
Adaptive Synaptogenesis Neural Networks: Creating Factorial Encodings Using Inhibitory

Neurons

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Cooper Scher

Spring, 2022

Technical Project Team Members

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

Adaptive Synaptogenesis Neural Networks: Creating Factorial

Encodings Using Inhibitory Neurons

CS4991 Capstone Report, 2023

Cooper Scher

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

cms4ub@virginia.edu

ABSTRACT

Previous adaptive synaptogenesis neural

network models have failed to achieve

proportionality between input patterns

probabilities and output neural coding

probabilities, which would optimize

information storage, model size, and energy

used. Using human brain learning as a guide–

due to its ability to optimally store and process

information using factorial encoding–an

inhibitory interneuron was added to the

adaptive synaptogenesis algorithm. An in-

silico model of a simple unsupervised learning

problem was created in MATLAB to test the

ability of the modified algorithm to create

distributed codes. After repeatedly simulating

the network and testing for optimal parameter

combinations, the inhibitory neuron was able

to be integrated into the adaptive

synaptogenesis algorithm and achieve

factorial encoding in both simple and more

complicated input worlds created for this

simulation. However, the generality of this

algorithm still needs to be tested with even

harder input environments and datasets to

ensure robustness.

1. INTRODUCTION

The goal of this research is to create a

distributed code, also known as factorial

encoding, which is a highly desired property in

neural networks since it optimizes the

minimum network size needed to represent an

input. Factorial encoding is an encoding of

input patterns from an environment where the

probability of a given input pattern can be

determined simply by the product of the

probabilities of each of the encodings it

belongs to. In other words, the goal is to try to

find a set of conditionally independent

encodings to proportionally allocate encodings

to input patterns with respect to their

probabilities.

This has a few important implications. First, a

sufficiently decorrelated encoding will allow

for more optimal representation of data. For

segmentation problems where a sample space

needs to be broken down into components,

correlated inputs will be represented in fewer

bits. Thus, a sample space is optimally broken

down to independent features that combine to

recreate inputs.

Second, distributed codes represent a simpler

encoding of the sample space. A set of fully

independent encodings will require fewer bits

to encode a given space than ones where there

is correlation between the encodings. For

example, 2 fully independent bits can encode

up to 4 possibilities while 2 fully correlated

bits can only encode 2 possibilities since the

value of one bit is dependent on the other.

2. RELATED WORKS

The current work was developed by modifying

the model and algorithms in Thomas, et al.

(2015). This model consists of three stages:

associative modification, synaptogenesis, and

shedding. During training, the model is given

each of the inputs in a randomly-selected order

and performs associative modification—the

process of modifying the weights of synapses,

or connections, between the input and output

neurons based on how actively they are used.

Synaptogenesis and shedding are the processes

of randomly adding and removing inactive

synapses, respectively. This model succeeded

in developing a neural network that accurately

classified input patterns into larger categories

as part of a segmentation task; however, many

individual neurons were not category-

exclusive meaning that the model did not

achieve a distributed encoding.

Factorial encoding as the concept introduced

in this work is described in Schmidhuber

(1992). This work first presented a method for

achieving a distributed code for binary

representations of inputs using predictability

minimization. With a 3-layer back-

propagation neural network and logistic

activation functions, Schmidhuber was able to

find factorial codes efficiently for simple,

small-dimensioned datasets. However, this

work has the drawback of being based on

gradient descent methods which are subject to

local minima if improperly parameterized.

3. PROJECT DESIGN

The neural network model in this work is a

modified version of the model presented in

Thomas et al. (2015), an unsupervised

adaptive synaptogenesis neural network

algorithm. In particular, three modifications

were made to the previous algorithm and

tested on the same datasets used in Thomas et

al: 1) an inhibitory interneuron was added to

the network; 2) associative modification was

changed to occur after each new input is

presented to the network for connected

synapses and is now normalized; and 3) the

synaptogenesis rule was changed to have a

banded cutoff versus a single threshold.

Additionally, both synaptogenesis and

shedding now occur after each input, or

exemplar, is presented to the model.

3.1 Inhibitory Interneuron

An inhibitory interneuron was added to the

model to increase category-exclusivity of

output layer neuron codes. The inhibitory

neuron functions by limiting the number of

neurons that can fire for a given exemplar.

When an exemplar is presented to the network,

each output neuron generates an excitation

based on the weighted sum of its connections

with the exemplar input. In the Thomas, et al.

(2015) model, any neuron with an excitation

higher than the firing threshold would fire in

response to the exemplar. With the

interneuron, only a top percentile of neurons

by total excitation will fire in response to the

given input. This ensures that only the neurons

that are strongly associated with given

categories and subspaces of the input dataset

are firing to increase exclusivity. The

interneuron was implemented

programmatically by changing the algorithm

for neuron fires to only allow neurons within

the top 10% to fire.

3.2 Associative Modification Changes

The associative modification timescale was

changed in the new model to occur during

every exemplar presentation. Originally, this

occurred after each time every exemplar was

presented in a random order, known as an

epoch. Also, the associative modification rule

was changed to only act on synapse weights

that connect the given input to a given output

neuron normalized by the excitation. This had

the effect of limiting the growth of synaptic

weights and firing given a desired firing rate

for every neuron.

3.3 Synaptogenesis and Shedding Changes

Like associative modification, both the

synaptogenesis and shedding rules are now

applied on each presentation of an exemplar.

This is important for making the changes to

connections more continuous and responsive

to the inputs for faster times to convergence.

Additionally, a new synaptogenesis cutoff rule

was created for the model. The old rule

functioned as a threshold equal to the desired

firing rate of all neurons. If a neuron exceeded

the firing rate, synaptogenesis would shut off

for the neuron until it fell below the firing rate.

In the new rule, there are two thresholds. The

firing threshold is maintained but a lower

threshold is also introduced such that neurons

that fall below the firing rate do not restart

synaptogenesis until the firing rate of the

neuron falls below the lower threshold. This

formulation helped to create faster

convergence since it relaxed the requirement

that all neurons fire at the same rate.

3.4 Implementing and Testing the Model

The model was coded in MATLAB. The

neural network model was tested using the

same datasets as Thomas, et al. (2015) to allow

for a clear comparison between model

performance and properties. The A, B1, B2,

B3 datasets were all replicated in MATLAB.

4. RESULTS

The model maintained the proportional

allocation of output neurons relative to input

category probabilities as seen in Figure 1, like

previous models. However, in the current

model all neurons had a fired at the same rate,

meaning that neurons were firing to

subsections of the categories and mapping out

independent sections of the categories.

Figure 1: Scatterplot of Allocation Results

with a Line of Best Fit

The scatterplot with a line of best fit shown

above was created between the output neuron

allocation and the input category probabilities

of exemplars, showing proportional allocation

(R^2 = 0.998).

The model was also able to achieve category

exclusivity for the overwhelming majority of

neurons in the model. While some neurons in

highly correlated categories did fire to

multiple categories, this was limited to less

than 2% of the network. Thus, as seen in

Figure 2, the model was able to approximate a

distributed code.

Figure 2: Bar Graph of Category Exclusivity

The exclusivity of neuron firing for the nine

categories was determined for the B1.

Notably, the B1 dataset on the left had high

levels of exclusivity with only 1.33% of the

neurons firing to multiple categories. The only

categories to observe non-exclusive firing are

categories 7-9, which have much higher levels

of correlation than the other categories. These

results strongly suggest that a distributed code

was achieved since neurons are firing

exclusively to different subcomponents of

each category.

5. CONCLUSION

Achieving a distributed code for the adaptive

synaptogenesis neural network model is an

important step in the larger goal of developing

an in-silico machine learning model that

possesses the properties of human brain

learning. Factorial encodings have many

useful properties for efficiently and optimally

coding inputs for many types of segmentation

and mixing problems. When incorporated into

larger models with more layers and supervised

components, this unsupervised model, as a

layer, will help to provide conditionally

independent input encodings that are more

statistically meaningful for downstream

layers.

6. FUTURE WORK

While this model was tested on datasets that

exposed the network to issues such as

correlations between categories, noise, and

varying category probabilities, there still needs

to be more testing with more complicated and

practical datasets.

Additionally, the model could be incorporated

into a larger supervised learning task as a

preprocessing step to provide a supervised

layer better features to utilize. Finally, there

are unexplored connections between

parameters that still need to better understood

such as the effects of a varying or diminishing

synaptogenesis rate to speed up convergence.

7. ACKNOWLEDGMENTS

Dr. William B. Levy ideated and guided me

through the completion of this project.

REFERENCES

Thomas, B. T., Blalock, D. W., & Levy, W. B.

(2015). Adaptive synaptogenesis

constructs neural codes that benefit

discrimination. PLOS Computational

Biology, 11(7).

https://doi.org/10.1371/journal.pcbi.10

04299

Schmidhuber, J. (1992). Learning factorial

codes by predictability

minimization. Neural

Computation, 4(6), 863–879.

https://doi.org/10.1162/neco.1992.4.6.8

63

