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ABSTRACT 

 

Single cell RNA sequencing, or scRNA-seq, acts as a potent analytical tool that allows 

for the comprehensive examination of gene expression profiles at a single-cell level. This 

methodology has many key applications, allowing biological researchers to better understand the 

specifics of the states of various cell types within different biological tissues. This, in turn, 

enables the precise identification of the specific cell types and the associated genetic profiles that 

underlie pathological conditions. The main drawback to this analytical tool is that scRNA-seq 

tends to be cost prohibitive and yields a relatively limited quantity of samples, especially in the 

context of human disease investigations. In contrast, there exists a wealth of an easily accessible 

alternative, bulk RNA-seq. However, bulk RNA-seq does not include any of the cell type 

specific information that is found within scRNA-seq data.  

To address this divide and harness the potential of the abundant amount of bulk RNA-seq 

data, in this research endeavor, we introduce an innovative computational framework that 

capitalizes on the capabilities of generative AI techniques to effectively transform bulk RNA-seq 

data into scRNA-seq data. Our model, the “bulk to single cell” (Bulk2SC) variational 

autoencoder, is trained to deconvolute the aggregated bulk RNA-seq data into their individual 

single-cell transcriptomes by learning the specific distributions and proportions of each cell type. 

The potential implications of the Bulk2SC approach are particularly significant when applied to 

extensive human disease bulk RNA-seq datasets. Providing insights at the single cell level into 

the underlying mechanisms behind the disease processes is essential to furthering our 

understanding of diseases. 
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INTRODUCTION 

 The integration of artificial intelligence (AI) with biological data analysis is reshaping the 

cutting edge of research and clinical diagnostics. Our potential to decode complex biological 

systems has continued to grow alongside the capabilities of AI. This convergence of technology 

and biology shows promise for enhancing our biological understandings. 

 Single-cell RNA sequencing (scRNA-seq) is a data analysis technique that has 

revolutionized our ability to study cellular diversity and activity in health and disease (Haque et 

al., 2017). By providing gene expression profiles at the level of individual cells, scRNA-seq 

facilitates a deeper understanding of cellular functions and interactions within tissues. However, 

the immense benefits that scRNA-seq data can bring is limited by its high generation costs and 

technical complexity that limit its accessibility, especially in larger scale research (Kharchenko, 

2021). In contrast, bulk RNA sequencing (bulk RNA-seq) offers a far more accessible, yet less 

detailed, alternative (Li & Wang, 2021). While it provides valuable insights into the overall gene 

expression of tissue samples, it fails to distinguish the contributions of individual cell types in the 

overall gene expression profiles. This limitation is a significant barrier for in-depth analysis of 

these tissues. 

 To address these challenges, this technical project introduces a novel computational 

approach that uses generative AI to transform the widely available bulk RNA-seq data into 

synthetic, but realistic scRNA-seq data. We use a “bulk to single cell” variational autoencoder 

(Bulk2SC), a model that learns to transform the mixed gene expression data and separate it into 

discrete single-cell profiles. This model architecture has proven effective in learning cell patterns 

(Grønbech et al., 2020; Xu et al., 2023). This approach extends the utility of existing bulk RNA-

seq data while democratizing access to single-cell insights to aid discoveries in cellular biology. 



4 
 

By providing a method to generate detailed cellular insights from bulk RNA-seq data, Bulk2SC 

aims to enhance our understanding of diseases and foster the development of more targeted 

therapies.  

METHODOLOGY 

 In the development of our computational model to transform bulk RNA-seq data into 

synthetic single-cell RNA-seq data, we employed a model architecture with three major 

components, each integrating several advanced machine learning techniques. The first 

component is the Single Cell Gaussian-Mixture Variational Autoencoder (scGMVAE). This 

component learns the distributional and Gaussian mixture parameters in the latent space, 

capturing the intrinsic cellular variability and heterogeneity. These parameters are essential for 

the accurate reconstruction of a single-cell profile (Xu et al., 2023). The second component is the 

Bulk RNA-seq Encoder. The Bulk Encoder can create an accurate compressed representation of 

any given bulk RNA-seq data by learning the cell type-specific estimates of proportions, means, 

variance as a function of bulk RNA-seq data. These representations are then passed to the final 

component, genVAE, which takes the compressed versions of bulk RNA-seq data as input and 

outputs the final synthesized scRNA-seq data. By integrating these three components, this model 

effectively bridges the gap between the deep insights offered by scRNA-seq data and the 

practicality of the bulk RNA-seq datasets.  
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Overall Model Architecture 

 Data preprocessing is another key step in the implementation of this model. Prior to its 

training, the raw data undergoes several preprocessing steps, such as normalization and scaling, 

to ensure that the input data is suitable for processing by the algorithms used later. These 

processing steps must ensure that no vital information is lost throughout the transformation 

process. These steps are essential for mitigating batch effects and any other potential 

discrepancies that may exist within the data, resulting in a more accurate and reliable analysis. 

Ensuring the data maintains its integrity and quality is the first step in maximizing the accuracy 

and consistency of the model’s outputs. Following the data preprocessing, the training process of 

the model is designed to optimize the learning of specific distributions and proportions of each 

cell type. This is achieved using a set of scRNA-seq data as the training input, where ethe model 

learns to capture unique gene expressions patterns exhibited by individual cell types. The Bulk 

Encoder is required to accurately learn these parameters to interpret and deconvolve the bulk 
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RNA-seq datasets. Once learned, the overall model is able to effectively reconstruct single-cell 

profiles from the bulk RNA-seq data. 

  The evaluation and validation of the model’s performance are conducted through 

qualitative and quantitative measures. Qualitatively, we use Uniform Manifold Approximation 

and Projection (UMAP) plots to visually analyze the clustering of the different cell types in the 

generated single-cell data. Any patterns that are observed are then compared to those in actual 

scRNA-seq data. Quantitatively, this approach computes the cosine similarity and Pearson’s 

correlation coefficients, measuring the resemblance between the gene interactions within the 

scRNA-seq data and the original scRNA-seq datasets. Both cosine similarity and Pearson’s 

correlation coefficients are widely used to compare the overall structure in gene expression data 

(Chen et al., 2023; Jaskowiak et al., 2014). This provides insight into whether or not the 

relationships between each gene are preserved after transformation. These metrics help confirm 

that the model not only replicates the statistical distribution of the original data, but also 

maintains the biological information within the gene expression profiles. 

 

RESULTS 

 In this study, we establish a few metrics for evaluating the quality of reconstructed 

scRNA-seq data from bulk RNA-seq data. First, for our qualitative evaluations, we use Uniform 

Manifold Approximation and Projection (UMAP) visualizations, which effectively demonstrates 

our model’s ability to accurately maintain the specific cell-type clusters that would normally be 

observed in authentic scRNA-seq data. This allows us to better understand how well the model 

can reconstruct the similarities across each cell type, the variation within each type, and the 
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number of counts for each. To further explore how well genetic relationships between cells are 

mimicked within synthetic data, we establish Pearson correlation heatmaps as an appropriate 

metric to show the overall trends and patterns of gene-to-gene relationships.  

 

UMAP Visualizations 

In this research, we also find the Pearson correlations between the 100 most variable 

genes. These genes were selected by isolating the top 10% genes with the highest mean 

expression levels, followed by identifying the 100 genes with the highest variance-to-mean ratio 

from within this subset. The level of similarity between the heatmaps for the generated data and 

the original data demonstrates the level to which gene-to-gene relationships are preserved.  
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Pearson Correlation Heatmaps 

 The first quantitative metric we use for measuring the effectiveness of the synthetic data 

is cosine similarity score. Higher values of cosine similarity act as a general indication of a high 

level of congruency between the generated data and the original scRNA-seq data. The downside 

of this metric is that it is influenced by the inherent sparsity within gene expression data, 

however, our model was still able to maintain extremely high cosine similarity scores in all 

comparisons and datasets.  

 

Cosine Similarity Scores 



9 
 

To measure the preservation of linear relationships in the generated data, we use the 

average Pearson correlation coefficient across all genes. We use this metric to compare the three 

groups of data input and reconstructed data, the reconstructed and generated data, and the input 

and generated data. These scores range from [-1, 1], where scores closer to 1 indicates a better 

preservation of linear relationships between genes.  

 

Average Pearson Correlation Coefficients 

 Similar to the Pearson correlation values, we find the correlation discrepancy (CD) 

between each set (Heydari et al., 2022). This metric ranges from [0, 198], where lower values 

indicates less discrepancy between the data. CD’s underlying metric is the Spearman’s rank 

correlation, which assesses monotonic relations rather than Pearson’s linear relations. This 

makes the CD value sensitive to both linear and non-linear associations. This value is especially 

important in evaluating gene expression data since expression patterns tend to be complex and 

follow nonlinear trends.  

 

Correlation Discrepancy Values 
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 Lastly, we use the Integration Local Inverse Simpson’s Index (iLISI) score for each 

dataset pairing to measure the level of integration between each dataset (Korsunsky et al., 2019). 

The iLISI score itself measures the level of integration. The capacity denotes the iLISI score that 

would imply maximal integration, which is determined by the ratio between the dataset sizes. “# 

PCs” lists the number of principal components used in each analysis, while the “% Var” 

describes the percentage of the total variance explained by the selected principal components. 

This metric gives insight into a few details regarding the generation quality. First, the overall 

iLISI score demonstrates how similar each generated cell type cluster is to its authentic 

counterpart. Furthermore, the number of principal components needed to reach our variance 

threshold of 90%  describes the overall level of similarity between the data.  

 

iLISI Score for Assessing Dataset Integration Quality 

CONCLUSIONS 

 The extraction of real scRNA-seq data is costly, leading to overall limited dataset 

availability. This research presents a technique that leverages the abundance of bulk RNA-seq 
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data by converting it into scRNA-seq data. Our results indicate that bulk2sc is capable of 

successfully generating scRNA-seq data from bulk RNA-seq data with a sufficient degree of 

similarity to the real data in terms of cell type distributions and gene expression relationships. 

This research direction is known to be an extremely difficult and ambitious task, yet we are 

confident that this bulk2sc framework provides a strong foundation for building models capable 

of generating single-cell data from bulk RNA-seq datasets.  
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