
Software to Improve MIDI Controller Usability

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

William Litton Haslet

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

 1

ABSTRACT
MIDI controllers are a popular tool for music
creation, but their potential usefulness is
limited by shallow and cumbersome
configuration options. To improve the
usability of MIDI controllers, I propose a
MIDI customization software. The software
acts as a virtual controller that translates and
transmits incoming MIDI messages in
accordance to the configuration provided by
the user. The software is developed as a
desktop application using NodeJS, enabling
it to run on multiple operating systems with
ease. The completed software enables real-
time extension of MIDI controller
functionality using a simple software
interface. The music creation process is made
more efficient by expanding MIDI control
possibilities. In the future, the software can
be mechanically improved with user testing
to streamline the user experience and
aesthetically improved with the addition of
an attractive user interface.

1. INTRODUCTION
Alongside computers, the standardization of
Musical Instrument Digital Interface (MIDI)
in 1983 may have been the key that unlocked
the potential of digital technology in music
creation. MIDI is a digital communication
system originally created to act as an
interface between synthesizers, allowing one
to play notes and adjust parameters on the
other (The MIDI Association, n.d.). MIDI
communication involves actions like sending
a “note on” message when a key is pressed or
sending “continuous control” messages to
adjust volume or other parameters when a
knob is turned. Today, MIDI enables
communication between hardware
instruments, computers, and music software,
fully integrating the power of digital
technology into the music creation process.

A common MIDI tool is the MIDI controller,
which acts as an output source of MIDI

messages to control connected hardware
instruments or music software. MIDI
controllers are often designed with the
appearance of a keyboard synthesizer, with
the primary control being a piano keyboard
and extra controls like knobs, faders, and
buttons being added for additional
functionality. Musicians are able to play the
MIDI controller in a similar way to hardware
instruments and route the output to whatever
hardware or software supports it. With the
additional control knobs mentioned
previously, it becomes possible for artists to
expressively control not only hardware
instruments, but also software instruments
that would otherwise have no tactile control
surface. A way to change the MIDI messages
output from the controller using software
would streamline MIDI controller usage and
expand its uses.

2. RELATED WORKS
There is little relevant research literature for
the topic of MIDI controller usability, but
there exists software similar to what I
propose. One example is Midi Shift (Haute
Technique, n.d.), which focuses on
accessibility and ease of use by making the
MIDI modification simple to set up and
activate. My proposed software will build
further upon the customization possibilities
with the goal of providing greater flexibility
to the user.

In addition to MIDI shift, real-time MIDI
remapping solutions are built into some
music software like Ableton Live. Ableton
Live calls this customization control surface
scripts and automatically routes MIDI
messages depending on the software state
(Ableton, n.d.). With my proposed software,
user will be able to switch between multiple
software or hardware instruments outside of
a single software.

3. PROPOSED DESIGN

 2

MIDI controllers are most effective when
designed for a specific use case. However,
the wide range of hardware and software
available make generic MIDI controllers a
necessary balance of convenience and cost
for many users. Most hardware and software
instruments will consistently support MIDI
messages output by any controller, but a
limitation of the control possibility of MIDI
controllers arises when the controller is used
between multiple instruments. The expected
input MIDI message values will often be
different, meaning that additional controls
such as knobs and buttons will not function
as the user expects or desires. Customization
of MIDI controller output is often
inconvenient and limited in its potential for
complex customization. Both of these
problems can be solved with software that
acts as a middleman for MIDI messages and
allows the user to modify and route the input
to a hardware instrument or music software.

The usability and flexibility problems of
MIDI controllers can be solved with user
created presets of MIDI message
modification rules that can be effortlessly
switched between. Presets are a concept that
many MIDI controllers already implement,
but the limitations of these implementations
are numerous. Controller or manufacturer
specific software is often needed to modify
the presets, the modification possibilities are
limiting, and switching between the presets is
cumbersome. By moving the preset features
into a separate software, these problems can
be solved. Controller specific software will
not be needed because my proposed software
will modify the incoming MIDI messages of
any controller, so modifications can be
centralized to one software. By processing
and outputting an entirely new MIDI
message based on the user’s modification
rules, there are no limits to ways the
controller can be configured. The preset
switching process will be streamlined by

allowing the user to define any input as a
dedicated preset switching function, allowing
them to change presets with a single action.

The system to make these MIDI controller
improvements possible will be structured as
a simple flow from input to modification to
output. The MIDI inputs will be configured
by the user, allowing them to route any MIDI
controller or MIDI output source to the
modification software. For each of these
devices, a list of modification rules will be
created by the user. The input MIDI
messages will be sorted based on their
message type and compared against the
appropriate rules to determine what should be
output. Finally, the correct output message is
created and sent into the MIDI output that the
user has selected for the preset. Alternatively,
the input MIDI message could output
nothing, and instead modify the internal state
of the software, with actions like switching
the active preset, so that later MIDI messages
will be modified by the new preset.

The modification rules the user creates will
be made up of two parts: the input filter and
the applied modification. With the input
filter, the user can choose what MIDI input
source and MIDI message type is affected by
that modification rule. With the applied
modification, the user can set the output
message type and the message value, or set
the message value by processing the input
value with simple mathematical rules.

To improve the flexibility of controllers, the
option to use inputs to change the software
state instead of generating MIDI output will
be implemented. The most important of these
state changing inputs will be for preset
switching, which will be built with a set of
rules dedicated to changing the active preset.

The software will be developed with NodeJS
and JavaScript to enable rapid prototype

 3

iteration and ease of deployment to all
operating systems. The MIDI input and
output will be handled using a NodeJS
package called node-midi that is a wrapper
for the RtMidi C++ library.

4. ANTICIPATED RESULTS
I expect my proposed software to improve the
usability, efficiency, and flexibility of MIDI
controllers. The usability will improve
because the software will bring all the
customization options the user needs into one
place. Usability will also increase due to the
speed with which my proposed software will
allow the user to switch between presets,
making a direct improvement to the
efficiency of using a MIDI controller
between multiple output sources. The
flexibility improvement is a result of the
freedom in MIDI message modifications that
my software will allow the user to create. The
possibility of advanced configuration will
have the effect of increasing the number of
actions a single MIDI controller can perform,
making it more efficient.

5. CONCLUSION
MIDI controllers are a valuable hardware
tool for music creation, but their limited
customization options hold back their full
potential. With my proposed MIDI
modification software, any incoming MIDI
messages can be automatically translated into
the user’s preferred message based on the
modification rules the user creates. By
moving the customization options from the
hardware to software, the user can edit their
MIDI controller output with much less effort
and test their changes in real time. By
providing an easy way to create and switch
modification presets, a single MIDI
controller can be used across multiple
instruments or applications with ease.

6. FUTURE WORK

The largest step toward releasing a version of
this software to the public would be making
an efficient and attractive user interface.
Without a well-designed user interface, the
time saving benefits of editing MIDI outputs
with software instead of hardware would be
lost. The ideal user interface would give users
the immediate access to all the features they
need to modify their presets without over
filling the screen with information. The
software would also need to be tested
extensively, for both stability and usefulness,
in order to have a polished finished product
to release.

REFERENCES
Creating your own Control Surface script.

(n.d.). Ableton. Retrieved October 27,
2022, from
https://help.ableton.com/hc/en-
us/articles/206240184-Creating-
your-own-Control- Surface-script

MIDI Shift. (n.d.). Haute Technique.
Retrieved October 27, 2022, from
https://hautetechnique.com/midi/midi
shift/

The MIDI Association. (n.d.). MIDI History:
Chapter 6-MIDI Is Born 1980-1983.
MIDI Association. Retrieved October
27, 2022, from
https://www.midi.org/midi-
articles/midi- history-chapter-6-midi-
is-born-1980-1983

