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Abstract

The amount of epigenomic data generated through experiments such as ATAC-seq and ChIP-seq has
exponentially increased due to advanced sequencing technologies. These data are summarized in the
form of Browser Extensible Data (BED) files, which are text files where each line represents a specific
genomic region. These data are challenging to analyze due to their high dimensionality and structure.
Promising approaches to extract relationships from these data and determine which genomic regions are
similar across many different studies are deep learning models and natural language processing. We
sought to generate a set of genomic regions in the form of a BED file based on a user-entered query. Four
deep learning models were developed: a Text2BED, direct encoder, diffusion model, and transformer.
Each was trained on BED files and associated text files from publicly available databases. All models
successfully generated an output consisting of or relating to a BED file; however, more training data is
needed. Once trained on more data and further validated, these models will inform researchers on which
genomic regions are closely related to a disease or cell type they are interested in, expediting the research
process.
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Introduction

The amount of data from ATAC-seq and ChIP-seq experiments has
exploded over the past 10 years, increasing exponentially as sequencing
technologies continue to improve. This has created a clear demand for
complex models to understand the genomic relationships encoded in
this large volume of data 1. One factor driving the increase in
sequencing data is that cells with the same DNA can have vastly
different phenotypes. Sequencing can be used not just for sequencing a
human genome, but to measure these phenotypes. The study of external
modifications to DNA that create these various phenotypes is known as
epigenomics. Epigenomic signals vary based on cell type and there are
important considerations to be made in analyzing epigenomic data.
Failing to adjust studies for cell-type heterogeneity can limit the
accuracy and sensitivity to locate these modifications 2.

Multimodality representation learning is a deep learning approach that
embeds information from two or more input types into a low
dimensional vector representation3. This practice of embedding

information in a vector space is used in natural language processing
applications. One example is in search engines where embeddings are
used to map search queries to images or webpages4. The Word2Vec
model developed by Google engineers learns vector representations of
words. The vectors represent the meaning of each word based on
surrounding words5.

Deep learning and natural language processing techniques have been
successfully applied to genomics data. One model, called Region2Vec,
creates vector representations of genomic regions6. This is an adapted
Word2Vec approach where genomic data is considered as a text
document and each region represents a word. Another model called
StarSpace embeds genomic regions with associated metadata for use in
information retrieval tasks1.

The focus of this project is to build generative models using prior
models to embed both natural language and genomic regions.
Generative models are increasingly being integrated into search engines
and have many applications in image and text generation7. These



models can be used to generate new genomic data that reflect
relationships based on original data. Four different models were
developed: a Text2BED neural network, direct encoder, diffusion
model, and transformer. Each model creates vector representations of
BED files and associated text descriptions and outputs a set of genomic
regions. The use of both BED and text embeddings allow models to
predict genomic regions from text. It is hypothesized the
implementation of four deep multimodal representation learning
algorithms, including Text2BED, direct encoder, diffusion model, and a
transformer, will greatly enhance the efficiency of generating relevant
genomic region sets from biomedical data. These models can enable a
more holistic approach to epigenomic analysis and research. Through
further comparison between models, one can be focused on to deepen
its accuracy and performance.

Certain design constraints must be taken into account during this
project. First, running these models locally on computers requires
significant computational resources, like power and memory. To
mitigate this issue, models will be trained using Rivanna, a
High-Performance Computing (HPC) system from the University of
Virginia. This gives access to more memory and computing power,
which will decrease the time required to train the model. There still
exists some storage issues within Rivanna though, which is important to
consider. While there is a plethora of data provided from the Sheffield
Lab, there is limited time to train models on all of this data. It is
assumed that this data is of good quality and chose significant file pairs
for the most accurate model training possible in the given time span.
Lastly, each approach taken during this project is complex, which can
limit the ability to interpret results. The models produce outputs in
different forms, which is important to consider.

Model Architectures

Text2BED

The Text2BED model is composed of two functions: create_backend
and generate_bed_file. In the first function, create_backend, the inputs
are: 1) the path to the region2vec model previously designed and fully
trained by the DataBio lab on Hugging Face and 2) an index path from
the user’s local environment. The region2vec model is loaded and the
tokenized region embeddings from the universe are imported. The
universe imported consists of 1,063,880 embedded regions. The region
embeddings are then accessed through a PyTorch tensor and thus
converted from the embedding variable type to a NumPy array for
computation. The Hierarchical Navigable Small World (HNSW)
backend is then created using the local index path to prepare to store the
region embeddings in a backend so that the hierarchical kNN search can
be performed. The create_backend function then returns the
subsequently generated HNSW backend to be used in searching for the
closest regions to a given NL text query.

The HNSW algorithm is a method used in machine learning for
efficient nearest neighbor search in high-dimensional spaces. HNSW
organizes these points into a hierarchical graph structure where each
point is connected to other nearby points and levels representing levels
of resolution. When given a query, HNSW efficiently navigates through
this graph, starting from coarse levels and gradually refining the search
at finer levels until the nearest neighbors are found8.

In the backend, payloads are created that keep track of the original NL
region representations (chr number, start bp, and end bp) from the

universe. This backend is then taken as an input into the second
function, generate_bed_file, along with the previously mentioned NL
text query, a path to a desired pre-trained NN to use to compare
similarities between embedding vectors, and an integer value for the
desired length of the resulting generated BED file. The function imports
a popularly used pre-trained sentence transformer in order to convert the
NL text query into a text embedding, representing the text as a vector of
numbers. The vector to vector comparison NN and the HNSW backend
outputted by the previous function are then used to build a search
interface to perform the kNN search. So, taking the NL text query, the
embedding of this text is compared to the region embeddings of the
Region2Vec universe and then the previously user-specified number of
regions to be returned are found using HNSW in order of most to least
close in similarity to the text query. From the returned N closest region
embeddings, the information contained in their corresponding payload
is then written to a new, generated BED file.

Direct Encoder

The Direct Encoder is a neural network for representation learning. The
data must be represented numerically to be fed as input to the model. To
achieve this, term frequency-inverse document (TF-IDF) frequency is
used to transform text vectors into usable input. This is a statistical
measure that finds the significance of a word with respect to a large text
corpus9. For use in this
model, the text corpus used
was provided by the
Sheffield lab to ensure
consistent training amongst
all models. The text data
includes the descriptions of
correlated BED files. These
text-BED pairs are used to
train the model. The text
descriptions are vectorized
using the tfidf vectorizer
from Scikit Learn in Python10. Figure 1. Architecture of Direct
Encoder

The actual model definition includes an encoder and decoder portion.
The encoder layer compresses the vectorized text input data to highlight
its most relevant features. This encoder is made of five linear layers.
The decoder then decompresses the data by reconstructing it to fit the
size as the genomic vocabulary. This structure is visualized in Figure
111.

The vector output from the direct encoder model serves as a numerical
representation for genomic regions relevant to the text entered.

To test the efficiency of the model, the loss is calculated by measuring
the mean squared error between the predicted and actual values using
Pytorch. The actual values were found using the ITTokenizer, which
tokenizes genomic regions found in BED files.

Lastly, the model is trained using an optimizer. A dataset class is created
that is designed to hold text vectors and bed bit vectors. Next, a data
loader is created from the data set to handle batching and shuffling of
the data set. Throughout 10 epochs, the data is fed through the data
loader to create varying batches of data, which is then passed through
the model. The MSE loss is calculated for each batch and the optimizer
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adjusts model parameters to improve this loss over time. The loss is
tracked to ensure model accuracy is improving.

Diffusion Model

Diffusion models are the current state of the art for new image
generation12. These models work by adding Gaussian noise to the
training data until it is unrecognizable from pure noise, and then
learning to predict the noise and remove it to recover the data. After
training, randomly sampled noise can be passed to the model and noise
will be removed resulting in new data according to an input or the
training examples12. This general structure can be seen in
Supplementary Figure 1 below. These types of models are the basis for
the most popular image generation models today such as DALL-E and
Stable Diffusion13.

Data Transformation

Diffusion models are used to generate images and as such require
images to train on. However, the goal of this model is to generate region
sets and as such the data being used to train the model are BED files. In
order to adapt diffusion models to work with BED files, there needs to
be a method for converting between BED files and images and vice
versa. In order to accomplish this, the ITTokenizer from the geniml
package is used to tokenize the region sets according to a universe
comprised of 1,063,878 candidate cis-Regulatory Elements (cCREs) in
the GRCh38 reference genome from the ENCODE project14,15. This
tokenizer will return which of the regions in the universe are contained
in the specific BED file. This is then transformed into a 1,063,878
dimensional binary NumPy array where each value corresponds to a
region in the universe. If the index contains a 0 then the BED file does
not contain the associated region, and if it contains a 1, then that region
is present in the BED file. This array is reshaped into a 761 by 1398
matrix to represent the first channel of a 3-channel image. The other
channels are made up of matrices of the same size containing all zeros.
These 3 channels are together transformed into a PIL image to be used
in the model. This process is performed in reverse for the output images
from the model. The images are transformed into a 3-channel matrix
where the first channel is the target data. This matrix is transformed into
an array and the indexes of each 1 value are stored in a separate list. The
corresponding region of each index is then compiled into a new BED
file.

In order for the model to be able to generate new data according to user
input, it must also account for the associated text descriptions of each
region set. To do this, the text description of the files are turned into text
embeddings using the all-MiniLM-L6-v2 sentence transformer found on
HuggingFace16. These text embeddings are then paired with the
corresponding transformed images. Once the data has been transformed
into image-embedding pairs as seen in supplementary Figure 2, it is
ready to be used in the training of the model.

Forward Process/Addition of Noise

Now that the data is ready, the first step in the model is to add noise to
the training images. This is done iteratively across multiple steps
according to a noise schedule. This is a Markov process where each step
depends only on the one immediately preceding it. The noise schedule
determines how much sampled Gaussian noise is added to the image at
each time step and it ensures that an appropriate amount of noise is
added so that the final image ends as a Gaussian distribution with a

mean of zero and a fixed variance. This model utilizes a linear noise
schedule where the same amount of noise is added at each step. This
process of adding noise can be seen below in Figure 2. The specific
noise for each time step can actually be computed independently, if the
closed form of the mean and variance is precomputed based on the
cumulative process.

Figure 2: Diagram of the iterative addition of Gaussian noise to the data
images to prepare for model training.

Backward Process/Noise Removal

The backward process of the model works to predict the noise and
iteratively remove it. It does this through the use of a U-net architecture.
This architecture utilizes a series of convolutional, down sampling, and
up sampling layers that mimic the shape of the letter “U” where the
output is the same dimension as the input. The model follows an
encoder-decoder structure. The encoder portion performs repeated
convolutional layers on the input image, and then down sampling using
a max pooling layer. This process is repeated for a total of 5
downsamplings where at each layer the image becomes smaller, but has
more channels. After the encoder layer, the decoder conducts the
reverse operation. It performs repeated convolutional layers followed by
an upsampling layer where the dimension of the image is increased and
the number of channels is decreased. This is also repeated for a total of
five up samples to result in a new image that is the same dimension of
the input. Each layer of the encoder and the decoder are connected by
concatenating some of the encoder features with the decoder features to
capture more information. An overview of the U-net model structure
can be seen in Figure 3 below. This whole process is done at each step
of the iterative addition of noise so that the model is able to perform
denoising across various noise levels.

Figure 3: Diagram showing the general structure of the U-net
architecture, where the green arrows represent convolutional layers, the
orange arrows represent max pooling down sampling, and the purple
arrows represent up sampling.
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Training and Loss Function

This model was trained using BED files and associated text descriptions
from the ENCODE project15. This data was collected into a data loader
as associated pairs. The model was then trained over 10 epochs using
the Adam optimizer and l1 loss. 10 epochs was chosen by determining
when the loss naturally plateaued and stopped noticeable decreasing.

Transformer

The transformer model is a neural network model first proposed as an
improvement to the recurrent neural network, which was the prior
state-of-the-art for sequence modeling problems17. It has an
encoder-decoder structure with both blocks using attention mechanisms
to capture context of sequences. The general structure is shown in
Figure 4. This model has previously been used for text data and is the
primary model used in
ChatGPT18.

Attention Mechanism

The primary innovation of the
transformer model is its use of
an attention mechanism to
determine the relative context
for each token in a sequence.
Self-attention is used so the
model can capture the context of
each word it receives as input.
To do this, the tokenized input is
converted into three separate
vectors: a query, key, and
value19. The query vector is the
word whose attention is being
calculated, the key is used to
represent every other word in a
sequence to match against the
query, and the value is the result
of calculating the attention
between query and key vectors.
These calculations can be
parallelized. Using self-attention
preserves the meaning of each word throughout a sequence, whereas
RNNs cannot preserve this meaning across a lengthy sequence.

Positional Encoding

The attention mechanism does not include positional information,
meaning different tokens can be scrambled and the output of the model
would be the same. Sinusoidal positional encodings are added to the
original tokens to the input embeddings to reflect relative distances
between tokens. A sinusoidal function is used to give higher values for
nearby tokens and a smooth decay of values for tokens that are further
away20.

In a typical transformer architecture, positional encoding is present
below both the encoder and decoder blocks to preserve sequence
information. For this application, only the natural language text input
positional encoding was included. No positional encoding was used for
the BED files because the order of regions does not matter, only their
presence does.

This transformer model is designed to encode a text query and decode it
into a series of genomic regions in the form of a BED file. BED files
and associated JSON metadata files were retrieved from the ENCODE
project, a publicly-available repository that holds ATAC-seq and
ChIP-seq data21. JSON files were parsed to retrieve the description field,
which contained a paragraph about the study the data was generated
from.

Both BED and JSON files were tokenized separately. The BED files
were tokenized using the ITTokenizer method available in geniml22.
This tokenizer uses a universe file, or a set of all possible genomic
regions, to assign an index to each genomic region in the BED file. The
focus of this project is epigenomic signals, therefore the universe file
used here was the set of all human cCREs available through the
ENCODE project15. This contained all possible sites involved in histone
modification or CTCF-binding. Unknown tokens were filtered out by
excluding the token number "1063878" to further reduce
dimensionality.

JSON files were tokenized using the pretrained BERT base-cased model
available on HuggingFace23. This model was pretrained on a large
corpus of English text data and uses WordPiece tokenization to break up
natural language into piecewise components24 (Figure 5).

Both the BED and text input tokens were padded to a fixed value of 512
so input size would be consistent. Transformer models often use
dimensions of either 512 or 1024 because of performance issues; the
time complexity of the self-attention mechanism is quadratic based on
input length, creating a bottleneck in training25. Because of this, only
512 regions from each BED file were sampled to begin preliminary
training. The transformer was trained using the Adam optimizer and
cross entropy loss.

Methods and Materials

All models were implemented using libraries provided by PyTorch,
HuggingFace, and the geniml package developed by the DataBio lab at
the University of Virginia26–28. The code for this project is available in
the following repository:
https://github.com/databio/bme-capstone-2023.
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Results

Each of the four models generated different output data relevant to
specific genomic regions based on a text query. Specifics are detailed
below.

Text2BED

The original goal of this model is achieved, a NL text query is inputted
into the model and a new, generated BED file is returned. The
validation of this model proved to be a challenge, as there are no current
methods for a numerical or more empirical method of proving the
validity of the model's results. What was decided on, however, was to
test out a few example queries. The queries: “kidney, human, cancer”,
“pediatric, lung, inflammation”, “lymphoma, human, prognosis” were
passed through the model and the resulting BED files were assessed by
then entering some of the top regions in the file into IGV. The gene
corresponding to the region outputted in the BED file was then searched
in PubMed for relevant literature associated with the gene. Important
findings and associations with the gene were noted in a table, indicating
whether or not they were relevant to the original NL query (Table 1).
This gives a foundational indication of the model’s ability to create a
BED file that actually is related to a text query but future steps for this
model primarily include finding a less brute-force and more
computational way of assessing the model’s performance.

Table 1. Validation of regions outputted in generative BED file created
from the NL query: “human, kidney, cancer”

Region from
Generative BED

File

Corresponding
Gene Notes

chr8
70054387-700546
50

PRDM14

Promotes
malignant
phenotype in cells,

Tumorigenicity,
cancer initiation
(lung, testis,
kidney, breast)

chr19
16894195-168945
31

CPAMD8 Glaucoma

chr16 TBL3 Polycystic kidney

1981418-1981735 disease,

Chronic kidney
disease

NOXO1
Tumorigenesis,
Cancer
progression

chr18
13279033-132792
08

LDLRAD4

Gastrointestinal
stromal tumors,
Polycystic kidney
disease, Chronic
kidney disease

chr17
63694673-636950
05

MAP3K3

Promotes tumor
growth,
Carcinoma
progression

chr19
6662730-6663080 TNFSF14

Reversing
immunosuppressiv
e tumor
microenvironment

Direct Encoder

The model generates numerical representations of genomic regions
based on text input. Quantitative results showing the model's accuracy
is shown through the progression of the loss function outputs. There
was a general downward trend in loss, indicating that the model
performance got better through the parameter adjustments made by the
optimizer. The more epochs run through the training loop, the better the
model performed. This is also represented by the loss curve seen in
Figure 6.
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Figure 6. Loss curve of direct encoder mode

When run with ten epochs and a batch size of 5, the model expressed a
loss closer to 0.25001. This MSE score indicates that the average
squared difference between the predicted and actual values is relatively
low, indicating a fairly accurate model. This also means it has further
potential for improvement with further training.

Diffusion Model

After training, the diffusion model experienced a large reduction in loss
as seen in the loss curve shown in Figure 7 below. The loss leveled out
at a value of around 0.1 which means the model was accurately able to
reproduce training data to a relatively high level.

Figure 7: Loss curve for the diffusion model

The model is able to generate novel images from user text input that
resemble the original training images. These images are converted into
region sets contained in BED files. Through the process of training it
can be qualitatively observed that the quality of the output images is
becoming closer to the original training data as seen in Figure 8 below.
The accuracy and biological relevance of these new region sets is yet to
be further evaluated. Due to the large computational complexity of the

model, only a small number of training examples were able to be used
in this project. For further, more improved work, the number of training
instances could be increased which would likely result in higher quality
data generation. It would also be beneficial to determine a numerical
metric to determine the accuracy and biological relevance of the
generated region sets.

Figure 8: Visualization of the removal of noise for epoch 1, epoch 5, and
epoch 10.

Transformer

Each component of the model architecture was unit tested to verify
whether data was being passed correctly from the encoder to the
decoder portion. The encoded output resulted in a tensor of size 100 by
512 by 512 (sample number by input dimension by model dimension).
Initially, entire BED files were passed to the decoder model, however
resulted in a dimensionality mismatch between the encoder and decoder
portions.

After passing the first training example, the output of the model resulted
in a set of output probabilities in the shape 100 by 512 by 1063879
(sample number by model dimension by total number of genomic
regions), where the probabilities represent how likely a certain genomic
region is present. Future work is required to train the model on Rivanna
using more training examples.

Discussion

The goal of this study was to create four distinct deep-learning models
that generate relevant genomic region sets to a user-entered search that
can then be used in experiments for novel biomedical analysis. While
four models have been developed, there are limitations and future work
that can be done on them. The main limitation of the text2BED model is
although it is functioning properly and can produce a novel BED file,
there is no quantitative way of validating if the resulting BED file is
clinically associated with the initial user NL query. On the other hand,
the main limitation of the other three models is limited training data.
Only 100 BED files were used in model training, so future training with
more text-BED pairs would increase their accuracy. While the direct
encoder showed promising results through its small loss metric, the
model currently outputs a number representation of genomic regions.
Future work should focus on translating these numeric outputs into
newly generated BED files. The diffusion model appears to work
efficiently, but this model type is not typically used for data types other
than images. This limits the model as its architecture may not efficiently
capture patterns on data that are not images. The transformer decoder is
greatly limited by the length of the input sequence due to the
computational complexity of the self-attention mechanism. This is an
active area of research, and transformer-based models are currently
being optimized for memory usage. One such approach is called Flash
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Attention, which restructures how query, key, and value vectors are
calculated5.

Though preliminary training has been conducted on these models, more
rigorous validation is needed. The next step after increasing the amount
of training data is to verify whether generated genomic regions are
valid. We propose the usage of a Jaccard index for preliminary
verification to determine similarities probabilistically between an actual
and a generated BED file29. To conduct this analysis, a BED file will be
chosen as the ground truth set. A query matching this BED file will be
given to the model, and a Jaccard score will be found by taking the ratio
of the number of genomic regions in both files to the total regions in the
union of both files.

Conclusion

All model architectures were successfully implemented and some
generated BED files, however more training and optimization is needed.
Future directions include expanding the training data to all data on the
ENCODE database and validating generated BED files using a Jaccard
score or other quantitative metric. The development of these models
could have a significant impact on biomedical research. Each model
offers a tool for analyzing epigenomic data with respect to text-entered
queries. This allows for the investigation of specific regions that have
proven to be associated with specific biological processes. Using tools
such as this can perpetuate the advancement of biomedical research by
leading to more targeted studies and treatment options.
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Supplementary Materials

Supplementary Figure 1: General overview of diffusion model architecture.

Supplementary Figure 2: Diagram showing the data transformation from BED and text files to image and embeddings
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