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ABSTRACT 

Previous adaptive synaptogenesis neural 

network models have failed to achieve 

proportionality between input patterns 

probabilities and output neural coding 

probabilities, which would optimize 

information storage, model size, and energy 

used.  Using human brain learning as a guide–

due to its ability to optimally store and process 

information using factorial encoding–an 

inhibitory interneuron was added to the 

adaptive synaptogenesis algorithm.  An in-

silico model of a simple unsupervised learning 

problem was created in MATLAB to test the 

ability of the modified algorithm to create 

distributed codes.  After repeatedly simulating 

the network and testing for optimal parameter 

combinations, the inhibitory neuron was able 

to be integrated into the adaptive 

synaptogenesis algorithm and achieve 

factorial encoding in both simple and more 

complicated input worlds created for this 

simulation.  However, the generality of this 

algorithm still needs to be tested with even 

harder input environments and datasets to 

ensure robustness.   

 

1. INTRODUCTION 

The goal of this research is to create a 

distributed code, also known as factorial 

encoding, which is a highly desired property in 

neural networks since it optimizes the 

minimum network size needed to represent an 

input.  Factorial encoding is an encoding of 

input patterns from an environment where the 

probability of a given input pattern can be 

determined simply by the product of the 

probabilities of each of the encodings it 

belongs to.  In other words, the goal is to try to 

find a set of conditionally independent 

encodings to proportionally allocate encodings 

to input patterns with respect to their 

probabilities. 

 

This has a few important implications.  First, a 

sufficiently decorrelated encoding will allow 

for more optimal representation of data.  For 

segmentation problems where a sample space 

needs to be broken down into components, 

correlated inputs will be represented in fewer 

bits.  Thus, a sample space is optimally broken 

down to independent features that combine to 

recreate inputs. 

 

Second, distributed codes represent a simpler 

encoding of the sample space.  A set of fully 

independent encodings will require fewer bits 

to encode a given space than ones where there 

is correlation between the encodings.  For 

example, 2 fully independent bits can encode 

up to 4 possibilities while 2 fully correlated 

bits can only encode 2 possibilities since the 

value of one bit is dependent on the other.   

 



 

2. RELATED WORKS 

The current work was developed by modifying 

the model and algorithms in Thomas, et al. 

(2015).  This model consists of three stages: 

associative modification, synaptogenesis, and 

shedding.  During training, the model is given 

each of the inputs in a randomly-selected order 

and performs associative modification—the 

process of modifying the weights of synapses, 

or connections, between the input and output 

neurons based on how actively they are used.  

Synaptogenesis and shedding are the processes 

of randomly adding and removing inactive 

synapses, respectively. This model succeeded 

in developing a neural network that accurately 

classified input patterns into larger categories 

as part of a segmentation task; however, many 

individual neurons were not category-

exclusive meaning that the model did not 

achieve a distributed encoding. 

 

Factorial encoding as the concept introduced 

in this work is described in Schmidhuber  

(1992). This work first presented a method for 

achieving a distributed code for binary 

representations of inputs using predictability 

minimization. With a 3-layer back-

propagation neural network and logistic 

activation functions, Schmidhuber was able to 

find factorial codes efficiently for simple, 

small-dimensioned datasets. However, this 

work has the drawback of being based on 

gradient descent methods which are subject to 

local minima if improperly parameterized. 

 

3. PROJECT DESIGN 

The neural network model in this work is a 

modified version of the model presented in 

Thomas et al. (2015), an unsupervised 

adaptive synaptogenesis neural network 

algorithm.  In particular, three modifications 

were made to the previous algorithm and 

tested on the same datasets used in Thomas et 

al: 1) an inhibitory interneuron was added to 

the network; 2) associative modification was 

changed to occur after each new input is 

presented to the network for connected 

synapses and is now normalized; and 3) the 

synaptogenesis rule was changed to have a 

banded cutoff versus a single threshold.  

Additionally, both synaptogenesis and 

shedding now occur after each input, or 

exemplar, is presented to the model. 

 

3.1 Inhibitory Interneuron 

An inhibitory interneuron was added to the 

model to increase category-exclusivity of 

output layer neuron codes. The inhibitory 

neuron functions by limiting the number of 

neurons that can fire for a given exemplar. 

When an exemplar is presented to the network, 

each output neuron generates an excitation 

based on the weighted sum of its connections 

with the exemplar input. In the Thomas, et al. 

(2015) model, any neuron with an excitation 

higher than the firing threshold would fire in 

response to the exemplar. With the 

interneuron, only a top percentile of neurons 

by total excitation will fire in response to the 

given input. This ensures that only the neurons 

that are strongly associated with given 

categories and subspaces of the input dataset 

are firing to increase exclusivity. The 

interneuron was implemented 

programmatically by changing the algorithm 

for neuron fires to only allow neurons within 

the top 10% to fire. 

 

3.2 Associative Modification Changes 

The associative modification timescale was 

changed in the new model to occur during 

every exemplar presentation. Originally, this 

occurred after each time every exemplar was 

presented in a random order, known as an 

epoch. Also, the associative modification rule 

was changed to only act on synapse weights 

that connect the given input to a given output 

neuron normalized by the excitation. This had 

the effect of limiting the growth of synaptic 

weights and firing given a desired firing rate 

for every neuron. 

 



 

3.3 Synaptogenesis and Shedding Changes 

Like associative modification, both the 

synaptogenesis and shedding rules are now 

applied on each presentation of an exemplar.  

This is important for making the changes to 

connections more continuous and responsive 

to the inputs for faster times to convergence. 

Additionally, a new synaptogenesis cutoff rule 

was created for the model. The old rule 

functioned as a threshold equal to the desired 

firing rate of all neurons. If a neuron exceeded 

the firing rate, synaptogenesis would shut off 

for the neuron until it fell below the firing rate. 

In the new rule, there are two thresholds. The 

firing threshold is maintained but a lower 

threshold is also introduced such that neurons 

that fall below the firing rate do not restart 

synaptogenesis until the firing rate of the 

neuron falls below the lower threshold. This 

formulation helped to create faster 

convergence since it relaxed the requirement 

that all neurons fire at the same rate. 

 

3.4 Implementing and Testing the Model 

The model was coded in MATLAB. The 

neural network model was tested using the 

same datasets as Thomas, et al. (2015) to allow 

for a clear comparison between model 

performance and properties.  The A, B1, B2, 

B3 datasets were all replicated in MATLAB. 

 

4. RESULTS 

The model maintained the proportional 

allocation of output neurons relative to input 

category probabilities as seen in Figure 1, like 

previous models. However, in the current 

model all neurons had a fired at the same rate, 

meaning that neurons were firing to 

subsections of the categories and mapping out 

independent sections of the categories.   

 

Figure 1: Scatterplot of Allocation Results 

with a Line of Best Fit 

 

The scatterplot with a line of best fit shown 

above was created between the output neuron 

allocation and the input category probabilities 

of exemplars, showing proportional allocation 

(R^2 = 0.998).  

 

The model was also able to achieve category 

exclusivity for the overwhelming majority of 

neurons in the model. While some neurons in 

highly correlated categories did fire to 

multiple categories, this was limited to less 

than 2% of the network. Thus, as seen in 

Figure 2, the model was able to approximate a 

distributed code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Bar Graph of Category Exclusivity  

 

The exclusivity of neuron firing for the nine 

categories was determined for the B1. 

Notably, the B1 dataset on the left had high 

 



 

levels of exclusivity with only 1.33% of the 

neurons firing to multiple categories. The only 

categories to observe non-exclusive firing are 

categories 7-9, which have much higher levels 

of correlation than the other categories. These 

results strongly suggest that a distributed code 

was achieved since neurons are firing 

exclusively to different subcomponents of 

each category.  

 

5. CONCLUSION 

Achieving a distributed code for the adaptive 

synaptogenesis neural network model is an 

important step in the larger goal of developing 

an in-silico machine learning model that 

possesses the properties of human brain 

learning.  Factorial encodings have many 

useful properties for efficiently and optimally 

coding inputs for many types of segmentation 

and mixing problems.  When incorporated into 

larger models with more layers and supervised 

components, this unsupervised model, as a 

layer, will help to provide conditionally 

independent input encodings that are more 

statistically meaningful for downstream 

layers. 

 

6. FUTURE WORK 

While this model was tested on datasets that 

exposed the network to issues such as 

correlations between categories, noise, and 

varying category probabilities, there still needs 

to be more testing with more complicated and 

practical datasets. 

 

Additionally, the model could be incorporated 

into a larger supervised learning task as a 

preprocessing step to provide a supervised 

layer better features to utilize.  Finally, there 

are unexplored connections between 

parameters that still need to better understood 

such as the effects of a varying or diminishing 

synaptogenesis rate to speed up convergence. 
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