR theories considered in this thesis,

whose black hole metrics can be mapped to the CY metric. For each example theory,

we list some references, key parameters controlling their deviation from Kerr, mapping

functions for the original and refined (rescaled and small deviation) CY metrics, and

the event horizon location found by solving 1/grr = 0. For the mapping functions for

the CY metric with small deviation approximation, we only present the expressions

for Approach 3 (n = 0) since the expressions for other n can be easily obtained by

scaling appropriately with ∆n.

A.1 Braneworld

• metric given in [21]

• parameters: tidal charge β
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• original CY mapping:

A0(r) → ∆

∆+ β
(A.1)

A1(r) → ∆

∆+ β
(A.2)

A2(r) → ∆

∆+ β
(A.3)

A5(r) → ∆+ β

∆
(A.4)

f(r) → 0 (A.5)

• rescaled CY mapping:

Ā0(r) → 1 (A.6)

Ā1(r) → 1 (A.7)

Ā2(r) → 1 (A.8)

Ā5(r) → ∆+ β (A.9)

• small deviation CY mapping with n = 0, exact in r:

δA0 → β

∆
(A.10)

δA1 → β

∆
(A.11)

δA2 → β

∆
(A.12)

δA5 → − β

∆
(A.13)

• event horizon location:

rEH = M +
√

M2 − a2 − β2 (A.14)
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A.2 Kerr-Sen

• metric given in [24]

• parameters: b related to magnetic dipole moment

• original CY mapping:

A0(r) → (a2 + r2 + 2br)∆

(a2 + r2)(∆ + 2br)
(A.15)

A1(r) → (a2 + r2 + 2br)2∆

(a2 + r2)2(∆ + 2br)
(A.16)

A2(r) → ∆

∆+ 2br
(A.17)

A5(r) → ∆+ 2br

∆
(A.18)

f(r) → 2br (A.19)

• rescaled CY mapping:

Ā0(r) → a2 + r2 + 2br

a2 + r2
(A.20)

Ā1(r) → (a2 + r2 + 2br)2

(a2 + r2)2
(A.21)

Ā2(r) → 1 (A.22)

Ā5(r) → ∆+ 2br (A.23)
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• small deviation CY mapping with n = 0, exact in r:

δA0 → −4bMr2

(a2 + r2)∆
(A.24)

δA1 → 2br(∆− 2Mr)

(a2 + r2)(∆− 2Mr)
(A.25)

δA2 → −2br

∆
(A.26)

δA5 → 2br

∆
(A.27)

δf(r) → 2br (A.28)

• event horizon location:

rEH = M − b+
√

(M − b)2 − a2 (A.29)

A.3 EdGB

• metric given in [26]

• parameters: coupling constant ζ

• original CY mapping:

A0(r) → 4M5r2ζ + 2M4r3ζ + 4M3r4ζ − 96M7ζ + 30Mr6 − 15r7

30Mr6 − 15r7 + 400M7ζ − 96M6rζ − 66M5r2ζ − 130M4r3ζ − 5M3r4ζ

(A.30)

A1(r) → 15(2M − r)r6

30Mr6 − 15r7 + 400M7ζ − 96M6rζ − 66M5r2ζ − 130M4r3ζ − 5M3r4ζ

(A.31)

A5(r) → −15r6(−2M + r)
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×(30Mr6 − 15r7 − 1840M7ζ + 48M6rζ + 30M5r2ζ + 260M4r3ζ

+15M3r4ζ + 15M2r5ζ)−1 (A.32)

f(r) → 0 (A.33)

Note there is no mapping function A2(r). This is because the EdGB metric

that can be mapped to the CY metric is only valid to first order in spin and

A2(r) appears in terms with higher order in spin in the original CY metric.

• rescaled CY mapping:

We do not show the rescaled CY mappings for EdGB as the expressions are

quite long. Note there is no mapping function Ā2(r). This is because EdGB is

valid to first order in spin and Ā2(r) appears in the original CY metric only in

terms with higher orders in spin.

• small deviation CY mapping with n = 0:

δA0 → M3(−496M4 + 96M3r + 70M2r2 + 132Mr3 + 9r4)ζ

15(2M − r)r6
(A.34)

δA0 → −M3(400M4 − 96M3r − 66M2r2 − 130Mr3 − 5r4)ζ

15(2M − r)r6
(A.35)

δA5 → M2(1840M5 − 48M4r − 30M3r2 − 260M2r3 − 15Mr4 − 15r5)ζ

15(2M − r)r6

(A.36)

• event horizon location:

rEH = 2M (A.37)
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A.4 dCS

• metric given in [27]

• parameters: coupling constant ζ

• original CY mapping:

A0(r) → 1− 27M6ζ

16r6
− 15M5ζ

14r5
− 5M4ζ

8r4
(A.38)

A1(r) → 1 (A.39)

A5(r) → 1 (A.40)

f(r) → 0 (A.41)

There is no mapping function A2(r) for the same reason as in EdGB.

• rescaled CY mapping:

Ā0(r) → 1− 27M6ζ

16r6
− 15M5ζ

14r5
− 5M4ζ

8r4
(A.42)

Ā1(r) → 1 (A.43)

Ā5(r) → ∆ (A.44)

Note there is no mapping function Ā2(r). This is because dCS is valid to first

order in spin and Ā2(r) appears in terms with higher order spin in the refined

CY metric.
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• small deviation CY mapping with n = 0, exact in r:

δA0 → −M4(189M2 + 120Mr + 70r2)ζ

112r6
(A.45)

δA1 → 0 (A.46)

δA5 → 0 (A.47)

• event horizon location:

rEH = 2M (A.48)

A.5 Bardeen

• metric given in [28]

• parameters: g controls regularity of the black hole

• original CY mapping:

A0(r) → ∆(g2 + r2)3/2

(a2 + r2)(g2 + r2)3/2 − 2Mr4
(A.49)

A1(r) → ∆(g2 + r2)3/2

(a2 + r2)(g2 + r2)3/2 − 2Mr4
(A.50)

A2(r) → ∆(g2 + r2)3/2

(a2 + r2)(g2 + r2)3/2 − 2Mr4
(A.51)

A5(r) → (a2 + r2)(g2 + r2)3/2 − 2Mr4

∆(g2 + r2)3/2
(A.52)

f(r) → 0 (A.53)
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• rescaled CY mapping:

Ā0(r) → 1 (A.54)

Ā1(r) → 1 (A.55)

Ā2(r) → 1 (A.56)

Ā5(r) → a2 + r2 − 2Mr4

(g2 + r2)3/2
(A.57)

• small deviation CY mapping with n = 0, exact in r:

δA0 → −3g2M

r∆
(A.58)

δA1 → −3g2M

r∆
(A.59)

δA2 → −3g2M

r∆
(A.60)

δA0 → 3g2M

r∆
(A.61)

• event horizon location: We were not able to find a closed-form expression for

the horizon location for the Bardeen black hole. Instead, we assume g ≪ M < r

and find rEH perturbatively:

rEH = r0 −
3M3r0

4M2r0 − 2a2(M + r0)

g2

M2
+O

(
g4

M4

)
, (A.62)

where r0 = M +
√
M2 − a2 is the Kerr horizon location.

A.6 Kalb-Ramond

• metric given in [29]
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• parameters: Kalb-Ramond parameter s and Lorentz-violating parameter Γ. We

choose s = 2 in this work.

• original CY mapping:

A0(r) → ∆r
2
s

r2+
2
s + a2r

2
s − 2Mr

2+s
s + r2Γ

(A.63)

A1(r) → ∆r
2
s

r2+
2
s + a2r

2
s − 2Mr

2+s
s + r2Γ

(A.64)

A2(r) → ∆r
2
s

r2+
2
s + a2r

2
s − 2Mr

2+s
s + r2Γ

(A.65)

A5(r) → r2+
2
s + a2r

2
s − 2Mr

2+s
s + r2Γ

∆r
2
s

(A.66)

f(r) → 0 (A.67)

• rescaled CY mapping:

Ā0(r) → 1 (A.68)

Ā1(r) → 1 (A.69)

Ā2(r) → 1 (A.70)

Ā5(r) → ∆+ r
2
s
(s−1) (A.71)
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• small deviation CY mapping withn = 0, exact in r:

δA0 → −r2−
2
sΓ

∆
(A.72)

δA1 → −r2−
2
sΓ

∆
(A.73)

δA2 → −r2−
2
sΓ

∆
(A.74)

δA5 → r2−
2
sΓ

∆
(A.75)

(A.76)

• event horizon location: This horizon location was calculated for Kalb-Ramond

parameter s = 2.

rEH =
2M − Γ +

√
(Γ− 2M)2 − 4M2

2
(A.77)



Appendix B

RMSE with varied θ and a

In our analysis, we began calculating which values of θ and a would yield the maximum

RMSE values for the small deviation approximation method. θ values were varied

between 0 and π while a values were varied between 0 and 1. Both parameters were

varied simultaneously.

Here we show those values for the Braneworld example. Approaches 1, 2, and

3 with the exact expression in r for the mapping functions in the small deviation

approximation were all able to recover Braneworld exactly, as well as Approach 1

with the mapping functions expanded in r. We therefore show only the maximized

RMSE values for Approaches 2 (n = 0), and 3 (n = 1). The RMSE values for all tt,

rr, and tϕ components for this Braneworld example are maximized when θ = 2.61304

and a = 0.918921, meaning CY performs the worst when θ and a take these values.

The results are summarized in Table B.1.
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A similar analysis can be done with the five other example metrics given in Ap-

pendix A to investigate which values of θ and a will maximize their RMSEs.
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Approach Component UIL [rEH] RMSE θ a

2 (n = 0) tt 2 1.55× 10−1 2.61304 0.918921

100 2.55× 10−3 2.61304 0.918921

rr 2 1.27× 10−1 2.61304 0.918921

100 2.55× 10−3 2.61304 0.918921

ϕϕ 2 3.37× 10−3 1.79845 0.896642

100 2.52× 10−7 1.79845 0.896642

tϕ 2 2.63× 10−2 2.61304 0.918921

100 1.68× 10−2 2.61304 0.918921

3 (n = 1) tt 2 1.65× 10−1 2.61304 0.918921

100 2.76× 10−3 2.61304 0.918921

rr 2 1.36× 10−1 2.61304 0.918921

100 2.76× 10−3 2.61304 0.918921

ϕϕ 2 5.65× 10−3 2.02787 0.941569

100 2.82× 10−7 1.79845 0.896642

tϕ 2 2.81× 10−2 2.61304 0.918921

100 1.82× 10−2 2.61304 0.918921

Table B.1: RMSE values maximized by varying θ and a for the Braneworld black

hole with Approaches 2 (n = 0) and 3 (n = 1) with the mapping functions expanded

in r. The other parameter values were chosen as M = 1 and β = 0.1.



Appendix C

Konoplya-Rezzolla-Zhidenko

Metric

Konoplya, Rezzolla, and Zhidenko [19] present another generic, theory-agnostic beyond-

Kerr metric. Their metric takes the form:

ds2 = −N2(r, θ)−W 2(r, θ) sin2 θ

K2(r, θ)
dt2 − 2W (r, θ)r sin2 θdtdϕ

+K2(r, θ)r2 sin2 θdϕ2 + Σ(r, θ)

(
B2(r, θ)

N2(r, θ)
dr2 + r2dθ2

)
.

(C.1)

Let us call this metric the KRZ metric. It contains five functions of the radial co-

ordinate r and the polar coordinate θ, N(r, θ), W (r, θ), K(r, θ), B(r, θ), and Σ(r, θ),

that encompass deviations from Kerr. They utilize a double expansion to find their

beyond-Kerr coefficients – the first expansion is about r = ∞ followed by a second

continued fraction expansion near the horizon.

We were interested to investigate if their metric formulation yields similar patholo-

67



APPENDIX C. KONOPLYA-REZZOLLA-ZHIDENKO METRIC 68

gies to the original CY metric parameterization seen with the Braneworld example.

They report mapping functions and coefficients in [19] for two beyond-GR metrics,

Kerr-Sen and EdGB. Before trying to map their metric to Braneworld, we worked

through their procedure to see if we could reproduce the same mapping functions

and coefficients for KRZ mapped to Kerr-Sen. The mapping functions for Kerr-Sen

are given in Equation (56) in [19] and the expansion coefficients are given in Equa-

tions (58) through (60).

We were able to reproduce all mapping functions and coefficients, except the

coefficient w01. We found w01 given in equation (60f) of [19] to be off by a minus

sign. We saw no divergences or pathological behavior in the KRZ reconstructions of

the Kerr-Sen metric.

Following this, we began a similar analysis to determine the mapping functions

and coefficients for Braneworld. As of the time of writing this thesis, this is still a

work in progress. Thus far, we have found three coefficients for Braneworld:

ϵ0 =
2M

rEH

− 1 (C.2)

a00 =
β

r2EH

(C.3)

k00 =
a2

r2EH

(C.4)

where rEH is the event horizon location for Braneworld.

We have also begun to implement a double expansion on the small deviation

approximation with (n = 1) of the CY metric mapped to Kerr-Sen. That is, we

expand the mapping functions both at infinity and at the event horizon. In this
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analysis, we follow the convention of using compactified coordinates x ≡ 1 − rEH

r
in

the same way Konoplya, Rezzolla, and Zhidenko do in their analysis. We expand the

δAi functions about x = 1, or r = ∞, and keep to third order, for example. We then

expand the coefficient of the third order term about x = 0, or r = rEH . We can then

read off coefficients from these expansions, and plug them back in to the CY metric

with the small deviation approximation. Figure C.1 shows the preliminary result of

applying the double expansion to the tt component of CY mapped to Kerr-Sen with

the n = 1 small deviation approximation. We see CY with the double expansion

agrees with the true Kerr-Sen metric at spatial infinity, x = 1, but does not agree at

the horizon, x = 0. The reason for this disagreement at the horizon will need further

investigation.
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Figure C.1: tt component of the n = 1 small deviation approximation CY metric

mapped to Kerr-Sen with double expansion. In this analysis, we choose parameter

values θ = π
2
, a = 0.9,M = 1, and b = 0.1.
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