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i

“If I have ever made any valuable discoveries, it has been due more to patient atten-

tion, than to any other talent.”

Isaac Newton

“Most people say that it is the intellect which makes a great scientist. They are wrong:

it is character.”

Albert Einstein



Abstract

The recent discovery of a new type of superconductors based on BiS2 layers has

excited the scientific community due to its structural similarities with other uncon-

ventional superconductors, such as cuprates and Fe-based superconductors. If the

superconducting mechanism of BiS2-based superconductors is unconventional, it will

yield a new route to better understand the long-unsolved puzzle of unconventional

superconductivity. Hence, it is crucial to determine the superconducting mechanism

and the nature of superconductivity in this system.

There are contradicting scenarios regarding the superconducting mechanism in this

system. The band structure calculation indicates the existence of Fermi surface nest-

ing, like in iron pnictides, supporting a non-phonon mediated superconductivity. On

the other hand, the electron-phonon coupling constant was calculated to be large

enough to reproduce the reported Tc, suggesting an conventional phonon mediated

superconductivity. Experiments to test these theoretical predictions are limited, how-

ever.

To tackle the controversy over the role of phonons in this system, we have performed

elastic and inelastic neutron scattering measurements on polycrystalline samples of

non-magnetic La(O,F)BiS2 and magnetic CeO0.3F0.7BiS2. We have examined its crys-

tal structure and lattice vibrational modes, and compared these results with density

functional perturbation calculations. We could not find any meaningful change re-

lated to superconductivity in the phonon density-of-states either by F-doping or by

cooling through the transition temperature. This suggests that the possible electron-

phonon coupling in this material is much weaker than expected based on theoretical

calculations, implying this new BiS2-based superconductors can be unconventional.



iii

For the ferromagnetic CeO0.3F0.7BiS2, we have studied the interplay of magnetism

with superconductivity. This system exhibits the rare and interesting case of the

coexistence of ferromagnetism and superconductivity, which is not realized in in the

conventional phonon mediated superconductors due to their antagonistic nature.

The crystal and magnetic structures have been investigated together with the spin

fluctuations, and we determined the spin Hamiltonian describing the spin dynamics

in this system. In addition, we have examined the external magnetic field dependence

of both magnetic structure and its excitation. Under field, the magnetic structure

changes from ferromagnetic with the spins pointing along the c-axis to ferromagnetic

in the ab-plane, and the spin fluctuation dispersion splits into two. While the splitting

of spin excitations in a ferromagnet is untypical which needs further investigation, it

seems that superconductivity is robust against a magnetic field and there is no direct

relationship between magnetism and superconductivity in this system.

Our neutron scattering study on the crystal structure, lattice vibrations, and mag-

netism in the BiS2-based superconductors will help us to understand the mechanism

of superconductivity and its relationship with other degrees of freedom.
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Chapter 1

Introduction to Superconductivity

1.1 Introduction to conventional superconductiv-

ity

Superconductivity is characterized by the emergence of zero electrical resistivity [1]

and expulsion of magnetic flux, i.e. Meissner effect [2], when a material is cooled

below a critical temperature. The historical plot of first observed superconductivity

by Onnes is shown in Figure 1.1. The discovery of superconductivity has continued

to fascinate the world over a century since it was first discovered not only because of

its wide variety of practical importance but because of its fundamental challenge to

our understanding of quantum phenomena in a solid.

Superconductivity is by itself practically so attractive considering we lose about

13(10)% [3] of total energy while transferring electrical power from one place to

another, and has become a keyword for the future solution for the energy crisis.

Furthermore, superconductivity has various comtemporary applications such as MRI

(Magnetic Resonance Image) in medicine, MagLev Train (Magnetic Levitation Train),

and SQUID (Superconducting Quantum Interference Device) for magnetic moment

measurement. The practical importance of superconductivity technology will become

more significant as its onset temperature gets higher, thus being accessible with lower

1
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 T (K)
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Figure 1.1: The first discovery of superconductivity in Hg by H. K. Onnes in
October 1911. The resistance (in Ω) versus temperature (in K) graph shows the
sudden drop of resistance at 4.20 K. Within 0.01 K, the resistance jumps from
infinitesimally small value, less than 10−6Ω, to a finite value of about 0.1 Ω. This
figure was taken from Reference [4].

cost for cooling.

Superconductivity is interesting from a theoretical perspective as well since zero re-

sistivity in impossible in a classical theory of a metal. Every metal is expected to

have nonzero resistivity at a finite temperature due to the scattering of electrons by

lattice vibrations. Even at zero temperature, a finite resistivity is expected due to

scatterings from impurities and imperfections in the crystal lattice itself.



Chapter 1. Introduction to Superconductivity 3

1.1.1 Introduction to BCS theory

Only after more than half-century of its first discovery, a working theory on supercon-

ductivity was developed by Bardeen, Cooper and Schrieffer [5–7]. In the BCS theory,

two electrons form a bosonic pair, named Cooper pair, by the exchange of a phonon.

Cooper showed when there is an arbitrary small attractive interaction, the pairing is

favored having an energy gap, ∆, below the Fermi surface. In a classical picture, as

an electron passes by positive ions in a lattice, it will attract the surrounding ions

via Coulomb interaction, which in turn drags another electron having opposite spin

and opposite momentum. In other words, two electrons can be coupled with a lattice

vibration, i.e. phonon, which is illustrated in Figure 1.2.

As the total spin of this Cooper pair is an integer, it follows Bosonic statistics. Thus,

the Cooper pairs can condense into a ground state with a finite energy gap in the

excitation spectrum below a certain temperature, and superconductivity emerges.

Below the transition temperature, this gap prevents scattering of electrons. Hence,

the condensates, or the coherent superposition of Cooper pairs, can flow without any

resistance as long as an external perturbation energy scale is smaller than the gap.

The gap can be measured experimentally with, for example, tunneling measurements,

and specific heat measurements. The Cooper pair boson condensate is an important

example of quantum mechanical phenomena manifested at a macroscopic level.

In the BCS formulation, the mediating interaction is related with the shape of a gap

via the self-consistent equation [17],

∆~k = −1

2

∑
~k′

∆~k′

(∆2
~k

+ ξ2)1/2
V~k~k′ (1.1)

ξ = ε~k − εF

V~k~k′ = Ω−1

∫
V (~r) ei(

~k′−~k)d~r



Chapter 1. Introduction to Superconductivity 4

Figure 1.2: (top) Schematic figure of Cooper pair formation. Two electrons
(green circles) are bound together forming a Cooper pair (yellow oval) by the
deformation of background positive ions (red circles). The size of Cooper pair is
given by the coherence length typically ranging from 10 Å to 1000 Å. (bottom)
Schematic figure in momentum space showing the two interacting electrons. They
have opposite momenta and spins, and they are paired with exchange of phonon.
The Fermi sphere, and Fermi surface are shown with blue and light-blue circles.
These figures were taken from Reference [8].
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where ξ is the difference between the single particle energy (ε~k) and the Fermi energy

(εF ), and V~k~k′ is the matrix component of the Fourier transformed interaction poten-

tial. From this equation, we can see the mediating interaction has significant effect

on the nature of superconductivity as it is governed by the gap function.

BCS theory assumes (1) a k-independent weak attractive interaction, and (2) a spher-

ical Fermi surface. In the case of conventional phonon mediated superconductivity,

V~k~k′ can be well described as a rectangular function which is a constant in a thin shell

of thickness ~ωc around the Fermi surface, and zero elsewhere.

Converting the sum in the equation 1.1 to an integral and substituting ωc with the

Debye phonon cutoff frequency, ωD [17],

2∆ =
~ωD

sinh[1/(V N(EF ))]
≈ 4~ωDe−1/(NFV ). (1.2)

Here, V is the magnitude of constant electron-phonon coupling interaction, and NF

is the density of normal-state electrons at the Fermi energy. It is clear that the

isotropic electron-phonon interaction leads to an isotropic gap sitting at the Fermi

surface, while the gap magnitude is proportional to the Debye phonon frequency and

inversely proportional to the density of states on the Fermi surface. In normal state

metal, the energy states exist continuously up to Fermi energy at T = 0 K, and the

states up to Fermi energy are occupied by electrons. In a superconducting state, on

the other hand, the gap centered at Fermi energy pushes allowed states outside the

gap.

The temperature dependence of the gap, 2∆(T ) can be analytically determined to be

∆(T ) ≈ ATc
√

1− T/Tc for T ¡ Tc (1.3)

with the coefficient A = 3.06.

Furthermore, the transition temperature Tc can be determined in terms of three basic

material parameters:
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Material Tc ΘD N(EF ) 2∆
kBTc

λep
(K) (K)

Nb 9.25 276 0.91 3.6 0.85
V 5.40 383 1.31 3.4 1.0
Hg 4.19 87 0.15 4.6 1.6

Nb3Ge 23.2 302 0.95 4.2 1.8
V3Ga 16.5 310 2.7 4.0 1.17
V3Si 17.1 330 2.5 3.6 1.10

PbMo6S8 15.3 411 0.67 3.84 1.20

Table 1.1: Properties of selected superconductors, taken from Reference [17].

kBTc = 1.13 ~ωD exp [−1/ {V N(EF )}] (1.4)

Thus, larger values of ωD, V , and N(EF ) will result in higher transition temperature.

Practically, it is relatively easy to control ωD or N(EF ): ωD can be increased by

replacing ions with those with lighter mass, and N(EF ) can be tuned by chemical

doping. Meanwhile, V , electron-phonon coupling in BCS superconductor, is known

to become significant near a structural phase transition, but is hard to control or

predict [18].

By comparing Equation 1.2 and 1.4, one can find a direct relationship between the

magnitude of the superconducting gap and superconducting transition temperature,

Tc,

2∆

kBTc
= 3.52 (1.5)

This ratio has been confirmed in wide range of conventional superconductors as shown

in Table 1.1.

There are many additional experimental observations that support the phonon-mediated

BCS theory. Since the phonon frequencies depend on the mass of vibrating ions as
√
M , we can observe re-normalized superconductivity when the related ions have

been replaced with an isotope with different mass. We can also observe changes in

the particular phonon line shapes upon cooling into the superconducting phase. The
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width of phonon peak along energy at a specific wave vector can be measured exper-

imentally, for example, in neutron scattering. Strong electron-phonon coupling often

lead to an increase of phonon line width when the system becomes superconducting.

The BCS theory was so successful that it could explain many conventional supercon-

ductors found by that time. The examples include elemental superconductors such as

Hg, and Nb, or metal alloy superconductors like Nb3Ge, and NbTi. Further work on

BCS theory extended its applicability to explain some of the type II superconductors.

Later in 2001, Jun Akimitsu in Japan found superconductivity in MgB2 [19] at a rel-

atively high temperature of TC ≈ 39K, which was also understood in the extended

framework of BCS theory with a large electron-phonon coupling constant [20], λ, of

≈ 0.9.

1.1.2 MgB2 as a conventional phonon mediated superconduc-

tor

It was clear that from the isotope effect, shown in Figure 1.3 the superconductivity in

MgB2 is due to electron-phonon coupling [21]; the transition temperature was reduced

by 1 K when 10B ions were replace with 11B. However, there exist some peculiarities

as well.

1. No isotope effect was found when 24Mg ions were replaced with 25Mg [22].

2. Given the fact that N(EF ) is relatively low [27] and ωD is comparable with

other diboride systems, the transition temperature is unusually high.

3. The resistivity in normal, non-superconducting state was too low than what

should be expected for a system with strong electron-phonon interaction [23, 24].

4. Both resistivity and upper critical field were anisotropic [28, 29].

5. The heat capacity measurements shows a shoulder at low temperature deviating

the BCS expectation [30, 31].
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This singularities could be explained with highly selective electron-phonon coupling

and two nearly-noninteracting bands of different character [25–27]. (1) and (2) are

the consequences of selective electron-phonon coupling, while (3), (4) and (5) are the

results of two-band structure.

In a graphite-type structure of boron, as shown in Figure 1.3, 2D σ-bonding connects

intra-layer boron ions, while 3D π-bonding connects inter-layer boron ions. Further-

more, there is very little hopping of electrons between two bands. The existence of

two bands with different dimensionality and electron-phonon coupling results in the

above-mentioned properties such as the anisotropy in resistivity and upper critical

field.

Among these two bands, the 2D σ band has a strong electron-coupling because elec-

trons are concentrated in the B-B axes rather than being spread out like in normal

metal system. Therefore, the high frequency in-plane boron vibration are especially

strongly-coupled to the electronic states in the σ band, and its energy replaces ~ωD,

resulting in high transition temperature. In addition, this highly-selective electron-

phonon coupling leads to the substantial effects from B-isotope and negligible effects

from Mg-isotope.

Therefore, MgB2 is a conventional phonon-mediated s-wave pairing symmetry super-

conductor with two gap coming from different electron-phonon coupling in 2D σ and

3d π bands.
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Figure 1.3: (top) The crystal structure of MgB2 composed of graphite-type
Boron (Yellow) layers separated by HCP layers of Magnesium (Blue). (bottom)
Resistivity [32] of MgB2 as a function of temperature. Clear onset of
superconducting phase transition is observed around Tc ≈ 40K. The insets show
isotope effect of replacing 10B with 11B in normalized resistivity (left), or in
normalized magnetization (right). Temperature reduction of about 1K are
observed in both measurements, suggesting the mechanism of superconductivity
in MgB2 is related with lattice vibration. These figures were taken from Reference
[18].
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1.2 Introduction to unconventional superconduc-

tivity

1.2.1 Discovery of cuprates and Fe-based superconductors

year

T
c 

(K
)

Figure 1.4: Timeline of superconducting materials and their transition
temperature. The Conventional BCS superconductors, cuprates, and
iron-pnictides are represented as blue circle, red square, and green diamond
symbols. This figure was taken from Reference [33].

The discovery of superconductivity in La2−xBaxCuO4 at Tc ≈ 35K [34] by Bednorz

and Muller in 1986 came as a shock to the scientific community. It was because

the conventional phonon mediated mechanism would give the onset temperature of

superconductivity around 20K at most, due to the retarded slow interaction between

electron and phonon [35]. As illustrated in Figure 1.4, the highest transition temper-

ature before the discovery of cuprates was only about 23 K in Nb3Ge.
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The discovery of the Cu-based superconductors was immediately followed by a flurry

of actions in the filed, which revealed related compounds with Tc as high as 153 K in

HgBa2Ca2Cu3O8 [36] under external pressure. This new type of superconductors has

been named cuprates since every compound contains Cu2+ ion square lattice layers

as a common building block.

There were many indications that the superconducting mechanism of cuprates could

be different from the conventional one. This was clearly demonstrated from the

“Matthias’ Rules”, named after Bernd T. Matthias, which is the rule of thumb for suc-

cessful searches for new superconductors before the cuprate. The “Matthias’ Rules”

state:

• high symmetry is good, cubic symmetry is best

• high density of electronic states is good

• stay away from oxygen

• stay away from magnetism

• stay away from insulators

• stay away from theorists

Most of these rules were proven incorrect for the case of cuprates, with possible ex-

ception of the last rule. The undoped cuprates are an insulators with tetragonal or

orthorhombic symmetry and with moderate carrier density. Most importantly, their

electron-phonon coupling was found not enough to induce the observed high TC , and

as such, the cuprate was considered as an unconventional superconductor as opposed

to the conventional phonon mediated superconductor.

More importantly, the undoped cuprates exhibit antiferromagnetic (AFM) order.

It was quite unexpected considering that a magnetic moment was known to break
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Cooper pairs. Of course, superconductivity to emerge, the magnetic moment is sup-

pressed as shown by a representative phase diagram in Figure 1.5: the magnetic order

is suppressed with hole or electron doping, and upon further doping superconductiv-

ity arises. The proximity of the SC phase to the AFM phase was very unexpected.

Furthermore, while the static magnetic order vanishes as superconductivity emerges,

the strong magnetic fluctuation survives inside the superconducting phase.

In year 2008, another new family of unconventional superconductors based on 3d6

Fe2+ ion, that is strongly magnetic when isolated. Thus magnetism must be closely

related to superconductivity in these unconventional superconductivity.

The iron-based superconductors family are usually called after the chemical stoichiom-

etry of their parent compounds: 1111 for RFeAsO(R: rare earth), 122 for AFe2As2(A:

Ca, Sr, Ba), 11 for FeTe. The 1111 and 122 subsets are often called iron-pnictides as

they have pnictogens (As, P). So far, the highest Tc of the Fe-based superconductor

family is just above 50K as in Gd1−xThxFeAsO sample [38].

There are many common features between cuprates and Fe-based superconductors.

First, both systems exhibit antiferromagnetic (AFM) order in their parent compounds

as shown in Figure 1.5. Second, the building block of cuprates and Fe-based super-

conductors is a square lattice of cations, which is copper for the former and iron for

the latter. Last but not least, both superconductors have layered structures composed

of superconducting layers sandwiched between blocking layers. It is known that low

dimensionality induced by doping the parent compound is favorable for superconduc-

tivity.

Meanwhile, there are several differences in the physical properties of these two un-

conventional superconductors. The Cu ions in the parent compound of cuprates have

only one unpaired electron in dx2−y2 orbital, and this electron hardly moves due to

strong Coulomb repulsion, making the parent compound a Mott insulator. The anti-

ferromagnetism in cuprates comes from these localized electrons. On the other hand,

Fe ions in iron-based superconductors have at least two unpaired electrons, and band

calculations suggest that all five 3d orbitals contribute to the density of state (DOS)
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Figure 1.5: Typical phase diagram of cuprates (top) and Fe-based
superconductors (bottom). The presence of SC dome near AFM phase in both
systems suggests that magnetic fluctuations plays an important role in inducing
superconductivity. This figure was taken from Reference [43].
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near the Fermi surface. Both theoretically and experimentally, it has been proven

that there is a strong Fermi Surface Nesting between the hole pocket and electron

pocket in, at least, iron pnicitde. This nesting is known to lead to the Spin Density

Wave instability of this system.

1.2.2 Possible pairing mechanisms in unconventional super-

conductors

There are two approaches to understand the unconventional superconductivity. The

first approach is to consider the unconventional superconductivity as a completely

novel mechanism different from BCS superconductivity. Here, superconductivity

emerges from the Mott-Hubbard state. A well-known theory in this approach is the

RVB (Resonant Valence Bond) model proposed by Philip Anderson. In his model,

a novel phase of matter where spins are bound in singlet pairs resonating between

different configuration will emerge upon doping the parent compound in an antifer-

romagnetic state. The charged resonating spin singlets will manifest themselves as a

superconducting state.

Another approach is the spin fluctuation based model, which is currently the most

commonly accepted scenario. In this approach, superconductivity emerges from a

Fermi liquid, and it can be regarded as modified and extended BCS theory. It is well-

known that the superconducting phase is always nearby the antiferromagnetic phase,

and the magnetic exchange interaction is estimated to be strong in the unconventional

superconductors. Even though static magnetic order compete with superconductivity,

the magnetic fluctuations can be essential in mediating the unconventional SC pairs

acting as a pairing ’glue’. Just as a charge polarization cloud from lattice fluctuations

mediates the Cooper pairs in the conventional superconductors, a spin polarization

cloud from spin fluctuations could also be responsible for the pairing of electrons in

the unconventional superconductors.

Still today, the real mechanism of the high Tc superconductivity is under debate.

Many other candidates for the microscopic mechanism were proposed such as orbital

fluctuation [42] and charge fluctuation [40, 41]. In fact, any critical fluctuations from
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a quantum critical point is believed to be able to mediate superconductivity [9, 10].

Especially in cuprates, there is much experimental evidence that supports the exis-

tence of a charge density wave near the superconducting phase dome [44] as shown

in Figure 1.6.

For phonon mediated superconductors, the electron-ion interaction can be expanded

in a controlled many-body perturbation series [11, 12]. On the other hand, for un-

conventional superconductors where the electron-electron interaction is important,

it is not easy to employ such techniques, which prevents a rigorous description of

unconventional superconductivity.

1.2.3 Pairing symmetries in unconventional superconductors

Because a pair of identical electrons have odd exchange symmetry, if the spin symme-

try is odd (singlet), the the spatial symmetry must be even (eg. s-wave or d-wave);

if the spin symmetry is even (triplet), then the spatial symmetry must be odd (eg.

p-wave). The p-wave superconductor is particularly interesting in that it can support

ferromagnetic fluctuations. However, the actual materials that shows the spin-triplet

superconductivity are rare: 3+He and possibly Sr2RuO4 [15, 16].

The pairing symmetry of conventional phonon mediated superconductor is a simple

s-wave. The pairing symmetry of unconventional superconductors can, however, vary

according to the underlying physics including density, spin, and transverse current

interactions [14]. The corresponding pairing symmetry is believed to be d-wave for

cuprates, and s± for iron pnictides. It is believed that the simple s-wave symmetry

is not favored for unconventional superconductivity because paired electrons would

want to avoid close contact with each other, thereby reducing the effect of their mu-

tual Coulomb repulsion.

Looking back on the BCS theory, there is no restriction that the mediating potential

should be attractive from the equation,
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(a)

(b)

(c)

Figure 1.6: Schematic phase diagram showing various forms of stripe order and
their interactions with high temperature superconductivity. (a) Stripe order
competing with superconductivity. There is significant local stripe order in the
region marked ’fluctuating stripes’, which even extends beyond the ordered stripe
phase. (b) More complicated version where other broken-symmetry phases are
exhibited. The shape, topology, and even the number of ordered phases may vary
for material-specific reasons. (c) Schematic picture of a stripe-ordered phase. The
arrows represent the magnetic order and the blue scale represents the local charge
density. These figures were taken from Reference [44].
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Figure 1.7: (a) a conventional, uniform, s-wave (b) a d-wave as in the case in
cuprates (c) a two band s-wave with the same sign as in MgB2 (d) s± wave
suggested for Fe-pnictides. In all cases, the height of the ’rubber sheet’ is
proportional to the magnitude of the order parameter including its sign. These
figures were taken from Reference [13].

∆~kα =
∑
~qβ

V~k~q,αβ∆~qβ (1.6)

In this notation, positive V represent attractive interaction. If ∆~kα and ∆~qβ are

of the same sign, V must be positive. However, if they are of the opposite sign,

the corresponding V can be negative, which means repulsive interaction can pair

electrons.

Charge fluctuations are always attractive regardless of pairing state, therefore pairs

s-wave. On the other hand, spin fluctuations are repulsive in a singlet channel, and

attractive in a triplet channel. Therefore, spin fluctuations can mediate the p-wave

triplet pairing state, or a singlet pairing state, if that changes sign over the Fermi
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surface, of d-wave or s± wave.

In magnetic fluctuation mediated superconductivity, therefore, it is important to have

Fermi surface topology that matches the structure of magnetic excitations. In Figure

1.7, the Fermi structures for various superconductors are shown. For conventional

phonon mediated superconductors, single-band or multi-band s-wave symmetries are

found. For cuprates and iron-pnictides, on the other hand, the Fermi surfaces are

connected with magnetic wave vectors, (π,0) and (π,π), respectively.

1.2.4 Crystal structure as a key factor

Whatever the underlying mechanism, it is always instructive to look at the rela-

tionship between superconductivity and crystal structure as superconductivity is an

emergent phenomena coming from the strong correlation between different degrees

of freedom. There are lots of debates as to what is the key factor inducing the high

transition temperature superconductivity. In the case of iron-based superconductors,

some argue that the anion height from the Fe-layer is closely related to the supercon-

ducting transition temperature [46]. Other people insist that the angle of FeAn4(An:

anion) tetrahedron is crucial for inducing high transition temperature [47], and the

Tc becomes maximal at the angle of regular tetrahedron. (See Figure 1.8.)
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Figure 1.8: (top) Anion height dependence of Tc for typical Fe-based
superconductors. Large symbols indicates the onset temperature. The zero
resistivity temperature at ambient pressure are indicated by small light-blue
circle. Filled diamonds indicate the data at ambient pressure. Open diamonds are
the data of SrFe2As2 and BaFe2As2 under the optimal pressure. Open squares
indicate the data of NdFeAsO0.85. under high pressure (HP). The data of FeSe
under high HP are indicated by open circles. A filled circle indicates the data of
FeTe0.8Se0.2. Filled green diamonds are the data points for the Pt-doped
BaFe2As2 and Co-doped LaFeAsO. (bottom) Tc versus As-Fe-As bond angle α for
various pnictide superconductors. Formulas of parent compositions of
superconductors are depicted in the inset. Crystal structure parameters of
samples showing almost maximum Tc in each system are selected. The vertical
dashed line indicates the bond angle of a regular tetrahedron where α = 109.47◦.
These figures were taken from Reference [46, 47].
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1.3 Introduction to BiS2-based superconductors

Very recently, in 2012, new superconductors based on BiS2 layer have been found [51].

After the discovery of Bi4O4(SO4)1−x with transition temperature of 4.5 K, other

members of this family were soon discovered: LaO1−xFxBiS2 (Tc ≈ 10.6 K) [52],

NdO1−xFxBiS2 (Tc ≈ 5.6 K) [53], PrO1−xFxBiS2 (Tc ≈ 5.5 K) [54], CeO1−xFxBiS2

(Tc ≈ 3.0 K) [55].

1.3.1 Comparison with cuprates and Fe-based superconduc-

tors

These BiS2-based superconductors are quite interesting in that they have layered

structures just like cuprates and Fe-based superconductors, which is illustrated in

Figure 1.9. Layered structure with low dimensionality tend to have stronger fluctu-

ation which could be helpful for superconductivity pairing. In addition, the Bi ions

form square lattice as Cu or Fe ions do. Band structure calculations find that the

BiS2 layer is responsible for superconductivity while there are blocking layers between

the superconducting layers. Bi ions, however, are nonmagnetic, contrary to Cu or Fe

ions in cuprates or Fe-based superconductors.

1.3.2 Possible pairing mechanisms suggested

After the discovery of the BiS2-based superconductors, which share many common

structural features with other unconventional superconductors, the natural question

that arises is whether the newly found superconductors are just conventional BCS

superconductors, or another family of non-BCS superconductors yielding a new route

for unconventional superconductivity.
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Figure 1.9: (left) Crystal structure of Bi4O4S3, the first discovered
superconducting sample in the BiS2-based superconductor family. Purple, yellow,
and red sphere indicate Bi, S, and O ions, respectively. The occupancy of O2 sites
(the Oxygen in the SO4 layers) is 0.5, hence their color are represented with half
red and half white. (right) Schematic image of BiS2 square lattice in the ab-plane
which is common superconducting layer in the BiS2 superconductor family. These
figures are taken from Reference [51].

1.3.2.1 Electronic pairing mechanism

Several theoretical studies searching for possible pairing mechanism have been re-

ported so far. According to the ab initio electronic structure calculation, around

the optimal doping level there is a strong Fermi Surface Nesting at (π, π) just like

Fe-based superconductors as shown in Figure 1.10) . This FSN can induce strong

spin fluctuation which can act as a glue for the Cooper pair. The discovery of FSN
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suggests that the pairing mechanism of the BiS2-based superconductors can be elec-

tronic, making it a new type of unconventional superconductors.

Figure 1.10: (top) The band structure calculated with two orbital model. The
dashed lines denote the Fermi energy for the doping level of 0.5 and the
dotted-dashed lines represent that for the doping level 0.25. (bottom) The Fermi
surface of the two orbital model for the doping rate x of 0.25 and 0.5. These
figures are taken from Reference [57].
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1.3.2.2 Phononic pairing mechanism

On the other hand, other theorists find the electron-phonon coupling in this system

can be strong enough to support the observed superconducting transition tempera-

ture. (See Figure 1.11 for the phonon dispersions and the electron-phonon coupling

of LaO0.5F0.5BiS2 estimated from ab-initio calculations.) This implies that the BiS2-

based superconductor can be a conventional superconductor with strong electron-

phonon coupling just like MgB2.

1.3.2.3 Charge density wave instability

It is quite interesting that phonon calculations predict unstable imaginary modes.

All the phonon calculations up to now have been done for the LaO1−xFxBiS2 sample

with highest superconducting transition temperature. In the parent compound (x

= 0), people found negative phonon modes at the zone center, Γ point. The ionic

potential is shown in Figure 1.12, and the minimum energy position is not located

at the equilibrium zero point. The potential well is, however, too shallow for the ion

to be statically displaced. At the optimal doping level (x = 0.5), the phonon modes

become unstable at the M point, (π, π), or along the line connecting the Γ and the

M point. It should be noted that the M point is where the FSN occurs. The ionic

potential for the optimally doped system is shown in Figure 1.13. In the doped sam-

ple, the potential is deep enough for the ion to be displaced to another equilibrium

point, which could cause the static structural phase transition in this system. It has

been suggested that the new structural space group can be P 21 m n (International

Table number 31), and as you can see at the bottom the Figure 1.13, there could be

a modulation in the position of ions, that is, charge density wave (CDW).

Therefore, it has been argued that the superconducting system is at, or in close prox-

imity to the CDW phase. This CDW can compete with superconductivity, and its

fluctuation can be responsible for the pairing mechanism.
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Figure 1.11: (top) Phonon dispersion curves for doping level x=0 (LaOBiS2)
and x=0.5 (LaO0.5F0.5BiS2). This figure is taken from Reference [64]. (bottom)
The electron-phonon coupling at zone center. There are four main peaks near
4meV, 9meV, 14meV, and 16meV.
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Figure 1.12: Total energy as the system is distorted by the most negative
phonons at Γ in the LaOBiS2. The frozen phonon potential is shown in the red
curve, and the two lowest eigenstates. The lattice parameters of distorted
orthorhombic structure, and the calculated polarization following the most
negative phonon are indicated in the figure. The dispersion equation of the
potential, and the minimum energy point from equilibrium is also noted. This
figure is taken from Reference [64].

1.3.3 Theoretical relation between structure and supercon-

ductivity

As the structure of this system could be closely related with superconductivity, this

relationship has been extensively investigated. It has been theoretically predicted

that, upon doping the parent compound up to the optimal level, the a-axis lattice

parameter increases a little bit, while the c-axis lattice parameter decreases substan-

tially. Furthermore, if one pays attention to the atomic positions of BiS2 layer, one

can find the buckling of the plane decrease, and the plane becomes flat at x = 0.5

doping level. These structural changes as a function of F-doping are illustrated in

Figure 1.14.
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Figure 1.13: (top) Total energy as the system is distorted by the most negative
energy phonons in the

√
2×
√

2 cell of LaO0.5F0.5BiS2 at Q = (π, π). The inset
shows the sketch of the unstable phonons. The horizontal dashed red lines show
the energy level of frozen-phonon potential (red curve). (bottom) The BiS2 plane
in a fully optimized CDW phase of LaO0.5F0.5BiS2. Large pink and small yellow
spheres are Bi and S ions, respectively. The dashed red line is a guide to eyes,
indicating the sinusoidal distortion of the atoms. The white dashed square
indicates the

√
2×
√

2 unit cell of the CDW phase. The bottom panel shows the
same structure with a Bi-S bond cutoff distance of 2.8 Å, where the
one-dimensional nature of the chains becomes apparent. These figures are taken
from Reference [64].
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(a)

(b)

(c)

(d)

(e)

Figure 1.14: (left panels) Theoretically estimated crystal structural change as a
function of Fluorine doping demonstrating (a) the difference of the z values of
in-plane S ions (Sin) and Bi ions, (b) a-axis lattice parameter, and (c) c-axis
lattice parameter. The y-axis are in the unit of Åin all cases. (right panels)
Schematic side views diagram showing the expected change of BiS2 bilayer
buckling as the doping rate changes. (d) Zig-zag pattern when undoped (x = 0)
and flat BiS2 plane when the doping is optimal (x = 0.5). These figures are taken
from Reference [64].
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1.4 Thesis outline

We have briefly reviewed superconductivity in both conventional and unconventional

forms. We covered the BCS theory based on phonon-mediated Cooper pairing, and

also studied its failure in the unconventional superconductors such as cuprates and

iron-based superconductors. In the unconventional superconductors, another kind of

mediating interaction such as SDW or CDW is at play rather than lattice vibrations.

To find out the critical factors that induce unconventional superconductivity, it is also

instructive to look at the crystal structure. Recently discovered BiS2-based supercon-

ductors will be studied in this regard with the help of neutron scattering techniques.

Theory on neutron scattering will be presented before investigating actual systems.

We will study why the neutron scattering method is powerful, and what kind of

sources and instruments are available for our purpose. Mathematical formulation of

neutron scattering cross section for elastic/inelastic scattering from nucleus or mag-

netic ion will be discussed.

The La(O,F)BiS2 system is the best sample to study the effect of phonon in the BiS2-

based superconductor family as it has the highest Tc and La is nonmagnetic without

any magnetic ordering. The crystal structure, as a key factor related to superconduc-

tivity, will be investigated between the non-superconducting parent compound and

the superconducting doped compound, and also between observed and theoretically

calculated parameters. The generalized phonon density of states can be measured

by neutron scattering to find out the role of phonon in this system. The GDOS

between non-SC and SC compound are compared together with ab initio calculated

ones. Finally, the change of GDOS as a function of temperature across the transition

temperature is investigated.

CeO0.3F0.7BiS2 shows a very rare and interesting case of coexistence of ferromagnetism

and superconductivity. Its magnetic structures are examined at zero field and under

an external field. Neutron powder diffraction simulation based on group theoretical
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approach is used to find the possible magnetic structures, and field induced mag-

netic structure change is observed. The magnetic excitation is also investigated to

understand the interactions of magnetic moment again with and without a magnetic

field. By fitting the dispersion and intensity of neutron scattering, we can find its

spin Hamiltonian is isotropic Heisenberg type with nearest and next nearest neighbor

interactions.



Chapter 2

Introduction to Neutron Scattering

2.1 Theory of neutron scattering

2.1.1 Properties of neutrons as a probe for condensed matter

Neutron scattering is arguably one of the most powerful techniques to study con-

densed matter. In the neutron scattering technique, the sample of interest is radiated

by a flow of neutrons. Then, from the scattered pattern of neutrons, we can infer

either the internal structure of constituent atoms or the interactions between them.

Especially for magnetism, neutron scattering is the most direct approach, and hence

widely used to investigate magnetic structure and interactions. Furthermore, we can

explore large energy and momentum space with relative ease. The power of neutron

scattering lies in the physical properties of the neutron itself. Some of the properties

of neutrons are summarized in Table 2.1.

Table 2.1: Physical properties of neutron

charge 0
spin 1/2

magnetic dipole moment -1.913 µN
mass 1.675 × 10−27 kg

30
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First, neutrons have zero net charge (which gives the name, “neutron”). Therefore,

it can penetrate deeply inside a sample without being scattered by electrons. As a

consequence, neutron scattering reflects bulk properties rather than surface effects.

This property also serves well to study materials under different environment. It be-

comes relatively easy to accommodate cryogenic, vacuum, or magnetic field devices.

More importantly, since neutrons are oblivious to the electron cloud, it directly inter-

acts with nuclei of a material. While X-ray scattering cannot see light elements with

few electrons such as Hydrogen or Oxygen, neutrons can easily index these elements

which makes neutron more important in the study of fields like bio-materials, hydro-

gen storage materials, or high temperature superconductors.

Second, although the neutron’s net charge is zero, its internal structure of quarks

and gluons gives it a magnetic moment. Every electron also has a magnetic moment,

therefore if there are unpaired electron spins in an atom, neutrons can interact with

them via dipole-dipole interaction. The scattering length, a representative parameter

for scattering strength, of a magnetic ion in neutron scattering is almost comparable

to that of a nuclei. This makes neutron scattering a unique tool to study a material’s

magnetic properties.

Third, neutrons have relatively large mass. Consequently, hot neutrons with high

kinetic energy generated from reactors can effectively be moderated by materials of

comparable mass, such as water or liquid hydrogen. The moderated neutron has de

Broglie wavelength of typical inter-atomic distance of a solid, making it suitable for

diffraction. Moreover, the kinetic energy of moderated neutrons are usually of 0.1meV

∼ 100meV, and this is the order of many excitations in condensed matter like phonons

or magnons, which render neutron scattering an excellent probe for excitations in a

solid.

It should be noted, however, that the disadvantage of neutron scattering also comes

from the same physical properties that make it so advantageous. Neutrons hardly

interact with other materials that are essential to perform a neutron scattering ex-

periment such as guide, sample, detector, etc. Neutron scattering scientists often
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suffer from a lack of neutrons. A large amount of sample, high beam flux, well de-

signed guide, enough amount of high efficiency-detectors are always desired. The

large amount of neutron flux, however, is not always the best answer to a neutron

scattering experiment as it may influence the data resolution. The optimal balance

between the neutron flux and resolution is one of the key successes for a neutron

scattering experiment.

2.1.2 Neutron sources

Neutron beams for scattering experiment are obtained from nuclear research reactors

and spallation sources. From a reactor, neutrons are generated by spontaneous fission

of 235U. These neutrons are generated in a continuous manner. To gain a monochro-

matic energy beam of neutrons, Bragg reflection is employed using monochrometer

materials like pyrolytic graphite, germanium, or copper. By changing the scattering

angle at the monochrometer, we can control the wavelength, that is, the energy, of

incident neutrons on the sample.

Spallation source neutrons are produced by bombarding heavy metal targets such as

Hg, W, or Ta, with high energy proton packets accelerated in a magnetic field. These

neutrons arrive as pulses, and usually, the time-averaged, moderated flux is less than

that from a continuous reactor source. However, since the beams are pulsed in a

spallation source, they are well suited for time-of-flight experiments. The beams are

monochromated using several choppers rotating at different frequencies allowing only

neutrons of specific velocity, or energy, to pass through.

2.1.3 Neutron scattering instrument

There are lots of neutron scattering instrument serving a variety of research fields

with varying interests. Here I am going to describe the two most common neutron
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scattering instruments for inelastic study: the triple-axis spectrometer and the time-

of-flight spectrometer.

The triple-axis spectrometer, shown in Figure 2.1, gets its name because it utilizes

three rotating axes: the monochrometer, the sample, and the analyzer. By controlling

the angle of these axes, we can measure any point in energy and momentum space as

long as it is allowed by the scattering geometry. The monochrometer angle defines the

momentum and energy of incident beam; the sample angle chooses which reciprocal

points are to be studied; and the analyzer angle selects the momentum and energy of

the final scattered beam. Since the triple-axis spectrometer is installed with neutrons

from a reactor source, it has high flux, and thus suitable for detailed study on a small

region of ω -q space.

The time of flight spectrometer, shown in Figure 2.2, determines neutron energy by

measuring its time-of-flight from one point to another. The energy of incident neu-

trons can be monochromated, as previously explained, by using several choppers. It

is like a car moving at a specific speed can pass through all the blinking traffic lights

without being stopped. Since we can select the neutron beam energy, we can predict

when it hits the sample. Furthermore, since (1) we know the distance between the

sample and detectors and (2) we can measure the time for neutron to fly from the

sample to the detector, we can then calculate the energy of scattered neutrons. The

direction of momentum transferred can be calculated from the detector angle. Time-

of-flight spectrometers can be also installed in steady-state reactors if combined with

pulsing choppers. The time-of-flight method is powerful because it can map out a

huge ω -q space simultaneously generating a large amount of data.
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Figure 2.1: The schematic diagram of triple axis spectrometer at HB-3, High
Flux Isotope Reactor, Oak Ridge National Laboratory. The name comes from the
three rotating axes of monochrometer, sample table, and analyzer. One can
explorer the energy-momentum space by changing the angle of these axes.
Neutron beam from the source is reflected at monochrometer to have specific
incident momentum and energy. Then, it is scattered from the sample, and the
final momentum and energy is chosen by the analyzer. The double differential
cross section, the number of neutrons scattered with specific momentum and
energy, is measured by the 3He detector. All shutters, shields, beam stops are to
minimize the radiation in the background.
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Figure 2.2: The schematic diagram of time of flight machine, DCS at Nist
Center for Neutron Research, National Institute of Standard and Technology. The
neutron beams from the source are monochromatized by the use of several
choppers, and the momentum direction is almost parallel with the neutron guide.
After the neutrons are scattered from the sample, the time of flight from the
sample to the detector is measured electronically, which is converted to final
energy of each neutron. 913 3He detectors are located in predefined position, so
that we can figure out the angle of scattering, i,e, the final momentum of the
neutron.
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2.2 Mathematical formula for neutron scattering

2.2.1 Neutron scattering geometry

Figure 2.3: The scattering triangles composed of incident wave vector ~ki,
scattered wave vectpr ~kf ,and trasfered wave vector ~Q. In case of elastic scattering
where initial and final energy are equal, (a), the triangle becomes an isosceles,
that is, |~ki| = |~kf |. We can see from (b), this condition gives special relation

between |~k| and | ~Q| that Q = 4πsinθ/λ. When the scattering becomes inelastic,
there is an energy transfer (c) from the neutron to the sample (neutron energy
loss), or (d) vice versa (neutron energy gain). In the former case, |~ki| < |~kf |, and

for the latter, |~ki| > |~kf |.

The two most important conservation laws in kinematics, “energy conservation” and

“momentum conservation”, should, of course, hold for neutron scatterings as well.

Therefore, we obtain:

~Q = ~kf − ~ki

~ω = Ei − Ef (2.1)
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where ~k is the wave vector with magnitude k=2π/λ (λ: wave length of neutron), E

is the energy, and i and f subscripts are the initial and final state, respectively. Here,

~ ~Q is the momentum transferred to the sample, and ~ω is the energy transfered (~:

Plank constant). The relation between momentum and energy is given by

E =
~2k2

2me

(2.2)

where me is the mass of neutron. In the case of elastic scattering as in Figure 2.3 (a)

and (b), by definition, there is no energy transfered to the sample, and the magni-

tude of wave vector,
∣∣∣~k∣∣∣, does not change. On the other hand, when there is inelastic

scattering as in 2.3 (c) and (d), the magnitude of the wave vector either increases

when there is neutron energy loss or decreases in neutron energy gain.

2.2.2 Differential cross section

In neutron scattering, or in general, in every scattering experiment, we are interested

in how many particles (neutrons, in our case) are scattered into a solid angle dΩf

with energy range of Ef and Ef + dEf given the flux of incident particles φ(ki) (see

Figure 2.4), and this is called the differential cross section. When σ, the scattering

cross section, represents the total scattering rate in every direction with all possible

energies, the differential scattering cross section can be written as

d2σ

dΩfdEf
. (2.3)

Neutron scattering can be considered as a weak perturbation causing a transition

between states in the system while leaving the nature of the states themselves as they

are. The proper equation describing this perturbation is Fermi’s Golden Rule, and

therefore, the differential scattering cross section can be represented as

d2σ

dΩfdEf

∣∣∣∣
λi→λf

=
kf
ki

(
mn

2π~2
)2|〈 ~kfλf |V |~kiλi〉|2δ(~ω + Ei − Ef ) (2.4)
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Figure 2.4: A neutron incident on a sample with the momentum of ~ki. From
the interaction between the sample and the neutron, the neutron is scattered in a
specific direction in a spherical coordinate at the polar angle θ and the azimuthal
angle φ with solid angle dΩ. The momentum changes to ~kf . The purpose of
every scattering experiment is basically to measure the amount of scattering to a
certain solid angle with specific energy and momentum.

where the initial and final state of sample are labeled by quantum number λi and λf .

Since the interaction between the neutron and the sample is weak, we can further

assume both incident and scattered wave functions as plane waves, i. e., the Born

approximation. Under these assumptions, and using several mathematical techniques,

it can be shown that

d2σ

dΩfdEf
= N

kf
ki
b2S( ~Q, ω) (2.5)

S( ~Q, ω) =
1

2π~N
∑
ll′

∫ ∞
−∞

dt〈e−i ~Q·~rl′ (0)ei
~Q·~rl(t)〉e−iωt

=
1

2π~N

∫ ∞
−∞

dt〈ρ ~Q(0)ρ ~−Q(t)〉e−iωt. (2.6)
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Here,

ρ ~Q(t) =
∑
l

ei
~Q·~rl(t) (2.7)

is the atomic density operator, and the angle bracket means average over all possible

states. Thus, the scattering function, S( ~Q, ω), is the Fourier transform of the time-

dependent pair-correlation function. The scattering function only depends on ~Q and

ω, not on the initial or final value of momentum or energy.

2.2.3 Coherent and incoherent scattering

Equation 2.5 can be rewritten to distinguish two kinds of scattering, coherent and

incoherent, as

d2σ

dΩfdEf
= N

kf
ki

(b̄)
2
S( ~Q, ω) +N

kf
ki
{ ¯(b2)− (b̄)

2}S( ~Q, ω) (2.8)

= N
kf
ki

σcoh
4π

S( ~Q, ω) +N
kf
ki

σinc
4π

S( ~Q, ω). (2.9)

Here, σcoh = 4π(b̄)2 is the cross section for coherent scattering, and σinc = 4π{ ¯(b2)−
(b̄)2} is for incoherent scattering. Due to isotopes, a monoatomic sample can have

varying scattering lengths, and furthermore, even in an isotope, the scattering length

can vary depending on relative spin direction between neutron and nuclei. These

varying scattering lengths result in incoherent scattering. As is evident from the

equation, coherent scattering is from the average scattering length, while incoherent

scattering is from the variance of scattering lengths. In other words, the coherent

scattering provides information about the cooperative phenomena among different

atoms like Bragg scattering, phonons, or magnons, whereas the incoherent scattering

gives information about individual particle motion, such as diffusion. In this disser-

tation, we will mainly focus on the coherent part of scattering.
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2.2.4 Coherent nuclear scattering

2.2.4.1 Coherent nuclear elastic scattering

For coherent nuclear elastic scattering, we only consider the time averaged position,

so that,

S( ~Q, ω) = δ(~ω)
1

N
〈
∑
ll′

ei
~Q·(~rl− ~rl′ )〉 (2.10)

= δ(~ω)
(2π)3

v0

∑
G

δ( ~Q− ~G). (2.11)

Here ~G are reciprocal lattice vectors, and v0 is the unit cell volume. We can generalize

the above equation to non-Bravais lattice where there are more than one atom per

unit cell. Furthermore, we can incorporate reduction of Bragg peak intensity due to

thermal fluctuation of the atoms by using Debye-Waller factor. Then the equation

becomes

dσ

dΩ

∣∣∣∣el
coh

= N
(2π)3

v0

∑
G

δ( ~Q− ~G)|FN(~G)|2 (2.12)

FN(~G) =
∑
j

b̄je
i ~G· ~dje−Wj (2.13)

where ~dj is the position within the unit cell of the jth atom, and W = 1
2
〈( ~Q · ~u)2〉

for small displacement ~u of atom from its equilibrium position. FN(~G) is called the

static nuclear structure factor. It determines the relative intensity of Bragg peaks at

different reciprocal sites, and hence, is used to find the position of atoms in a unit

cell by fitting the experimental data.
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2.2.4.2 Coherent nuclear inelastic scattering

First, let’s start by mentioning some of the important properties of the scattering

function. We begin with what is called the principle of detailed balance:

S(− ~Q, ω) = e−~ω/kBTS( ~Q, ω) (2.14)

where kB is the Boltzman constant, T is temperature, and ~ω, the energy transfered,

is assumed to be positive. This equation relates the probability of transition to depend

on the weight factor of initial states, and results in higher intensity in the positive

energy transfer region (excitation creation or neutron energy-loss region) than in the

negative energy region (excitation annihilation or neutron energy-gain region).

Furthermore, from the fluctuation-dissipation theorem, χ
′′
( ~Q, ω),the imaginary part

of dynamic susceptibility, that is, dissipation, can be related with the scattering

function,

S(− ~Q, ω) =
χ

′′
( ~Q, ω)

1− e−~ω/kBT
. (2.15)

This equation applies for both positive and negative ω. When the scattering function

is an even function of Q, i.e.,S(− ~Q, ω) = S( ~Q, ω), the principle of detailed balance

requires χ
′′
( ~Q, ω) to be an odd function of ω, as can be shown below.

χ
′′
( ~Q,−ω)

1− e+~ω/kBT
= e−~ω/kBT

χ
′′
( ~Q, ω)

1− e−~ω/kBT

χ
′′
( ~Q,−ω) =

1− e+~ω/kBT

1− e−~ω/kBT
e−~ω/kBTχ

′′
( ~Q, ω) = −χ′′

( ~Q,−ω).

The coherent excitation of nuclei in a crystal is called a phonon. When there is n

atoms in a unit cell, a total 3n mode of phonons should be expected with 3 dimensional

degree of freedoms. When a neutron interacts with a single phonon, one obtains
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χ
′′

=
1

2

(2π)3

v0

∑
~G,~q

δ( ~Q− ~q − ~G)
∑
s

1

ω~qs
|F( ~Q)|2[δ(ω − ω~qs)− δ(ω + ω~qs)] (2.16)

with F( ~Q) being the dynamical structure factor given by

F( ~Q) =
∑
j

b̄j√
mj

( ~Q · ξjs)ei
~Q· ~dje−Wj . (2.17)

Here, q is the wave vector from the nearest reciprocal lattice, that is, ~Q = ~G+ ~q. ω~qs

is the frequency of phonon mode s at position ~q, and ξjs is the polarization vector of

phonon mode s for the jth atom. Note that the minus sign in the above equation is

required from the odd parity of χ
′′
( ~Q, ω).

There can be various interactions which give rise to a finite lifetime for phonons,

such as phonon-phonon or electron-phonon interactions. In the view of a phonon

as a quantum single harmonic oscillator, this finite lifetime can be represented with

damped harmonic oscillator model, making delta functions in energy space replaced

with lorentzians. Therefore, the above equation, in this case, should be modified with

a substitution of

1

ω~qs
δ(ω ± ω~qs)→

1

πω
′
~qs

Γ~qs
[ω ± ω′

~qs]
2 + Γ2

~qs

(2.18)

where, Γ~qs is the half-width at half-maximum(HWHM) of the peak, and ω
′2
~qs =

ω2
~qs − Γ2

~qs.

2.2.5 Magnetic scattering

For an atom with spin S, the amplitude of magnetic scattering can be expressed as
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pS = (
γr0

2
)gf( ~Q)S (2.19)

where γ is the gyromagnetic ratio, r0 = e2/mec
2 is the classical electron radius, g

is Landé splitting factor, and f( ~Q) is the magnetic form factor which is the Fourier

transform of normalized unpaired spin density on an atom.

To determine the cross section of magnetic scattering, one needs to consider not only

the initial and final state wave vector of the neutron, but also the spin state. If we

account this in Equation 2.4, and solve for the unpolarized neutron case with a single

species of magnetic atom, the differential cross section is given by

d2σ

dΩfdEf
=
N

~
kf
ki
p2e−2W

∑
α,β

(δα,β − Q̂αQ̂β)Sαβ( ~Q, ω) (2.20)

Sα,β( ~Q, ω) =
1

2π

∫ ∞
−∞

dte−iωt
∑
l

ei
~Q·~rl〈Sα0 (0)Sβl (t)〉 (2.21)

where α, β = x, y, z components. So, Sα,β( ~Q, ω) is the Fourier transform of the time-

dependent spin component α and β correlation function, analogous to equation 2.6.

It should also be noted that if we integrate Sα,β( ~Q, ω) over all energies and over a

Brillouin zone, the sum rule is obtained.

∫ ∞
−∞

dω

∫
BZ

d~QSαβ( ~Q, ω) =
(2π3)

3v0

S(S + 1)δαβ. (2.22)

As will be shown below, the elastic magnetic Bragg scattering is proportional to the

square of 〈S〉, the ordered moment of spin, which is close to S in a classical spin sys-

tem at low temperature. Thus, from the sum rule, the amount of summed spectral

weight available for magnetic excitation is proportional to S.
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2.2.5.1 Coherent magnetic elastic scattering

The cross section of coherent elastic scattering from a magnetic moment is given by

dσ

dΩf

∣∣∣∣el
coh,mag

= NM
(2π)3

vM

∑
~GM

δ( ~Q− ~GM)|~FM(~GM)|2 (2.23)

~FM(~GM) =
∑
j

pj ~S⊥je
i ~GM ·~djeWj (2.24)

which is similar to equation 2.12. Here, the subscript M indicates magnetic, as NM

and vM refers to the number of magnetic unit cells in a sample and the volume of a

magnetic unit cell, respectively.

2.2.5.2 Coherent magnetic inelastic scattering

Figure 2.5: Classical picture of spin wave. (a) perspective and (b) top view of
spin wave. It can be viewed as by propagating excitation in orthogonal direction
to the average ordered moment.

Just as the collective excitations of nuclei in a solid which are called phonons, there

can be collective excitations of magnetic moments (see Figure 2.5). These are called



Chapter 2. Introduction to Neutron Scattering 45

spin-wave since, in a classical picture, the magnetic moments fluctuate like a prop-

agating wave, and are also called magnons in the point of view from quasiparticle

excitations. Spin wave involves displacements of the spins perpendicular to the aver-

age spin direction. If we assume the spins are ordered along z direction, for a single

species of magnetic ion, we find that the magnetic double-differential cross section of

the equation 2.20 can be modified by the following substitution.

∑
α,β

(δα,β − Q̂αQ̂β)Sαβ( ~Q, ω) =
1

2
(1 + Q̂2

z)Ssw( ~Q, ω). (2.25)

The inelastic scattering function for spin wave, Ssw( ~Q, ω), depends on the magnetic

ordering pattern. For example, in the case of a Heisenberg ferromagnet with only

nearest-neighbor interactions, it can be written as

Ssw( ~Q, ω) = S
∑
~G,~q

[(nq + 1)δ( ~Q− ~q− ~G)δ(ω−ωq) +nqδ( ~Q+ ~q− ~G)δ(ω+ωq)]. (2.26)

When we include the effect of damping, we can describe it by

χ
′′
( ~Q, ω) = S(

ω~q
ω

′
~q

)[
Γ

(ω − ω′
~q)

2 + Γ2
− Γ

(ω + ω
′
~q)

2 + Γ2
] (2.27)

where

ω
′

~q = ω~q − Γ2. (2.28)
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Crystal Structure, Phonon, and

Superconductivity in La(O,F)BiS2

3.1 Introduction

As discussed in Chapter 1, several families of superconducting (SC) materials and

mechanisms have been found and proposed. The early discovered conventional super-

conductor was explained in BCS theory by mediating phonons, i.e., lattice vibrations.

However, the newer unconventional superconductor has yet to be fully understood.

Many of the materials that belong to the latter category have layered crystal struc-

tures with low dimensionality. The cuprates with CuO2 layers and the Fe-based

superconductors with Fe-An (An: pnictogen or chalcogen anion) layers are two ex-

tensively studied examples [48–50].

Very recently, a new family of materials based on BiS2 layers has been found to be SC

at low temperatures: Bi4O4(SO4)1−x [51] and LnO1−xFxBiS2 (Ln=La [52], Nd [53],

Pr [54], Ce [55], and Yb [56]). The natural question that arises is whether the new

Bi-based superconductors are conventional BCS superconductors or another family

of non-BCS type superconductors yielding a new route for unconventional supercon-

ductivity.

46
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Several theoretical studies have been reported especially for LaO0.5F0.5BiS2 with cur-

rently the highest Tc ≈ 10.8 K among the BiS2-based superconductors. A recent

band structure calculation [57] has shown the electronic bands near the Fermi sur-

face are multi-bands with characteristics of mainly Bi-6p and S-3p orbitals. Without

F-doping, there is an approximately 0.8 eV gap across the Fermi level, as shown in

the Figure 3.1, making LaOBiS2 a band insulator [57, 59–61]. Upon F substitution,

the chemical potential increases to make the compound metallic for T ≥ Tc in a rigid

band manner [60]. Because the conduction band is mainly from the p states of the

BiS2 layer, it is suggested that the BiS2 layer is responsible for the superconductivity

in these materials.

Figure 3.1: The first principle calculated band structure for. The panel is taken
from the reference [57].

Calculations indicate the Fermi level in LaO0.5F0.5BiS2 crosses four conduction bands
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and results in only electron pockets [57, 59–61]. The quasi-one-dimensional (1d)

nature of the conduction bands gives rise to a (π,π) wave vector Fermi surface nesting

[57, 58, 60] just as in the Fe-pnictides. In addition, there are suggestions [66] that the

SC pairing is much stronger than in the limit of the conventional phonon mediated

picture, making electronic correlations a candidate for the pairing mechanism [58,

62]. Alternatively, an electron-phonon (e-ph) coupling constant calculation [60, 61,

64] finds λ ≈ 0.85 with Tc ≈ 11.3 K, close to the experimental value, when the

Coulomb parameter of the Allen-Dynes formula is 0.1. This suggests LaO1−xFxBiS2

is a conventional superconductor with strong e-ph coupling. Moreover, just like the

spin-density wave (SDW) instability in Fe-based superconductors, a charge-density-

wave (CDW) instability from negative phonon modes at or around the Γ point, (π,π),

is suggested to be essential to the superconductivity [60, 64].

Figure 3.2: Schematic diagram of three types of pairing symmetries with spin
fluctuation mediated spin singlet, and their nesting vectors (a) sign conserving
s-wave, (b) sign reversing s-wave, and (c) d-wave superconducting gap

Several pairing symmetries have been proposed for superconductivity in the BiS2-

based superconducting materials [57, 58]: s-wave, sign reversing s-wave, and d-wave.

It should be noted that since the Fermi surface is near a topological instability

[52, 57, 68], the pairing mechanism can also change with substitution level. Con-

sidering the large extent of Bi-6p orbitals, the electron-electron (e-e) interaction may

not be as strong, and the e-ph coupling can contribute to the sign reversing s-wave

pairing enhanced by Fermi surface nesting and a large density of states near the op-

timal substitution. Alternatively, if e-e repulsion is not negligible but short-ranged,

spin-fluctuations can mediate either s±-wave or d-wave pairing depending on the
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substitution level and the intra/inter orbital interaction strength. Some examples

of spin-fluctuation mediated pairings are shown in Figure 3.2. Finally, due to its

quasi 1d band properties, spin-triplet pairing is also a candidate, as was suggested in

Sr2RuO4 [69].

Experimental studies to test the theoretical scenarios, however, are limited: only

some Hall effect and magnetoresistance measurements [66, 67] supporting the exis-

tence of electron pockets and multiband nature of this system have been reported so

far. Thus, detailed experimental study of the crystal structure and lattice vibrations

of non-SC and SC compounds, and its comparison with theoretical predictions are

crucial in understanding the new BiS2-based superconductors.
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3.2 Methods

3.2.1 Experimental details

A 4.89 g polycrystalline sample of LaOBiS2 was synthesized using the solid-state

reaction method under ambient pressure while a 0.89 g polycrystalline sample of

LaO0.5F0.5BiS2 was synthesized under high pressure at the National Institute for Ma-

terials Science (NIMS) in Tsukuba, Japan. Details concerning sample synthesis are

described in Refs. [52] and [65]. Figure 3.3 shows the low-temperature resistivity

of the parent and the F-doped compound. LaO0.5F0.5BiS2 exhibits a clear onset of

SC transition at Tc ≈ 10.8 K. Bulk superconductivity has been observed by a large

diamagnetic signal below 8 K in the magnetic susceptibility measurement [52, 65].

Recent specific heat measurements also confirm that the superconductivity in this

sample is bulk in nature [56].

Neutron scattering measurements were performed at the Spallation Neutron Source

(SNS) using the POWGEN diffractometer, the wide angular range chopper spectrom-

eter (ARCS), and the Cold Neutron Chopper Spectrometer (CNCS). Samples were

loaded into vanadium (at POWGEN and CNCS) or aluminum (at ARCS) cans with

a He atmosphere and mounted to the closed-cycle refrigerator (at POWGEN and

ARCS) or liquid helium cryostat (at CNCS). Neutron diffraction data were collected

using a wavelength band to cover a wide range of d spacing from 0.55 to 4.12 Å at

POWGEN [70]. Inelastic neutron scattering (INS) measurements were performed at

ARCS [71] with monochromatic neutrons of incident energies Ei = 40 and 80 meV.

For improved resolution at low energy transfers, INS measurements were performed

at CNCS [72] with Ei = 25 meV. All the INS data presented here are corrected for

background by subtraction of an empty-can measurement.
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Figure 3.3: Temperature dependent resistivities of LaOBiS2 (black lines) and
LaO0.5F0.5BiS2 (red squares).

3.2.2 Calculation details

The phonon calculations were performed using QUANTUM-ESPRESSO [73] with ul-

trasoft pseudopotentials. The generalized gradient approximation (GGA) of Perdew,

Burke, and Ernzerhof [74] was used for the exchange correlation potential. A 20 x

20 x 6 regular grid over the irreducible Brillouin zone was used for the self-consistent

calculation of the F-doped and parent compound. A plane-wave energy cutoff of 60

Ry and charge density energy cutoff of 480 Ry were used for both materials. A man-

ual check of convergence for grid density, energy cutoff, and lattice parameter values

was performed.

As we could find negative energy phonon modes at M = (π, π, 0), we double-checked

our calculation with five different models. We list the phonon energies at M point to

show that our calculations are well converged, confirming the existence of negative
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energy modes at M.

To simulate the half doping in the SC sample, we replace oxygen at one of the 2a

Wyckoff sites with F in an ordered fashion. In order to test the effect of the (O/F)

ordering on the buckling of BiS2 plane, we also repeated calculations using a system

with charge doping without actual F substitution. We obtained similar results for

both models.

We tested two models. In the first model, we approximate the F-doping by assum-

ing a supercell structure of perfectly ordered O/F lattice. In the second model, we

assume we have a perfect disorder of O/F and therefore the system can be simply

modeled as a charged system without actual F-doping. The buckling of the BiS2

plane from both models is shown in Figure 3.4. We note that both models give the

same behavior, i.e. the buckling decreases with doping. In the ordered O/F model,

the buckling vanishes completely at x=0.5 doping level while it is reduced down to

1 % for the charged-model with O/F disorder. This indicates the importance of the

nature of F-doping in a real system.

The phonon DOS is calculated using the eigenvectors from the linear response cal-

culations. The negative-energy modes are excluded in DOS calculations. However,

due to very limited number of negative-energy modes, we do not expect significant

contribution from them to the DOS. The powder-averaged phonon DOS is calculated

using a 20 x 20 x 8 q-grid based on the linear response calculations of the dynamical

matrix over a 4 x 4 x 2 grid.
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Figure 3.4: The buckling, defined as |zBi − zS1 |/zBi , as a function of doping.
The doping effect is modeled as an ordered structure of (F/O) (black line) and as
a disordered model where the system is treated with a net charge and without
actual F-doping (red line). We note that both doping models give similar trend
that the buckling of the BiS2 plane decreases with doping level approaching to 0.5.
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3.3 Structure study

3.3.1 Neutron powder diffraction measurement

3.3.1.1 NPD and refinement of LaOBiS2

The detailed crystal structure for the parent compound, LaOBiS2, was first inves-

tigated in our report. Figure 3.5 (a) shows neutron diffraction data and Rietveld

refinements obtained from this sample. The resolution of nuclear Bragg peaks are

instrumentally limited, which indicates good crystallinity. The data for the parent

compound is well reproduced by the P4/nmm space group with structural parame-

ters and goodness-of-the-fit listed in Table 3.1.

We determine the crystal structure, as shown in the Figure 3.6, to be similar to that

found by the preliminary x-ray scattering measurements on the doped compound

[52, 65]. The system has a layered structure where BiS2 bilayers are well seperated

by La2(O,F)2 blocking layers. The Bi ions form a square lattice just as the Cu and

Fe ions do in the cuprates and Fe-based superconductors, respectively. There are two

distinct Wyckoff sites for the sulfur ions, S1 and S2. While S1 ions reside nearly on

the same plane as the Bi square lattice with some buckling, the S2 ions are just above

or below the Bi ions.

3.3.1.2 NPD and refinement of LaO0.5F0.5BiS2

In contrast, the SC LaO0.5F0.5BiS2 has most of the nuclear Bragg peaks broader than

our instrumental resolution (Figure 3.5 (b)), indicating imperfect crystallinity. Simi-

lar broadening has been reported in prior X-ray measurements [52, 65]. We note that

the broad peaks have an asymmetric line-shape, characteristic of a low dimensional

crystal ordering. The asymmetric broad peaks index with nonzero l values, while

l = 0 Bragg peaks are considerably sharper and more symmetric. This is clearly seen

in Figure 3.5 (b), for example, where the (200) peak at d = 2.03 Å and the (110)



Chapter 3. Crystal Structure, Phonon, and Superconductivity in La(O,F)BiS2 55

0

-1

1

2

3

4

1 1.5 2 2.5 3 3.5 4

0

-1

1

2

3

4

d spacing (A)
o

In
te

n
s

it
y

  
(a

rb
. 

u
n

it
s

)
(a) LaOBiS2

(b) LaO0.5F0.5BiS2

difference

observed
calculated
background

  
(2

0
0

)
  

(1
1

4
)

  
(1

1
0

)

  
(1

0
2

)

Figure 3.5: Neutron powder diffraction data obtained from (a) LaOBiS2, and
(b) LaO0.5F0.5BiS2 at 15K. Black crosses represent observed data. Red, green,
and blue solid lines are the calculated intensity, estimated background, and
difference between the observed and calculated intensity obtained by GSAS [75],
respectively.
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Experiment Calculation
LaOBiS2 Rwp = 0.074

P4/nmm T=15K χ2 = 19.4

a (Å) 4.05735(5) 4.03949
c (Å) 13.8402(3) 14.30361
c/a 3.41114(8) 3.54095

La 2c (0.5, 0, z) 0.0907(1) 0.0853
Bi 2c (0, 0.5, z) 0.3688(1) 0.3665
S1 2c (0.5, 0, z) 0.3836(3) 0.3949
S2 2c (0.5, 0, z) 0.8101(2) 0.8112
O 2a (0, 0, 0) − −
|zBi − zS1| /zBi 4.01(8) (%) 7.75 (%)

LaO0.5F0.5BiS2 wRp = 0.065
P4/nmm T=15K χ2 = 3.43

a (Å) 4.0651(3) 4.07989
c (Å) 13.293(7) 13.42520
c/a 3.2700(16) 3.2906

La 2c (0.5, 0, z) 0.1007(5) 0.1034
Bi 2c (0, 0.5, z) 0.3793(5) 0.3839
S1 2c (0.5, 0, z) 0.362(2) 0.3840
S2 2c (0.5, 0, z) 0.815(1) 0.8160
O 2a (0, 0, 0) − −
F 2a (0, 0, 0) − −
|zBi − zS1| /zBi 4.5(5) (%) 0.0260 (%)

Table 3.1: Refined structural parameters of LaOBiS2 and LaO0.5F0.5BiS2

obtained from neutron powder diffraction and calculated with structural
optimization implemented in QUANTUM ESPRESSO. The quantity
|zBi − zS1| /zBi characterizes the amount of buckling. wRp and χ2 respectively
are the weighted R factor and chi squared values from the structural
refinements [75]. Though there are some unindexed peaks in the refinement, the
weight percentage of impurities is small based upon their relative intensities.
Numbers in parentheses here and throughout the manuscript correspond to one
standard deviation in the mean value.
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Figure 3.6: The crystal structure of LaO1−xFxBiS2.

peak at d = 2.87 Å are sharp while the (114) peak at d = 2.17 Å and the (102) peak

at d = 3.47 Å are broad and asymmetric. This suggests that strain may be induced

along the c-axis due to a random replacement of the F ions at O sites. As a result,

the La(O,F) planes are not well ordered along the c-axis.

S400 S004 S220 S202

5.767E+01 6.083E+00 4.025E+01 1.546E+02
(1.140E+01) (1.642E+00) (1.059E+01) (1.036E+01)

Table 3.2: The anisotropic phenomenological strain parameter used to fit the
diffraction pattern in the F substituted compound, LaOFBiS2. The numbers in
the parentheses represent estimated error.

The solid line in Figure 3.5(b) is our best refinement to the data, where a phe-

nomenological model of anisotropic broadening has been used. This coarsely repro-

duces the diffraction data and allows for reasonable determination of the structural
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parameters, summarized in Table 3.1. To describe the neutron diffraction pattern

of LaO0.5F0.5BiS2z, a phenomenological model of anisotropic broadening with multi-

dimensional distribution of lattice metrics [76] has been used. In this model, the d

spacing of Miller index is defined by

1/d2 = Mhkl = α1h
2 + α2k

2 + α3l
2 + α4kl + α5hl + α6hk. (3.1)

The local variance of the d-spacing, or Mhkl, can be related to the line broadening,

and can be expressed as

σ(Mhkl) =
∑
i,j

Ci,j
∂M

∂αi

∂M

∂αj
=
∑
HKL

SHKLh
HkK lL (3.2)

where Ci,j = 〈(αi − 〈αi〉)(αj − 〈αj〉)〉 is the covariance matrix of the Gaussian distri-

bution, and SHKL is defined for H+K+L=4. Given the tetragonal crystal system, the

possible non zero anisotropic strain parameters are S400=S040, S202=S002, S004, and

S220, whose refined parameters are summarized in the Table 3.2.

We also provide a more comprehensive characterization of the goodness-of-the-fit in

the Table 3.3. Though the χ2 and Rwp are smaller for the SC compound, it is mainly

due to the poor data statistics of this sample. Smaller overall Rexp, and Bragg R-

factors also support that these effects are coming from the smaller intensities and

larger relative errors in the SC compound.

χ2 Rwp Rexp B-Rwp B-Rexp

LaOFBiS2 19.4 0.074 0.017 0.074 0.017
LaO0.5F0.5BiS2 3.43 0.065 0.035 0.084 0.045

Table 3.3: The goodness of the fit for both samples. Rwp and Rexp follow the
definition used in the GSAS [75] program, and B-Rwp and B-Rexp are R factors
calculated for the Bragg peaks only.
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3.3.2 Comparison of observed structure between non-SC and

SC sample

We find upon F doping, the lattice elongates along a by approx. 0.2 % while it con-

tracts along c by approx. 4.1 %, consistent with previous x-ray results [65]. This

F-doping induced lattice change is reproduced by our calculations although the rates

are different.

The buckling of the BiS2 plane is found to slightly increase as shown in Table 3.1.

This contradicts a prior theoretical prediction [64] as well as the structure optimiza-

tion calculations presented here. The atomic positions in the superconducting sample,

however, should be considered with care due to the large noise in the data. We note

that although there is additional broadening in the superconducting sample diffrac-

tion data, the refinement converges to reliable values. Further work with additional

or improved samples may be able to provide better accuracy.

3.3.3 Comparison of structure between observed and calcu-

lated

We were successful obtaining the optimized structure from the ab-initio calculation as

well. The PWscf (Plane-Wave Self-Consistent Field) package in Quantum Espresso

was employed for this purpose. PWscf performs many kinds of self-consistent calcu-

lations of electronic-structure properties within Density-Functional Theory (DFT),

using Plane-Wave (PW) basis set and psuedopotentials (PP). We have tested the

convergence of k-mesh size, energy cutoff, a-lattice parameter, and c-lattice param-

eter manually, and then relaxed atomic position. This manual process gave almost

the same result with automated crystal structure optimization procedure, VCrelax.

More information about the structural optimization can be found in Appendix B, or

in the Quantum Espresso homepage.

We note that there are discrepancies between experimental and calculated structural

parameters. First, there is a large difference in the interlayer distance: the optimized
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interlayer distance is larger than the experimental one, especially in the parent com-

pound. This becomes more clear if we compare the c/a ratio as in Table 3.1. We

also observe in both compounds a large discrepancy in the z position of the S1 atom

between experimental and theoretical values. The discrepancy in the z position of the

S1 atom was regarded as a sign of a possible structural instability in this system [64].

This deviation seems to become larger with F doping. According to frozen phonon

calculations, the instability at or near the M point can reduce the symmetry of the

F doped compound statically to P2221 [64], the CDW phase, or P -4 m 2 [61]. This

potential structural transition, however, could not be experimentally confirmed due

to the Bragg peak broadening.

3.3.4 Further discussion on the crystal structure and refine-

ment

In summary, as Oxygen is substituted with Fluorine, the system becomes less crys-

talline, and a-axis lattice parameter decreases while c-axis lattice parameter increases.

Some disagreements between the refined structure and the theoretically optimized one

have been found: 1) the buckling in the BiS2 plane remains almost the same contrary

to expectation, 2) the c-axis lattice parameter is much smaller than expected, 3) the

position of S1 atoms is a lot different from what is predicted.

It is conceivable that these discrepancies are the result of extrinsic effects such as low

sample quality. For example, the level of actual Fluorine doping could be different

from the nominal one. Since we did not observe a significant decrease in the buckling

of BiS2 plane (and, as will be discussed in the GDOS section, also since the mode

softening with doping is much smaller than calculated one), we can consider the ac-

tual F-doping level in our sample not complete and probably very inhomogeneous.

It is, however, also possible that these inconsistencies between theory and experiment

are related with the inherent structural instability in this system, and the structure
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is not at the lowest energy state expected for theoretically optimized crystal structure.

It should also be noted that during the NPD refinement, we observed unusually

large thermal factor for the S1 ions in both LaOBiS2 and LaO0.5F0.5BiS2, which is

not explicitly reported here due to reliablity problems coming from impurities and

broadening. Furthermore, it is very likely that this thermal motion is anisotropic,

strong in the ab-plane. This possible anisotropic large thermal broadening suggests

anharmonic potential of S1 ions which is again related with structural instability in

this system, consistent with the theoretical expectation. This, however, is hard to

confirm due to large broadening of the Bragg peaks in the doped compound. This

point should be re-investigated more carefully when high quality samples are available.
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3.4 Phonon study

To examine if the pairing mechanism of the superconductivity is phononic, we have

performed INS measurements to obtain the neutron weighted generalized PDOS

(GDOS). Figure 3.7 shows the GDOS as a function of energy transfer, ~ω, for the

two compounds at T = 5 K.

3.4.1 Data processing to find GDOS

The background corrected neutron scattering intensity is directly proportional to the

double differential cross-section which is directly proportional in turn to the scattering

function, S(Q,ω),
d2σ

dΩdω
∝ kf
ki
S( ~Q, ω) (3.3)

where the ki, and kf are the incident and final neutron wave vectors. The scattering

function for single phonon scattering in a polycrystalline sample can be written as,

S(Q,ω) =
∑
i

σi
(~Q)2

2mi

exp(−2Wi)
Gi(ω)

ω
〈n(ω) + 1〉 (3.4)

where ~Q, ~ω, n(ω), σi, mi, exp(−2Wi) and Gi(ω) are the momentum transferred to

the sample, the energy transferred, the Bose thermal factor at a given temperature,

total scattering cross section, mass, Debye-Waller factor, and the phonon density of

states for the ith atom in the unit cell, respectively. The bare PDOS can be written

mathematically as,

F (ω) =
1

N

∑
j,~q

δ [ω − ω (j, ~q)] (3.5)

where ω(j, ~q) is the frequencies of the phonon modes. We can see that the scattering

function is related to the GDOS, G(E), as, [77, 78]

G(E) =
∑
i

σi
2mi

e−2Wi(Q)Fi(ω)/
∑
i

σi
2mi

e−2Wi(Q). (3.6)
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The GDOS, therefore, reflects the PDOS while the intensity contribution from its

components are weighted by σi/mi, which are 0.07, 0.26, 0.21, 0.04, 0.03 barn/amu

for La, O, F, Bi, and S, respectively. It is clear that the effect from oxygen and

fluorine will be prominent in the GDOS measured by neutron scattering, and the

GDOS will be weighted to the higher frequency compared with the bare PDOS. In

general, however, the peak positions are not very sensitive to this neutron scattering

weighting factor. The incoherent approximation requires the scattering function to

be averaged over a wide range of wave vector transfer, Q, unless the scattering is

purely incoherent so that the correlation between motions of distinct atoms cancels.

For our measurement, the neutron scattering intensity was averaged over momentum

of 3 Å−1 to 6 Å−1 for Ei = 25 meV, 4 Å−1 to 7 Å−1 for Ei = 40 meV, and 3 Å−1 to

8.5 Å−1 for Ei = 80 meV.

Since the above equation only applies for single phonon scattering, proper consider-

ation of multiple scattering and multiphonon contributions is necessary. It is known

that, in general, the correction from these factors produce only minor effects on the

realistic PDOS, and in our case, constant background subtraction [79] was applied to

remove linearly increasing GDOS intensity above the phonon cutoff energy. The con-

tribution from elastic scattering has also been eliminated by removing the intensities

below 2meV. The final GDOS has been normalized for the integrated area over the

whole energy range to become unity for both samples.

3.4.2 GDOS measured

For the non-SC LaOBiS2, (Fig. 3.7 (a)), there are well-defined phonon modes over a

wide range of ~ω up to 70 meV. At least five prominent bands of lattice vibrations

are present at 7.7(2), 14.2(1), 22.9(2), 40.4(1), and 61.8(4) meV. Upon F doping, as

shown in Fig. 3.7 (b), the phonon modes at higher energies change significantly. All

the vibrational modes become broader than their corresponding modes of LaOBiS2.

Furthermore, the top of the band softens in energy from 61.8(4) to 55.2(1) meV,

and the sharp 40 meV peak significantly weakens. Conversely, the first two low en-

ergy peaks remain similar to those of the parent compound even though they broaden.
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(a) LaOBiS2

ARCS Ei=80meV
ARCS Ei=40meV
CNCS Ei=25meV

(b) LaO0.5F0.5BiS2

Figure 3.7: GDOS as a function of ~ω for the (a) parent non-SC and (b) F
substituted SC compound. Black symbols are the experimental data; blue solid
lines are the calculated GDOS scaled for comparison. Three measurements have
been combined: below 10 meV are from CNCS Ei = 25 meV, between 10 and 30
meV from ARCS Ei = 40 meV, and above 30 meV from ARCS Ei = 80 meV. To
obtain the GDOS, the neutron scattering intensities were averaged over

momentum transfers of [3, 6] Å
−1

, [4, 7] Å
−1

, and [3, 8.5] Å
−1

, respectively.



Chapter 3. Crystal Structure, Phonon, and Superconductivity in La(O,F)BiS2 65

Several mechanisms can responsible for the broadening of GDOS upon F-doping. The

first possible scenario is that as superconductivity is induced, the electron-phonon

coupling gets stronger, which broadens the line-width of the phonon spectrum. This

scenario is plausible for the phonon mediated superconductivity mechanism. An-

other possibility is that the broadening of the phonon spectrum is related with less

crystalline nature of the superconducting sample. As the doped superconductor be-

comes more disordered compared to the parent compound judging from the broad

Bragg peaks, it is quite natural to expect a broadened lattice vibration spectrum in

LaO0.5F0.5BiS2. Finally, it may just be that the phonon becomes more disperive when

doped, which would appear as a broadening in the phonon spectrum. Single-crystal

phonon spectrum study will help us decide which is the most important factor in the

phonon broadening.

3.4.3 Calculated GDOS compared with experimental data

3.4.3.1 LaOBiS2 case

Our calculated GDOS is shown as solid lines in Figure 3.7. For the non-SC sample, it

reproduces the observed prominent phonon modes reasonably well. Our calculations

at the zone center show that the 40 and 62 meV bands are mainly due to vibrations

of light ions. For example, in the inset of Figure 3.8, the last 5 figures show the high

energy vibration modes. These modes mostly involve O and/or S2 vibrations. The

intermediate energy modes around 13 and 23 meV are mainly due to S1 and/or S2

vibrations, while the low energy modes below ≈ 10 meV are due to the vibrations of

BiS2 and/or LaO layers. Our zone-center calculations also yield imaginary frequency,

unstable phonon modes involving vibrations of the BiS2 layer, which was previously

reported as the sign of anharmonic ferroelectric soft phonons [64].

3.4.3.2 LaO0.5F0.5BiS2 case

For the SC-sample, the calculated GDOS reproduces the features occurring at large

~ω (albeit shifted in energy), and these include: the broadening of high energy peaks,
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Figure 3.8: The phonon modes at the Γ point are shown in the inset with their
symmetries for the parent (above) and SC (below) compound. Atoms are shown
with the same colors as in Figure 3.6, and their relative displacements are
represented with thick blue arrows. The left four figures in the inset are the
vibrational modes that are theoretically expected to have the large e-ph
couplings, with each λ shown in parentheses. For the first mode shown here, the
corresponding energy becomes negative (−2.9 meV) in the parent compound. For
doublet modes, only one of the two orthogonal modes is shown.
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reduction of the sharp 40 meV peak, and softening of the highest energy O/F vi-

bration modes. These changes can be partially understood as being due to the high

energy O modes being shifted because of substitution with heavier F ions. This, how-

ever, fails to explain the low energy data. According to the calculation, solid lines in

Figur 3.8, most of the e-ph coupling comes from the low energy modes below approx.

20 meV, and this is where we expect meaningful changes of the GDOS relevant to

superconductivity to occur. While the theory predicts considerable re-distribution of

GDOS in this low energy region, we do not observe any such change in the measured

spectrum upon F doping.

Looking at the phonon mode more in detail, our phonon mode calculation at the

zone center finds that there are 4 modes with significant electron-phonon coupling

with λ ≈ 0.5, 0.27, 0.12, 0.05 at 4.0, 13.77, 9.0, 16.0 meV, respectively, all at low

energies. Their vibration modes all have definite in-plane or out-of-plane character

as previously pointed out in Reference [60]. In the order of decreasing e-ph coupling,

the 1st phonon mode (E = 4 meV) is longitudinal where whole BiS2 plane is moving

along the ab-direction. The 2nd mode (E = 13.77 meV) is also longitudinal, but in

this case, only Sulfur ions are moving along ab-direction. So the effective mass of this

phonon mode is lighter when compared with the 1st mode, and this results in higher

energy. The 3rd mode (E = 9 meV) is the transverse mode with the whole BiS2 plane

moving in c-direction. The last mode (E = 16meV) is a transverse mode where only

Sulfur ions are moving in c-direction, again resulting in higher energy. We list the

calculated modes at the zone center in detail.

3.4.4 Details of the phonon modes calculation

3.4.4.1 Phonon modes at the Γ point

In Tables 3.4 and 3.5, all the phonon modes have been identified with their symmetry

label together with the mode energies at the Γ point. It also shows the ions involved

and their vibrational direction. All the modes have either in plane or out of plane

vibrational character.
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3.4.4.2 Convergence of the negative energy modes near M

In order to test the accuracy of our results, here we repeated the linear response

phonon calculations at the M=(π, π, 0) point for LaO0.5F0.5BiS2, using different en-

ergy and charge cutoff as well as different k-point grid. We also test if the negative

energy modes are sensistive to the the z-values of the S-atoms used in the calculations.

We repeated calculations using both optimized atomic positions and experimental po-

sitions. The results are summarized in Table 3.6. From this table, it is clear that

our calculations are well converged since the phonon energies do not change much

with different cutoff and k-grid point. Most importantly, we always get the negative

energy modes, which has been attributed to charge density wave ordering [60, 64].

3.4.5 Generalized phonon density of states measurement

3.4.6 Temperature dependence of GDOS

To further probe for a phonon anomaly associated with superconductivity, we also

examine the temperature dependence of the dynamical susceptibility, χ
′′
(ω), of the

SC LaO0.5F0.5BiS2. Figure 3.9 shows χ
′′
(ω) at three different temperatures spanning

Tc ≈ 10.8 K. Our experimental data show that χ
′′
(ω) does not change within the

experimental errors when the system transits from the normal to SC state. This

suggests that, if it exists, the possible e-ph coupling in this material is much weaker

than theoretically expected. We caution however that further detailed studies with

a single crystal would be necessary to reach a more concrete conclusion in this regard.
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Figure 3.9: Temperature dependence of the dynamical susceptibility. The data
have been measured at ARCS with Ei = 40 meV, and integrated over Q = [4, 7]
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.
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Mode
displacement atoms

symmetry
energy

direction involved (meV)

1 a - b diagonal
S1 Eu -5.7

2 a + b diagonal
3 (mainly) b

S1 Eg -2.9
4 (mainly) a
5 (mainly) b

all Eu 0
6 (mainly) a
7 along c all A2u 0
8 a - b diagonal

S1 Eu 4.1
9 a + b diagonal
10 (mainly) a

S1 Eg 5.2
11 (mainly) b
12 along c BiS2 layer A1g 7.8
13 along c S1 A2u 8.4
14 a - b diagonal

S2 and La Eg 12.7
15 a + b diagonal
16 out of plane S1 A1g 15.9
17 out of plane S1 A2u 16.0
18 (mainly) b

S2 Eu 17.4
19 (mainly) a
20 (mainly) b

S2 Eg 17.9
21 (mainly) a
22 out of plane La A1g 22.9
23 (mainly) a

O Eu 33.9
24 (mainly) b
25 out of plane O A2u 35.9
26 out of plane S2 and O B1g 37.7
27 out of plane S2 A1g 42.7
28 (mainly) b

O Eg 52.5
29 (mainly) a
30 out of plane O A2u 58.9

Table 3.4: The zone-center phonon modes of parent compound based on the
fully optimized structure. The symmetry decomposition of the phonons are Γ = 4
A1g + 5 A2u + B1g + 5 Eu + 5 Eg. The optimized lattice parameters are
a=b=4.029 Å, c=14.21 Å, z(La) = 0.0859, z(Bi) = 0.3676, z(S) = 0.6054, z(S) =
0.1899.
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Mode
displacement atoms

symmetry
energy

el-ph λ
direction involved (meV)

1 (mainly) b
all E 0.0 0.0

2 (mainly) a
3 out of plane all B2 0.0
4 (mainly) b

S2 E 4.0 0.539
5 (mainly) a
6 (mainly) b

BiS2 layer E 5.2 0.001
7 (mainly) a
8 out of plane S1 and La B2 7.6 0.002
9 (mainly) a

S2 E 8.5 0.007
10 (mainly) b
11 out of plane BiS2 layer A1 9.0 0.120
12 mixed

S2 E 13.8 0.274
13 mixed
14 out of plane S1 A1 16.1 0.050
15 out of plane S1 B2 16.9 0.014
16 mixed

S1 and S2 E 18.8 0.006
17 mixed
18 out of plane S1 and La A1 19.9 0.013
19 mixed

S1 E 20.7 0.001
20 mixed
21 mixed

S1 E 22.6 0.0
22 mixed
23 (mainly) b

O/F E 29.4 0.0
24 (mainly) a
25 out of plane F B2 29.8 0.009
26 out of plane O B2 33.9 0.001
27 out of plane S2 A1 38.2 0.144
28 (mainly) b

O/F E 42.1 0.0
29 (mainly) a
30 out of plane O and S2 B2 51.83 0.005

Table 3.5: The zone-center phonon modes of the F substituted compound based
on fully optimized structure. The symmetrey decomposition of the phonons are Γ
= 4 A1 + 6 B2 + 10 E. The optimized lattice parameters are a=b=4.0697 Å,
c=13.3433 Å, z(La) = 0.89602, z(Bi) = 0.38448, z(S) = 0.6163, z(S) = 0.18494.
The calculated electron-phonon coupling constant (λ) for each phonon mode is
also given.
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Cal.1 Cal.2 Cal.3 Cal.4 Cal.5
60 Ry 60 Ry 40 Ry 40 Ry 40 Ry
600 Ry 600 Ry 480 Ry 480 Ry 480 Ry
18x18x8 8x8x8 18x18x8 8x8x8 8x8x8

Mod. Sym. opt. opt. opt. opt. exp.
ω1 A1 -105.1 -118.2 -91.8 -118.1 -118.8
ω2 B1 -102.1 -114.5 -88.7 -114.4 -114.6
ω3 B2 -82.6 -82.8 -72.5 -82.7 -72.0
ω4 A2 -79.6 -77.0 -70.1 -76.9 -65.5
ω5,6 E 67.2 66.2 68.5 67.4 58.0
ω7,8 E 68.2 68.7 69.3 69.7 64.4
ω9 B2 74.7 76.5 75.8 75.8 66.9
ω10 A2 75.7 76.5 76.7 75.9 68.2
ω11 A1 77.5 77.0 77.3 77.8 72.5
ω12 B1 77.6 77.8 77.6 78.6 72.5
ω13 B2 77.8 79.1 78.4 80.2 82.3
ω14 A2 123.5 123.4 123.7 123.6 124.5
ω15,16 E 132.1 129.4 132.9 129.4 101.6
ω17 A1 156.8 156.9 156.7 157.0 156.8
ω18 B1 172.4 172.6 172.3 172.5 173.2
ω19 A2 185.3 184.3 186.6 185.3 196.2
ω20 B2 189.0 188.4 189.4 188.6 196.4
ω21 A1 193.4 193.0 193.5 192.9 199.7
ω22 B1 196.5 195.6 196.8 195.6 205.1
ω23,24 E 204.7 205.8 214.0 214.8 214.0
ω25,26 E 261.6 260.5 263.3 262.3 259.4
ω27 A2 263.8 264.0 272.2 272.4 271.5
ω28 B2 306.0 305.8 310.6 311.0 310.0
ω29,30 E 399.1 398.0 401.8 401.6 401.6

Table 3.6: The phonon modes at the M(π, π, 0) for LaO0.5F0.5BiS2 calculated
with different energy and charge density cutoff and k-point grid. All the atomic
positions were optimized except the last raw (cal.5) which is calculated using
experimental z-positions for the S atoms. We note that regardless of the details of
the calculations, we always get four negative energy modes. The mode energies
are given in cm−1.
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3.5 Further study

In the neutron powder diffraction data of LaO0.5F0.5BiS2, it should be noted that

there are significant background under the Bragg peaks when compared with the al-

most flat background of LaOBiS2. This is very likely to be related with the disorder

in atomic positions of the superconducting sample, and further study on the local

structure environment and its relationship with superconductivity using pair density

function analysis is desired.

The relationship between crystallinity and superconductivity is another interesting

problem that should be addressed in this system. Very recently, it has been reported

[80] that high pressure(HP) annealing temperature influences both crystallinitiy and

Tc of LaO0.5F0.5BiS2. As can be seen from Figure 3.10 (a), the Bragg peak becomes

much broader compared to the as-grown sample once annealed under HP. As we in-

crease the annealing temperature, however, the Bragg peak gets sharper, and at the

annealing temperature of 700 ◦C, it becomes as sharp as that of as-grown sample.

At the same time, as in Figure 3.10 (b), while the HP annealing process increases the

transition temperature, the Tc decreases as we increase the annealing temperature.

Also, at 700 ◦C, the Tc is as low as that of as-grown sample. In short, we can conclude

that low crystallinity, or amorphousness could be beneficial for high superconducting

transition temperature.

It has long been recognized [81] that crystalline disorder can induce the onset of an

increase of the e-ph coupling to the transverse phonon modes, and the decrease of

the coupling for the longitudinal mode, the net effect of which can increase the Tc. It

will be an interesting follow-up study to measure the GDOS of samples annealed at

different temperatures, and measure how transverse modes and longitudinal modes

change as the system goes into superconducting states. This work may shed light

on the relationship between the structure, crystallinity, and the superconductivity of

this BiS2 based superconductor.
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(a)

(b)

Figure 3.10: (a) X-ray diffraction patterns around Q = (200) peak at different
annealing temperature under HP (b) Annealing temperature dependence of Tc

(onset), Tc (zero), and Tc (mag). The former two are measured by the electrical
resistivity, and the latter is measured by DC magnetic susceptibility. Panels are
taken from reference [80].
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3.6 Summary

In summary, our neutron powder diffraction data reveals the crystal structure of

non-SC LaOBiS2 and SC LaO0.5F0.5BiS2. Large broadening of the Bragg peaks has

been observed in the SC compound. In both compounds, discrepancies between ex-

perimental and calculated structural parameters have been observed, which suggest

inherent structural instabilities in these systems. Furthermore, it was theoretically

predicted that in the SC phase, a significant change in the phonon density of states at

low energies would occur due to a possible large e-ph coupling. Our inelastic neutron

scattering data, however, yields no considerable change in the low energy phonon

modes as the system becomes SC either by F-doping or by cooling through the su-

perconducting transition. Our results should provide important constraints on future

theoretical works examining these new Bi-based superconductors.



Chapter 4

Ferromagnetism and

Superconductivity in

CeO0.3F0.7BiS2

4.1 Introduction

It was generally thought that the ferromagnetism and supconductivity are mutually

imcompatible [82]. Antiferromagnetism can coexist with superconductivity as the net

magnetic effect would be zero in the Cooper pair size length scale. Ferromagnetism,

on the other hand, is known to break the conventional s-wave singlet Cooper pairs in

two ways: the orbital effect [83] and the paramagnetic effect [84, 85]. These effects are

illustrated in Figure 4.1. The orbital effect occurs when the electrons of opposite mo-

mentum in a Cooper pair gain a Lorentz force in different directions from an external

magnetic field. The paramagnetic effect occurs when the electrons of opposite spins

in a Cooper pair get one of the electrons to flip spin by an external field. Both effects

cause a spin-singlet Cooper pair to break. Meanwhile, in a spin-triplet Cooper pair,

only orbital effect can contribute to breaking the pairing, which makes the p-wave

superconductivity more favorable when there is ferromagnetism.

76
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orbital effect
(Lorentz Force)

paramagnetic effect
(singlet pairs)

B

FLorentz1 FLorentz2

velectron1

velectron2

S=+1/2 S=-1/2

Figure 4.1: The antagonistic nature of magnetic field and s-wave Cooper pair.

Earlier examples of superconducting ferromagnets such as Chevrel [86–89] phases or

borocarbides [90–94] demonstrate well the competing nature of ferromagnetism and

superconductivity. For example, in Figure 4.2 showing the susceptibility and resis-

tance of ErRh4B4 as a function of temperature, the system becomes superconducting

below 8.7 K, and when cooled further, it undergoes a ferromagnetic phase transition

at 0.8 K, below which it is no longer superconduting.

Nevertheless, there are still some mechanisms by which superconductivity can coexist

with ferromagnetism [95, 96]. When the internal magnetic field is greater than a lower
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Figure 4.2: (top) The ac magnetic susceptibility and (bottom) electrical
resistance of ErRh4B4 as a function of temperature. The panels are taken from
Reference [89].

criitical field, Hc1, a spontaneous vortex state would be more favorable where the ferro-

magnetic field exists inside vortices, as shown in Figure 4.3. However, actual systems

exhibiting the coexistence is quite rare, including only some heavy fermion supercon-

ductors [97–107], Ruthenate-layered cuprates [108–113], Eu(Fe1−yCoy)2(As1−xPx)2

[114–119], and CeFe(As1−yPy)(O1−xFx) [120–124].

The ferromagnetic ordering temperature of these systems is known usually to be quite

low. This suggests that dipolar interactions may be responsible for the ferromag-

netism, which is a usual case in rare earth magnetism. However, in some materials,

the ordering temperature is too high to be explained by only diploar interactions.

Furthermore, antiferromagnetic ground states are sometimes found even with the

same crystal structure, which is hard to be explained with simple diploar interac-

tions. Hence, to better understand the physics of unconventional superconductivity,

it is crucial to answer the questions on what the nature of magnetic interactions in

a superconductor is, how the magnetism interacts with superconductivity, and how
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superconductivity can survive in a ferromagnetic background.

Figure 4.3: The mechanism of coexistence of ferromagnetism and
superconductivity by forming a spontaneuous vorext state. Panels are take from
Reference [125].

The recently found BiS2-based superconductors are interesting in that they share

many common features with other unconventional superconductors like cuprates or

iron-based superconductors. Whether the superconducting mechanism in this new

superconductors is conventional or unconventional, however, is still under debate. In

this regard, the CeO1−xFxBiS2 sample is unique due to its possible coexistence of

ferromagnetism and superconductivity in the low temperature region [126]. The exis-

tence of ferromagnetism is observed in the magnetic susceptibility measurements, and

it is further supported in the isothermal magnitization-hysterisis-loops. The ferromag-

netism in this system is believed to be coming from the ferromagnetic ordering of Ce

ions in the CeO layers. Our goal is to determine the nature of magnetic ordering be-

low TFM and the interactions between the magnetic moments by neutron scattering.

This study will help us understand the relationship between magnetism and super-

conductivity in this rare case of coexistence of ferromagnetism and superconductivity.
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4.2 Experimental details

A 1.0 g polycrystalline sample of CeO0.3F0.7BiS2 was synthesized using the solid state

reaction method under high pressure at NIMS in Tsukuba, Japan. Figure 4.4 shows

the low-temperature magnetic susceptibility data. As shown in Figure 4.4, the mag-

netic susceptibility increases at TFM ≈ 7.5K, while showing the divergence between

field-cooled and zero-field-cooled data. This suggests the onset of spin-glassy ferro-

magnetism below TFM . On further cooling under zero field, the susceptibility drops

at Tc ≈ 5.5K signaling the onset of a large diamagnetic susceptibility from bulk

superconductivity. Recent specific heat measurement also confirms that the super-

conductivity in this sample is bulk in nature [56].

TFM

Figure 4.4: Magnetic susceptibility measurement of CeO0.3F0.7BiS2

Neutron scattering measurements were performed at the High Flux Isotope Reac-

tor(HFIR) using HB2A powder diffractometer, and at the Spallation Neutron Source
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(SNS) using the POWGEN diffractometer, and the Cold Neutron Chopper Spectrom-

eter (CNCS). Samples were loaded into vanadium cans for the diffraction measure-

ments (at HB2A and POWGEN) or aluminum can for the inelastic neutron scattering

measurement (at CNCS) with a He atmosphere and mounted to the liquid helium

cryostat. When an external magnetic field was applied, a magnet that can go up to

5 T was used.

Neutron diffraction data from HB2A were collected with a constant wavelength of

1.5408 Å at 2K and 20K. Data from POWGEN [70] were collected using a wave-

length band to cover a wide range of d spacing from 0.28 to 3.10 Å or from 1.7 to

8.2 Å at 2K, 6K, and 10K. Inelastic neutron scattering (INS) measurements were per-

formed at CNCS [72] with monochromatic neutrons of incident energies Ei = 4meV.

All the INS data presented here are corrected for background by subtraction of an

empty can measurement.
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4.3 Zero field study

4.3.1 Crystal and magnetic structure
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Figure 4.5: Neutron Powder Diffraction and the crystal structure refinement of
CeO0.3F0.7BiS2 at T = 10K obtained from HB2A. The red squares indicate the
data observed, and the black solid line represents the fit to the data. The green
horizontal bars indicate Bragg reflection positions of CeO0.3F0.7BiS2, and blue
solid line show the difference between measured and fitted intesities.

Figure 4.5 shows the neutron powder diffraction data obtained from HB2A at T =

10K. Similar results have been found from the POWGEN experiment as well. We find

significant broadening of the Bragg peaks and large background in the data, which

suggest a disordered nature in this system. These characteristics are similar to those

of La(O,F)BiS2, but the broadening is even larger in this system.
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CeO0.3F0.7BiS2

P4/nmm T=10K χ2 = 8.30

a (Å) 4.043(1)
c (Å) 13.519(8)

Ce 2c (0.5, 0, z) 0.114(1)
Bi 2c (0, 0.5, z) 0.622(2)
S1 2c (0.5, 0, z) 0.360(1)
S2 2c (0.5, 0, z) 0.850(5)

O/F 2a (0, 0, 0) −

Table 4.1: Refined structural parameters of CeO0.3F0.7BiS2 obtained from
neutron powder diffraction using Fullprof [127]. Numbers in parentheses
correspond to one standard deviation in the mean value.

Furthermore, it is found that there are several impurities in this compound, including

Bi2S3 indexed with x-ray diffraction data. It is very likely that there is another sig-

nificant phase with similar lattice parameters of the main phase since there are two

peaks overlapped near the Q =(002) position, or |Q| ≈ 0.9 Å
−1

. This new impurity,

however, could not be identified with existing crystallographic database. Two peaks

around Q=(002) yield two different c-lattice parameters of 14.23 Å and 13.49 Å.

Since other similar BiS2-based superconductors yield c-lattice parameter about 13 Å,

it is reasonable to assume the larger d-spacing peak is coming from an impurity phase.

S400 S004 S220 S202

7.471E+01 9.794E+00 1.302E+02 2.913E+01
(0.695E+01) (1.212E+00) (0.366E+02) (0.767E+01)

Table 4.2: The anisotropic phenomenological strain parameter used to fit the
diffraction pattern of CeO0.3F0.7BiS2. The numbers in the parentheses represent
estimated error.

Excluding the peak corresponding to the large c-axis, we were able to reproduce the

neutron diffraction data with space group P 4/n m m, and with the structure pa-

rameters shown in Table 4.1. The black solid line shown in Figure 4.5 is the best

fit we could obtain with the use of phenomenological model of anisotropic broaden-

ing. Again, for the tetragonal crystal system, the possible non zero anisotropic strain

parameters are S400=S040, S202=S002, S004, and S220, whose refined parameters are
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summarized in Table 4.2.

As we cool down the sample to the base temperature, approx. 1.5 K, we observed

an increase of the neutron scattering intensities on top of the nuclear Bragg peaks

as shown in Figure 4.6 (a). This suggests that there is a ferromagnetic ordering of

Ce3+ ions. The increase is especially significant at Q = (102) peak, and the summed

intensities of Q=(102) Bragg peak are plotted as a function of temperature in Fig-

ure 4.6 (b). When the sample is cooled down to the base temperature, the summed

intensities seem to go through a 2nd order phase transition around TFM ≈ 7K, and

below about 4 K, the intensity, i. e., the magnetic moment saturates.

It is, however, not straight-forward to refine the magnetic structure. The nuclear

Bragg peaks are very broad, the magnetic signals are weak, and there are many im-

purity phases overlapped. The situation is worse in case of ferromangetic order since

their effect are often obscured by other effects related with nuclear Bragg peaks, such

as thermal effects, or strain/stress broadening.

Fortunately, we can use group theoretical analysis to determine the type of magnetic

order in this system. With the naive interpretation of Landau theory of second order

phase transition associated with a symmetry breaking, only one of the irreducible

representations will become critical at the transition. In P 4/n m m crystallographic

space group, there are, in total, 4 possible irreducible representations (IRs): Γ2, Γ3,

Γ9, Γ10. They represent antiferromagnetic ordering with spins along the c-axis, fer-

romagnetic ordering with spins along the c-axis, ferromangnetic ordering with spins

in the ab-plane, and antiferromangetic ordering with spins in the ab-plane, respec-

tively. Their spin configurations, or basis vectors, for each IR are shown in Figure 4.7.

The model magnetic neutron scattering intensities for each IR are shown in Figure

4.8. Let us first consider the case where spins are lying along the c-axis: Γ2 and Γ5.

If the spins are along the c-axis, there cannot be any (00L) magnetic Bragg peaks be-

cause only spin moment orthogonal to the wave vector can contribute to the scattering

intensities. While the strongest peaks are (100) and (101) in the antiferromagnetic
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Figure 4.6: (a) The NPD CeO0.3F0.7BiS2 below and above the magnetic phase
transition temperature, TFM . (b) The summed intensity of the Q = (102) Bragg
peak as a function of temperature.



Chapter 4. Ferromagnetism and Superconductivity in CeO0.3F0.7BiS2 86

(a) (b)

(c) (d)

a b

c

Figure 4.7: The basis vectors of each irreducible representation: (a) Γ2, (b) Γ3,
(c) Γ9, (d) Γ10. The order of Γ9 and Γ10 are 2, which means there will be two
basis vectors in these IRs, while the order of Γ2 and Γ3 is 1, hence one basis
vector for them. Here, for Γ9 and Γ10, only one basis vector along b-direction is
shown here: the other is just orthogonal being along a-direction.
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Figure 4.8: Group theoretical analysis on the possible magnetic structures and
their neutron scattering intensities.

spin configuration of Γ2, the (102) peak is the strongest peak in the ferromagnetic

spin configuration of Γ5.

On the other hand, if the spins are in the ab-plane as in Γ9 and Γ10, we can have

(00L) type magnetic Bragg peaks. It turns out that the (001) magnetic Bragg peak

is uncomparably the strongest peak in ferromagnetic configuration of Γ9. If the mag-

netic order is antiferromagnetic in the ab-plane as in Γ10, the (002) peak is also

comparable with the still-strongest (001) peak.

From these arguments, since the increase of scattering intensities are prominent at

Q = (102), we can conclude our system belongs to IR of Γ3 showing ferromagnetic



Chapter 4. Ferromagnetism and Superconductivity in CeO0.3F0.7BiS2 88

ordering of Ce3+ magnetic ions along the c-axis. It is unlikely for other IRs to be

mixed with Γ3 as small component along the c-axis, whether AFM or FM, would have

produced significant scattering at Q=(001), which could not be confirmed within the

instrumental resolution.

4.3.2 Spin fluctuation

Figure 4.9: The contour map of inelastic neutron scattering intensity in Q-E
space

To study the interactions between the spin moments, we performed an inelastic neu-

tron scattering experiment at CNCS. In order to observe only magnetic signals, we

used T = 10K data above the magnetic phase transition temperature as a background

in our analysis. Below TFM , we find the emergence of strong, and rather flat excita-

tion as can be seen in Figure 4.9.
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We can also plot the inelastic neutron scattering intensities along the energy transfer

as in Figure 4.10 (a), and we could find that the excitation is centered around E

= 1.8 meV. This excitation becomes weaker as we increase the temperature, and is

suppressed to the background level above TFM .

This dependence becomes more evident when we plot the summed intensity as a func-

tion of temperature as in 4.10 (b). We summed the neutron scattering intensities over

a region of interest in the Q-E space: the intensity has been integrated over Q-space

of [0.5, 2.0] Å
−1

for the pronounced magnetic effect, and over E-space of [1.5, 2.5]

and [0.5, 1.5] meV for the magnetic excitation and background, respectively. We also

over-plot the summed intensities of the Q = (102) magnetic Bragg peak arbitrarily

scaled for comparison.

It is clear that both the magnetic Bragg peak and the summed intensities over E

= [1.5, 2.5] begin to increase at the same temperature around TFM ≈ 7.5 K and

become almost saturated below 4 K. Meanwhile, the summed intensity over E =

[0.5, 1.5] begins to decrease around TFM satisfying the neutron scattering sum rule,

meaning that the depleted scattering at this Q-E space contributes to the scattering

of the emergent excitation. From this trend, we can conclude that the nature of this

E ≈ 1.8meV excitation is spin-wave, i. e., collective excitation of ordered magnetic

moments.

In order to understand the nature of spin interaction in this system, we can model

the spin Hamiltonian as in Equation 4.1.

H =
∑
i,j

Ji,j ~Si · ~Sj +D
∑
i

S2
i,z + gµB

∑
i

~B · ~Si (4.1)

Here, isotropic Heisenberg interaction has been assumed. Ji,j, D, and B are the ex-

change integral, the anisotropy, and the external magnetic field, respectively. g is the
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Figure 4.10: (top) Inelastic neutron scattering intensity around E ≈ 1.8meV
across the TC and TFM . (bottom) The summed intensity over Q-E region of
interest as a function of temperature.
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Figure 4.11: Schematic diagram showing J1 and J2

g-factor, and µB is the Bohr magneton. The first term describes the isotropic Heisen-

berg interaction between the magnetic moments, and the second term accounts for

the anisotropy term, which aligns the spins along the c-axis if negative, and in the

ab-plane if positive. The last term gives rise to the Zeeman energy from the external

magnetic field.

For the exchange interactions, nearest neighbor(NN) J1 and next-nearest neighbor(NNN)

J2 have been considered. The corresponding bonds for J1 and J2 are shown in Fig-

ure 4.11, and their lengths correspond to 4.20 Å and 4.04 Å, respectively, while the

next shortest bond length is about 5.72 Å. Therefore, it suffices to consider only two

exchange interactions in this case.

This Hamiltonian can be solved analytically, and gives the eigenenergies in the form

of
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E = −4J1−4J2 +J2

∑
~R2

cos(~k · ~R2)+gµBB−2D+ |J1|
∑
~R1, ~R2

cos(~k · ( ~R1− ~R2)). (4.2)

We find the parameters of J1 = -0.5 and J2 = -0.4 best reproduces the given disper-

sion of the spin wave. The effect of anisotropy, D, should be negligibly small, as it

produces very low energy excitation whose energy gap would be proportional to 2D.

For example, dispersions along high symmetric direction have been plotted in Figure

4.12 for the case J1 = -0.5, J2 = -0.4, and also for the case J1 = -0.5, J2 = -0.4, and

D = -0.1 case.

Figure 4.12: The calculated spin wave dispersion along high symmetry
directions (k,0,0), (k,k,0) and (0,0,l) with and without the anisotropy term.

For a more comprehensive analysis, the scattering intensities were calculated as well.

The neutron scattering intensities are calculated assuming the sample is a single crys-

tal, and then the intensities are averaged over all Brillouin zone for the case of powder.

The final result is shown in the Figure 4.13. We then simulated the excitation around

1.8 meV, while the flat mode is coming from the van-Hove singularity. We also tried

other models with a non-Heisneberg interaction, such as the Ising model, or the XY-

model. However, none of these could reproduce the given data well, confirming the
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isotropic nature of the magnetic interaction in this system.
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Figure 4.13: The calculated spin wave intensity compared with experimental
result.



Chapter 4. Ferromagnetism and Superconductivity in CeO0.3F0.7BiS2 95

4.3.3 Calculation of spin wave dispersion

Here, we will derive the spin wave dispersion analytically. We only consider the

isotropic Heisenberg spin Hamiltonian with nearest neighbor and next-nearest neigh-

bor interactions. Other types of interactions including magnetic anisotropy or mag-

netic field dependence will not be considered here. This derivation is described more

in detail in the Appendix C.

The first term in Equation 4.1 can be written as

H =
∑
i

J1

∑
~R1

(
~SA · ~SB + ~SB · ~SA

)
+ J2

∑
~R2

(
~SA · ~SA′ + ~SB · ~SB′

) (4.3)

Here, A and B are ions in different sublattices, and ~R1 and ~R2 are the displacement

related to J1 and J2, respectively. As can be seen from Figure 4.11, J1 corresponds

to an interlayer coupling, while J2 corresponds to an intralayer coupling. We can re-

write the x and y component of spin S, Sx and Sy, with lowering and raising operator

when the z-axis is defined as the quantization. Then, the J1 terms and J2 terms in

the Hamiltonian are

J1

∑
~R1

(
~SA · ~SB + ~SB · ~SA

)
(4.4)

= 2J1

∑
~R1

(
1

2

(
S+
AS
−
B + S−BS

+
A

)
+ SzAS

z
B

)
, (4.5)

J2

∑
~R2

(
~SA · ~SA′ + ~SB · ~SB′

)
(4.6)

= J2

∑
~R2

(
1

2

(
S+
AS
−
A′ + S−AS

+
A′

)
+ SzAS

z
A +

1

2

(
S+
BS
−
B′ + S−BS

+
B′

)
+ SzBS

z
B

)
. (4.7)
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To describe spin wave excitations, it is convenient to introduce Holstein-Primakoff

transformation. It is a mapping from the angular momentum operators to spin-wave

boson operator: a+, for creation, and a, for annihilations with |n〉 being an eigenstate

of a+a having eigenvalue n corresponding to the spin-deviation quantum number, n.

We obtain

[
a, a+

]
= 1 (4.8)

a |n〉 =
√
n |n− 1〉 , a+ |n〉 =

√
n+ 1 |n+ 1〉 , a+a |n〉 = n |n〉 . (4.9)

For sublattice B, another set of bosonic operators b+ and b are applied in the same

way as sublattice A.

Furthermore, if the spin-deviation n << S, which is not a strict restriction since a

spin-deviation can be spread over all the spin moments as a wave, we can use the

“linear approximation” which is expressed as

S+
A,i ≈

√
2Sai S+

B,i ≈
√

2Sbi

S−A,i ≈
√

2Sa+
i S−B,i ≈

√
2Sb+

i

SzA,i ≈ S − a+
i ai SzB,i ≈ S − b+

i bi.

(4.10)

It should be noted that the signs of the SB,i components are decided by the relation-

ship of the spin directions of the two sublattices. In this approach, therefore, it is

essential to know the magnetic ground spin configuration in advance to find the spin

wave excitation.

Applying these relationships, the J1 terms in the Hamiltonian become

= 2J1S
∑
~R1

(
aib

+
i+R1

+ a+
i bi+R1

− a+
i ai − b+

i+R1
bi+R1

)
, (4.11)
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and the J2 terms become

= J2S
∑
~R2

( aia
+
i+R2

+ a+
i ai+R2

− a+
i ai − a+

i+R2
ai+R2

+bib
+
i+R2

+ b+
i bi+R2

− b+
i bi − b+

i+R2
bi+R2

) .

(4.12)

To find out the dispersion relation, we can Fourier-transform the bosonic operators

to momentum space.

ai =
1√
N

∑
~k

e+i~k·~ria~k bi =
1√
N

∑
~k

e+i~k·~rib~k

a+
i =

1√
N

∑
~k

e−i
~k·~ria+

~k
b+
i =

1√
N

∑
~k

e−i
~k·~rib+

~k

(4.13)

Then, J1 terms reduce to

=
∑
k

2S

[
J1 (k) akb

+
k + J1 (−k) a+

k bk − J1 (0) a+
k ak − J1 (0) b+

k bk

]
(4.14)

where J1 (k) are defined as

(
J1 (k) ≡ J1

∑
~R1e
−i~k· ~R1

)
. (4.15)

J2 terms reduce to

=
∑
k

2S

[
γ
(
a+
k ak + b+

k bk
) ]

(4.16)

where γ are defined as
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γ ≡ J2

∑
~R2

cos
(
~k · ~R2

)
− 1

 . (4.17)

Summing both J1 and J2 terms gives final spin Hamiltonian of

H = 2S
∑
~k

{
J1 (k) akb

+
k + J1 (−k) a+

k bk + βa+
k ak + βb+

k bk
}

(4.18)

where β has been defined as

β ≡ (−J1 (0) + γ) . (4.19)

The eigenenergies are the eigenvalues of the matrix(
β J1 (k)

J1 (−k) β

)

and it can be easily shown that the eigenvalues of the above matrix are

ω = β ±
√
J1 (k) J1 (−k). (4.20)

The eigenvalues can be further simplified by the two relations below,

J1 (k) J1 (−k) = J2
1

∑
~R1, ~R′

1

{
cos
(
~k ·
(
~R1 − ~R′1

))}
(4.21)

and,

β = −4J1 − 4J2 + J2

∑
R2

cos
(
~k · ~R2

)
(4.22)

Therefore, the final eigenenergies of the spin Hamiltonian in terms of the wave vector,

i.e., spin wave dispersion relation, is
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ω = −4J1 − 4J2 + J2

∑
R2

cos
(
~k · ~R2

)
± |J1|

√√√√∑
~R1, ~R′

1

cos
(
~k ·
(
~R1 − ~R′1

))
. (4.23)
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4.4 Field dependence study

The onset of superconductivity is closely related to the external magnetic field. This

relationship is evident for CeO0.3F0.7BiS2 in Figure 4.14. Here we measure the resis-

tivity under different external magnetic fields as a function of temperature in Figure

4.14 (a). We find the transition temperature decreases as we increase the applied field.

Superconductivity becomes completely suppressed when H ≈ 2T, however, traces of

superconductivity are still observed even at higher fields by a drop in resistivity. In

Figure 4.14 (b), the resistance is shown in a H-T plane as a contour plot. White

dotted lines indicate the boundaries of 10% and 90% of normal state resistivity, cor-

responding to Hirr and Hc2, respectively.
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Figure 4.14: (a) Resistivity as a function of magnetic field and temperature. (b)
Contour map of resistance for better visualization.

To further understand the relationship between the magnetism and superconductivity

in this system, we performed neutron scattering experiment at CNCS with fields up

to 5 T.
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4.4.1 Magnetic structure

Figure 4.15 (a) shows the neutron scattering intensities integrated over the elastic

scattering region, E = [-0.5, 0.5], at T = 1.5 K with varying field to find the field

dependence of the magnetic structure. We observe strong increase of the Q = (001)

Bragg peak, indexed from the lattice parameters obtained by the zero-field neutron

powder experiment. In addition, the broad hump in the low Q area, below about 0.5

Å
−1

becomes less pronounced as we increase the magnetic field. This might be related

with ordering of magnetic moments in the spin-glassy state due to the external field.

The summed intensities of the Q = (001) Bragg peak as a function of magnetic field

are shown in Figure 4.15 (b) at both T = 1.5K, the base temperature, and 5.5K, just

below the TFM of zero field. They both increase as we increase the field. At T = 1.5

K, the magnetic moment increases up to 4 T, above which it becomes saturated. At

T = 5.5 K, the magnetic moment keeps increasing as the field increases, though it is

smaller compared with the magnetic moment at T = 1.5K.

We can compare the observed elastic neutron scattering intensities with the simulated

intensities based on the representation theory of magnetic structure as we did in the

zero-field study. The Q = (001) magnetic peak can be observed only if the magnetic

moments have an ab-plane component. Furthermore, while the ferromangetic spin

configuration in the ab-plane results in incomparably strong Q = (001) peak, the an-

tiferromangetic spin configuration in the ab-plane produces other comparable peaks

such as Q = (002). Therefore, we can conclude that the spin configuration changes

from the ferromagnetic alignment along the c-axis, Γ3, to ferromagnetic alignment in

the ab-plane, Γ9 after applying a field.
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Figure 4.15: (a) Onset of magnetic Bragg peak at Q = (001) upon applying
external field at T = 1.5 K (b) the summed intensity of the Q = (001) magnetic
Bragg peak at T = 1.5 K and T = 5.5 K.
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4.4.2 Spin fluctuation under external magnetic field

(a) (b)

(c) (d)

Figure 4.16: The change of inelastic neutron scattering with external magnetic
field.

We also investigated the change of spin fluctuation upon applying an external field.

It should be noted that there is a He-roton excitation ranging between E = [0.5, 1.5]

meV at T = 1.5K in this experiment setup, which has been removed manually by

Gaussian fitting the excitation.

As shown in Figure 4.16, we observed a broadening of spin wave excitation under a

field. This broadening is clear when we plot the neutron scattering intensity versus

energy transfer at different fields, for example, at H = 0 T and 3 T as in Figure 4.16

(a) and (b). At zero field, there is a single peak centered at E = 1.8meV. This peak

split into two peaks, one of which remains nearly at the same starting position, while
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the other peak moves to higher energy transfer as the external field increases.

This trend becomes evident in Figure 4.16 (c) where we plot the neutron scattering

intensity along energy transfer at two different magnetic fields. Figure 4.16 (d) shows

the Gauss fitted peak positions of the two peaks at different fields at T = 1.5 K.

Above 4 T, the uncertainties in the peak positions are larger due to the weak signal

and insufficient neutron counting time.

The splitting of the ferromagnetic spin wave under external magnetic field is, in fact,

very unusal. As can be inferred from the analytical form of eigenenergies of spin

Hamiltonian, the whole spin wave dispersion is expected to be just shifted by the

amount proportional to the magnitude of external magnetic field, gµBBS. It may be

possible other mechanisms like dipole-dipole interactions might be responsible for the

field dependent splitting, in which case the role of exchange interactions and dipolar

interactions in magnetism and superconductivity needs to be clarified more in more

detail. Further analysis would be required to understand this unusual behavior.
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4.5 Conclusion

In this chapter, we have studied the rare case of coexistence of ferromagnetism and

superconductivity in the CeO0.3F0.7BiS2 system. The crystal structure and magnetic

structure were studied.

The neutron powder diffraction data shows significant broadening as other systems

in this new BiS2-based superconductor family. Although there were large broadening

and several impurities, we could fit the structure with the space group P 4/n m m

reasonably well.

The magnetic structure was investigated by comparing with simulated elastic mag-

netic scattering intensities using group theoretical analysis. The magnetic moments

align ferromagnetically along the c-axis, which, upon application of external magnetic

field, flips to the ab-plane with ferromagnetic spin configuration.

By measuring the spin wave with inelastic neutron scattering method, we could model

the spin Hamiltonian in this system. The Heisenberg isotropic exchange interaction

with NN and NNN interaction was able to describe the observed spin fluctuation.

By applying a magnetic field up to 5 T, we could observe the splitting of the spin

fluctuation. There is an excitation that remains at the same position around E =

1.8meV, and another excitation moves up as the field increases.
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Conclusion

The nature of superconductivity in the new family of BiS2-layer superconductors

has been investigated in this dissertation. Several theories have presented differ-

ent scenarios of superconducting mediating mechanisms for the BiS2-based systems:

conventional phonons [60, 61, 64], spin density waves [57, 58, 63], or charge density

waves [60, 64]. To shed light on the nature of superconductivity, we have studied two

systems, La(O,F)BiS2 and CeO0.3F0.7BiS2, using neutron scattering.

In particular, for LaO1−xFxBiS2, we have investigated the crystal structure and lat-

tice vibrations as a function of temperature at two different F-doping levels, non-SC

LaOBiS2 and SC LaO0.5F0.5BiS2. For CeO0.3F0.7BiS2, we have examined the crystal

structure, magnetic structure, and magnetic fluctuations either by changing temper-

ature or by varying the external magnetic field.

In the case of LaOBiS2, our neutron powder diffraction data showed large broadening

of the nuclear Bragg peaks with non-zero l, indicating structural disorder along the c-

axis. Furthermore, a significant difference between the calculated and experimentally

refined position of the in-plane S ion was observed in both non-SC and SC compounds.

Our inelastic neutron scattering data yielded no detectable change in the phonon

spectrum either by doping or by cooling.

The large broadening of Bragg peaks and inconsistency in the in-plane S atomic

position suggest a structural instability of the system. Recent research [80] also

106
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reports a close relationship between crystallinity and superconductivity by observing

higher Tc in less-crystalline samples. The reason why the structural instability is

strong in this system and the mechanism through which the instability is related

with superconductivity deserve further investigation.

The little change in the phonon density-of-states of LaO1−xFxBiS2 implies that the

electron-phonon coupling is much weaker than theoretically expected, pointing to

an unconventional mechanism for superconductivity. Our inelastic measurements are

based on powder samples of solid-angle averaged density-of-states, thus possible weak

anomalies may become undetectable. Further studies on single crystals are needed

for a more concrete conclusion. Our results still provide important constraints on

future theoretical works examining these new BiS2-based superconductors.

In the CeO0.3F0.7BiS2 system, the neutron powder diffraction also finds large broad-

ening of the nuclear Bragg peaks. Below TFM ≈ 7 K, the Ce3+ magnetic moments

begin to align ferromagnetically along the c-axis, and a spin-wave mode around ~ω
≈ 1.8 meV appears. This spin-wave can be described by a Heisenberg isotropic inter-

action Hamiltonian with nearest-neighbor and next-nearest-neighbor model. Upon

applying an external magnetic field, the magnetic moments flip to the ab-plane with

ferromagnetic spin configuration, and the ~ω ≈ 1.8 meV mode splits into two.

The broad Bragg peaks in CeO0.3F0.7BiS2 suggests that the structural instability can

be playing an important role in this sample just like in LaO1−xFxBiS2. By comparing

the magnetism with resistivity either by changing the magnetic field or by changing

temperature, no direct relationship between magnetism and superconductivity can be

found. In this system, superconductivity seems to be robust against a magnetic field,

and there appears no correlation between the two phenomena. Lastly, the split of the

mode at 1.8 meV cannot be explained by the isotropic Heisenberg model alone, and

requires further investigation on the nature of magnetic interactions in this system.

The BiS2 system provides us with a venue to study the interplay of structure, phonons

and magnetism, and of their role in the superconducting mechanism.



Appendix A

Quantum Espresso

A.1 Install

To install Quantum Espresso(QE), you will need a Linux environment with an up-to-

date Fortran and C compilers. If you are using windows, installing the latest version

of Cygwin is highly recommended. If you are new to Linux environment like me, it

will be easier for you just to follow the sequences below:

1) download the QE program from the official website

http://www.quantum-espresso.org/

2) unzip the downloaded QE under the directory you want

tar zxvf espresso-X.Y.Z.tar.gz

3) configure and make

./configure

make all

108
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4) test if setup is completed

cd PW/tests/

./check pw.x.j

cd CPV/tests/

./check cp.x.j

For more help about the setup procedure, please refer to setup user guide in the web-

site.

http://www.quantum-espresso.org/wp-content/uploads/Doc/user_guide.pdf

A.2 Theoretical Background

The atomic position in an equilibrium can be written as

~Rl = ~Rµ + ~ds (A.1)

where

~Rl: equilibrium positions of each atoms

~Rµ: Bravais lattice vector

~ds: position of the atoms in one unit cell (s=1, ..., Nat)

and

N : number of unit cell

Nat: number of atoms in one unit cell.

The atoms are not static, and, at time t, it is displaced from equilibrium center by

~ul(t).

http://www.quantum-espresso.org/wp-content/uploads/Doc/user_guide.pdf
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~ul(t): displacement of the atom l at time t

Within the Born-Oppenheimer adiabatic approximation, the nuclei move in a poten-

tial energy given by the total energy of the electron system calculated at fixed nuclei,

Etot(~Rl + ~ul). The electrons are assumed to be in the ground state for each nuclear

configuration. When the |~ul| is small, within the harmonic approximation,

Etot(~Rl + ~ul) = Etot(~Rl) +
∑
lα

∂Etot
∂~ulα

~ulα +
1

2

∑
lα,l′β

∂2Etot
∂~ulα∂~ul′β

~ulα~ul′β + ... (A.2)

where the derivatives are calculated at ~ul = 0 and α and β indicate the three cartesian

coordinates.

At equilibrium, i.e., ∂Etot
∂~ulα

= 0, the Hamiltonian is:

H =
∑
lα

~P 2
lα

2Ml

+
1

2

∑
lα,l′β

∂2Etot
∂~ulα∂~ul′β

~ulα~ul′β (A.3)

where ~Pl: the momenta of the nuclei, and

Ml: masses of the nuclei

The classical motion of the nuclei is given by 3×N ×Nat functions of ~ulα(t). These

functions can be obtained by solving the Hamiltonian equations:

~̇ulα =
∂H

∂ ~Plα

~̇Plα = − ∂H

∂~ulα

(A.4)

For the given Hamiltonian, these can be re-written as:
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~̇ulα =
~Plα
Ml

~̇Plα = −
∑
l′β

∂2Etot
∂~ulα∂~ul′β

~ul′β

(A.5)

The two equations in A.5 can be combined to give:

M~̈ulα = −
∑
l′β

∂2Etot
∂~ulα∂~ul′β

~ul′β (A.6)

We can insert the solution of the above equation A.6 in the form of a phonon with

a momentum wave vector, ~q, where we re-wrote l = (µ, s), l′ = (ν, s′). Here, µ, ν

represent Bravais lattice, and s, s′ represent atoms in a unit cell.

~uµsα =
1√
Ms

~usαe
i(~q ~Rµ−ω~qt)

~uνs′β =
1√
M ′

s

~us′βe
i(~q ~Rν−ω~qt)

(A.7)

The time dependence is given by e−ω~qt and the displacement of the atoms in each

unit cell identified by the the Bravais lattice Rµ can be obtained as 1√
Ms
~usαe

i~q ~Rµ .

Inserting this solution A.7 in the equation of motionA.6, we can obtain an eigenvalue

problem for the 3×Nat variables of ~usα(~q):

ω2
~q~usα(~q) =

∑
s′β

Dsαs′β(~q)~us′β(~q) (A.8)

where D is called the dynamical matrix of the solid,

Dsαs′β(~q) =
1√

MsMs′

∑
ν

∂2Etot
∂~uµsα∂~uνs′β

ei~q(
~Rν−~Rµ) . (A.9)
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Within DFT, the ground state total energy of the solid at fixed nuclei is:

Etot =
∑
i

〈
ψi

∣∣∣∣−1

2
∇2

∣∣∣∣ψi〉+

∫
Vloc(~r)ρ(~r)d3r + EH [ρ] + EXC [ρ] + UII (A.10)

where |ψi〉 is the solution of Kohn-Sham equation, and ρ(~r) is the density of the

electron gas:

ρ(~r) =
∑
i

|ψi(~r)|2 (A.11)

EH is the Hartree energy, EXC is the exchange and the correlation energy, and UII

is the ion-ion interaction. According to Hellmann-Feynman theorem,

∂Etot
∂λ

=

∫
∂Vloc(~r)

∂λ
ρ(~r)d3r +

∂UII
∂λ

(A.12)

∂2Etot
∂µ∂λ

=

∫
∂2Vloc(~r)

∂µ∂λ
ρ(~r)d3r +

∫
∂Vloc(~r)

∂λ

ρ(~r)

∂µ
d3r +

∂2UII
∂µ∂λ

(A.13)

The new quantity we need to calculate is the charge density induced, at first order,

by the perturbation:

∂ρ(~r)

∂µ
=
∑
i

∂ψ∗i (~r)

∂µ
ψi(~r) + ψ∗i (~r)

∂ψi(~r)

∂µ
(A.14)

The wave functions obey:[
−1

2
∇2 + VKS(~r)

]
ψi(~r) = εiψi(~r) (A.15)

where VKS = Vloc(~r) + VH(~r) + VXC(~r). VKS depends on µ so that ψi(~r, µ) and εi(µ)

also depends on µ. We can expand these quantities in a Taylor series:
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VKS(~r, µ) = VKS(~r, µ = 0) + µ
∂VKS(~r)

∂µ
+ ... (A.16)

ψi(~r, µ) = ψi(~r, µ = 0) + µ
∂ψi(~r)

∂µ
+ ... (A.17)

εi(µ) = εi(µ = 0) + µ
∂εi
∂µ

+ ... (A.18)

Inserting these expansions to the equation A.15 and keeping only the first order in µ,

we obtain:

[
−1

2
∇2 + VKS(~r)− εi

]
∂ψi(~r)

∂µ
= −∂VKS

∂µ
ψi(~r) +

∂εi
∂µ

ψi(~r) (A.19)

where
∂VKS
∂µ

=
∂Vloc
∂µ

+
∂VH
∂µ

+
∂VXC
∂µ

(A.20)

and

∂VH
∂µ

=

∫
1∣∣∣~r − ~r′∣∣∣ ∂ρ(~r′)

∂µ
d3r′

∂VXC
∂µ

=
d VXC
d ρ

∂ρ(~r)

∂µ

(A.21)

depend self-consistently on the charge density induced by the perturbation.

The induced charge density depends only on Pc
∂ψi
∂µ

where Pc = 1−Pv is the projector

on the conduction bands and Pv =
∑

i |ψi〉 〈ψi| is the projector on the valence bands:
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∂ρ(~r)

∂µ
=
∑
i

Pc
∂ψ∗i (~r)

∂µ
ψi(~r) +

∑
i

ψ∗i (~r)Pc
∂ψi(~r)

∂µ

+
∑
i

Pv
∂ψ∗i (~r)

∂µ
ψi(~r) +

∑
i

ψ∗i (~r)Pv
∂ψi(~r)

∂µ

=
∑
i

Pc
∂ψ∗i (~r)

∂µ
ψi(~r) +

∑
i

ψ∗i (~r)Pc
∂ψi(~r)

∂µ

+
∑
i,j

ψ∗j (~r)ψi(~r)

(〈
∂ψi
∂µ
|ψj
〉

+

〈
ψi|

∂ψj
∂µ

〉)
(A.22)

Therefore we can solve the self-consistent linear system:

[
−1

2
∇2 + VKS(~r)− εi

]
Pc
∂ψi(~r)

∂µ
= −∂VKS

∂µ
ψi(~r) +

∂εi
∂µ

ψi(~r) (A.23)(
∂VKS
∂µ

=
∂Vloc
∂µ

+
∂VH
∂µ

+
∂VXC
∂µ

)
(A.24)

∂ρ(~r)

∂µ
=
∑
i

Pc
∂ψ∗i (~r)

∂µ
ψi(~r) +

∑
i

ψ∗i (~r)Pc
∂ψi(~r)

∂µ
(A.25)

A.3 Practical Guide

QE can calculate the phonon dispersion using density functional perturbation theory

(DFPT). The general approach will be:

1) Calculate the self-consistent charge and potential for your system using pw.x

2) Run DFPT calculations for several q-points in your Brillouin Zone to determine

the dymanical matrix and phonon frequencies at each q-points using ph.x

3) Convert the q-space dynamical matrix to the real space interatomic force constants

using q2r.x
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4) Use the code matdyn.x to interpolate to other q-vectors to et the full phonon dis-

persion and phonon density of states.

A.3.1 structural optimization

pw.x calculates the self-consistent charge and potential for the given system.

To run the calculation:

/usr/bin/pw.x < scf.in > scf.out

The pw.x will require input such as mass of atoms, Bravais lattice type, lattice pa-

rameters, number and type of atoms, atomic positions, potential functions to be

used, convergence threshold, etc. It creates output dynG file containing the dynam-

ical matrix information. The information regarding eigenenergies, eigenvectors, and

symmetries at the zone center can be found in the output file as well.

A.3.2 phonon at a fixed Q

ph.x solves the self-consistent linear system for 3×Nat perturbations at a fixed wave

vector ~q. With ∂ρ(~r)
∂µ

for all the perturbations, it calculates the dynamical matrix,

Dsαs′β(~q), at the given ~q. By diagonalizing this matrix, we obtain 3×Nat frequencies

ω~q.

We can run the phonon eigenenergy, eigenvector, and symmetry calculation at a fixed

~q, for example, at the Γ position. To run the command:

/usr/bin/ph.x < phG.in > phG.out
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The ph.x will require input such as mass of atoms, previously calculated dynamical

matrix output file, etc.

A.3.3 phonon dispersion

By repeating the phonon energy calculation for several ~q, we can plot ω~q as a func-

tion of ~q and display the phonon dispersion. However, there is more convenient and

computational efficient way which requires smaller set of ~q points.

The dynamical matrix of the solid in the equation A.9

Dsαs′β(~q) =
1√

MsMs′

∑
ν

∂2Etot
∂~uµsα∂~uνs′β

ei~q(
~Rν−~Rµ) (A.26)

is a periodic function of ~q with Dsαs′β( ~q +G) = Dsαs′β(~q) for reciprocal lattice vector

~G = 2π
R

. Therefore, the equation A.9 can be regarded as a Fourier series of a 3

dimensional periodic function. It should be noted that, since in a solid all Bravais

lattice points are equivalent, it does not depend on µ. The Fourier components, in

turn, can be written as:

1√
MsMs′

∂2Etot
∂~uµsα∂~uνs′β

=
Ω

(2π)3

∫
d3~qDsαs′β(~q)e−i~q(

~Rν−~Rµ) (A.27)

We can use the properties of the discrete Fourier transform and sample the integral

in a uniform mesh of ~q points. This will give the interatomic force constants only for

a set of Rν neighbors of Rµ.

The q2r.x code is used for this job: it will read a set of dynmaical matrices calcu-

lated in a uniform mesh of ~q points, and by using the equation A.27, calculates the

interatomic force constants for a few neighbors of the point near Rµ = 0.
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Let us consider, for example, a toy model with a one dimensional periodic function

of f(x+ a) = f(x) with period a. This function can be expanded in a Fourier series,

f(x) =
∑
n

cne
iknx (A.28)

which have a discrete set of Fourier components at the points kn = 2π
a
n (n: integer).

cn =
1

a

∫ a

0

f(x)e−iknxdx (A.29)

In general, if the periodic function inside the integral, f(x), is a sufficiently smooth,

the Fourier component with higher order, cn goes to zero. Suppose we know f(x)

only in a small set of N points:

xj = j∆x
(

∆x =
a

N
, j = 0, ..., N − 1

)
(A.30)

then we can calculate:

c̃n =
1

N

N−1∑
j=0

f (xj) e
−i 2π

N
nj (A.31)

c̃n is a periodic function of n where c̃n+N = c̃n. If N is sufficiently large that cn → 0

when |n| ≥ N/2 then c̃n is a good approximation of cn for |n| ≤ N/2 and the function,

f (x) =

n=+N/2∑
n=−N/2

c̃ne
iknx (A.32)

is a good approximation of the function f(x) also on the points x different from xj.

Therefore, if the dynamical matrix is a sufficiently smooth function of ~q and the

interatomic force constants decay sufficiently rapidly in real space, we can calculate
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the dynamical matrix at arbitrary ~q, limiting the sum to a few ~Rν neighbors of ~Rµ = 0.

To run q2r in order to convert phonon information in q-space into real space force

constant files:

/usr/bin/q2r.x < q2r.in > q2r.out

It needs input file which contains dynamical matrix file. Then, it will create output

file of fc containing interatomic force constants information.

The matdyn.x program reads the interatomic force constants calculated by q2r.x and

calculates the dynamical matrices at an arbitrary ~q.

/usr/bin/matdyn.x < matdyn.in > matdyn.out

With input file of fc type, it will create an output list of phonon frequencies in cm−1

for each of the q-vectors given in the input list.

A.3.4 phonon density of states

Using the interatomic force constant file generated, you can also calculate the phonon

density of states. This is done by sampling a large number of q points in the Brillouin

Zone using matdyn.x. The number of q-points is controlled by the Monkhorst-Pack

grid parameters, i.e., nk1, nk2, and nk3.

You can run this calculation as:

/usr/bin/matdyn.x < pdos.in > pdos.out



Appendix A. Quantum Espresso 119

This will generate an phods output file, which contains the density of states as a

function of frequency.



Appendix B

Group Theoretical Analysis of

Magnetic Structure

B.1 SARAh Representation

SARAh is a program developed to help with group theoretical analysis of the mag-

netic structure. It is composed of two programs: ’SARAh Representation Analysis’

and ’SARAh Refine’. The former is used for the group theoretical analysis, and the

latter is for the actual refinement with given representations.

To find out the Irreducible Representations (IRs) of the magnetic structure, we need

3 information: (1) the crystallographic space group, (2) magnetic propagation wave

vector (k-vector), and (3) the position of magnetic atoms. The k-vector defines which

symmetries of the starting structure are compatible with the translational symme-

try of the magnetic structure. Our goal is to find out the symmetry operations of

the crystallographic space group, G0, compatible with the k-vector, as they form the

’little group’ or the ’space group of the propagation vector’, Gk. From this Gk, we

can work out the different symmetry types, and these are the irreducible representa-

tion(IR) we are looking for.

120
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First, the crystallographic space group is needed to define the starting symmetry for

the calculation. If there is a second order phase transition, the space group before

the transition is used, while if it is a first order transition, the space group after the

transition should be used. First order phase transitions are those that involve a latent

heat, and the system is in a mixed phase during the transition. Second order phase

transitions are also called continuous phase transition, and characterized by a diver-

gent susceptibility, an infinite correlation length, and power-law decay of correlations

near criticality.

Second, we need the magnetic propagation vector, k-vector. The k-vector is defined

with respect to the crystal structure and space group setting. Again, if the transition

is of second order, the space group before the transition should be used, and if the

transition is of first order, the space group after the transition should be used. The

values are limited within the range from -1 to +1 in case of primitive cell, which is

not necessarily the case for the centered cells.

Finally, we need the Wyckoff position of the magnetic ions. Other symmetrically

equivalent sites will be generated automatically. The valence state and therefore, the

magneric form factor is not necessary until we do the actual fitting of the observed

data.

The SARAh Representation Analysis can now calculate the irreducible representation

with these given information. Either Kovalev’s table or ab-initio calculation can be

used, while the former is recommended for reference purpose as there is no accepted

rules on labeling the IRs. The IRs can be complex but always can be made real by a

similarity transformation.

IR should be considered as building blocks of symmetry types. Their symmetries

may join together to form irreducible corepresentation when less obvious symmetries,

such as time reversal, are considered. The number of IR tells us about the number of

different symmetry types that can occur in Gk. Some of these may be shown to be

incompatible with the positions used in the calculations. The magnetic moments on
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each site are related by the symmetry operations, and these relationships are termed

’basis vectors’ (BV). The number of BV associated with an IR is given by multiplica-

tion of the repetition with the order of IR. The total number of basis vector, however,

should be the same as the multiplication of the number of symmetry related atomic

positions bythe number of magnetic moment component (most of the case, 3). That

is, group theoretical analysis, does not reduce the number of BVs, but offers the way

to systemically categorize them.

The SARAh Representation Analysis will create several files after the calcualtion.

The txt file is a general summary, tex file is a report customized to the calculation

runs, lst1 file is a summary of IR calculations, lst2 file is a summary of a BV calcula-

tions, and mat file is a file used for SARAh Refine. The fst(Fullprof Studio) files can

be generated from the mat file, which will visualize each of the BVs. The (approxi-

mate) lattice parameters will be asked to make the figure sensible in this course. One

should not forget to consult lst2 file to the details of each BVs to understand what

they refer to.

B.2 SARAh Refine

SARAh refine will help you to actually refine the magnetic diffraction data using the

representation analysis from SARAh Representation Analysis. You will be required

to choose either GSAS or Fullprof for this purpose. While the use of GSAS enables

one to automatically find the magnetic structure using Reverse Monte Carlo(RMC)

method, only Fullprof can refine the magnetic diffraction data in case the the mag-

netic structure is incommensurate.

Fullprof Control menu enables one to select BVs, and generate model magnetic phases.

It contains information such as the number of BVs (N Bas), and components of the

BVs. There resulting BV matrix will have total 3 x N Bas columns corresponding

to x, y, z components of each BVs, and 2 rows corresponding for real and imaginary
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component for each Wykoff sites. C’s represent the coefficient of mixing for each BVs.

One can manually add this magnetic PCR file to the already existing nuclear phase

PCR file, usually just before the angle limits. The profile coefficients need to be

replaced to that of the nuclear phase, and the number of phase(Nph) should increase

by 1. With these all step finished, one can fit the magnetic structure by varying

the mixing coefficients, and changing the BVs in case the model do not work well.

The refined magnetic moment can be found in the resultant fst file at the end, or by

considering the mixing coefficient and the BV components.

When using the GSAS Control menu, we need to load the mat file as in Fullprof. It

is recommended to confirm the positions of magnetic ions by clicking the ’View All

Magnetic Atoms’ before precede. ’Make Magnetic Phase’ menu will automatically

set up a new magnetic phase for GSAS. The exp file of the nuclear phase is needed

that is to be copied and used as the basis for the magnetic phase. Oxidation state of

the magnetic ions will be used to calculate the magnetic form factor in the meanwhile.

Now, with ’Select Basis Vectors - Main Refinement’ menu, one can select the basis

vectors, set the number of RMC cycles, and let the computer start the refinement.

There are many other options and tool which facilitate the magnetic structure refine-

ment, so one is encouraged to consult the web page of the developer, Andrew Wills.



Appendix C

Spin Wave

C.1 spin Hamiltonian

Here, the spin wave dispersion in Chapter 4 is derived in more detail. We consider

the isotropic Heisenberg spin Hamiltonian with nearest neighbor and next-nearest

neighbor interactions. The first term in Equation 4.1 can be written as

H =
∑
i

J1

∑
~R1

(
~SA · ~SB + ~SB · ~SA

)
+ J2

∑
~R2

(
~SA · ~SA′ + ~SB · ~SB′

) (C.1)

Here, A and B are ions in different sublattices, and ~R1 and ~R2 are the displacement

related to J1 and J2, respectively. As can be seen from Figure 4.11, J1 corresponds

to an interlayer coupling, while J2 corresponds to an intralayer coupling. We can re-

write the x and y component of spin S, Sx and Sy, with lowering and raising operator

when the z-axis is defined as the quantization

S+ = Sx + iSy

S− = Sx − iSy
(C.2)

or,
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SxAS
x
B + SyAS

y
B =

1

2

(
S+
AS
−
B + S−BS

+
A

)
. (C.3)

The dot product of two spins can be represented as

SA · SB =
1

2

(
S+
AS
−
B + S−BS

+
A

)
+ SzAS

z
B (C.4)

The J1 terms and J2 terms in the Hamiltonian are

J1

∑
~R1

(
~SA · ~SB + ~SB · ~SA

)
(C.5)

= 2J1

∑
~R1

(
1

2

(
S+
AS
−
B + S−BS

+
A

)
+ SzAS

z
B

)
, (C.6)

J2

∑
~R2

(
~SA · ~SA′ + ~SB · ~SB′

)
(C.7)

= J2

∑
~R2

(
1

2

(
S+
AS
−
A′ + S−AS

+
A′

)
+ SzAS

z
A +

1

2

(
S+
BS
−
B′ + S−BS

+
B′

)
+ SzBS

z
B

)
. (C.8)

With the spin operators applied to eigenstate, |m〉, with eigenvalue m corresponding

the magnetization along the quantized axis, we obtain

Sz |m〉 = m |m〉

S+ |m〉 =
√

(S −m)(S +m+ 1) |m+ 1〉

S− |m〉 =
√

(S +m)(S −m+ 1) |m− 1〉 .

(C.9)
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C.2 Holstein-Primakoff transformation and Linear

approximation

To describe spin wave excitations, it is convenient to introduce spin-wave boson op-

erator a+, for creation, and a, for annihilations with |n〉 being an eigenstate of a+a

having eigenvalue n corresponding to the spin-deviation quantum number, n = S−m.

We obtain

[
a, a+

]
= 1 (C.10)

a |n〉 =
√
n |n− 1〉 , a+ |n〉 =

√
n+ 1 |n+ 1〉 , a+a |n〉 = n |n〉 . (C.11)

For sublattice B, another set of bosonic operators b+ and b are applied in the same

way as sublattice A. Equation C.9 is re-written with boson creation and annihilation

operator as

Sz |n〉 = (S − n) |n〉

S+ |n〉 =

√
2Sn(1− n− 1

S
) |n− 1〉

S− |n〉 =

√
2S(n+ 1)(1− n

2S
|n+ 1〉 .

(C.12)

We simplify the relationship in Equation C.12 if the spin-deviation n << S, which is

not a strict restriction since a spin-deviation can be spread over all the spin moments

as a wave. This is known as the linear approximation which is expressed as

S+
A,i ≈

√
2Sai S+

B,i ≈
√

2Sbi

S−A,i ≈
√

2Sa+
i S−B,i ≈

√
2Sb+

i

SzA,i ≈ S − a+
i ai SzB,i ≈ S − b+

i bi.

(C.13)
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It should be noted that the signs of the SB,i components are decided by the relation-

ship of the spin directions of the two sublattices. In this approach, therefore, it is

essential to know the magnetic ground spin configuration in advance to find the spin

wave excitation.

Applying the relationship in Eqaution C.13, the J1 terms in the Hamiltonian become

= 2J1S
∑
~R1

(
aib

+
i+R1

+ a+
i bi+R1

− a+
i ai − b+

i+R1
bi+R1

)
, (C.14)

and the J2 terms become

= J2S
∑
~R2

( aia
+
i+R2

+ a+
i ai+R2

− a+
i ai − a+

i+R2
ai+R2

+bib
+
i+R2

+ b+
i bi+R2

− b+
i bi − b+

i+R2
bi+R2

) .

(C.15)

C.3 Fourier transformation

To find out the dispersion relation, we can Fourier-transform the bosonic operators

to momentum space.

ai =
1√
N

∑
~k

e+i~k·~ria~k bi =
1√
N

∑
~k

e+i~k·~rib~k

a+
i =

1√
N

∑
~k

e−i
~k·~ria+

~k
b+
i =

1√
N

∑
~k

e−i
~k·~rib+

~k

(C.16)

The terms in Equation C.14 is now written as
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∑
i

∑
~R1

aib
+
i+R1

=
∑
~k

∑
~R1

e−i
~k·R1akb

+
k∑

i

∑
~R1

a+
i bi+R1

=
∑
~k

∑
~R1

e+i~k·R1a+
k bk∑

i

∑
~R1

a+
i ai =

∑
~k

∑
~R1

a+
k ak∑

i

∑
~R1

b+
i+R1

bi+R1
=
∑
~k

∑
~R1

b+
k bk,

(C.17)

and the terms in Equation C.15 become

∑
i

∑
~R2

aia
+
i+R2

=
∑
~k

∑
~R2

e−i
~k·R2aka

+
k∑

i

∑
~R2

a+
i ai+R2

=
∑
~k

∑
~R2

e+i~k·R2a+
k ak∑

i

∑
~R2

bib
+
i+R2

=
∑
~k

∑
~R2

e−i
~k·R2bkb

+
k∑

i

∑
~R2

b+
i bi+R2

=
∑
~k

∑
~R2

e+i~k·R2b+
k bk

(C.18)

In the above equation, the relation below (Equation C.19) has been used

∑
~R

e{i(~k−~k′)·~R} = Nδ~k,~k′ . (C.19)

Therefore, J1 terms reduce to
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=
∑
k

2S

[ J1

∑
~R1

e−i
~k· ~R1

 akb
+
k +

J1

∑
~R1

e+i~k· ~R1

 a+
k bk

−

J1

∑
~R1

e+i~k·0

 a+
k ak −

J1

∑
~R1

e+i~k·0

 b+
k bk

]

=
∑
k

2S

[
J1 (k) akb

+
k + J1 (−k) a+

k bk − J1 (0) a+
k ak − J1 (0) b+

k bk

]
(C.20)

where J1 (k) are defined as

(
J1 (k) ≡ J1

∑
~R1e
−i~k· ~R1

)
. (C.21)

J2 terms reduce to

=
∑
k

S

[ J2

∑
~R2

e−i
~k· ~R2

 aka
+
k +

J2

∑
~R2

e+i~k· ~R2

 a+
k ak −

∑
R2

2J2a
+
k ak

−

J2

∑
~R2

e−i
~k· ~R2

 bkb
+
k −

J2

∑
~R2

e+i~k· ~R2

 b+
k bk −

∑
R2

2J2b
+
k bk

]

=
∑
k

S

[ 2J2

∑
~R2

cos
(
~k · ~R2

) a+
k ak −

∑
R2

2J2a
+
k ak

−

2J2

∑
~R2

cos
(
~k · ~R2

) b+
k bk −

∑
R2

2J2b
+
k bk

]

=
∑
k

2S

[
J2

∑
~R2

cos
(
~k · ~R2

)
− 1

(a+
k ak + b+

k bk
) ]

=
∑
k

2S

[
γ
(
a+
k ak + b+

k bk
) ]

(C.22)
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where γ are defined as

γ ≡ J2

∑
~R2

cos
(
~k · ~R2

)
− 1

 . (C.23)

In the above equation, this relation below (Equation C.24 has been used to simplify

the equation.

[
a+
~k
, a~k

]
= a+

~k
a~k − a~ka

+
~k

= 1[
b+
~k
, b~k

]
= b+

~k
b~k − b~kb

+
~k

= 1 (C.24)

Summing both J1 and J2 terms gives final spin Hamiltonian of

H =2S
∑
~k

{
J1 (k) akb

+
k + J1 (−k) a+

k bk + (−J1 (0) + γ) a+
k ak + (−J1 (0) + γ) b+

k bk
}

=2S
∑
~k

{
J1 (k) akb

+
k + J1 (−k) a+

k bk + βa+
k ak + βb+

k bk
}

(C.25)

where β has been defined as

β ≡ (−J1 (0) + γ) . (C.26)

C.4 Diagonalization of spin Hamiltonian matix

The eigenenergies are the eigenvalues of the matrix(
β J1 (k)

J1 (−k) β

)
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and it can be easily shown that the eigenvalues of the above matrix are

ω = β ±
√
J1 (k) J1 (−k). (C.27)

The eigenvalues can be further simplified by the two relations below,

J1 (k) J1 (−k) = J2
1

∑
~R1

e−i
~k· ~R1

∑
~R′
1

e+i~k· ~R′
1

= J2
1

∑
~R1, ~R′

1

e−i
~k· ~R1− ~R′

1

= J2
1

∑
~R1, ~R′

1

{
cos
(
~k ·
(
~R1 − ~R′1

))
− isin

(
~k ·
(
~R1 − ~R′1

))}
= J2

1

∑
~R1, ~R′

1

{
cos
(
~k ·
(
~R1 − ~R′1

))}
(C.28)

and,

β =
∑
~R2

{
cos
(
~k · ~R2

)
− 1
}
−
∑
~R1

J1 = −4J1 − 4J2 + J2

∑
R2

cos
(
~k · ~R2

)
(C.29)

Therefore, the final eigenenergies of the spin Hamiltonian in terms of the wave vector,

i.e., spin wave dispersion relation, is

ω = −4J1 − 4J2 + J2

∑
R2

cos
(
~k · ~R2

)
± |J1|

√√√√∑
~R1, ~R′

1

cos
(
~k ·
(
~R1 − ~R′1

))
. (C.30)
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