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Abstract

String-related defects are among the most prevalent and costly in modern software development. For

example, in terms of frequency, cross-site scripting vulnerabilities have long surpassed traditional

exploits like buffer overruns. The state of this problem is particularly disconcerting because it does

not just affect legacy code: developing web applications today — even when adhering to best practices

and using modern library support — remains error-prone.

A number of program analysis approaches aim to prevent or mitigate string-related defects;

examples include static bug detectors and automated testcase generators. Traditionally, this work

has relied on built-in algorithms to reason about string-manipulating code. This arrangement is

suboptimal for two reasons: first, it forces researchers to re-invent the wheel for each new analysis;

and second, it does not encourage the independent improvement of domain-specific algorithms for

handling strings.

In this dissertation, we present research on specialized decision algorithms for string constraints.

Our high-level approach is to provide a constraint solving interface; a client analysis can use that

interface to reason about strings in the same way it might use a SAT solver to reason about binary

state. To this end, we identify a set of string constraints that captures common programming

language constructs, and permits efficient solving algorithms. We provide a core solving algorithm

together with a machine-checkable proof of its correctness.

Next, we focus on performance. We evaluate a variety of datastructures and algorithms in a

controlled setting to inform our choice of each. Our final approach is based on two insights: (1)

string constraints can be cast as an explicit search problem, and (2) to solve these constraints, we can
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instantiate the search space lazily through incremental refinement. These insights lead to substantial

performance gains relative to competing approaches; our experimental results show our prototype to

be several of magnitude faster across several published benchmarks.
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Chapter 1

Introduction

This dissertation focuses on a common source of software defects: string manipulation. String-

related defects are among the most prevalent and costly in modern software development. They are

typically caused by the improper handling of structured text such as HTML, XML, and SQL [1,

2]. Two compelling examples of this type of defect are SQL injection and cross-site scripting

vulnerabilities. These vulnerabilities are common; together they accounted for 35.5% of reported

security vulnerabilities in 2006 [3]. A November 2009 study found that 64% of the 1,364 surveyed

websites had at least one serious vulnerability [4], where serious means “Exploitation could lead to

serious and direct business impact.”

Reasoning about strings is a key aspect in many types of program analysis work, including static

bug finding [1, 5, 6, 7] and automated testing [8, 9, 10, 11, 12]. Until recently, this work has relied

on ad hoc algorithms to formally reason about the values that string variables may take at runtime.

That situation is suboptimal for two reasons: first, it forces researchers to re-invent the wheel for

each new tool; and second, it does not encourage the independent improvement of domain-specific

reasoning for strings.

In this dissertation, we focus on the development of algorithms that enable formal reasoning

about string operations; we refer to these algorithms as string decision procedures. Informally, a

decision procedure is an algorithm that, given an input formula, answers the yes-or-no question:
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“Does this formula express a consistent set of constraints?” The use of decision procedures in program

analysis is becoming pervasive: the practice of querying an external algorithm to reason about

pointer aliasing [13, 14, 15] is a standard example. When using a decision procedure, the set of

input formulae and their semantics are referred to as a theory ; commonly used theories include

uninterpreted functions and equality, boolean satisfiability (SAT), linear arithmetic, and bitvector

logic. Satisfiability modulo theories (SMT) solvers provide a generalization of SAT that includes

theories and first-order logic [16, 17]. Unfortunately, existing theories do not facilitate direct reasoning

about string-manipulating code.

Our goal is to develop tools that can be used by a wide variety of client analyses to reason about

code that includes common high-level string operations, in the same way they might use a boolean

satisfiabilty (SAT) solver to reason about boolean state. This leads to the following thesis statement:

It is possible to construct a practical algorithm that decides the satisfiability of constraints

that cover both string and integer index operations, scales up to real-world program

analysis problems, and admits a machine-checkable proof of correctness.

Based on this thesis, we address the following challenges:

• Expressive Utility. String decision procedures cannot efficiently support all common string

operations.1 In this dissertation, we select a core set of operations and demonstrate empirically

that the corresponding constraint language is sufficiently expressive to model real-world pro-

gramming analysis problems, like extending a static bug finder to generate testcases (Chapter 2).

• Scalability. Good performance is crucial if string decision procedures are to see real use by client

analyses. One of the direct benefits of creating specialized algorithms lies in the fact that we can

then apply domain-specific optimizations. In this dissertation, we provide an apples-to-apples

performance comparison of candidate automata datastructures and algorithms Chapter 3. This

comparison informs an optimized version of our core algorithm, which we present in Chapter 4.

We implement this algorithm in a tool called StrSolve, and evaluate its performance relative

1In the extreme, consider a hash function like SHA-2, which is based on a block cipher. If included in a constraint
language, the corresponding solving algorithm would have to efficiently consider all possible inputs (of many possible
lengths) for a given (fixed-length) output; this is believed to be infeasible in practice.



to a number of other approaches, and find that and demonstrate that it is several orders of

magnitude faster than other tools on indicative benchmarks.

• Correctness. Decision procedures are particularly well-suited for formal correctness arguments

because their correctness conditions (soundness and completeness) permit succinct formal

descriptions. We believe correctness arguments are helpful in this context, in particular when

developing formal problem descriptions and solving algorithms in tandem. In this dissertation,

we render a machine-verifiable proof of correctness for the core algorithm described in Chapter 2.

Over the course of following chapters, we focus on different subsets of these challenges. In

the Chapter 2, we emphasize correctness and expressiveness. Our correctness proof, rendered in

the calculus of inductive constructions [18], describes characters, strings, automata, and automata

algorithms from first principles. Chapter 3 addresses scalability, in particular the efficiency of low-level

automata operations. Chapter 4 builds on the results of Chapters 2 and 3, by providing a more

general solving algorithm and focusing in roughly equal parts on expressiveness (comparing against a

number of other approaches), scalability (applying results from Chapter 3 in a broader setting), and

correctness (a proof sketch). The main contributions of this dissertation are as follows:

1. The identification and formal definition of the Regular Matching Assignments (RMA) problem

(Chapter 2).

2. An automata-based algorithm, concat intersect, its correctness proof rendered in the calculus of

inductive constructions [18], and an implementation (Decision Procedure for Regular Language

Equations (DPRLE); Chapter 2).

3. The evaluation of the expressive utility of (2) in the context of generating testcases that trigger

SQL injection vulnerabilities in a corpus of real-world PHP code (Chapter 2).

4. An apples-to-apples performance comparison of datastructures and algorithms for automata-

based string constraint solving (Chapter 3). We pay special attention to isolating the core

operations of interest, and use a popular open source implementation as a performance baseline.



5. A novel decision procedure that supports the efficient and lazy analysis of string constraints

(Chapter 4). We treat string constraint solving as an explicit search problem, and separate the

description of the search space from the search strategy used to traverse it.

6. A comprehensive performance comparison between our StrSolve prototype (5) and imple-

mentations from related work (Chapter 4). We find that our prototype is several orders of

magnitude faster for the majority of benchmark inputs; for all other inputs our performance is,

at worst, competitive with existing methods.

This dissertation is structured as follows. The remainder of this chapter discusses the background

of decision procedures in program analysis in Section 1.1 and provides a motivating example to

illustrate the potential benefits of providing similar decision procedures for strings in Section 1.2.

Chapters 2–4 present our main contributions. Chapter 5 discusses closely related work. We provide

conclusions and directions for future work in Chapter 6.

1.1 Decision Procedures in Program Analysis

Having outlined the dissertation, we now provide a brief overview of the use of external decision

procedures in program analysis. At a high level, program analysis research aims to reduce the

costs of software engineering and maintenance by allowing developers to gain confidence about the

correct behavior of their code. Work in this area uses a wide variety approaches to accomplish

this; for example, a static technique (e.g., symbolic software model checking [19]) might provide

a correctness proof relative to a partial correctness specification, while a dynamic technique (e.g.,

directed automated random testing [9]) might improve code coverage or eliminate redundant testcases.

Many other methods of classification apply. Despite their variety, the majority of end-to-end program

analysis tools share a set of core algorithms. Many of these core algorithms were originally developed

as part of a particular end-to-end analysis, and later separated out and further developed when

their wider utility was recognized. The canonical example is points-to analysis (e.g., [13]); most



mainstream programming languages feature heap-allocated data and pointers, and many analysis

tools use an off-the-shelf algorithm to find (or rule out) potential aliasing between pointers.

Many core analysis algorithms can be cast as a decision procedure; in practice, that term is

interchangable with constraint solver. In this context, performing alias analysis is analogous to solving

a system of set constraints [20]. More direct examples include solvers for boolean satisfiability (SAT

solvers) [21, 22, 23] and, more recently, satisfiability modulo theories (SMT solvers) [16, 24, 25, 26],

which support the integration of decision procedures for multiple theories. SMT solvers are typically

used to test whether a given set of assumptions is internally (logically) consistent. In general, they

take as input a constraint system over some number of free variables, and return either Satisfiable if

the constraints can be solved, or Unsatisfiable if no solution exists. For Satisfiable instances, we can

typically extract concrete values (i.e., witnesses) for the free variables.

Modern SMT solvers support a number of different constraint types, referred to as theories, and

many of those theories are geared specifically to program analysis. As an informal example, consider

the following two mathematical constraints:

x2 = 25

x > 0

where x is an integer. We might generate such a constraint system while analyzing code that branches

on a similar set of conditions, e.g., if (x > 0 && x*x == 25) { ... }.

Solving this constraint system involves (1) deciding whether a solution exists, and (2) if yes,

finding a concrete value for x. In this case, the constraint system is satisfiable: the two constraints

on x are consistent if and only if x = 5. To arrive at that solution automatically, we can express this

constraint system directly to an SMT solver as follows.2

Example 1.1. Nonlinear arithmetic using an SMT solver:

2Using the SMT-LIB 2.0 standard format.



1 (declare-fun x () Int)

2 (assert (= (* x x) 25))

3 (assert (> x 0))

4 (check-sat)

5 (get-model)

We declare x as a nullary function (i.e., a variable) with domain Int (line 1), then assert the

individual constraints (lines 2–3), and finally ask for both a satisfiabily check (line 4) and a concrete

value for x (line 5). The resulting output from an SMT solver, in this case Microsoft’s Z3 [16], is:

1 sat

2 (model

3 (define-fun x () Int

4 5)

5 )

This gives us the expected results: the constraints system is satisfiable (line 1), and 5 is a satisfying

assignment for x. �

Depending on the context, we may prefer to model integers as bitvectors rather than mathematical

integers, since the Int type does not model overflow. The following example illustrates using an

SMT solver that, when using bitvectors, it is possible to overflow and arrive at w1 · w2 = 0 even if

neither w1 nor w2 are zero.

Example 1.2. Bitvectors and overflow using an SMT solver:



1 (declare-fun w1 () (_ BitVec 8))

2 (declare-fun w2 () (_ BitVec 8))

3 (declare-fun w3 () (_ BitVec 8))

4

5 (assert (= w1 #x02))

6 (assert (= w3 #x00))

7 (assert (= w3 (bvmul w1 w2)))

8 (assert (not (= w2 #x00 )))

9

10 (check-sat)

11 (get-model)

Here, we declare three 8 bit wide variables w1–w3 (lines 1–3); we will interpret them as unsigned

integers in twos-complement notation. We set w1 to a fixed value 2 (line 5, in hexadecimal), and

constrain w3 to 0 (line 6) and the twos-complement multiplication of w1 by w2 (line 7). Finally, we

assert that w2 cannot be zero (line 8). The corresponding output is:

1 sat

2 (model

3 (define-fun w2 () (_ BitVec 8)

4 #x80)

5 (define-fun w3 () (_ BitVec 8)

6 #x00)

7 (define-fun w1 () (_ BitVec 8)

8 #x02)

9 )

Note that w2 gets concrete value 128 (in decimal), yielding 256 for w3 — the first value not representable

in an 8-bit wide variable. �

In the context of program analysis, constraint solving algorithms for decidable theories are

commonly referred to as decision procedures; or semi-decision procedures for undecidable theories.



Example 2 shows the ouput of Z3’s decision procedure for quantifier-free theory of bitvectors; the

theory is decidable and NP-Complete by reduction from 3-SAT. Example 1 demonstrates the use of a

semi-decision procedure for nonlinear integer arithmetic, a theory for which the satisfaction problem

is undecidable in general. This means that the underlying (semi-)algorithm can return Unknown in

addition to Satisfiable and Unsatisfiable, and may fail to terminate on some inputs. Modern constraint

solving tools are the workhorse of many current program analysis projects. It is not uncommon

for client analyses to generate problems that include tens of thousands of constraints and variables

(e.g., [27, 28]).

1.2 Motivating Example

To motivate the need for string-specific analysis tools, we now turn to an example of an actual SQL

injection vulnerability. Figure 1.1 shows a code fragment adapted from Utopia News Pro, a news

management web service written in PHP. The $ POST array holds values that are submitted by the

user as part of an HTTP request. A number of static analyses will (correctly) detect a potential

vulnerability on line 7. The check on line 2 is designed to limit $newsid to numbers: [\d]+ is a

regular expression for a non-empty sequence of consecutive digits.

The preg match function recognizes the delimiters $ and ^ to match the end and the beginning of

the string respectively. However, the check on line 2 is missing the ^ marker. Thus it is possible that

the query sent on line 7 might be, for example, "SELECT * from ’news’ WHERE newsid=’nid ’

OR 1=1 ; DROP ’news’ -- 9’". That particular query returns all entries in the news table to the

attacker, and then deletes the table (the -- begins a comment in SQL). Although the vulnerability is

real, it may not be obvious to developers how an untrusted user can trigger it. For example, setting

posted newsid to "’ OR 1=1 ; DROP ’news’ --" fails to trigger it, instead causing the program

to exit on line 4.

Conventional development relies heavily on regression testing and reproducible defect reports; a

testcase demonstrating the vulnerability makes it more likely that the defect will be fixed [29, 30]. We



1 $newsid = $_POST[’posted_newsid ’];

2 if (! preg_match(’/[\d]+$/’, $newsid )) {

3 unp_msgBox(’Invalid article news ID.’);

4 exit;

5 }

6 $newsid = "nid_" . $newsid ;

7 $idnews = query("SELECT * FROM ’news’".

8 "WHERE newsid=’$newsid ’");

Figure 1.1: SQL code injection vulnerability example adapted from Utopia News Pro. The $ POST

mapping holds untrusted user-submitted data.

therefore wish to form a testcase that exhibits the problem by generating values for input variables,

such as:

posted_newsid = ’ OR 1=1 ; DROP ’news’ -- 9

posted_userid = a

To find this set of input values, we consider the constraints imposed by the code:

• The input set must pass the (incomplete) safety check on line 2.

• The input set must result in an exploit of interest on line 7.

This problem can be phrased as a constraint system over the string variables. The particular

actions taken by the generated exploit (e.g., whether all entries are returned or a table is dropped or

modified) are a secondary concern. Instead, we want to allow analyses to detect the problem and

generate a test case that includes string input values and a viable execution path through the program

that triggers the vulnerability. Finally, note that if the program in Figure 1.1 were fixed to use

proper filtering, our algorithm would indicate that language of vulnerable strings for posted_userid

is empty (i.e., that there is no vulnerability).



Chapter 2

Constraints over Regular

Languages

In this chapter, we present a novel decision procedure for solving equations over sets of strings.

Our decision procedure computes satisfying assignments for systems of equations that include

concatenation, language inclusion constraints, and variables that represent regular sets. The algorithm

can be used as a constraint solver to “push back” constraints across string operations. Common

string operations, in particular equality checks, length checks against a constant, and and regular

expression matches, can be translated directly to into a special type of constraint that we introduce

and define. In this chapter, we focus initially on a formal exposition of the problem, the decision

procedure, its soundness and completeness, and its runtime complexity (Sections 2.1–2.3). To evaluate

our approach, we implement our algorithm as a standalone tool and use an off-the-shelf symbolic

execution framework [7] to generate string constraints for potential SQL injection vulnerabilities

(Section 2.4).

The main contributions of this chapter are:

1. The identification and formal definition of the Regular Matching Assignments (RMA) problem

(Section 2.1).
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S ::= E ⊆ C subset constraint
E ::= E ◦ T language concatenation
| T

T ::= C atoms
| V

C ::= c1| . . . |cn constants
V ::= v1| . . . |vm variables

Figure 2.1: Grammar for subset constraints over regular languages. The right-hand side (some
element of C) is a single constant. The constants c1 . . . cn and variables v1 . . . vm each represent a
regular language. The goal is to find satisfying assignments for the variables.

2. An automata-based algorithm, concat intersect (Section 2.2), its correctness proof rendered in

the calculus of inductive constructions [18], and an implementation (Decision Procedure for

Regular Language Equations (DPRLE)).

3. The evaluation of the expressive utility of (2) in the context of generating testcases that trigger

SQL injection vulnerabilities in a corpus of real-world PHP code (Section 2.4).

2.1 The Regular Matching Assignments Problem

In the following sections, we present our decision procedure for subset and concatenation constraints

over regular languages. In Section 2.1, we provide a formal problem definition. The Regular

Matching Assignments (RMA) problem defines the language constraints of interest, and also what

constitutes a satisfying assignment for such a system of equations. Next, in Section 2.2, we define

the Concatenation-Intersection (CI) problem, which we show to be a subclass of RMA. We provide

an algorithm for solving instances of CI, and prove it correct in Section 2.2.1. In Section 2.3, finally,

we extend the CI algorithm to general instances of RMA.

In this section we define the Regular Matching Assignments (RMA) problem. The goal is to find

satisfying assignments for certain systems of equations over regular languages. These systems consist

of some number of constant languages and some number of language variables, combined using subset

constraints and language concatenation.Figure 2.1 provides the general form of the constraints of

interest.



Example 2.1. String constraints from code. The example introduced in Section 1.2 can be expressed

as the following set of constraints:

v1 ⊆ c1 c2 ◦ v1 ⊆ c3

where c1 corresponds to the input filtering on line 2, c2 corresponds to the string constant nid

on line 6, and c3 corresponds to undesired SQL queries. If we solve this system, then variable v1

is the set of user inputs that demonstrate the vulnerability. If this set is empty, then the code is

not vulnerable. If v1 is nonempty, then we can use it to understand the problem and to generate

testcases. �

Definition 2.1. Assignment. We write A = [v1 ← x1, . . . , vm ← xm] for an assignment of regular

languages {x1, . . . , xm} to variables {v1, . . . , vm}; let A[vi] = xi. �

The semantics of expressions are as follows. Let [[ ci ]] be the regular set denoted by language

constant ci (derivable from C in Figure 2.1). For a given assignment A, where A includes a mapping

for vi, let [[ vi ]]A be the regular language A[vi]. For an expression e ◦ t, with e derivable from E and

t derivable from T in Figure 2.1, for a given assignment A, let [[ e ◦ t ]]′A be recursively defined as

[[ e ]]A ◦ [[ t ]]A = {wlwr | wl ∈ [[ e ]]A ∧ wr ∈ [[ t ]]A}.

Definition 2.2. Subset constraint. A constraint of the form e ⊆ c is satisfiable if and only if there

exists an assignment A such that [[ e ]]A ⊆ [[ c ]]A, i.e., A is a satisfying assignment for e ⊆ c. �

Definition 2.3. Regular Matching Assignments Problem. Let an RMA problem instance I =

{s1, . . . , sp} be a set of constraints over a shared set of variables {v1, . . . , vm}. Each element si ∈ I is

a subset constraint of the form e ⊆ c, with e derivable from E in Figure 2.1 and c derivable from C.

We say that an assignment A satisfies an RMA instance I if and only if A is a satisfying assignment

for each si ∈ I. We refer to a satisfying assignment as maximal if, for each variable vj in any si ∈ I,

for any string w, A[vi] ∪ {w} no longer satisfies I. Given a problem instance I, the RMA problem

requires either (1) a satisfying assignment; or (2) a message that no satisfying assignment exists. In

some cases we may, additionally, be interested in all unique satisfying assignments; in Section 2.2 we

show that the number of assignments is finite. �



Example 2.2. Satisfiability and maximality. Consider the following example over the alphabet {x,

y}.

v1 ⊆ L((xx)+y) v1 ⊆ L(x∗y)

The correct satisfying assignment for this set of equations is A = [v1 ← L((xx)+y)]. For A to be a

satisfying assignment, we require that it maps regular languages to language variables in a way that

respects the input constraints. In the example, the potential solution A′ = [v1 ← L(xy)] fails that

test because [[ v1 ]]A = L(xy) 6⊆ L((xx)+y). In addition, we may require an assignment to be maximal ;

informally that prevents assignments that do not capture enough information. In the example, the

potential solution [v1 ← ∅] is satisfying but not maximal, because it can be extended to, for example,

[v1 ← L(xxy)]. �

Example 2.3. Multiple solutions. RMA instances may have more than one unique satisfying

assignment. For example, consider the following system:

v1 ⊆ L(x(yy)+)

v2 ⊆ L((yy)∗z)

v1 ◦ v2 ⊆ L(xyyz|xyyyyz)

This set of constraints has two disjunctive satisfying assignments:

A1 = [v1 ← L(xyy), v2 ← L(z|yyz)]

A2 = [v1 ← L(x(yy|yyyy)), v2 ← L(z)]

Both A1 and A2 are satisfying and maximal. They are also inherently disjunctive, however; it is

not possible to “merge” A1 and A2 without violating one or both properties. �

Our definition of RMA (and the algorithm we provide to solve it) can be readily extended to

support additional operations, such as union or substring indexing. For example, substring indexing

might be used to restrict the language of a variable to strings of a specified length n (to model length

checks in code). This could be implemented using basic operations on nondeterministic finite state



automata that are similar to the ones already implemented. Many other features, however, would

make the RMA problem undecidable in general (e.g., [31]). We instead focus on a decidable theory

with a provably correct core algorithm, and leave additional features for future work. In Section 2.4

we show that, without additional features, our prototype implementation can be used to solve a

real-world problem.

2.2 The Concatenation-Intersection Problem

Rather than solving the general RMA problem directly, we will first consider a restricted form

involving only the concatenation of two variables that each have a subset constraint. In the next

subsections we will present this restricted problem, and in Section 2.3 we will use our solution to it

to build a full solution for the RMA problem.

We define the Concatenation-Intersection (CI) problem as a subcase of the RMA problem, of the

following form:

v1 ⊆ c1 v2 ⊆ c2 v1 ◦ v2 ⊆ c3

Because the form of these constraints is fixed, we define a CI problem instance strictly in terms

of the constants c1, c2, and c3. Given three regular languages c1, c2, and c3, the CI problem requires

the set S = {A1, . . . , An} of satisfying assignments, where each Ai is of the form [v1 ← x′i, v2 ← x′′i ].

More explicitly, we require that S satisfy the following properties:

1. Regular: 1 ≤ i ≤ n⇒ Ai[v1] and Ai[v2] are regular.

2. Satisfying: This corresponds directly to the satisfiability criterion for RMA:

1 ≤ i ≤ n⇒[[ v1 ]]Ai ⊆ [[ c1 ]] ∧

[[ v2 ]]Ai ⊆ [[ c2 ]] ∧

[[ v1 ◦ v2 ]]Ai
⊆ [[ c3 ]]



1: concat intersect(c1, c2, c3) =
2: Input: Machines M1, M2, M3 for c1, c2, c3;
3: each machine Mj = 〈Qj ,Σ, δj , sj , fj〉
4: Output: Set of assignments; each Ai = [v1 ← x′i, v2 ← x′′i ]
5: // Construct intermediate automata
6: let l4 = c1 ◦ c2 s.t. M4 = 〈Q1 ∪Q2,Σ, δ4, s1, f2〉
7: let l5 = l4 ∩ c3 s.t. M5 =
8: 〈(Q1 ∪Q2)×Q3,Σ, δ5, s1s3, f2f3〉
9: // Enumerate solutions

10: let Qlhs = {f1q
′ | q′ ∈ Q3} ⊆ Q5

11: let Qrhs = {s2q
′ | q′ ∈ Q3} ⊆ Q5

12: foreach (qa, qb) ∈ Qlhs ×Qrhs s.t. qb ∈ δ5(qa, ε) do
13: let M ′1 = induce from final(M5, q1)
14: let M ′2 = induce from start(M5, q2)
15: output [v1 ←M ′1, v2 ←M ′2]
16: end for

Figure 2.2: Constraint solving for intersection across concatenation. The algorithm relies on basic
operations over NFAs: concatenation using a single ε-transition (line 6) and the cross-product
construction for intersection (line 7–8). The two induce functions are described in the text.

[[ c1 ]] = L(nid ) [[ c2 ]] = L(Σ∗0| . . . |9)

// /.-,()*+a1
n // /.-,()*+a2

i // /.-,()*+a3
d // /.-,()*+a4 // /.-,()*+��������a5 // /.-,()*+b1

Σ

EE

0−9
// /.-,()*+��������b2

[[ c3 ]] = L(Σ∗’Σ∗)

// 76540123d1

Σ
�� ′

// 76540123'&%$ !"#d2

Σ
��

[[ l4 ]] = [[ c1 ◦ c2 ]]

// /.-,()*+a1
n // /.-,()*+a2

i // /.-,()*+a3
d // /.-,()*+a4 // /.-,()*+a5

ε // /.-,()*+b1

Σ

EE

0−9
// /.-,()*+��������b2

[[ l5 ]] = [[ l4 ∩ c3 ]]

//
�� ��
�� ��a1d1

n //
�� ��
�� ��a2d1

i //
�� ��
�� ��a3d1

d //
�� ��
�� ��a4d1 //

�� ��
�� ��a5d1

ε //
�� ��
�� ��b1d1

′
//

Σ�� �� ��
�� ��b1d2

Σ��
0−9

//
�� ��
�� ��
�� ��
�� ��b2d2

Figure 2.3: The intermediate finite state automata for the concat intersect algorithm when applied
to the motivating example. c1 represents the string constant nid , c2 represents the (incorrect) input
filtering on line 2, and c3 is the language of strings that contain a single quote.

3. All Solutions: In addition, we want S to be nontrivial, since the Satisfying condition can be

trivially satisfied by S = ∅:

∀w ∈ [[ (c1 ◦ c2) ∩ c3 ]],∃1 ≤ i ≤ n s.t. w ∈ [[ v1 ◦ v2 ]]Ai



Figure 2.2 provides high-level pseudocode for finding S. The algorithm uses operations on

nondeterministic finite state automata, and we write Mi for the machine corresponding to each input

language ci or intermediate language li. To find S, we use the structure of the NFA M5 (line 7–8)

that recognizes [[ l5 ]] = [[ (c1 ◦ c2) ∩ c3 ]]. Without loss of generality, we assume that each NFA Mi has

a single start state si ∈ Qi and a single final state fi ∈ Qi. Note that we do not assume implicit

ε-transitions from each state to itself.

Example 2.4. The CI algorithm. Figure 2.3 shows the CI algorithm applied to the running

example introduced in Chapter 1. The input languages c1 and c2 correspond to the concatenation

$newsid = "nid_" . $newsid on line 6 of Figure 1.1, while the input c3 corresponds to the set

of strings that contain at least one quote, which is one common approximation for an unsafe SQL

query [7, 32].

The machines for l4 and l5 in Figure 2.3 correspond to the machines constructed on lines 6 and

7–8 of Figure 2.2. The algorithm first constructs a machine for [[ l4 ]] = [[ c1 ◦ c2 ]] using a single

ε-transition between f1 and s2. Next, we use the cross-product construction to create the machine

that corresponds to [[ l5 ]] = [[ l4 ∩ c3 ]]. The set of states Q5 for this machine corresponds to tuples in

the set (Q1 ∪Q2) ×Q3; we write qxqy ∈ Q5 for the state that corresponds to qx ∈ (Q1 ∪Q2) and

qy ∈ Q3. The transition function δ5 is defined in the usual way.

Having constructed M5, we use the structure of the machine to find NFAs that represent the

satisfying assignments. Intuitively, we slice up the bigger machine M5, which represents all solutions,

into pairs of smaller machines, each of which represents a single satisfying assignment.

We are interested in those states qaqb ∈ Q5 where qa corresponds to the final state of M1 (i.e., Qlhs

on line 10) or to the start state of M2 (i.e., Qrhs on line 11). Because of the way M5 is constructed,

any transitions from Qlhs to Qrhs must be ε-transitions that correspond to the original concatenation

step on line 6 of Figure 2.2. For Figure 2.3, we have Qlhs = {a5d1} and Qrhs = {b1d1}. We process

each such ε-transition as follows:

• induce from final(M5, q1) (line 10) returns a copy of M5 with q1 marked as the only final state.

• induce from start(M5, q2) (line 11) returns a copy of M5 with q2 marked as the only start state.



We output each such solution pair. Note that, on line 15, if either M ′1 or M ′2 describe the empty

language, then we reject that assignment.

The machine for l5 in Figure 2.3 has exactly one ε-transition of interest. Consequently, the

solution set consists of a assignment A1 = [v1 ← x′1, v2 ← x′′1 ]. x′1 corresponds to the machine for l5

with state a5d1 set as the only final state. [[x′1 ]] = L(nid ), as desired. The more interesting result

is x′′1 , which is the machine with start state b1d1 and final state b2d2. The language of x′′1 captures

exactly the strings that exploit the faulty safety check on line 2 of Figure 1.1: all strings that contain

a single quote and end with a digit. �

2.2.1 Correctness of the Concat-Intersect Algorithm

Having presented our high-level algorithm for solving the CI problem, we now sketch the structure of

our proof of its correctness. We have formally modeled strings, state machines, our algorithm, and

the desired correctness properties in version 8.1 of the Coq formal proof management system [18, 33];

proofs in Coq can be mechanically verified.

Our low-level proofs proceed by induction on the length of the strings that satisfy specific

properties; we provide more detail for each individual correctness property. We say q reaches q′ on s

if there is a path from state q to state q′ that consumes the string s.

For all regular languages c1, c2, and c3, if S = CI(c1, c2, c3) then for all elements Ai ∈ S, the

following three conditions hold:

1. Regular: Ai[v1] and Ai[v2] are regular.

This is a type preservation property: because the operations induce from final and induce from start

return NFAs, the corresponding languages are by definition regular.

2. Satisfying: We prove this by showing that ∀q ∈ Qlhs, w ∈ Σ∗, s5 reaches q on string w ⇒ w ∈

c1, and ∀q′ ∈ Qrhs, w ∈ Σ∗, q′ reaches f5 on w ⇒ w ∈ c2.

3. All Solutions: We proceed by simultaneous induction on the structure of the machines M3

and M4; we show that ∀w ∈ Ai[v1], w′ ∈ Ai[v2], s5 reaches f5 on s ◦ s′ in machine M5 (by



traversing the epsilon transition selected for Ai). Note that, since the number of ε-transitions

in M5 is finite, the number of disjunctive solutions must also be finite.

Our proof is available on-line1; we believe that the presence of a mechanically checkable proof of

correctness makes our algorithm attractive for use as a decision procedure or as part of a sound

program analysis.

2.3 Solving General Systems of Subset Constraints

We now return to the problem of finding satisfying assignments for general regular language equations.

At a high level, this requires that we generalize the concat intersect algorithm from Figure 2.2. We

proceed as follows:

1. To impose an ordering on the operations of our algorithm, we create a dependency graph

based on the structure of the given equations. We describe the graph generation process in

Section 2.3.1.

2. Section 2.3.2 provides a worklist algorithm that applies the concat intersect procedure induc-

tively, while accounting for repeated variable instances. That is, if a variable occurs multiple

times, a solution generated for it must be consistent with all of its uses.

2.3.1 Dependency Graph Generation

Our approach to constraint solving is conceptually related to the equality DAG approach found in

cooperating decision procedures [26]. Each unique language variable or constant is associated with a

node in the DAG. We construct the edges of the DAG by recursively processing the regular language

equation. We present the processing rules here; the algorithm in Section 2.3.2 assumes a dependency

graph as its input.

Given a regular language equation, we build the dependency graph by recursive descent of the

derivation under the grammar of Figure 2.1. Figure 2.4 describes the generation rules as a collecting

1http://www.cs.virginia.edu/~ph4u/dprle/proof.php

http://www.cs.virginia.edu/~ph4u/dprle/proof.php


n = node(ci)

` ci : n,∅
T → C

n = node(vi)

` vi : n,∅
T → V

e0 = t0
` t0 : n0, G0

` e0 : n0, G0
E → T

n2 is fresh
` e : n0, G0

` t : n1, G1

G′ = {ConcatEdgePair(n0, n1, n2)}
` e ◦ t : n2, G0 ∪G1 ∪G′ E → E ◦ T

` e : n,G

` e ⊆ c : n,G ∪ {SubsetEdge(node(c), n)}
S → E ⊆ C

Figure 2.4: Dependency graph generation rules. We process a regular language constraint by recursive
descent of its derivation; each rule corresponds to a grammar production. The node function returns
a vertex for each unique variable or constant. For systems of multiple constraints, we take the union
the dependency graphs.
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[[ c1 ]] = L(nid )

[[ c2 ]] = L(Σ∗(0| . . . |9))

[[ c3 ]] = L(Σ∗′Σ∗)

Figure 2.5: Example dependency graph. This graph corresponds to an instance of the Concatenation-
Intersection problem defined in Section 2.2, using the assignments for the running SQL injection
example from Section 1.2.

semantics. The rules are of the form:

` e : n,G

where e is the right-hand side of a derivation step, n is the current dependency graph vertex, and G

is the dependency graph. The node function returns a distinct vertex for each unique variable and

constant. Each vertex represents a regular language; we write [[n ]] for the language associated with

vertex n. We model the graph G as a set of directed edges, of which there are two types:

• SubsetEdge(n0, n1) requires that [[n1 ]] ⊆ [[n0 ]]. In such an edge n0 is a constant and n1 is a

language variable. We write such edges as n0 →⊆ n1 and refer to them as ⊆-edges.



• ConcatEdgePair(na, nb, n0) constrains the language [[n0 ]] to strings in [[na ]] ◦ [[nb ]]. Each

constraint has two edges na →◦l n0 and nb →◦r n0 referred to as a ◦-edge pair.

The base case rules in Figure 2.4 are those for T → C and T → V . The E → T rule is the identity.

All other rules extend the dependency graph through union. Note that the rule for E → E ◦E uses a

fresh vertex t to represent the intermediate result of the concatenation. Finally, the top-level rule (for

S → E ⊆ C) adds a single ⊆-edge from the right-hand side of the constraint c to the left-hand side.

Figure 2.5 shows the dependency graph for the example of Section 1.2. This graph corresponds

an instance of the CI problem defined in Section 2.2, of the form:

v1 ⊆ c1 v2 ⊆ c2 v1 ◦ v2 ⊆ c3

Note that the edges in Figure 2.5 are strictly a description of the constraint system; they are not

meant to indicate a strict dependence ordering. For example, changing [[ c3 ]] to be be L(nid ′5) would

require [[ v2 ]] to contain only the string ′5, even through there is no forward path through the graph

from c3 to v2.

2.3.2 Solving General Graphs

We now provide a general algorithm for the RMA problem defined in Section 2.1. Given a system of

regular language equations, our algorithm returns the full set of disjunctive satisfying assignments

from language variables to regular languages. The essence of our algorithm is the repeated application

of a generalized (i.e., able to handle groups of nodes connected by concat edges) version of the

concat intersect algorithm.

The algorithm keeps a worklist of partially-processed dependency graphs along with mappings

from vertices to finite state automata; the use of a worklist is necessary to handle disjunctive solutions.

The initial worklist consists of the dependency graph that represents the regular language equation

in full. The the initial node-to-NFA mapping returns Σ∗ for vertices that represent a variable, and

[[ ci ]] for each constant ci.



Figure 2.6 provides pseudocode for the algorithm, which is recursive. The algorithm consists of

several high-level stages, which are applied iteratively:

1. On lines 3–8, we solve basic constraints. Many constraints can be resolved by eliminating

vertices that represent constants in topological order. For example, the system

v1 ⊆ c1 v1 ⊆ c2 v2 ⊆ c1 v2 ⊆ c2

can be processed by simply setting A[v2] = A[v1] = [[ c1 ∩ c2 ]]. This step does not require any

calls to the concat intersect procedure described in Section 2.2. Also note that this step never

generates more than one set of solutions.

The sort acyclic nodes invocation on line 3 finds vertices that qualify for this treatment, and

sorts them topologically. The reduce function performs NFA intersections (to satisfy subset

constraints) and concatenations (to satisfy concatenation constraints), and removes nodes from

the graph that have no further inbound constraints.

2. On lines 9–15, we apply the CI algorithm inductively to handle nodes of the graph that have

both concatenation and subset constraints. We refer to connected groups of those nodes as

CI-groups; we define such groups formally in Section 2.3.3.

Each call to gci (for generalized concat-intersect) on line 11 eliminates a single CI-group from

the dependency graph, yielding separate node-to-NFA mappings for each disjunctive solution.

These solutions are added to the worklist on lines 13–14.

3. Lines 16–23 determine what to do next. We either (1) terminate successfully (line 17); (2)

continue to solve the current graph (line 19); (3) attempt to solve a new graph from the worklist

(line 21); or (4) terminate without having found a satisfying set of inputs (line 23).



1: solve dependency graph(queue Q, node set S) =
2: let 〈G,F 〉 : graph × (node → NFA) = take from Q
3: let N : node list = sort acyclic nodes(G)
4: for 0 ≤ i < length(N) do
5: let n : node = N [i]
6: let 〈G′, F ′〉 : graph× (node→ NFA) = reduce(n,G, F )
7: F ← F ′;G← G′

8: end for
9: let C : node set = find free group(G)

10: if |C| > 0 then
11: let 〈G′, R〉 : graph× (node→ NFA) list = gci(C,G, F )
12: G← G′;F ← head(R)
13: foreach r ∈ tail (R) do
14: add 〈G, r〉 to end of Q
15: end if
16: if ∀s ∈ S. F [s] 6= ∅ ∧ |G| = 0 then
17: return F
18: else if ∀s ∈ S. F [s] 6= ∅ ∧ |G| > 0 then
19: return solve dependency graph(〈q, F 〉 :: Q,S)
20: else if ∃s ∈ S s.t. F [s] = ∅ ∧ |Q| > 0 then
21: return solve dependency graph(Q,S)
22: else
23: return no assignments found

Figure 2.6: Constraint solving algorithm for general dependency graphs over string variables. The
algorithms uses a worklist of dependency graphs and node-to-NFA mappings. The graph represents
the work that remains; successful termination occurs if all nodes are eliminated.

2.3.3 Solving CI-Groups Integrally

We define a CI-group as any set of nodes in which every node in the set is connected by a ◦-edge

to another node in the set. The directions of the ◦-edges do not matter. In Figure 2.8 the nodes

{va, vb, vc, t1, t2} form a CI-group; we will use this example to illustrate how these groups can be

solved.

The purpose of the generalized concat-intersect (gci) procedure referenced in Figure 2.6 is to find

a solution (i.e., a mapping from variables to NFAs) for the nodes involved in a CI-group. Since an

RMA problem may admit multiple disjunctive solutions (see Example 2.3), the output of gci is a set

of such solutions.

The gci algorithm solves a CI-group by repeatedly processing subset constraints and concatenation

constraints. In the concat intersect algorithm (Figure 2.2), the final solutions M ′1 and M ′2 were

both sub-NFAs of a larger NFA. Similarly, the solution for one variable in a CI-group may be a

sub-NFA of the solution for another variable. A variable may appear as the operand in more than



one concatenation; in that case we must take care to find an assignment that satisfies all constraints

simultaneously. The correctness of the gci algorithm is based on two key invariants: operation

ordering and shared solution representation.

The first invariant, operation ordering, requires that inbound subset constraints be handled before

concatenation constraints. The importance of this ordering can be seen in Figure 2.5. Initially,

[[ v1 ]] = [[ v2 ]] = L(Σ∗). If we mistakenly process the concat edge first, we obtain [[ t0 ]] = L(Σ∗Σ∗). If

we then process the subset edges, we obtain [[ v2 ]] = [[ c2 ]], which is not correct — the correct solution,

as described in Section 2.2, is [[ v2 ]] = L(Σ∗′Σ∗(0| . . . |9)). To obtain the correct solution and “push

back” subset constraints through concatenations, we must process subset constraints first.

The second invariant, shared solution representation, ensures that updates to the NFA F [v]

representing the solution for a variable v are also reflected in updates to the solutions to all variables

v′ that are sub-NFAs of F [v]. In Figure 2.5, an update to the NFA for t0 must also be reflected in

the NFAs for v1 and v2. Our gci implementation maintains a shared pointer-based representation so

that if the NFA for t0 is changed (e.g., is subjected to the product construction to handle a subset

constraint), then the NFAs for v1 and v2 are automatically updated.

These two invariants allow us to handle nested concatenation operations naturally. Consider the

following system:

(v1 ◦ v2) ◦ v3 ⊆ c4 v1 ⊆ c1

v2 ⊆ c2 v3 ⊆ c3

with the parentheses added for clarity. In this case, the dependency graph will be several concatena-

tions “tall.” The final subset with [[ c4 ]], notably, can affect any of the variables v1, v2, and v3. If the

constraints are processed in the right order, the NFAs for v1, v2 and v3 will all be represented as

sub-NFAs of a single larger NFA.

Figure 2.7 provides high-level pseudocode for solving a single CI-group. The expected output is a

set of node-to-NFA mappings (one mapping for each disjunctive solution). The algorithm works as

follows:

1. The nodes are processed in topological order (line 2).



1: gci(node set C, graph G, node → NFA F ) =
2: let ordered : node list = topo sort(C)
3: let solution : node→ ((node× subNFA) set) = empty
4: foreach n : node ∈ ordered do
5: handle inbound subset constraints(n,G, F )
6: if n has an outbound concat constraint to node m then
7: handle concat constraint(n,m,G, F )
8: foreach n′ ∈ C do
9: foreach (n′′, states) ∈ solution[n′] do

10: if n′′ = n then
11: update tracking(solution[n′], n)
12: end for
13: let S : state pair set = emtpy
14: foreach m ∈ C s.t. solution[m] is empty do
15: S ← S ∪ all combinations(m,F [m])
16: end for
17: return generate NFA mappings(solution, G,C, S)

Figure 2.7: Generalized concat-intersect algorithm for finding a set of disjunctive solutions for a
group of nodes connected by ◦-edges. Inbound subset constraints are processed before concatenation
constraints. The solution for a node n may be a sub-NFA S of another node m’s solution; the solution
mapping tracks this (i.e., (m,S) ∈ solution[n]).

2. The solution representations for each node n are tracked in solution[n]. There will be multiple

solution entries for a given node if that node is the operand for more than one concatenation.

The set solution[n] contains zero or more pairs of the form (m,S), where m is another node and

S is a sub-NFA selecting part or all of the NFA for the node m. Each such pair indicates that

[[n ]] should be constrained by the NFA for node m 6= n, limited to the states specified by S.

3. Each node n starts without any constraints (solution[n] is empty, line 3). If ∃(m,S) ∈ solution[n]

then the solution for node n is influenced by changes to the solution for node m and we say

that m influences n.

4. If a node m has an inbound subset constraint c →⊆ m, then any nodes influenced by m

have their entry in solution updated to reflect the new machine for [[m ]] ∩ [[ c ]]. This is

handle inbound subset constraints on line 5 and the updates on lines 8–11.

5. If a node m is concatenated into another node t (line 6), then any nodes influenced by m

will have their entry in solution updated to map to a sub-NFA of t (this maintains the shared

solution representation invariant). The mapping for solution[m] is extended to include the pair
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Figure 2.8: A partially-processed dependency graph that exhibits a CI-group (defined in the text).
In this case, vb is affected by both c1 →⊆ t1 and c2 →⊆ t2, making the two concatenations mutually
dependent. The correct solution set for this graph includes all possible assignments to va and vc for
which there exists an assignment to vb that simultaneously satisfies the constraints on t1 and t2.

(t, S), so that m itself is now marked as influenced by t (with the appropriate subset of states

S). This is handle concat constraint on line 7 and the updates on lines 8–11.

6. After all nodes have been processed (after line 12), there will be some number of non-influenced

nodes that do not have any outbound ◦-edge pairs and are thus not in solution. For each such

node n, the final solution is simply F [n]. Intuitively, these are the largest NFAs in the CI-group,

since each concatenation and intersection increases the size of the resulting NFA.

7. The solution for each influenced node m (line 14) will refer to one or more non-influenced nodes,

each reference coupled with an appropriate subset of states to take from the larger machine.

Because of the structure for the grammar in Figure 2.1, there is always one non-influenced

node; we use the NFAs of that node to generate the disjunctive solutions.

Recall that, in the concat intersect procedure of Figure 2.2, we generated disjunctive solutions

by selecting ε-transitions from the machine M5. To generalize this, we must generate a

disjunctive solution for each combination of such ε-transitions in the non-influenced nodes’

NFAs. The all combinations invocation (Figure 2.7, line 15) generates these combinations, and

the call to generate NFA mappings (line 17) generates a new node-to-NFA mapping for each

such combination.
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Figure 2.9: Intermediate automata for solving Figure 2.8. The gci procedure (Figure 2.7) finds
disjunctive solutions that satisfy the constraints on t1 and t2 separately. It then considers all
combinations of these solutions and outputs the solution combinations that have matching machines
vb.

2.3.4 Example Execution

Figure 2.9 shows the intermediate automata generated by the gci procedure when applied to the

dependency graph of Figure 2.8. The dashed lines in the NFAs for t1 and t2 mark the epsilon

transitions for the va ◦ vb and vb ◦ vc concatenations, respectively. After processing each of the nodes

(i.e., on line 12 of Figure 2.7), the solution mapping is as follows:

va 7→ {(t1, {a1d1, a2d2, . . .}) }

vb 7→ {(t1, {b1d4, b1d6, . . .}); (t2, {b1g1, b2g2, . . .}) }

vc 7→ {(t2, {c1g3, c1g4, . . .}) }

t1 7→ ∅

t2 7→ ∅

Note that that the machines for t1 and t2 each have two ε-transitions: t1 connects the submachines

for va to that of vb, while t2 connects submachines for vb on the left-hand side to the submachines



for vc an the right-hand side. This yields a total of 2× 2 candidate solutions. Further, the solution

mapping shows us that vb participates in both concatenations, so for each candidate solution we

must ensure that [[ vb ]] satisfies both constraints. This leaves two satisfying assignments:

1. A1 = [va ← L(op2), vb ← L(p3q2), vc ← L(q2r)]

This solution used F [t1] ≡ L(op5q2) and F [t2] ≡ L(p3q4r)

2. A2 = [va ← L(op4), vb ← L(pq2), vc ← L(q2r)]

This solution used F [t1] ≡ L(op5q2) and F [t2] ≡ L(pq4r)

2.3.5 Runtime Complexity

We now turn to the runtime complexity of the decision procedure outlined in the previous section.

As before, we will first discuss the concat intersect procedure presented in Section 2.2, and then

generalize to the full algorithm of Section 2.3.2. It should be noted that the precise complexity of

combined NFA operations is the subject of ongoing research [34]. We use worst-case NFA state space

complexity (i.e., the number of NFA states visited during an operation) to represent the runtime

complexity of our algorithm. This is a natural representation for low-level NFA operations that

require visiting all states in one or more operands, such as the cross-product construction.

We express our analysis in terms of two variables: the number of disjoint solutions for a given

system, and the total number of NFA states visited. In each case, we compute a worst-case upper

bound. We refer to the size |Mi| of an NFA Mi as the size of its state space; let Q be an upper

bound on the size of any input NFA.

The concat intersect algorithm performs one concatenation operation (line 6) and then computes

machine M5 using the cross-product construction (lines 7–8). The size of the concat machine is

|M1|+ |M2| = O(Q), so constructing the intersection requires visiting |M3|(|M1|+ |M2|) = O(Q2)

states. The number of solutions in the intersection language is bounded by |M3|. This is because

of the way Qlhs and Qrhs are defined in Figure 2.2; the proof sketch in Section 2.2.1 provides more

detail.



This means that the total cost of enumerating all solutions eagerly, in terms of NFA states visited,

is |M3| × (|M3|(|M1|+ |M2|)) = O(Q3). We note that, in practice, we can generate the first solution

without having to enumerate the others; this is why we reason separately about machine size and

number of possible solutions.

The argument thus far applies to dependency graphs of the form illustrated in Figure 2.5; we now

extend it to general dependency graphs. We consider two cases: (1) one or both the ◦-operands c1

and c2 are the result of a previous call to the concat intersect procedure; and (2) the concatenation

result t0 is subject to more than one subset constraint.

In the first case, suppose v1 is the result of a separate concat-intersect step; its NFA has size

O(Q2) and there are O(Q) possible assignments to v1. The machine for v1 ◦ v2 then has size

O(Q2) +O(Q) = O(Q2), yielding a total enumeration size of

O(Q2)︸ ︷︷ ︸
solutions

× O(Q3)︸ ︷︷ ︸
machine size

= O(Q5)

In the second case, we consider adding an additional subset constraint to the concatenation node

t0 in the graph of Figure 2.5. Note that |M3| occurs both as a factor in the number of states visited

and the number of potential solutions. We add one additional subset constraint to the concatenation

(i.e., v1 ◦ v2 ⊆ c4); we assume one additional edge c4 →⊆ t0. The enumeration then requires visiting

|M3||M4|︸ ︷︷ ︸
solutions

× (|M3||M4|(|M1|+ |M2|))︸ ︷︷ ︸
machine size

= O(Q5)

states.

Informally, we note that a single concat intersect call requires visiting at most Q3 NFA states.

The total cost of solving a general constraint graph grows exponentially with the number of inductive



calls to that procedure. For example, a system:

v1 ⊆ c1 v1 ◦ v2 ⊆ c4

v2 ⊆ c2 v1 ◦ v2 ◦ v3 ⊆ c5

v3 ⊆ c3

requires two calls to concat intersect. To enumerate the first solution for the whole system we must

visit a total of O(Q3) NFA states; enumerating all possible solutions requires visiting O(Q5) states.

In Section 2.4, we show that the algorithm, in spite of its exponential worst-case complexity, is

efficient enough to be practical.

2.4 Evaluation

In this chapter we have defined the general Regular Matching Assignments problem for equations of

regular language variables and presented a decision procedure for it. We showed how to construct a

dependency graph and process parts of it in sequence to generate potentially-disjunctive solutions. The

heart of our algorithm is the inductive application of our solution to the Concatenation-Intersection

problem, which “pushes back” intersection constraint information through language concatenation.

Having presented our algorithm and proved the correctness of its core, we now turn to an empirical

evaluation of its efficiency and utility.

Recently, much attention has been devoted to static techniques that detect and report potential

SQL injection vulnerabilities (e.g., [35, 36, 37]). Attacks remain prevalent [38], however, and we believe

that extending static analyses to include automatically generated test inputs would make it easier

for programmers to address vulnerabilities. Without testcases, defect reports often go unaddressed

for longer periods of time [29, 30], and time is particularly relevant for security vulnerabilities.

To test the practical utility and scalability of our decision procedure, we implemented a proto-

type that automatically generates violating inputs for given SQL injection vulnerabilities. These

vulnerabilities allow undesirable user-supplied commands to be passed to the back-end database of a

web application. Such attacks are quite common in practice: in 2006, SQL injection vulnerabilities



Name Version Files LOC Vulnerable

eve 1.0 8 905 1
utopia 1.3.0 24 5,438 4
warp 1.2.1 44 24,365 12

Figure 2.10: Programs in the Wassermann and Su [7] data set with at least one direct defect. The
vulnerable column lists the number of files for which we generated user inputs leading to a potential
vulnerability detected by the Wassermann and Su analysis; in our experiments we attempt to find
inputs for the first vulnerability in each such file.

made up 14% of reported vulnerabilities and were thus the second most commonly-reported security

threat [3].

We extend an existing static analysis by Wassermann and Su [7], which detects SQL injection

vulnerabilities but does not automatically generate testcases. Since our decision procedure works on

systems of regular language equations, we constructed a basic prototype program analysis that uses

symbolic execution to set up a system of string variable constraints based on paths that lead to the

defect reported by Wassermann and Su. We then apply our algorithm to solve for any variables that

were part of an HTTP GET or POST request.

We ran our experiments on seventeen defect reports from three programs used by Wassermann

and Su [7]. The programs are large-scale PHP web applications; Figure 2.10 describes the data set in

more detail. These programs were chosen because code injection defect reports were available for them

via an existing program analysis; building on such an analysis helps to demonstrate the applicability

of our decision procedure. More specifically, we ran our analysis on bug reports that we were able to

reproduce using Wassermann and Su’s original tool and for which we could easily generate regular

language constraints. Their analysis only finds direct defects, a term used by Wassermann and Su

to refer to defects based on standard input variables, in three of their five programs; we restrict

attention to three programs here.

The total program size is not directly indicative of our running time; instead, our execution time

is related to the complexity of the violating path and thus of the constraints generated along it.

Control flow and primitive string functions along that path contribute to the complexity of and the

number of constraints and thus the complexity of the final constraint solving.



Vulnerability |FG| |C| TS

eve edit 58 29 0.32
utopia login 295 16 0.052

profile 855 16 0.006
styles 597 156 0.65
comm 994 102 0.26

warp cxapp 620 10 0.054
ax help 610 4 0.010
usr reg 608 10 0.53
ax ed 630 10 0.063
cart shop 856 31 0.17
req redir 640 41 0.43
secure 648 81 577.0
a cont 606 10 0.057
usr prf 740 66 0.22
xw mn 698 387 0.50
castvote 710 10 0.052
pay nfo 628 10 0.18

Figure 2.11: Experimental results. For each of the SQL code injection vulnerabilities above, our
tool was able to generate string values for input variables that led to the defect. |FG| represents
the number of basic blocks in the code; |C| represent the number of constraints produced by the
symbolic execution step; and TS represents the total time spent solving constraints, in seconds.

We conducted our experiments on a 2.5 GHz Core 2 Duo machine with a 6 megabyte L2 cache

and 4 gigabytes of RAM. Figure 2.11 lists our results applying our decision procedure to produce user

inputs (testcases) for 17 separate reported SQL injection defects; each row corresponds to a PHP

source file within the listed application. In 16 of the 17 cases, the analysis took less than one second.

The secure testcase took multiple minutes because of the structure of the generated constraints

and the size of the manipulated finite state machines. In our prototype large string constants are

explicitly represented and tracked through state machine transformations. More efficient use of the

intermediate NFAs (e.g., by applying NFA minimization techniques) might improve performance in

those cases.

We have implemented our decision procedure as a stand-alone utility in the style of a theorem

prover [16, 24] or SAT solver [22, 23]. The source code is publicly available.2 Our decision procedure

was able to solve all of the regular language constraints generated by our simple symbolic execution

approach. The ease of constructing an analysis that could query our decision procedure, the relative

efficiency of finding solutions, and the possibility of solving either part or all of the graph depending

2http://www.cs.virginia.edu/~ph4u/dprle/

http://www.cs.virginia.edu/~ph4u/dprle/


on the needs of the client analysis argue strongly that our analysis could be used in practice.

2.5 Conclusion

In this chapter, we presented a decision procedure that solves systems of equations over regular

language variables. We formally defined the Regular Matching Assignments problem (Section 2.1)

and a subclass, the Concatenation-Intersection problem (Section 2.2). We provided algorithms for

both problems, together with a mechanized, machine-checkable proof for the core concat intersect

procedure, which we use inductively to solve the more general RMA problem. We also outlined the

space complexity of our algorithms.

We evaluated the utility and efficiency of our decision procedure empirically by generating

constraints for 17 previously-reported SQL-injection vulnerabilities. In all cases, we were able to find

feasible user input languages; in 16 of the 17 we were able to do so in under one second. The relative

efficiency of our algorithm and the ease of adapting an existing analysis to use it suggest that our

decision procedure is practical.



Chapter 3

Data Structures and Algorithms

In Chapter 2, we presented a decision procedure based on high-level automata operations, emphasizing

the algorithm’s correctness and expressive utility. Recent work on string constraint solving — the

previous chapter included — offers a variety of trade-offs between performance and expressiveness [39,

40, 41, 42, 43]. In this chapter, we focus on a subclass of string decision procedures that support

regular expression constraints and use finite automata as their underlying representation. This

includes the DRPLE implementation presented in Chapter 2, as well as the JSA [5] and Rex [42, 43]

tools. These tools are implemented in different languages, they parse different subsets of common

regular expression idioms, they differ in how they use automata internally, and the automata data

structures themselves are different. However, each approach relies crucially on the efficiency of basic

automaton operations like intersection and determinization/complementation. Existing work provides

reasonable information on the relative performance of the tools as a whole, but does not give any

insight into the relative efficiency of the individual data structures.

Our goal is to provide an apples-to-apples comparison between the core algorithms that underlie

these solvers. To achieve this, we perform a faithful re-implementation in C# of several often-used

automaton data structures. We also include several data structures that, to the best of our knowledge,

have not yet featured in existing work on string decision procedures. We conduct performance

experiments on an established set of string constraint benchmarks. We use both ASCII and UTF-16

33



encodings where possible, to investigate the impact of alphabet size on the various approaches. Our

testing harness includes a relatively full-featured regular expression parser that is based on the .NET

framework’s built-in parser. By fixing factors like the implementation language and the front-end

parser, and by including a relatively large set of regular expression features, we aim to provide

practical insight into which data structures are advisable for future string decision procedure work.

This chapter makes the following main contribution:

4. An apples-to-apples performance comparison of datastructures and algorithms for automata-

based string constraint solving. We pay special attention to isolating the core operations of

interest.

The rest of this chapter is structured as follows. Section 3.1 gives formal definitions of the automata

constructs of interest. Section 3.2 presents the design and implementation of the data structures that

we implemented. In Section 3.3, we provide experimental results using those data structures, and we

conclude in Section 3.4.

3.1 Preliminaries

We assume familiarity with classical automata theory [44, 45]. In this section, we provide an

alternate formalization of finite-state automata that transition based on sets of characters rather

than individual symbols. In practice, this is usually how automata are implemented in code; we

provide a formalization here to help formulate algorithms and their correctness arguments in the

following sections.

Our representation allows multiple transitions from a source state to a target state to be

“summarized” into a single symbolic move. Symbolic moves have labels that denote sets of characters

rather than an individual characters. This representation naturally separates the structure of

automata graph from the representation used for the character sets that annotate the edges. This is

helpful because character sets can potentially be large; for example, the Unicode standard defines

more than 1, 000, 000 symbols. In this chapter, we identify a general interface for character sets, and
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Figure 3.1: Symbolic finite-state automaton εSFA generated from the regular expression 2b|[^2b].

evaluate the performance of a number of character set implementations. The following definition

builds directly on the standard definition of finite automata.

Definition 3.1. A Symbolic Finite Automaton (SFA) A is a tuple (Q,Σ,∆, q0, F ), where Q is a

finite set of states, Σ is the input alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states

and ∆ : Q× 2Σ ×Q is the move relation. �

We indicate a component of an SFA A by using A as a subscript. We refer to these automata as

symbolic based on the idea that a single move (q, `, p) symbolically represents a set of transitions

[[(q, `, p)]]
def
= {(q, a, p) | a ∈ `}. We let [[∆]]

def
= ∪{[[ρ]] | ρ ∈ ∆}. An SFA A denotes the finite automaton

[[A]]
def
= (QA,ΣA, [[∆A]], q0

A, FA). The language L(A) accepted by A is the language L([[A]]) accepted by

[[A]].

An εSFA A may in addition have moves where the label is ε, denoting the corresponding epsilon

move in [[A]]. For ρ = (p, `, q), let Src(ρ)
def
= p,Tgt(ρ)

def
= q,Lbl(ρ)

def
= ` to the components of a

symbolic move. We use the following notation for the set of moves starting from a given state q

in A: ∆A(q)
def
= {ρ | ρ ∈ ∆A,Src(ρ) = q} In addition, we may lift functions to sets; for example,

∆A(Q)
def
= ∪{∆A(q) | q ∈ Q}. We write ∆ε

A for the set of all epsilon moves in ∆A and ∆ 6 εA for all

non-epsilon moves ∆A \∆ε
A.

An εSFA A is clean if for all ρ ∈ ∆ 6 εA, Lbl(ρ) 6= ∅; A is total if for all states q ∈ QA, ΣA =⋃
ρ∈∆A(q) Lbl(ρ). As with classical automata, we can eliminate epsilon transitions (i.e., convert a

εSFAto an SFA).



Technique Name Datastructure Corresponds to

DPRLE (Chapter 2) Single-char. hashset (OCaml; ASCII) Eager Hashset

StrSolve (Chapter 4) Char. ranges (C++; ASCII) Lazy Range

Java String Analyzer [5] Char. ranges (Java, Unicode) Eager Range

Minamide [6, 7] Single-char. functional set (OCaml; ASCII) Eager Hashset

Veanes et al. [42] Unary pred. (C# and Z3[16]; Unicode) Lazy predicate

Henriksen, Jensen, et al. [46, 47] BDDs (C) Eager BDD

Figure 3.2: Existing automata-based string analyses, the data structures they use, and the closest-
matching experimental implementation used in this chapter.

We assume a translation from regex (extended regular expression) patterns to εSFAs that follows

closely the standard algorithm, see e.g., [45, Section 2.5].

Example 3.1. Figure 3.1 shows a regular expression and its corresponding εSFA. �

3.2 Automata Data structures and Algorithms

In this section, we describe the automaton data structures and algorithms of interest. We assume a

graph-based data structure for the automata; each transition edge is annotated with a data structure

that represents the label of that transition. Section 3.2.1 describes a the data structures we use

for those annotations. To put our selection of algorithms and datastructures in context, Figure 3.2

describes closely-related work together with the corresponding algorithms and datastructures presented

in this chapter; Chapter 5 discusses related work in more detail. In Section 3.2.2, we discuss lazy

and eager algorithms for two key operations on automata: language intersection (using the cross

product construction) and language difference (using the subset construction). Later, in Section 3.3,

we will evaluate experimentally how well each data structure/algorithm combination performs.

3.2.1 Representing character sets

We start by defining an interface for character set operations. This interface represents all the

operations that the higher-level automata algorithms use to perform intersection and complementation.

We then discuss several representations that can be used to implement this interface. The choice of a
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Figure 3.3: Example minterm generation for a sequence of two character sets (`1, `2). The algorithm
should lazily enumerate the nonempty areas of the Venn diagram.

representation affects the performance of the algorithms discussed below, and also how effectively

the algorithms can be combined with existing solvers.

Definition 3.2. A minterm of a finite nonempty sequence (`i)i∈I of nonempty subsets of Σ is a

sequence (`′i)i∈I where each `′i is `i or {(`i) and
⋂
i∈I `

′
i 6= ∅, where

⋂
i∈I `

′
i is the set represented by

the minterm. �

Intuitively, a minterm (`′1, `
′
2) of a sequence (`1, `2) represents a minimal nonempty region `′1 ∩ `′2

of a Venn diagram for `1 and `2; Figure 3.3 illustrates this explicitly. Note that the collection of all

minterms of a given sequence of nonempty sets over Σ represents a partition of Σ.1

Having defined minterms and minterm generation, we are now ready to define a basic interface

for character set datastructures:

Boolean operations: union (∪), intersection (∩), and complement ({).

Emptiness checking: efficiently decide if a given set is (non)empty.

Minterm generation: compute all minterms of a sequence of sets.

For any character set representation, we can use an algorithm similar to that of Figure 3.4 to perform

the minterm computation in terms of repeated complementation and intersections. We compute

intersections combinatorially in rank order; once a given combination reaches the empty set at rank

i, we know that derived combinations of rank i′ > i are necessarily empty (and thus uninteresting).

In practice, we use this algorithm for every character set representation.

1A partition of Σ is a collection of nonempty subsets of Σ such that every element of Σ is in exactly one of these
subsets.



1: minterms((`i)i∈I : charset seq) : (index set × charset) seq =
2: Input: A nonempty sequence of nonempty sets (`i)i∈I
3: let S0 . . . S|I| : index set set = empty
4: S0 ← {∅}
5: foreach 1 ≤ r ≤ |I| (in increasing rank order) do
6: Sr ← {J ∪ {i} | J ∈ Sr−1, i ∈ I \ J, `i ∩

⋂
j∈J `j 6= ∅}

7: Output each element of
8: {(J, concrete((`i)i∈I , J)) | J ∈ Sr, concrete((`i)i∈I , J) 6= ∅}
9: end for

10:

11: concrete((`i)i∈I : charset seq, J : index set) : charset =

12: return (
⋂
j∈J `j) ∩ (

⋂
j∈I\J {`j)

Figure 3.4: Minterm generation algorithm. The algorithm proceeds by computing minterms in rank
order, outputting all nonemtpy combinations. Once a particular combination yields the empty set,
we need not consider it for future iterations. The minterms function returns pairs with the indices
of each minterm (first element) and the corresponding character set (second element); the second
element is never empty (cf. the check on line 8). The concrete function returns the concrete character
set indicated by a set of indices J .

For each character set representation we discuss how the above operations are supported, and

indicate how the minterm generation is implemented.

Character sets as BDDs

A binary decision diagram (BDD) is a data structure for efficiently encoding sets and relations [48, 49]

as a directed acyclic graph. Given the right parameters, a BDD can represent a potentially large set

of items succinctly; in addition, boolean operations over BDDs are relatively efficient. BDDs have

seen use in program analysis work such as model checking [19, 50], but have not, to the best of our

knowledge, been used in string constraint solving.

Example 3.2. Binary Decision Diagram (BDD). Consider the truth table of a three-way exclusive-or

function f(A,B,C) = A⊕B ⊕ C, which should return 1 if an odd number of {A,B,C} are 1:

A B C f(A,B,C)

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

The corresponding BDD considers the effect on the output of each of {A,B,C} in a particular order.

One representation for f , assuming order (A,B,C), is as follows:
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The traversal of this BDD is analogous to the traversal a deterministic finite-state automaton

over alphabet {0, 1}: we start at the topmost vertex (marked A) and traverse based on the value of

the corresponding variable. If we reach on of the two terminal nodes, shown as squares, we output

that node’s boolean value. For example, f(0, 1, 0) induces the path A
0−→ Bleft

1−→ Cright
0−→ 1; note

that this corresponds to the value for f(0, 1, 0) in the truth table. �

In general, a BDD represents a “compressed” version of the decision tree that corresponds to the

input function. Intuitively, the worst-case size for a BDD is proportional to the size of the decision

tree: exponential in the number of variables.

The general idea behind any BDD encoding is to convert set membership tests into a sequence of

efficient binary decisions. For characters represented as bitvectors, this leads naturally to an encoding

that tests individual bits in some order. This leaves the choice of that order, i.e. a mapping from

positions in bitvectors to decision variables in the BDD representation.

Based on an informal evaluation of representation size, we use a linear ordering that considers the

most significant bit (MSB) first, and the least significant bit (LSB) last. This decision is based on the

observation that typical regexes make extensive use of patterns called character classes. Examples

include \W (matches any non-word character), \d (matches any decimal digit), p{Lu} (matches any

single character in the Unicode category Lu of uppercase glyphs), etc. The class \w is a union of

seven Unicode categories, covering a set of 47, 057 characters in more than 100 nonoverlapping ranges.

A BDD can compactly represent those ranges while allowing for efficient set operations (e.g., set

intersection corresponds to BDD conjunction).

For example the pattern [\w-[\da-d]] denotes the set of all word characters that are not decimal

digits or characters a through d, i.e., β[\w−[\da−d]] = β\w ∩ {(β\d ∪ βa−d). We write [[β]] for the set of

characters represented by β, thus for example [[β1 ∩ β2]] = [[β1]] ∩ [[β2]]. It is easy to write infeasible



character patterns, for example [\W-[\D]] denotes an empty set since [[β\d]] ⊂ [[β\w]] and

[[β\W ∩ {(β\D)]] = [[{(β\w) ∩ {({(β\d))]] = {([[β\w]]) ∩ [[β\d]].

Checking the (non)emptiness of a given BDD is trivial because the empty BDD β⊥ is unique.

Similarly, the BDD of all characters β> is unique. Except for β⊥ and β>, two BDDs are not

guaranteed to be structurally identical by construction. They are, however, isomorphic when

representing the same sets; the algorithm for checking isomorphism is linear in the size of the BDDs.

We can make use of this to eliminate duplicate sets during minterm generation.

Character sets as bitvector predicates

An alternative representation for character sets is to use interval arithmetic over bitvectors or integers.

We can represent those intervals symbolically in the context of a constraint solver that provides

built-in support for bitvectors. We write bvn for the sort of characters used by the solver, which is

assumed to be a sort of n-bit vectors for a given fixed n ∈ {7, 8, 16}. Standard logic operations as

well as standard arithmetic operations over bvn, such as (unsigned) ‘≤’, are assumed to be built in.

Let ϕp(χ) denote a predicate (with a single fixed free variable χ : bvn) corresponding to the regex

character pattern p and let [[ϕp]] denote the set of all characters a for which ϕp(a) is true modulo the

built-in theories. For example, consider bv7 and the character pattern \w, the predicate ϕ\w is as

follows where each disjunct corresponds to a Unicode category (the Unicode categories 2 , 3 and 4

are empty for the ASCII character range):

(‘A’ ≤ χ ∧ χ ≤ ‘Z’) ∨ (‘a’ ≤ χ ∧ χ ≤ ‘z’) ∨ (‘0’ ≤ χ ∧ χ ≤ ‘9’) ∨ χ = ‘ ’

where ‘.’ is the bitvector representation of a character. The Boolean operations are directly supported

by the corresponding built-in logical operators. For example [[ϕ[\w−[\da−d]]]] = [[ϕ\w∧¬(ϕ\d∨ϕa−d)]] =

[[ϕ\w]] ∩ {([[ϕ\d]] ∪ [[ϕa−d]])

For the ASCII range (or extended ASCII range), the direct range representation has several



advantages by being succinct and taking advantage of the built-in optimizations of the underlying

solver. For larger ranges, like UTF-16, the representation produces predicates that scale less well. In

practice, we use if-then-else (Ite) terms to encode Shannon expansions [51] that resemble BDDs. An

Ite-term is a term Ite(ψ, t1, t2) that equals t1, if ψ is true; equals t2, otherwise. Given a BDD β the

corresponding pred4icate Ite[β] is constructed as follows where all shared subterms are constructed

only once (and cached) and are thus maximally shared in the resulting term of the solver. Given a

BDD β (other than β⊥ or β>) we write BitIs0 (β) for the predicate over χ : bvn, that is true if and

only if the i’th bit of χ is 0, where i = n− ordinal(β)− 1 (recall that ordinal(β) is the reverse bit

position).

Ite[β]
def
=


true, if β = β>;

false, if β = β⊥;

Ite(BitIs0 (β), Ite[Left(β)], Ite[Right(β)]), otherwise.

It follows from the definition that [[β]] = [[Ite[β]]].

Checking the nonemptiness of the set [[ϕ]] for a character predicate ϕ corresponds to checking

whether the formula ϕ is satisfiable by using the constraint solver. For minterm generation we use

an incremental constraint solving technique that is sometimes called cube formula solving [43] to

enumerate concrete values.

3.2.2 Primitive automata algorithms

We will focus on two key automata algorithms: product (which corresponds to set A ∩ B) and

difference (which corresponds to A \B ≡ A ∩B). Viewed broadly, the majority of automaton-based

string constraint solving tools use derivatives of these algorithms [5, 6, 42] to solve string constraints.

Our DPRLE implementation (Chapter 2) relies on the product construction in its core solving

algorithm (Section 2.2) and, in addition, uses the difference construction to allow the client to express

negated constraints. Their broad use makes these algorithms good candidates for this evaluation.

The algorithms presented here assume a representation of SFAs in which labels are symbolic and

use a character set solver that provides the functionality discussed in the previous section. Both



1: product(SFA A,SFA B) : SFA =

2: let S : stack = (〈q0
A, q

0
B〉)

3: let V : state pair set = {〈q0
A, q

0
B〉}

4: let ∆ : move set = empty
5: while S is not empty do
6: let 〈q1, q2〉 = pop(S)
7: foreach ρ1 ∈ ∆A(q1) and ρ2 ∈ ∆B(q2) do
8: let ` = Lbl(ρ1) ∩ Lbl(ρ2)
9: if ` 6= ∅ then

10: let p1 = Tgt(ρ1), p2 = Tgt(ρ2)
11: ∆← ∆ ∪ { (〈q1, q2〉, `, 〈p1, p2〉) }
12: if 〈p1, p2〉 /∈ V then
13: V ← V ∪ { 〈p1, p2〉 }
14: push(〈p1, p2〉, S)
15: end for
16: end while

Figure 3.5: Product algorithm. Constructs A×B such that L(A×B) = L(A) ∩ L(B).

algorithms have a lazy equivalent that yields as soon as its discovers a witness. Lazy difference is

subset checking L(A) ⊆ L(B) (with witness w ∈ L(A) \ L(B) iff L(A) ( L(B)), and lazy product is

disjointness checking L(A) ∩ L(B) = ∅ (with witness w ∈ L(A) ∩ L(B) iff L(A) ∩ L(B) 6= ∅).

The product algorithm is shown in Figure 3.5. The character set solver is used for performing

intersection and nonemptiness checking on labels. The difference algorithm, shown in Figure 3.6, in

addition, makes use of minterm generation during an implicit determinization of its second parameter;

intuitively, the algorithm is a combined product and complementation algorithm. The main advantage

of the combination the two steps is the early pruning of the search stack S by keeping the resulting

automaton clean.

Note that the difference algorithm reduces to complementation of B when L(A) = Σ∗, e.g., when

A = (q0
A,Σ, {q0

A}, {q0
A}, {(q0

A,Σ, q
0
A)}). Then the condition Lbl(ρ) ∩ `J 6= ∅ above is trivially true,

since Lbl(ρ) ∩ `J = `J , for ρ ∈ ∆A. Consequently, there is no pruning of the search stack S then

with respect to A, and the full complement B̄ is constructed. Moreover, B̄ is deterministic, since

for any two distinct moves (〈p,Q〉, `J , q) and (〈p,Q〉, `J′ , q′) that are added to ∆ above, `J ∩ `J′ = ∅

by definition of minterms. It follows that the difference algorithm also provides a determinization

algorithm for B: construct B̄ as above and let Det(B) = (q0
B̄
,ΣB̄ , QB̄ , QB̄ \ FB̄ ,∆B̄).



1: difference(SFA A,SFA B) : SFA =
2: Assume: B is total
3: let q0 = 〈q0

A,State{q0
B}〉

4: let S : stack = (q0)
5: let V : state set = { q0 }
6: let F : state set = empty
7: let ∆ : move set = empty
8: if q0

A ∈ FA ∧ q0
B /∈ FB then

9: F ← { q0 }
10: while S is not empty do
11: let 〈p,Q〉 = pop(S)
12: let {ρi}i∈I = ∆BQ
13: let `i = Lbl(ρi) for i ∈ I
14: let M = minterms((`i)i∈I)
15: foreach 〈J, c〉 ∈M do
16: foreach ρ ∈ ∆A(p) s.t. Lbl(ρ) ∩ c 6= ∅ do
17: let P = State{Tgt(ρj) | j ∈ J}
18: let q = 〈Tgt(ρ), P 〉
19: ∆← ∆ ∪ { (〈p,Q〉,Lbl(ρ) ∩ c, q) }
20: if q /∈ V then
21: V ← V ∪ { q }
22: push(q, S)
23: if Tgt(ρ) ∈ FA ∧ P ∩ FB = ∅ then
24: F ← F ∪ { q }
25: end while
26: return A−B = (q0,Σ, V, F,∆)

Figure 3.6: Difference algorithm. Constructs A−B such that L(A−B) = L(A) \ L(B).

3.3 Experiments

In this section we first compare the performance of the product and difference algorithms with respect

to different character set representations and eager vs. lazy versions of the algorithms. For predicate

representation of character sets we use Z3 as the constraint solver. Integration with Z3 uses the

.NET API that is publically available [16]. All experiments were run on a laptop with an Intel dual

core T7500 2.2GHz processor. We then compare the performance of our implementation with the

implementation that underlies the Java String Analyzer (JSA) [5], one of the first string analysis tools.

The automata library used by the JSA is a well-established open source library; we refer to it as

dk.brics.automaton (brics). We use this comparison primarily as a means of external validation

— in addition to analyzing the relative performance of different algorithms and datastructures, we

demonstrate that our implementations are competitive, in terms of performance over our benchmarks,

with the state of the art.



A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

|Q| : 36 30 31 17 11 18 4573 104 2228 42
|∆ε| : 25 15 10 11 4 14 8852 99 3570 32
|∆ 6 ε| : 36 24 28 15 11 13 148 96 524 40

Figure 3.7: Sizes of εSFAs Ai−1 constructed for regexes #i for 1 ≤ i ≤ 10 in the experiments. The
full regexes are shown in Figure 4.4. We assume each regex has a start anchor ^ and end anchor $.

Our experiment uses a set of ten benchmark regexes that have previously been used to evaluate

string constraint solving tools [42, 52]. They originate from a case study and were sourced from real

code [53]. The sizes of the automata constructed from the regexes are shown in Figure 3.7.

For each pair (Ai, Aj)i,j<10 we conducted the following experiments to compare different character

set representations, algorithmic choices, and the effect of the size of the alphabet. For product we

ignored the order of the arguments due to commutativity, thus there are 55 pairs in total, and for

difference there are 100 pairs in total. Figure 3.8 shows the evaluation results for the difference

algorithm and the product algorithm, respectively. The times exclude the construction time of

εSFAs from the regexes but include the epsilon elimination time to convert εSFAs to SFAs that is

a preprocessing step in the algorithms. The total time to construct the εSFAs for the 10 regexes

(including parsing) was 0.33 seconds (for both UTF16 as well as ASCII). For parsing the regexes we

use the built-in regex parser in .NET.

The top columns correspond to the eager vs. lazy versions of the algorithms and the secondary

columns correspond to whether the result is an empty automaton or a nonempty automaton. The

rows correspond to the different algorithmic choices: BDD-X denotes the use of the BDD based

solver where X is ASCII or UTF16; Pred-ASCII denotes the use of predicate encoding of character

sets using Z3 predicates over bv7; Pred-UTF16 denotes the use of predicate encoding of character

sets using Z3 Ite-term encodings of BDDs over bv16; Range-ASCII denotes the use of hashsets of

character pairs; Hash-ASCII denotes the use of hashsets of individual characters. We do not report

results for Range-UTF16 or Hash-UTF16 runs because they failed the majority of instances by

timing out or running out of memory. Figure 3.9 Presents our experimental data graphically across

all experimental runs. It suggests that our dataset covers a considerable range of “difficulty.”
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Eager Lazy

Empty Nonempty Empty Nonempty

BDD-ASCII (8).33/.007 (78)36/.008 (8).33/.006 (87)41/.001
BDD-UTF16 (8).56/.02 (78)38/.02 (8).52/.012 (87)41/.01
Pred-ASCII (8)1.6/.06 (78)72/.08 (8)1.6/.06 (87)58/.02
Pred-UTF16 (8)5.5/.12 (78)179/.24 (8)5.3/.12 (87)66/.11

Range-ASCII (8).9/.03 (78)67/.03 (8)1/.03 (87)44/.003
Hash-ASCII (8).9/.03 (78)67/.03 (8)1/.03 (87)45/.003

brics-ASCII (9)32/.015 (72)273/.016
brics-UTF16 (9)39/.11 (72)341/.44

Eager Lazy

Empty Nonempty Empty Nonempty

BDD-ASCII (29)9.7/.001 (26)90/.002 (29)9.7/.001 (26)19/.001
BDD-UTF16 (29)9.7/.001 (26)92/.003 (29)9.7/.001 (26)19/.001
Pred-ASCII (29)10/.003 (26)142/.003 (29)10/.004 (26)25/.007
Pred-UTF16 (29)10/.01 (26)150/.05 (29)10/.01 (26)25/.03

Range-ASCII (29)10/.002 (23)16/.005 (29)10/.002 (26)69/.001
Hash-ASCII (29)10/.002 (23)16/.005 (29)10/.002 (26)70/.001

brics-ASCII (25)66/.015 (19)65/.016
brics-UTF16 (25)66/.03 (19)70/.09

Figure 3.8: Experimental evaluation of the SFA algorithms. Each entry in the tables has the form
(n)t/m where n is the number of combinations solved, t is the total time it took to solve the n
instances, m is the median. Time is in seconds. For product, the eager experiment constructs Ai×Aj
for 0 ≤ i ≤ j < 10; the lazy experiment tests emptiness of L(Ai) ∩ L(Aj) for 0 ≤ i ≤ j < 10. For
difference, the eager experiment constructs Ai − Aj for 0 ≤ i, j < 10; the lazy experiment tests if
L(Ai) ⊆ L(Aj) (L(Ai −Aj) = ∅) for 0 ≤ i, j < 10. Timeout for each instance (i, j) was 20 min.

Comparison with brics. We now briefly examine the performance of our framework relative to

the open source dk.brics.automata library. For this comparison we first serialized the automata

Ai, i < 10, in textual format. We serialize the automata because we want to isolate the automata

algorithms and avoid differences due to, for examples, the use of different regex parsers. In the

measurements we excluded the time to deserialize and to reconstruct the automata in brics, but

included the time to add epsilon transitions, as this is effectively equivalent to epsilon elimination

using the brics library.

The Java code responsible for the lazy difference experiment is:

... construct Ai, Aj, epsAi, epsAj ...

long t = System.currentTimeMillis();

boolean empty = (Ai.addEpsilons(epsAi)).subsetOf(Aj.addEpsilons(epsAj));
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Figure 3.9: A visual respresentation of the experimental results across all 620 datapoints (400 for the
product construction, 220 for the difference construction). The vertical axis shows the non-cumulative
running time (in seconds; log scale) for each testcase. The testcases are sorted in ascending running
time order per representation; in other words, we assume that we can predict the relative order of
two inputs a priori — in practice, we found that the relative order was similar across representations.
In general, the BDD representation is fastest, but fails to terminate for a small number of testcases.

t = System.currentTimeMillis() - t;

For the lazy experiment, we use the brics.Automaton method subsetOf; the eager experiment

used the brics.Automaton method minus. The code for the product experiment is similar (using

intersection). For running each instance we assigned 1.5GB to the java runtime (which was the

maximum possible).

For all cases involving A6, the product and difference experiments timed out or exhausted memory.

For the product experiment all cases involving A8 also timed out. The instance L(A8) ⊆ L(A8) did

not time out using brics, while caused an out-of-memory exception using our tool during minterm

generation.

For a better comparison of the “easy” cases we present the lazy results while excluding both A6

and A8. Thus, there are total of 36 product instances and 64 difference instances. These results are

Figure 3.10. The results show significant differences in running time across implementations. Let topX

denote the total time for experiment row X and operation op in Figure 3.10. Then:

tprod
brics−ASCII/t

prod
BDD−ASCII ≈ 7, tprod

brics−UTF16/t
prod
BDD−UTF16 ≈ 43,

tdiff
brics−ASCII/t

diff
BDD−ASCII ≈ 1.4, tdiff

brics−UTF16/t
diff
BDD−UTF16 ≈ 21.



Product Difference

Empty Nonempty Empty Nonempty

BDD-ASCII .022/.001 .024/.001 .32/.005 .33/.001
BDD-UTF16 .022/.001 .024/.001 .54/.015 .78/.002
Pred-ASCII .07/.003 .07/.004 1.6/.06 2/.01
Pred-UTF16 .2/.01 .2/.01 5.2/.12 8.2/.05

brics-ASCII .14/.001 .2/.015 .1/.016 .8/.016
brics-UTF16 .6/.03 1.4/.05 3.6/.05 24.8/.08

Figure 3.10: Lazy difference and product experiment times with A6 and A8 excluded. Each entry is
total/median in seconds. For product, 21 instances are empty and 15 instances are nonempty. For
difference, 8 instances are empty and 56 instances are nonempty.

3.4 Conclusion

In this chapter, we presented a study of automata representations for efficient intersection and

difference of regular sets. We conducted this study to evaluate which combination of data structures

and algorithms is most effective in the context of string constraint solving. Existing work in this

area has consistently included performance comparisons at the tool level, but has been largely

inconclusive regarding which automata representations work best in general. To answer this question,

we re-implemented a number of data structures in the same language (C#) using a front-end parser

that correctly handles a large subset of .NET’s regular expression language, and using a UTF-16

alphabet.

Our experiments showed that, over the sample inputs under consideration, the BDD-based

representation provides the best performance when paired with the lazy versions of the intersection

and difference algorithms. We note, however, that the performance differences across character set

datastructures are less pronounced for the ASCII case and using the lazy versions of the algorithms.

Overall, our results suggests that future string decision procedure work can achieve significant direct

benefits by using lazy algorithms and utilizing the BDD datastructure when dealing with large

alphabets. To the best of our knowledge, no existing tools currently use this combination.



Chapter 4

Solving String Constraints Lazily

The preceding chapters presented an eager decision procedure over regular languages based on

automata operations (Chapter 2) and a performance comparison of automata data structures and

algorithms over a synthetic benchmark (Chapter 3). At a high level, this chapter brings together some

of the insights gleaned from those chapters. We present a core set of string constraints over multiple

string variables and a lazy algorithm, StrSolve, for enumerating satisfying assignments. The main

algorithm differs from the algorithms of Chapter 2 in that it is lazy: rather than constructing entire

automata, we explore just enough of the search space to find satisfying assignments. Chapter 3

demonstrated lazy versions of automata product and difference algorithms; here we demonstrate that

this approach can be extended to multivariable string constraints.

This chapter presents the following main contributions:

5. A novel decision procedure that supports the efficient and lazy analysis of string constraints.

We treat string constraint solving as an explicit search problem, and separate the description

of the search space from the search strategy used to traverse it.

6. A comprehensive performance comparison between our prototype tool and existing implemen-

tations. We compare against CFG Analyzer [54], DPRLE (Chapter 2), Rex [42], and Hampi

[39]. We use several sets of established benchmarks [39, 42]. We find that our prototype is
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several orders of magnitude faster for the majority of benchmark inputs; for all other inputs

our performance is, at worst, competitive with existing methods.

The structure of this chapter is as follows. In Section 4.1, we provide a high-level overview of

our algorithm, focusing on the (eager) construction of a graph-based representation of the search

space (Section 4.1.2), followed by the (lazy) traversal of the search space (Section 4.1.3). We provide

two worked examples of the algorithm in Section 4.1.4, and an informal correctness argument in

Section 4.1.5. Section 4.2 provides performance results, focusing on regular language difference

(Section 4.2.1), regular intersection for large strings (Section 4.2.3), and bounded context-free

intersection (Section 4.2.4). we conclude in Section 4.3.

4.1 Approach

In the following subsections, we present our decision procedure for string constraints. Our goal is to

provide expressiveness similar to that of existing tools such as DPRLE (cf. Chapter 2), Rex, and

Hampi [42, 39], while exhibiting significantly improved average-case performance. In Section 4.1.1,

we formally define the string constraints of interest. Section 4.1.2 outlines our high-level graph

representation of problem instances. We then provide an algorithm for finding satisfying assignments

in Section 4.1.3, and work through illustrative examples.

4.1.1 Definitions

In this chapter, we focus on a set of string constraints similar to those presented by Kiezun et al. [39],

but without required a priori bounds on string variable length. In Chapter 2, we demonstrated that

this type of string constraintcan model a variety of common programming language constructs.

The set of well-formed string constraints is defined by the grammar in Figure 4.1. A constraint

system S is a set of constraints of the form S = {C1, . . . , Cn}, where each Ci ∈ S is derivable from

Constraint in Figure 4.1. V ar denotes a finite set of string variables {v1, . . . , vm}. ConstV al denotes

the set of string literals. For example, v ∈ ab denotes that variable v must have the constant value



Constraint ::= StringExpr ∈ RegExpr inclusion
| StringExpr /∈ RegExpr non-inclusion

StringExpr ::= V ar string variable
| StringExpr ◦ V ar concat

RegExpr ::= ConstV al string literal
| RegExpr +RegExpr language union
| RegExpr RegExpr language concat
| RegExpr? Kleene star

Figure 4.1: String inclusion constraints for regular sets. A constraint system is a set of constraints
over a shared set of string variables; a satisfying assignment maps each string variable to a value so
that all constraints are simultaneously satisfied. ConstV al represents a string literal; V ar represents
an element in a finite set of shared string variables.

ab for any satisfying assignment. We describe inclusion and non-inclusion constraints symmetrically

when possible, using � to represent either relation (i.e., � ∈ {∈, /∈}).

For a given constraint system S over variables {v1, . . . , vm}, we write A = [v1 ← x1, . . . , vm ← xm]

for the assignment that maps variables v1, . . . , vm to values x1, . . . , xm, respectively. We define [[ vi ]]A

to be the value of vi under assignment A; for a StringExpr E, [[E ◦ vi ]]A = [[E ]]A ◦ [[ vi ]]A. For a

RegExpr R, [[R ]] denotes the set of strings in the language L(R), following the usual interpretation

of regular expressions. When convenient, we equate a regular expression literal like ab? with its

language. We refer to the negation of a language using a bar (e.g., ab? = {w | w /∈ ab?}).

An assignment A for a system S over variables {v1, . . . , vm} is satisfying iff for each constraint

Ci = E � R in the system S, it holds that [[E ]]A � [[R ]]. We call constraint system S satisfiable

if there exists at least one satisfying assignment; alternatively we will refer to such a system as a

yes–instance. A system for which no satisfying assignment exists is unsatisfiable and a no–instance.

A decision procedure for string constraints is an algorithm that, given a constraint system S, returns

a satisfying assignment for S iff one exists, or “Unsatisfiable” iff no satisfying assignment exists.

We distinguish between a regular expression R and its representation as a nondeterministic finite

state automaton, nfa(R). When discussing pseudocode, we adopt the notation nfa(R).q when it is

necessary to refer to a particular state in nfa(R) through metavariable q. We use metavariables s

and f to refer to the start and final state of an automaton; we assume without loss of generality that



1: follow graph(I : constraint system) =
2: let G : directed graph = empty
3: let M : constraint→ path = empty
4: foreach Ci : constraint ∈ I do
5: let (v1 ◦ . . . ◦ vn �R) = Ci
6: for j ∈ 1, . . . , n− 1 do
7: G← add edge(G, node(vj), node(vj+1))
8: M [Ci]← [node(v1), . . . , node(vn)]
9: return (G,M)

Figure 4.2: Follow graph generation. Given a constraint system I, we output follow graph G and
mapping M (defined in the text). G and M capture the high-level structure of the search space of
assignments. The node function returns a distinct vertex for each variable.

automata have a single final state.

4.1.2 Follow Graph Construction

We now turn to the problem of efficiently finding satisfying assignments for string constraint

systems. We break this problem into two parts. First, in this subsection, we develop a method for

eagerly constructing a high-level description of the search space. Then, in Section 4.1.3, we describe

a lazy algorithm that uses this high-level description to search the space of satisfying assignments.

For a given constraint system I, we define a follow graph, G, as follows:

• For each string variable vi, the graph has a single corresponding vertex node(vi).

• For each occurrence of . . . vi ◦ vj . . . in a constraint in I, the graph has a directed edge from

node(vi) to node(vj). This edge encodes the fact that the satisfying assignment for vj must

immediately follow vi’s.

We also maintain a mapping M from individual constraints in I to their corresponding path through

the follow graph. For each constraint Ch = vj �R, we map Ch to path [node(vj)]. For each constraint

Ci of the form vk ◦ . . . vm �R, we map Ci to path [node(vk), . . . , node(vm)].

Figure 4.2 provides high-level pseudocode for constructing the follow graph for a given system.

The follow graph procedure takes a constraint system I and outputs a pair (G,M), where G is the

follow graph corresponding to I, and M is the associated mapping from constraints in I to paths

through G. For each constraint in I (line 4), we add edges for each adjacent pair of variables in the



constraint (lines 5–7), and update M with the resulting path (line 8). For line 5, we assume that

singleton constraints of the form v1 �R are matched as well; this results in zero edges added (lines

6–7) and a singleton path [node(v1)] (line 8).



Example 4.1. Follow graph representation. As an example, consider the following constraint system

and its associated follow graph:

C1 = (v1 ∈ a?)

C2 = (v2 ∈ ab)

C3 = (v1 ◦ v2 ∈ ab)

�
C1

� �
C2

�

/.-,()*+n1 // /.-,()*+n2

�
C3

�

We represent the graph G with circular vertices. The C annotations represent the domain of the

mapping M . We assume ni = node(vi). The first two constraints result in the mapping from C1 to

[n1] and C2 to [n2]; the third constraint adds the mapping from C3 to [n1, n2]. When convenient, we

will use variables in place of their corresponding follow graph nodes. �

4.1.3 Lazy State Space Exploration

Given a follow graph G, and a constraint-to-path mapping M , our goal is to determine whether

the associated constraint system has a satisfying assignment. We treat this as a search problem; the

search space consists of possible mappings from variables to paths through finite automata (NFAs).

We find this variables-to-NFA-paths mapping through a backtracking depth-first search. If the search

is successful, then we extract a satisfying assignment from the search result. If we fail to find a

mapping, then it is guaranteed not to exist, and we return “Unsatisfiable.” In the remainder of

this subsection, we will discuss the search algorithm; we walk through two runs of the algorithm in

Section 4.1.4.

The NFAs used throughout the algorithm are generated directly from the regular expressions

in the original constraint system; our implementation uses an algorithm similar to one presented

by [55]. For constraints of the form . . . ∈ R, we construct an NFA that corresponds to L(R) directly.

For constraints of the form . . . /∈ R, we eagerly construct an NFA that accepts L(R). We then use a

lazy version of the powerset construction to determinize and negate that NFA (Section 3.2.2). For

this presentation, we assume without loss that each NFA has a single final state.



1: type result = Unsat of result | Sat of assignment→ result
2: type status = Unknown of status | StartsAt of nfastate→ status
3: | Path of nfapath→ status
4: type pos = (constraint× int)
5: type searchstate = { next : var; states : var→ pos→ status}
6: type stepresult = Next of searchstate→ stepresult
7: | Back of stepresult | Done of stepresult
8:

9: search(followgraph G,mapping M) =
10: let Q : var→ pos→ status = start states(M)
11: let O : searchstate = { next = nil; states = Q}
12: let S : searchstate stack = [O]
13: while S is not empty do
14: let Ocur : searchstate = top(S)
15: let R : stepresult = visit state(Ocur, G,M)
16: match R with Next(O′)→ push(O′, S)
17: | Back→ pop(S)
18: | Done→ return Sat(extract(Ocur))
19: return Unsat
20:

21: visit state(searchstate O, followgraph G,mapping M) =
22: if ∀v : node ∈ G, all paths(O.states[v]) then
23: return Done
24: if O.next = nil then
25: O.next← pick advance(O,G,M)
26: let (success, paths) = advance(O,G,M)
27: if ¬success then
28: return Back
29: let O′ : searchstate = copy(O)
30: O′.next← nil
31: O′.states[O.next]← paths
32: foreach n : var ∈ succ(O.next,G) do
33: foreach p = (C, i) : pos s.t. O′.states[O.next][p] = Path(x) ∧
34: O′.states[n][(C, i+ 1)] = Unknown do
35: O′.states[n][(C, i+ 1)]← StartsAt(last(x))
36: return Next(O′)

Figure 4.3: Lazy backtracking search algorithm for multivariate string constraints. The search
procedure performs an explicit search for satisfying assignments. Each occurrence of a variable in
the constraint system is initially unconstrained (Unknown) or constrained to an NFA start state
(StartsAt). Each call to visit state attempts to move one or more occurrences from Unknown to
StartsAt or from StartsAt to Path. The goal is to reach a searchstate in which each occurrence is
constrained to a concrete Path through an NFA. Other procedures (e.g., start states, extract, and
advance) are described in the text.

The Search Algorithm

For clarity, we will distinguish between restrictions on variables imposed by the algorithm and

constraints in the input constraint system. Our search starts by considering all variables to be

unrestricted. We then iteratively pick one of the variables to restrict; doing this typically imposes



further restrictions on other variables as well. The order in which we apply restrictions to variables

does not affect the eventual outcome of the algorithm (i.e., “Satisfiable” or “Unsatisfiable”), but it

may affect how quickly we find the answer. During the search, if we find that we have over-restricted

one of the variables, then we backtrack and attempt a different way to satisfy the same restrictions.

At the end of the search, there are two possible scenarios:

• At the end of a successful search, each occurrence of a variable in the original constraint system

will be mapped to an NFA path; all paths for a distinct variable will have at least one string in

common. We return “Satisfiable” and provide one string for each variable.

• At the end of an unsuccessful search, we have searched all possible NFA path assignments for

at least one variable, finding no internally consistent mapping for at least one of those variables.

There is no need to explore the rest of the state space, since adding constraints cannot create

new solutions. We return “Unsatisfiable.”

Figure 4.3 provides high-level pseudocode for the search algorithm. The main entry point is

search (lines 9–19), which returns a result (line 1). An assignment (line 1) is a satisfying assignment

that maps each variable to a string. The search procedure performs a depth-first traversal of a (lazily

constructed) search space; the stack S (line 12) always holds the current path through the tree.

Each vertex in the search tree represents a mapping from string variables to restrictions; each edge

represents the application of one or more additional restrictions relative to the source vertex.

Each iteration of the main loop (lines 13–18) consists of a call to visit state. The visit state

procedure takes the current search state, attempts to advance the search, and returns a stepresult

(lines 6–7) signaling success or failure. If visit state returns Next, then we advance the search by

pushing the provided search state onto the stack (line 16). If visit state returns Back, then we

backtrack a single step by popping the current state from the stack (line 17). If visit state returns

Done, then we extract a satisfying string assignment from the paths in current search state (line 18).

Finally, if the algorithm is forced to backtrack beyond the initial search state, we return Unsat (line

19).



Manipulating the Search State

The searchstate type (line 5) captures the bookkeeping needed to perform the search. The next

element stores which string variable the algorithm will try to further restrict; once set, this will

remain the same for potential subsequent visits to the same search state. The states element holds

the restrictions for each variable for each occurrence of that variable in the constraint system. For

example, in the constraint system

C1 = (v1 ◦ v1 ∈ R1)

variable v1 occurs at positions (line 5) (C1, 1) and (C1, 2). The searchstate maps each variable at

each position to a status (lines 2–3), which represents the current restrictions on that occurrence as

follows:

1. Unknown (line 2) — This status indicates that we do not know where the NFA path for this

variable occurrence should start. In the example, the (C1, 2) occurrence of v1 will initially map

to Unknown, since its start state depends on the final state of the v1 occurrence at (C1, 1).

2. StartsAt (line 2) — This status indicates that we know at which NFA state we should start

looking for an NFA path for this variable occurrence. In the example, the (C1, 1) occurrence

of v1 will initially map to StartsAt( nfa(C1).s), where nfa(C1).s denotes the start state of the

NFA for regular expression R1.

3. Path (line 3) — This status indicates that we have restricted the occurrence to a specific path

through the NFA for the associated constraint. If a variable has multiple occurrences mapped

to Path status, then those paths must agree (i.e., have at least one string in common).

Note that these restrictions are increasingly specific. Each non-backtracking step of the algorithm

moves at least one variable occurrence from Unknown to StartsAt or from StartsAt to Path. Conversely,

each backtracking step consists of at least one move in the direction Path→ StartsAt→ Unknown.

The majority of the pseudocode in Figure 4.3 deals with the manipulation of searchstate instances.

The start states call (line 10) generates the initial restrictions that start the search; it is defined for



each variable v for each valid position (C, i) as follows:

start states(M)[v][(C, i)] =


Unknown if i > 1

StartsAt(nfa(C).s) if i = 1

The visit state procedure advances the search by generating new search states (children in the

search tree) based on a given search state (the parent). On lines 22–23, we check to see if all

variable occurrences have a Path restriction. The corresponding NFA paths are required to agree by

construction. In other words, the algorithm would never reach a search state with all Path restrictions

unless the path assignments were internally consistent. We continue if there exists at least one

non-Path restriction.

The call to pick advance determines which variable we will try to restrict in this visit and any

subsequent visits to this search state. This function determines the order in which we restrict the

variables in the constraint system. The order is irrelevant for correctness as long as pick advance

selects each variable frequently enough to guarantee termination of the search. However, for non-cyclic

parts of the follow graph, it is generally beneficial to select predecessor nodes (variables) in the follow

graph before their successors. This is because visiting the predecessor can potentially change some of

the successor’s Unknown restrictions to StartsAt restrictions. We leave a more detailed analysis of

search heuristics for future work.

The remainder of visit state deals with tightening restrictions:

• The call to advance (line 26) performs lazy NFA intersection on all of the occurrences of

variable O.next to convert StartsAt restrictions to Path restrictions (or rule out that a valid

path restriction exists, given the initial restrictions).

• If the call to advance succeeds, then the search state generation code of lines 32–35 uses the

additional Path restrictions (if any) for O.next to update O.next’s successors in the follow

graph (if any; succ(v,G) returns the set of immediate successors of v in G). This step exclusively

converts Unknown restrictions to StartsAt restrictions. The intuition here is that, if v2 follows



v1 in some constraint, then the first state for that occurrence of v2 must match the last state

for v1; last(x) (line 36) returns the last state in NFA path x.

Note that the first step (the call to advance) can potentially fail if O.next proves to be over-restricted.

When this occurs, we backtrack (lines 17 and 28) and return to a previous state, causing that state

to be visited a second time. These subsequent visits will lead to repeated call to advance on the same

parameters. We assume that advance keeps internal state to ensure that it exhaustively attempts all

Path restrictions.

Finding NFA Paths Based on Restrictions

The advance function (called on line 26 of Figure 4.3) performs all automaton intersection operations

during the search. Given some combination of Unknown, StartsAt, and Path restrictions on the

occurrences of a given variable, the goal is to convert every StartsAt restriction to a Path restriction

while respecting all other restrictions. How we conduct the traversal for each variable depends on

the restriction types for the variable’s occurrences:

• An Unknown restriction indicates that, for the given occurrence, we do not know where the

NFA path starts. Typically we can further restrict other variables to find candidate StartsAt

restrictions for a given Unknown restriction. However, if the constraints are cyclic (i.e., the

follow graph contains a cycle), then it may be necessary to conduct an explicit search for a

start state.

• A StartsAt restriction requires a path through a given NFA starting at the given state; the path

should agree with all other StartsAt and Path restrictions.

• A Path restriction requires that all other paths agree exactly with the current path.

We perform an explicit, lazy, search of the intersection (cross product) automaton. This is

equivalent to a simultaneous depth-first traversal of the various automata and paths; the traversal

terminates if we simultaneously reach all desired final states. In addition, we must guarantee that,

given the same searchstate, repeated calls to advance yield all possible non-repeating paths through



the intersection automaton. We accomplish this by storing the search stack for NFA states between

calls; if the stack is empty, we know we have exhausted all possible paths given the current constraints.

Informally, the postcondition for advance is that any StartsAt restriction is replaced with a Path

restriction, and any output Path restrictions agree on the concrete NFA path.

4.1.4 Worked Examples

In this subsection, we present two indicative example executions of the main solving algorithm.

Example 4.2 demonstrates the basic mapping for nodes in the follow graph to constraints. The

solution requires the simultaneous intersection of several automata. The example is similar in spirit

to the core concat-intersect problem we introduced in Chapter 2 associated with the DPRLE tool.

As such, the example also serves to highlight the fundamental difference between the older work (an

eager algorithm expressed in terms of high-level automata operations) and the algorithm presented

in this chapter (simultaneous lazy intersection of multiple automata). We discuss this example in

detail with reference to line numbers in Figure 4.3.

Example 4.3 illustrates the fact that constraints can be cyclic in nature. In this case, the solution

for string variable v1 depends on the concrete solution for v2 and vice versa; the follow graph for this

constraint system has a cycle. The solution illustrates that it is possible to solve these constraints by

selecting a cut of the follow graph. We discuss this example at a slightly higher level, focusing on the

automata intersections of interest rather than specific line numbers in the pseudocode of Figure 4.3.

Example 4.2. Consider the example constraint system, as seen before in Section 4.1.2:

C1 = (v1 ∈ a?)

C2 = (v2 ∈ ab)

C3 = (v1 ◦ v2 ∈ ab)

�
C1

� �
C2

�

/.-,()*+n1 // /.-,()*+n2

�
C3

�



The initial searchstate (generated on line 11 of Figure 4.3) would be:

{ next = nil;

states = {v1 7→ {(C1, 1) 7→ StartsAt(nfa(C1).s);

(C3, 1) 7→ StartsAt(nfa(C3).s)};

v2 7→ {(C2, 1) 7→ StartsAt(nfa(C2).s);

(C3, 2) 7→ Unknown }}}

The main search procedure now visits this searchstate. The visit state procedure, in turn, calls

pick advance (line 25). We assume O.next is set to v1, since it has exclusively StartsAt restrictions;

we can determine this with a topological sort of the follow graph.

The advance procedure is called to intersect the prefixes of the language for C1 with the prefixes of

the language of C3. Suppose the intersection (unluckily) results in a path matching a. This replaces

the two StartsAt restrictions for v1 with Path restrictions. On line 26, paths now equals:

{ (C1, 1) 7→ Path([nfa(C1).s, nfa(C1).s]);

(C3, 1) 7→ Path([nfa(C3).s, nfa(C3).q
′]) }

nfa(C4).q′ Is some state in nfa(C3) reachable on a from nfa(C3).s.

On lines 29–35, we create the next search state to visit. Because v2 ∈ succ(v1, G), and v2 has an

Unknown restriction on the correct occurrence, the final O′ is:

{ next = nil;

states = {v1 7→ {(C1, 1) 7→ Path([nfa(C1).s, nfa(C1).s]);

(C3, 1) 7→ Path([nfa(C3).s, nfa(C3).q
′]) };

v2 7→ {(C2, 1) 7→ StartsAt(nfa(C2).s);

(C3, 2) 7→ StartsAt (nfa(C3).q
′) }}}

At this point, visit state returns (line 36) and O′ is pushed onto the stack (line 16). On the next

iteration, pick advance selects v2, since it is the only variable with work remaining. When we call



advance, we notice a problem: C2 requires that v2 begin with “a”, but we have already consumed

the “a” in C3 using v1. This means no NFA paths are feasible, and we return Back (line 28).

In search, we pop Ocur off the stack (line 17). On the next loop iteration, we revisit the initial

search state. Since we previously set O.next ← v1, we proceed immediately to the advance call

without calling pick advance. The advance procedure has only one path left to return: the trivial

path that matches the empty string ε. At the end of visit state, O′ now equals:

{ next = nil;

states = {v1 7→ {(C1, 1) 7→ Path([nfa(C1).s]);

(C3, 1) 7→ Path([nfa(C3).s]) };

v2 7→ {(C2, 1) 7→ StartsAt(nfa(C2).s);

(C3, 2) 7→ StartsAt (nfa(C3).s) }}}

On the next iteration, pick advance again selects v2. A call to advance yields agreeing paths from

nfa(C2).s to nfa(C2).f and from nfa(C3).s to nfa(C3).f . On the final iteration, the all paths check

on line 22 is satisfied, and we extract the satisfying assignment from Ocur on line 18.

This example illustrates several key invariants: the algorithm starts exclusively with StartsAt

and Unknown restrictions. Each forward step in the search tightens those restrictions by moving

from StartsAt to Path and from Unknown to StartsAt. Any given search state is guaranteed to have

mutually consistent restrictions. Once set, the only way to eliminate a restriction is by backtracking.

Backtracking occurs only if, given the current restrictions, it is impossible to find an agreeing set of

paths for the selected variable. �



Example 4.3. In this example we consider a constraint system that imposes cyclic dependencies

among two constraints. For brevity, we will elide explicit references to the pseudocode of Figure 4.3.

Consider the following constraint system, which contains a cyclic order-dependency across two

variables:

C1 = (v1 ∈ a?)

C2 = (v2 ∈ b?)

C3 = (v1 ◦ v2 ∈ aa(b)
?
)

C4 = (v2 ◦ v1 ∈ bb(a)
?
)

�
C1

� �
C2

�
�

C3
�

� � ������ C4
��
76540123n1 // 76540123n2234071??

The initial search state for this constraint system looks as follows:

{ next = nil;

states = {v1 7→ {(C1, 1) 7→ StartsAt(nfa(C1).s);

(C3, 1) 7→ StartsAt(nfa(C3).s);

(C4, 2) 7→ Unknown };

v2 7→ {(C2, 1) 7→ StartsAt(nfa(C2).s);

(C3, 2) 7→ Unknown;

(C4, 1) 7→ StartsAt(nfa(C4).s); }}}

This state represents a fundamental difference between this example and the previous, non-cyclic,

constraint system: both v1 and v2 now have an Unknown restriction. This is because constraints C3

and C4 are mutually order-dependent: the algorithm does not know the start state for v1 because it

depends on the path for v2, and vice versa. This is further apparent from the structure of the follow

graph: there is no well-defined topological ordering because nodes n1 and n2 form a cycle.

The solution to this problem is conceptually simple: we guess a StartsAt constraint for one of the

variables and then conduct the search as previously described. In the example, we could pick any

state q in nfa(C4) and update the v1 state to include (C4, 2) 7→ StartsAt(q). If forced to backtrack

repeatedly, we will exhaustively consider all other states as potential “guess” candidates; if we rule

out all candidates, we conclude that the system is unsatisfiable. For this system, we assume the



following NFAs:

nfa(C1) : // 76540123'&%$ !"#q1

a
��

nfa(C3) : // 76540123q3
a // 76540123q4

a // 76540123'&%$ !"#q5

b
��

nfa(C2) : // 76540123'&%$ !"#q2

b
��

nfa(C4) : // 76540123q6
b // 76540123q7

b // 76540123'&%$ !"#q8

a
��

The algorithm randomly selects v2 to restrict; this corresponds to “cutting” the n1 → n2 edge in

the follow graph. This means we need to find a start state for occurrence (C3, 2) of variable v2. We

begin with the start state of nfa(C3): state q3, which yields the following updated search state:

{ next = v2;

states = {v1 7→ {(C1, 1) 7→ StartsAt(nfa(C1).s);

(C3, 1) 7→ StartsAt(nfa(C3).s);

(C4, 2) 7→ Unknown };

v2 7→ {(C2, 1) 7→ StartsAt(nfa(C2).s);

(C3, 2) 7→ StartsAt(q3 = nfa(C3).s);

(C4, 1) 7→ StartsAt(nfa(C4).s); }}}

Note that we have updated the restrictions for v2, and since that variable now has exclusively StartsAt

constraints, we are ready to find a path for that variable. Our intersection automaton, denoted by

square states, fails immediately, however, because state q3 has no outbound transitions on b:

//

�� ��
�� ��q2q3q6

? //

Having failed to find a valid set of Path restrictions for v2, we select another state in nfa(C3), and

update the search state accordingly. If we select q5, our search is more fruitful:

//

�� ��
�� ��q2q5q6

b //

�� ��
�� ��q2q5q7

b //

�� ��
�� ��q2q5q8

This right-most intersection state is of interest because it represents final states q5 and q2 for two

constraints (C2 and C3) in which v2 occupies the final position. At this point, we can try to set Path



restrictions for v2 and start the search for path restrictions for v1:

{ next = v1;

states = {v1 7→ {(C1, 1) 7→ StartsAt(nfa(C1).s);

(C3, 1) 7→ StartsAt(nfa(C3).s);

(C4, 2) 7→ StartsAt(q8)};

v2 7→ {(C2, 1) 7→ Path([q2, q2, q2]);

(C3, 2) 7→ Path([q5, q5, q5]);

(C4, 1) 7→ Path([q6, q7, q8]); }}}

Note that, implicit in the path restrictions for v2, any solution for v1 must end in state q5 for

constraint C3. This is not because state q5 happens to be a final state; it is specifically necessary

because the solution for v1 must end where the path for v2 starts. At this point, we do not need to

“guess” any states; our only choice is whether to find a longer match for v2 or start looking for a path

for v1. Since there are no outbound edges on b from q8, we are forced to choose the latter. The path

for v1 looks as follows:

//

�� ��
�� ��q1q3q8

a //

�� ��
�� ��q1q4q8

a //

�� ��
�� ��q1q5q8

This yields the following final searchstate:

{ next = nil;

states = {v1 7→ {(C1, 1) 7→ Path([q1, q1, q1]);

(C3, 1) 7→ Path([q3, q4, q5]);

(C4, 2) 7→ Path([q8, q8, q8])}; v2 7→ {(C2, 1) 7→ Path([q2, q2, q2]);

(C3, 2) 7→ Path([q5, q5, q5]);

(C4, 1) 7→ Path([q6, q7, q8]); }}}

This final state, in turn, yields the satisfying assignment v1 = aa ∧ v2 = bb. �



4.1.5 Correctness

Having described our algorithm, we now turn to an informal correctness argument. Decision

procedures that return witnesses, in general, are required to be sound, complete, and terminate

for all valid inputs. We discuss each of these aspects in turn, referring back to the definitions in

Section 4.1.1 and the pseudocode of Figure 4.3 when necessary.

Definition 4.1. Soundness: ∀I, search(follow graph(I)) = Sat(A)⇒ ∀(E �R) ∈ I, [[E ]]A � [[R ]] �

We assume the correctness of the follow graph procedure. The start states and visit state proce-

dures enforce the following invariants for NFA paths:

• The first variable occurrence in each constraint must have its path start with the start state

for that constraint’s NFA.

• All non-first variable occurrences in each constraint must have their paths start with the final

state of their immediate predecessor in the constraint.

• The last variable occurrence in each constraint must have its path end with the final state for

that constraint’s NFA.

The first bullet is enforced by start states (as defined in the text) using StartsAt restrictions; these

restrictions are preserved when advance moves the StartsAt restrictions to Path restrictions. The

second bullet is enforced directly by visit state in lines 32–35 when moving Unknown restrictions to

StartsAt restrictions.The third bullet is enforced by advance when generating paths.

Taken together, these conditions show exactly the right-hand side of the implication: for each

constraint C = (. . . �R), if we concatenate the variable assignments, we end up with a string w that

must (by construction) take nfa(C).s to nfa(C).f , showing w �R.

Definition 4.2. Completeness: ∀I, satisfiable(I)⇒ search(follow graph(I)) 6= Unsat �

Intuitively, we want to show that for any satisfiable constraint system, there exists a path in a

sufficiently-high search tree that reaches an “all paths” searchstate. This argument relies heavily on

the completeness of advance, since that procedure essentially determines which child nodes we visit.



Definition 4.3. Termination: search returns in a finite number of steps for all inputs.

A termination proof must show that the main loop on lines 13–18 of Figure 4.3 always exits in a

finite number of steps. This follows from several facts:

• Each vertex in the search tree has a finite number of children, because advance generates a

finite number of non-repeating paths through a cross-product NFA.

• For a given parent vertex in the search tree, we never visit the same child vertex twice. If we

backtrack to the parent node, the advance is guaranteed to generate a distinct child node (or

report failure).

• The tree has finite height because each step away from the root modifies at least one restriction

in the direction of Path. Suppose we assume that all variable occurrences have Unknown

restrictions except for one StartsAt restriction (the minimum), and also that we move only

one restriction per step. In this case, the maximum height is Θ(2n) where n is the number of

variable occurrences.

4.2 Experiments

We present several experiments to evaluate the utility of our lazy search approach. In these

experiments, we compare the scalability of StrSolve with that of four recently published tools:

CFG Analyzer [54], DPRLE (Chapter 2), Hampi [39], and Rex [42, 56]. The experiments are as

follows:

• In Section 4.2.1, we re-use the benchmarks used in Chapter 3 (Figure 4.4). Given a pair of

regular expressions (a, b), the task is to compute a string in L(a) \ L(b), if one exists. The

benchmark consists of 10 regular expressions taken from real-world code [53]. We compare

DPRLE, Hampi, Rex, and our StrSolve prototype, running each on all 100 pairs of regular

expressions.



Regular Expression Size

1. \w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*([,;]\s*\w+([-+.]\w+)*

@\w+([-.]\w+)*\.\w+([-.]\w+)*)* 1.2 KB

2. \$?(\d{1,3},?(\d{3},?)*\d{3}(\.\d{0,2})?|\d{1,3}(\.\d{0,2})?|\.\d{1,2}?) 399 B

3. ([A-Z]{2}|[a-z]{2}[ ]\d{2}[ ][A-Z]{1,2}|[a-z]{1,2}[ ]\d{1,4})?

([A-Z]{3}|[a-z]{3}[ ]\d{1,4})? 425 B

4. [A-Za-z0-9](([ \.\-]?[a-zA-Z0-9]+)*)@([A-Za-z0-9]+)

(([\.\-]?[a-zA-Z0-9]+)*)\.[ ]([A-Za-z][A-Za-z]+) 390 B

5. (\w|-)+@((\w|-)+\.)+(\w|-)+ 442 B

6. [+-]?([0-9]*\.?[0-9]+|[0-9]+\.?[0-9]*)([eE][+-]?[0-9]+)? 228 B

7. ([\w\d.-]+)@{1}(([\w\d-]{1,67})|([\w\d-]+\.[\w\d-]{1,67}))

\.((([a-z]|[A-Z]|\d){2,4})(\.([a-z]|[AZ]|\d){2})?) 207 KB

8. (([A-Za-z0-9]+[_]+)|([A-Za-z0-9]+\-+)|([A-Za-z0-9]+\.+)|([A-Za-z0-9]+\++))*

[A-Za-z0-9]+@((\w+\-+)|(\w+\.))*\w{1,63}\.[a-zA-Z]{2,6} 65 KB

9. (([a-zA-Z0-9 \-\.]+)@([a-zA-Z0-9 \-\.]+)\.([a-zA-Z]{2,5}){1,25})+

([;.](([a-zA-Z0-9 \-\.]+)@([a-zA-Z0-9 \-\.]+)\.([a-zA-Z]{2,5}){1,25})+)* 369 KB

10. ((\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*)\s*[,]{0,1}\s*)+ 1.3 KB

Figure 4.4: Regular expressions used for Experiment 1. The notation follows that of the .NET
framework [42]; we use the 8-bit (extended ASCII) interpretation of the character classes (e.g., \w
and \d). The Size column refers to the textual size of the expanded regular expression in the input
format for Hampi and StrSolve; this requires eliminating repetition operators (curly braces) that
are not supported by all tools. Of note is the fact that the sizes vary by several orders of magnitude.

• In Section 4.2.2, we take a closer look at the performance characteristics of the Hampi

implementation [39]. Internally, Hampi eagerly converts its input constraints to a bitvector

formula that is then solved by another solver. This raises an interesting question: how much

faster could Hampi be if we swapped out its bitvector solver? In this experiment we re-use the

benchmarks from Section 4.2.1 to answer that question.

• In Section 4.2.3, we reproduce and extend an experiment that was first used to evaluate the scal-

ability of the Rex tool [42] relative to the length of the desired string output. For each n between

1 and 1000 inclusive, the task is to compute a string in the intersection of [a-c]*a[a-c]{n+1}

and [a-c]*b[a-c]{n}. We compare DPRLE, Hampi, Rex, and StrSolve.

• In Section 4.2.4, we compare CFG Analyzer, Hampi, and our prototype on a grammar intersec-

tion task. We select 85 pairs of context-free grammars from a large data set [54]. The task, for

each implementation, is to generate strings of length 5, 10, and 12, for each grammar pair.

Across all benchmarks, we use an 8-bit alphabet that corresponds to the extended ASCII character

set; we configured all tools to use the same mapping. This is significant because alphabet size can



affect performance. The tools were run on the same hardware. The only major difference in

configuration was for Rex, which was run under Windows 7 on the same hardware; all other tools

were run under a recent Linux configuration.

All experiments were conducted on a 2.8GHz Intel Core 2 Duo machine with 3.2GB of addressable

RAM. We use unmodified versions of Hampi (revision 24), DPRLE (revision 4), and CFG Analyzer

(v. 2007-12-03), all of which are publicly available. We built Hampi from source using Sun Javac

(v1.6.0 16); we used the OCaml native compiler (v3.10.2) for CFG Analyzer and DPRLE. We use

the prebuilt binaries for STP [57] and MiniSAT [21] included in the Hampi distribution. We use

ZChaff [22] (v.2007-03-12) as the underlying SAT solver for CFG Analyzer. StrSolve is written in

C++ and built using the GNU C++ compiler (v4.3.3). We measure wall clock time unless otherwise

specified. We run Hampi in server mode [39] to avoid the repeated cost of virtual machine startup

unless otherwise specified. Similarly, for Rex we use internal time measurement to avoid measuring

virtual machine startup. For CFG Analyzer, DPRLE, and StrSolve, the measured time includes

process startup time for each execution.

We use a version of the Rex framework (also featured in Chapter 3) under license from Microsoft;

our version was reased in March 2011. For these experiments, we use a combination of lazy algorithms

for intersection and complementation; this is similar in spirit to our own lazy approach, but restricted

to single-variable constraints. We use Rex’ predicate-based representation for character sets (Pred

in Chapter 3). This implementation uses an underlying solver, Z3 [16], to manipulate sets of characters.

We assert that the performance of this implementation is indicative for the tool. We found it to be

the second-fastest datastructure for a 7-bit alphabet (cf. Section 3.3), but it terminates for a bigger

subset of the experimental data compared to the BDD-based implementation. We used a recent

Microsoft Visual Studio compiler for C# to build and configure the Rex tool in Release mode. When

appropriate, we do not measure virtual machine startup for Rex executions; this is analogous to our

treatment of Hampi.
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Figure 4.5: String generation time distributions (log scale), grouped by yes– and no–instances (left
and right of each pair, respectively). The boxes represent the 25th through 75th percentile; the
whiskers represent the 5th through 95th percentile.

4.2.1 Experiment 1: Regular Set Difference

In this experiment, we test the performance of DPRLE (Chapter 2), Hampi [39], Rex [42], and

StrSolve on a set difference task. We reproduce an experiment originally used to test the symbolic

difference construction of [42]. This experiment uses ten benchmark regular expressions presented

by [53]; they are taken from real-world code. The task, for each pair of regular expressions (a, b), is

to compute a string that occurs in L(a) but not L(b). This yields 100 distinct inputs for each tool:

90 yes-instances (whenever a 6= b) and 10 no-instances (when a = b). The regular expressions of

interest are listed in Figure 4.4.

The majority of the tools under consideration do not natively support repetition operations like

+, ?, and {i,j}, so we expand these operations into the equivalent combination of concatenations

and disjunctions (e.g., a? becomes or("", a) in the input language for Hampi). These expressions

are presented in the format used for the Microsoft .NET framework. The Size column in Figure 4.4

shows the size of each regular expression after expansion. We note that there is a substantial range

of sizes: from 228B (number two) to 369KB (number nine).

We conducted the experiment as follows. For each pair of expanded regular expressions, we

applied the appropriate transformations to create a valid constraint systems for each of the four

tools. To facilitate a conservative comparison, this required the following considerations (in each



case, giving any potential benefit to the other tool):

• Hampi requires a single fixed length bound for each input, and does not support searching for

the empty string. For each pair of input regular expressions, we run Hampi on length bounds

1 through 10, in order, inclusive. We terminate the search as soon as Hampi finds a string;

this represents a typical usage scenario1 In practice, we found that k = 10 allowed Hampi to

correctly identify all yes-instances.

• DPRLE requires automata descriptions for its input; it does not support regular expressions.

Since our prototype performs a conversion from regular expressions to automata, we use that

conversion algorithm to generate the DPRLE inputs. We do not count the conversion time

towards DPRLE’s running time; in practice we found that this made no significant difference.

• Rex uses the .NET regular expression parser and performs its own expansion of repetition

operators, so we provide it with the (much smaller) non-expanded regexes. In terms of running

time, this represents a trade-off: it saves parsing time at the expense of the time required to

perform the expansion (which is not measured for other tools). In practice, we found that

running times were dominated by the solving steps and not by the front-end.

Figure 4.5 summarizes the running times of the tools, grouped by yes-instances (90 datapoints

per tool) and no instances (10 datapoints per tool). Note that the median time for our tool on

yes-instances is almost an order of magnitude faster than the others, and that our tool exhibits

relatively consistent timing behavior compared to all the others (recall log scale when comparing

consistency against Rex). The performance gain arises from our construction of the state space

corresponding to L(b): determinization and complementation are performed on this (potentially

large) automaton lazily.

1Hampi has since added support for ranges of length bounds; at the time of writing, it is implemented using a very
similar approach.
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Figure 4.6: Hampi execution time breakdown for the dataset of Section 4.2.1. In this graph, Encoding
refers to the process of converting a string constraint system into a bitvector constraint system;
Solving refers to the time taken to solve that bitvector constraint system. We show the breakdown
for length bounds [1; 15]; each horizontal bar represents the average of 100 samples.
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Figure 4.7: Relative time spent by Hampi on encoding and solving for the k = 15 case (cf. Figure 4.6);
the vertical axis shows percentage of total run time, while the horizontal axis represents total solving
time.

4.2.2 Experiment 2: Hampi’s Performance

We now take a closer look at the performance breakdown for the Hampi [39] implementation. Hampi

uses a layered approach to solving string constraints; it converts them into bitvector constraints and

passes those to an appropriate solver, using the output of that solver to reconstruct the solution. This

design allows Hampi to benefit from performance enhancements that may be forthcoming in the area

of bitvector constraint solving. In contrast, StrSolve uses specialized algorithms for solving string

constraints, and does not stand to benefit from orthogonal research in bitvector solving technology.

In this experiment, we evaluate whether Hampi could outperform StrSolve given a (hypothetical)



faster bitvector solver.

For this experiment, we use the same benchmark set as presented in Section 4.2.1. We instrumented

the Hampi source code to add appropriate internal timers for time spent encoding, solving, and

performing all other tasks. The timing data is based on 1500 execution runs: 100 runs for 15 distinct

length bounds. Figure 4.6 (left) shows the breakdown for each length bound. The horizontal axis

represents the proportion of running time; the vertical axis ranges over length bounds. Figure 4.6

(right) shows the encoding and solving measurements for the k = 15 length bound, with percentage

of total run time on the vertical axis and absolute total running time on the horizontal axis.

These results demonstrate that Hampi’s back-end solving step typically accounts for less than

10% of total execution time. This result illustrates that Hampi’s re-encoding step is, by far, the most

prominent component of its execution time. In addition, that prominence grows for larger length

bounds. Finally, Figure 4.6 (right) shows that this is consistently true across test cases, not just

when averaging. In fact, the k = 15 results suggest that, within this slice of the data, there may exist

a positive correlation between total solving time and the proportion of time spent encoding.

At a higher level, these results indicate that Hampi would not be significantly faster if using a

faster bitvector solver for these benchmarks. Moreover, for many test cases the encoding time alone

exceeds the total time taken by our tool.

4.2.3 Experiment 3: Generating Long Strings

We hypothesize that our prototype implementation is particularly well-suited for underconstrained

systems that require long strings. To test this hypothesis, we reproduce and extend an experiment

used to evaluate the scaling behavior of Rex [42]. We compare the performance of Hampi, DPRLE,

Rex, and StrSolve.

The task is as follows. For some length n, given the regular expressions

[a-c]*a[a-c]{n+1} and [a-c]*b[a-c]{n}

find a string that is in both sets. For example, for n = 2, we need a string that matches both

[a-c]*a[a-c][a-c][a-c] and [a-c]*b[a-c][a-c]; one correct answer string is abcc. Note that,
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Figure 4.8: String generation times (log scale) for the intersection of the regular languages
[a-c]*a[a-c]{n+1} and [a-c]*b[a-c]{n}, for n between 1 and 1000 inclusive.

for any n, the result string must have length n+2. For Hampi, we specify this length bound explicitly;

the other tools do not require a length bound.

For each n, we run the four tools, measuring the time it takes each tool to generate a single

string that matches both regular expressions. Figure 4.8 shows our results. Our prototype is, on

average, 118× faster than Hampi; the speedup ranges from 4.4× to 239×. DPRLE outperforms

Hampi up to n = 55, but exhibits considerably poorer scaling behavior than the three other tools.

Both StrSolve and Rex scale linearly with n, but Rex has a much higher constant cost. Note that,

for this experiment, we did not measure virtual machine startup time for Rex.

Finally, an informal review of the results shows that our prototype generates only a fraction of

the NFA states; for n = 1000, DPRLE generates 1, 004, 011 states, while our prototype generates

just 1, 010 (or just 7 more than the length of the discovered path). These results suggest that lazy

constraint solving can save large amounts of work relative to eager approaches like Hampi and

DPRLE.

4.2.4 Experiment 4: Length-Bounded Context-Free Intersection

In this experiment, we compare the performance of CFG Analyzer (CFGA) [54], Hampi [39], and

StrSolve. The experiment is similar in spirit to a previously published comparison between Hampi

and CFGA: from a dataset of approximately 3000 context-free grammars published with CFGA,
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Figure 4.9: String generation times (log scale) for the intersection of context-free grammars. The
grammar pairs were randomly selected from a dataset by Axelsson et al. [54]. Length bounds are 5,
10, and 12. Each column represents 85 data points; the bars show percentile 25 through 75 and the
whiskers indicate percentile 5 through 95.

we randomly select pairs of grammars and have each tool search for a string in the intersection for

several length bounds.

CFGA and Hampi differ substantially in how they solve this problem. Hampi internally generates

a (potentially large) regular expression that represents all strings in the given grammar at the

given bound. CFGA directly encodes the invariants of the CYK parsing algorithm into conjunctive

normal form. For StrSolve, we assume a bounding approach similar to that of Hampi. We use an

off-the-shelf conversion tool, similar to that used by the Hampi implementation, to generate regular

languages. We measure the running time of our tool by adding the conversion time and the solving

time.

We randomly selected 200 pairs of grammars. Of these 200 pairs, 88 had at least one grammar at

each length bound that produced at least one string. We excluded the other pairs, since they can

be trivially ruled out without enumeration by a length bound check. We eliminated an additional

three test cases because our conversion tool failed to produce valid output. We ran the three

implementations on the remaining 85 grammar pairs at length bounds 5, 10, and 12, yielding 255

datapoints for each of the three tools. The ratio of yes–instances to no–instances was roughly equal.

In terms of correctness, we found the outputs of Hampi and our prototype to be in exact agreement.

Figure 4.9 shows the running time distributions for each tool at each length bound. We note that



our performance is, in general, just under an order of magnitude better than the other tools. In

all cases, our running time was dominated by the regular enumeration step. We believe a better-

integrated implementation of the bounding algorithm would significantly improve the performance

for larger length bounds, thus potentially increasing our lead over the other tools.

4.3 Conclusion

In this chapter, we presented an extension of the lazy automata algorithms described in Chapter 3.

Our algorithm constraints similar to those presented in Chapter 2, but rather than working at the

level of entire regular sets, it generates single string assignments for multivariate constraints. In

principle, the lazy algorithm presented in this chapter shares the worst-case complexity of the eager

algorithm of Chapter 2. In practice, the lazy algorithm is designed to systems. We achieve this by

treating the constraint solving problem as an explicit search problem. A key feature of our algorithm

is that we instantiate the search space in an on-demand fashion.

We evaluated our algorithm by comparing our prototype implementation to publicly available

tools like CFGA [54], DPRLE (Chapter 2), Rex [42] (also featured in Chapter 3), and Hampi [39].

We used several sets of previously published benchmarks [39, 42]; the results show that our approach

is, on average, several orders of magnitude faster than the other implementations. We believe that as

string constraint solvers continue to mature, perfomance will be a key factor in their adoption in

program analysis work. The lazy algorithm presented in this chapter is a first step in making string

constraint solvers significantly outperform their alternatives, such as ad hoc implementations or the

use of other constraint types (such as bitvectors, cf. Section 4.2.2) to model string constraints.



Chapter 5

Related Work

In this chapter, we discuss closely related work. This work falls into four main categories. In

Section 5.1 we briefly discuss the use of decision procedures in programming languages research. In

Section 5.2 we cover the original string analysis work, i.e., end-to-end program analyses with tightly

coupled models for strings. Section 5.3 discusses related string constraint solvers, as well as the

context of the contributions presented in Chapters 2–4. Finally, in Section 5.4, we briefly discuss

work that is less closely related, but still shares theoretical or algorithmic concepts with the work

presented in this dissertation.

5.1 The Use of Decision Procedures

Decision procedures have long been a fixture of program analyses. Typically a decision procedure

handles queries over a certain theory, such as linear arithmetic, uninterpreted functions, boolean

satisfiability [22, 23], pointer aliasing [14, 15], or bitwise operations and vectors [58, 57]. Nelson and

Oppen presented a framework for allowing decision procedures to cooperate, forming an automated

theorem prover to handle queries that span multiple theories and include first-order logic connec-

tives [26]. In general, the satisfiability modulo theories problem is a decision problem for logical

formulas with respect to combinations of background theories expressed in classical first-order logic

with equality. A number of SMT solvers, such as CVC [17] and Z3 [16], are available.
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SLAM [19] and BLAST [59] are well-known examples of program analyses that make heavy use

of external decision procedures: both are software model checkers that were originally written to call

upon the Simplify theorem prover [24] to compute the effects of a concrete statement on an abstract

model. This process, called predicate abstraction, is typically performed using decision procedures [60]

and has led to new work in automated theorem proving [61]. SLAM has also made use of an explicit

alias analysis decision procedure to improve performance [62]. BLAST uses proof-generating decision

procedures to certify the results of model checking [63], just as they are used by proof-carrying code

to certify code safety [25].

Another recent example is the EXE project [64], which combines symbolic execution and constraint

solving [65] to generate user inputs that lead to defects. EXE has special handling for bit arrays and

scalar values, and our work addresses an orthogonal problem. While a decision procedure for vectors

might be used to model strings, merely reasoning about indexed accesses to strings of characters

would not allow a program analysis to handle the high-level regular-expression checks present in

many string-using programs. Note that the Hampi project [39] (a string constraint solver, listed

below) and EXE share the same underlying decision procedure (STP [57]).

5.2 End-to-End String Analysis

Early work in string analysis included a number of end-to-end analysis tools that, for example,

statically detect string-related bugs in source code. These analyses deal with string manipulation,

but often in a problem-specific way. One way to characterize the work in this dissertation is as an

attempt to generalize the algorithmic insights gleaned from this work.

Christensen et al. first proposed a string analysis that soundly overapproximates string variables

using regular languages. The Java String Analyzer (JSA) [5] uses finite automata internally to

represent strings. The underlying dk.brics.automaton library is not presented as a constraint

solving tool, but it is used in that way. The library, which is implemented in Java, represents

automata using a pointer-based graph representation of node and edge objects; edges represent

contiguous character ranges. It includes a deterministic automaton representation that is specialized



for matching given strings efficiently. This is not a common use case for constraint solving, since the

goal there is to efficiently find string assignments rather than verify them. In Chapter 3, we examine

the performance of the dk.brics.automaton library relative to other automaton representations.

Several other approaches include a built-in model of string operations; Minamide [6] and Wasser-

mann and Su [7] rely on an ad-hoc OCaml implementation that uses that language’s built-in

applicative data structures. The Saner project [66] combines a similar static component with an

additional dynamic step to find real flaws in sanitizer behavior. The Wassermann and Su imple-

mentation [7] extends Minamide’s grammar-based analysis [6]. It statically models string values

using context-free grammars, and detects potential database queries for which user input may change

the intended syntactic structure of the query. In its original form, neither Wassermann and Su nor

Minamide’s analysis can generate example inputs. In Chapter 2, we extend the Wassermann and Su

analysis to generate indicative inputs for 17 SQL injection vulnerabilities.

In more recent work, Wassermann et al. show that many common string operations can be reversed

using finite state transducers (FSTs) [67]. They use this method to generate inputs for SQL injection

vulnerabilities in a concolic testing setup. Their algorithm is incomplete, however, and cannot be used

to soundly rule out infeasible program paths. Yu et al. solve string constraints [68, 69, 70] for abstract

interpretation, using approximations (“widening automata”) for non-monotonic operations, such as

string replacement, to guarantee termination. Their approach has been extended to handle symbolic

length constraints through the construction of length automata [71]. In general, the backward

component of this component is analogous to constraint solving. At a high level, each of these

techniques is an end-to-end analysis with a tightly integrated string model; this dissertation focuses

on providing a string decision procedure that is useful for many client analyses.

Godefroid et al. [8] use the SAGE architecture to perform guided random input generation (similar

to previous work on random testcase generation by the same authors [9, 10]). It uses a grammar

specification for valid program inputs rather than generating arbitrary input strings. This allows the

analysis to reach beyond the program’s input validation stages. Independent work by Majumdar and

Xu [11] is similar to that of Godefroid et al.; CESE also uses symbolic execution to find inputs that



are in the language of a grammar specification. Similar projects include search-based testing [72]

and CUTE [73]. These projects could potentially benefit from decision procedures for strings and

regular expressions when performing symbolic execution: “Test case generation for web applications

and security problems requires solving string constraints and combinations of numeric and string

constraints” [74, Sec. 4]. One such example is that of the Symbolic PathFinder [75], which has been

extended with a symbolic string analysis by Fujitsu and applied to the testing of web applications [76].

5.3 String Decision Procedures

The last few years have seen significant interest in string constraint solvers. The DPRLE work

(Chapter 2, published at PLDI [77]) and Hampi [39] were among the first to claim standalone string

constraint solvers.

The Rex tool, used for experimentation in Chapter 3 and Chapter 4, provides a SFA representation

that is similar to the formal definition given in Section 3.1. The core idea, based on work by van

Noord and Gerdeman [78], is to represent automaton transitions using logical predicates. Rex works

in the context of symbolic language acceptors, which are first-order encodings of symbolic automata

into the theory of algebraic datatypes. The Rex implementation uses the Z3 satisfiability modulo

theories(SMT) solver [79] to solve the produced constraints. The encoding process and solving

process are completely disjoint. This means that many operations, like automaton intersection, can

be offloaded to the underlying solver. For example, to find a string w that matches two regular

expressions, r1 and r2, Rex can simply assert the existence of w, generate symbolic automaton

encodings for r1 and r2, and assert that s is accepted by both those automata. We refer to this as a

Boolean encoding of the string constraints.

The initial Rex work [42] explores various optimizations, such as minimizing the symbolic

automata prior to encoding them. These optimizations make use of the underlying SMT solver to

find combinations of edges that have internally-consistent move conditions. Subsequent work [43]

explored the trade-off between the Boolean encoding and the use of automata-specific algorithms for

language intersection and language difference. In this case, the automata-specific algorithms make



repeated calls to Z3 to solve cube formulae to enumerate edges with co-satisfiable constraints. In

practice, this approach is not consistently faster than the Boolean encoding. We use the high-level

framework provided by Rex to implement the experiments of Chapter 3; this work was published at

VMCAI [56].

In Chapter 4, we present a lazy backtracking search algorithm for solving regular inclusion

constraints. An earlier version of this work was published at ASE [52]. The underlying automaton

representation, written in C++, is based on the Boost Graph Library [80] and allows for a variety of

adjacency list representations. We annotate transitions with integer ranges using the off-the-shelf

Boost interval container library. The implementation pays special attention to memory management,

using fast pool allocation for small objects such as the abstract syntax tree for regular expressions.

This implementation uses lazy intersection and determinization algorithms, allowing for significant

performance benefits relative to many other implementations (cf. Section 4.2).

Bjørner et al. describe a set of string constraints based on common string library functions [41].

The approach is based on a direct encoding to a combination of theories provided by the Z3

SMT solver [79]. In addition, they show that the addition of a replace function makes the theory

undecidable. Supported operations include substring extraction (and, in general, the combination of

integer constraints with string constraints), but the work does not provide an explicit encoding for

regular sets.

The Hampi tool [39] uses an eager bitvector encoding from regular expressions to bitvector

logic. The encoding does not use quantification, and requires the enumeration of all positional

shifts for every subexpression. We provide several performance comparisons that include the Hampi

implementation in Section 4.2, and we include a detailed Hampi-specific performance breakdown

in Section 4.2.2.

Saxena et al. provide an extension to Hampi that supports multiple variables and length

constraints [40]. The associated tool, Kaluza, builds on Hampi’s underlying solver (STP [57]) to

iteratively solve integer constraints (by calling STP directly) and string constraints (using Hampi).

The CFG Analyzer tool [54] is a solver for bounded versions of otherwise-undecidable context-free



language problems. Problems such as inclusion, intersection, universality, equivalence and ambiguity

are handled via a reduction to satisfiability for propositional logic in the bounded case. We include

CFG Analyzer in a performance comparison in Chapter 4.

The recent Bek project examines the use of symbolic finite state transducers [27, 28] as a

model for string-manipulating code. Unlike traditional string analysis work, which aims to model

general-purpose code by approximation, we instead model a restricted domain-specific language

without approximation. The analysis supports deep semantic checks on programs, including program

equivalence. The Bek project can be characterized as a constraint solver in which the variables

represent code (i.e., input-output relations on strings). In contrast, this dissertation focuses on

constraint solving techniques over strings that are largely independent of programming language

specifics.

5.4 Other Domains

The following work is not directly related to program analysis tools that involve strings, but it is

discussed here because of theoretical ties to string constraint solving or because they explore highly

optimized automata operations in some unrelate domain.

The MONA implementation [46] provides decision procedures for several varieties of monadic

second–order logic (M2L). MONA relies on a highly-optimized BDD-based representation for de-

terministic automata. The implementation has seen extensive engineering effort; many of the

optimizations are described in a separate paper [81]. It should be noted that the BDD representation

discussed in Chapter 3 is distinct from the BDD representation used by the Mona tool [82, Sec. 5].

We are not aware of any work that investigates the use of multi-terminal BDDs for nondeterministic

finite automata directly. We believe this may be a promising approach, although the use of BDDs

complicates common algorithms like automaton minimization. In this dissertation, we restrict our

attention to a class of graph-based automata representations.

There has been extensive theoretical work on language equations; Kunc provides an overview [83].

Work in this area has typically focused on complexity bounds and decidability results. Bala [84]



defines the Regular Language Matching (RLM) problem, a generalization of the Regular Matching

Assignments (RMA) problem presented in Chapter 2 that allows both subset and superset constraints.

Bala uses a construct called the R-profile automaton to show that solving RLM requires exponential

space.

Other work explores the us of automata for arithmetic constraint solving; Boigelot and Wopler

provide an overview [85]. A subset of work on explicit state space model checking (e.g., [86]) has

focused on general algorithms to perform fast state space reduction; one example includes a shared

set representation that trades off higher construction costs for constant-time set equality checks.

Aspects of this type of work may be of future interest for automata-based string constraint solvers.



Chapter 6

Conclusion

Many program analyses and testing frameworks deal with code manipulates string variables using

high-level operations like regular expression matching and concatenation. These operations are

difficult to reason about because they are not well-supported by the existing analysis machinery. We

investigated the thesis:

It is possible to construct a practical algorithm that decides the satisfiability of constraints

that cover both string and integer index operations, scales up to real-world program

analysis problems, and admits a machine-checkable proof of correctness.

Based on the results presented in the preceding chapters, we claim that this is possible. We defined a

formal theory of string constraints together with several solving algorithms. The definition represents

a trade-off: it is different enough from existing theories to permit a specialized solving algorithm

(cf. Section 4.2.2 for a comparison with an encoding from string constraints into bitvector constraints),

but it is sufficiently similar to be used in standard contexts (e.g., symbolic execution, as demonstrated

in Section 2.4).

We claimed the following six main contributions:

1. In Section 2.1, we identified and formally defined the Regular Matching Assignments (RMA)

problem, which describes a theory of language-level constraints.

83



2. We exhibited an automata-based algorithm, concat intersect, in Section 2.2. By virtue of being

based on automaton operations, the algorithm permits a full (from-first-principles) proof of

correctness proof rendered in the calculus of inductive constructions [18]. In addition, we

provide an open source implementation, DPRLE.1

3. We evaluated the expressive utility of the DPRLE implementation (2) in the context of

generating testcases that trigger SQL injection vulnerabilities in a corpus of real-world PHP

code (Section 2.4). We found that our tool was able to handle constraints generated using a

standard symbolic execution technique.

4. We conducted an apples-to-apples performance comparison of datastructures and algorithms

for automata-based string constraint solving (Chapter 3). We paid special attention to isolating

the core operations of interest, and used the popular open source dk.brics.automaton library

as a performance baseline.

We found that a BDD-based character set representation outperformed many commonly-used

representations, in particular for larger alphabets such as UTF-16. In addition, we note that

lazy automata algorithms are consistently more efficient than their eager counterparts.

5. Based on the insights of (4), we developed a decision procedure that supports the efficient and

lazy analysis of string constraints over multiple variables (Chapter 4).

This required redefining the constraint systems formalized in (1) in terms of indvidual string

assignments (rather than regular language assignments; Section 4.1.1). We provide an open

source implementation, StrSolve.2

6. We conducted a comprehensive performance comparison between our StrSolve prototype

(5) and implementations from related work (Section 4.2). We found that our prototype is

several orders of magnitude faster for the majority of benchmark inputs; for all other inputs

our performance is, at worst, competitive with existing methods.

1http://www.cs.virginia.edu/~ph4u/dprle/
2http://www.cs.virginia.edu/~ph4u/strsolve/

http://www.cs.virginia.edu/~ph4u/dprle/
http://www.cs.virginia.edu/~ph4u/strsolve/


These results represent some of the first concrete steps to enabling program analysis tools that can

rely on off-the-shelf tools for string-related reasoning. We anticipate that, in order to see widespread

use in programming languages research, string decision procedures would need to be offered as part of

a multi-theory SMT framework like CVC3 [17] or Z3 [16]. Future work might reasonably focus on the

integration of a theory of strings in such a framework; this poses both nontrivial theoretical challenges

as well as substantial engineering challenges. We are aware of at least one tentative proposal for the

standardization of a theory of string constraints as part of the SMT-LIB standard [87]. Speaking

more generally, we believe there is promise in using language-theoretic constructs beyond automata

for the analysis of code and code-related artifacts. For the Bek project, we used an extension of

finite-state transducers to model code directly, focusing primarily on low-level string sanitization

code [27, 28]. The use of transducers imposes restrictions on the type of code that can be modeled

directly, but allows for a relatively rich set of analysis operations. We believe that alternate versions

of this trade-off are worth exploring.





Appendix A

Library concatintersect

Below, we include the proof text for the concat intersect algorithm of Section 2.2. It defines characters,
strings, nondeterministic automata, and reachability at a relatively low level in Coq [18]. We exclude
the tactics for the Lemma and Theorem blocks; the full proof transcript is available on-line.1

Require Import Bool. Require Import EqNat. Require Import List. Require Import Omega.
Require Import Peano dec.

Inductive Char : Set := Char Index : nat → Char.

Fixpoint char eq (a b : Char) { struct b } : bool :=
match a, b with

| Char Index m, Char Index n ⇒ EqNat.beq nat m n
end.

Lemma char eq dec : ∀ a b : Char, {a = b} + {a 6= b}.
Inductive String : Set :=
| EmptyString : String
| Str : Char → String → String.

Fixpoint concat (s s’ : String) {struct s} : String :=
match s with

| EmptyString ⇒ s’
| Str c w ⇒ Str c (concat w s’ )
end.

Lemma concat empty : ∀ (s : String), concat s EmptyString = s.

Inductive Symbol : Set :=
| Character : Char → Symbol
| Epsilon : Symbol.

Fixpoint sym eq (a b : Symbol) { struct b } : bool :=
match a, b with

| Character m, Character n ⇒ char eq m n
| Epsilon, Epsilon ⇒ true
| , ⇒ false
end.

Lemma sym eq dec : ∀ a b : Symbol, {a = b} + {a 6= b}.
Lemma nat neq bneq : ∀ n n’, n 6=n’ → false = beq nat n n’.

Module Type NFADEF.
Parameter Qtype : Set. Parameter Q dec : ∀ a b : Qtype,

1http://www.cs.virginia.edu/~ph4u/dprle/proof.php
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{a = b} + {a 6= b}. Parameter Q : list Qtype. Parameter s :
Qtype. Parameter f : Qtype. Parameter D : Qtype → Symbol → list Qtype. Parameter

D dec : ∀ (q q’ : Qtype) (s : Symbol),
{In q’ (D q s)} + {˜(In q’ (D q s))}.

Parameter beq q : Qtype → Qtype → bool.
Parameter beq q eq : ∀ q q’ : Qtype,

q = q’ ↔ true = beq q q q’.

Parameter beq q refl : ∀ q : Qtype,
true = beq q q q.

End NFADEF.

Module NFA (n : NFADEF ).
Definition Qtype := n.Qtype.
Definition Q := n.Q.
Definition s := n.s.
Definition f := n.f.
Definition D := n.D.
Definition Q dec := n.Q dec.
Definition D dec := n.D dec.
Definition beq q := n.beq q.
Definition beq q eq := n.beq q eq.
Definition beq q refl := n.beq q refl.

Inductive reachable : Qtype → String → Qtype → Prop :=
| Done : ∀ (q : Qtype), In q Q → reachable q EmptyString q
| Step : ∀ (q : Qtype) (c : Char) (s : String) (q’ q” : Qtype),

In q Q → In q’ Q → In q” Q →
In q’ (D q (Character c)) →

reachable q’ s q” →
reachable q (Str c s) q”

| StepEpsilon : ∀ (q : Qtype) (s : String) (q’ q” : Qtype),
In q Q → In q’ Q → In q” Q →

In q’ (D q Epsilon) →
reachable q’ s q” →
reachable q s q”.

Definition language := fun x ⇒ reachable s x f.

Lemma concat reachability : ∀ (q q’ q” : Qtype) (s s’ : String),
reachable q s q’ →

reachable q’ s’ q” →
reachable q (concat s s’ ) q”.

End NFA.

Module M1’ ¡: NFADEF.
Inductive Qtype’ : Set := Index : nat → Qtype’.

Definition Qtype := Qtype’.

Lemma Q dec : ∀ (q q’ : Qtype),
{q = q’} + {q 6= q’}.

Variable s : Qtype.
Variable f : Qtype.
Variable Q’ : list Qtype.
Definition Q := s :: f :: Q’ : list Qtype.

Variable D : Qtype → Symbol → list Qtype.



Lemma D dec : ∀ (q q’ : Qtype) (s : Symbol),
{In q’ (D q s)} + {˜(In q’ (D q s))}.

Fixpoint beq q (q q’ : Qtype) { struct q’ } : bool :=
match q, q’ with

| Index m, Index n ⇒ EqNat.beq nat m n
end.

Lemma beq q eq : ∀ q q’ : Qtype, q = q’ ↔ true = beq q q q’.

Lemma beq q refl : ∀ q : Qtype, true = beq q q q.

End M1’.

Module M2’ ¡: NFADEF.
Inductive Qtype’ : Set := Index : nat → Qtype’.

Definition Qtype := Qtype’.

Lemma Q dec : ∀ (q q’ : Qtype),
{q = q’} + {q 6= q’}.

Variable s : Qtype.
Variable f : Qtype.
Variable Q’ : list Qtype.
Definition Q := s :: f :: Q’ : list Qtype.
Variable D : Qtype → Symbol → list Qtype.

Lemma D dec : ∀ (q q’ : Qtype) (s : Symbol),
{In q’ (D q s)} + {˜(In q’ (D q s))}.

Fixpoint beq q (q q’ : Qtype) { struct q’ } : bool :=
match q, q’ with

| Index m, Index n ⇒ EqNat.beq nat m n
end.

Lemma beq q eq : ∀ q q’ : Qtype, q = q’ ↔ true = beq q q q’.

Lemma beq q refl : ∀ q : Qtype, true = beq q q q.

End M2’.

Module M3’ ¡: NFADEF.
Inductive Qtype’ : Set := Index : nat → Qtype’.

Definition Qtype := Qtype’.

Lemma Q dec : ∀ (q q’ : Qtype),
{q = q’} + {q 6= q’}.

Variable s : Qtype.
Variable f : Qtype.
Variable Q’ : list Qtype.
Definition Q := s :: f :: Q’ : list Qtype.
Variable D : Qtype → Symbol → list Qtype.

Lemma D dec : ∀ (q q’ : Qtype) (s : Symbol),
{In q’ (D q s)} + {˜(In q’ (D q s))}.

Fixpoint beq q (q q’ : Qtype) { struct q’ } : bool :=
match q, q’ with

| Index m, Index n ⇒ EqNat.beq nat m n
end.

Lemma beq q eq : ∀ q q’ : Qtype, q = q’ ↔ true = beq q q q’.

Lemma beq q refl : ∀ q : Qtype, true = beq q q q.

End M3’.



Module M1 := NFA M1’. Module M2 := NFA M2’. Module M3 := NFA M3’.

Inductive Q4 : Set :=
| InQ1 : M1.Qtype → Q4
| InQ2 : M2.Qtype → Q4.

Module M4’ ¡: NFADEF.
Definition Qtype := Q4.

Lemma Q dec : ∀ a b : Qtype,
{a = b} + {a 6= b }.

Definition Q := (List.map (fun x ⇒ InQ1 x ) M1.Q) ++
(List.map (fun x ⇒ InQ2 x ) M2.Q).

Definition s := InQ1 M1.s.
Definition f := InQ2 M2.f.

Definition D := fun (q : Q4 ) (s : Symbol) ⇒
match q with

| InQ1 q’ ⇒ if andb (M1.beq q M1.f q’ ) (sym eq s Epsilon) then
(InQ2 M2.s :: (List.map (fun x ⇒ InQ1 x ) (M1.D q’ s)))

else

(List.map (fun x ⇒ InQ1 x ) (M1.D q’ s))
| InQ2 q’ ⇒ (List.map (fun x ⇒ InQ2 x ) (M2.D q’ s))
end.

Lemma D dec : ∀ (q q’ : Qtype) (s : Symbol),
{In q’ (D q s)} + {˜(In q’ (D q s))}.

Fixpoint beq q (q q’ : Qtype) { struct q’ } : bool :=
match q, q’ with

| InQ1 , InQ2 ⇒ false
| InQ2 , InQ1 ⇒ false
| InQ1 q, InQ1 q’ ⇒ M1.beq q q q’
| InQ2 q, InQ2 q’ ⇒ M2.beq q q q’
end.

Lemma beq q eq : ∀ q q’ : Qtype, q = q’ ↔ true = beq q q q’.

Lemma beq q refl : ∀ q : Qtype, true = beq q q q.
End M4’.

Module M4 := NFA M4’.

Lemma m4 q union left : ∀ (q : M1.Qtype), (In q M1.Q) → (In (InQ1 q) M4.Q).

Lemma m4 d left : ∀ (q q’ : M1.Qtype) (c : Symbol), In q’ (M1.D q c) → In (InQ1 q’ ) (M4.D
(InQ1 q) c).

Lemma m4 d left2 : ∀ (q q’ : M1.Qtype) (c : Symbol), In (InQ1 q’ ) (M4.D (InQ1 q) c) → In q’
(M1.D q c).

Lemma m4 q union right : ∀ (q : M2.Qtype), (In q M2.Q) → (In (InQ2 q) M4.Q).

Lemma m4 d right : ∀ (q q’ : M2.Qtype) (c : Symbol), In q’ (M2.D q c) → In (InQ2 q’ ) (M4.D
(InQ2 q) c).

Lemma m4 d right2 : ∀ (q q’ : M2.Qtype) (c : Symbol), In (InQ2 q’ ) (M4.D (InQ2 q) c) → In q’
(M2.D q c).

Lemma m4 q union : ∀ (q : M4.Qtype), (In q M4.Q) →
match q with

| InQ1 q1 ⇒ In q1 M1.Q
| InQ2 q2 ⇒ In q2 M2.Q



end.

Lemma m4 no going back : ∀ (q : M2.Qtype) (q’ : M1.Qtype) (c : Symbol), In (InQ1 q’ ) (M4.D
(InQ2 q) c) → False.

Lemma m4 left : ∀ (q q’ : M1.Qtype) (s : String), M1.reachable q s q’ → M4.reachable (InQ1 q) s
(InQ1 q’ ) .

Lemma m4 left right : ∀ (q q’ : M4.Qtype) (s : String), M4.reachable q s q’ →
match q, q’ with

| InQ1 q1, InQ1 q1’ ⇒ M1.reachable q1 s q1’
| InQ2 q2, InQ2 q2’ ⇒ M2.reachable q2 s q2’
| InQ2 , InQ1 ⇒ False
| InQ1 , InQ2 ⇒ True
end.

Lemma m4 right : ∀ (q q’ : M2.Qtype) (s : String), M2.reachable q s q’ → M4.reachable (InQ2 q) s
(InQ2 q’ ) .

Definition Q5 := prod M4.Qtype M3.Qtype.

Module M5’ ¡: NFADEF.
Definition Qtype := Q5.
Lemma Q dec : ∀ a b : Qtype,

{a = b} + {a 6= b}.
Definition Q := List.list prod (M4.Q) (M3.Q).

Definition s := (M4.s, M3.s).
Definition f := (M4.f, M3.f ).

Definition D := fun (q : Q5 ) (s : Symbol) ⇒
if (sym eq s Epsilon) then

map (fun x ⇒ (x, snd q)) (M4.D (fst q) Epsilon) ++
map (fun y ⇒ (fst q, y)) (M3.D (snd q) Epsilon) ++
list prod (M4.D (fst q) Epsilon) (M3.D (snd q) Epsilon)

else

list prod (M4.D (fst q) s) (M3.D (snd q) s).

Lemma D dec : ∀ (q q’ : Qtype) (s : Symbol),
{In q’ (D q s)} + {˜(In q’ (D q s))}.

Fixpoint beq q (q q’ : Qtype) { struct q’ } : bool :=
match q, q’ with

| (q4, q3 ), (q4’, q3’ ) ⇒ andb (M4.beq q q4 q4’ ) (M3.beq q q3 q3’ )
end.

Lemma beq q eq : ∀ q q’ : Qtype, q = q’ ↔ true = beq q q q’.

Lemma beq q refl : ∀ q : Qtype, true = beq q q q.
End M5’.

Module M5 := NFA M5’.

Lemma m5 q cross : ∀ (q4 : M4.Qtype) (q3 : M3.Qtype),
In q4 M4.Q → In q3 M3.Q → In (q4, q3 ) M5.Q.

Lemma m5 q cross2 : ∀ (q4 : M4.Qtype) (q3 : M3.Qtype),
In (q4,q3 ) M5.Q → In q4 M4.Q ∧ In q3 M3.Q.

Lemma m5 eq m4 eq : ∀ (a b : M4.Qtype × M3.Qtype),
a = b → fst a = fst b.

Lemma m5 eq m3 eq : ∀ (a b : M4.Qtype × M3.Qtype),
a = b → snd a = snd b.



Lemma m5 d cross2 : ∀ (q4 q4’ : M4.Qtype) (q3 q3’ : M3.Qtype) (c : Char),
In (q4’, q3’ ) (M5.D (q4, q3 ) (Character c)) →
In q4’ (M4.D q4 (Character c)) ∧ In q3’ (M3.D q3 (Character c)).

Lemma m5 d cross2 epsilon :
∀ (q4 q4’ : M4.Qtype) (q3 q3’ : M3.Qtype),
In (q4’, q3’ ) (M5.D (q4, q3 ) Epsilon) →
(In q4’ (M4.D q4 Epsilon) ∧ In q3’ (M3.D q3 Epsilon))
∨ (In q4’ (M4.D q4 Epsilon) ∧ q3 = q3’ )
∨ (In q3’ (M3.D q3 Epsilon) ∧ q4 =q4’ ).

Lemma m5 d cross epsilon m4 : ∀ (q4 q4’ : M4.Qtype) (q3 q3’ : M3.Qtype),
In q4’ (M4.D q4 Epsilon) → q3 = q3’ →
In (q4’,q3’ ) (M5.D (q4,q3 ) Epsilon).

Lemma m5 d cross epsilon m3 : ∀ (q4 q4’ : M4.Qtype) (q3 q3’ : M3.Qtype),
In q3’ (M3.D q3 Epsilon) → q4 = q4’ →
In (q4’,q3’ ) (M5.D (q4,q3 ) Epsilon).

Lemma m5 d cross: ∀ (q4 q4’ : M4.Qtype) (q3 q3’ : M3.Qtype) (c : Symbol),
In q4’ (M4.D q4 c) →
In q3’ (M3.D q3 c) →
In (q4’,q3’ ) (M5.D (q4,q3 ) c).

Lemma m5 equiv2 : ∀ (q5 q5’ : M5.Qtype) (s : String),
M5.reachable q5 s q5’ →
M4.reachable (fst q5 ) s (fst q5’ ) ∧
M3.reachable (snd q5 ) s (snd q5’ ).

Axiom m5 equiv : ∀ (q5 q5’ : M5.Qtype) (s : String),
M3.reachable (snd q5 ) s (snd q5’ ) →
M4.reachable (fst q5 ) s (fst q5’ ) →
M5.reachable (fst q5, snd q5 ) s (fst q5’, snd q5’ ).

Theorem m4 concat works : ∀ (s s’ : String),
M1.language s →
M2.language s’ →
M4.language (concat s s’ ).

Lemma m5 intersectworks : ∀ s : String, M3.language s → M4.language s → M5.language s.

Definition Qlhs (q : M5.Qtype) : Prop := match q with (q4, ) ⇒ q4 = InQ1 M1.f end.
Definition Qrhs (q : M5.Qtype) : Prop := match q with (q4, ) ⇒ q4 = InQ2 M2.s end.

Definition SolutionPair (q q’ : M5.Qtype) : Prop :=
In q M5.Q ∧ In q’ M5.Q ∧ Qlhs q ∧ Qrhs q’ ∧ In q’ (M5.D q Epsilon).

Lemma satisfying left :
∀ (q : M4.Qtype) (q’ : M3.Qtype) (s : String),

Qlhs (q, q’ ) →
match q with

| InQ1 q1 ⇒ M5.reachable M5.s s (q, q’ ) → M1.reachable M1.s s q1
| InQ2 q2 ⇒ False
end.

Lemma satisfying right :
∀ (q : M4.Qtype) (q’ : M3.Qtype) (s : String),

Qrhs (q, q’ ) →
match q with

| InQ1 q1 ⇒ False
| InQ2 q2 ⇒ M5.reachable (q, q’ ) s M5.f → M2.reachable q2 s M2.f



end.

Theorem allsolutions : ∀ (q q’ : Q5 ) (s s’ : String),
SolutionPair q q’ →
M5.reachable M5.s s q →
M5.reachable q’ s’ M5.f → M5.reachable M5.s (concat s s’ ) M5.f.
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and Westley Weimer. Temporal-safety proofs for systems code. In Computer Aided Verification,
pages 526–538, 2002.

[64] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler.
EXE: automatically generating inputs of death. In Computer and Communications Security,
pages 322–335, 2006.

[65] John Kodumal and Alexander Aiken. Banshee: A scalable constraint-based analysis toolkit. In
Static Analysis Symposium, pages 218–234, 2005.

[66] Davide Balzarotti, Marco Cova, Viktoria Felmetsger, Nenad Jovanovic, Engin Kirda, Christo-
pher Kruegel, and Giovanni Vigna. Saner: Composing static and dynamic analysis to validate
sanitization in web applications. In IEEE Symposium on Security and Privacy, pages 387–401,
2008.

[67] Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hiroshi Inamura, and
Zhendong Su. Dynamic test input generation for web applications. In International Symposium
on Software testing and analysis, pages 249–260, 2008.

[68] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Generating vulnerability signatures for string
manipulating programs using automata-based forward and backward symbolic analyses. In
Automated Software Engineering, pages 605–609, 2009.

[69] Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. Relational string verification using multi-track
automata. In CIAA, pages 290–299, 2010.

[70] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Patching vulnerabilities with sanitization
synthesis. In International Conference on Software Engineering, pages 251–260, 2011.



[71] Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. Symbolic string verification: Combining string
analysis and size analysis. In Tools and Algorithms for the Construction and Analysis of
Systems, 2009.

[72] K. Lakhotia, P. McMinn, and M. Harman. Automated test data generation for coverage:
Haven’t we solved this problem yet? In Testing Academia and Industry Conference, pages
95–104, September 2009.

[73] Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In International Conference on
Software Engineering, pages 416–426, 2007.

[74] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Pasareanu, Koushik Sen,
Nikolai Tillmann, and Willem Visser. Symbolic execution for software testing in practice:
preliminary assessment. In International Conference on Software Engineering, pages 1066–1071,
2011.

[75] Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet, Michael R.
Lowry, Suzette Person, and Mark Pape. Combining unit-level symbolic execution and system-
level concrete execution for testing nasa software. In International Symposium on Software
Testing and Analysis, pages 15–26, 2008.

[76] Fujitsu Laboratories. Fujitsu develops technology to enhance comprehensive testing of Java
programs, 2010.

[77] Pieter Hooimeijer and Westley Weimer. A decision procedure for subset constraints over
regular languages. In Programming Languages Design and Implementation, pages 188–198,
2009.

[78] Gertjan Van Noord and Dale Gerdemann. Finite state transducers with predicates and identi-
ties. Grammars, 4:2001, 2001.

[79] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In TACAS’08, LNCS.
Springer, 2008.

[80] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library: User Guide
and Reference Manual (C++ In-Depth Series). Addison-Wesley Professional, December 2001.

[81] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. MONA implementation secrets.
International Journal of Foundations of Computer Science, 13(4):571–586, 2002.

[82] Anders Møller and Michael I. Schwartzbach. The pointer assertion logic engine. In Program-
ming Language Design and Implementation, pages 221–231, June 2001.

[83] Michal Kunc. What do we know about language equations? In Developments in Language
Theory, pages 23–27, 2007.

[84] Sebastian Bala. Regular language matching and other decidable cases of the satisfiability
problem for constraints between regular open terms. In STACS, pages 596–607, 2004.

[85] Bernard Boigelot and Pierre Wolper. Representing arithmetic constraints with finite automata:
An overview. In ICLP 2002, pages 1–19.

[86] Stefan Blom and Simona Orzan. Distributed state space minimization. J. Software Tools for
Technology Transfer, 7(3):280–291, 2005.

[87] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2010.


