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ABSTRACT

Cortical spreading depressions are a neurological phenomenon that occur
most notably during strokes and traumatic brain injury, characterized
by slowly propagating waves of near-complete neuron depolarization

followed by prolonged suppression of neuron activity. While their cause and
purpose is still poorly understood, it is believed that they play a role in ac-
tivating microglia, leading to the release of pro-inflammatory cytokines into
the brain. Microglial activation is also believed to promote the occurrence
of further cortical spreading depressions. The added neurological stress and
inflammation induced by cortical spreading depressions can exacerbate injury
to the brain. As a result, suppressing their generation and downstream effects
has become a topic of interest in medical research, with microglia as a potential
target. In this effort, 2-photon fluorescence microscopy and calcium imaging
has been used in recent years to generate image sequences of cortical spreading
depression propagation and subsequent microglial activation through calcium-
based signaling. Due to the novelty of such images, methods for consistently
analyzing such image sequences have not been presented within the literature.
This thesis contributes to solving this issue in two distinct ways. The first
is by presenting a workflow for segmenting microglia and measuring their
calcium-based signaling in response to cortical spreading depressions. The
second is a novel image segmentation algorithm for segmenting the wavefront
boundary of cortical spreading depressions.
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1
INTRODUCTION

Permanent damage to the central nervous system (CNS) due to stroke

and traumatic injury is one of the leading causes of morbidity in the

US. However, despite decades of medical and scientific research into

this topic, there is still much that is poorly understood about the neurological

and immunological phenomena associated with such injuries and their causes.

Furthermore, there are relatively few methods of treatment to reduce the

cascade of pathological phenomena that occur and increase damage to the

CNS, worsening patient outcome and survivability.

One phenomena that is particularly poorly understood is referred to as a

cortical spreading depression (CSD) or spreading depolarization. A CSD is

characterized by a wave of near-complete neuron and astrocyte depolarization,

followed by suppressed neural activity, which propagates through the CNS,

starting from tissue surrounding the point of injury. While single occurrences

of CSDs are associated with migraine auras with no permanent damage,

they occur repeatedly and with increasing intensity following a stroke or

traumatic injury [4, 5]. The prolonged metabolic stress of repeated, large-scale

depolarizations can damage otherwise healthy neurons and even result in
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CHAPTER 1. INTRODUCTION

apoptosis. The immune response that occurs alongside CSDs, primarily tissue

inflammation, leads to further stress on the tissue and reduced oxygen supply.

This combination of phenomena exacerbates the injury, leading to further cell

death and reduced patient outcome [1, 6, 7].

Despite the existence of CSDs being known for over 70 years, and having

been clinically observed in humans for 18 years, very little is known about

their cause and the mechanisms behind their effects, and there is no clinicaly

approved method for inhibiting them or reducing their detrimental effects

[8]. A primary reason for this is that CSDs have mostly been observed with

electrodes and laser speckle contrast imaging (LSCI), which do not provide

information about the underlying cellular mechanics that cause and drive

them. However, innovations in transgenic mouse models and fluorescent

microscopy in recent years have begun to allow us to image CSDs and their

effects in vivo at the cellular level [1]. However, due to the novelty of these

imaging techniques, few methods for processing and analyzing such images

have been presented, and no standard approaches have been codified.

1.1 Overall Methodology and Challenges

The goal of this thesis is to contribute to the developing field of CSD

imaging by presenting methods which can be used to analyze in vivo image

sequences of microglia responding to CSDs which are aquired through confocal

fluorescent microscopy. The contributions of this thesis are divided between

two projects. The first contribution is presenting a workflow for analyzing

the microglia’s signalling response to the cortical spreading depression in

fluorescent microscopy image sequences. This workflow is a combination of

traditional image and video preprocessing techniques and a novel method

for removing background signals from the fluorescent trace of a microglia

based on the Gram-Schmidt Process. The second contribution is a novel

image segmentation method designed to segment the wavefront boundary

of a CSD as it propagates through the image. This is a local region-based

2



1.2. THESIS SUMMARY

segmentation method which overcomes many of the extreme occurrences of

noise and intensity inhomogeneity present in such images.

Despite the successes of the methods presented in this thesis, there are

still some challenges which can be improved upon in future work. The signal

denoising process presented in the analysis workflow is sensitive to the timing

between when the signal of the CSD appears in the local region versus the

region of interest of a microglia. Though this lag is very small in the image

sequences used in this thesis, future iterations may benefit from additional

methods which correct for this. Furthermore, the effectiveness of the image

segmentation method presented is dependent on a proper initialization of the

algorithm, as the active contours generated are rigid and do not allow for

significant adjustments to the overall shape to correct for errors during the

optimization process.

1.2 Thesis summary

The objective of this thesis is to develop new methods of analyzing in
vivo fluorescent microscopy images of CSDs and their effects on microglial

signalling. Chapter 2 provides an overview of the background of CSDs, their

potential link to microglia, and the challenges of segmenting CSDs. Chapter 3

proposes a workflow for preprocessing, segmenting and analyzing the fluores-

cent response of microglia as they respond to CSDs through calcium signalling.

Chapter 4 describes a novel segmentation algorithm for segmentation of CSD

wavefronts which overcomes many of the challenges which hinder traditional

methods. Chapter 5 summarizes the findings from Chapters 3 and 4 and

provides suggestions for future work.
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2
BACKGROUND OF CORTICAL SPREADING

DEPRESSIONS AND CONFOCAL SEGMENTATION

2.1 Cortical Spreading Depressions

CSDs are a pathological neurological phenomena associated with traumatic

brain injury, stroke, and migraines. They are characterized by a slowly-

propagating (1.7-9.2mm/min) wave of near-complete neuron depolarization,

followed by a period of suppressed neural activity. In traumatic brain injuries

and stroke, CSDs occur repeatedly with increasing intensity over time, causing

metabolic stress that damages healthy neurons and exacerbates the injury

[4, 5]. Because of this, research into the causes of CSDs, the neurological

and immunological responses they induce, and methods of inhibiting their

generation and effects are important to improving patient outcome.

While CSDs and their role in brain injury have been investigated in previ-

ous studies, these primarily relied on the use of electrodes for in vivo recording

of their generation and propagation[4]. In recent years, researchers have

begun to use two-photon microscopy to image CSDs on a cellular scale as the
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CHAPTER 2. BACKGROUND OF CORTICAL SPREADING DEPRESSIONS
AND CONFOCAL SEGMENTATION

propagate through the brain [1]. These imaging studies are particularly useful

in investigating the suspected role of non-neuronal cells, such as microglia, in

the generation of CSDs and the resulting cellular response [1, 6, 7]. In these

studies, the propagation of the CSD is detected through calcium indicators

(such as GCaMP) which fluoresce in response to increased intracellular calcium

[9]. In this paradigm, the CSD appears as a region of increased fluorescence

as neuronal dendrites depolarize in the focal plane, which rapidly propagates

through the image as a wavefront.

2.1.1 Relationship Between Microglia and Cortical
Spreading Depressions

Microglia are the primary immune cell within the central nervous system

(CNS). They bear functional similarity to macrophages that reside in the rest

of the body, but are characterized by long processes which survey surrounding

neurons when in resting state. Microglia are responsible for both fine-tuning

synaptic function and responding to infections and injury. This gives them a

significant role in the progression of strokes and traumatic brain injury. The

removal of microglia from the brain leads to an increase in tissue damage and

a deregulation of neuronal activity following an ischemic stroke [7]. At the

same time, the removal of microglia inhibits the generation of CSDs following

such injury [8], suggesting an important role in their generation. A potential

mechanism for this is the release of tumor necrosis factor-alpha (TNFα) during

microglial activation in response to stroke or brain injury, which increases

neuron excitability [8, 10]. The release of pro-inflammatory cytokines may

further enhance this behavior [8, 11]. While microglial activation appears

necessary for the generation of CSDs, evidence in the literature also indicates

that CSDs play a role in activating microglia during stroke and traumatic in-

jury [8]. This potentially suggests a positive feedback relationship between the

two phenomena, whereby the injury causes initial CSDs and local microglial

activation, leading to the release of TNFα, inducing further CSDs which in
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2.2. IN VIVO FLUORESCENT MICROSCOPY IMAGING AND
SEGMENTATION

turn stimulate more microglia to release TNFα. This potential relationship

provides a possible target for intervention and treatment. If microglial ac-

tivation and release of TNFα and pro-inflammatory cytokines is inhibited,

CSDs generation may be suppressed, reducing injury and improving patient

outcome.

Unfortunately, little is known about microglial cellular biology and mecha-

nisms of activation, due to the difficulty of loading fluorescent dyes, the lack of

effective receptor and channel inhibitors, and their sensitivity to activation

in both in vivo and in vitro environments [8, 12]. However, it is believed

that changes in intracellular pH and ion concentrations though intercellular

signalling, release of internal ion reservoirs, and influx through membrane-

bound ion channels play important roles in many forms of microglial activation

[12]. An ion of particular interest is calcium (Ca2+). Increases in intracellular

calcium, due to both release of internal stores and influx from the intercel-

lular environment, is a common component in cellular responses to external

stimuli for most cell-types within the CNS [13]. Furthermore, suppression of

microglial calcium signalling through drug-based inhibition of calcium-release

activated calcium (CRAC) channels has been demonstrated to decrease mi-

croglia pro-inflammatory activity during traumatic brain injury [6]. This

means that measuring changes in intracellular calcium levels is an effective

method for quantifying microglial activation in response to CSDs. Further-

more, it may serve as a promising target for drugs designers to inhibit this

activation.

2.2 In Vivo Fluorescent Microscopy Imaging
and Segmentation

In vivo imaging of the central nervous system has become an increasingly

prevalent approach to neuroscience research. Advances in transgenic animal

models and two-photon microscopy have allowed researchers to directly ob-
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CHAPTER 2. BACKGROUND OF CORTICAL SPREADING DEPRESSIONS
AND CONFOCAL SEGMENTATION

serve the development and behavior of many cells and structures within the

brain which hitherto have only been approximated through in vitro studies

and indirect observation [1, 14, 15]. Such imaging is often performed by in-

troducing a fluorescent protein, through endogenous genetic engineering or

viral-based delivery, into the desired tissue or cells. The fluorescent proteins

allow for the direct imaging of cells and their underlying structures and pro-

tein [1, 16]. However, due to the complexities of the tissues being imaged, this

technique has several challenges which affect image and segmentation quality.

The primary challenge is that tissue is adept at scattering light, which results

in noise and decreasing fluorescent intensity as the imaging depth increases

[16]. This problem of noise and clarity is compounded by the fluorescence of

tissue outside the focal plane, as well as partial or total occlusion of objects

in the image by more opaque structures that lie above the focal plane, such

as blood vessels[16]. Because of these difficulties, the development of robust

image segmentation strategies, both for general and specific applications, is

critical to successful analysis.

2.2.1 Challenges in Segmenting Cortical Spreading
Depression Wavefronts

Accurately segmenting the boundary of the CSD can provide valuable

information about which regions have undergone depolarization in a given

image, as well as measuring the direction and speed of the CSD. However, as

a result of light scattering and occlusion, in vivo images of CSDs are often

characterized by a low signal-to-noise ratio (SNR), intensity inhomogeneity,

and discontinuities in the CSD’s wavefront. These obstacles make delineating

the wavefront difficult for many segmentation methods which rely on edge

detection or global information. Traditional approaches to segmentation of

biological images such as active contours [17, 18], level set methods [19], and

watershed techniques [20] fail due to poor contrast and inhomogeneity of the

observed intensity. This is because the low SNR can make it challenging to

8



2.2. IN VIVO FLUORESCENT MICROSCOPY IMAGING AND
SEGMENTATION

accurately calculate edges within the image, while the intensity inhomogeneity

and discontinuities make it challenging to calculate a global statistic that

properly distinguishes the depolarized regions from the rest of the image.

This results in segmentations where the contour boundary fails to advance

towards the CSD wavefront or ones which "sink into" the discontinuous or

inhomogeneous regions of the wavefront, resulting in poor segmentations.

9





C
H

A
P

T
E

R

3
MEASURING MICROGLIAL CALCIUM SIGNALLING

DURING CORTICAL SPREADING DEPRESSIONS

In this section, a workflow for segmenting microglia and measuring their

calcium signalling in response to CSDs is presented. As part of this

workflow, a novel method for removing the background fluorescence

caused by the CSD from the microglia’s fluorescent trace is presented. This

workflow is used to examine the efficacy of inhibiting microglial activation

through the use of the CRAC channel-inhibiting drug CM-EX-137, which

is a potential method for reducing brain inflammation during strokes and

traumatic injury.

3.1 In Vivo 2-Photon Imaging of Cortical
Spreading Depressions

In order to directly image the propagation of CSDs in vivo at a cellular level,

the use of 2-photon fluorescent microscopy and calcium imaging is required.

This allows for the direct imaging of cells that are otherwise opaque and

11



CHAPTER 3. MEASURING MICROGLIAL CALCIUM SIGNALLING
DURING CORTICAL SPREADING DEPRESSIONS

obscured by the surrounding tissue, as well as visualizing of cellular processes

occurring within them. In this project, images of CSDs were acquired using

mice that were a genetic cross between the Cre-dependent genetically encoded

calcium reporter [21] and the Iba1(Aif1)-IRES-Cre lines [13]. This leads to

the expression of two fluorescent proteins within the mouse CNS. The first

protein is tdTomato, with microglia being the primary cell that expresses

it. This acts a marker, labeling the microglia in the image with a red color

that allows for easier visualization and segmentation. The second protein is

GCaMP5G, a Ca2+ indicator. This means that an increase in Ca2+ in a cell’s

microenvironment through depolarization or the release of internal stores

leads to an increase in fluorescence by GCaMP5G [1].

In order to image CSD within the mouse CNS, a cranial window was

mounted on the top of the skull. CSDs were induced through either a middle

cerebral artery occlusion (MCAo) to induce an ischemic stroke or by injection of

1M of potassium chloride (KCl) into the brain. Imaging was performed using

a 2-photon microscope with red and green emission filters at a focal depth of

between 100-200 µm with a resolution of ~0.9 µm per pixel. 512 x 512 image

sequences were recorded over 20 minutes with an imaging frequency of 2.5 Hz,

Figure 3.1: (left) Multi-photon microscopy image of a cortical spreading de-
pression (CSD). Microglia (red) respond to calcium signalling from the rapid
depolarization of neurons (green) [1]. (right) Isolated green-channel image of
CSD. Brighter regions indicate areas which have already undergone depolar-
ization.

12



3.2. IMAGE SEQUENCE STABILIZATION WITH SURF FEATURES

for a total of 3075 images per sequence. To reduce data size during analysis,

these sequences were trimmed to 400 frames (~160s) with approximately 200

frames before and after the CSD appears in the image. See Figure 3.1 for an

example of an image acquired with this method.

The generation of transgenic mice, surgery, and imaging was performed

by Dr. Petr Tvrdik and his students in the Center for Brain Immunology and

Glia at the University of Virginia.

3.2 Image Sequence Stabilization with SURF
Features

Muscle spasms are a common symptom of strokes, including mice, which

can cause challenges when analyzing in vivo microscopy image sequences

during such conditions. This comes in the form of motion artifacts and shifts

in the focal plane which can cause static structures in the image to change

location over the course of the imaging session, complicating the task of

calculating time-dependent features, such as changes in fluorescent intensity,

using fixed regions of interest (ROI). Generating these ROI by segmenting a

mean intensity projection (MIP) of the sequence is also challenging, as the

motion blurs the boundaries of structure in the MIP. While it is possible to

use an adaptive ROI which moves along with the cell in the image, the small

size of the microglia and high SNR in images at this resolution leads to a lack

of detail and increased difficulty in accurately segmenting individual frames

of sequence. One method to overcome this is to preprocess the sequence with

a motion correction algorithm which stabilizes the image and maintains a

fixed location for the cells over the course of the image sequence. The motion

correction method utilized in this project has three major steps. First, a

feature extraction algorithm is applied to the current frame in the sequence

to serve as potential points of reference. Second, the features are matched to

similar features in the initial frame of the sequence in order to estimate the

13



CHAPTER 3. MEASURING MICROGLIAL CALCIUM SIGNALLING
DURING CORTICAL SPREADING DEPRESSIONS

motion between frames. Third, a geometric transformation is applied to the

current frame that minimizes the distance between these matched features

and corrects for the motion.

3.2.1 SURF Feature Extraction

The feature extraction process used in this project utilizes the speeded

up robust features (SURF) method [22]. The SURF method detects blob

structures within an image, which makes it well suited for detecting the

blob-like structure of microglia cell bodies, or soma. SURF uses a determinant-

of-Hessian (DoH) approach to determine strong features within the image.

The Hessian matrix, H(x,σ), of a pixel within an image, x, at a scale, σ, is

defined as:

(3.1) H(x,σ)=
[

Lxx(x,σ) Lxy(x,σ)

L yx(x,σ) L yy(x,σ)

]

where L(x,σ) is the convolution between the image and a kernel of the Gaus-

sian second-order derivative, δ2

δx2 g(σ). For a given pixel, the determinant of its

Hessian matrix is used as a metric to determine the strength of a candidate

feature, with pixels above a given threshold being labeled as features [22].

To reduce the number of redundant features, only the pixel with the largest

determinant in a local region is labeled as a feature. In order to improve

the robustness of detected features, as well as constrain the range of sizes

of blob-like features detected, the image is evaluated with multiple kernels

of varying size and scale [22]. The different sets of such kernels are often

referred to octaves, with a higher octave corresponding to larger filter sizes.

Here, 3 filters from the second octave were used, corresponding to filters of

size 15x15, 27x27, and 39x39 pixels.

Once a the feature is located within an image, it is given a set of descriptors

that uniquely describes the characteristics of the local region surrounding

that feature’s location. In the SURF algorithm, two values are used as the

descriptor. The first is the dominant orientation of the region [22]. This is

14



3.2. IMAGE SEQUENCE STABILIZATION WITH SURF FEATURES

calculated through the Haar-wavelet responses in the x and y directions within

6s pixels of the point, where s is the scale of the kernel size used when the

feature was detected, relative to the smallest kernel size for the octave. This

is done on a subsampled version of the region, where the step size between

samples is also s. The scale of the wavelets used are also s. The second is

a description of the local region within a 20s window centered on the point

of interest [22]. This region is subdivided into 4x4 subregions, where the

Haar-wavelet responses in the x and y directions of each subregion is summed

and weighed by a Gaussian function (σ= 3.3s). The orientations of the x and y

axis for this calculation are with respect to the dominant orientation of the

region, i.e. the x axis is parallel to the dominant orientation and the y axis is

orthogonal to that orientation.

In this project, feature extraction is performed on the red channel of each

frame, where the microglia are labeled with tdTomato. In order to reduce the

amount of noise in each frame, and strengthen potential features, a median

filter is applied to the image prior to feature extraction. Due to the high SNR

of the images despite this filtering, a low determinant threshold of 50 was used

to maximize the number of potential features. Naturally, this can result in

a very high number of poor features. This is constrained by only considering

the 50 features with the strongest determinants in future steps of the motion

correction algorithm.

3.2.2 Feature Matching

Once features have been extracted from the current frame in the image

sequence, it is possible to determine which correspond to features detected

in the initial frames of the sequence. The method used in this project is an

exhaustive comparison between the local region descriptors of each feature

using the sum of square differences (SSD) as a metric (Figure 3.2). By this

method, the difference between the local region descriptors of a feature in the
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initial frame, f ′, and a feature in the current frame, f , is given by

(3.2) SDD( f , f ′)=
n∑

i=1
( f ix − f ′ix)2 + ( f i y − f ′i y)2

where f i and f ′i are the ith local region descriptors of each feature, out of

the n total for each feature. Because these descriptors of the local region

are computed in relation to the dominant orientation of the feature, this

comparison is robust against rotation [22]. The two features which have the

lowest SDD score between them are designated as matching features.

Due to relative simplicity of the images being compared, it is possible for

two features that do not correspond to the same object to be matched under

with this method (see Fig. 3.2). Attempting to minimize the distance between

such erroneously matched features when calculating the motion-correcting

transformation, especially when there are few matching features, can result

in significant errors in the final result. In order to account for such errors, the

euclidean distance between each pair of matched features is calculated. If this

distance exceeds 20 pixels, or approximately 18 µm, the pair is removed from

Figure 3.2: Examples of matched features between image sequence frames.
(left) Matching features between two frames in a image sequence. (right)
Example of two features being incorrectly matched due to the simplicity of the
images (red).
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consideration. This threshold was derived empirically from an observation

of the image sequences used in this thesis and can be tuned if necessary in

future applications of this method. The use of the initial frame of the sequence

as a reference, as opposed to the previous frame post-correction, is to reduce

the effects of accumulating error as the algorithm processes each frame of the

image.

3.2.3 Estimating Geometric Transformation with
MLESAC

Once matching features have been identified, one can deform the image

through geometric transformations, such as translation and rotation, so that

the features in the current frame align spatially with their matches in the

initial frame. This corrects for the motion that has occurred in the time

between these two frames, leading to an image sequence where fixed objects

remain in the same spatial location throughout the sequence. One method

that can be used to perform is called an affine transform matrix [23, 24].

Multiplying this matrix, T with the spacial coordinates of a pixel, x= [x, y,1],

yields the new coordinates for that pixel in the transformed image, x̂= [u,v,1]

like so:

(3.3) xT = x̂

(3.4) [x, y,1]


a b 0

c d 0

e f 1

= [u,v,1]

The transformation performed by the affine transformation matrix allows for

three types of geometric transformations: rotation, translation, and skewing

[23, 24]. This accounts for both the displacement and rotation that occurs in

the image sequences during motion artifacts, as well as the the subtle skewing

of the image that might occur due to shifts in the orientation of the focal plane.

As the new image generated is larger in size than the original image, due to
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some pixels moving to locations outside the original boundaries, the result

is cropped back to the original size with respect to how it aligns with the

reference image.

In this project, the Maximum Likelihood Estimation Sample Consensus

(MLESAC) method is used to estimate the affine transformation matrix [25].

This is done by minimizing a cost function that calculates the maximum

likelihood estimation (MLE) error between the coordinates of the target feature,

x′ = [x′, y′,1] and the new coordinates of its matched feature according to the

current iteration of the transformation matrix, x̂= [u,v,1]. The MLE error of

the ith feature pair is calculated as

(3.5) e i = (ui − x′i)
2 + (vi − y′i)

2

The cost function is

(3.6) c =∑
i

p(e2
i )

p(e2) is an error term given by

(3.7) p(e2)=
{

e2 e2 < T2

T2 e2 ≥ T2

where T = 1.96σ, σ being the standard deviation of the MLE errors in the

current iteration [25].

3.3 Microglia Segmentation

With potential motion artifacts corrected in the image sequence, it is now

possible to specify regions of interest (ROI) in the image which can be used

to measure changes in fluorescence which correspond to microglial calcium

signalling. A simple way of generating these ROI is to segment the microglia in

the MIP of the sequence through some segmentation algorithm, such as active

contours. Active contours are an attractive solution because they allow for the

segmentation of complicated shapes by iteratively evolving a contour towards
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features that indicate the boundaries of the object being segmented [3, 26–30].

This often leads to a high degree of accuracy in the final segmentation, and

many active contour methods have been developed for biologically-related

tasks such as fluorescent microscopy images [2, 3, 31, 32]. In this project, the

Tubularity Flow Field (TuFF) algorithm is used to perform this segmentation

[32].

3.3.1 The TuFF Algorithm

TuFF is an example of a level set-based active contour designed for seg-

menting tubular structures such as neurons, blood vessels, and microglia

[32]. In level set methods, the image is represented as a higher-dimensional,

continuous function, φ, called the level set function [33, 34]. Within φ, every

pixel, x, is given some scalar value, φ(x). Generally, positive values are given

to pixels belonging to the object being segmented, and negative values for

pixels in the background, with the zero-level, φ(x)= 0, defining the boundaries

of the contour. The level set is first initialized by the user or some automated

method in order to provide a rough estimation of the object being segmented.

An energy functional, ε(φ), is used to iteratively modify φ through gradient

descent by using local or global information to evolve the contour boundaries to

the edges of the object [33, 34]. In the TuFF algorithm, this energy functional

is defined as

(3.8) ε(φ)= εreg(φ)+εevolve(φ)+εattr(φ)

(3.9) εreg(φ)= v1

∫
Ω
|∇φ(x)|δ(φ)dx

(3.10) εevolve(φ)=−
∫
Ω

d∑
i=1

αi〈vi(x),n(x)〉2H(φ)dx

In this equation, εreg(φ) serves to moderate the curvature of the active contour,

with higher values of the regularization parameter, v1, leading to smoother
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contours. εevolve(φ) is the primary portion of the energy functional driving

curve evolution, with an emphasis on evolving the contour towards the bound-

aries of tubular structures [32]. δ(φ) and H(φ) are the dirac and heaviside

functions respectively. n(x)= ∇φ(x)
|∇φ(x)| is the inside normal vector of the level set

and vi(x) is the ith eigenvector of the Hessian of the image at a given pixel,

which combine to drive the boundaries of active contour towards the edges

of tubular structures [32]. εattr(φ) is an additional functional which helps to

compensate for discontinuities and intensity inhomogeneity in the image by

driving together boundaries that are close to each other[32].

It should be noted that there is a variation of the TuFF algorithm, TuFF-

BFF, which is more specialized for microglia segmentation [35]. However, the

small size of most microglial soma in the image sequences as well as the lack

of detail in microglia processes, both due to a high SNR, lead to the conclusion

that the advantages of this method were not significant enough to have an

appreciable effect on segmentation results.

3.3.2 ROI Generation with TuFF

In order to segment the microglia in each image sequence, the MIP of the

red channel is first generated. This is a pixel-wise time-averaging of pixel

intensities that removes noise and creates a more well-defined structure for

each microglia, which improves segmentation results. The original imple-

mentation of TuFF utilized the Otsu threshold as a method of automatically

initializing the level set [32, 36]. However, the small size of microglia and the

high SNR present the MIP images results in large portions of background

being contained within the initialized contour, which significantly reduces

the accuracy of segmentations and introduces the need for several additional

post-processing steps to refine results and remove erroneous segmentations.

Therefore, a manual initialization scheme was used. Each microglia in the

MIP was identified and initialized with one or more elliptic initial contours.

The TuFF algorithm was then run for 300 iterations. Fine-tuning of hyperpa-

rameters was necessary in some cases to improve results. The resulting level
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Figure 3.3: Intermediate steps of ROI generation with TUFF: (a) MIP of the
red channel of the image sequence after motion correction. (b) Initialization
of level set. Pixels within the initial contours (blue) will have values of 1 and
pixels outside will have values of -1. (c) Final segmentation contours (red)
of TUFF algorithm. (d) Final level set is thresholded and individual binary
objects are labeled as individual microglia.

set is thresholded at the zero-level to produce a binary representation. Each

binary object in the segmentation was given a numerical label and designated

as a separate ROI. See Figure 3.3 for an example of this process.
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3.4 Calculating Microglia Fluorescent Trace

In order to measure the activation of microglia through calcium signalling,

it is necessary to quantify changes in the fluorescence of GCaMP5G within

the microglia after stimulation by the CSD. One popular and effective way of

doing this is by computing the fluorescent trace of the ROI [37–39]. This is

a normalized measurement of the mean pixel intensity within the ROI over

time, calculated with the following equation:

(3.11) Trace(t)= ∆F(t)
F0

= F(t)−F0

F0

where F(t) is the mean pixel intensity at time t and F0 is a baseline intensity,

often calculated as the average mean intensity of the ROI during a resting

state prior to whatever response that is being measured [37–39]. In order

to measure the intracellular calcium signalling of the microglia in response

to CSDs, the fluorescent trace of the green channel for each segmented ROI

is independently measured. The baseline fluorescence is calculated as the

average fluorescence in the initial 100 frames (~40s) of the image sequence. In

order to improve the SNR of the signal, each trace is filtered using a wavelet

filter followed by a 1D median filter [40].

3.4.1 The Local Region-Corrected Fluorescent Trace

Two common features used for quantifying the results of fluorescent trace

calculations are the peak intensity and area-under-curve (AUC) of the fluores-

cent response being measured [37–39]. These values measure the strength of

the response being measured and its duration, respectively. However, in the

context of measuring microglial calcium signalling in response to CSDs, calcu-

lating these values can be complicated by background signals. This is because

GCaMP5G is expressed both in microglia and a subset of neurons in the mouse

lines used. While this allows for the visualization of the CSD as it propagates

through the image, it introduces background signals into the ROI, in the form

of neural dendrites above the microglia in the focal plane depolarizing. When
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Figure 3.4: Microglial trace prior to denoising. The first peak in the trace is
a background signal from the CSD while the second is from the microglia’s
fluorescence.

using a ROI of the microglia, this background signal introduces a second

fluorescent response into the resulting trace (Figure 3.4). This background

signal often overlaps with a portion of the microglia’s calcium signalling in

response to the CSD, which often lags behind the CSD by ~1-3s. Calculating

the peak intensity and AUC of such a trace produces erroneous results, as

the background signal can increase both values. Additionally, in cases where

microglia do not respond significantly to the CSD, this background signal is

even more prominent within the trace, leading to values which erroneously

indicate a response. Therefore, it is necessary to removes this background

signal.

In order to remove the background signal from microglial fluorescent traces,

this project presents a novel modification of the traditional approach, called

the Local Region-Corrected Trace (LRCT) (Figure 3.5). In this approach, an

additional trace of the microglia’s local region is calculated, which records

the background signal independently of the microglia. The local region is

defined as pixels that have a euclidean distance of 5-10 pixels, 4.5-9 um, from

the boundary of the microglia’s ROI. The local region trace is then used to

remove the background signal from the microglial trace through the use of the

Gram-Schmidt Process [41]. The result is a version of the microglia’s trace
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Figure 3.5: Diagram of Local Region-Corrected Trace method.

which has had this background signal removed.

3.4.2 Gram-Schmidt Process

The Gram-Schmidt Process is a method of orthonormalization, similar to

Principle Component Analysis [41]. It is used in linear algebra to decompose

linearly independent vectors into orthogonal basis vectors, but it has also seen

application in denoising applications for approximating an underlying signal

from a noisy representation. This is because a noisy 1D signal can be modeled

as the linear combination of two vectors, one for the signal and the other for

the noise [42, 43]. The basic principle of the Gram-Schmidt Process is based

on calculating the projection of a reference vector onto a vector you wish to

decompose. By subtracting this projection from the vector, you obtain a vector

that is orthogonal to the reference vector. The equation for obtaining this

orthogonal vector is

(3.12) u2 = v2− pro ju1(v2)

(3.13) pro ju1(v2)= 〈v2,u1〉
〈u1,u1〉

u1
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where v2 is the vector being decomposed and u1 is the reference vector [41]. In

the context of signal denoising, v2 is the noisy signal and u1 is an estimation

of the noise in the signal over time. The result is a denoised signal [42].

3.4.3 Removing Background Fluorescence with
Gram-Schmidt Process

As stated in the previous section, the Gram Schmidt Process can be used

to denoise a signal using an estimation of the noise contained in the signal. In

this case, we will use the Gram-Schmidt Process to remove the background

signal from the microglia’s trace, using the local region trace as an estimation

of the signal.

In order to improve the accuracy of the denoising process, both signals are

first split into two separate, overlapping sections of uniform length. Each seg-

ment has a 50% overlap with the other. This introduces a level of redundancy

in the signal removal process, with the most significant portions of the signal

being denoised twice. Each of these sections is shifted to have a mean of 0 and

normalized prior to the use of Gram-Schmidt:

(3.14) ŝi =
si −ai

mi

(3.15) ai = mean(si)

(3.16) mi = max{si −ai}

where si is a section of a trace. This improves the effectiveness of the signal

removal by reducing the magnitude of the scalar values being calculated [41].

Once each section has been preprocessed in this manner, they are collected into

two matrices, M and L, for the microglia and local region traces, respectively.

Each row of a matrix is a separate section of the split signal. Once this is done,

the Gram-Schmidt Process is performed as a matrix operation,

(3.17) D = M − M ·L
L ·L L
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where D is the partitioned signal with the background signal removed, and · is

the dot product. The division and multiplication in this equation are performed

elementwise. The shifting and normalization is then reversed using the same

scalar values used previously on the microglia trace:

(3.18) si = ai ŝi +mi

Once the sections have been restored to their original scale, they are recom-

bined into a single signal, with overlapping portions being averaged together.

The result is a fluorescent trace of the microglia which has had the background

fluorescence from the CSD removed (Figure 3.6).

Figure 3.6: (top) Microglial and local region traces. (bottom) Microglial local
region-corrected trace.
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3.5 Validation Experiment: Effects of CRAC
Channel Inhibition on Microglial Calcium
Signalling

In order to provide an example of the workflow presented in this project, in

particular the LRCT, we will use it to quantify the effects of CM-EX-137 on mi-

croglial calcium signalling during CSDs. CM-EX-137 is a novel CRAC channel

inhibitor which reduces the buildup of intracellular calcium in microglia [6].

The influx of intracellular calcium though the CRAC channel is believed to

be an important step in the signalling cascade of a microglia’s activation and

pro-inflammatory response during strokes and traumatic injury[8]. In support

of this theory, CM-EX-137 has been shown to suppressing the activation and

pro-inflammatory response of microglia during experimental brain trauma,

reducing lesion size and neuronal death as well as improved neurological

outcome [6]. This potentially makes it the first drug treatment which can be

used to reduce the detrimental effects of CSDs. In the original study, quan-

tification of the effects of CM-EX-137 was performed through histological and

immunofluorescent analysis of brain slices post-treatment, as opposed to direct

in vivo imaging [6]. If similar results can be inferred by applying the workflow

proposed in this project to in vivo image sequences of CSDs, it would serve as

validation of the approach.

Six mice of the same line described in Section 2.1 were used, with one

mouse was treated with CM-EX-137 and another treated with the drug vehicle

as a control. CSDs were induced through the injection of KCl into the brain

approximately 60s into the imaging session. Three image sequences were

taken from each mouse. These were then preprocessed and analyzed using the

described process and peak fluorescence was calculated from the background-

corrected traces. As a demonstration of the effectiveness and necessity of

the LRCT, peak fluorescence values were also calculated for traces of the

CM-EX-137 positive sequences prior to applying the LRCT approach.
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As predicted, the use of CM-EX-137 lead to a noticeable reduction in the

occurrence and strength of microglial calcium signalling as a result of CSD

(Figure 3.7). Qualitatively, the was a significant reduction in the number of

microglia which fluoresced in response to the CSD when treated with CM-

EX-137, and those that did had a noticibly reduced intensity. The mean peak

intensity for microglia in the control case was 0.450±0.0.167 while the mean

for mice treated with CM-EX-137 was 0.171±0.145, a statistically significant

difference. Importantly, the mean peak intensity for microglia in the CM-EX-

137 group prior to applying the LRCT method was 0.312±0.161, which is a less

in line with predictions from the literature. Conclusions on the effectiveness of

CM-EX-137 based on such results could have been misleading. This result con-

firms the necessity of removing background signals when analyzing microglial

Figure 3.7: Distributions of peak intensity values for microglia treated with
CM-EX-137 and the vehicle (control). Results for the CM-EX-137 treated mice
prior to the application of the LRCT method are included for comparison.
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fluorescence, and supports the efficacy of the LRCT method in accomplishing

this.

3.6 Discussion

In this chapter, we presented a workflow that can assist researchers in an-

alyzing microglial activation in response to CSDs. The efficacy of this method

has been validated through use on a real-world experiment, bearing the results

in agreement with the literature. By adopting this general methodology, we

hope that future researchers will have an easier, standardized method of con-

ducting research on this topic and improve our understanding and treatments

of stroke and traumatic brain injury. Despite the successes of this workflow,

there is still room for improvement that can be iterated on in future work. The

primary downside of using the Gram-Schmidt Process, as described in Section

3.4.3, is that it operates on each element of the signal relatively independently.

That is, it assumes that both the noisy signal and noise model are in near-

perfect alignment with respect to time. This makes the method sensitive to

delays between the onset of fluorescence from the CSD in the local region

trace compared to the microglia trace. If this delay is significant enough, the

background fluorescence will not be completely removed in the resulting trace.

In the imaging sequences used in this project, this delay was not present or

trivial, as 2.5Hz imaging frequency was low enough that the arrival of the CSD

within the local region ROI and microglial ROI was simultaneous or within 1

frame of each other. However, this issue can become more significant if future

imaging studies used significantly higher imaging frequencies. A potential

expansion of the LRCT method would be to include a method of correcting for

such misalignment through the use of covariance or similarity metrics to shift

the local region and microglia traces such that the onset of the CSD occurs

simultaneously.
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4
SEGMENTING THE WAVEFRONT BOUNDARIES OF

CORTICAL SPREADING DEPRESSIONS

In this chapter, a method for segmenting the wavefront boundary of a

cortical spreading depression is presented. This method uses a region-

based local similarity metric in its energy function, but optimizes it over

a distance map representation of the image as opposed to the traditional level

set-based implementation. The results of this method are compared to results

of other state-of-the-art and benchmark methods to demonstrate performance.

4.1 Local Similarity Metric Segmentation

In order to compensate for the high level of noise, intensity inhomogeneity,

and wavefront occlusion present in confocal images of CSDs, we propose an

modified version of level set segmentation which recontextualizes it from an

malleable active contour to a threshold-based approach, which we call the

Local Similarity Metric (LSM) method. The primary motivation of this method

is to conserve the shape of the segmentation boundary between iterations,
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preventing the final segmentation from being overly sensitive to discontinuities

in the CSD wavefront that occur due to noise and occlusion. Furthermore, the

LSM method seeks not to segment an object in an image from the background

in the traditional sense, but rather to separate the image functionally into two

regions: one where the neurons have depolarized in response to the CSD and

one where they have yet to depolarize.

4.1.1 The Local Similarity Factor

The inspiration behind the LSM method is the local similarity factor (LSF).

Introduced by Nui et al. [31], the LSF provides a distance-weighted, region-

based measurement of the similarity between the intensities of pixels within a

region and the region’s mean intensity. For a given pixel, x, within an image,

I, the LSF is defined as:

(4.1) LSF(x, lc)=
∫

y∈Nx 6=x

|I(y)− lc|2
d(x, y)

d y

where Nx is a square-shaped window defining the local region, d(x, y) is the

Euclidean distance between pixels x and y, and lc is the local mean intensity.

The LSF metric has two major advantages that are valuable for the problem

addressed in this project. First, the method does not require preprocessing,

in the form of noise reduction or contrast enhancement, for the metric to be

effective. Second, the LSF-based model is robust to high levels of noise as well

as intensity inhomogeneity, making LSF appealing for the CSD images this

chapter focuses on [31].

Two different LSF values are computed per pixel for each iteration of the

algorithm. LSF1 compares pixels that are inside the current segmentation

boundary, while LSF2 compares pixels that are outside said boundary. As a

result, two local mean intensities, lc1 and lc2, are calculated when evaluated

over a level set function, φ(·):

(4.2) lc1(x)=
∫
ΩM(x, y)I(y)Hε(φ(y))d y∫
ΩM(x, y)Hε(φ(y))d y
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and

(4.3) lc2(x)=
∫
ΩM(x, y)I(y)(1−Hε(φ(y)))d y∫
ΩM(x, y)(1−Hε(φ(y)))d y

.

M(x, y) is a mask of the local region defined as

(4.4) M(x, y)

{
1 d(x, y)< r
0 else

and Hε(·) is the regularized Heaviside function.

By combining equations (4.1-4.4), Nui et al. [31] produce the following

energy functional, called the Region-based model via Local Similarity Factor

(RLSF):

ERLSF (x,φ(x))=λ1

∫
Ω

LSF1(x, lc1(x))Hε(φ(x))dx+

+λ2

∫
Ω

LSF2(x, lc2(x))(1−Hε(φ(x)))dx

+µ
∫
δε(φ(x))|Oφ(x)|dx

(4.5)

where δε(·) is the regularized Dirac delta function and λ1, λ2, and µ are weight-

ing terms. The last integral of the energy functional serves as a smoothing

parameter, with larger values of µ resulting in a smoother contour.

4.1.2 Distance Map-Based Image Representation

In the LSM model, the boundary of a segmentation contour is defined

according to a distance map representation of the image rather than a level

set function. This normalized distance map, DI(x), is defined as:

(4.6) DI(x)= (2Hε(φ0(x))−1)
d0(x)g0(x)

maxy∈Ω {d0(y)g0(y)}

where d0 and g0 are normalized Euclidean and geodesic distance maps of

the image, respectively, and φ0(·) is the user-defined initial contour. By incor-

porating the geodesic map, regions with significant shifts in pixel intensity
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create regions where more distance traveled per iteration is necessary for

significant alteration in the contour, improving convergence on well-defined

wavefronts. The initial contour’s boundary pixels, excluding those on the edges

of the image, serve as the "zero-points" of both distance maps, meaning that

the value of a pixel x is the shortest distance from it to one of the boundary

pixels (Figure 4.1). In order to encourage a smooth curve shape over various

threshold values, a median filter is applied to the map.

Figure 4.1: Example of a distance map (right) generated from an initial contour
(left). Distances between pixels increase at the wavefront boundary.

4.1.3 Distance Map-Based Image Segmentation Through
a Pseudo-Level Set Approach

The use of a distance map bears functional similarity to the level set ap-

proach used by many other segmentation algorithms. Like the level set, it is a

higher-dimensional representation of the image which can be thresholded in

order to form a desired contour. The critical difference compared to traditional

level sets is its static nature. New contour boundaries can be generated by

choosing different distances to threshold instead of iteratively altering the rep-

resentation. This means that each new contour shares a similar general shape
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to the previous contours, but is shifted shifted the image. This is advantageous

for our purpose, as this rigidity in overall shape prevents the contour from

deforming significantly and sinking into gaps in the CSD wavefront caused

to inhomogeneity and noise. At the same time, its similarity to a level set

function means that it can be easily implemented for segmentation in a level

set-like manner.

Using the distance map generated by (4.6), we can define a pseudo-level

set of the image, with respect to a given threshold T, as such:

(4.7) φ(x,T)=
{

1 DI(x)≤ T
−1 else.

Using this pseudo-level set, we define the LSM energy functional as follows:

ELSM(T)=
λ1

∫
Ω

LSF1(x, lc1(x))Hε(φ(x,T))dx

+λ2

∫
Ω

LSF2(x, lc2(x))(1−Hε(φ(x,T)))dx.

(4.8)

Note that the smoothing term has been dropped from the original RLSF model

(4.5), as the contour shape is strictly defined by DI and the choice of T. A

smooth contour is enforced through the use of Euclidean distance in generating

DI and the median filter applied to it. Furthermore, both lc1 and lc2, in (4.2-

4.3), also use φ(x,T) instead of φ(x). For the sake of brevity, we will not

explicitly redefine them here.

4.1.4 Threshold optimization through gradient descent

Once the initial contour has been defined and the appropriate distance map

has been generated, the optimal threshold value for the image is calculated

through the use of a gradient descent algorithm with a fast marching method-

like implementation.
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The partial differential equation used for the gradient descent algorithm is

as follows:

(4.9)
∂T
∂t

=λ1

∫
NT

LSF1(x, lc1)dx−λ2

∫
NT

LSF2(x, lc2)dx,

where NT is a subset of the image containing pixels that are within a specified

distance from the current threshold boundary. However, the curved geometry

of the CSD wavefront often leads to an imbalance within NT between the

number of pixels outside versus inside the current threshold, which biases

one side over the other. We equalize this imbalance by removing pixels on the

overrepresented side from NT .

In order to minimize (4.8), the following gradient descent formulation is

utilized:

(4.10) Tn+1 = Tn +∆t∆Tn

where ∆Tn is a numerical approximation of (4.9). ∆t is the step-size, defined

as:

(4.11) ∆t = 1
Nmaxx∈NT (LSF1(x, lc1)−LSF2(x, lc2))

where N is the number of pixels within NT .

4.2 Performance Evaluation

4.2.1 Dataset and parameter selection

In order to evaluate the performance of the LSM method, a dataset of

twenty 512x512 pixel images of CSDs was compiled from the green channels

of the calcium imaging sequences discussed in Chapter 3. Images from these

sequences were selected such that the dataset contained a variety of possible

noise and contrast levels, as well as various shapes that the CSD wavefront

can assume. While it would have been beneficial to have had a larger dataset
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for this analysis, the novelty of this imaging technique and the overall cost of

such experiments limits the quantity and quality of sequences at our disposal.

As stated before, the algorithm requires several parameters to be specified

by the user prior to segmentation. Given the resolution of our sequences, for the

local window, Nx, a size of 17x17 pixels was selected, while the regional mask,

M, had a radius of 13 pixels. For the region used to calculate the gradient

descent, NT , pixels within 7 pixels of the current boundary were considered.

Finally, the weighting terms were set as λ1 = λ2 = 1. The geodesic distance

map used in creating DI was generated using the MATLAB (MathWorks, CA)

command imsegfmm.

4.2.2 Comparison Methods and Performance Metrics

To evaluate the performance of the LSM method, the results were compared

with that of Chan-Vese [2] and the Lagrange Level Set (L2S) method [3]. Chan-

Vese is often considered a benchmark segmentation method for biomedical

images, and is often included in performance evaluations. L2S is a local-

region based method which is robust against intensity inhomogeneity [3]. The

implementation of the L2S method used in this evaluation utilizes a fast-

marching method approach which prevents contour edges that lie on the edges

of an image from evolving. Chan-Vese segementation was performed with

MATLAB’s built in implementation, activecontour. Both L2S and Chan-Vese

were executed for 1000 iterations, while LSM ran for only 50 iterations.

Performance was measured using two different metrics. The first was the

DICE index, which measures the overlap between the segmentation result and

the ground truth [29]. This is calculated as DICE(R1,R2)= 2Area(R1∩R2)
Area(R1)+Area(R2)

where R1 is the ground truth and R2 is the segmentation. A DICE index closer

to 1 indicates superior performance. However, due to the large area of the

image being segmented, a poor segmentation can still result in a large DICE

index. Therefore, we used the root mean square error (RMSE) as a second

performance metric. Here, the error being measured is the Euclidean distance

between a given point on the segmentation boundary and the nearest point
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on the ground truth boundary. For the initialization, an initial contour was

hand-drawn such that the only edge of the contour which did not lie on the

image boundary was a rough approximation of the CSD wavefront, displaced

approximately 40 pixels away from the wavefront boundary in the image.

These initial segments had a mean DICE index of .9213 and a mean RMSE of

23.00 pixels.

4.2.3 Results & Discussion

Over the entirety of the dataset, the LSM method demonstrated superior

performance compared to the other methods examined (Fig. 4.2 & 4.3). The

LSM method yielded a mean DICE index of .986, compared to that of .931 and

.814 for L2S and Chan-Vese, respectively. Likewise, LSM had a mean RMSE of

4.52 pixels, compared to 22.57 pixels and 30.19 pixels for L2S and Chan-Vese,

respectively (Table 4.1).

The segmentation errors of L2S were largely characterized by the contour’s

inability to evolve towards the wavefront. It was often observed that only a

portion of the active contour would shift towards the boundary of the wavefront,

while the rest of the contour would remain static or change negligibly around

the area it was initialized. In some cases, the contour would not evolve at all.

This behavior was likely the result of the high SNR of the images, creating

difficulties in calculating local information that would direct the level set

towards the wavefront. By contrast, intensity inhomogeneity was the primary

cause of failure for Chan-Vese. The active contour would converge around the

Table 4.1: Results of method comparison. Statistical significance between
methods was calculated using a student t-test with respect to the LSM results.

DICE RMSE
Mean StDev p Mean StDev p

LSM 0.986 0.013 - 4.53 3.66 -
L2S [3] 0.931 0.030 7.08 10−9 22.57 3.93 1.12 10−17

Chan-Vese [2] 0.814 0.203 5.32 10−4 30.19 8.51 6.52 10−15
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brightest portions of the depolarized region, often excluding regions where

noise and occlusion obscured the increased fluorescence. Since Chan-Vese has

greater emphasis on the global relationship between object vs background pixel

intensities [2], areas within the depolarized region with reduced fluorescence

due to occlusion were often interpreted as part of the polarized region. This

difficulty was often further extended areas regions significantly behind the

wavefront that had reduced fluorescence, with the contour evolving away from

the edges of the image towards the boundaries of such regions.

In contrast to L2S and Chan-Vese, the LSM method demonstrated a con-

Figure 4.2: Segmentation results of CSD images. (First row) Raw calcium
images of CSD. (Second row) Initialization. (Third row) Chan-Vese [2]. (Fourth
row) L2S [3]. (Fifth row) LSM. Images have undergone post-segmentation
contrast enhancement to improve visibility of CSD.
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Figure 4.3: Segmentation results of CSD on individual images. (top) DICE
Index. (bottom) MSE.

sistent ability to converge on the wavefront boundary accurately. This is likely

due to a combination of using a local region-based metric to drive contour

evolution and the rigid nature of these contours. As a result, it is able to

evolve towards the boundary of the CSD without being susceptible to intensity

inhomogeneity at the boundary. One downside that was noticed, particularly

in images with significant inhomogeneity at the boundary, was a tendency for

a slightly unstable convergence. Instead of remaining largely static once it

reached the wavefront, the contour would, in some cases, begin to oscillate

between underestimating and overestimating the boundary by small distances.

This behavior is likely the result of the rigid nature of the contour. Calculating

the LSF over the entirety of a contour boundary as one metric results in a
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degree of sensitivity to inhomogeneity, whereby inhomogeneous regions exert

a pressure for further evolution which drive the contour over the boundary,

which is then compensated for in the next iteration. In traditional level set

methods, this issue is resolved by the contour’s malleable nature. For the LSM

method, this issue could be resolved in future iterations by having a scaling

step size that decreases over the course of optimization or with increasing

convergence, thereby reducing the degree to which the contour can change as

it converges to the boundary.
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CONCLUSION

5.1 Conclusions from chap 3

In this chapter, we presented a workflow that can assist researchers in

analyzing microglial activation in response to CSDs. The efficacy of this

method has been validated through use on a real-world experiment, bearing

the results which were predicted in the literature. By adopting this general

methodology, we hope that future researchers will have an easier, standardized

method of conducting research on this topic and improve our understanding

and treatments of stroke and traumatic brain injury. Despite the successes of

the methods, there are still some challenges which can be improved upon in

future work. The signal denoising process presented in the analysis workflow

is sensitive to the timing between when the signal of the CSD appears in the

local region and with the region of interest of a microglia. Future iterations

may benefit from additional methods which correct for this though the use of

similarity or covariance metrics to correct for this misalignment.
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5.2 Conclusion from chap 4

In this chapter, a novel approach to segmenting wavefront boundaries in

two-photon calcium images of CSDs is presented. Qualitative analysis of the

performance for LSM indicates improvements in comparison to the state-of-

the-art and benchmark. In addition to accurate segmentation results, the LSM

method has a fast rate of convergence, requiring less than 50 iterations. The

most significant downside of this method is its dependence on the user’s a
priori knowledge of the wavefront’s shape, which limits throughput on larger

datasets. Inclusion of the LSM into models which can incorporate a priori
shape information in an adaptable manner is an appealing solution for future

work. Additional issues with convergence stability can be addressed through

the use of a decreasing step size during threshold optimization.
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