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ABSTRACT 

 

Transportation safety has always been an intensively researched topic with the goal of better 

understanding why crashes occur and how different variables affect the occurrence of crashes. 

Traffic flow conditions, which frequently change with time, can have a significant impact on crash 

occurrence. Traditional traffic safety analyses of crash frequency or crash rate usually focus on 

highly aggregated cross-sectional data. Crash analysis methods customarily use annual average 

daily traffic (AADT) as an exposure measure, which may be too aggregate to capture the effects 

of variations in traffic flow and operations that occurs throughout the day. Flow characteristics 

such as variation in speed and level of congestion play a significant role in crash occurrence and 

are not currently accounted for in the AASHTO Highway Safety Manual (HSM). As a practical 

matter, relationships between traffic crashes and traffic flow parameters are inherently difficult to 

establish due to limitations in available traffic data sources.  This difficulty is exacerbated by the 

random nature of crash occurrence and the quality of available crash and traffic data. The 

restrictions of the current safety prediction methodology limited the evaluation of operational and 

safety effects of the Active Traffic Management (ATM) system on Interstate 66 in Northern 

Virginia.  The ATM system included advisory variable speed limits (AVSLs), lane use control 

signals (LUCS), and dynamic hard shoulder running (HSR). The results of the study showed that 

much of the benefit from the system were tied to the implementation of dynamic HSR as opposed 

to the AVSL or LUCS. Locations with HSR had a statistically significant reduction of nearly 

25% for total crashes.  Although crash modification factors could be generated, they may be biased 

since the system is not active throughout the entire day.  As a result, Virginia’s AADT-based safety 

performance functions failed to capture the true dynamic nature of the system. 

This research developed a methodology for creating crash prediction models using traffic, 

geometric, and control information that is provided at sub-daily aggregation intervals. Evaluating 

how the use of disaggregate geometry and traffic flow data affects crash modeling compared to 

the current practice of using only aggregated volume data was one major focus of the research. 

Hourly data from 110 rural 4-lane segments and 80 urban 6-lane segments were used. The volume 

data used in this study comes from detectors that collect data ranging from continuous counts 

throughout the year to only a couple of weeks every other year (short counts). Speed data was 

collected both from point sensors and probe data provided by INRIX. While developing 

disaggregated models, the difference in data availability and quality from these sources can be a 

potential source of error. Hence, evaluating the change in performance of prediction models with 

changes in volume data availability and speed data source was another objective for this research. 
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The spatial and temporal correlation present in disaggregated data and their influence on crash 

prediction was also investigated. 

The results showed that the best models include a combination of average hourly volume, 

selected geometric variables, and speed related parameters. Average hourly aggregation of data 

was found to be the appropriate level of disaggregation to address the variation in volume and 

speed throughout the day without compromising model quality. Urban segments experience a 20% 

improvement in mean absolute deviation (MAD) for total crashes and a 9% improvement for injury 

crashes when models using average hourly volume, geometry, and flow variables were compared 

to the AADT based model. Corresponding improvements for rural segments were 11% and 9%. 

Average hourly speed, standard deviation of hourly speed, and differences between speed limit and 

average speed had statistically significant relationships with crash frequency. For all models, 

prediction accuracy was improved across all validation measures of effectiveness (MOE)s when 

the speed components were added relative to performance without speed measures. For example, 

for urban segments, MAD improved by 11% for total crashes and 5% for injury crashes when 

speed was added in different forms. Rural segments experienced similar improvement as well. The 

positive effect of flow variables was true irrespective of the data source for speed. Further 

investigation revealed that the improvement achieved in model prediction by using a more 

inclusive and bigger dataset was larger than the effect of accounting for spatial/temporal data 

correlation. Models using only continuous count station data were contrasted with the models 

using both short count and continuous count stations. For rural hourly models, MAD improved by 

52% when short counts were added in comparison to the continuous count station only models. 

The respective value for urban segments was 58%. This means that using short count stations as a 

data source does not diminish the quality of the developed models. A combination of different 

volume data source with good quality speed data can lessen the dependency on volume data quality 

without compromising performance. When comparing the models accounting for correlation to 

the models that used the same dataset but no correlation, MAD improved by 14% for rural 

segments and 21% for urban segments. While accounting for correlation improved model 

performance, it provided smaller benefits than inclusion of the short count data in the models. 

This research shows that it is possible to develop a broadly transferable crash prediction 

methodology using hourly level volume and flow data that are currently widely available to 

transportation agencies.  These models have a broad spectrum of potential applications that involve 

assessing safety effects of events and countermeasures that create recurring and non-recurring 

short-term fluctuations in traffic characteristics. The models developed in this dissertation will 

help to close the gap in existing practice and will also ensure the best use of available resources in 

future research and applications that examine the relationships between operations and safety.  
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CHAPTER 1: INTRODUCTION 

 

1.1 BACKGROUND 

To support the vision of zero deaths and serious injuries on the Nation’s highways, the Federal 

Highway Administration (FHWA) is committed to performance‐driven highway safety 

management practices and promoting deployment of innovative safety countermeasures. States 

have also begun to more aggressively seek ways to improve safety.  For example, the 2017-2021 

Virginia Strategic Highway Safety Plan sets a fatality target for the state of zero [1]. To achieve 

this goal of saving lives and reducing motor vehicle crashes and injuries, the state aims to expand 

the use of data-driven, systemic safety management approaches. Even with this focus, there were 

an estimated 1.17 fatalities per 100 million vehicle miles traveled nationally in 2017, reinforcing 

the importance of continuing the effort to understand why crashes occur and how different 

variables affect the occurrence of crashes [2].  Crashes are complicated events that are influenced 

by multiple factors, including roadway geometry, drivers’ behavior, traffic conditions, and 

environmental factors. The influence of those factors on traffic crashes cannot be fully understood 

without detailed information not only on crash itself, but also on its surrounding circumstances.  

The Highway Safety Manual (HSM) was first published by the American Association of 

State Highway and Transportation Officials (AASHTO) in 2010 and serves as the first national 

resource that provides standard scientific techniques and knowledge to help transportation officials 

make educated decisions regarding road safety [3]. One of the most integral parts of the HSM is 

the predictive methodology for determining the expected number of crashes for various facility 

types. The core of this methodology is the use of safety performance functions (SPFs). A SPF is a 

mathematical relationship that models the frequency of crashes by severity and accounts for 

geometric and traffic control factors that impact crashes on specific types of roads. For practical 

reasons, base SPFs often use a very concise form and include only limited numbers of variables 

(such as annual average daily traffic (AADT) and segment length).  

The HSM provides professionals with a much-needed resource where current knowledge, 

techniques, and methodologies to estimate future crash frequency and severity are presented. 

Despite that, there are some limitations of using the SPFs recommended in the HSM. One 

drawback of using AADT for predicting crashes is that it can be interpreted as a quantity measure, 

but it cannot be used to assess the quality of flow. Quality of flow is related to the variation in flow 

parameters such as speed or density on a much shorter time interval, such as hours or minutes, as 



 

7 

 

compared to the yearly variation in volume used for SPF development. Besides that, there are 

issues with using the AADT as the exposure measure in the SPF. The AADT is the average number 

of vehicles per day over one year, which means that hourly, daily, and seasonal variations in traffic 

volume are averaged out. It is generally perceived that crash rates on highways vary with flow 

state. However, the relationship between flow, speed, and crashes is not simple. The customary 

means of including annual traffic volumes in safety analysis is too aggregate to capture all the 

variation in the flow that may impact the occurrence of highway crashes. For example, it does not 

consider the possibility that the number of crashes during a specific time of day is related to the 

prevailing flow rate at that time and that this relationship between the prevailing flow rate and the 

number of crashes varies by time of day.  

 

1.2 MOTIVATION 

The motivation for this research emerged from the limitations encountered while evaluating the 

Active Traffic Management (ATM) system on I-66 in Northern Virginia [4]. The goal of that 

system was to improve safety and operations on I-66 without physically expanding the existing 

roadway. The ATM system included advisory variable speed limits (AVSLs), lane use control 

signals (LUCS), and dynamic hard shoulder running (HSR). All of these components were 

activated as needed in order to manage congestion based on current traffic or roadway conditions. 

The results of the study showed that the I-66 ATM system was able to create significant operational 

and safety improvements along a very congested corridor, although much of the benefit appears to 

be tied to the implementation of dynamic HSR as opposed to the AVSL or LUCS. Locations with 

HSR had a statistically significant reduction of nearly 25% and 32% for total crashes (all severity) 

and fatal and injury crashes, respectively. Prior to the activation of the ATM, the right shoulder on 

I-66 was open to travel using static hours from 5:30 to 11:00 AM eastbound and 2:00 to 8:00 PM 

westbound. After the activation, the shoulders were still open during those times of the day, but 

could also be dynamically opened and closed outside of those times whenever congestion formed, 

increasing capacity on I-66.  One major limitation of this study was that the safety evaluation was 

carried out using Virginia specific SPFs that used AADTs as an exposure measure. A number of 

challenges and limitations are associated with conducting a predictive safety analysis of part-time 

shoulder use with AADT-based freeway models, including their inability to differentiate between 

a general-purpose lane and the shoulder, inability to explicitly account for the dynamic nature of 

the use of the HSR, and lack of ability to account for how the HSR changed flow state on the road. 
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This affects overall crash prediction, especially in cases where traffic control varies with time, such 

as the part-time shoulder use. Due to these limitations, the safety evaluation failed to capture the 

true dynamic nature of the system.  

The restrictions of current safety prediction methodology served as a motivation to explore 

new methodologies that could better account for changing flow conditions throughout the day. A 

study of the relationship of crashes and flow state requires reliable information on crashes, hourly 

traffic flow data, and factors that influence highway capacity. The reason why this type of analysis 

hasn’t been done in detail previously is because obtaining reliable, temporally disaggregate data 

about crashes and traffic flow state broadly across the highway system is not a trivial task.  

Adequate detector coverage and quality of available data are a major issue in most states, making 

it difficult to acquire widespread information on quality of flow. Review of current practice reveals 

that the reason behind using aggregated volume is that AADT is the most widely available format 

of volume data. Volume data is collected by each state from both a limited set of continuous count 

stations which collect data continuously throughout the year or more broadly using short count 

stations that collects data periodically for shorter time intervals. The quality of continuous count 

data is very high, even though the total numbers of stations are limited. On the other hand, the 

short count stations have a broader network but the quantity of data available from them is much 

less. Both of these issues can be crucial since current crash models depends on volume data.  

 One way to address this concern is to add other variables in the modeling process that 

captures the variation in traffic, such as speed. Private sector probe data theoretically provides 24-

hour temporal coverage and broad network coverage spatially. As availability and reliability of 

observed traffic data significantly affect the accuracy of crash predictions, using probe data, which 

has better network coverage, might be useful to improve the availability of data. If a relationship 

could be developed between crash frequency and speed data along with different levels of volume 

aggregation, then the quality of volume data can be adjusted. This might help transportation 

agencies make better use of their resources since they could use the short volume count stations 

along with broadly available probe data. 

Most of the research available for disaggregated studies focused on selected segments of a 

particular facility and didn’t consider the roadway system as a whole. Another important issue in 

crash modeling with multiple years of data is presence of spatial and temporal correlation. The 

HSM recommended methodology does not acknowledge correlation in data. This issue is even 

more acute while using disaggregated data.  
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Based on the gap in current practices, there are multiple research needs this dissertation 

seeks to address: 

• Assessment of whether inclusion of flow state variables improves crash prediction models. 

• Examination of whether using different levels of data disaggregation (raw data, 15-minute 

average, hourly average, annual) impacts model performance. 

• Evaluation of whether sub-annual models are impacted by the level of availability of 

volume data from different sources (continuous count data vs. short count data). 

• Identifying whether the sources of speed data (probe data or sensor data) impacts model 

performance. 

• Assessment of the effects of incorporating spatial and temporal correlation in crash 

prediction models. 

If these gaps can be overcome, crash predictions models that could be broadly applied to sub-daily 

data could become available that would produce much finer grained results than the ones in broad 

usage today.  These more disaggregate models could be extremely useful in examining 

countermeasures or traffic flow changes that occur as a result of time-varying operational 

measures, which cannot be reasonably assess using current methods. 

 

1.3 RESEARCH OBJECTIVES  

This research sought to achieve five main objectives: 

1. Determine whether sub-daily crash predictions models can provide better safety 

predictions than AADT models, and what time interval works best for predictions. 

2. Determine if inclusion of traffic state variables improves predictions. 

3. Evaluate different sources for speed data and change in quality of crash prediction models 

based on data sources.  This has implications for how whether models that rely on speed 

can be deployed widely. 

4. Investigate whether the data from non-continuous count stations can be used to generate 

quality predictions.  This has implications on whether continuous volume data is required 

to generate sub-annual predictions, which could affect whether models can be applied 

widely. 

5. Investigate whether including spatial and temporal correlations creates significant 

improvements in the models. 
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The scope of this research was limited to two lane directional segments of rural basic freeway 

segments and three lane directional segments of urban basic freeway segments.   These cross 

sections were selected because they are the most common freeway segment type in Virginia. 

 

1.4 EXPECTED CONTRIBUTIONS 

The restrictions of current crash prediction models and limitations related to available 

quality of volume data are acknowledged among researchers and professionals, and methods 

seeking to develop sub-daily crash predictions methods is an emerging research area nationally. 

There is ongoing research to develop quantitative tools to evaluate safety performance of freeways 

where part-time shoulder use is allowed based on a function of temporal, operational, and other 

conditions [5]. Another research project seeks to estimate the expected crash frequency and severity 

of a range of freeway facilities with HOV or HOT lanes with various geometric and traffic volume 

characteristics since the HSM currently does not address this [6]. NCHRP 19-21 is conducting a 

research effort for developing a predictive methodology for rural two-lane, two-way highways 

incorporating speed measures (or surrogates for speed measures) to estimate crash frequency and 

severity [7]. Another proposed research statement by NCHRP is going to explore the development 

of short-term crash prediction models to estimate the safety performance of roads for specific 

geometric, operational, and exposure characteristics [8].  As a result, there is currently a great deal 

of national interest in the topics addressed in this dissertation, and no accepted methods to address 

the problems investigated currently exist.  The work performed in this dissertation will provide 

valuable knowledge in this developing area of research. 

 

1.5 ORGANIZATION OF REPORT 

The remainder of this report is organized as follows: 

• Chapter 2: Literature review 

➢ This chapter summarizes existing research findings, and further elaborates on the 

gaps in prior research briefly discussed in this chapter. 

 

• Chapter 3: Safety and Operational Effects of the Interstate 66 Active Traffic Management 

System. ASCE Journal of Transportation Engineering, Part A: Systems. Volume 145 (3), 

December 2018. 

➢ This paper provides the motivation for research and identifies research needs this 

dissertation can address.  
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• Chapter 4: Developing Rural Four Lane Freeway Crash Prediction Models Using Hourly 

Flow Parameters. International Association of Traffic and Safety Sciences (IATSS) 

Research. Submitted on December 2018 (Under Review). Presented at Transportation 

Research Board 98th Annual Meeting, January 2019. 

➢ This paper investigated the effect of including geometric features and hourly flow 

parameters. Models were developed using both raw hourly data and average hourly 

and contrasted against AADT-based models. This paper addresses research 

objective 1 and 2. 

 

• Chapter 5: Improving Freeway Segment Crash Prediction Models by Including 

Disaggregate Speed Data from Different Sources. Accident Analysis and Prevention. 

Submitted on December 2018 (Minor Revisions Under 2nd Review). Presented at 

Transportation Research Board 98th Annual Meeting, January 2019. 

➢ This paper evaluated the relationship between crashes and quality of flow both at 

15 minute and hourly levels of aggregation using different geometric and traffic 

variables. Models were first developed using speed data from continuous count 

stations, and then these models were repeated using the probe data from INRIX. A 

comparison between these two data sources in terms of prediction accuracy is one 

of the major objectives of this paper. Objective 1, 2 and 3 were examined in this 

paper. 

 

• Chapter 6: Assessment of the Impacts of Spatial and Temporal Correlation and Incomplete 

Volume Data on Freeway Hourly Crash Prediction Models. (To be submitted to Accident 

Analysis and Prevention) 

➢ The objectives of this paper are to define the relationship between average hourly 

crash frequency on freeways and explanatory variables that vary with time and 

geography using data commonly available to transportation agencies over a broad 

network. The volume data used in this study comes from detectors that often did 

not collect data continuously, so the research sought to determine if positive results 

previously obtained with continuous count station data were transferable to 

locations with lower volume data availability. Hence, evaluating the change in 

performance of prediction models with changes in volume data availability and 

accounting for the presence of correlation in data were examined as a way to 
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broaden the applicability of these models to transportation agencies. This paper 

covers research objectives 4 and 5. 

 

• Chapter 7: Conclusions and Recommendations:  

➢ This chapter describes the importance of the research and the expected contribution 

of the developed methodology.  It also provides a short case study to illustrate the 

possible use of the developed models in practice. 

• Publications and Presentations 
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CHAPTER 2: LITERATURE REVIEW 

 

Although the papers included in this dissertation include separate literature reviews, paper length 

limitations sometimes prohibit a deeper discussion of past work.  As a result, this chapter provides 

a longer and more integrated discussion of past research relevant to this dissertation, including 

discussions of the gaps in prior work that this dissertation seeks to address. 

Crash prediction models are very useful tools in highway safety, given their potential for 

determining both the frequency of crash occurrence and the contributing factors that could then be 

addressed by transportation policies or site interventions. In addition, these models can also assist 

with the development of generalized theories concerning road safety.  Numerous statistical models 

have been developed to predict the expected number of crashes on roads as well as to identify the 

various factors associated with the occurrence of crashes. These factors can be categorized into 

human factors, traffic flow characteristics (e.g. volume, speed), roadway characteristics (e.g. 

geometric designs and pavement conditions), and environmental conditions (e.g. weather and 

surface conditions). This chapter highlights some existing research on the disaggregated studies 

and discusses the issue associated with data availability and correlation. 

 

2.1 CURRENT PRACTICE FOR TRAFFIC DATA COLLECTION 

Traffic data plays an important role in establishing traffic characteristics of roadways. Accurate 

and reliable measurements of traffic counts, speed, and vehicle classification are critical for traffic 

monitoring, planning, and traffic design. The reliability and accuracy of this data is greatly 

dependent on the number and placement of data collection sites (e.g., continuous count, short 

count, weigh stations, etc.) throughout the system. Sensor data collection sites are limited 

resources, so the deployment needs to be optimized given locational and budgetary restrictions. 

According to the FHWA’s Traffic Monitoring Guide, the primary objective of a statewide 

continuous count program is to develop daily, hourly, or seasonal factors from volume data in 

addition to collecting speed and vehicle classification data [1]. The above time varying factors help 

to compute short duration counts, such as ADT and area wide coverage counts.  

The Virginia Department of Transportation’s (VDOT) traffic data collection program 

includes more than 100,000 traffic roadway segments where data are collected and traffic estimates 

produced. There are more than 400 continuous count stations across the state, 140 of which are on 

the Interstates [2]. The continuous count stations collect data 24 hours a day, 365 days a year. They 
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provide volume and classification data, as well as data needed to calculate the adjustment factors 

to apply to short-term counts. VDOT also has short-duration count stations throughout the state in 

an effort to ensure that at least some data exist for all roads maintained by the agency, even if it’s 

not real time. Short-count durations range from 48 hours to longer periods less than a year. Even 

though the data derived from these stations are of high quality, it is also restricted to the location 

of these stations. On the other hand, the short count stations have a broader network but the 

quantity of data available from them is less. Each state has its own traffic data collection needs, 

priorities, budgets, geographic, and organizational constraints. These differences cause agencies 

to select different equipment for data collection and use different data collection plan.  

 

2.2 RELATIONSHIP BETWEEN CRASHES AND HOURLY EXPOSURE 

Studies of relationships between crashes and traffic characteristics can be divided into two 

categories: aggregated studies, in which the units of analysis represent counts of crashes or crash 

rates for specific time periods (typically months or years) and disaggregated analysis, where the 

units of analysis are the crashes themselves and traffic flow is represented by parameters of the 

traffic flow at the time and place of each crash. Disaggregate studies are relatively new and 

typically use data based on average hourly observations of crash rates and traffic flow.  

Ivan et.al concluded that there is evidence that the hourly volume explains much of the 

variation in highway crash rates. They focused on actual hourly exposure values of seventeen rural, 

two-lane highway segments in Connecticut, with varying land-use patterns [3]. Single-vehicle and 

multi-vehicle crashes were modeled separately.  Time of day was significant for both types of 

crash, but in different ways. Single-vehicle crashes occurred most often in the evening and at night. 

On the other hand, multi-vehicle crashes were more likely to occur under daylight conditions at 

midday and during the evening peak period. This is when traffic volumes are the heaviest, and 

there are more discretionary trips than in the morning peak period. 

Persaud and Dzbik developed crash prediction models at both the macro level (in crashes 

per unit length per year), and micro level (in crashes per unit length per hour) using the generalized 

linear modeling approach with negative binomial error structure [4]. Crash, road inventory, and 

traffic data for approximately 500 freeway sections in Ontario was obtained for 1988 and 1989. 

Microscopic models showed a decreasing slope in regression lines, as hourly volume increased, 

perhaps capturing the influence of decreasing speed. This is in contrast to the macroscopic model, 
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which showed increasing slopes. The afternoon congested period had a higher crash risk than the 

morning rush period, but the difference was only significant for the express system.  

Perhaps the most extensive evaluation of this subject was a 1967 to 1975 study of eight 

sections of four-lane interurban road in Israel [5] . Single-vehicle rates were extraordinarily high 

for flow rates below 250 vph. The multiple vehicle rates were more diverse, with half the sites 

showing a substantial increase in rates for flow rates greater than about 900 vph, and the remaining 

sites exhibiting little change with increases in hourly traffic volumes. When the two crash types 

were combined, the results were dominated by the data for multiple-vehicle crashes. More 

specifically, those study sections that encompassed a broad range of traffic volumes had a U-

shaped relationship when crash rates were plotted as a function of hourly volume; the minimum 

rate occurred near 500 vph. The remaining four sites, three of which did not have hourly volumes 

in excess of 1,000 vph, did not show an increase in crash rates as hourly volumes increased. 

 

2.3 EFFECT OF ROADWAY GEOMETRY ON CRASH PREDICTION MODELS 

A large number of studies have examined the impact of various geometric factors on safety, and 

their influence is well documented.  For example, Khan et al. developed prediction models for 

total crashes and fatal or injury crashes for rural horizontal curves on undivided roads using a data 

set of 11,427 rural horizontal curves on Wisconsin state trunk network roads [6]. The result shows 

that as the difference between posted and advisory speed limit on the curve increases, more crashes 

are expected. The tangent length upstream of a curve was used as a categorical variable where the 

base condition was a tangent length greater than 2,600 feet (approx. 0.5 miles). The results show 

that compared with base conditions, less crashes are expected as tangent length decreases which 

points to possible driver expectancy issues as they approach the first horizontal curve after a long 

tangent section. 

Another study was performed to determine the horizontal curve features which affect safety 

and traffic operations and to quantify the effects on crashes of various curve-related improvements 

[7]. The data base included the cross-sectional data base of nearly 5,000 miles of roadway from 7 

states. Based on statistical analyses and model development, it was found that curve flattening is 

expected to reduce crashes by up to 80%, depending on the amount of flattening. Widening lanes 

or shoulders on curves can reduce curve crashes by as much as 33%, while adding spiral transitions 

on curves was associated with a 5% crash reduction.  
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Milton and Mannering examined the association between various geometric features and 

crash frequency while controlling for traffic exposure [8]. The primary data sources were the 

Washington State Department of Transportation's database for geometric and traffic information 

and the Washington State Patrol's accident database for accident information from 1992 and 1993. 

The researchers found that more crashes are expected on sharper and longer horizontal curves.  

Sharp curves with more space between them tend to increase the crash probability for collectors 

in Western Washington but decrease the probability for collectors in Eastern Washington. It was 

also found that vertical grade greater than 2.5% tends to increase crash probability for principal 

arterials in Washington. Another analysis of a 61 km portion of I-90 in Seattle showed that grade 

has a strong positive effect on crash frequency [9]. In comparison to those sections with grades 

less than 2%, those with maximum grades exceeding 2% experienced a significant increase in 

crash frequency.  

A NCHRP report that summarizes median related crashes indicated that wider medians 

generally will have more crashes [10]. Even though wider median causes more crashes, fewer of 

them would be severe. The crash analysis also shows that cross median crashes would keep 

decreasing, and rollover crashes would keep increasing continuously as the median width 

increases. Another study in Illinois also looked into the effect of geometry on crashes [11]. Illinois 

Department of Transportation provided traffic, geometric and crash information from 2002 to 

2005.  The traversable, curbed, and painted medians would increase the expected crash frequency 

when compared to segments with no median. The unprotected median causes a reduction in crash 

frequency compared to segments with no median.  

 

2.4 RELATIONSHIP BETWEEN CRASHES AND FLOW PARAMETERS  

When considering the flow of traffic along a freeway, three parameters are of considerable 

significance. Speed and density; which describe the quality of service experienced by the stream, 

and volume; which measures the quantity of the stream and the demand on the highway facility. 

Similar flows could be attributed to different combinations of density and speed, leading to 

different levels of safety. Speed is an important descriptor of traffic operations that has an effect 

on crash severity and frequency, but this variable is difficult to accurately capture in aggregate 

models that use AADT to predict annual crashes. The speed distribution may also play an important 

role since variance in speed is higher for lower traffic flows than for more congested conditions. 

That is why it is not enough to just consider volume and segment length as only variables while 
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predicting crashes on freeways. By introducing parameters such as speed, density, or v/c in 

addition to traffic volume, crash analysis takes into account the effect on traffic operations of both 

roadway characteristics, and traffic characteristics.  

In 1964 the Federal Highway Administration (FHWA) published a report by David 

Solomon in which he studied of the relationship between crashes on 2-lane and 4-lane roadways 

and a number of factors [12]. From an analysis of 10,000 crashes, Solomon concluded that crash 

severity increased rapidly at speeds in excess of 60 mi/h, and the probability of fatal injuries 

increased sharply above 70 mi/h. He found a relationship between vehicle speed and crash 

incidence that is illustrated by a U-shaped curve in Figure 1. Crash rates were lowest for travel 

speeds near the mean speed of traffic, and increased with greater deviations above and below the 

mean. Solomon's work is often cited as the source of the 85th percentile speed rule for setting 

speeds. 

  

                                             (a)                                                                    (b) 

FIGURE 1: Relationship between crash rates and (a) travel speed, (b) variation from average speed [12] 

 

Harkey, Robertson, and Davis also replicated the U–shape relationship between speed and 

crashes on urban roads [13]. The researchers compared the police–estimated travel speed of 532 

vehicles involved in crashes over a 3–year period to 24–hr. speed data collected on the same section 

of non–55–mi/h roads in mostly built–up areas of Colorado and North Carolina. To partially 

address the concerns of earlier studies and make the crash and speed data more comparable, their 

analysis was limited to non–intersection, non–alcohol, and weekday crashes.  

                  Empirical examination of the relationship between flow–density, speed, and crash rate 

on selected freeways in Colorado by Kononov et. al. suggested that as flow–density increases, the 

crash rate initially remains constant until a certain critical threshold combination of speed and 
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density is reached [14]. Once this threshold is exceeded, the crash rate rises rapidly. The rise in 

crash rate may be caused by flow compression without a notable reduction in speed; resultant 

headways are so small that drivers find it difficult or impossible to compensate for error and avoid 

a crash. The researchers calibrated performance functions for corridor-specific safety that relate 

crash rate to hourly volume–density and speed.  

Zhou and Sisiopiku examined the general relationships between hourly crash rates and 

hourly traffic volume/capacity (v/c) ratios using a 16-mile segment of Interstate I-94 in the Detroit 

area [15]. The v/c ratios were calculated from average hourly traffic volume counts collected in 

1993 and 1994 from three permanent count stations. The correlation between v/c values and crash 

rates followed a general U-shaped pattern. U-shaped models also explain the relationship between 

v/c and crash rates for weekdays and weekend days, multivehicle and property-damage-only 

crashes. On the other hand, single-vehicle, and crashes involving injury and fatality follow a 

generally decreasing trend with increasing v/c ratio (Figure 2). 

 

          

  (a) Total Crashes (Weekdays & Weekends)                       (b) PDO & Injury Crashes. 

FIGURE 2: Relationship between & crash rate & v/c ratio investigated by Zhou et.al. [15] 

 

Lord et. al. developed predictive models from data collected on freeway segments from 

Montreal, Quebec [16]. The study period covered 5 years from 1994 to 1998 inclusively. Various 

traffic flow characteristics were obtained from permanent and temporary count stations. For rural 

segments, as density and V/C increased, the number of single-vehicle crashes decreased and the 

number of multi-vehicle crashes increased. The data showed that crashes become less severe with 

an increasing v/c ratio, but did not seem to be affected by the density. The results also show that 

predictive models that use traffic volume as the only explanatory variable may not adequately 
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characterize the crashes on freeway segments. Functional forms that incorporate density and v/c 

ratio offer a richer description of crashes occurring on these facilities. 

Imprialou et al. re-examined crash–speed relationships by creating a new crash data 

aggregation approach that enables improved representation of the road conditions just before crash 

occurrences [17]. Using Strategic Road Network of England in 2012, development of an 

alternative data aggregation concept (condition based approach) was developed that defines the 

pre-crash traffic and geometric conditions as the crash aggregating factors. Compared to the 

approaches that assign crashes into groups based on their spatial relationship with road entities 

(link based approach), the new method addresses the inherent problem of over aggregation of time-

varying traffic variables and relevant information losses that may affect the modelling outcomes. 

Speed has been found to be a significant contributory factor for the number and the consequences 

of crashes when the data are modelled with the condition-based approach. In contrast to that, 

according to the results of the link-based model speed has a negative relationship with crash 

occurrences for all severity types. From a methodological point of view, the difference in the results 

of these approaches reveals that the data aggregation method is an important decision before 

conducting a crash data statistical analysis.  

Evaluation of freeway safety as a function of traffic flow by Golob et al. revealed that the 

highest crash rates (6.3 crashes per million vehicle miles traveled (VMT)) occurred during the 

morning peak period with heavily congested flow, corresponding to low mean speeds, low speed 

variation, low flows, and low flow variation. In contrast, the lowest crash rates (0.6 per million 

VMT) were characterized by high speeds and low speed variation [18]. 

Yu et al. investigated the impacts of data aggregation approaches based on traffic data from 

Shanghai’s urban expressway system [19]. Crash frequency analyses with a segment-based 

approach and a scenario-based approach were conducted first, and then crash risk analyses were 

developed at the individual crash level. It was found that during the congested period, an increase 

in operating speed would reduce crash likelihood. For medium operating speeds, the changes in 

operating speed do not have substantial effects on crash occurrence probability. For free-flow 

periods, increases in operating speed would further increase the probability of crashes. 

Garber and Earhart analyzed the effect of speed, flow, and geometric characteristics on 

crash rates for different types of Virginia highways [20]. The data were obtained from Virginia 

Department of Transportation (VDOT) and from police accident reports from January 1993 to 

September 1995. Based on this study, all of the models show that under most traffic conditions, 
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the crash rate tends to increase as the standard deviation of speed increases. The effect of the flow 

per lane and mean speed on the crash rate varied with respect to the type of highway. 

A recent study by Wang et al developed different models to estimate crash frequency using 

annual daily traffic and annual hourly traffic [21]. The study segments were from three 

expressways in Orlando, Florida and included basic freeway segments, merging segments and 

weaving segments. It was found the logarithm of volume, the standard deviation of speed, the 

logarithm of segment length, and the existence of a diverge segment were significant in the models. 

Weaving segments experienced higher daily and hourly crash frequencies than merge and basic 

segments.   

 
 

2.5 EFFECT OF CORRELATION ON CRASH PREDICTION MODELS 

Statistical methods that incorporate panel data structure have gained popularity due to their 

capacity to address both time-series and cross-sectional variations.  McCarthy employed fixed-

effects negative binomial models to examine fatal crash counts using 9 years of panel data for 418 

cities and 57 areas in the U.S. [22]. A negative binomial regression with cross sectional data using 

the same dataset couldn’t capture the interaction among crashes and variables properly. Noland 

used fixed- and random-effects negative binomial models to investigate the effects of roadway 

improvements on traffic safety using 14 years of data for all 50 U.S. states [23]. Random effects 

negative binomial model (RENB) was found to be more suitable than the conventional NB model. 

In the RENB model, the joint effects of the unobserved variables are assumed to follow certain 

distributions along the spatial and temporal dimensions.  

Another popular methodology that has been advocated in recent years is random 

parameters negative binomial (RPNB) model. Three years of crash data (2005–2007) were 

obtained from the Florida Department of Transportation for two-lane two-way urban roads in 

Florida to quantitatively examine the variations in effect of road-level factors on crash frequency 

across different regions [24]. A Poisson lognormal model, hierarchical random intercept model, 

and hierarchical random parameter were built for the purpose of comparison. The result shows that 

the hierarchical random parameter model out-performs the Poisson lognormal model and the 

hierarchical random intercept model. Compared to the RENB model, rather than treating the 

intercept term as the only random component, the RPNB model allows each estimated parameter 

to vary across individual observations, including the unobserved heterogeneity along the spatial 

and temporal dimensions.  
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A study by Li et al. used a mixed-effect negative binomial (MENB) regression model and 

BPNN neural network model to consider bus crashes [25]. The performance of MENB model 

results shows that it is advantageous to use a mixed-effects modeling method to predict accident 

counts in practice because it can take into account the effects of specific factors. Another analysis 

on urban road segments in Turin, Italy also favored the use of mixed effect models [26]. Data from 

2006 to 2012 were used and traffic flows and weather station data were aggregated in 5 minutes 

intervals for 35 minutes across each crash event. Two different approaches, a back-propagation 

neural network model and a mixed effect model, were used. The researchers concluded that the 

mixed model not only performed well but was also easier to interpret. The mixed effect models 

combine two popular methodologies for modeling repeated measurements of crash data – fixed 

effects and random effects models. They are also widely accepted for their ability to handle both 

spatial and temporal correlation in data.  

 

2.6 GAPS IN EXISTING LITERATURE 

Studies of relationships between crashes and traffic characteristics can be divided into two 

categories: aggregated studies, in which the units of analysis represent counts of crashes or crash 

rates for specific time periods (typically months or years) and disaggregated analysis, where the 

units of analysis are the crashes themselves and traffic flow is represented by parameters of the 

traffic flow at the time and place of each crash. Prior research has not compared the performance 

of models based on different level of disaggregation, however [3-5]. This dissertation developed 

sub-daily crash predictions models and compared them with AADT models and determined what 

aggregation interval produced the best predictions. 

There has been considerable research conducted in recent years into establishing 

relationships between crashes and various traffic flow characteristics for freeway segments. 

Despite that, there are several major gaps in existing research that this study intends to fill. Most 

of the research has focused on determining the relationship between crashes and highway traffic 

volumes, while little attention has been focused on the relationships of vehicle density, level of 

service (LOS), v/c ratio, and speed distribution [3,6,7,9]. Most researchers only focused on 

selected segments of a particular facility and didn’t consider the roadway system as a whole while 

exploring the relationship between crash rates and flow parameters [14-17]. This dissertation used 

rural 4 lane and urban 6 lane freeway segments from across the Virginia interstate system and 

explored relationship between crash frequency and different speed parameters.  
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These previous studies relied on data from point detectors; hence limiting the coverage. As 

availability and reliability of observed traffic data significantly affect the accuracy of crash 

prediction models, using probe data, which has better network coverage, might be useful to 

improve the availability and quantity and quality of speed data. This research compared different 

speed data sources and corresponding change in model quality. Whether data from non-continuous 

count stations can be used to generate quality predictions was also investigated. 

A detailed analysis involving a large sample size, representing data from all facility types 

and a comprehensive analysis of crashes with spatial and temporal correlation are missing from 

the existing literature. The crash prediction models developed in this dissertation will help to close 

the gap in that direction and will facilitate the assessment of a facility where conditions are 

different for different times of day. 
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ABSTRACT 

An Active Traffic Management (ATM) system was activated on I-66 in Northern Virginia in 

September 2015. The ATM system included advisory variable speed limits (AVSLs), lane use 

control signals (LUCS), and dynamic hard shoulder running (HSR). This paper quantifies the 

operational and safety effects of the ATM system on I-66 using approximately 2 years of crash and 

operational data following system activation. The operational analysis showed that off peak hours 

experienced significant travel time improvement after the ATM system was activated, but peak 

periods in the peak direction of travel generally did not see improvement. Further analysis revealed 

that most of these improvements occurred on the HSR sections. The safety evaluation results 

showed 4%, 4%, and 6% reductions in total (all severity), multiple vehicle (all severity), and rear 

end (all severity) crashes, respectively, across the entire corridor. Segment-level analysis again 

showed that the most safety benefits were observed at locations with HSR (31% - 38% crash 

reductions), and no significant reductions were found on the sections with only AVSLs and LUCS.  

 

INTRODUCTION  

An Active Traffic Management (ATM) system has been installed on Interstate 66 (I-66) from 

Centreville (Exit 52/U.S. 29) to the Capital Beltway (Exit 64/I-495) in Northern Virginia. This 

project was completed in September 2015 and spans approximately 19.96 kilometers (12.4 miles) 

in each direction.  The goal of the ATM system was to improve safety and operations on I-66 

without physically expanding the existing roadway. Twenty-two gantries were installed in each 
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direction at an average spacing of 0.97 kilometers (0.6 miles) to provide continuous delivery of 

information to drivers.  ATM components that were installed on I-66 include:  

 

• Advisory variable speed limits (AVSLs) which post dynamic advisory speed limits on 

overhead gantries above each lane. The normal posted speed limit on I-66 is 24.59 m/s (55 

mph), but the AVSL can post speeds between 15.65 m/s (35 mph) and 22.35 m/s (50 mph) 

based on traffic conditions (Chun 2016).  An automated algorithm determines the desirable 

posted speed limit based on observed traffic speeds from sensors, which are then processed, 

smoothed, and grouped to create transitions into and out of congestion. 

 

• Lane use control signals (LUCS) are also found on the gantries, and they provide 

information on lane utilization when an incident or work zone are present. Drivers are 

advised that a lane is open (down green arrow), a lane is closed ahead (diagonal down 

yellow arrow), or a lane is closed (red X) (Dutta 2017). 

 

• Dynamic hard shoulder running (HSR) dynamically opens and closes the shoulder to traffic 

based on traffic conditions. Prior to the activation of the ATM, the right shoulder on I-66 

was open to travel on a static time of day basis during the peak period in the peak direction. 

After the activation, the shoulders were still open during those times of the day, but could 

also be dynamically opened and closed outside of those times whenever congestion formed 

(Chun 2016). 

 

These components of ATM have been implemented in different combinations along I-66.  Figure 

1a shows an example of AVSL activation while the hard shoulder is closed to travel.  While the 

entire ATM corridor had LUCS and AVSLs, Figure 1b shows which sections also had HSR. Table 

1 describes the characteristics of the various segments with their respective ATM features.   
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Figure 1: ATM components on I-66 showing (a) AVSL Activation with HSR closed and (b) 

HSR Locations 

 

Table 1. ATM components on I-66 Corridor 

Segment Location 
Approx. 

Length 

(mi.) 
AADT 

(2016) 
ATM 

Techniques Roadway Characteristics 

1 US-29 (Exit 52) to 

VA-28 (Exit 53) 1.3 EB: 67,000 

WB: 66,000 
AVSL, 

LUCS Four lanes in each direction. HOV-2 

present in left-most lane.  HOV-2 

operating hours are 5:30 to 9:30 AM EB 

and 3:00 to 7:00 PM WB. They are not 

dynamic. 

2 VA-28 (Exit 53) to 

VA-286 (Exit 55) 1.9 EB: 80,000 

WB: 81,000 
AVSL, 

LUCS 
3 VA-286 (Exit 55) 

to US-50 (Exit 57) 2.6 EB: 64,000 

WB: 61,000 
AVSL, 

LUCS 
4 US-50 (Exit 57) to 

VA-123 (Exit 60) 1.9 EB: 92,000 

WB: 92,000 
AVSL, 

LUCS, HSR 
Three lanes + shoulder lane in both 

directions. Right-most shoulder lane is 

used as travel lane during respective peak 

hours. Left most lane operates as HOV-2 

lane from 5:30 to 9:30 AM EB and 3:00 to 

7:00 PM WB. These lanes are not 

dynamic. 

5 
VA-123 (Exit 60) 

to VA-243 (Exit 

62) 
2.1 EB: 93,000 

WB: 86,000 
AVSL, 

LUCS, HSR 

6 VA 243 (Exit 62) 

to I-495 (Exit 64) 3.2 EB: 81,000 

WB: 86,000 
AVSL, 

LUCS, HSR 
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OBJECTIVES AND SCOPE 

The purpose of this study is to quantify the operational and safety improvements that occurred as 

a result of the I-66 ATM system, using data from over a year of operation. A previous study 

provided some preliminary operational results based on the available data after 5 months of 

operation, but no safety findings could be determined at that point (Chun 2016). Since that 

evaluation, Virginia Department of Transportation (VDOT) familiarity and comfort with the 

system has increased, creating changes in operational effectiveness from that earlier preliminary 

evaluation. Since HSR was manually activated by traffic operations center personnel, there was a 

learning curve in how the HSR was deployed.  Initially, the use was relatively conservative.  As 

the operators gained more experience with the system, they began to use the HSR more 

aggressively to mitigate congestion. Likewise, enough crash data has accumulated to determine 

statistically valid results on the safety effects of the system, which was not previously possible.  

This paper seeks to better characterize the steady-state effectiveness of the system, both in terms 

of traffic operations and safety.   

 

LITERATURE REVIEW 

 A number of past studies have examined ATM, and Tables 2, 3, and 4 summarize selected ATM 

field deployments in the United States, Germany and United Kingdom. Since ATM deployments 

in the United States are relatively new, most of the evaluation results have been preliminary, 

however, and are often focused on VSL only applications (Lucyshyn 2011, Jacobson 2012). 

Evaluation results of ATM deployments in Europe have shown improvements in operational 

measures (throughput, travel times, and reliability) and safety (Mirshahi 2007). Since driving 

behavior and operational conditions (like the presence of automated speed enforcement) are often 

different in Europe, those results may be difficult to translate to U.S. applications. Given the 

limited U.S. experience with ATM and difficulties translating international experience to the U.S., 

there is still a need to continue to document and evaluate American ATM systems. 
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Table 2. Summary of the Effects of ATM Deployments in the United States 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Location and 

Reference 

ATM 

Features 

Research Design Operational Effect Safety Effect Comments 

I-5, 

Washington 

(DeGaspari 

2013) 

VSL, 

QWS 

• Total of 8 months before and after 

period using 19 loop detectors 

• Reliability improved by 15 - 

31% 

N/A • Used detector data 

for analysis of entire 

roadway 

I-4, Florida  

(Lucyshyn 

2011) 

VSL • Study period from 4PM to 6PM 

• 21 days of before VSL data and 

30 days of after VSL data analyzed 

• Speed changes were correlated 

with changes in occupancy more 

than changes in the posted speed 

limit 

 

N/A • Before and after 

periods do not match 

by season 

• Only focused on 

peak period 

I-27/I-255 in St 

Louis, 

Missouri 

(Bham 2010) 

VSL • One year before (2007) and after 

(2009) data  

• Crashes examined with Naïve and 

EB methods 

•  Average volume improved by 

10% after VSL implementation 

• Public and law enforcement 

are aware of the system, but 

were not satisfied with it. 

• 11% reduction in 

total crashes, 3% 

reduction in rear end 

crashes. 

• 6 to 8% reduction in 

crashes using EB and 

naïve before and after 

studies 

• Additional 

outreach and 

education needed 

I-35W and I-

94, Minnesota  

(Hourdos 2013,  
Hourdos 2014 )  

VSL • Single loop detectors, video 

recordings, crash records 

• 9 months of before VSL data and 

17 months of after VSL data for 

operational analysis 

• 6 months of before VSL data and 

6 months of after VSL data for 

safety analysis 

• During AM peak period, 17% 

less congestion with the VSL 

system in operation for speed 

drop thresholds of 25 mph or 

more 

• 7.6 minute less congestion 

during the average AM peak 

• Traffic pattern shows 

gradual decrease in 

speeds during the onset 

of congestion 

• No change in crash 

rates 

• Used single loop 

detector data for 

analysis of entire 

roadway 

I-260 and I-

255, Missouri 

(Kianfar et al., 

2010) 

VSL Total of 38 miles • Three 
bottleneck locations  
 

Pre-queue flow decreased by up 
to 4.5% • Queue discharge flow 
decreased by up to 7.7% • 
Average speed fluctuated, but 
speed variance declined at all 
bottleneck locations  
 

N/A  
 

• Findings true for 

bottleneck locations 

only. Not plausible 

to conclude that the 

results apply to the 

entire roadway. 
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TABLE 3 Summary of the Effects of ATM Deployments in Europe  

 

 

Location 
ATM 

Features 
Research Design Operational Effect Safety Effect Comments 

Germany,  

A99 (10) 
VSL 

• Used 14 dual-loop 

detectors to examine 18 

bottleneck cases 

• Lane utilization was 

distributed more evenly at the 

slight cost of capacity 

• Flow change reduction of 4% 

when VSL was on and flow 

change reduction of 3% when 

VSL was off 

N/A 

• Used 31 weekdays 

(25 days when VSL-

ON and 6 days when 

VSL-OFF) for data 

analysis 

Germany,  

A5 (11) 
VSL • No methodology provided N/A 

27% reduction in crashes with 

heavy material damage and 

29% reduction in crashes with 

personal damage 

 

U.K., M42 (12) VSL, HSR 

• 12 months of before and 12 

months of after data 

analyzed 

• 1 month of settling in 

period 

• Average capacity increase of 

7% 

• Total flow increases of 6% 

(NB) and 9% (SB)  

• Average travel time increase 

of 9% 

• Variability of travel time 

reduced by 22% in both 

directions 

•Preliminary analysis, final 

analysis shown on next row  

• Additional 

development and 

construction work 

between ATM 

construction phases 

may reduce ATM 

benefits  

U.K., M42 (13) VSL, HSR 

• 36 months of before and 36 

months of after data 

analyzed 

• 1 month of settling in 

period 

N/A 

• Average number of crashes 

per month reduced from 5.08 

to 2.25 after ATM 

implementation 

• Monthly mean number of 

killed or serious injured 

casualties reduced from 1.15 to 

0.19 

• Two-way crash rate per 

billion vehicle miles traveled 

reduced from 115.92 to 47.98  
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Table 4. Summary of the Effects of ATM Deployments in United Kingdom 

 

 

 

 

Location and 

Reference 

ATM 

Features 

Research Design Operational Effect Safety Effect Comments 

U.K., M42 

(MacDonald 

2008) 

VSL, 

HSR 

• 12 months of before and 

12 months of after data 

analyzed 

• 1 month of settling in 

period 

• Average capacity increase 

of 7% 

• Total flow increase of 6% 

(NB) and 9% (SB)  

• Average travel time 

increase of 9% 

• Variability of travel time 

reduced by 22% in both 

directions 

•Preliminary analysis, final 

analysis shown on next row  

• Additional 

development and 

construction work 

between ATM 

construction 

phases may reduce 

ATM benefits  

U.K., M42  

( MacDonald 

2011) 

VSL, 

HSR 

• 36 months of before and 

36 months of after data 

analyzed 

• 1 month of settling in 

period 

N/A • Average number of 

crashes per month reduced 

from 5.08 to 2.25 after ATM 

implementation 

• Monthly mean number of 

killed or serious injured 

casualties reduced from 1.15 

to 0.19 

• Two-way crash rate per 

billion vehicle miles 

traveled reduced from 

115.92 to 47.98  
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OPERATIONS DATA AND ANALYSIS 

Data Sources 

 

INRIX Travel Time Data 

Probe-based travel time data from the private company INRIX was used for the operational 

analysis. INRIX develops travel time estimates using GPS data from truck and passenger vehicles, 

creating segment travel times based on this probe data. VDOT currently uses INRIX data to 

support a variety of performance measurement and traveler information applications, and several 

external and internal evaluations have supported the accuracy of the travel time data for freeways 

(Haghani 2009). The data is reported spatially using Traffic Message Channel (TMC) links, which 

typically span segments between interchanges.  At this study site, there were 14 TMCs with a total 

length of 19.97 kilometers (12.41 miles) in the Eastbound (EB) direction and 14 TMCs with a total 

length of 19.86 kilometers (12.34 miles) in the Westbound (WB) direction. The length of each 

TMC varied from 354 meters (0.22 miles) to 2977 meters (1.85 miles).   

 

INRIX provides confidence scores for each 1-minute interval travel time, with a confidence 

score of 30 representing real-time data and scores of 10 and 20 representing historic data during 

overnight and daytime periods, respectively. For the purposes of this analysis, average travel times 

were determined for every 15-minute interval.  Each 15-minute travel time interval had to have an 

average confidence score of 26.67 or higher for at least 85% of the TMCs composing the analysis 

section for it to be included in the analysis.  The 26.67 value was established by requiring that at 

least 10 of 15 1-minute intervals had real time speed data.  There is a tradeoff between data 

availability and quality with this threshold.  If the threshold was set closer to the “30” value, 

sometime intervals would be discarded if only 1 or 2 minutes lacked real time data.  It was not 

uncommon to have some gaps in probe data within the 15-minute interval, so this threshold was 

set in concert with the VDOT business rules for posting travel time data. The INRIX data has been 

subjected to numerous validation studies in Virginia by the DOT and the I-95 Corridor Coalition, 

and has been used for travel time messaging since 2010 (Haghani 2009).  There has been no 

substantial change in the data quality on high volume urban freeways during the study period. 

 

Traffic Operations Center (TOC) Logs 

VDOT TOC logs were reviewed to determine the times when HSR was opened to travel, as well 

as the time periods when AVSL and LUCS were posted.  The TOC logs consisted of information 
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on the sign message, the time stamp when the message was posted, and a location identifier for 

the sign.  Thus, the specific message being displayed on every individual sign could be tracked 

over time.   

 

Analysis Time Periods and Data Aggregation 

The previous analysis of the ATM system used 21 weeks of before-ATM data (Oct 2014 – Feb 

2015) and 21 weeks of after-ATM data (Oct 2015 – Feb 2016) for comparison (Chun 2016). While 

those results provided a preliminary examination of system effectiveness, they may have been 

influenced by seasonal factors.  In this paper, annual data is divided into four parts to be consistent 

with the seasonal variation in traffic:  October-November, December-February, March-May, and 

June-August.  The ATM system was activated on September 15, 2015, so data from the month of 

September is not used in this paper.  Three time periods are considered in this analysis.  The Pre 

ATM period is defined as October 2014- August 2015, ATM year one is defined as October 2015- 

August 2016, and ATM year two is October 2016- August 2017.  

 

Analysis was segregated by day of the week and time of day. Time of day was defined as 

AM peak (5:30 AM to 11:00 AM), midday (11:00 AM to 2:00 PM), PM peak (2:00 PM to 8:00 

PM), and overnight (8:00 PM to 5:30 AM) for weekdays and daytime peak (10:00 AM to 8:00 

PM) and off peak (8:00 PM to 10:00 AM for weekends.  These time periods were selected to match 

the time periods when the static time of day HSR was used in the pre-ATM period (5:30 to 11:00 

AM EB and 2:00 to 8:00 PM WB). 

 

Operational Performance Measure Calculation 

ATM Utilization 

The activation log maintained by the TOC contained detailed records of ATM usage for each 

individual sign on each gantry. Of the 22 gantries in each direction, 11 gantries were used for HSR 

in the EB direction and 9 gantries were used for HSR in the WB direction.  Average HSR 

utilization rates were calculated by adding up the total time of HSR activation per gantry then 

dividing the total by the number of days in the analysis period.  This was calculated by direction 

and for weekdays and weekends.   

 

All 22 gantries were included for the AVSL utilization analysis.  AVSL utilization rates 

were calculated by adding up the total time of AVSL activation per gantry, and then dividing the 
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total by the number of days in the analysis period. All gantries were also included for the LUCS 

utilization analysis. The utilization rate of LUCS was far less frequent than the activation of AVSL 

or HSR since they were only activated when there was a lane-blocking incident.  Given the lower 

utilization, LUCS activations are not documented in this paper, but interested readers can consult 

related work by Dutta et al (2017).    

 

Average Travel Times 

INRIX travel time data were acquired using a 15-minute temporal aggregation, data quality 

screening measures were applied to the travel times, and travel times were segregated by segment, 

day of the week, and time of day. Paired t-tests were conducted at α = 0.05 to determine if any 

changes were statistically significant between the pre-ATM time period and ATM year one and 

also between pre-ATM and ATM year two. For each day of the week, the 15-minute average times 

were divided up into time of day for both before-and-after ATM periods to set up the paired t-test.  

Time periods with incidents were not screened out since those both impact average travel time and 

reliability. Since ATM is expected to help manage non-recurring events, it was important to 

include incident impacts in the analysis. 

 

SAFETY DATA AND ANALYSIS 

Data Sources 

 

Segment Traffic and Geometric Data 

The safety analysis of the I-66 ATM system focused on basic freeway segments only because 

detailed ramp data was often not available. First, the I-66 corridor was reviewed to ensure 

compliance with the Highway Safety Manual (HSM) base conditions for freeway segments (HSM 

2010). The eastbound and the westbound directions of the study corridor were sub-segmented into 

homogeneous sections based on the traffic and geometric characteristics of the roadway and the 

presence or absence of HSR.  Road inventory data for the corridor were obtained from VDOT, and 

only data from segments outside the interchange area along the corridor were used. An interchange 

area was defined as an area between gores of entrance/exit ramps (Kweon 2014). Additional data 

collected included length of horizontal curves, lane widths, inside/outside shoulder widths, median 

widths, and length of median barriers. Traffic data were collected before (2011-2014) and after 

(2016 and 2017) implementation of the ATM system, and the year of activation was omitted from 

the analysis. Figure 1 shows the locations with and without HSR.  
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Crash Data 

Crash data for the study were collected between 2011-2014 (before) and 2016-2017 (after) along 

I-66. Crashes within interchanges areas were not used as part of this study. A count of total (all 

severities), fatal and injury, and property damage only (PDO) crashes were collected.  The analysis 

was further segregated into crashes involving single vehicles, multiple vehicles, and rear end 

crashes as shown in Table 5. These types were separated since past studies have shown that ATM 

is effective in reducing those types of crashes (Siddiqui 2017, Mudgal 2017, and Aron 2010). A 

separate analysis was also done for locations with HSR and locations without HSR to quantify the 

safety benefit associated with this incremental change over the AVSL and LUCS. 

 

Safety Analysis Methodology 

In order to evaluate the safety impacts of ATM on I-66, the empirical Bayes (EB) methodology 

with safety performance functions (SPFs) described by Gross et al was used (Gross 2010). This 

method is well known for its robustness and ability to calculate statistically defensible crash 

modification factors (CMFs). It is also able to account for key changes in traffic and geometric 

conditions that occur during the study period, while also controlling for regression-to-the-mean 

(RTM) effects, which is a phenomenon that is likely to be present when sites are selected for 

treatments based on their crash records (Goh 2012). Hauer explained SPFs as a representative of 

the safety performance of a roadway or an intersection, and it is used to correct for RTM bias when 

calculating the safety effectiveness of a countermeasure (Hauer 1980). It relates crash frequencies, 

traffic volume, and roadway and land use characteristics. The SPFs include an over dispersion 

parameter which is developed from a negative binomial model as a measure of precision of the 

model in predicting crashes that would have occurred at the treatment sites if the treatment had not 

been implemented. This factor is used in conjunction with the observed crashes before the 

treatment in the weight computation to predict the expected crashes at each site (Saito 2011). 

 

EB Methodology 

Virginia statewide SPFs developed by Kweon and Lim for freeway segments with 6 lanes and 8+ 

lanes were used to develop the CMFs for the I-66 ATM (Kweon 2014). Local SPFs with annual 

calibration factors from 2011-2017 were used to generate predictions since they better account for 

jurisdictional and time trends in factors like driving behavior, weather, and reporting thresholds 

than the national models in the HSM. More generalized SPFs can lead to erroneous computation 

of the safety effect of the treatment (Garber 2006). CMFs for relevant base conditions were 
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computed based on the geometric data collected earlier using equations and coefficients described 

in the HSM for freeways. These data were used to develop CMFs for site conditions, and they 

were applied to the Virginia SPF in the EB computation. Coefficients for horizontal curves (HSM 

Table 18:14), median width (HSM Table 18:17), and median barrier (HSM Table 18:18) were used. 

Lane width as well as inside and outside shoulder widths met the base conditions, so they were not 

corrected for in the computation.   

 

The Virginia SPFs developed by Kweon and Lim used in this study were:  

𝑁𝑇𝑜𝑡𝑎𝑙 𝐶𝑟𝑎𝑠ℎ𝑒𝑠,6 𝐿𝑎𝑛𝑒𝑠 = 𝑒−12.85𝐴𝐴𝐷𝑇𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙
1.45 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝐿𝑒𝑛𝑔𝑡ℎ𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙;  (𝑘 = 0.59) [Eq. 1] 

𝑁𝐹𝑎𝑡𝑎𝑙+ 𝐼𝑛𝑗𝑢𝑟𝑦 𝐶𝑟𝑎𝑠ℎ𝑒𝑠,6 𝐿𝑎𝑛𝑒𝑠 = 𝑒−15.64𝐴𝐴𝐷𝑇𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙
1.6 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝐿𝑒𝑛𝑔𝑡ℎ𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙;  (𝑘 = 0.47) 

            [Eq. 2] 

𝑁𝑇𝑜𝑡𝑎𝑙 𝐶𝑟𝑎𝑠ℎ𝑒𝑠,8 𝐿𝑎𝑛𝑒𝑠 = 𝑒−2.17𝐴𝐴𝐷𝑇𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙
0.48 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝐿𝑒𝑛𝑔𝑡ℎ𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙;  (𝑘 = 0.58) [Eq. 3] 

𝑁𝐹𝑎𝑡𝑎𝑙+ 𝐼𝑛𝑗𝑢𝑟𝑦 𝐶𝑟𝑎𝑠ℎ𝑒𝑠,8 𝐿𝑎𝑛𝑒𝑠 = 𝑒−5.94𝐴𝐴𝐷𝑇𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙
0.71 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝐿𝑒𝑛𝑔𝑡ℎ𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙;  (𝑘 = 0.50)     

[Eq. 4] 

Gross et al (2010) and Kwigizile et al (2015) described the computation of expected crashes 

without the treatment for a site as follows:      

𝑁𝑒𝑥𝑝,𝑇,𝐵 = 𝑤 × (𝑁𝑝𝑟𝑒𝑑,𝑇,𝐵) + (1 − 𝑤) × (𝑁𝑜𝑏𝑠,𝑇,𝐵)                                                              [Eq. 5] 

Where;  

𝑁𝑒𝑥𝑝,𝑇,𝐵 = an estimate of the expected crashes in the before period without the treatment  

𝑁𝑜𝑏𝑠,𝑇,𝐵= observed crash frequency in the before period at the treated sites 

𝑁𝑝𝑟𝑒𝑑,𝑇,𝐵  = an estimate of the predicted crashes in the before period from the SPF 

𝑤 = the weight is based on the over-dispersion parameter (k) from the applicable SPF model and 

predicted crash frequencies of study before the implementation of the treatment.  It is calculated 

as: 

𝑤 =
1

1+𝑘∗𝛴𝑁𝑝𝑟𝑒𝑑,𝑇𝐵
 , k = over dispersion parameter                                                                 [Eq. 6] 

Computation of expected crashes after the implementation of the treatment (𝑁𝑒𝑥𝑝,𝑇,𝐴) is as follows: 

𝑁𝑒𝑥𝑝,𝑇,𝐴 = (𝑁𝑒𝑥𝑝,𝑇,𝐵) × (
𝑁𝑝𝑟𝑒𝑑,𝑇,𝐴

𝑁𝑝𝑟𝑒𝑑,𝑇,𝐵
)                                                                                         [Eq. 7] 

Where; 

𝑁𝑝𝑟𝑒𝑑,𝑇,𝐴 = an estimate of the predicted crashes in the after period from the SPF 

The variance of the expected number of treatment crashes in the after period is: 
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𝑣𝑎𝑟(𝑁𝑒𝑥𝑝,𝑇,𝐴) = [(𝑁𝑒𝑥𝑝,𝑇,𝐴) × (
𝑁𝑝𝑟𝑒𝑑,𝑇,𝐴

𝑁𝑝𝑟𝑒𝑑,𝑇,𝐵
) × (1 − 𝑤)]                                                          [Eq. 8]                                                    

𝐶𝑀𝐹 =
(𝑁𝑂𝑏𝑠,𝑇,𝐴 𝑁𝑒𝑥𝑝,𝑇,𝐴⁄ )

(1+(𝑣𝑎𝑟(𝑁𝑒𝑥𝑝,𝑇,𝐴) 𝑁𝑒𝑥𝑝,𝑇,𝐴
2⁄ ))

                                                                                         [Eq. 9]               

The standard error is computed from as follows: 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 =  √(
𝐶𝑀𝐹2∗[(

1

𝑁𝑂𝑏𝑠,𝑇,𝐴
)+(𝑣𝑎𝑟(𝑁𝑒𝑥𝑝,𝑇,𝐴) 𝑁𝑒𝑥𝑝,𝑇,𝐴

2⁄ )]

[1+(𝑣𝑎𝑟(𝑁𝑒𝑥𝑝,𝑇,𝐴) 𝑁𝑒𝑥𝑝,𝑇,𝐴
2⁄ )]

2 )                                      [Eq. 10] 

The standard error is used in conjunction with the calculated CMF to determine whether the results 

are statistically significant. 

                    

CMFs for multiple vehicle and rear end crash types were estimated by computing their 

proportions of the total (all severity) and fatal and injury crashes during the before period. The 

factors for the proportions (x) were then applied to the sum of the predicted crashes in the before 

and after period (𝑥𝛴𝑁𝑝𝑟𝑒𝑑,𝑇𝐵, 𝑥𝛴𝑁𝑝𝑟𝑒𝑑,𝑇,𝐴) to obtain the predicted crashes for multiple vehicle and 

rear end crashes. These proportional factors (x) were again applied to the expected crashes 

(𝑥𝑁𝑒𝑥𝑝,𝑇,𝐵, 𝑥𝑁𝑒𝑥𝑝,𝑇,𝐴) to compute the expected number of crashes before and after the ATM 

activation for the multiple vehicle and rear end crash types. 

 

RESULTS 

 

Operational Analysis 

ATM Utilization Analysis 

Before ATM was implemented, HSR was only activated on weekdays from 5:30-11:00 AM in the 

eastbound direction and from 2:00-8:00 PM in the westbound direction. After ATM activation, 

HSR was dynamically opened in response to congestion, in addition to being opened during the 

regular peak travel periods. In the EB direction, average weekday HSR utilization increased from 

9.4 hours/day/gantry in year one to 10.3 hours/day/gantry in year two. In the WB direction, it 

decreased from 7.8 hours/day/gantry in year 1 to 7.6 hours/day/gantry in year 2.  Weekends 

followed the same trend where utilization increased slightly from 63 hours/day/gantry in year one 

to 7.0 hours/day/gantry in year two in the EB direction. In the WB direction, it decreased from 8.5 

hours/day/gantry to 6.9 hours/day/gantry. HSR was not used in the pre-ATM period during 

weekends, so these represent significant changes in operations in those periods. 
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AVSL utilization rates were also analyzed, but they were used less often than HSR.  This 

system also experienced an increase in usage in the second year. After removing the period from 

September to December 2015 when the AVSL control algorithm was undergoing calibration, 

average weekday AVSL utilization was 2.1 hours/day/gantry in the EB direction and 2.7 

hours/day/gantry in the WB direction in year 1. Utilization increased in both directions in year 2, 

with EB usage averaging 2.9 hours/day/gantry and WB usage averaging 3.8 hours/day/gantry. 

Weekend AVSL utilization was low, but usage increased in year 2 for both directions as well.  

LUCS utilization followed the same trend as AVSL, but total activations were lower than AVSL. 

 

Average Corridor Travel Times  

Figure 2 shows an example of the EB and WB corridor-level average travel time profiles for 

weekdays and weekends between December and February before and after ATM activation.  The 

analysis was repeated for all the seasons and time periods, and more detail is provided in Table 6.  

 

Improvement in travel times were observed mostly during off peak periods, as seen in 

Figure 2.  The trends seen in Figure 2 were observed in other months as well. The midday period 

showed slight improvements in travel time in both directions, with the only exception being EB 

during October and November. Travel time in the midday period improved more in year two 

compared to year one. All the changes were statistically significant in the WB direction, and a 

mixed result of significance was observed in the EB direction. For these off peak and midday 

transition periods when the roadway was not operating at maximum capacity, the dynamic opening 

of the shoulders may have contributed to faster travel times along the corridor and mitigated any 

incident and non-recurring congestion impacts.   

 

The ATM system provided much larger improvements on the weekends. The weekend 

daytime peak period in both directions showed consistent improvement in travel time. A detailed 

comparison among average travel times and their statistical significance is presented in Table 6.  

In this case, HSR was not used at all on weekends in the before period, so it provided significant 

capacity expansion in the after period. 

 

For weekday peak period average travel times, there were statistically significant 

degradations at α = 0.05 between after-ATM and before-ATM average times while traveling in the 
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peak directions (AM for EB, PM for WB).  This is true for both year 1 and year 2 after deployment 

and for all months. This was somewhat expected since HSR as already in use during these time 

periods before ATM was activated, and I-66 operates far over capacity in these periods. Even 

though average travel time increased in the peak period, the increase was larger in the 1st year of 

using the ATM system compared to the second year. This might be an indication that the ATM 

system may be helping to slow the rate of degradation in travel time, but more data needs to be 

accumulated before reaching to that conclusion. The differences in trends between weekday peak 

periods and other times also highlights the ATM system’s effectiveness in managing non-recurring 

congestion that might have occurred during off peak periods if the facility had not been 

dynamically managed. 

 

 

FIGURE 2 Before-and-after average travel time profiles for (a) EB Weekday (b) WB Weekday 

(c) EB Weekend and (d) WB Weekend 
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TABLE 5 Changes in Average Travel Time Before and After ATM System Activation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Direction Time Period 
October-November December-February March-May June -August 

Before vs. 

After Year 1 
Before vs. 

After Year 2 
Before vs. 

After Year 1 
Before vs. 

After Year 2 
Before vs. 

After Year 1 
Before vs.  

After Year 2 
Before vs. 

After Year 1 

Eastbound 

Weekday AM Peak 
(5:30 AM - 11AM) 

+0.98 
(+5.35%) 

+0.33 
(1.80%) 

+1.25 
(+7.69%) 

+ 0.92 
(+ 5.66%) 

+1.07 
(+5.85%) 

+0.33 
(+ 1.77%) 

+0.78 

(+4.46%) 

Weekday Midday 
(11AM -2PM) 

+0.24 
(+ 1.81%) 

+1.01 
(+ 7.56%) 

-0.41 
(- 3.07%) 

- 0.08 
(-0.60%) 

-1.05 
(-7.31%) 

-1.41 
(- 9.56%) 

-0.62 

(-4.30%) 

Weekday PM peak 
(2 PM-8 PM) 

-1.09 
(- 7.31%) 

-1.06 
(- 7.08%) 

-0.83 
(- 5.73%) 

-1.64 
(- 11.35%) 

-1.81 
(- 12.37%) 

-1.99 
(-13.65%) 

-1.36 

(-9.34%) 

Weekday Overnight 
(8PM-5:30 AM) 

+0.62 
(+ 5.15%) 

+0.20 
(+ 1.62%) 

+0.45 
(+ 3.66%) 

-0.09 
(- 0.74%) 

+ 0.03 
(+ 0.25%) 

-0.28 
(-2.29%) 

-0.06  

(-0.46%) 

Weekend Peak 
(10AM-8PM) 

-2.24 
(- 14.59%) 

-0.85 
(- 7.05%) 

-0.97 
(- 6.95%) 

-1.36 
(-9.72%) 

-1.89 
(-12.36%) 

-2.16 
(-13.50%) 

-1.58 

(-10.42%) 

Weekend Off Peak 
(8PM-10AM) 

-0.21 
(-1.77%) 

+0.26 
(+ 1.71%) 

+0.16 
(+ 1.33%) 

+0.18 
(+ 1.44%) 

+0.01 
(+ 0.09%) 

-1.53 
(12.39%) 

-0.01  

(-0.11%) 

Westbound 

Weekday AM Peak 
(5:30 AM - 11AM) 

- 0.13 
(-1.06%) 

-0.10 
(-0.84%) 

-0.37 
(-2.91%) 

-0.64 
(-4.98%) 

-0.91 
(-6.89%) 

-1.27 
(-9.44%) 

-0.24 

(-1.67%) 

Weekday Midday 
(11AM -2PM) 

-0.55 
(-4.11%) 

-0.95 
(-7.17%) 

-0.67 
(-5.02%) 

-1.19 
(-8.95%) 

-1.54 
(-10.98%) 

-1.78 
(-12.50%) 

-2.01 

(-11.95%) 

Weekday PM peak 
(2 PM-8 PM) 

+0.69 
(+ 3.04%) 

+2.08 
(+ 9.10%) 

+1.00 
(+ 4.79%) 

+ 1.04 
(+ 4.99%) 

+ 0.17 
(+ 0.78%) 

+ 1.15 
(+ 5.25%) 

+ 1.54 

(+6.80%) 

Weekday Overnight 
(8PM-5:30 AM) 

- 0.25 
(- 1.98%) 

- 0.24 
(- 1.95%) 

+ 0.13 
(+ 1.00%) 

- 0.19 
(- 1.58%) 

-0.36 
(- 2.85%) 

-0.41 
(- 3.28%) 

-0.47  

(-3.26%) 

Weekend Peak 
(10AM-8PM) 

-1.92 
(- 13.74%) 

-1.09 
(- 7.77%) 

-1.19 
(- 8.78%) 

-1.28 
(- 9.44%) 

-2.40 
(- 16.18%) 

-2.18 
(- 14.06%) 

-1.90 

(-11.49%) 

Weekend Off Peak 
(8PM-10AM) 

+ 0.06 
(+ 0.47%) 

-0.03 
(- 0.23%) 

+ 0.07 
(+ 0.58%) 

-0.001 
(- 0.01%) 

+0.02 
(+ 0.13%) 

-0.07 
(-0.54%) 

+0.04  

(+0.29%) 



 

41 

 

Comparison between HSR and Non-HSR Sections 

While the corridor-level analysis showed that the ATM system provided some travel time 

improvements during off peak and weekend operations, it was unclear what role the different ATM 

elements played in these improvements. Anecdotally, VDOT TOC staff indicated that they 

believed the addition of dynamic HSR was responsible for the majority of observed benefits.  As 

a result, the operational performance of the sections with HSR, AVSLs, and LUCS was compared 

to those sections with only AVSLs and LUCs. 

 

For this, the corridor level data was divided into segments that have a HSR section and the 

segments that do not. The change in travel time was analyzed for both sections to assess whether 

benefits were uniformly distributed. A paired t-test was conducted to check if the change is 

significant or not.  

 

Figure 3 shows the percentage change in travel time in year 1 and 2 compared to the pre-

ATM period for HSR and non-HSR. Non-HSR sections usually continued to show degradation in 

travel times during weekday periods in both directions, while HSR sections showed some 

improvements, especially in the WB direction. Weekends experienced more drastic improvements 

in both directions on the HSR sections, as seen in Figure 3.   

 

Before ATM was implemented, HSR was only activated on weekdays from 5:30-11:00 AM 

in the eastbound direction and from 2:00-8:00 PM in the westbound direction. After ATM 

activation, HSR usage mostly occurred during daytime periods.  Figure 3 shows that most 

improvements were observed during off peak periods on weekdays and daytime peaks on 

weekends in the EB direction. These time frames showed even better improvement in the second 

year. The weekend peak showed the most statistically significant improvement in the HSR section, 

where travel time was reduced by 11.20 % in year 1 and 13.50 % in year 2 compared to the pre-

ATM condition. All other results were statistically significant except for the weekday PM peak 

results for non-HSR sections for both years. 

 

The change was more prominent in the WB direction, where almost all the HSR sections 

experienced some improvement. Other than the AM peak period, travel time for all the non-HSR 

sections deteriorated in both years, with the worst time period being the PM peak. Most of these 

increases in travel times were statistically significant. In the WB direction, the midday period 
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during weekdays showed the highest improvement, with travel time reduced by 12.60 % in year 1 

and 15.10 % in year 2. The results were significant for all time periods on HSR sections except for 

the weekday PM peak period on year 1. For non HSR sections, the findings were significant for 

both years during AM peak, midday, PM peak and weekend peak on year one. For year two, results 

for weekend peak travel time was not significant for the non-HSR sections. 

 

 

(a) 

 
 

(b) 
FIGURE 3 Comparison between change in travel time in HSR and Non HSR sections for (a) EB and (b) WB 

 

Safety Analysis 

Empirical Bayes Results 

Table 7 summarizes the results of the EB analysis of the effect of the ATM system.  CMFs for 

total and fatal + injury crashes were calculated for the following crash types: 

• All crash types 

• Multiple vehicle crashes 
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• Rear end crashes 

 

Given the results of the operational analysis, the safety effects were further broken down into HSR 

and non-HSR sections.  Since operations generally improved more on the HSR sections, the 

question was whether the improved flow offset any safety concerns related to the removal of the 

emergency shoulder for use as a travel lane. 

 

The results showed positive safety improvements when the entire corridor was examined 

as a whole. There was a 4% reduction in total (all severity) and 4% reduction in fatal/injury crashes, 

when the entire corridor was examined. These reductions were not statistically significant at a 95% 

confidence level, however. Multiple vehicle crashes had 4% and 5% reductions for total (all 

severity) and fatal/injury crashes, respectively, after the implementation of the ATM. These 

reductions were also not statistically significant at a 95% confidence level. Rear end crashes had 

the largest reductions for total (all severity) and fatal/injury crashes, with reductions of nearly 6% 

and 6%, respectively. These reductions were again not statistically significant at the 95% 

confidence level. The comparatively large reductions in rear end crashes correlate well with the 

improved traffic flow discussed earlier. 

 

Much like the operational results, it appears that the safety benefits were concentrated in 

the sections with HSR present. Locations with HSR had a reduction of nearly 31% and 32% for 

total (all severity) and fatal and injury, respectively, which was statistically significant at α=0.05. 

Likewise, HSR locations had a 35% and 36% reduction in total (all severity) and fatal and injury 

multiple vehicle crashes, respectively, which was again statistically significant at α=0.05. Rear end 

crashes at HSR locations had about 38% and 35% reductions in total (all severity) and fatal/injury 

crashes, respectively. These reductions were once again statistically significant at α=0.05. The 

study did not show improvement in safety at locations without HSR. This is in contrast to prior 

VSL deployments that documented safety improvements, and may reflect the lack of automated 

speed enforcement at the I-66 site. 

 

These safety results imply a direct correlation between safety and operational 

improvements.  The large reductions in rear end crashes on HSR sections would seem to be 

correlated with the improved flow at those locations. No statistically significant safety 

improvements were seen on the non-HSR sections, which also experienced less change 

operationally.  The non-HSR sections experienced increasing crashes during the two years of 
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observation. These sections only had LUCS and advisory VSLs, and there was no obvious trend 

in crash causation that would relate to these treatments.  It was not possible to conclude from this 

research whether this change was somehow affected by site-specific trends, small sample sizes, or 

broader behavioral changes in the driving population. While a more detailed study of these crash 

trends is warranted, the ATM gantries were removed from this section of I-66 due to an ongoing 

construction project in early 2018.  Future deployments of HSR should carefully examine crash 

trends on adjacent sections to determine if these results occur in the future.   

 

TABLE 5 Empirical Bayes Results for I-66 corridor 

Location 
Crash 

Type 
Severity 

Observed 

Before 

Crashes/Year 

(2011-2014) 

Observed After 

Crashes/Year 

(2016) 

Expected 

Before 

Crashes/Year 

(2011-2014) 

Expected 

After 

Crashes/Year 

(2016) 

CMF 
Standard 

Error 

Entire 

Corridor 

All 

All 379.25 380.00 384.27 393.76 0.964 0.043 

Fatal and 

Injury 
121.75 113.50 124.26 117.73 0.962 0.076 

Multiple 

Vehicle 

All 344.00 342.50 348.20 356.89 0.959 0.045 

Fatal and 

Injury 
110.50 100.50 111.96 106.03 0.946 0.08 

Rear End 

All 276.25 268.00 278.98 285.86 0.937 0.049 

Fatal and 

Injury 
94.00 84.00 94.39 89.39 0.937 0.086 

HSR 

Sections 

All 

All 203.50 146.00 205.62 212.48 0.686* 0.047 

Fatal and 

Injury 
67.75 45.00 68.44 65.42 0.686* 0.082 

Multiple 

Vehicle 

All 186.25 127.50 188.06 194.29 0.655* 0.047 

Fatal and 

Injury 
61.00 37.50 61.20 58.51 0.639* 0.084 

Rear End 

All 153.5 99.00 154.67 159.79 0.619* 0.05 

Fatal and 

Injury 
53.0 33.00 52.75 50.45 0.651* 0.091 

Non-HSR 

Sections 

All 

All 175.75 234.00 178.65 181.29 1.289 0.076 

Fatal and 

Injury 
54.00 68.50 55.82 52.31 1.304 0.14 

Multiple 

Vehicle 

All 157.75 215.00 160.14 162.60 1.32 0.082 

Fatal and 

Injury 
49.5 63.00 50.76 47.53 1.319 0.148 

Rear End 

All 122.75 169.00 124.30 126.07 1.338 0.094 

Fatal and 

Injury 
41.00 51.00 41.64 38.94 1.302 0.161 

Significant improvement at 95% confidence level * 
 

CONCLUSIONS 

The results of this study showed that the I-66 ATM system was able to create significant 

operational and safety improvements along a very congested corridor, although much of the benefit 
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appears to be tied to the implementation of dynamic HSR as opposed to the AVSL or LUCS.  

Average travel times generally improved on weekends and during off peak weekday times, but 

often continued to degrade during peak periods from pre-ATM conditions.  Since HSR was active 

on a static basis during the peak period in the before period, no additional capacity was added 

during those periods, however. Further investigation showed that operational improvements tended 

to occur disproportionately on dynamic HSR sections. 

 

 Crash analysis of freeway segments mirrored the operational findings, with some benefits 

accruing with multivehicle and rear end crashes for the entire corridor.  Once again, crash reduction 

benefits occurred primarily on the HSR sections, indicating that improved flow offset concerns 

about the removal of the refuge area. 

 

 The results of this analysis make a strong case for the net benefit of HSR in locations where 

capacity expansion is not viable. While this study showed that freeway segments experience safety 

improvements with HSR, HSR may have differing effects in the vicinity of interchange merge and 

diverge areas.  The crash trends in the non-HSR sections did not show any improvements, suggest 

that continued monitoring is warranted to ensure that crashes have not migrated further 

downstream due to capacity improvements created by HSR. While further analysis of this trend 

cannot be performed on I-66 due to ongoing construction, it does indicate that future ATM studies 

focus on adjacent non-HSR sections for any future part time shoulder implementation to see if 

similar results occur. 

 

FUTURE RESEARCH AND LIMITATIONS 

While all the available data was examined for both the operational and safety analysis, there are 

several limitations to the analysis. For the operational analysis, it was not possible to isolate the 

effects of each ATM component since they were deployed in combination. The change in travel 

time represents the effect of the ATM system as a whole.  

 

The paper focuses on high-level trends in operational performance. Previous work on this 

topic used the data to discuss impacts on travel time reliability, which gets at the variability of the 

data (Chun 2016). INRIX reports travel time data as the average speed of all of vehicles on a link 

during a specific time period. Since individual vehicles’ speed data were not available, it was not 

possible to study speed and speed variance for individual vehicles. While some data from 
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Wavetronix sensors are available, there is a noticeable undercounting of vehicles that occurs as the 

roadway becomes congested.  These undercounts were exacerbated on lanes far from the sensor 

due to occlusion.  As a result, the point sensor data was not used in the analysis since it appeared 

to contain biases that varied as a function of flow state.  Future research is needed to examine 

individual vehicle speeds and subsequent analysis on speed variance. 

 

This study also could not conduct crash analysis to determine the impact of the ATM system 

within an interchange area due to limited availability of ramp traffic data. Therefore, an area for 

future research is crash analysis within interchange areas where HSR is present. Another challenge 

that was encountered in the safety analysis is that Virginia SPFs were developed using standard 

freeway cross sections of 6 or 8 lanes. In the ATM system, the roadway cross section changes as 

shoulder lanes are opened or closed to travel. The safety analysis was performed using the SPF for 

the base number of lanes since no standard methodology exists in the HSM for dynamically 

managed facilities. These methodological limitations may also be responsible for some of the 

safety results obtained on the non-HSR sections.  Additionally, SPFs for rear end and multiple 

vehicle crashes did not exist, so the HSM methods using crash proportions had to be employed. 

Using SPFs for specific crash types might improve analysis accuracy in the future. 

 

Despite these limitations, this research does offer new data on the operational and safety 

benefits of ATM systems in the United States. The results show that U.S. AVSL systems may not 

attain the benefits seen in international deployments, but that HSR offers potential safety and 

mobility benefits.   
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ABSTRACT 

 

Most past crash prediction research has examined the relationship between crashes, traffic 

volumes, and other factors at the annual level, due to the rare and random nature of crash 

occurrence and data availability.  For example, the current functional form of safety performance 

functions in the Highway Safety Manual is based on annual average daily traffic (AADT).  Less 

attention has been given to explicitly modeling the safety effects of vehicle density, volume-to-

capacity ratio, and speed distribution at a sub-daily level.  This research used continuous count 

station data from 4 lane rural freeway segments in Virginia and developed crash prediction models 

using traffic and geometric information provided at hourly aggregation intervals. The results 

showed that using average hourly volume along with average speed and selected geometric 

variables improved predictions compared to models that used AADT. When comparing an AADT-

based model to an average hourly volume model, the mean absolute prediction error improved by 

15% for total crashes. This value improved by 20% after including geometric variables, and by 

30% after adding speed to the volume and geometry model. Similar improvements were observed 

for injury crashes. These results provide a strong indication that crash predictions could be 

improved using more disaggregate data and justifies further exploration of these relationships 

using larger datasets and other statistical methodologies. The findings from this research also 

indicate that inclusion of quality of flow variables, like speed, could create improvements in the 

quality of crash prediction models. 

 

Keywords: Safety performance, traffic flow parameters, negative binomial  
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BACKGROUND  

Crashes are complex events that are influenced by multiple factors, including roadway geometry, 

driver behavior, and traffic conditions. The Highway Safety Manual (HSM) provides professionals 

with a much-needed resource where current knowledge, techniques, and methodologies to estimate 

future crash frequency and severity are presented (1).  While the HSM has improved the statistical 

rigor of safety analysis, the safety performance functions (SPFs) recommended in the HSM have 

several limitations. For practical reasons, base SPFs are often produced in a very concise form and 

include only limited numbers of variables (such annual average daily traffic (AADT) and segment 

length). AADT has been used as the measure of exposure due to its widespread availability, but it 

does not explicitly indicate the quality of flow on a facility throughout the day.  Quality of flow is 

related to the variation in flow parameters such as speed or density on a much shorter time interval 

(such as hours or minutes), as compared to the yearly variation in volume used in HSM SPFs. 

Mensah and Hauer cite two key problems of averaging associated with using aggregated data – 

argument averaging and function averaging. Argument averaging relates to the use of average 

traffic flow data, rather than data measuring traffic conditions at the time of the accident. The 

second problem, function averaging, is caused by using the same functional relationship for all 

types of collisions under all conditions (e.g., day or night, dry or wet weather) (2). For example, a 

freeway with an intense flow during peak periods would clearly have a different crash potential 

than a freeway with the same AADT but with flow more evenly spread throughout the day. The 

use of annual AADT data may also affect overall crash prediction in cases where traffic control 

varies with time of day, such as with part-time shoulder use, active traffic management strategies, 

or arterial signal timings. 

When real-time sensor data are available, it may be possible to explicitly consider the safety 

effect of quality of flow on crash likelihood.  Quality of flow can be defined in several ways.  For 

example, while volume measures the quantity of the stream and the demand on the facility, speed 

and density describe the quality of service experienced by the stream.  Freeway operating conditions 

are also often evaluated using level-of-service (LOS) and volume to capacity (v/c) ratio. The 

Highway Capacity Manual (HCM) defines the levels of service of freeway sections based on 

density and designates quality of flow with a letter from A to F, with A representing the best 

operating conditions and F the worst (3). It is expected that crash risk varies in a non-linear fashion 

with exposure since traffic flow is a function of vehicle density and speed (1). Hence, similar flows 

could be attributed to different combinations of density and speed, leading to different levels of 
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safety. As traffic flow increases, the vehicles travel at a lower speed, which could reduce crash 

severity during those conditions. Consequently, the likelihood for a conflicting situation to arise 

between vehicles may be different as density changes. Volume, speed, and density are related to 

each other, and together they play a role in the congestion level of a roadway as measured by v/c 

ratio.  

To address limitations in AADT-based models, this paper examines whether crash 

predictions could be improved by using information on hourly traffic characteristics.  The focus 

of this initial investigation is rural four-lane freeways in Virginia, since they represent a relatively 

homogeneous data set. 

 

RESEARCH OBJECTIVE  

While most researchers have focused on establishing relationships between crashes and AADT, 

relatively little work has been done on developing crash prediction models that use more 

disaggregated traffic data.  This paper seeks to investigate the relationship between hourly traffic 

data and crashes on rural freeway segments in Virginia. Crash prediction models including 

geometric features and hourly flow parameters will be contrasted against AADT-based models to 

determine if consideration of more disaggregate traffic data could improve the quality of crash 

predictions. 

 

LITERATURE REVIEW  

Exploring relationships between crash frequency and traffic and geometric variables has been of 

interest for a long time (4,5,6). Most prior research has focused on determining the relationship 

between crashes and highway traffic volumes, while less attention has been given to the 

relationship between crashes and density, level of service (LOS), v/c ratio, and speed distribution. 

Obtaining reliable data about traffic flow state across a broad set of sites has historically been a 

difficult task. This issue lead to limited work in this direction, and, in what research does exist, 

researchers often had to modify their methodology to accommodate data limitations. For example, 

most researchers only focused on a few selected segments of a specific facility while exploring the 

relationship between crash frequency and flow parameters. Table 1 below summarizes selected 

studies that dealt with the relationship between crashes, flow parameters, and disaggregated traffic 

volume.  
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TABLE 1 Selected Past Research that Incorporated Hourly Flow Data into Crash Prediction Models 

 

Author(s) Research Objective Data & Methodology Comment/Findings 

Solomon, (1964) (7) Examined relationship 

between crashes, speed, driver 

and vehicles on rural 

highways. 

10,000 crashes on 2-lane and 4-lane rural 

roadways from Arizona, California, 

Connecticut, Iowa, Minnesota, Missouri, 

Montana, New Jersey, North Carolina, 

Oregon, and Virginia. 

Accident-involvement, injury, and injury severity 

are highest at very low speeds, lowest at about the 

average speed of all traffic, and increase again at 

very high speeds, particularly at night. Thus, the 

greater the variation in speed of any vehicle from 

the average speed of all traffic, the greater its 

chance of being involved in an accident. 

Persaud and Dzbik 

(1993) (8) 

Developed crash prediction 

models at both the macro and 

micro level. 

• Highway 401 in Toronto, Canada 

• Macroscopic: AADT and segment 

length. 

• Microscopic: Hourly volume and 

segment length. 

Congestion is associated with a higher risk of 

accidents than high-volume uncongested operation. 

The afternoon congested period had a higher 

accident risk than the morning rush period 

 

Zhou and Sisiopiku 

(1997) (9) 

Examined the general 

relationships between hourly 

crash rates and hourly traffic 

volume/capacity (v/c) ratios. 

• 16-mile segment of Interstate I-94 in the 

Detroit area. 

• Average weekday and weekend hourly 

volume data from three permanent count 

stations. 

The correlation between v/c values and crash rates 

followed a general U-shaped pattern for weekdays 

and weekend days for multivehicle and property-

damage-only crashes.  

Garber and Ehrhart 

(2000) (10) 

Analyzed the effect of speed, 

flow, and geometric 

characteristics on 

crash rates for different types 

of Virginia highways. 

• Roadways within Virginia with speed 

limits of 55 or 65 mph.  

• The data were obtained from Virginia 

Department of Transportation (VDOT) 

and from police accident reports from 

January 1993 to September 1995. 

Based on this study, all of the models show that 

under most traffic conditions, the crash rate tends to 

increase as the standard deviation of speed 

increases. The effect of the flow per lane and mean 

speed on the crash rate varied with respect to the 

type of highway. 

Golob et. al. (2003) 

(11) 

Evaluated freeway safety as a 

function of traffic flow. 
• Crash and nearby single-loop detector 

data for all crashes reported along six 

freeways in California’s Orange County 

in 1998. 

• Speed variation was defined as the 

difference between the 90th and 50th 

percentile values of speed estimates 

during the 27.5 minutes preceding each 

crash. 

The highest crash rates (6.3 crashes per million 

vehicle miles traveled (VMT) occurred during the 

morning peak period with heavily congested flow, 

corresponding to low mean speeds, low speed 

variation, low flows, and low flow variation. In 

contrast, the lowest crash rates (0.6 per million 

VMT) were characterized by high speeds and low 

speed variation.  



 

55 

 

Ivan et al. (2000) 

(12) 

Predicted both single and 

multi-vehicle highway crash 

rates as a function of traffic 

density, land use, and time of 

day. 

• Seventeen rural, two-lane highway 

segments. 

• Hourly Volume, v/c ratio, and land use 

data were used. 

 

Single-vehicle crashes occurred most often in the 

evening and at night. On the other hand, multi-

vehicle crashes were more likely to occur under 

daylight conditions at midday and during the 

evening peak period. 

Lord et. al. (2005) 

(13) 

Investigated how flow 

parameters influenced crashes 

on rural and urban freeway 

segments.  

• Highway A-40 between Ontario and 

Montreal.  

• Analysis was done for weekdays and 

weekends separately using hourly 

Volume, density, and v/c ratio. 

Functional forms that incorporated density and V/C 

ratio offered a richer description of crashes 

occurring on these facilities compared to the 

volume only models. 

Kononov et al. 

(2011) (14) 

Examined the relationship 

between flow–density, speed, 

and crash rate. 

• Four-lane freeways and a segment of 

Interstate 70 in Denver, Colorado 

• Hourly volume, operating speed, and 

free-flow speed data from 2001 to 2006. 

As flow–density increases, the crash rate initially 

remains constant until a certain critical threshold 

combination of speed and density is reached. Once 

this threshold is exceeded, the crash rate rises 

rapidly.  

 

Wu et. al. (2013) 

(15) 

Explored the association 

between traffic safety and 

geometric design consistency 

based on vehicle speed 

metrics. 

• Geometric design, roadway inventory, 

crash, and operating speed data were 

collected along U.S. 322 and PA 350 in 

central Pennsylvania. 

• Design consistency was referred to as the 

difference between operating speed and 

inferred design speed. 

 A statistically significant positive association 

between geometric design consistency and safety 

was found. Design consistency surrounding the 

study elements was also found to increase the 

expected crash frequency in the study element.  

Vayalamkuzhi and 

Amirthalingam 

(2016) (16) 

Focused on analyzing the 

influence of geometric design 

characteristics on traffic safety 

using bi-directional data on a 

divided roadway. 

• The study was carried out on a four-lane 

divided inter-city highway in India with 

plain and rolling terrain. Crash history 

was collected from 2009 to 2012. 

Operating speed, access points, median opening and 

horizontal curvatures (inverse radius) were 

identified as the significant factors influencing 

crashes. 

It was found that a 10 km/h increase in operating 

speed increases the crash rate by 40% and a 0.1/km 

decrease in horizontal curvature reduces the crash 

rate by 1.40% only. 
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DATA AND METHODOLOGY  

 

Data Preparation 

In Virginia, traffic volume data are collected both at fixed continuous count stations and using 

short-term counts that are performed throughout the state on a rotating basis. This research relied 

on traffic volume data from permanent count stations because of their high level of quality control 

and ability to produce accurate volume counts over the entire study period. For this research, only 

4 lane rural basic freeway segments free from ramps or interchanges were considered. Segments 

were identified using the detector database maintained by the Virginia Department of 

Transportation (VDOT) Traffic Engineering Division and the VDOT GIS integrator (17, 18). 

Segments used for analysis had no entry/exit ramps within 0.5 miles of the start or end of the 

segment. This produced a total of 31 continuous count stations on rural freeways from around the 

state. It was important for this analysis to define a segment surrounding each count station where 

it could be assumed that homogeneous flow conditions were present for the entire length. If the 

station was on a link with homogeneous geometric characteristics that was greater than 2 miles in 

length, a buffer of a maximum 2 miles around the actual location of the detector (1 mile upstream 

and downstream) was created. Number of lanes, lane and shoulder width, speed limit, median type 

and median width were used to define the geometric homogeneity of segment. Since this research 

focuses on interaction between geometry and flow parameter’s and how they define safety instead 

of a design focused approach, Horizontal and vertical curvature was not used to define the segment, 

instead they were used as variables to identify their interaction with flow.  Generally speaking, 

horizontal and vertical curvature was not significant on these segments since they were located on 

interstates with high geometric design standards. 

 

 Hourly volume and speed data were collected for each segment from 2011 to 2017. As 

mentioned before, this research used only continuous count data that had passed VDOT internal 

quality checks for consistency and validity. If recorded data did not pass quality checks, it was 

discarded from the dataset. Only the time periods where both volume and speed data meet the 

quality threshold set by VDOT were included in the dataset, resulting in a total of 1.3 million site-

hours of data points after screening. 
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The VDOT Highway Traffic Records Information System was used to extract all available 

geometric and operational information for the segments used in this analysis (19). Crash data for 

all the sections were obtained from the VDOT Roadway Network System (20). The VDOT 

Statewide Planning System was used to obtain the capacity for each study site (21). The volume 

and speed data were then used to compute v/c ratio and density for each period. Table 2 summarizes 

the properties of the study segments respectively. 

 

TABLE 2 Descriptive Statistics of Study Segments 

Total Mileage 

(mile) 
Variable Mean 

Std. 

Deviation 
Min Max 

57.21 

AADT 21360 7926 4420 34200 

Hourly Volume (vph) 825 659 1 3822 

Average Hourly Speed (mph) 69.95 3.73 3.29 90.66 

Segment Length (mile) 1.60 0.66 1.00 3.17 

Lane Width (ft) 12.00 0.00 12.00 12.00 

Right Shoulder Width (ft) 6.47 4.93 0.00 10.00 

Left Shoulder Width (ft) 3.88 4.77 0.00 10.00 

Median Width (ft) 114.18 53.63 34.00 220.00 

Percentage of Heavy Vehicles (%) 2.69% 1.53% 0.00% 100.00% 

Radius of Horizontal Curvature (mile) 1.51 0.88 0.00 3.61 

Length of Horizontal Curvature (mile) 0.34 0.18 0.00 0.78 

Grade (%) -0.22 0.93 -1.67 2.59 

Speed Limit (mph) 69.12 1.96 55.00 70.00 

Speed (mph) 69.53 4.11 3.29 90.66 

Density 11.77 9.13 0.01 148.28 

Volume-Capacity Ratio 0.17 0.13 0.00 0.80 

 

Development of Crash Prediction Models  

 

Selection of Variables  

The variables investigated in this research were volume, segment length, heavy vehicle percentage, 

horizontal curvature, vertical curvature, median width, speed, density, and v/c ratio. Volume was 

expressed in three ways: 

• AADT 

• Raw hourly volume, as observed each day at the site 

• Average hourly volume, expressed as an average volume for each hour of the day for 

each site over each year. 

Quality of flow variables for the hourly measures was summarized using a similar definition in 
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each case.  The hourly models were compared to each other and with the AADT model to 

determine how the hourly model predictions differed from a typical HSM-like model.  

 

VDOT provided a database containing horizontal and vertical curvature information for 

each segment. The start and end mile marker position for these segments were used to match them 

with the selected freeway segments for this analysis. The vertical curvature (VC) data was 

calculated using the difference in slope and length of curve and expressed in the form of percent 

grade. Horizontal curvature (HC) was expressed using a variety of variables, including length of 

the curve, presence of curve as a percentage of segment length, and radius of curve. Length and 

radius of curve for each segment were directly available in the dataset. Heavy vehicle percentage 

was calculated directly from the volume data, using FHWA standard classifications (22). Any 

vehicle above class 3 was considered as heavy vehicle. Other flow parameters such as density and 

v/c were also calculated from the detector data. 

 

Selection of Model Form  

Poisson and negative binomial regression are the most popular methods to model count data. In 

the Poisson distribution, the mean and variance are considered to be equal.  However, the variance 

of crash data has been found to frequently exceed the mean, which is termed over dispersion. 

Negative binomial models are widely used as an alternative to Poisson models in crash modeling 

due to their ability to handle over dispersed data (6,8,9, 10,23,24), so this study used negative 

binomial regression. Since the dataset is disaggregated to an hourly level, that significantly 

increases the occurrences of zero crash observations. As a result, zero inflated negative binomial 

regression was also evaluated as a possible model form. The statistical software, R, was used for 

modeling.  

 

In a negative binomial regression model, the probability of roadway entity (segment, 

intersection, etc.) i having yi crashes per some time period (where yi is a non-negative integer) is 

given by: 

𝑷(𝒚𝒊) = 
𝒆𝒙𝒑(−𝝀𝒊) ∗ 𝝀𝒊

𝒚𝒊

𝒚𝒊 !
                                                                                                          (1) 

Where P(yi) is the probability of roadway entity i having yi crashes per time period and λi 

is defined as:  
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𝝀𝒊 = 𝒆𝒙𝒑(𝜷𝑿𝒊 +  𝜺𝒊)                                                                                                                    (2) 

Where exp (εi) is a gamma-distributed error term with mean 1 and variance α (25). The addition 

of this term allows the variance to differ from the mean as:  

 

VAR (𝒚𝒊) = E (𝒚𝒊) [1+ αE (𝒚𝒊)] = E (𝒚𝒊) + αE (𝒚𝒊)𝟐                                                                  (3) 

 

The parameter α is often referred to as the over dispersion parameter. Negative binomial 

regression has become the most common method for developing SPFs and is also the 

recommended modeling approach in the HSM (1). 

 

Another type of regression model frequently used by the transportation safety community 

is the zero-inflated model. Zero inflated models have been developed to handle data characterized 

by a significant number of zeros or more zeros than one would expect in a traditional Poisson or 

negative binomial/Poisson-gamma model (25, 26). These models operate on the principle that the 

excess zero density that cannot be accommodated by a traditional count structure is accounted for 

by a splitting regime that models a crash-free versus a crash prone propensity of a roadway segment 

(25,26) . If the probability of a data point being zero is π and probability of it being non-zero is (1 

– π), then, the probability distribution of the ZINB random variable 𝑦𝑖 can be written as: 

 

𝑷𝒓(𝒚𝒊 = 𝒋) = {
𝝅𝒊 + (𝟏 −  𝝅𝒊)𝒈(𝒚𝒊 = 𝟎)     𝒊𝒇 𝒋 = 𝟎
(𝟏 − 𝝅𝒊)𝒈(𝒚𝒊)                      𝒊𝒇 𝒋 > 𝟎

                                                                  (4) 

 

Where πi is the logistic link function and g(yi) is the negative binomial distribution given by: 
 

𝒈(𝒚𝒊) =  𝑷𝒓(𝒀 = 𝒚𝒊| 𝝁𝒊, 𝜶) =  
⌈(𝒚𝒊+ 𝜶−𝟏)

⌈(𝜶−𝟏)⌈(𝒚𝒊+𝟏)
 (

𝟏

𝟏+ 𝜶𝝁𝒊
)

𝜶−𝟏

(
𝜶𝝁𝒊

𝟏+ 𝜶𝝁𝒊
)

𝒚𝒊

                                          (5)         

               Since its inception, the zero-inflated model (both for the Poisson and negative binomial 

models) has been popular among transportation safety analysts (24,27). 

 

Generalized linear models (GLMs) are extensions of traditional regression models that 

allow the mean to depend on the explanatory variables through a link function, and the response 

variable to be any member of the exponential family (e.g., Normal, Poisson, Binomial, Zero 

Inflated) (28). There are three components to any GLM.  The Random Component refers to the 

probability distribution of the response variable (Y) (e.g., negative binomial distribution).  The 

second part, the Systematic Component, specifies the explanatory variables in the model and the 
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Link Function, specifies how the expected value of the response relates to the linear predictor of 

explanatory variables.  

 

In a generalized linear model, each outcome Y of the dependent variables is assumed to be 

generated from a particular distribution in the exponential family. The mean, μ, of the distribution 

depends on the independent variables, X, through: 

 

𝑬(𝒀) =  𝝁 =  𝒈−(𝑿𝜷)                                                                                                                   (6) 

 

Where E(Y) is the expected value of Y; Xβ is the linear predictor, a linear combination of 

unknown parameters β; g is the link function. The unknown parameters, β, are typically estimated 

with maximum likelihood, maximum quasi-likelihood, or Bayesian techniques. 

 

The likelihood is the occurrence probability that the data observed will actually be 

comprehended under the given parameter estimates. The higher the log-likelihood value, the better 

the model. For a negative binomial regression model, the likelihood function can be described as:  

 

𝑳 (𝝀𝒊) =  ∏
𝚪 (𝒚𝒊+(

𝟏

𝜶
))

𝒚𝒊! 𝚪 (
𝟏

𝜶
)

𝒊  . [
𝜶𝝀𝒊

𝟏+𝜶𝝀𝒊 
]

𝒚𝒊

. [
𝟏

𝟏+𝜶𝝀𝒊 
]

𝟏/𝜶

                                                                             (7) 

Where Γ(x) is the gamma function, and  𝑦𝑖 is number of crashes per period for roadway segment i 

(28).  

 

Vuong Test 

Since both the negative binomial and zero-inflated negative binomial models were evaluated, it 

was necessary to compare the performance of the two model forms.  The Vuong test statistic (V) 

has been proposed for non-nested models to compare the fitness of zero inflated models versus 

regular count models (29): 

𝑽 =
𝒎 ̅̅̅̅ ∗ √𝑵 

𝑺𝒎
                                                                                                                                    (8) 

Where, 𝑚𝑖 = log[
𝑓1 (𝑦𝑖)

𝑓2 (𝑦𝑖)
] 

N = number of observations 

𝑚 ̅̅ ̅ = Mean of 𝑚𝑖 

𝑆𝑚= Standard deviation of 𝑚𝑖 

𝑓1, 𝑓2 = Two competing models 
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V has a standard normal distribution, and has three possible outcomes: 

• If the absolute value of V is less than 1.96 for a 0.95 confidence level, then neither model 

is preferred by the test result. 

• V is a large positive value, then model 1 is preferred. 

• V is a large negative value, then model 2 is preferred. 

 

This test was used to select which model form is appropriate for the dataset. 

 

Model Selection and Validation 

A popular method for model selection is the Akaike information criterion (AIC) (30). AIC is an 

estimator of the relative quality of statistical models for a given set of data. It offers an estimate of 

the relative information lost when a given model is used to represent the process that generated the 

data. AIC is computed based on the equation given below: 

AIC = −2L𝐿 + 2𝑝                                                                                                                                        (9) 

Where p is the number of estimated parameters included in the model.  A lower value of 

AIC indicates a better model.  

 

It is important to note that an objective assessment of the predictive performance of a 

particular model can be made only through the evaluation of several goodness of fit (GOF) criteria. 

The GOF measures used to conduct external model validation included mean prediction bias 

(MPB), mean absolute deviation (MAD), and mean squared prediction error (MSPE) (25).   

 

Since AADT based models predict annual crashes while hourly volume models predicted 

hourly crashes, the summation of hourly predictions was used to generate annual predicted 

numbers of crashes for the GOF calculations.  The average hourly volume data was computed by 

averaging data for each available hour for each site, so there were always 24 hours of data available 

for each year and each site for validation. For the validation of raw hourly data, high quality 

volume and speed data was not always available for all 24 hours of every single day. To deal with 

this issue, crash predictions were calculated using all hours with valid data.  The hour-by-hour 

predictions produced by these valid hours were then averaged and multiplied by 365 to convert 

predictions to an annual value for each hour of the day. This essentially assumed that missing hours 

have the value of the average hourly crash prediction for that hour at that site and provides a 
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consistent basis for comparison between the model forms. Data from the years 2011 to 2015 was 

used to build the models, and data from 2016 and 2017 were used for validation. 

 

The calculation of these measures was based on the following equations: 

𝑴𝒆𝒂𝒏 𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 (𝑴𝑨𝑫) =  
∑ |𝒀𝒎𝒐𝒅𝒆𝒍− 𝒀𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅|𝒏

𝒊=𝟏

𝒏
                                               (10) 

𝑴𝒆𝒂𝒏 𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 𝑬𝒓𝒓𝒐𝒓 (𝑴𝑨𝑷𝑬) =  
𝟏𝟎𝟎

𝒏
∑ |

𝒀𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅  −𝒀𝒎𝒐𝒅𝒆𝒍

𝒀𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅
|𝒏

𝒊=𝟏                       (11) 

𝑴𝒆𝒂𝒏 𝑺𝒒𝒖𝒂𝒓𝒆𝒅 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 𝑬𝒓𝒓𝒐𝒓 (𝑴𝑺𝑷𝑬) =  
∑ (𝒀𝒎𝒐𝒅𝒆𝒍− 𝒀𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅)𝟐𝒏

𝒊=𝟏

𝒏
                              (12) 

Where: 

𝑌𝑚𝑜𝑑𝑒𝑙 = Predicted Crash Frequency 

𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = Observed Crash Frequency 

n = Sample Size 

 

RESULTS AND DISCUSSION  

Three separate regression model forms were explored: 

• Volume and length models 

• Volume, length, and geometry models 

• Volume, length, geometry, and flow state models. 

 

For each model type, both negative binomial and zero inflated negative binomial regression 

methods were evaluated. Models using AADT data were also created for the first two model forms 

so that model performance could be compared using the same datasets. To be consistent with the 

HSM, length was used as an offset variable in the models. 

 

             For the Vuong test results, the test statistic is adjusted using the Akaike (AIC) and Schwarz 

(BIC) penalty terms, based on the complexity of the two models. Sometimes, the test statistics for 

these two corrected terms lead to different results. For those cases, AIC corrected statistics are 

preferred for small sample sizes and BIC corrected statistics are preferred for large sample sizes. 

Results from the Vuong test are summarized in Table 3. For each of these models, model 1 

represents negative binomial models and model 2 represents zero inflated negative binomial 

models. 
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TABLE 3 Results from Vuong Test 

Total Crashes 

   Model 
AIC 

Corrected 

BIC 

Corrected 
Result 

Raw 

Volume 

Volume and length models -0.2544 4.9891 model 1 > model 2 

Volume, length, and geometry models 0.0873 5.4982 model 1 > model 2 

Volume, length, geometry, and flow state models. 0.5405 5.3307 model 1 > model 2 

Average 

Hourly 

Volume 

Volume and length models 0.8507 6.2367 model 1 > model 2 

Volume, length, and geometry models 0.3286 4.7197 model 1 > model 2 

Volume, length, geometry, and flow state models. 0.9133 5.6069 model 1 > model 2 

Injury Crashes 

   Model 
AIC 

Corrected 

BIC 

Corrected 
Result 

Raw 

Volume 

Volume and length models -2.9275 -2.0836 model 2 > model 1 

Volume, length, and geometry models -2.9044 -2.0478 model 2 > model 1 

Volume, length, geometry, and flow state models. 1.8011 8.6905 model 1 > model 2 

Average 

Hourly 

Volume 

Volume and length models 2.9655 1.1918 model 1 > model 2 

Volume, length, and geometry models 3.9216 16.9734 model 1 > model 2 

Volume, length, geometry, and flow state models. 3.1259 13.6353 model 1 > model 2 
 

In general, negative binomial models performed better than the zero inflated ones with respect to 

AIC value, variable significance, and sign of estimated coefficients. The Vuong test results 

supported negative binomial models for all categories except for injury crash models using raw 

hourly volume.  To maintain consistency in model form, negative binomial models were selected 

for both total and injury crashes.   

 

The first set of models used only traffic volume and segment length, and both parameters 

were significant for all levels of volume aggregation for total crashes. Similar results were found 

for injury crashes as well. Table 4 shows the best performing models using the negative binomial 

form.  

 

TABLE 4 Parameter Estimates for Volume and Length Model 

  

Total Crashes 

 Raw Hourly Volume Average Hourly Volume AADT 

Estimate 
Std. 

Error 
Pr(>|z|) Estimate 

Std. 

Error 
Pr(>|z|) Estimate 

Std. 

Error 
Pr(>|z| ) 

Intercept -11.68 0.279 <2e-16 -6.79 0.341 <2e-16 -6.32 1.120 1.7e-08 

log (Volume) 0.39 0.042 <2e-16 0.53 0.051 <2e-16 0.65 0.114 1.2e-08 

AIC 12211 3589 853 

  

Fatal and Injury Crashes 

 Raw Hourly Volume Average Hourly Volume AADT 

Estimate 
Std. 

Error 
Pr(>|z|) Estimate 

Std. 

Error 
Pr(>|z|) Estimate 

Std. 

Error 
Pr(>|z|) 

Intercept -12.22 0.467 <2e-16 -7.73 0.559 <2e-16 -9.38 1.734 6.3e-08 

log (Volume) 0.31 0.070 1e-05 0.50 0.082 1.1e-09 0.83 0.175 2.1e-06 

AIC 4475 1631 553 
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Next, geometric variables were added to the model using manual stepwise variable 

selection to identify significant variables. The results for this step are summarized in Table 5.  

Variables representing median width, horizontal curvature, and vertical curvature were all found 

to be significant.  Lane and shoulder width were not significant factors, likely due to the limited 

range of these variables in the data set. 

 

For total crashes, the results indicated that wider medians generally had more crashes. This 

is consistent with previous research, even though it largely depends on crash type (31, 32). Cross 

median crashes tend to decrease with increasing median width, whereas rollover crashes tend to 

increase. Analysis by type of median crashes was outside of the scope of this study, however. For 

vertical curvature, positive grades did not have any significant effect on crash frequency based on 

this data set. The radius of horizontal curvature had a negative parameter, indicating larger radii 

are associated with fewer crashes. These findings were similar irrespective of the volume 

disaggregation level and also align with the results from previous research (33, 34). 

 

For injury crashes, only volume and segment length were significant for hourly volume 

models and no relationship between geometric variables and crash frequency were present. This 

might be due to the significantly lower number of injury crashes when disaggregated at the hourly 

level. The same data, when averaged over each year, showed that median width was a significant 

variable, similar to total crashes.  Variables for the AADT-based model followed the same trend as 

raw hourly and average hourly volume. The only exception was horizontal curve radius, which 

was not significant for this model for total crashes. 
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TABLE 5 Parameter Estimates for Volume and Geometry Based Models 

 

Total Crashes 

Raw Hourly Volume Average Hourly Volume AADT 

Estimate 
Std. 

Error 
Pr(> |z| ) Estimate 

Std. 

Error 
Pr(> |z| ) Estimate 

Std. 

Error 
Pr(> |z| ) 

Intercept -12.53 0.452 <2e-16 -7.75 0.501 <2e-16 -5.78 1.803 0.001348 

log (Volume) 0.31 0.046 1.07e-11 0.50 0.057 <2e-16 0.49 0.186 8.07e-04 

Median Width  

≤ 60 ft 0.67 0.251 0.0941 0.45 0.265 0.0895 0.55 0.237 0.1210 

> 60 ft to ≤ 120 ft 1.04 0.251 3.34e-05 0.79 0.257 0.0019 1.11 0.229 1.27e-06 

> 120 ft to ≤ 180 ft 1.05 0.239 1.04e-05 1.06 0.246 1.78e-05 0.83 0.209 7.23e-05 

>180 ft 0.76 0.232 0.0011 0.81 0.239 7.96e-04 0.74 0.206 3.133-04 

Grade of VC  

≤ -1.0% 0.31 0.309 0.3272 0.08 0.317 0.8039 0.27 0.348 0.4387 

≥ -1.0% to <-0.5% 0.59 0.292 0.0437 0.42 0.302 0.0163 0.40 0.349 0.2471 

≥ -0.5% to < 0% 0.87 0.289 0.0027 0.55 0.297 0.0063 0.42 0.338 0.2156 

≥ 0% to < 0.5% 0.16 0.297 0.5815 0.11 0.308 0.7154 0.28 0.344 0.4201 

≥ 0.5% 0.22 0.302 0.4599 0.35 0.311 0.2567 0.12 0.389 0.7564 

Radius of HC -0.06 0.029 0.0243 -0.007 0.047 0.0087 -0.03 0.039 0.0042 

AIC 12170 3563 838 

 

Fatal and Injury Crashes 

 Raw Hourly Volume  Average Hourly Volume AADT 

Estimate 
Std. 

Error 
Pr(> |z|) Estimate 

Std. 

Error 
Pr(> |z|) Estimate 

Std. 

Error 
Pr(> |z| ) 

Intercept -12.21 1.023 <2e-16 -7.71 0.783 <2e-16 -7.29 2.720 7.30e-06 

log (Volume) 0.19 0.117 8.89e-04 0.42 0.090 3.43e-06 0.54 0.282 4.68e-04 

Median Width   

≤ 60 ft 0.34 0.571 0.5439 0.31 0.435 0.4747 0.64 0.358 0.0717 

> 60 ft to ≤ 120 ft 0.73 0.567 0.1968 0.55 0.418 0.1898 0.38 0.362 0.2970 

> 120 ft to ≤ 180 ft 0.67 0.531 0.2071 1.04 0.392 0.0023 0.95 0.293 0.0012 

>180 ft 0.52 0.518 0.3183 0.82 0.379 0.0034 0.78 0.283 0.0055 

Grade of VC   

≤ -1.0% -0.22 0.676 0.7504 -0.68 0.488 0.1612 -0.34 0.509 0.5011 

≥ -1.0% to <-0.5% 0.14 0.625 0.8277 0.17 0.455 0.7074 0.22 0.501 0.6625 

≥ -0.5% to < 0% 0.46 0.621 0.4531 0.09 0.443 0.8359 0.43 0.486 0.3781 

≥ 0% to < 0.5% -0.59 0.629 0.3501 -0.76 0.486 0.1182 -0.22 0.506 0.6646 

≥ 0.5%  -0.34 0.633 0.5941 -0.32 0.476 0.4962 -0.04 0.572 0.7005 

Radius of HC -0.29 0.115 0.7251 -0.07 0.081 0.9350 -0.04 0.056 0.5136 

AIC 4735 1623 551 

 

Finally, models were created by adding flow parameters such as v/c, speed, and density to 

the models selected in the previous step. The percentage of heavy vehicles was also considered as 

a variable, but it did not have any significant effect on crash frequency in this dataset. AADT based 

models were not developed for this alternative since average speed over a year showed little 

variability. 

 

Initially, speed, density, and v/c ratio were all tested in the model.  While developing 

models, it was found that v/c ratio was often an unreliable indicator of traffic flow state since 

incidents, work zones, or other events might restrict flow at the site.  This created a situation where 
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observed speeds may be low, but the corresponding v/c was also low. Inclusion of the v/c often 

resulted in counterintuitive parameter signs, so it was removed from further consideration.  

 

After examining different combinations of volume, speed, and density variables, it was 

observed that speed and density only have a logical and statistically significant relationship when 

they are used one at a time with volume or when they are both used in the same model, but no 

volume component is added. This finding is not surprising since traffic flow theory indicates that 

all three variables are related, so their presence in the same model affects the performance.  Since 

volume was deemed to be an important measure of exposure and speed is more widely available 

than density, models that used volume in conjunction with speed were selected as the best 

alternative. 

 

Table 6 shows the final models that include speed parameters. For all models, speed was 

negatively related to crashes, meaning that lower average speed is correlated with higher crash 

frequency. Lower average speeds indicate the presence of congestion, so this relationship is 

intuitive. For these models, radius of horizontal curve and vertical grade were not significant. 

Median width had a mixed effect. This indicates that on hourly level, flow parameters may play a 

more significant role in crash prediction than geometric variables, at least on rural freeways.  Rural 

freeways in this data set did not exhibit substandard features, so this finding may be explainable 

due to the high level of design present and limited geometric variability at these specific sites.  

 

             The negative relationship with speed and injury crashes seems counter intuitive since 

higher speeds are generally associated with more severe injuries. This result could be due to how 

injury was defined, and the type of data used for modeling. Fatal and injury crashes were combined 

in this category and range from a crash being fatal to a minor injury that does not require any 

doctor or hospital visit. Separating fatal and severe injury crashes from minor injury crashes might 

shed some light on the relationship. Unfortunately, that level of detail was out of scope for this 

analysis. This relationship also might be specific to this particular dataset.  This analysis was based 

on rural continuous count station data where the max hourly volume observed was 3822 vph across 

two lanes. Thus, these results may be driven by the fact that this dataset is dominated by locations 

that are often traveling near free flow and a broader variation in traffic speed is not expected.   
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TABLE 6 Parameter Estimates for Volume, Geometry and Flow Based Model 

  

Total Crashes 

Raw Hourly Volume Average Hourly Volume 

Estimate Std. Error Pr(> |z| ) Estimate Std. Error Pr(> |z| ) 

Intercept -2.63 0.512 2.8e-07 -2.09 0.875 <2e-16 

log (Volume) 0.44 0.045 <2e-16 0.53 0.054 <2e-16 

Median Width   

≤ 60 ft 0.62 0.237 0.1685 0.15 0.244 0.5398 

> 60 ft to ≤ 120 ft 0.31 0.223 0.0086 0.02 0.222 0.9426 

> 120 ft to ≤ 180 ft 0.28 0.210 0.0183 0.63 0.208 0.0026 

>180 ft 0.26 0.198 0.1929 0.48 0.197 0.0014 

Grade of VC   

≤ -1.0% 0.02 0.324 0.9475 0.44 0.315 0.1603 

≥ -1.0% to < -0.5% 0.15 0.318 0.6313 0.09 0.308 0.7705 

≥ -0.5% to < 0% 0.28 0.307 0.3546 0.03 0.300 0.9236 

≥ 0% to < 0.5% 0.25 0.323 0.4337 0.09 0.317 0.7758 

≥ 0.5%  0.11 0.327 0.7568 0.09 0.302 0.7635 

Radius of HC -0.01 0.047 0.8115 -0.07 0.047 0.4172 

Speed -0.14 0.004 <2e-16 -0.07 0.009 1.41e-13 

AIC 11166 3399 

  

Fatal and Injury Crashes 

 Raw Hourly Volume Average Hourly Volume 

Estimate Std. Error Pr(> |z| ) Estimate Std. Error Pr(> |z| ) 

Intercept -0.32 2.408 0.0098 -1.89 1.164 0.0013 

log (Volume) 0.38 0.141 0.0071 0.46 0.082 1.68e-08 

Median Width   

≤ 60 ft 0.49 0.733 0.4983 0.58 0.411 0.1538 

> 60 ft to ≤ 120 ft 0.41 0.679 0.5478 0.31 0.362 0.3872 

> 120 ft to ≤ 180 ft 0.24 0.659 0.7115 0.38 0.341 0.2643 

>180 ft 0.43 0.666 0.5182 0.45 0.337 0.1833 

Speed -0.19 0.033 1.94e-08 -0.084 0.013 1.05e-10 

AIC 4529 1527 

 

Model Comparison  

Next, the performance of the raw hourly and average hourly models was contrasted to the 

AADT-based models.  For all models, data from 2016 and 2017 was used as the validation dataset. 

Table 7 shows the comparison among these models. The AADT models didn’t include speed as a 

variable because averaging hourly speed over a year did not capture the effect of speed on traffic 

conditions and crashes on an hourly level. For comparison purposes, the volume, flow, and 

geometry model were compared to the AADT based volume and geometry models. 

 

For both the raw and average hourly volume models, prediction accuracy consistently 

improved as geometric and then speed variables were added. This improvement was higher in 
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magnitude across all validation MOEs when the speed component was added to the model, 

although this may be due to the use of rural freeways for this analysis. The geometric variables, 

even though they vary from site to site, had variation within a small range.  Since geometric factors 

were relatively uniform across the sites, there may not have been enough variation in geometry for 

the geometry models to create substantial improvements to the models over a volume only form.  

 

The raw hourly models gave a mixed result in comparison to the AADT based model. For 

these models, both the volume only model and volume and geometry model performed worse than 

the AADT model in terms of MAD and MSPE. Similar results were found for injury crashes for 

raw hourly models as well. This result is likely influenced by the missing data in the raw volume 

dataset. Ideally, all sites would have 100% hourly data availability. Unfortunately, 23% of the raw 

hourly data in the validation dataset did not meet quality control standards, and thus was not used 

to generate predictions. As noted earlier, averages of available data in each hour were used to 

impute crash prediction estimates for missing hours, so this likely influenced the results.   

 

The prediction accuracy improved significantly for both total and injury crashes when 

average hourly data is used. In this case, the average volume calculation helped to smooth out the 

discrepancies created by missing raw hourly data. The average hourly data also followed the same 

trend of improved model quality as geometric and speed variables were added. This model 

consistently performed better than the AADT based model for all MOEs. For the volume only 

models, MAD, MSPE, and MAPE improved by 10%, 15% and 12% respectively for total crashes 

and 6%, 12%, and 11% respectively for injury crashes.  For the geometry models, improvements 

were even better for total crashes where MAD, MSPE and MAPE improved by 12%, 20%, and 

21% respectively.  Corresponding improvements for these parameters were 10%, 12%, and 13% 

respectively for injury crashes. In general, the flow parameter models showed the highest 

improvement for all MOEs compared to AADT based model with volume, length and geometric 

variables. MAD, MSPE and MAPE decreased by 13%, 31%, and 38% respectively for total 

crashes and 10%, 16%, and 25% respectively for injury crashes.  

 

The comparison results reinforce the importance of selecting an appropriate disaggregation 

level. Due to the random nature of crash occurrence, the raw hourly data was heavily influenced 

by 0 crash observations and missing volume data, which negatively impacted the ability to generate 

useful models. Similarly, aggregated models that rely on AADT may fail to capture variations 
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traffic flow that could influence safety. Finding a proper disaggregation level as well as significant 

variables that influence crash frequency is one of the major concerns in the area of crash prediction 

modeling.  

 

TABLE 7 Comparison of Model Performance* 

  

Total Crashes 

Hourly Volume Average Volume AADT 

MAD MAPE MSPE MAD MAPE MSPE MAD MAPE MSPE 

Volume and length 

models 

3.97 

(+1.0%) 

72% 

(-13.0%) 

37.17 

(+9.0%) 

3.52 

(-10.0%) 

70% 

(-15.0%) 

29.89 

(-12.0%) 
3.92 85% 34.06 

Volume, length, and 

geometry models 

3.87 

(+2.0%) 

69% 

(-9.0%) 

31.46 

(+3.0%) 

3.31 

(-12.0%) 

58% 

(-20.0%) 

24.28 

(-21.0%) 
3.78 78% 30.60 

Volume, length, 

geometry, and flow 

state models. ** 

3.77 

(-0.3%) 

61% 

(-17.0%) 

28.98 

(-5.3%) 

3.29 

(-13.0%) 

47% 

(-31.0%) 

18.98 

(-38.0%) 
─ ─ ─ 

  

Fatal & Injury Crashes 

Hourly Volume Average Volume AADT 

MAD MAPE MSPE MAD MAPE MSPE MAD MAPE MSPE 

Volume and length 

models 

2.24 

(+83.6%) 

55% 

(-7.0%) 

3.19 

(+0.6%) 

1.15 

(-5.7%) 

50% 

(-12.0%) 

2.83 

(-10.7%) 
1.22 62% 3.17 

Volume, length, and 

geometry models 

2.15 

(+85.3%) 

53% 

(-6.0%) 

2.53 

(+3.3%) 

1.04 

(-10.3%) 

47% 

(-12.0%) 

2.12 

(-13.5%) 
1.16 59% 2.45 

Volume, length, 

geometry, and flow 

state models. ** 

1.14 

(-1.7%) 

52% 

(+9.0%) 

2.04 

(+16.7%) 

1.04 

(-10.3%) 

43% 

(-16.0%) 

1.84 

(24.9%) 
─ ─ ─ 

* Value in the parentheses represents the change compared to respective AADT based models. 

** These models were compared to the AADT based volume, length, and geometry models. 

 

CONCLUSIONS AND FUTURE RESEARCH  

This study developed a general relationship that accounts for both hourly speed and volume on 

rural freeway segments in Virginia. The results indicated that inclusion of quality of flow variables, 

like speed, could create improvements in the quality of crash prediction models.  If speed is 

explicitly included in a model, it creates an opportunity to better assess the safety impacts of a 

variety of operational improvements that might improve flow on a facility but might otherwise be 

difficult to examine.  

 

Currently, there is no existing methodology for safety assessment of facilities with dynamic 

traffic control or geometry such as part time shoulder use or variable speed limits (35, 36). The 

crash prediction models developed in this study serve as a strong proof of concept for further 

research in this direction. For example, AADT-based models cannot capture variations in safety 

created by the use of a dynamic use of the shoulder as a travel lane, as found during the evaluation 
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of the I-66 active traffic management system in Virginia (35). In that case, flow improved along 

the road because the shoulder was dynamically opened as a travel lane, even though the overall 

AADT did not change significantly. AADT-based methods would not be able to accurately 

evaluate safety effects of changes in shoulder operation since variations were occurring on at a 

sub-daily level. Another possible application is assessing work zone safety. Since work zone lane 

closures and configurations may only be present for a portion of the day, methods are needed to 

better account for how the timing of lane closures impacts safety. The HSM provides crash 

modification functions that account for the effects of project length and duration on crash 

frequency but do not allow for explicit comparisons of safety effects of daily lane closures (37).   

 

As seen with the raw hourly data models, a major challenge in developing and applying 

models that rely on hourly data is data availability.  Continuous count stations are often present on 

a relatively small proportion of the roadway network. They are also strategically placed on less 

congested parts of the system to ensure counts are accurate. Even though the data derived from 

these stations are of high quality, this data does not exist on a broad network. Apart from 

continuous count stations, most DOTs collect short-duration counts throughout the state 

periodically. These short duration count stations often do not record speed data, but real-time speed 

data for many of these locations are available through probe data providers like INRIX or the 

Federal National Performance Measures Research Data Set (38). This research showed that 

average hourly volume profiles could be coupled with hourly speed to generate better crash 

predictions.  It is possible that average hourly volume distributions derived from short-term counts 

could be combined with probe data to make the methodology developed in this paper more broadly 

applicable.  

 

As a first step, this paper focused on selecting an appropriate disaggregation level using 

cross sectional data from the rural segments only. Future work could focus on urban segments as 

well. Additionally, year to year correlation in the data was not addressed in this work but could be 

incorporated into future modeling. Likewise, performance might be improved further by using 

seasonal average hourly volumes rather than annual averages. 

 

 

 



 

71 

 

 REFERENCES 

 

1. Highway Safety Manual. American Association of State Highway Transportation 

Officials (AASHTO), 2010.  
 

2. Mensah, A. and E. Hauer (1998). Two problems of averaging arising from the estimation 

of the relationship between accidents and traffic flow. Transportation Research Record, 

1635: 37-43. 

 

3. Highway Capacity Manual. Transportation Research Board, National Research Council, 

Washington, D.C., 2010. 

 

4. Shankar, V., F. Mannering and W. Barfield. Effect of Roadway Geometrics and 

Environmental Factors on Rural Freeway Accident Frequencies. Accident Analysis and 

Prevention, 1995. 27: 371-389. 

 

5. Miaou, S.-P. The relationship between truck accidents and geometric design of road 

sections: Poisson versus negative binomial regressions. Accident Analysis and Prevention, 

1994. 26(4): 471-482. 

 

6. Caliendo, C., and G.M. Parisi. A crash prediction model for multilane roads. Accident 

Analysis and Prevention. 39: 655-670. 

 

7.    Solomon, David. Accidents on Main Rural Highways Related to Speed, Driver, and Vehicle. 

U.S. Department of Transportation, Federal Highway Administration. 1964. 

 

8. Persaud, B. and L. Dzbik. Accident Prediction Models for Freeways. Transportation 

Research Record: Journal of the Transportation Research Board, 1993. 1401: 55-60. 

 

9. Zhou, M. and V. Sisiopiku. Relationship between Volume-to-Capacity Ratios and    

Accident Rates. Transportation Research Record: Journal of the Transportation Research 

Board, 1997. 1581: 47-52. 

 

10. Garber, N.J. and A. Ehrhart. The Effect of Speed, Flow, and Geometric Characteristics on 

Crash Rates for Different Types of Virginia Highways. Publication VTRC 00-R15. Virginia 

Transportation research Council, 2000. 

 



 

72 

 

11. Golob, T., W. Recker and V. Alvarez. Freeway Safety as a Function of Traffic Flow. 

Accident Analysis and Prevention, 2004. 36: 933–946. 

 

12. Ivan, J. N., C. Wang, and N. R. Bernardo. Explaining two-lane highway crash rates using 

land use and hourly exposure, Accident Analysis and Prevention, 2000. 32:787-795. 

 

13. Lord, D., A. Manar, and A. Vizioli. Modeling Crash-Flow-Density and Crash-Flow-V/C 

Ratio for Rural and Urban Freeway Segments. Accident Analysis and Prevention, 2005. 

      37: 185–199. 

 

14. Kononov, J., C. Lyon, B.K. Allery. Relationship of Flow, Speed, and Density of Urban 

Freeways to Functional Form of a Safety Performance Function, Transportation Research 

Record: Journal of the Transportation Research Board, 2011.2236: 11-19. 

 

15. Wu, K-F., E. T. Donnell, S. C. Himes and L. Sasidharan. Exploring the Association between 

Traffic Safety and Geometric Design Consistency Based on Vehicle Speed Metrics. 

Journal of Transportation Engineering, 2013, Volume 139 Issue 7. 

 

16. Vayalamkuzhi, P., and V. Amirthalingam. Influence of geometric design characteristics on 

safety under heterogeneous traffic flow. Journal of Traffic and Transportation Engineering 

2016. 3 (6): 559-570. 

 

17. Traffic Engineering Division, Virginia Department of Transportation. 

http://tedweb/tms/jsp/. Accessed on July 2017. 

 

18. GIS Integrator, Virginia Department of Transportation http://integrator/. Accessed on July 

2017. 

 

19. Highway Traffic Records Information System (HTRIS), Traffic Engineering Division, 

Virginia Department of Transportation. 

 

20. Roadway Network System, Virginia Department of Transportation http://rns/app/.     

Accessed on July 2017. 

 

21.       The Statewide Planning System (SPS), Virginia Department of Transportation. 

 

http://tedweb/tms/jsp/
https://webmail.vita.virginia.gov/owa/redir.aspx?C=OsO8Y5t5J77owfychswALgzW5Dbv5F8YpxabyqezKND1iTmXeiDVCA..&URL=http%3a%2f%2fintegrator%2f
https://webmail.vita.virginia.gov/owa/redir.aspx?C=uEn714_OZSqHg7LlHl7lwwi6zOV1mEKQZSZaBo53ZSX1iTmXeiDVCA..&URL=http%3a%2f%2frns%2fapp%2f


 

73 

 

22. Traffic Monitoring Guide, Office of Highway Policy Information, Federal Highway       

Administration. 

https://www.fhwa.dot.gov/policyinformation/tmguide/tmg_2013/vehicle-types.cfm 

Accessed on July 2017. 

 

23. El-Basyouny, K., and T. Sayed. Comparison of two negative binomial techniques in 

developing accident prediction models. Transportation Research Record: Journal of the 

Transportation Research Board, 2006. 1950: 9-16. 

 

24. Garber, N. and L. Wu. Stochastic Models Relating Crash Probabilities with Geometric and 

Corresponding Traffic Characteristics Data. Publication UVACTS-15-5-54, Center for 

Transportation Studies, University of Virginia, 2001. 

 

25. Washington, S. P., M. G. Karlaftis, and F. Mannering, Statistical and Econometric 

Methods for Transportation Data Analysis, Second Edition, Chapman and Hall/CRC, 

December 2010. 

 

26. Lord, D., and F. Mannering. The Statistical Analysis of Crash-Frequency Data: A Review 

and Assessment of Methodological Alternatives. Transportation Research Part A: Policy 

and Practice, 2010. 44(5): 291-305. 

 

27.       Xu, J and K. M. Kockelman. Modeling crash and fatality counts along mainlanes and 

Frontage Roads across Texas: The Roles of Design, Built Environment, and Weather. 

Presented at the 93rd Annual Meeting of the Transportation Research Board. Washington 

D.C., 2014. 

 

28. McCullagh, P. and J. A. Nelder. Generalized Linear Models: Second Edition. Chapman   

and Hall, Ltd., London, 1989. 

 

29. Vuong, Q. H. 1989. Likelihood ratio tests for model selection and non-nested   hypotheses. 

Econometrica, 1989. 57: 307–333. 

 

30. Akaike, H.A. New look at the statistical model identification. IEEE Transactions on 

Automatic Control, 1974. 19(6): 716–723. 

 

https://www.fhwa.dot.gov/policyinformation/tmguide/tmg_2013/vehicle-types.cfm%20Accessed%20on%20July%202017
https://www.fhwa.dot.gov/policyinformation/tmguide/tmg_2013/vehicle-types.cfm%20Accessed%20on%20July%202017


 

74 

 

31. Graham, J., D. Harwood, K. Richard, M. O'Laughlin, E. Donnell, and S. Brennan.  Median 

Cross-Section Design for Rural Divided Highways. NCHRP Report 794, Transportation 

Research Board of the National Academies, Washington, D.C., 2014. 

 

32. Shankar, V., S. Chayanan, S. Sittkariya, M. Shyu, G. Ulfarsson, and N. K. Juvva. Median 

Crossover Accident Analyses and Effectiveness of Median Barriers. Publication WA-RD 

591.1 Washington State Transportation Center (TRAC), 2004. 

 

33. Geedipally S. R., M. P. Pratt & D. Lord. Effects of geometry and pavement friction on 

horizontal curve crash frequency, Journal of Transportation Safety & Security, 2017. DOI: 

10.1080/19439962.2017.1365317. 

 

34. Watson, D. C. Jr., A. Al-Kaisy and N. D. Anderson. Examining the effect of speed, roadside 

features, and roadway geometry on crash experience along a rural corridor. Journal of 

Modern Transportation, 2014. 22: 84-95. 

 

35. Dutta, N., R. Boateng, and M. D. Fontaine, Safety and Operational Effects of the Interstate 

66 Active Traffic Management System. Presented at the 97th Annual Meeting of 

Transportation Research Board, Washington D.C, 2018. 

 

36. Gonzales, D., and M.D. Fontaine. Evaluation of the Safety Effects of the I-77 Active Traffic 

and Safety Management System: Phase 2.  Project No. 109737, Virginia Department of 

Transportation, 2016. 

 

37. Kweon, Y.-J., I. K. Lim, and M. D. Fontaine, Work Zone Safety Performance Measures for 

Virginia. Publication FHWA/VTRC 16-R10, Virginia Transportation research Council, 

2014. 

 

38. National Performance Management Research Data Set (NPMRDS), Federal Highway    

Administration, US Department of Transportation. 

 

 

 

 

 

https://doi.org/10.1080/19439962.2017.1365317


 

75 

 

 

CHAPTER 5 

 

IMPROVING FREEWAY SEGMENT CRASH PREDICTION MODELS BY 

INCLUDING DISAGGREGATE SPEED DATA FROM DIFFERENT SOURCES 

 

Accident Analysis and Prevention (2nd review following minor revisions). 

Presented at Transportation Research Board 98th Annual Meeting, January 2019. 

 

 

Nancy Dutta (Corresponding Author) 

Graduate Research Assistant 

Department of Civil and Environmental Engineering 

University of Virginia 

Thornton Hall, P.O. Box 400259, Charlottesville, VA 22904 

Email: nd4tk@virginia.edu   

    

Michael D. Fontaine, P.E., Ph.D. 

Associate Director 

Safety, Operations, and Traffic Engineering 

Virginia Transportation Research Council 

530 Edgemont Rd, Charlottesville, VA 22903 

Email: Michael.Fontaine@VDOT.Virginia.Gov  

                               

 

 

 

 

 

 

 

mailto:nd4tk@virginia.edu
mailto:Michael.Fontaine@VDOT.Virginia.Gov


 

76 

 

ABSTRACT 

Traditional traffic safety analyses use highly aggregated data, typically annual average 

daily traffic (AADT) and annual crash counts.  This approach neglects the time-varying nature of 

critical factors such as traffic speed, volume, and density, and their effects on traffic safety.  This 

paper evaluated the relationship between crashes and quality of flow at different levels of temporal 

aggregation using continuous count station data and probe data from 4 lane rural freeway and 6 

lane urban freeway segments in Virginia. The performance of crash prediction models using traffic 

and geometric information at 15-minute, hourly, and annual aggregation intervals were contrasted. 

This study also assessed whether inclusion of speed data improved model performance and 

examined the effects of using speeds from physical sensors versus speed estimates from private-

sector probe speed data. The results showed that using average hourly volume along with average 

speed and selected geometric variables improved predictions compared to annual models that did 

not use speed information. When comparing an AADT-based model to an average hourly volume 

model for total crashes, the mean absolute prediction error improved by 11% for rural models and 

20% for urban models. This result was based on volume and speed data from continuous count 

stations. When private sector probe speed data was used, the rural model performance improved 

by 10% and urban models by 20%.  This trend was consistent for all crash types irrespective of 

level of injury or number of vehicles involved.  Even though models using private sector data 

performed slightly worse than the ones based on continuous count data, they were still far better 

than AADT based models. These results indicate that probe-based data can be used in developing 

crash models without harming prediction capability. 

 

1. INTRODUCTION 

Transportation safety research has sought to gain a better understanding of how different variables 

such as roadway geometry, driver behavior, traffic conditions, and environmental factors affect 

crash occurrence. The influence of those factors on traffic crashes cannot be fully understood 

without detailed information not only on crash itself, but also on its surrounding circumstances.  

The Highway Safety Manual (HSM) provides standard scientific techniques and 

knowledge to help transportation officials make educated decisions regarding road safety 

(AASHTO, 2010). The safety performance functions (SPF) recommended in the HSM relate crash 

occurrence to annual average daily traffic (AADT).  A difficulty with this approach is that a 
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freeway with an intense flow during rush periods would clearly have a different crash potential 

than a freeway with the same AADT but with flow more evenly spread throughout the day. The 

customary means of using AADT in safety analysis may be too aggregate to capture all the 

variation in traffic flow that occurs throughout the day and could mask safety effects of operational 

improvements on a roadway. When considering the flow of traffic along a freeway, three 

parameters are of considerable significance. Speed and density describe the quality of service 

experienced by the stream, while volume measures the quantity of the stream and the demand on 

the highway facility. Drivers change or adapt their driving behavior according to the level of traffic 

present on the road. They may become more alert as traffic increases, but small driver errors may 

be more likely to result in collisions if traffic is congested. As traffic flow increases, the vehicles 

may travel at a lower speed, which could reduce crash severity during those conditions. Likewise, 

several past studies have indicated that speed variance may play a role in crash likelihood 

(Choudhary et al., 2018; Garber, 1989; Garber, 2000; Quddus, 2013; Solomon, 1964; Tanishita 

and Van Wee, 2017).  

 

There has been considerable research conducted in recent years into establishing predictive 

crash relationships for freeway segments. Despite overall progress, there is still no clear 

understanding about how different traffic flow characteristics that represent quality of flow affect 

safety. This paper addresses the limitations of current SPFs by developing crash prediction models 

using traffic and geometric information that is provided at sub-daily aggregation intervals for urban 

and rural freeway segments.  

 

2. RESEARCH OBJECTIVE  

As a practical matter, relationships between traffic crashes and traffic flow parameters are 

inherently difficult to establish due to limitations in matching crash data with available traffic data 

sources.  It is further restricted by the random nature of crash occurrence and the quality of 

available crash and traffic data. For this reason, there is considerable interest in surrogate measures 

such as speed, standard deviation of speed, density, or volume to capacity (v/c) ratios that may 

help in identifying problems.  

 

This paper seeks to evaluate the relationship between crashes and quality of flow both at 

15 minute and hourly levels of aggregation for freeway segments using data from Virginia. Using 

different geometric and traffic variables, predictive models were developed for both urban and 
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rural freeway segments and for different crash types. The goal is to identify how traffic flow 

variables are related to crash occurrence and if disaggregate traffic data could improve the quality 

of crash predictions over AADT-based models. This paper also evaluates the possibility of using 

private sector probe speed data as an alternate source for speed data. Models were first developed 

using speed data from continuous count stations, and then these models were repeated using the 

probe data from INRIX. A comparison between these two data sources in terms of prediction 

accuracy is one of the major objectives this paper wanted to address since probe data is widely 

available on freeways at a much lower per-mile cost than sensor data. 

 

3. LITERATURE REVIEW 

Crashes are complex events and are influenced by many factors such as road geometric design, 

traffic volume and composition, speed differentials between vehicles, and so on. This paper 

addresses two major topics that have been of interest in the field of traffic safety research: (a) 

geometric and traffic variables influencing the frequency of crashes and (b) disaggregated analysis, 

where exposure is defined by sub-daily data instead of AADT.  

 

Horizontal curvature, grade, median width, lane width, and shoulder width are some of the 

significant factors influencing road crashes on freeway segments. Crash frequency has been shown 

to decrease as curve radius increases (Khan et al., 2013; Shaw-pin, 1994; Tegge et al. 2010).  Prior 

research has also demonstrated that steeper vertical grades are associated with higher crash rates 

(Geedipally et al., 2017; Tegge et al., 2010). These effects of horizontal curve radius, horizontal 

curve length, and percent grade are included in the HSM in the form of crash modification 

functions (CMF)  based on studies by Zegeer et al. (Zegeer et al., 1990) and Harwood et al. 

(Graham et al., 2014). Crashes also tend to increase with wider medians, even though it largely 

depends on crash type. Cross median crashes tend to decrease with increasing median width, 

whereas rollover crashes tend to increase (Khan et al., 2013; Shaw-pin, 1994).  

 

Speed and speed variation are widely believed to be key issues in the understanding of 

traffic crashes. In 1964 the Federal Highway Administration (FHWA) published a report by 

Solomon that studied the relationship between crashes on 2-lane and 4-lane roadways and a 

number of factors (Solomon,1964). From an analysis of 10,000 crashes, it was concluded that crash 

rates were lowest for travel speeds near the mean speed of traffic and increased with greater 

deviations above and below the mean. Solomon's work is often cited as the source of the 85th 
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percentile speed rule for setting speeds. Imprialou et al. re-examined crash–speed relationships by 

creating a new crash data aggregation approach that enables improved representation of the road 

conditions just before crash occurrences (Imprialou et al., 2016). Crashes from Strategic Road 

Network of England in 2012 were aggregated according to the similarity of their pre-crash traffic 

and geometric conditions, forming an alternative crash count dataset termed as a condition-based 

approach. The results showed that high speeds trigger crash frequency. But the speed–crash 

relationship is negative regardless of crash severity. Empirical examination of the relationship 

between flow–density, speed, and crash rate on selected freeways in Colorado by Kononov et. al. 

suggested that as flow–density increases, the crash rate initially remains constant until a certain 

critical threshold combination of speed and density is reached (Kononov et al., 2012). Once this 

threshold is exceeded, the crash rate rises rapidly. Lord et. al. developed predictive models from 

data collected on freeway segments from Montreal, Quebec. For rural segments, as density and 

V/C increased, the number of single-vehicle crashes decreased, and the number of multi-vehicle 

crashes increased. The data showed that crashes become less severe with an increasing v/c ratio 

but did not seem to be affected by density (Lord et al., 2005).     

 

Persaud and Dzbik developed crash prediction models at both the macro level (in crashes 

per unit length per year), and micro level (in crashes per unit length per hour) using the generalized 

linear modeling approach with a negative binomial error structure (Persaud and Dzbik, 1993). 

Microscopic models showed a decreasing slope in regression lines as hourly volume increased, 

perhaps capturing the influence of decreasing speed. This is in contrast to the macroscopic model, 

which showed increasing slopes. Evaluation of freeway safety as a function of traffic flow by 

Golob et al. revealed that the highest crash rates (6.3 crashes per million vehicle miles traveled 

(VMT)) occurred during the morning peak period with heavily congested flow, corresponding to 

low mean speeds, low speed variation, low flows, and low flow variation. In contrast, the lowest 

crash rates (0.6 per million VMT) were characterized by high speeds and low speed variation 

(Golob et al., 2004). Ivan et.al concluded that there is evidence that the hourly volume explains 

much of the variation in highway crash rates. They focused on actual hourly exposure values of 

seventeen rural, two-lane highway segments in Connecticut, with varying land-use patterns (Ivan 

et al., 2000). Single-vehicle crashes occurred most often in the evening and at night. On the other 

hand, multi-vehicle crashes were more likely to occur under daylight conditions at midday and 

during the evening peak period. Yu et al. investigated the impacts of data aggregation approaches 
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based on traffic data from Shanghai’s urban expressway system (Yu et al., 2018). Crash frequency 

analyses with a segment-based approach and a scenario-based approach were conducted first, and 

then crash risk analyses were developed at the individual crash level. It was found that during the 

congested period, an increase in operating speed would reduce crash likelihood. For medium 

operating speeds, the changes in operating speed do not have substantial effects on crash 

occurrence probability. For free-flow periods, increases in operating speed would further increase 

the probability of crashes. 

 

The study of the relationship of crashes and traffic flow state is largely constrained by the 

difficulty in acquiring widespread information on quality of flow. Each agency has a different 

strategy regarding whether the roads are maintained at the state level or city/county level, which 

can also limit the ability to collect consistent crash and traffic detector data.  Limited research 

focuses on different levels of data disaggregation, considers temporal traffic flow characteristics, 

compares different model forms and modeling techniques, and goes through vigorous model 

validation. A recent study by Wang et al.  shed some light on this area (Wang et al., 2018). They 

developed different models to estimate crash frequency using annual daily traffic and annual 

hourly traffic. The study segments were from three expressways in Orlando, Florida and included 

basic freeway segments, merging segments and weaving segments. It was found the logarithm of 

volume, the standard deviation of speed, the logarithm of segment length, and the existence of a 

diverge segment were significant in the models. Weaving segments experienced higher daily and 

hourly crash frequencies than merge and basic segments.   

 

This work discussed in this paper addresses similar concerns as those described by Wang 

et al., but the scope of these two papers are different in terms of dataset used and research objective. 

In this study, focus was on establishing a relationship between traffic flow variables and crashes 

using disaggregate traffic data over a broad statewide network.  This paper also evaluates whether 

widely available probe data could serve as a substitute for loop detector data, which could broadly 

expand the applicability of crash prediction models that use speed as an input factor. 

 

4. DATA COLLECTION AND PREPARATION 

Volume and speed data were collected for 2-lane directional rural freeway segments and 3-lane 

directional urban freeway segments in 15-minute increments from 2011 to 2017 using the Virginia 

Department of Transportation (VDOT) Traffic Management System.  A total of 31 continuous 
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count station were identified from rural 2 lane segments and 24 from urban 3 lane segments as 

shown in Figure 1.  

 

FIGURE 1 Continuous Count Stations on  Freeway Segments Used in This Research 

(Green squares represent rural stations; blue station represents urban stations) 

 

4.1 Volume and Speed Data 

In Virginia, traffic volumes are determined using both continuous count stations and short-term 

counts conducted throughout the state on a rotating basis. This study relied on data from the 

continuous count stations only because of their high level of quality control and their ability to 

produce accurate volume counts over the entire study period. Only time periods where both volume 

and speed data meet a quality threshold set by VDOT were included in the dataset used for this 

research.   

As an alternate data source, speed data was also obtained from the private sector travel time 

data provider INRIX for both 15-minute and hourly interval. INRIX is a private company that 

processes GPS probe data to estimate speeds, which are reported spatially using traffic message 

channel (TMC) links. TMC links are spatial representations developed by digital mapping 

companies for reporting traffic data and consist of homogeneous segments of roadways. VDOT 

currently uses INRIX data to support a variety of performance measurement and traveler 

information applications, and several external and internal evaluations have supported the 

accuracy of the travel time data for freeways (Haghani et al., 2009). INRIX provides confidence 
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scores for each 1-minute interval travel time, with a confidence score of 30 representing real-time 

data and scores of 10 and 20 representing historic data during overnight and daytime periods, 

respectively.  For the purposes of this analysis, no threshold was set for the confidence scores and 

both real time and historic speed data was used in model development.   

 

While continuous volume data is available only at a discrete number of locations with 

sensors installed, INRIX speed data is broadly available across the roadway network in Virginia. 

Use of INRIX data in crash modeling will help to overcome the difficulties associated with using 

only continuous count station data. 

 

4.2 Geometry Data 

The VDOT Highway Traffic Records Information System (HTRIS) was used to extract all 

geometric and traffic control information used for this analysis. Using this database, information 

such as number of lanes, speed limit, shoulder width, median type, rural/urban designation, etc. 

was gathered for the study segments. The vertical curvature (VC) data are expressed in the form 

of percent grade, with positive grades indicating uphill segments and negative grades indicating 

downhill segments. Horizontal curvature (HC) was expressed using a variety of variables, 

including length of the curve, presence of curve as a percentage of segment length, and radius of 

curve. Length and radius of curve for each segment were directly available in the dataset.  

 

4.3 Crash Data 

Crash data for all the sections were obtained from VDOT as well (Roadway Network System, 

Virginia Department of Transportation.). The data included detailed information on crash location 

and date, crash type, severity, number of vehicles involved, etc. For all the segments, crash 

information was also collected between 2011 and 2017.  

 

A summary of all the data sources are included in Table 1. Figure 2(a) shows a sample of 

the data format for a segment and figure 2(b) provides explanation of the data format. 
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2 (a) 

Column Explanation 

LinkID Identifier for Segments 

Year Year 

Hour Hour 

Volume Average Hourly Volume (vph) 

HV Heavy Vehicle Percentage (%) 

Total Hourly Total Crashes 

Speed Average Hourly Speed (mph) 

Std Standard Deviation of Speed 

Length Length of Segment (mile) 

Percent HC Percent of Horizontal Curve Presence (%) 

L_HC Length of Horizontal Curve (mile) 

Radius_HC Radius of Horizontal Curve (mile) 

Grade_VC Grade of Vertical Curve (%) 

Mwidth Median Width (ft) 

SL Speed Limit (mph) 

Delta 
Difference between Speed Limit & Speed 

(mph) 

2 (b) 

FIGURE 2: Sample Data (a) Data Format, (b) Data Explanation 

TABLE 1: Summary of data 

Type of 

Data 

Source 

(Maintaining 

Agency) 

Data Format Data Elements 

Traffic 

Volume 

Continuous Count 

Stations on Virginia 

Freeways (VDOT) 

Data was extracted for every 15-minute interval 

for the entire study period.  This raw data was 

then converted to an average 15-minute volume 

and average hourly volume for each year. AADT 

data was directly available from the source. 

• Average 15-minute Volume 

• Average Hourly Volume 

• AADT 

Speed Continuous Count 

Stations on Virginia 

Freeways (VDOT) 

 

Probe data from 

private data source 

(INRIX) 

Data was extracted for every 15-minute interval 

for the entire study period.  The raw data was 

then converted to average 15-minute speed and 

average hourly speed for each year using the two 

different data sets. 

• Average 15-minute Speed 

(Count Station and INRIX) 

• Average Hourly Speed (Count 

Station and INRIX) 
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Roadway 

Geometry 

Highway Traffic 

Records 

Information 

System (VDOT) 

Comprehensive inventory on detailed geometric 

data for Virginia.  The data is provided for each 

roadway link in the state. 

• Number of lanes 

• Horizontal & Vertical Curvature 

• Median Type & Width 

• Shoulder Width 

• Speed Limit 

Crashes Roadway Network 

System (VDOT) 

Detailed information on time, location, crash 

type, injury and road condition. The crash models 

predicted either crashes/15 min or crashes/hour 

depending on the time resolution under study. 

During validation, predicted number of crashes 

were summed to create yearly numbers to 

compare with AADT based crash models that 

predict crashes/year. 

• Total Crashes 

• Fatal and Injury Crashes 

• Property Damage Crashes 

• Single Vehicle Crashes 

• Multiple Vehicle Crashes 

 

 

4.4 Selection of freeway segment 

For this research, only basic freeway segments free from ramps or interchanges were considered. 

This was done using the detector database maintained by the Traffic Engineering Division at 

VDOT and the VDOT GIS integrator. The GIS integrator stores layers of different elements such 

as mile markers, exits and traffic count stations. All these elements contain direction and location 

information that helped to define the segments in a way that there is no entry/exit ramp within 0.5 

miles of start/end of the segment. 

 

It was important for this analysis to define a segment surrounding each count station where 

it could be assumed that homogeneous flow conditions were present for the entire length. If the 

station was on a link with homogeneous geometric characteristics that was greater than 2 miles in 

length, a buffer of a maximum 2 miles around the actual location of the detector (1 mile upstream 

and downstream) was created.  

 

The number of lanes, lane and shoulder width, speed limit, median type, and median width 

were used to define the geometric homogeneity of segment. Generally speaking, horizontal and 

vertical curvature was not significant on these segments since they were located on interstates with 

high geometric design standards. Since this research focuses on interaction between geometry and 

flow parameters and how they define safety instead of a design focused approach, horizontal and 

vertical curvature was not used to define the segment, instead they were used as variables to 

identify their interaction with flow.  Table 2 summarizes the properties of the study segments. 
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TABLE 2: Summary of the descriptive statistics of freeway study segments 

Type of 

Segment 

Total Mileage 

(mile) 
Variable Mean 

Std. 

Deviation 
Min Max 

Rural 4 

Lane 

Segments 

57.21 

AADT 21360 7926 4420 34200 

Average Hourly Volume (vph) 855 600 29 2754 

Average Hourly Speed (mph) 69.36 4.19 48.31 75.72 

Segment Length (mile) 1.85 0.41 1.06 2.00 

Lane Width (ft) 12.00 0.00 12.00 12.00 

Right Shoulder Width (ft) 6.47 4.93 0.00 10.00 

Left Shoulder Width (ft) 3.88 4.77 0.00 10.00 

Median Width (ft) 115 54 34 220 

Horizontal Curvature Radius (mile) 2.10 1.47 0.00 5.31 

Horizontal Curvature Length(mile) 0.37 0.23 0.00 0.99 

Grade (%) -0.27 0.96 -1.67 2.69 

Speed Limit (mph) 69 1.70 65 70 

Annual Total Crashes 7.00 7.00 1.00 13.00 

Annual Fatal & Injury Crashes 2.00 3.00 0.00 5.00 

Annual Property Damage Crashes 5.00 5.00 0.00 8.00 

Annual Single Vehicle Crashes 4.00 2.00 0.00 9.00 

Annual Multiple Vehicle Crashes 3.00 4.00 0.00 4.00 

Urban 6 

Lane 

Segments 

38.67 

AADT 43840 15754 20137 80656 

Average Hourly Volume (vph) 1717 1209 69 5243 

Average Hourly Speed (mph) 63.96 7.31 19.92 74.71 

Segment Length (mile) 1.59 0.41 0.81 2.21 

Lane Width (ft) 12.00 0.00 12.00 12.00 

Right Shoulder Width (ft) 5.38 5.19 0.00 12.00 

Left Shoulder Width (ft) 4.77 5.39 0.00 12.00 

Median Width (ft) 66.35 51.62 5 220 

Horizontal Curvature Radius (mile) 1.51 0.88 0 3.61 

Horizontal Curvature Length(mile) 0.35 0.19 0 0.78 

Grade (%) -0.18 1.09 -2.58 2.20 

Speed Limit (mph) 63.05 4.19 55 70 

Annual Total Crashes 16.00 17.00 0.00 74.00 

Annual Fatal & Injury Crashes 4.00 5.00 0.00 34.00 

Annual Property Damage Crashes 12.00 13.00 0.00 60.00 

Annual Single Vehicle Crashes 5.00 4.00 0.00 32.00 

Annual Multiple Vehicle Crashes 11.00 15.00 0.00 64.00 

 

5. METHODOLOGY 

A series of crash prediction models were developed using a variety of variables including volume, 

segment length, heavy vehicle percentage, horizontal curvature, vertical curvature, median width, 

median type, and speed. Speed was expressed in a variety of ways, including average speed, 

standard deviation of speed, and difference between speed limit and average speed. Volume and 

segment length are already used in the HSM SPFs.  
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Previous research by the authors indicated that crash prediction models using raw hourly 

volume and speed data as observed on each site perform worse than the AADT based model (Dutta 

& Fontaine, 2018) With raw hourly data, data errors and availability can create issues and 

imputation of missing values can be problematic and increase errors. The same research also 

showed that use of the average volume calculation helped to smooth out the discrepancies created 

by missing raw hourly data. Based on this previous experience, volumes in this research were 

expressed in the form of AADT, average 15-min volume, and average hourly volume for each site 

over each year. Quality of flow variables were summarized using a similar definition in each case.  

The disaggregated models were compared to each other and with the AADT model to determine 

how the predictions vary from typical HSM-like models. Three different regression model forms 

were evaluated as part of this research: 

 

1. Models using volume and segment length only 

2. Models using volume, segment length, and geometric variables 

3. Models using volume, segment length, geometric variables, and traffic flow parameters 

 

For each model, volumes were expressed as AADT (to be consistent with the current HSM 

SPFs), average 15-min volume, and average hourly volume. Both negative binomial and zero 

inflated negative binomial regression methods were evaluated. Models using AADT data were 

created for the first two model forms so that model performance could be compared using the same 

datasets. To be consistent with the HSM, length was used as an offset variable in the models. One 

additional step for the third model was that it was developed twice. First a model was selected for 

each crash type using volume, geometry and flow parameters based on data from continuous count 

station. Once the models are finalized, they were regenerated by keeping the same form but using 

speed data from INRIX. For this iteration, volume data was still generated by the continuous count 

stations, but speed components were coming from probe based INRIX data. 

 

5.1 Selection of Model Form 

There are a wide variety of statistical methods that researchers have been using to model 

crash frequency over the years. Although Poisson models have served as a starting point for crash 

analysis, they are often criticized for its inability to handle over- and under-dispersed data (Lord 

and Mannering, 2010). The negative binomial regression model is an extension of the Poisson 

model that helps overcome possible over dispersion in the data. Negative binomial regression has 
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become the most common method for developing SPFs, and is also the recommended modeling 

approach in the HSM (Highway Safety Manual, 2010).  In a negative binomial regression model, 

the probability of roadway entity i having yi crashes per time period is defined as: 

𝑷(𝒚𝒊) = 
𝒆𝒙𝒑(−𝝀𝒊) ∗ 𝝀𝒊

𝒚𝒊

𝒚𝒊 !
                                                                                                     (1) 

𝝀𝒊 = 𝒆𝒙𝒑(𝜷𝑿𝒊 +  𝜺𝒊)                                                                                                              (2) 

 

Where exp (εi) is a gamma-distributed error term with mean 1 and variance α (Simon et al., 2010). 

The addition of this term allows the variance to differ from the mean as:  

 

VAR (𝒚𝒊) = E (𝒚𝒊) [1+ αE (𝒚𝒊)] = E (𝒚𝒊) + αE (𝒚𝒊)𝟐                                                           (3) 
 

             Since crashes are random events, researchers are often left with a dataset that is 

characterized by a significant number of zeros. As the data becomes more disaggregated, zero 

crashes become more common for the selected interval (hour or 15-minute). Zero inflated models 

have been developed to handle data characterized by a significant number of zeros or more zeros 

than the one would expect in a traditional Poisson or negative binomial/Poisson-gamma model. 

These models operate on the principle that the excess zero density that cannot be accommodated 

by a traditional count structure is accounted for by a splitting regime that models a crash-free 

versus a crash prone propensity of a roadway segment (Lord and Mannering, 2010; Simon et al., 

2010). If the probability of a data point being zero is π and probability of it being non-zero is (1 – 

π), then, the probability distribution of the ZINB random variable 𝑦𝑖 can be written as: 

 

𝑷𝒓(𝒚𝒊 = 𝒋) = {
𝝅𝒊 + (𝟏 −  𝝅𝒊)𝒈(𝒚𝒊 = 𝟎)     𝒊𝒇 𝒋 = 𝟎
(𝟏 − 𝝅𝒊)𝒈(𝒚𝒊)                      𝒊𝒇 𝒋 > 𝟎

                                                         (4) 

Where πi is the logistic link function and g(yi) is the negative binomial distribution given by: 

𝒈(𝒚𝒊) =  𝑷𝒓(𝒀 = 𝒚𝒊| 𝝁𝒊, 𝜶) =  
⌈(𝒚𝒊+ 𝜶−𝟏)

⌈(𝜶−𝟏)⌈(𝒚𝒊+𝟏)
 (

𝟏

𝟏+ 𝜶𝝁𝒊
)

𝜶−𝟏

(
𝜶𝝁𝒊

𝟏+ 𝜶𝝁𝒊
)

𝒚𝒊

                                  (5)                          

 

5.2 Selection of Modeling Technique 

Generalized linear models are extensions of traditional regression models that allow the 

mean to depend on the explanatory variables through a link function, and the response variable to 

be any member of a set of distributions called the exponential family (e.g., Normal, Poisson, 

Binomial) (McCullagh & Nelder,1989). In a generalized linear model (GLM), each outcome Y of 
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the dependent variables is assumed to be generated from the exponential family. The mean, μ, of 

the distribution depends on the independent variables, X, through: 

 

𝑬(𝒀) =  𝝁 =  𝒈−(𝑿𝜷)                                                                                                             (6) 

 

Where E(Y) is the expected value of Y; Xβ is the linear predictor, a linear combination of 

unknown parameters β; g is the link function. The unknown parameters, β, are typically estimated 

with maximum likelihood. This method estimates model parameters by selecting those that 

maximize a likelihood function that describes the underlying statistical distribution assumed for 

the regression model. For a negative binomial regression model, the likelihood function can be 

described as -  

𝑳 (𝝀𝒊) =  ∏
𝚪 (𝒚𝒊+(

𝟏

𝜶
))

𝒚𝒊! 𝚪 (
𝟏

𝜶
)

𝒊  . [
𝜶𝝀𝒊

𝟏+𝜶𝝀𝒊 
]

𝒚𝒊

. [
𝟏

𝟏+𝜶𝝀𝒊 
]

𝟏/𝜶

                                                                        (7) 

 

Where Γ(x) is the gamma function, variance is α, λ is the mean and  𝑦𝑖 is number of crashes per 

period for roadway segment i.  

 

5.3 Vuong Test 

The Vuong test statistic (V) has been proposed for non-nested models to compare the fitness of 

zero inflated models versus regular count models (Vuong, 1989) : 

𝑽 =
𝒎 ̅̅̅̅ ∗ √𝑵 

𝑺𝒎
                                                                                                                                (8) 

Where, 𝑚𝑖 = log[
𝑓1 (𝑦𝑖)

𝑓2 (𝑦𝑖)
] 

N = number of observations 

𝑚 ̅̅ ̅ = Mean of 𝑚𝑖 

𝑆𝑚= Standard deviation of 𝑚𝑖 

𝑓1, 𝑓2 = Two competing models 

V has a standard normal distribution, and has three possible outcomes: 

• If the absolute value of V is less than 1.96 for a 0.95 confidence level, then neither model 

is preferred by the test result. 

• V is a large positive value, then model 1 is preferred. 

• V is a large negative value, then model 2 is preferred. 

This test was used to select which model form is appropriate for the dataset. 
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5.4 Model Selection and Validation 

While comparing the models, it is important to have a consistent methodology to select a model 

from a series of models that has been developed for each technique. A popular method for model 

selection is the Akaike information criterion (AIC)(Akaike, 1974) . AIC offers an estimate of the 

relative information lost when a given model is used to represent the process that generated the 

data.  

 

AIC = −2LL + 2p                                                                                                                                    (9) 

 

Where p is the number of estimated parameters included in the model.  A lower value of AIC 

indicates a better model. It should be noted that the values of AIC are only relevant to that particular 

disaggregation level. Different levels of data aggregation lead to very different total numbers of 

data points in all these models, and the interaction among variables changes for different levels of 

disaggregation as well.  As a result, AIC values should not be compared across different data 

aggregation levels. 

 

It is important to note that an objective assessment of the predictive performance of a 

particular model can be made only through the evaluation of several goodness of fit (GOF) criteria. 

The GOF measures used to conduct external model validation included mean prediction bias 

(MPB), mean absolute deviation (MAD), and mean squared prediction error (MSPE) (Washington 

et al.,2010.)   

 

Since AADT based models predict annual crashes while hourly volume models predicted 

hourly crashes, the summation of hourly predictions was used to generate annual predicted 

numbers of crashes for the GOF calculations.  The average hourly volume data was computed by 

averaging data for each available hour for each site, so there were always 24 hours of data available 

for each year and each site for validation. A similar methodology was followed for average 15 min 

data as well. Data from the years 2011 to 2015 was used to build the models, and data from 2016 

and 2017 were used for validation. The calculation of these measures was based on the following 

equations: 

𝑴𝒆𝒂𝒏 𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 (𝑴𝑨𝑫) =  
∑ |𝒀𝒎𝒐𝒅𝒆𝒍− 𝒀𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅|𝒏

𝒊=𝟏

𝒏
                                          (10) 

𝑴𝒆𝒂𝒏 𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 𝑬𝒓𝒓𝒐𝒓 (𝑴𝑨𝑷𝑬) =  
𝟏𝟎𝟎

𝒏
∑ |

𝒀𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅  −𝒀𝒎𝒐𝒅𝒆𝒍

𝒀𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅
|𝒏

𝒊=𝟏                  (11) 
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𝑴𝒆𝒂𝒏 𝑺𝒒𝒖𝒂𝒓𝒆𝒅 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 𝑬𝒓𝒓𝒐𝒓 (𝑴𝑺𝑷𝑬) =  
∑ (𝒀𝒎𝒐𝒅𝒆𝒍− 𝒀𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅)𝟐𝒏

𝒊=𝟏

𝒏
                          (12) 

Where – 

𝑌𝑚𝑜𝑑𝑒𝑙 = Predicted Crash Frequency 

𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = Observed Crash Frequency 

n = Sample Size 

 

Figure 3 below provides an overview of the methodology followed in this research. Figure 

4 provides a sample flowchart for all the tasks under a particular model. Other models were 

developed by performing same tasks with added variables. 

 

 

FIGURE 3: Summary of Methodology 
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FIGURE 4: Flowchart of Modeling Tasks 

 

6. RESULTS AND DISCUSSION  

 

6.1 Vuong test 

The Vuong test results showed that, in general, negative binomial models performed better than 

the zero inflated ones with respect to AIC value, variable significance, and sign of estimated 

coefficients.  For the 15-minute volume dataset, the volume and geometry model for single vehicle 
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crashes on urban segments and fatal and injury crashes for rural segments were the only two 

categories where the Vuong test results preferred the zero inflated model over the negative 

binomial form. The results supported negative binomial model for all other cases. For hourly data, 

negative binomial models outperformed the zero inflated models for both rural and urban 

segments, irrespective of crash type. To maintain consistency in model form, negative binomial 

models were used for both total and injury crashes, and those results are documented in the 

remainder of this paper.   

 

6.2 Volume and Length Model 

For the first set of models, volume was significant for all levels of aggregation for all types of 

crashes. This model is consistent with the current HSM SPFs in terms of variables used but differs 

in how volume is being used. This serves as the basic model, and more variables are added in 

subsequent steps to increase the complexity of the models. Sample results are summarized in Table 

3 and 4 for the volume only models for rural and urban segments respectively. 

 

TABLE 3 Parameter Estimates for Volume Only Models for Rural 4 Lane Freeway Segments 

  

Total Crashes 

Average 15 Minute Volume Average Hourly Volume AADT 

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -7.59 0.255 <2e-16 -7.21 0.338 <2e-16 -6.32 1.120 2E-08 

log (Volume) 0.55 0.047 <2e-16 0.59 0.049 <2e-16 0.65 0.114 1E-08 

AIC 6027 3924 853 

  

 Injury Crashes 

Average 15 Minute Volume Average Hourly Volume AADT 

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -8.68 0.448 <2e-16 -8.06 0.564 <2e-16 -9.38 1.734 6E-08 

log (Volume) 0.54 0.083 8E-11 0.54 0.083 5E-11 0.83 0.175 2E-06 

AIC 2425 1764 553 

  

Single Vehicle Crashes 

Average 15 Minute Volume Average Hourly Volume AADT 

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -6.3 0.288 <2e-16 -5.45 0.363 <2e-16 -2.47 1.085 0.0023 

log (Volume) 0.20 0.055 3E-04 0.23 0.055 2E-05 0.18 0.110 0.001 

AIC 3953 2741 656 

 

TABLE 4 Parameter Estimates for Volume Only Models for Urban 6 Lane Freeway Segments 

  

Total Crashes 

Average 15 Minute Volume Average Hourly Volume AADT 

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -10.05 0.301 <2e-16 -7.51 0.359 <2e-16 -19.71 1.951 <2e-16 

log (Volume) 1.06 0.047 <2e-16 0.74 0.048 <2e-16 1.95 0.184 <2e-16 

AIC 8941 5571 825 
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Injury Crashes 

Average 15 Minute Volume Average Hourly Volume AADT 

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -10.43 0.499 <2e-16 -9.04 0.556 <2e-16 -23.06 2.420 <2e-16 

log (Volume) 0.92 0.078 <2e-16 0.76 0.073 <2e-16 2.14 0.225 <2e-16 

AIC 3687 2594 548 

  

Single Vehicle Crashes 

Average 15 Minute Volume Average Hourly Volume AADT 

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -5.65 0.326 <2e-16 -4.31 0.406 <2e-16 -9.41 2.125 10E-06 

log (Volume) 0.15 0.054 8E-03 0.13 0.056 0.0177 0.89 0.199 9E-06 

AIC 3927 2763 621 

 

6.3 Volume, Length and Geometry Model 

Next, geometric variables were added to the volume only model discussed previously. Due to 

limited variability in lane width and shoulder width for this particular data set, they were not 

significant in the modeling process. Other geometric variables such as median width, horizontal 

curvature, vertical curvature was evaluated. Horizontal curvature was included in the models as 

length of curvature and percentage of curvature (ratio of curve length and segment length) 

variables. Vertical curvature was categorized as positive and negative grades.   

 

 For urban segments, the only statistically significant geometric variable was median width 

for all levels of aggregation and crash types. The segments with curve presence were mostly 

comprised of long, gentle horizontal curves that almost resemble a tangent section. There was little 

variability in vertical grades for these segments as well. Median width was negatively associated 

with crash frequency, indicating wider medians in urban segments reduce the total number of 

crashes. Previous research indicated that median width between 20 and 30 ft generally shows a 

mixed effect on crashes and median width of 60 to 80 ft has decreasing effect on crashes (Chang 

and Xiang, 2003; Knuiman et al., 1993). About 55% of the urban dataset had median widths within 

this range so the negative relationship between median width and crashes is intuitive. Table 5 

summarizes some sample models for this step.  The geometric variables that were significant are 

a function of the data set available for modeling, and these models may not reflect variation that 

would be seen across a broader cross section of sites. 
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TABLE 5: Parameter Estimates for Volume and Geometry Based Models for Urban Segments 

  

Total Crashes 

Average 15 Minute Volume Average Hourly Volume AADT 

Estimate 
Std. 

Error 
Pr(>|z|) Estimate 

Std. 

Error 
Pr(> |z| ) Estimate 

Std. 

Error 
Pr(> |z| ) 

Intercept -9.65 0.301 <2e-16 -6.91 0.359 <2e-16 -17.36 2.401 4.81E-13 

log (Volume) 0.97 0.051 <2e-16 0.70 0.048 <2e-16 1.75 0.236 1.07E-13 

Median Width -0.13 0.032 4E-09 -0.11 0.063 <2e-16 -0.21 0.001 0.0043 

AIC 8868 5520 742 

  

Injury Crashes 

Average 15 Minute Volume Average Hourly Volume AADT 

Estimate 
Std. 

Error 
Pr(>|z|) Estimate 

Std. 

Error 
Pr(> |z| ) Estimate 

Std. 

Error 
Pr(> |z| ) 

Intercept -9.99 0.499 <2e-16 -8.56 0.563 <2e-16 -23.12 2.805 <2e-16 

log (Volume) 0.82 0.083 <2e-16 0.75 0.073 <2e-16 2.19 0.272 7.55E-16 

Median Width -0.11 0.541 6E-06 -0.32 0.423 1E-09 -0.15 0.001 5.97E-07 

AIC 3964 2559 469 

  

Single Vehicle Crashes 

Average 15 Minute Volume Average Hourly Volume AADT 

Estimate 
Std. 

Error 
Pr(>|z|) Estimate 

Std. 

Error 
Pr(> |z| ) Estimate 

Std. 

Error 
Pr(> |z| ) 

Intercept -5.32 0.335 <2e-16 -3.74 0.427 <2e-16 -6.87 2.604 0.00833 

log (Volume) 0.09 0.059 3E-04 0.11 0.057 0.0571 0.67 0.256 8.59E-03 

Median Width -0.12 0.025 4E-04 -0.21 0.001 9E-11 -0.01 0.321 0.00272 

AIC 3909 2721 550 

 

For rural segments, 71% of the data came from segments with median widths greater than 

80 ft and no median barrier. The results indicated that wider medians generally had more crashes. 

This is contradictory to the urban segments, but consistent with previous research (Shankar et al., 

2004; Graham et al., 2014). The relationship between median width and crashes largely depend on 

type of facility, crash type, and also presence and type of median barrier. Cross median crashes 

tend to decrease with increasing median width, whereas rollover crashes tend to increase. For 

vertical curvature, presence of grade (both positive and negative) increases the probability of any 

types of crash. For injury crashes and single vehicle crashes, only negative grades had a statistically 

significant affect. These findings were similar irrespective of the volume disaggregation level, and 

also align with the results from previous research ( Graham et al., 2014; Shankar et al., 2004; 

Watson et al., 2014). Table 6 includes final selected models from this step. 
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TABLE 6: Parameter Estimates for Volume and Geometry Based Models for Rural Segments 

  

Total Crashes 

Average 15 Minute Volume Average Hourly Volume AADT 

Estimate 
Std. 

Error 
Pr(>|z| ) Estimate 

Std. 

Error 
Pr(>|z|  Estimate 

Std. 

Error 
Pr(>|z|) 

Intercept -8.41 0.307 <2e-16 -8.04 0.385 <2e-16 -9.04 1.289 2E-12 

log (Volume) 0.56 0.051 <2e-16 0.57 0.0524 <2e-16 0.87 0.131 2E-11 

Median Width 0.43 0.138 5E-06 0.51 0.315 3E-09 0.65 0.902 0.0153 

Grade of VC   

Negative 0.42 0.092 5.E-06 0.48 0.098 8.E-07 0.55 0.106 3E-07 

Positive 0.38 0.133 0.00465 0.33 0.143 2E-02 0.41 0.161 0.0102 

Percent of HC 0.05 0.001 6E-11 0.06 0.009 9E-11 0.06 0.008 3E-14 

Length of HC -2.74 0.472 4E-09 -3.15 0.515 8E-10 -3.82 0.476 1E-15 

AIC 5977 3864 796 

  

Injury Crashes 

Average 15 Minute Volume Average Hourly Volume AADT 

Estimate 
Std. 

Error 
Pr(>|z|) Estimate 

Std. 

Error 
Pr(>|z|) Estimate 

Std. 

Error 
Pr(>|z|) 

Intercept -9.29 0.532 <2e-16 -8.46 0.629 <2e-16 -11.07 2.125 2E-07 

log (Volume) 0.51 0.087 8E-09 0.47 0.086 3E-08 0.95 0.216 1E-05 

Median Width 0.24 0.711 1E-03 0.36 0.667  2E-05 0.29 0.201 0.0255 

Grade of VC   

Negative 0.35 0.161 3E-02 0.36 0.161 0.0248 0.49 0.167 3E-03 

Positive 0.16 0.243 0.4989 0.03 0.255 0.8909 0.36 0.267 0.1784 

Percent of HC 0.05 0.015 8E-04 0.04 0.016 9E-03 0.041 0.014 4E-03 

Length of HC -2.59 0.855 2E-03 -2.61 0.936 5E-03 -2.70 0.807 8E-04 

AIC 2416 1745 544 

  

Single Vehicle Crashes 

Average 15 Minute Volume Average Hourly Volume AADT 

Estimate 
Std. 

Error 
Pr(>|z|) Estimate 

Std. 

Error 
Pr(>|z|) Estimate 

Std. 

Error 
Pr(>|z|) 

Intercept -7.09 0.374 <2e-16 -6.11 0.433 <2e-16 -4.03 1.309 2.E-03 

log (Volume) 0.23 0.059 1E-04 0.22 0.058 2E-04 0.28 0.135 3E-02 

Median Width 0.33 0.612 4E-03 0.41 0.125 2E-06 0.22 0.311 0.0122 

Grade of VC   

Negative 0.54 0.131 3E-05 0.44 0.124 4E-04 0.61 0.125 1E-06 

Positive 0.37 0.175 0.0351 0.14 0.179 0.4419 0.36 0.192 0.0602 

Percent of HC 0.04 0.012 6E-04 0.06 0.012 9E-07 0.05 0.009 3E-07 

Length of HC -2.32 0.654 4E-04 -3.47 0.672 2E-07 -2.99 0.556 7E-08 

AIC 3934 2699 624 
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6.4 Volume, Geometry and Flow Parameter Models 

The final sets of models were created by adding flow parameters to the models selected in 

the previous step. Average speed, standard deviation of speed, and the difference between speed 

limit and average speed (called the delta speed hereafter) were selected to represent traffic flow. 

AADT based models were not developed for this alternative since average speed over a year 

showed little variability.  These models were developed twice; first with speed data from the 

continuous count stations and then repeating the same model with speed data from INRIX. This 

was done to compare the quality of data between these sources and how they affect the model fit.  

 

Table 7 shows the rural models that include speed parameters. For total crashes, speed was 

negatively related to crashes, meaning that lower average speed is correlated with higher crash 

frequency. Lower average speeds indicate the presence of congestion, so this relationship is 

intuitive for rural sites. These models also show that as standard deviation of hourly average speeds 

or 15-minute average speed increases, probability of crashes also increases. 

 

For models based on level of injury, it was found that standard deviation is positively 

related to crashes for both injury and PDO crashes. The variable delta speed had a negative 

relationship for both types of crashes. Delta speed is defined as the difference between posted 

speed limit and average speed. A positive value of delta would mean average speed is lower than 

the speed limit, indicating congestion. A negative value, on the other hand, would represent free 

flow conditions. A negative relationship between this variable and property damage crashes means 

that this type of crashes increases when congestion increases. This is a logical relationship since 

during congestion, speed is lower so the probability of the crash being an injury crash is lower.  

The negative relationship between delta speed and injury crashes seems counter intuitive since 

higher speeds are generally associated with more severe injuries. This result could be due to how 

injury was defined, and the type of data used for modeling. Fatal and injury crashes were combined 

in this category and range from a crash being fatal to a minor injury that does not require any 

doctor or hospital visit. Separating fatal and severe injury crashes from minor injury crashes might 

shed some light on the relationship.  Even though this issue was not explicitly addressed in this 

paper, it could be an interesting area for future research. This relationship also might be specific 

to this particular dataset.  This analysis was based on rural continuous count station data where the 

maximum hourly volume observed was 3822 vph across two lanes. Thus, these results may be 
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driven by the fact that this dataset is dominated by locations that are often traveling near free flow 

and a broader variation in traffic speed is not expected.   

 

For crashes involving single vehicle, average speed and standard deviation both were 

significant and followed an intuitive relation showing that as speed increases, single vehicle 

crashes increase. Increase in average speed means there is no congestion, which also means fewer 

vehicles on the road. As the number of vehicles on the road increases and speed decreases, the 

probability of multiple vehicles being involved in a crash also increases. Multiple vehicle crash 

models for rural segments showed this relationship as well. 

 

The AIC value for models using INRIX speeds were worse than the continuous count 

station-based models. This is expected since continuous count station data is based on speeds of 

all traffic, whereas the probe data estimates link speed based on a sample of vehicles less than the 

entire population. While the AIC values for the INRIX models were lower than the count station 

models, the goal here was to evaluate if inclusion of the INRIX data could improve crash prediction 

models as compared to models without traffic speed parameters. The prediction accuracy is 

discussed in the model validation section below. For all the models, parameters for speed related 

variables didn’t vary much between two data sources. Since these two models essentially had the 

same data other than the speed component, this is an indication that the speed data from these two 

sources are not significantly different than each other in terms of their effect on the model.
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TABLE 7: Parameter Estimates for Volume, Geometry and Flow Parameter Based Models for Rural Segments 

 Models with Detector Speed Models with INRIX Speed 

Total Crashes 

Average 15 Minute Volume Average Hourly Volume Average 15 Minute Volume Average Hourly Volume 

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate 
Std. 

Error 
Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -1.31 1.770 <2e-16 -6.91 0.394 <2e-16 -1.66 1.760 <2e-16 -5.95 0.413 <2e-16 

log (Volume) 0.42 0.052 6E-16 0.45 0.054 <2e-16 0.36 0.058 3E-10 0.34 0.061 2E-08 

Grade of VC   

Negative 0.31 0.098 0.0016 0.33 0.098 0.0003 0.24 0.096 0.014 0.36 0.094 0.0002 

Positive 0.17 0.137 0.2164 0.07 0.149 0.3004 0.09 0.139 0.476 0.03 0.135 0.8272 

Percent of HC 0.05 0.008 2E-10 0.04 0.009 1E-09 0.05 0.007 3E-09 0.04 0.007 2E-06 

Length of HC -2.66 0.496 8E-08 -2.21 0.463 7E-09 -2.21 0.471 2E-06 -2.13 0.439 1E-06 

Average Speed -0.09 0.026 0.0001 0.06 0.012 3E-05 -0.09 0.026 8E-04 0.07 0.017 2E-05 

Std of Speed 0.13 0.022 2E-09 0.17 0.024 3E-10 0.15 0.022 2E-11 0.17 0.021 3E-07 

AIC 5805 3708 5903 3826 

Injury Crashes 

Average 15 Minute Volume Average Hourly Volume Average 15 Minute Volume Average Hourly Volume 

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate 
Std. 

Error 
Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -5.15 0.678 <2e-16 -7.25 0.612 0.0002 -8.19 0.902 <2e-16 -6.33 0.691 <2e-16 

log (Volume) 0.37 0.086 2E-05 0.36 0.093 0.0001 0.32 0.097 9E-04 0.26 0.101 0.001 

Percent of HC 0.04 0.015 0.0033 0.17 0.057 0.0618 0.04 0.014 0.006 0.21 0.053 0.001 

Length of HC -1.88 0.826 0.0023 -0.59 0.334 0.0066 -1.60 0.797 0.045 -0.68 0.329 0.037 

Std of Speed 0.11 0.039 0.0035 0.19 0.042 7E-07 0.12 0.041 0.004 0.17 0.035 3E-06 

Delta 0.15 0.044 0.0002 0.07 0.024 0.0003 0.16 0.039 6E-05 0.07 0.029 0.011 

AIC 2368 1681 2399 1741 

Property 

Damage Crashes 

Average 15 Minute Volume Average Hourly Volume Average 15 Minute Volume Average Hourly Volume 

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate 
Std. 

Error 
Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -2.73 0.132 0.008 -7.77 0.463 <2e-16 -8.04 0.406 <2e-16 -6.72 0.492 <2e-16 

log (Volume) 0.44 0.063 2E-12 0.52 0.07 <2e-16 0.37 0.069 1E-08 0.38 0.071 1E-07 

Grade of VC   

Negative 0.38 0.122 0.0017 0.42 0.156 1E-05 0.35 0.112 2E-04 0.43 0.111 0.0001 

Positive 0.26 0.168 0.1052 0.12 0.173 0.0504 0.23 0.163 0.158 0.19 0.156 0.2272 

Percent of HC 0.06 0.011 2E-08 0.06 0.011 5E-08 0.05 0.009 2E-08 0.05 0.008 3E-07 

Length of HC -2.83 0.595 2E-06 -2.51 0.592 6E-08 -2.66 0.542 1E-06 -2.41 0.501 1E-06 

Std of Speed 0.14 0.027 1E-07 0.16 0.027 7E-08 0.18 0.026 2E-12 0.17 0.023 7E-12 

Delta 0.07 0.028 0.008 0.05 0.015 3E-06 0.03 0.018 0.058 0.09 0.019 1E-08 

AIC 4406 2910 4493 2995 
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Single Vehicle 

Crashes 

Average 15 Minute Volume Average Hourly Volume Average 15 Minute Volume Average Hourly Volume 

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate 
Std. 

Error 
Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -7.04 0.374 <2e-16 -12.23 1.47 <2e-16 -9.69 1.38 2E-12 -13.28 1.53 <2e-16 

log (Volume) 0.21 0.062 0.0015 0.11 0.06 0.0008 0.14 0.069 0.052 0.07 0.069 0.0005 

Grade of VC   

Negative 0.55 0.132 3E-05 0.36 0.126 0.0004 0.53 0.129 6E-05 0.42 0.121 0.0005 

Positive 0.33 0.177 0.0731 0.06 0.186 0.7654 0.36 0.181 0.047 0.08 0.173 0.658 

Percent of HC 0.04 0.012 0.0003 0.04 0.012 2E-06 0.04 0.011 5E-04 0.04 0.009 8E-05 

Length of HC -2.66 0.682 9E-05 -2.93 0.678 6E-05 -2.42 0.642 2E-04 -2.91 0.589 6E-07 

Average Speed 0.03 0.015 0.0263 0.11 0.021 4E-06 0.06 0.021 0.006 0.13 0.024 3E-08 

Std of Speed 0.06 0.031 0.0073 0.13 0.035 0.0022 0.07 0.035 0.039 0.12 0.031 0.0002 

AIC 3855 2575 3918 2684 

Multiple Vehicle 

Crashes 

Average 15 Minute Volume Average Hourly Volume Average 15 Minute Volume Average Hourly Volume 

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate 
Std. 

Error 
Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -3.53 0.609 <2e-16 -3.94 0.893 <2e-16 -1.29 2.066 0.005 -1.42 0.283 0.0005 

log (Volume) 0.99 0.103 <2e-16 1.05 0.107 <2e-16 0.92 0.105 <2e-16 0.95 0.111 <2e-16 

Percent of HC 0.05 0.011 1E-05 0.04 0.013 0.001 0.04 0.01 2E-05 0.02 0.011 0.0506 

Length of HC -2.15 0.701 0.0021 -1.76 0.806 0.0029 -1.73 0.623 0.006 -1.57 0.681 0.004 

Average Speed -0.12 0.033 0.0003 -0.12 0.041 8E-05 -0.15 0.031 2E-06 -0.14 0.034 3E-05 

Std of Speed 0.22 0.029 8E-15 0.19 0.034 4E-06 0.22 0.028 4E-15 0.19 0.029 1E-10 

Delta 0.14 0.031 1E-05 0.16 0.037 9E-06 0.17 0.029 5E-09 0.18 0.033 4E-07 

AIC 3020 2005 3071 2053 
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Table 8 shows that the speed parameters showed consistent results for urban segments as 

well. Standard deviation of speed always had an increasing effect on crash frequency for all crash 

types. For total crashes, another significant flow parameter was delta speed. The models showed 

that crashes on urban segments increase as congestion increases.   

 

For injury models, only standard deviation of speed was a statistically significant flow 

parameter. For property damage crashes, models indicated that crashes increase as average speed 

decreases, which is again a logical finding.  

 

For crashes involving a single vehicle, urban segments showed similar results as rural 

segments where single vehicle crashes showed increasing trends with increases in average speed. 

A reverse trend was observed between congestion and multi vehicle crashes, where crash 

frequency increased with increasing congestion. 

 

Similar to the rural models, these relationships were consistent irrespective of the level of 

aggregation. The model parameters for volume, geometry, and flow models based on continuous 

count data and the corresponding models based on INRIX data were very close to each other. The 

AIC value for INRIX models were worse than the detector data-based models, which is again 

consistent with the findings from rural segments. In this case also, the main focus was to identify 

whether this drop-in quality in models make a significantly lower prediction quality or not.  
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TABLE 8: Parameter Estimates for Volume, Geometry and Flow Parameter Based Models for Urban Segments 

 

 
Models with Detector Speed Models with INRIX Speed 

Total Crashes 
Average 15 Minute Volume Average Hourly Volume Average 15 Minute Volume Average Hourly Volume 

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -10.59 0.755 <2e-16 -4.87 0.347 <2e-16 -7.64 0.665 <2e-16 -4.81 0.338 <2e-16 

log (Volume) 0.55 0.051 <2e-16 0.34 0.048 9E-13 0.58 0.052 <2e-16 0.32 0.048 9E-12 

Median Width -0.21 0.167 <2e-16 -0.22 0.366 <2e-16 -0.15 0.208 <2e-16 -0.28 0.278 <2e-16 

Std of Speed 0.08 0.009 <2e-16 0.13 0.012 <2e-16 0.11 0.013 <2e-16 0.16 0.111 <2e-16 

Delta 0.11 0.013 <2e-16 0.05 0.006 <2e-16 0.03 0.011 0.0002 0.02 0.009 1.4E-05 

AIC 7709 4264 8407 4887 

Injury Crashes 
Average 15 Minute Volume Average Hourly Volume Average 15 Minute Volume Average Hourly Volume 

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -11.14 1.34 <2e-16 -6.62 0.594 <2e-16 -8.07 1.16 <2e-16 -6.07 0.539 <2e-16 

log (Volume) 0.51 0.089 1E-08 0.36 0.079 6E-07 0.44 0.088 6E-07 0.32 0.072 8E-06 

Median Width -0.13 0.128 1E-10 -0.25 0.123 <2e-16 -0.17 0.146 2E-06 -0.19 0.135 <2e-16 

Std of Speed 0.07 0.017 2E-05 0.17 0.013 <2e-16 0.12 0.018 3E-10 0.15 0.009 <2e-16 

AIC 3274 2059 3515 2328 

Property 

Damage Crashes 

Average 15 Minute Volume Average Hourly Volume Average 15 Minute Volume Average Hourly Volume 

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -11.07 0.857 <2e-16 -3.22 0.497 <2e-16 -8.59 0.764 <2e-16 -3.58 0.617 5E-09 

log (Volume) 0.57 0.059 <2e-16 0.31 0.055 2E-08 0.64 0.061 <2e-16 0.33 0.052 3E-10 

Median Width -0.17 0.112 <2e-16 -0.16 0.011 1E-14 -0.13 0.011 <2e-16 -0.22 0.068 <2e-16 

Average Speed -0.06 0.013 6E-13 -0.07 0.052 5E-10 -0.11 0.012 <2e-16 -0.03 0.085 2E-06 

Std of Speed 0.08 0.011 9E-14 0.15 0.523 5E-10 0.09 0.012 0.0001 0.16 0.0118 <2e-16 

AIC 6288 3556 6869 4159 
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Single Vehicle 

Crashes 

Average 15 Minute Volume Average Hourly Volume Average 15 Minute Volume Average Hourly Volume 

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -8.75 1.131 <2e-16 -3.46 0.467 <2e-16 -7.19 1.05 7E-13 -2.94 0.449 <2e-16 

log (Volume) 0.11 0.062 0.0007 0.47 0.066 5E-05 0.13 0.056 2E-05 0.49 0.065 8E-07 

Std of Speed 0.06 0.018 0.0006 0.05 0.022 2E-06 0.08 0.016 0.0003 0.07 0.018 8E-06 

Average Speed 0.09 0.022 2E-06 0.02 0.008 0.0003 0.07 0.018 3E-06 0.03 0.015 0.00009 

AIC 3694 2411 3898 2681 

Multiple Vehicle 

Crashes 

Average 15 Minute Volume Average Hourly Volume Average 15 Minute Volume Average Hourly Volume 

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -13.94 0.988 <2e-16 -7.79 0.486 <2e-16 -11.06 0.867 <2e-16 -7.74 0.464 <2e-16 

log (Volume) 1.02 0.077 <2e-16 0.64 0.065 <2e-16 1.07 0.574 <2e-16 0.63 0.064 <2e-16 

Std of Speed 0.09 0.107 <2e-16 0.15 0.014 3E-08 0.13 0.118 4E-14 0.19 0.013 <2e-16 

Delta 0.11 0.602 4E-11 0.15 0.006 6E-06 0.15 0.472 <2e-16 0.11 0.011 2E-06 

AIC 5619 3092 6204 3689 
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6.5 Model Comparison 

Tables 9 and 10 shows the comparison of performance among the models developed. The 

AADT models didn’t include speed as a variable because averaging hourly speed over a year did 

not capture the effect of speed on traffic conditions and crashes. For comparison purposes, the 

volume, flow, and geometry model were compared to the AADT based volume and geometry 

models. Model comparison was important for multiple reasons. First, it provided a check on 

whether adding geometric and then flow parameters really improve model performance as 

expected. Second, it showed how different levels of data aggregation affect the performance.  

Finally, it shows whether the model performance is significantly different depending on the source 

of speed data. For all models, irrespective of type of facility, type of crash, or level of data 

aggregation, prediction accuracy consistently improved as geometric and then speed variables 

were added. This improvement was higher in magnitude across all validation MOEs when the 

speed component was added to the model.  

 

The average 15-minute volume models gave a mixed result in comparison to the AADT 

model. Even though it did perform better than the AADT based model most of the time, there were 

certain models (injury models for urban segments, single vehicle models for rural segments) when 

the model could not outperform the AADT models. It is possible that at a 15-min level data is too 

noisy to capture the true relationship between crashes and flow parameters. Likewise, inaccuracies 

in time stamps of crash reports could influence results at that level.  The prediction accuracy 

improved significantly for all models when average hourly data was used. In this case, the 

aggregation interval was not too disaggregated to capture the random nature of crashes, also not 

too aggregated to lose the variation in traffic. These models consistently performed better than the 

AADT based model for all MOEs.  

 

For the rural hourly volume, geometry, and flow models, MAD, MAPE, and MSPE 

improved by 11%, 33% and 29% respectively while using continuous count station as speed data 

source and 10%, 28%, and 17% respectively when INRIX speed data was used.  For the urban 

models, similar trends were observed where MAD, MAPE and MSPE improved by 20%, 22%, 

and 38% respectively for detector data and 20%, 19% and 32% for INRIX data. In both cases, 

these models were compared to AADT based volume and geometry models. This trend was 

consistent for all other models as well.  Even though models using INRIX data performed slightly 
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worse than the ones based on continuous count data, they were still far better than AADT based 

models. 

 

The comparison results reinforce the importance of selecting an appropriate disaggregation 

level. Due to the random nature of crash occurrence, the 15 min data had too much variability to 

generate useful models. Similarly, aggregated models that rely on AADT may fail to capture 

variations traffic flow that could influence safety. Finding a proper disaggregation level as well as 

significant variables that influence crash frequency is one of the major concerns in the area of crash 

prediction modeling.  Another very important finding is that speed variables played a significant 

role in model performance irrespective of their source. This essentially opens up the possibility to 

extend the analysis to sections without a continuous count station. Since current models only rely 

on volume, quality of volume data dictates the quality of model. This research showed that INRIX 

data can be used as an alternate source for speed data without reducing the quality of crash 

prediction models. Models developed using INRIX data performed very similarly to the 

continuous count station data during model validation. For all crash types and model categories, 

INRIX models consistently outperformed AADT models. This indicates that it may be possible to 

use INRIX data along with historic volume distributions from short duration count stations (where 

only volume data is collected intermittently) to run this analysis on a larger scale.  

 

TABLE 9: Model Comparison for Urban Segments * 

  

Total Crashes 

Average 15 min Volume Average Hourly Volume AADT 

MAD MAPE MSPE MAD MAPE MSPE MAD MAPE MSPE 

Volume and length models 
8.22 58% 152.42 8.19 54% 140.59 

8.65 59% 185.38 
(-5%) (-1%) (-18%) (-5%) (-5%) (-24%) 

Volume, length, and geometry 

models 

8.13 52% 140.56 7.72 40% 120.92 
8.52 52% 181.91 

(-5%) (0%) (-23%) (-9%) (-12%) (-34%) 

Volume, length, geometry, and 

flow state models ** 

7.87 45% 129.97 6.81 30% 112.47 
─ ─ ─ 

(-8%) (-7%) (-29%) (-20%) (-22%) (-38%) 

Volume, length, geometry, and 

flow state models (INRIX) ** 

8.11 40% 138.81 6.82 33% 124.35 
─ ─ ─ 

(-5%) (-12%) (-24%) (-20%) (-19%) (-32%) 

  

Fatal & Injury Crashes 

Average 15 min Volume Average Hourly Volume AADT 

MAD MAPE MSPE MAD MAPE MSPE MAD MAPE MSPE 

Volume and length models 
2.81 39% 18.85 2.65 28% 12.13 

2.79 31% 18.21 
(+1%) (+8%) (+4%) (-5%) (-3%) (-33%) 

Volume, length, and geometry 

models 

2.77 36% 15.14 2.56 21% 10.83 
2.68 29% 14.94 

(+3%) (+7%) (+1%) (-4%) (-8%) (-28%) 

Volume, length, geometry, and 

flow state models ** 

2.53 29% 12.68 2.44 19% 8.61 
─ ─ ─ 

(-6%) (0%) (-15%) (-9%) (-10%) (-42%) 

Volume, length, geometry, and 

flow state models (INRIX) ** 

2.67 31% 12.73 2.34 24% 9.71 
─ ─ ─ 

(0%) (+2%) (-15%) (-13%) (-5%) (-35%) 
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PDO Crashes 

Average 15 min Volume Average Hourly Volume AADT 

MAD MAPE MSPE MAD MAPE MSPE MAD MAPE MSPE 

Volume and length models 
6.53 47% 90.4 6.36 49% 80.97 

6.85 49% 106.72 
(-5%) (-2%) (-15%) (-7%) (0%) (-24%) 

Volume, length, and geometry 

models 

6.41 44% 86.56 6.18 42% 71.72 
6.78 47% 104.29 

(-5%) (-3%) (-17%) (-9%) (-5%) (-31%) 

Volume, length, geometry, and 

flow state models ** 

6.23 41% 77.76 5.83 37% 63.14 
─ ─ ─ 

(-8%) (-6%) (-25%) (-14%) (-10%) (-39%) 

Volume, length, geometry, and 

flow state models (INRIX) ** 

6.11 37% 81.09 5.95 38% 68.41 
─ ─ ─ 

(-10%) (-10%) (-22%) (-12%) (-9%) (-34%) 

  

Single Vehicle Crashes 

Average 15 min Volume Average Hourly Volume AADT 

MAD MAPE MSPE MAD MAPE MSPE MAD MAPE MSPE 

Volume and length models 
2.79 59% 13.79 2.71 55% 11.3 

2.72 57% 12.19 
(+3%) (+2%) (+13%) (0%) (-2%) (-7%) 

Volume, length, and geometry 

models 

2.63 53% 11.31 2.59 47% 9.94 
2.64 55% 11.72 

(+0%) (-2%) (-3%) (-2%) (-8%) (-15%) 

Volume, length, geometry, and 

flow state models ** 

2.46 42% 10.88 2.44 39% 6.64 
─ ─ ─ 

(-7%) (-13%) (-7%) (-8%) (-16%) (-43%) 

Volume, length, geometry, and 

flow state models (INRIX) ** 

2.61 51% 11.00 2.47 43% 9.01 
─ ─ ─ 

(-1%) (-4%) (-6%) (-6%) (-12%) (-23%) 

  

Multiple Vehicle Crashes 

Average 15 min Volume Average Hourly Volume AADT 

MAD MAPE MSPE MAD MAPE MSPE MAD MAPE MSPE 

Volume and length models 
6.66 44% 95.51 6.63 42% 82.56 

6.76 44% 137.63 
(-1%) (0%) (-31%) (-2%) (-2%) (-40%) 

Volume, length, and geometry 

models 

5.58 42% 63.57 5.66 33% 71.08 
6.37 44% 133.06 

(-12%) (-2%) (-52%) (-11%) (-11%) (-47%) 

Volume, length, geometry, and 

flow state models ** 

5.51 35% 60.17 4.94 26% 57.81 
─ ─ ─ 

(-14%) (-9%) (-55%) (-22%) (-18%) (-57%) 

Volume, length, geometry, and 

flow state models (INRIX) ** 

5.54 38% 63.01 5.37 33% 69.18 
─ ─ ─ 

(-13%) (-6%) (-53%) (-16%) (-11%) (-48%) 

* Value in the parentheses represents the change compared to respective AADT based models. 

** These models were compared to the AADT based volume, length, and geometry models. 

TABLE 10: Model Comparison for Rural Segments * 

  

Total Crashes 

Average 15 min Volume Average Hourly Volume AADT 

MAD MAPE MSPE MAD MAPE MSPE MAD MAPE MSPE 

Volume and length models 
3.58 58% 30.63 3.52 70% 29.89 

3.92 85% 34.06 
(-9%) (-27%) (-10%) (-10%) (-15%) (-12%) 

Volume, length, and geometry 

models 

3.47 58% 27.88 3.45 58% 25.24 
3.62 76% 28.18 

(-4%) (-18%) (-1%) (-5%) (-18%) (-10%) 

Volume, length, geometry, and 

flow state models ** 

3.37 54% 23.77 3.21 43% 20.11 
─ ─ ─ 

(-7%) (-22%) (-16%) (-11%) (-33%) (-29%) 

Volume, length, geometry, and 

flow state models (INRIX) ** 

3.35 59% 22.07 3.24 48% 23.5 
─ ─ ─ 

(-7%) (-17%) (-22%) (-10%) (-28%) (-17%) 

  

Fatal & Injury Crashes 

Average 15 min Volume Average Hourly Volume AADT 

MAD MAPE MSPE MAD MAPE MSPE MAD MAPE MSPE 

Volume and length models 
1.31 47% 2.97 1.15 50% 2.83 

1.22 62% 3.17 
(+7%) (-15%) (-6%) (-6%) (-12%) (-11%) 

Volume, length, and geometry 

models 

1.31 41% 2.86 1.13 40% 2.23 
1.2 55% 2.94 

(+9%) (-14%) (-3%) (-6%) (-15%) (-24%) 

Volume, length, geometry, and 

flow state models ** 

1.17 39% 2.47 1.09 33% 1.72 
─ ─ ─ 

(-3%) (-16%) (-16%) (-9%) (-22%) (-41%) 

Volume, length, geometry, and 

flow state models (INRIX) ** 

1.17 37% 2.83 1.1 38% 1.85 
─ ─ ─ 

(-3%) (-18%) (-4%) (-8%) (-17%) (-37%) 
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PDO Crashes 

Average 15 min Volume Average Hourly Volume AADT 

MAD MAPE MSPE MAD MAPE MSPE MAD MAPE MSPE 

Volume and length models 
2.89 67% 19.2 2.99 59% 22.45 

3.07 93% 23.79 
(-6%) (-26%) (-19%) (-3%) (-34%) (-6%) 

Volume, length, and geometry 

models  

2.75 64% 17.46 2.87 55% 18.4 
2.92 87% 22.7 

(-6%) (-23%) (-23%) (-2%) (-32%) (-19%) 

Volume, length, geometry, and 

flow state models ** 

2.65 58% 12.84 2.77 52% 17.45 
─ ─ ─ 

(-9%) (-29%) (-43%) (-5%) (-35%) (-23%) 

Volume, length, geometry, and 

flow state models (INRIX) ** 

2.7 60% 16.23 2.74 58% 17.1 
─ ─ ─ 

(-8%) (-27%) (-29%) (-6%) (-29%) (-25%) 

  

Single Vehicle Crashes 

Average 15 min Volume Average Hourly Volume AADT 

MAD MAPE MSPE MAD MAPE MSPE MAD MAPE MSPE 

Volume and length models 
2.15 85% 9.79 2.09 71% 6.08 

2.05 83% 6.68 
(+5%) (+2%) (+47%) (+2%) (-12%) (-9%) 

Volume, length, and geometry 

models 

1.92 72% 6.43 1.88 62% 5.85 
1.98 77% 6.42 

(-3%) (-5%) (0%) (-5%) (-15%) (-9%) 

Volume, length, geometry, and 

flow state models ** 

1.89 65% 6.27 1.79 57% 5.8 
─ ─ ─ 

(-5%) (-12%) (-2%) (-10%) (-20%) (-10%) 

Volume, length, geometry, and 

flow state models (INRIX) ** 

1.92 58% 6.38 1.83 60% 5.64 
─ ─ ─ 

(-3%) (-19%) (-1%) (-8%) (-17%) (-12%) 

  

Multiple Vehicle Crashes 

Average 15 min Volume Average Hourly Volume AADT 

MAD MAPE MSPE MAD MAPE MSPE MAD MAPE MSPE 

Volume and length models 
2.44 49% 15.13 2.51 53% 14.31 

2.53 61% 15.05 
(-4%) (-12%) (+1%) (-1%) (-8%) (-5%) 

Volume, length, and geometry 

models 

2.31 47% 13.26 2.23 43% 12.87 
2.41 54% 12.93 

(-4%) (-7%) (+3%) (-7%) (-11%) (0%) 

Volume, length, geometry, and 

flow state models ** 

2.19 44% 11.25 2.03 34% 11.31 
─ ─ ─ 

(-9%) (-10%) (-13%) (-16%) (-20%) (-13%) 

Volume, length, geometry, and 

flow state models (INRIX) ** 

2.23 41% 10.03 2.19 39% 12.09 
─ ─ ─ 

(-7%) (-13%) (-22%) (-9%) (-15%) (-6%) 

* Value in the parentheses represents the change compared to respective AADT based models. 

** These models were compared to the AADT based volume, length, and geometry models. 

 

7. CONCLUSIONS AND FUTURE RESEARCH  

Crash prediction models have been a major focus for researchers in the field of traffic safety. Past 

research examining the influence of traffic speed relied on data from point detectors, hence limiting 

the coverage. This study developed a general relationship that accounts for both hourly speed and 

volume on freeway segments in Virginia. The results indicated that inclusion of variables, like 

speed, standard deviation, and difference in speed could create improvements in the quality of 

crash prediction models. As availability and reliability of observed traffic data significantly affect 

the accuracy of the study, using probe data, which has better network coverage, might be useful to 

improve the availability and quality of data. This research showed that average hourly volume 

profiles could be coupled with hourly speed to generate better crash predictions even when the 

speed data does not come from a continuous count station.  This finding is important since INRIX 
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data has been used in numerous studies related to traffic operations so far, but their application in 

safety research has been limited. 

 

Future research could use average hourly volume distributions derived from short-term 

counts in combination with probe data to make the methodology developed in this paper more 

broadly applicable. Future work in this direction would consider year to year correlation in the 

data that was not addressed in this paper.  

 

Additionally, models that assess safety when traffic control and cross section are changed 

dynamically have not been estimated previously. Currently, there is no existing methodology for 

safety assessment of facilities with dynamic traffic control or geometry such as part time shoulder 

use or variable speed limits (Dutta et al., 2018; Gonzales et al., 2018). Another gap in current 

research is in the area of work zone safety. Work zones are only active for a portion of the day, and 

it is important to know how the timing of lane closures impacts safety. The HSM provides crash 

modification functions that account for the effects of project length and duration on crash 

frequency but do not allow for explicit comparisons of safety effects of daily lane closures (Kweon 

et al.,2014).  Further extension of the approaches developed in this paper could enable more 

proactive analysis of work zone impacts while the traffic management plans are in the planning 

stage. 
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ABSTRACT 

Transportation safety has always been an intensively researched topic, with the goal of 

better understanding why crashes occur and how different variables affect the occurrence of 

crashes. Traffic and geometric conditions have a significant impact on crash occurrence. 

Traditional traffic safety analyses of crash frequency usually focus on highly aggregated cross-

sectional data and ignores the time-varying nature of some critical factors. In an effort to address 

the issue, this research focused on the presence of spatial and temporal correlation in disaggregated 

datasets. Hourly data from 110 rural 4-lane segments and 80 urban 6-lane segments were used 

from 2011 to 2017. To properly account for the over-dispersion of data and unobserved 

heterogeneity, generalized linear mixed effect models (GLMM) were developed and contrasted 

against negative binomial (NB) models. The volume data used in this study comes from detectors 

that collects data ranging from continuous counts throughout the year to only a couple of weeks 

every other year (short counts). While developing disaggregated models, the difference in data 

availability from these sources can be a potential source of error. Hence, evaluating the change in 

performance of prediction models with changes in volume data availability was another focus for 

this research. The results showed that the best models include a combination of hourly volume, 

selected geometric variables, and speed related parameters. Further investigation revealed that the 

positive effect of using a more inclusive and bigger dataset was larger than the effect of accounting 

for data correlation. This showed that using short count stations as a data source does not diminish 

the quality of the developed models, thus indicating that these methods could be broadly applied 

across agencies, even when volume data is relatively sparse.  

 

1. INTRODUCTION 

Investigating factors contributing to freeway crashes play a crucial role in identifying effective 

safety countermeasures. With advancements in data collection and modeling methodologies, an 

increasing number of safety factors are better understood and new safety improvement measures 

are being implemented. However, crashes are complex events that involve a large variety of factors 

with multifaceted interactions, making it challenging to fully understand them.  Roadway 

characteristics, such as geometric design elements, traffic control measures, and traffic conditions 

contribute to about 30% of all crashes, either alone or in combination with human, vehicular, or 

environmental factors (Sabey and Taylor, 1980).  
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Most prior research efforts focused on studying crash counts that are highly aggregated 

over a particular time period, usually a year or even several years. The safety performance 

functions (SPFs) recommended in the Highway Safety Manual (HSM) are limited to  relating crash 

occurrence to annual average daily traffic (AADT) (American Association of State Highway 

Transportation Officials, 2010). A disadvantage of using AADT in safety analysis is that it does 

not capture all the variation in traffic flow that occurs throughout the day and could mask safety 

effects of operational changes on a roadway. Flow characteristics such as variation in speed and 

level of congestion play a significant role in crash occurrence and are not currently accounted for 

in the HSM. Several past studies have indicated the importance of including geometric and flow 

variables in crash prediction models (Choudhary et al., 2018; Garber, 2000; Geedipally et al., 2017; 

Shankar et al., 1995; Tanishita and van Wee, 2017).  

 

Previous research by the authors showed that using average hourly volume along with 

average speed and selected geometric variables from high quality continuous count station data 

improved predictions compared to models that used AADT and no other traffic state information 

(Dutta and Fontaine, 2019a, 2019b). The researchers also evaluated private sector probe data from 

the vendor INRIX data as an alternate source for speed data and concluded that probe speed can 

be used in lieu of detector speed data without reducing the quality of crash prediction models. 

These results were based only on continuous count stations that collect quality data but are often 

widely spaced on state road systems.   Most states collect short duration counts (which could range 

from 2 days to multiple months) on a broader geographic footprint of their roadway network than 

continuous count data.  While these short count stations are much more broadly available, they do 

not provide as complete of a picture of true average travel as the continuous count stations.  Given 

that the prior work showed that crash predictions could be improved by using more disaggregate 

data at continuous count stations, this paper sought to determine if those trends could extend to 

short count stations where data availability is more limited, potentially broadening application of 

these methods.  

 

Additionally, this study incorporates consideration of temporal and spatial variation in the 

crash prediction models. With hourly data collected from multiple years and from different parts 

of the state, correlation problems may exist among the records in both the spatial and temporal 

domains. As pointed out by several researchers, if the correlation is not appropriately addressed in 
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the model, inconsistent parameters estimation would occur, and erroneous inferences would be 

made consequently (Lord and Mannering, 2010; Mannering and Bhat, 2014; Washington et al., 

2010). 

 

2. RESEARCH OBJECTIVE  

The objectives of this paper are to define the relationship between average hourly crash 

frequency on freeways and explanatory variables that vary with time and geography using data 

commonly available to transportation agencies over a broad network. For this paper, data 

representing crashes that occurred on rural 2-lane and urban 3-lane freeway directional segments 

in Virginia were collected for a seven-year period on an hourly level. The dataset contains 

information pertaining to the traffic conditions, geometry, and volume. Using different geometric 

and traffic variables, predictive models were developed for both urban and rural freeway segments 

and for different severities. The volume data used in this study comes from detectors that often did 

not collect data continuously, so the research sought to determine if positive results previously 

obtained with continuous count station data were transferable to locations with lower volume data 

availability. Hence, evaluating the change in performance of prediction models with changes in 

volume data availability and accounting for the presence of correlation in data were examined as 

a way to broaden the applicability of these models to transportation agencies. 

 

3. LITERATURE REVIEW 

Numerous statistical models have been developed to predict the expected number of crashes on 

roads as well as to identify the various factors associated with the occurrence of crashes. These 

factors can be categorized into human factors, traffic flow characteristics (e.g. volume, speed), 

roadway characteristics (e.g. geometric designs and pavement conditions), and environmental 

conditions (e.g. weather and surface conditions).  

 

Researchers found that geometric factors such as horizontal curve length, the degree of 

curvature, and vertical curvature contributes to crash likelihood (Jianming Ma and Kockelman, 

2006; Khan et al., 2013; Miaou, 1994; Tegge et al., 2010; Zegeer et al., 1990).  Milton and 

Mannering examined the association between various geometric features and crash frequency 

while controlling for traffic exposure. For example, more crashes are expected on sharper and 

longer horizontal curves.(Milton and Mannering, 1996).  Vertical grade also appears to have a 
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strong effect on crash frequency (Cafiso et al., 2010; Geedipally et al., 2017; Tegge et al., 2010). 

A previous study indicated that in comparison to sections with grades less than 2%, those with 

maximum grades exceeding 2% will experience a significant increase in crash frequency (Shankar 

et al., 1995). A study of median crashes indicated that cross-median crashes are reduced with wider 

medians; but median-related crashes increase as the median width increases (Graham et al., 2014; 

Knuiman et al., 1993) 

 

Speed is an important descriptor of traffic operations that has an effect on crash severity 

and frequency, but this variable is difficult to accurately capture in aggregate models that use 

AADT to predict annual crashes. Researchers have found that with increase in flow, crash rate 

initially remains constant until a certain critical threshold combination of speed and density is 

reached, and then rises rapidly (Golob et al., 2004; Imprialou et al., 2016; Kononov et al., 2012; 

Lord et al., 2005; Solomon, 1964). Researchers who developed models using macroscopic or 

hourly level models also often ignored the correlation that exists in disaggregated data and used 

generalized linear models (GLM) to develop predictions (Ivan et al., 2000; Persaud and Dzbik, 

1993; Yu et al., 2018).  To develop crash risk models at the disaggregated level requires 

overcoming some technical challenges, such as correlations by sharing unobserved effects among 

multiple observations generated from the same road segments and/or time period (Lord and 

Mannering, 2010; Shankar et al., 1998; Ulfarsson and Shankar, 2003).  

 

In earlier work, Dutta and Fontaine used continuous count station data from 4 lane rural 

freeway segments in Virginia and developed crash prediction models using traffic and geometric 

information.  They used both raw hourly volume (as observed each day at the site) and average 

hourly volume (expressed as an average volume for each hour of the day for each site over each 

year). The results showed that using average hourly volume along with average speed and selected 

geometric variables performed better than the raw volume format, due to the influence of missing 

time intervals. When comparing an AADT-based model to an average hourly volume model, the 

mean absolute prediction error improved by 20% for total crashes after including geometric 

variables, and by 30% after adding speed to the volume and geometry model. These results provide 

a strong indication that crash predictions could be improved using more disaggregate data and 

justifies further exploration of these relationships using larger datasets (Dutta and Fontaine, 

2019a).  
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Subsequent research by same authors evaluated models using traffic and geometric 

information at 15-minute, hourly, and annual aggregation from 4 lane rural freeway and 6 lane 

urban freeway segments in Virginia. This study also examined the effects of using speeds from 

physical sensors versus speed estimates from private-sector probe speed data. The mean absolute 

prediction error improved by 11% for rural models and 20% for urban models when average hourly 

volume, speed and geometry models were compared to AADT based models. When private sector 

probe speed data was used, the rural model performance improved by 10% and urban models by 

20% relative to the AADT based models.  These results indicate that probe based data can be used  

in developing crash models without harming prediction capability (Dutta and Fontaine, 2019b). 

Both these studies only used high quality volume data from continuous count stations and ignored 

the spatial and temporal correlation that exists in a disaggregated dataset. 

 

Statistical methods that incorporate panel data structure have gained popularity due to their 

capacity to address both time-series and cross-sectional variations.  McCarthy employed fixed-

effects negative binomial models to examine fatal crash counts using 9 years of panel data for 418 

cities and 57 areas in the U.S. (Mccarthy, 1999). Noland used fixed- and random-effects negative 

binomial models to investigate the effects of roadway improvements on traffic safety using 14 

years of data for all 50 U.S. states (Noland, 2003). A random effects negative binomial model 

(RENB) was used by many researchers who found it to be more suitable than the conventional NB 

model (Caliendo et al., 2007; Hausman et al., 1984; Shankar et al., 1998). In the RENB model, the 

joint effects of the unobserved variables are assumed to follow certain distributions along the 

spatial and temporal dimensions. Another popular methodology that has been advocated in recent 

years is random parameters negative binomial (RPNB) model (Anastasopoulos and Mannering, 

2009; Han et al., 2018; Venkataraman et al., 2013). Compared to the RENB model, rather than 

treating the intercept term as the only random component, the RPNB model allows each estimated 

parameter to vary across individual observations, including the unobserved heterogeneity along 

the spatial and temporal dimensions.  

 

Random effects negative binomial (RENB) models and random parameters negative 

binomial (RPNB) models were developed to investigate the factors contributing to freeway crashes 

in China (Hou et al., 2018). The analysis revealed a large number of crash frequency factors, 

including several interesting and important factors rarely studied in the past, such as the safety 
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effects of climbing lanes. Moreover, the RENB and RPNB models were found to considerably 

outperform the NB model. Chin and Quddus investigated the relationship between crash 

occurrence and the geometric, traffic and control characteristics of signalized intersections in 

Singapore using the random effect model (Chin and Quddus, 2003). The results showed that total 

approach volumes, the numbers of phases per cycle, the presence of an uncontrolled left-turn lane, 

and the presence of a surveillance cameras were among the variables that were the highly 

significant. Another study my Ma et al. on  the relationship between crash frequency and potential 

influence factors on an expressway in China also showed preference for the random effect model 

in comparison to the traditional negative binomial model (Ma et al., 2017). A study by Li et al. 

used a mixed-effect negative binomial (MENB) regression model and BPNN neural network 

model to consider bus crashes (Li et al., 2018). The results show that the safety benefits are more 

significant when providing bus priority measures. The performance of MENB model results shows 

that it is advantageous to use a mixed-effects modeling method to predict accident counts in 

practice because it can take into account the effects of specific factors. Another analysis on urban 

road segments in Turin, Italy also favored the use of mixed effect models (Mussone et al., 2017). 

Data from 2006 to 2012 were used and traffic flows and weather station data were aggregated in 

5 minutes intervals for 35 minutes across each crash event. Two different approaches, a back-

propagation neural network model and a mixed effect model, were used. The researchers 

concluded that the mixed model not only performed well but was also easier to interpret.  

 

The mixed effect models combine two popular methodologies for modeling repeated 

measurements of crash data – fixed effects and random effects models. They are also widely 

accepted for their ability to handle both spatial and temporal correlation in data. This research 

adopted a mixed effect modeling approach for developing crash prediction models. 

 

4. DATA COLLECTION AND PREPARATION 

Volume, speed and geometry data were collected for 2-lane directional rural freeway segments and 

3-lane directional urban freeway segments from 2011 to 2017 using Virginia Department of 

Transportation (VDOT) data systems.  The data was collected on an hourly level and the segments 

came from different VDOT construction districts.  
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For this research, only basic freeway segments free from ramps or interchanges were 

considered. These segments were identified using the detector database maintained by the VDOT 

Traffic Engineering Division and the VDOT GIS integrator. Both of these sources contain direction 

and location information that helped to define the segments in a way that there was no entry/exit 

ramp within 0.5 miles of the start/end of the segment. It was important for this analysis to define 

a segment surrounding each count station where it could be assumed that homogeneous conditions 

were present for the entire length. If the station was on a link with homogeneous geometric 

characteristics that was greater than 2 miles in length, a buffer of a maximum 2 miles around the 

actual location of the detector (1 mile upstream and downstream) was created. The number of 

lanes, lane and shoulder width, speed limit, median type, and median width were used to define 

the geometric homogeneity of segment. Since this research focuses on interaction between 

geometry and flow parameters and how they define safety instead of a design focused approach, 

horizontal and vertical curvature was not used to define the segment, instead they were used as 

variables to identify their interaction with flow.   

 

Table 1 shows a summary of data used in this research and their sources. Each of these data 

elements is discussed in more detail below. 

 

TABLE 1: Summary of data 

Type of 

Data 

Source 

(Maintaining 

Agency) 

Data Format Data Elements 

Traffic 

Volume 

Count Stations on 

Virginia Freeways 

(VDOT) 

Data was extracted for every hour for the entire 

study period.  This raw data was then converted 

to an average hourly volume for each year. AADT 

data was directly available from the source. 

• Average Hourly Volume 

• AADT 

Speed Probe data from 

private data source 

(INRIX) 

Data was extracted for every hour for the entire 

study period.  The raw data was then converted to 

average hourly speed for each year. 

• Average Hourly Speed  

Roadway 

Geometry 

Highway Traffic 

Records 

Information 

System (VDOT) 

Comprehensive inventory on detailed geometric 

data for Virginia.  The data is provided for each 

roadway link in the state. 

• Number of lanes 

• Horizontal and Vertical 

Curvature 

• Median Type and Width 

• Shoulder Width 

• Speed Limit 

Crashes Roadway Network 

System (VDOT) 

Detailed information on time, location, crash 

type, injury and road condition. The crash models 

predicted crashes/hour. During validation, 

predicted number of crashes were summed to 

create yearly numbers to compare with AADT 

based crash models that predict crashes/year. 

• Total Crashes 

• Fatal and Injury Crashes 
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4.1 Volume Data 

In Virginia, traffic volumes are collected both at permanent count stations on a continuous basis 

and using short-term counts conducted throughout the state on a rotating basis. The continuous 

count stations also record speed and usually maintain a high level of data quality. The short count 

stations are more common, but they do not collect data on a continuous basis and may have a lower 

level of data quality. Previous research by Dutta and Fontaine evaluated the potential for using 

speed information from a private sector probe data provider (INRIX) in combination with 

continuous count volume data, and validated that INRIX data performed very similarly to the 

continuous count station speed data (Dutta and Fontaine, 2019b). As a result, the count stations 

were only used to generate traffic volume data.   

 

A total of 110 count stations were used for rural segments (31 continuous count, 79 short 

count); for urban segments, the total number of stations were 80 (24 continuous count, 56 short 

count). For all the continuous count stations, only the time periods where volume data meet the 

quality threshold set by VDOT were included in the dataset, resulting in a total loss of 16% data 

for the rural segments and 9% of data for urban segments after screening. The short count stations 

collect data periodically, so average volumes were determined using less than an entire year’s 

worth of data. The average hourly volume data was computed by averaging data for each available 

hour for each site, so there were always 24 hours of data available for each year and each site for 

the final dataset, even though the number of days used to compute averages varied among sites. 

 

4.2 Speed Data 

Speed data was obtained from the private sector travel time data provider INRIX at an 

hourly interval. INRIX is a private company that processes GPS and fleet probe data to estimate 

speeds, which are reported spatially using traffic message channel (TMC) links. TMC links are 

spatial representations developed by digital mapping companies for reporting traffic data and 

consist of homogeneous segments of roadways. Using the detector location information from 

VDOT and the latitude and longitude information from INRIX, it was possible to match the 

location of selected segments and corresponding TMCs. VDOT currently uses INRIX data to 

support a variety of performance measurement and traveler information applications, and several 

external and internal evaluations have supported the accuracy of the travel time data for freeways 

(Haghani et al., 2009). INRIX provides confidence scores for each 1-minute interval travel time, 
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with a confidence score of 30 representing real-time data and scores of 10 and 20 representing 

historic data during overnight and daytime periods, respectively. About 73% of the data for rural 

segments and 71% of the data for urban segments had a confidence score of 30. For the purposes 

of this analysis, no threshold was set for the confidence scores and both real time and historic 

speed data was averaged for use in model development. Similar to the volume data, average hourly 

speed was also computed by averaging data for each available hour for each site. 

 

4.3 Geometry Data 

The VDOT Highway Traffic Records Information System (HTRIS) was used to extract all 

geometric and traffic control information used for this analysis. Using this database, information 

such as number of lanes, speed limit, shoulder width, median type, rural/urban designation, etc. 

was gathered for the study segments. The vertical curvature (VC) data were collected in the form 

of percent grade, with positive grades indicating uphill segments and negative grades indicating 

downhill segments. Horizontal curvature (HC) was expressed using length of the curve, presence 

of curve as a percentage of segment length, and radius of curve.  

 

4.4 Crash Data 

Crash data for all the sections were obtained from the VDOT Roadway Network System (RNS) . 

The data included detailed information on crash location and date, crash type, severity, number of 

vehicles involved, etc. For all the segments, crash information was also collected between 2011 

and 2017.  For this analysis, the researchers examined total crashes as well as fatal and injury 

crashes. 

 

4.5 VDOT Districts 

In Virginia, VDOT Construction Districts have been frequently tied with variations across the state 

from a traffic safety perspective due to differences in driving population, terrain, and traffic 

conditions. For example, Interstates in the Salem, Staunton, and Bristol Districts are predominantly 

rural and travel through mountainous terrain while the Northern Virginia and Hampton Roads 

districts experience significant recurring congestion. This research used districts as a grouping 

variable to account for the differences in driving behavior and environment in different parts of 

Virginia. Figure 1 shows the locations of the districts and the number of study segments on each 

district. 
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FIGURE 1: VDOT district map and number of study sites from each district 

(Lynchburg District does not contain any Interstates) 

Figure 2 shows the distribution of crashes over the study period by year, and Table 2 

summarizes the properties of the study segments. 

  

  

FIGURE 2: Distribution of Total Number of Crashes for All Study Segments 
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TABLE 2: Summary of the descriptive statistics of freeway study segments 

Type of 

Segment 

Total 

Mileage 

(mile) 

Variable Mean 
Std. 

Deviation 
Min Max 

Rural 4 

Lane 

Segments 

(110 

Segments) 

195.07 

AADT 18702 6225 4059 34728 

Average Hourly Volume (vph) 787.30 530.09 12.00 3064.00 

Average Hourly Speed (mph) 67.83 3.10 48.31 75.72 

Segment Length (mile) 1.79 0.29 1.00 2.00 

Lane Width (ft) 12.00 0.00 12.00 12.00 

Median Shoulder Width (ft) 3.93 2.03 0.00 10.00 

Right Shoulder Width (ft) 5.24 5.08 0.00 12.00 

Median Width (ft) 107.8 59.35 4.00 334.00 

Horizontal Curvature Radius (mile) 2.00 1.58 0.00 5.92 

Horizontal Curvature Length (mile) 0.76 0.59 0.00 2.00 

Grade (%) -0.26 0.80 -3.17 1.58 

Speed Limit (mph) 69.00 2.64 55.00 70.00 

Annual Total Crashes 5.19 5.13 0 48 

Annual Fatal & Injury Crashes 1.53 1.91 0 19 

Urban 6 

Lane 

Segments 

(80 

Segments) 

125.42 

AADT 40731 17667 10931 76207 

Average Hourly Volume (vph) 1690.71 1186.88 38.75 4960.50 

Average Hourly Speed (mph) 66.13 3.11 40.46 72.60 

Segment Length (mile) 1.60 0.43 0.66 2.00 

Lane Width (ft) 12.00 0.00 12.00 12.00 

Median Shoulder Width (ft) 7.08 3.07 2.00 12.00 

Right Shoulder Width (ft) 4.88 5.12 0.00 12.00 

Median Width (ft) 103.78 86.97 0.00 363 

Horizontal Curvature Radius (mile) 1.83 1.00 0.00 4.62 

Horizontal Curvature Length (mile) 0.93 0.53 0.00 2.00 

Grade (%) -0.29 0.98 -2.69 2.67 

Speed Limit (mph) 64.42 4.59 55 70 

Annual Total Crashes 12.25 11.47 0 81 

Annual Fatal & Injury Crashes 3.31 2.98 0 19 

 

5 METHODOLOGY 

In this paper, a series of crash prediction models were developed using a variety of variables related 

to volume, geometry, and traffic flow parameters.  The modeling process started with a simple 

volume and geometry model and then more complex models were developed by adding traffic 

variables to it.  

 

Previous research by the authors indicated that when crash prediction models use a data 

format that is too disaggregated, data errors and imputation of missing values can be problematic 

and increase errors (Dutta and Fontaine, 2019a, 2019b). Based on this previous experience, 

volumes in this research were expressed as AADT (to be consistent with the current HSM SPFs) 

and as average hourly volume. To be consistent with the HSM, length was used as an offset variable 
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in the models.  

 

5.1 Spatial and Temporal Correlation 

A very common phenomenon in crash data is overdispersion, meaning that the variance of 

the data exceeds the mean. Overdispersion is usually attributed to unobserved heterogeneity. In 

general, motor vehicle crashes are highly complex processes influenced by various contributing 

factors such as roadway geometrics, traffic characteristics, environmental conditions, and human 

elements. It is nearly impossible to collect all the data that describe factors that contribute to a 

crash and its resulting injury severity. As a result, the impacts of these unobserved factors on the 

likelihood of a crash cannot be adequately captured by the explanatory variables in the model, 

leading to the unobserved heterogeneity problem (Lord and Mannering, 2010; Mannering and 

Bhat, 2014).   

 

Traditionally, most crash frequency models use a cross sectional data format. Cross 

sectional data are observed at a single point of time for several study sites. While using this data 

format, the interest lies in modeling how particular sites are performing at a certain point of time 

(Frees, 2003). Since this format overlooks the correlation between crashes and their contributing 

factors over time, it is not suitable for studies where multiple years of data are available for study 

sites. Panel data permits identification of variations across individual roadway segments and 

variations over time. Accommodation of observation-specific effects also mitigates omitted-

variables bias by implicitly recognizing segment-specific attributes that may be correlated with 

control variables. The time-series nature of multiyear data as used in this study presents serial 

correlation issues. In a similar vein, there can be correlation over space because roadway entities 

that are in close proximity may share unobserved effects. This again sets up a correlation of 

disturbances among observations and results in the associated parameter-estimation problems. 

 

Both overdispersion and serial correlation need to be addressed in a modeling framework 

to produce efficient estimates. Negative binomial (NB) regression has become the most common 

method for developing SPFs and is also the recommended modeling approach in the HSM 

(American Association of State Highway Transportation Officials, 2010). It should be noted that 

the regular NB model, while accounting for overdispersion, will not allow for location-specific 

effects or serial correlation over time for clustered crash counts. In recent years, mixed effect 

models have gained popularity among researchers due to their ability to handle both overdispersion 
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and correlation. They are usually called Generalized Linear Mixed Models (GLMM) because they 

use the common distributions associated with the generalized linear model (GLM) such as Poisson, 

negative binomial, or zero inflated models and also account for data structures in which 

observations cluster within larger groups (Hausman et al., 1984).  

 

5.2 Generalized Linear Mixed Model 

There are a number of statistical methods available to predict the number of crashes on 

roadway segments. As crashes are non-negative and characterized by over dispersion (the variance 

is greater than the mean), negative binomial regression has become the most common method for 

developing SPFs and is also the recommended modeling approach in the HSM (American 

Association of State Highway Transportation Officials, 2010; Lord and Mannering, 2010; Milton 

and Mannering, 1996). In a negative binomial regression model, the probability of roadway entity 

i having yi crashes per time period is defined as: 

 

𝑷(𝒚𝒊) = 
𝒆𝒙𝒑(−𝝀𝒊) ∗ 𝝀𝒊

𝒚𝒊

𝒚𝒊 !
                                                                                                               (1) 

𝝀𝒊 = 𝒆𝒙𝒑(𝜷𝑿𝒊 +  𝜺𝒊)                                                                                                              (2) 

 

where yi is the number of crashes for segment i in year t, β is a vector of the estimable parameters, 

Xi is a vector of the explanatory variables, and exp (εi) is a gamma-distributed error term with 

mean 1 and variance α (Simon et al., 2010). The addition of this term allows the variance to differ 

from the mean as:  

 

VAR (𝒚𝒊) = E ((𝒚𝒊) [1+ αE(𝒚𝒊) ] = E(𝒚𝒊)  + αE(𝒚𝒊) 𝟐                                                          (3) 

             

 Another popular method for modeling disaggregated data are zero inflated models. Zero inflated 

models have been developed to handle data characterized by a significant number of zeros or more 

zeros than the one would expect in a traditional Poisson or negative binomial/Poisson-gamma 

model. These models operate on the principle that the excess zero density that cannot be 

accommodated by a traditional count structure is accounted for by a splitting regime that models 

a crash-free versus a crash prone propensity of a roadway segment (Lord and Mannering, 2010; 

Simon et al., 2010).  

 

The most frequently used modeling technique for crash data is the generalized linear 

modelling (GLM) methodology. Generalized linear models are extensions of traditional regression 
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models that allow the mean to depend on the explanatory variables through a link function, and 

the response variable to be any member of a set of distributions called the exponential family (e.g., 

Normal, Poisson, Binomial) (McCullagh and Nelder, 1991). The traditional NB model can account 

for over-dispersion in crash data, but does not allow for location specific effects or time-serial 

correlations. The dataset for this study is comprised of multiple segments for both rural and urban 

highways where data has been collected on average hourly basis for seven years. That introduces 

correlation in the data that came from a combination of spatial considerations (data from different 

districts of VDOT within Virginia) and temporal considerations (average hourly data for seven 

years). 

 

The motivation for the random effects model is that this model can introduce random 

location-specific or time specific effects into the relationship between the expected numbers of 

crashes and the covariates of an observation unit i in a given time period t (Hausman et al., 1984).  

 

The GLMM model structure is:  

𝒚𝒊|𝒃 ≈ 𝑫𝒊𝒔𝒕𝒓 [𝝁𝒊,
𝝈𝟐

𝒘𝒊
]                                                                                                (4) 

𝒈 (𝝁) =  𝜷𝑿 + 𝒃𝒁 +  𝜹                                                                                              (5) 

 

Where 𝑦𝑖 = dependent variable, b = random effects vector, Distr = a specified conditional 

distribution of y given b, µ= the conditional mean of y given b, 𝜇𝑖  is its i-th element,  𝜎2 = the 

variance or dispersion parameter, w = the effective observation weight vector (𝑤𝑖 = the weight for 

observation i), g(µ) = link function that defines the relationship between the mean response µ and 

the linear combination of the predictors, X = fixed effects design matrix (of independent variables), 

β =  fixed-effects vector, Z = random-effects design matrix (of independent variables), and δ = 

residuals (Mussone et al., 2017) . The model for the mean response µ is  

 

𝝁 =  𝒈−𝟏 (�̂�)                                                                                                               (6) 

 

Where  𝑔−1 = inverse of the link function g(µ), and  �̂� = linear predictor of the fixed and random 

effects of the generalized linear mixed-effects model. 
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In the simplest term, the mixed effect model used in this research can be defined as – 

 
 

Y is the dependent variable (number of crashes), the fixed effect part defines the relationship 

between different variables and total crashes, and the random effect part clusters data by VDOT 

districts (to account for spatial correlation) and by year and hour (to account for temporal 

correlation). The format “(1|x)” means that the model calculates the variance in intercepts that is 

different for each group for the random effect “x”. This effectively resolves the non-independence 

that stems from having multiple responses by the same subject. It is also possible to estimate the 

random effect for each variable separately. For example, Volume|District would essentially 

estimate intercept for each district and also a separate random effect parameter for volume for each 

district. Considering separate parameters for both spatial and temporal effects and for all the 

correlated variables creates a very complicated model and additional difficulty in interpretation 

and application. As a result, this research focuses on the variances between intercepts for each 

random effect. 

 

The “glmmTMB” package built for Generalized Linear Mixed Models using Template 

Model Builder in the R statistical software was used for the modeling.  The package fits linear and 

generalized linear mixed models with various extensions, including zero-inflation. The models are 

fitted using maximum likelihood estimation. Random effects are assumed to be Gaussian on the 

scale of the linear predictor and are integrated using the Laplace approximation (Bolker, 2019; 

Brooks et al., 2017). 

 

5.3 Model Selection and Validation 

In order to measure the model, fit, the 𝜌𝑐
2 statistic is used based on the loglikelihood of the selected 

model and the constant only model: 

𝝆𝒄
𝟐 = 𝟏 −  

𝑳𝑳(𝜷)

𝑳𝑳(𝑪)
                                                                                                                                        (7) 
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Where 𝐿(𝛽) is the log-likelihood at convergence and 𝐿𝐿(C) is the log-likelihood with constant only 

model. A perfect model has a likelihood equal to one. The closer the value is to one, the more 

variance the estimated model is explaining (Washington et al., 2010). 

 

An ANOVA test comparing the NB and ZINB models was used to test which distribution 

fits the model better. The test, which is readily available on R, gives a list of AIC, BIC, log 

likelihood, difference in degrees of freedom and chi-square test statistics and associated p-value.  

 

While comparing the models, it is important to have a consistent methodology to select a 

model from a series of models that has been developed for each technique. A popular method for 

model selection is the Akaike information criterion (AIC)(Akaike, 1974) . AIC offers an estimate 

of the relative information lost when a given model is used to represent the process that generated 

the data.  

AIC = −2LL + 2p                                                                                                                    (8) 

Where p is the number of estimated parameters included in the model.  A lower value of AIC 

indicates a better model.  

 

Bayesian Information Criterion (BIC) is a criterion for model selection among a finite set 

of models. It is based in the part on the likelihood function and it is closely related to the Akaike’s 

Information Criterion (AIC). The BIC also uses a penalty term for the number of parameters in the 

model. The penalty term is larger in BIC than in AIC. 

BIC = −2lnL + k*ln(n)                                                                                                         (9) 

 

Where n= number of observations, k=the number of free parameters to be estimated, and 

L= the maximized value of the likelihood function for the estimated model (Schwarz, 1978).  

 

It is important to note that an objective assessment of the predictive performance of a 

particular model can be made only through the evaluation of several goodness of fit (GOF) criteria. 

The GOF measures used to conduct external model validation included mean absolute prediction 

error (MAPE), mean absolute deviation (MAD), and mean squared prediction error 

(MSPE)(Washington et al., 2010).  Additionally, cumulative residual (CURE) plots were 

examined to check the functional form of the model. CURE plots are figures that show how well 

a model fits the data. Residuals are defined as the “differences between the observed and fitted 

values of the response” and, when plotted cumulatively, demonstrate the suitability of a regression 
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model. The data in the CURE plot are expected to oscillate about 0. Any large jumps between 

residuals indicate areas where there may be outliers in the data.  

 

Since AADT based models predict annual crashes while hourly volume models predicted 

hourly crashes, the summation of hourly predictions was used to generate annual predicted 

numbers of crashes for the GOF calculations.  The average hourly volume data was computed by 

averaging data for each available hour for each site, so there were always 24 hours of data available 

for each year and each site for validation. Model building used a random selection of 70% of the 

available data and the remaining 30% was used for testing and validation. The calculation of these 

measures was based on the following equations: 

 

𝑴𝒆𝒂𝒏 𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 𝑬𝒓𝒓𝒐𝒓 (𝑴𝑨𝑷𝑬) =
𝟏𝟎𝟎%

𝒏
 ∑ |

𝒀𝒎𝒐𝒅𝒆𝒍− 𝒀𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅

𝒀𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅
|𝒏

𝒊=𝟏                 (10) 

𝑴𝒆𝒂𝒏 𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 (𝑴𝑨𝑫) =  
∑ |𝒀𝒎𝒐𝒅𝒆𝒍− 𝒀𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅|𝒏

𝒊=𝟏

𝒏
                                           (11) 

𝑴𝒆𝒂𝒏 𝑺𝒒𝒖𝒂𝒓𝒆𝒅 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 𝑬𝒓𝒓𝒐𝒓 (𝑴𝑺𝑷𝑬) =  
∑ (𝒀𝒎𝒐𝒅𝒆𝒍− 𝒀𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅)𝟐𝒏

𝒊=𝟏

𝒏
                          (12) 

Where – 

𝑌𝑚𝑜𝑑𝑒𝑙 = Predicted Crash Frequency 

𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = Observed Crash Frequency 

n = Sample Size 

 

5.4 Check for Data Availability and Correlation 

This research is an extension of previous work by the authors where they developed crash 

prediction models using only continuous count stations without accommodating for the data 

correlation (Dutta and Fontaine, 2019a, 2019b).  This paper used a larger dataset that came from 

both continuous count and short count stations.  While the quantity of data available for modeling 

increased overall, the availability and quality of data at the short count stations was lower than that 

used in the prior study.  This new dataset is more broadly representative of average data quality 

and availability present on freeway facilities nationally.   The mixed effect methodology used in 

this paper addresses the spatial and data correlation. Since both the data set used for modeling and 

the way that correlation was addressed changed from prior work, the final models selected from 

the GLMM method were re-run using GLM that doesn’t account for correlation. This was done to 

isolate the effect for correlation only versus changes in the data set. Both of these models were 
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then contrasted against the models developed using just the continuous count stations previously 

(Dutta and Fontaine, 2019b). This step ensured that the effect of using a broader dataset (short and 

continuous count) compared to a smaller one (continuous count only) have been checked without 

treating for the correlation.  

 

6 RESULTS AND DISCUSSION  

The interpretation of GLMMs is similar to GLMs; however, there is an added complexity because 

of the random effects. The output of a mixed model lists some measures of model fit, parameter 

estimates for the fixed effect part and the variance between groups for the random effect part. If 

the variance is indistinguishable from zero, then the correlation within a group is not strong. In the 

mixed model, one or more random effects are added to the fixed effects. These random effects 

essentially give structure to the error term “ε”. For this research, random effects for “district”, 

“year” and “hour” were considered.  

 

6.1 Selection of Model Form 

The comparison between negative binomial and zero inflated negative binomial 

distribution for the same model showed that, in general, negative binomial models performed 

better with respect to AIC value, BIC value, variable significance, and ANOVA test. Each model 

form was checked with both distributions. Since the negative binomial model outperformed the 

zero inflated ones for most crash types for both rural and urban segments, only the results from the 

negative binomial mixed effect models are documented in this paper. Table 3 shows the model 

comparison between these two forms for total crashes; similar results were obtained for fatal and 

injury crashes. 

TABLE 3: Comparison between NB and ZINB Model 

 

Rural Segments 
AIC BIC ANOVA 

(NB, 

ZINB) 

Critical 

Chi-

Square 

Preferred 

Model NB ZINB NB ZINB 

Volume, length, and geometry models 10783 10833 10870 10895 4.77 7.79 NB 

Volume, length, geometry, and flow models 10679 10687 10795 10811 2.46 4.61 NB 

 

Urban Segments 
AIC BIC ANOVA 

(NB, 

ZINB) 

Critical 

Chi-

Square 

Preferred 

Model NB ZINB NB ZINB 

Volume, length, and geometry models 10218 10229 10312 10333 5.08 6.25 NB 

Volume, length, geometry, and flow models 10186 10199 10293 10311 6.87 7.79 NB 
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6.2 Volume, Length and Geometry Models 

A combination of volume and different geometric variables such as median width, horizontal 

curvature, vertical curvature was used to develop initial models. Due to limited variability in lane 

width and shoulder width for this particular data set, they were not found to be significant in the 

modeling process.  

 

 For urban segments, median width, radius and length of horizontal curvature, and grade 

were significant variables. For total and injury crashes, the radius of horizontal curve was 

negatively associated with crash frequency.  A larger radius indicates a flatter curve, so this 

relationship is intuitive. On a similar note, increases in length of horizontal curve increases the 

probability of a cash. This finding is also consistent with previous research (Khan et al., 2013; 

Zegeer et al., 1990).   

 

Vertical grade, which ranges from -3% to +3% (negative grade means downgrade, and 

positive grade means upgrade), was found to be significant for total crashes, but only negative 

grades had a statistically significant relationship. This result indicates that for total crashes, steeper 

negative grade causes more crashes. Since speed usually increases while driving downhill, this 

finding is logical.   

 

Median width indicated that wider medians in urban segments reduce the total number of 

crashes. Previous research indicated that median widths between 20 and 30 ft generally show a 

mixed effect on crashes and median widths of 60 to 80 ft have decreasing effect on crashes (Chang 

and Xiang, 2003; Knuiman et al., 1993). About 65% of the urban dataset had median widths within 

this range, so the negative relationship between median width and crashes is intuitive. Table 4 

summarizes the models developed for this step.   
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TABLE 4 Parameter Estimates for Volume and Geometry Models for Urban Freeway Segments 

  
Total Crashes 

Average Hourly Volume AADT 

Fixed Effect Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -6.68 0.372 <2e-16 -5.55 0.919 1.5E-09 

log (Volume) 0.67 0.047 <2e-16 0.65 0.085 4.5E-15 

Radius of Horizontal Curve (mile) -0.09 0.033 0.0032 -0.14 0.044 1.1E-03 

Grade     

Positive Grade -0.04 0.052 0.39928 ─ ─ ─ 

Negative Grade 0.22 0.071 0.00173 ─ ─ ─ 

Length of Horizontal Curve     

≤ 0.5 0.04 0.179 0.8147 0.26 0.245 3.0E-01 

>0.5 ~≤ 1.0 0.45 0.177 0.0112 0.6 0.243 1.3E-02 

> 1.0 ~ ≤ 1.5 0.61 0.181 0.0007 0.94 0.253 2.2E-04 

> 1.5 0.26 0.182 0.0154 0.44 0.249 7.7E-02 

Random Effect Intercept (Standard Deviation) Intercept (Standard Deviation) 

District 0.129 (0.071) 0.173 (0.054) 

Year 0.576 (0.087) 0.215 (0.083) 

Hour 0.618 (0.145) ─ 

AIC 10217.9 1538 

BIC 10311.7 1576.8 
 

0.15 0.10 

  
Injury Crashes 

Average Hourly Volume AADT 

Fixed Effect Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -8.62 0.587 <2e-16 -7.75 1.422 4.8E-09 

log (Volume) 0.71 0.058 <2e-16 0.71 0.129 3.6E-09 

Radius of Horizontal Curve (mile) -0.12 0.051 0.01971 ─ ─ ─ 

Length of Horizontal Curve         

≤ 0.5 0.94 0.393 0.01707 0.72 0.358 4.3E-02 

>0.5 ~≤ 1.0 1.32 0.388 0.0007 0.93 0.35 7.7E-03 

> 1.0 ~ ≤ 1.5 1.46 0.4 0.0003 1.15 0.37 9.0E-04 

> 1.5 1.13 0.398 0.0046 0.81 0.35 2.2E-02 

Random Effect Intercept (Standard Deviation) Intercept (Standard Deviation) 

District 0.132 (0.053) 0.137 (0.256) 

Year 0.242 (0.085) 0.267 (0.032) 

Hour 0.529 (0.057) ─ 

AIC 4600.3 1015.5 

BIC 4687.4 1054.2 
 

0.14 0.10 

 

For rural segments, 71% of the data came from segments with median widths greater than 

80 ft and no median barrier. The results indicated that wider medians generally had more crashes. 

This is contradictory to the urban segments, but consistent with previous research (Chayanan et 

al., 2004; Graham et al., 2014). The relationship between median width and crashes largely depend 

on type of facility, crash type, and also presence and type of median barrier. Cross median crashes 

tend to decrease with increasing median width, whereas rollover crashes tend to increase. Radius 

𝝆𝒄
𝟐 𝝆𝒄
𝟐 𝝆𝒄
𝟐 𝝆𝒄
𝟐 

𝝆𝒄
𝟐 𝝆𝒄
𝟐 𝝆𝒄
𝟐 𝝆𝒄
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of horizontal curve had a similar relationship as urban segments where crashes decrease with 

increase in curve radius. increases the probability of any types of crash. For rural segments, 

presence of horizontal curve as a % of total segment length had more significant effect on total 

crashes than length of curve. As this % increases, crash occurrence also increases. Table 5 

documents the results for rural segments.   

 

TABLE 5 Parameter Estimates for Volume and Geometry Models for Rural Freeway Segments 

  
Total Crashes 

Average Hourly Volume AADT 

Fixed Effect Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -7.04 0.401 <2e-16 -9.98 1.14 <2e-16 

log (Volume) 0.67 0.062 <2e-16 1.11 0.11 <2e-16 

Radius of Horizontal Curve (mile) -0.05 0.019 0.00875 ─ ─ ─ 

Median Width (ft) 0.21 0.005 2.72E-05 ─ ─ ─ 

% of Horizontal Curve Length     

Less than 25% 0.53 0.111 1.39E-06 0.28 0.106 0.0077 

>25% ~≤ 50% 0.24 0.092 0.009 0.13 0.094 0.0028 

>50% ~ ≤ 75% 0.46 0.088 2.02E-07 0.27 0.099 0.0065 

> 75% 0.09 0.099 0.338 0.16 0.104 0.8737 

Random Effect Intercept (Standard Deviation) Intercept (Standard Deviation) 

District 0.182 (0.047) 0.198 (0.028) 

Year 0.465 (0.105) 0.317 (0.049) 

Hour 0.538 (0.241) ─ 

AIC 10782.9 2324.3 

BIC 10870.1 2361.3 
 

0.21 0.19 

  
Injury Crashes 

Average Hourly Volume AADT 

Fixed Effect Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -7.13 0.464 <2e-16 -11.81 1.46 4.9E-16 

log (Volume) 0.54 0.069 1.80E-14 0.67 0.114 7.7E-16 

Median Width 0.14 0.001 9.90E-03 ─ ─ ─ 

Random Effect Intercept (Standard Deviation) Intercept (Standard Deviation) 

District 0.132 (0.055) 0.065 (0.048) 

Year 0.297 (0.017) 0.193 (0.025) 

Hour 0.419 (0.047) ─ 

AIC 4777.3 1485 

BIC 4828.2 1505.5 
 

0.11 0.07 
 

6.3 Volume, Geometry and Flow Parameter Models 

The next set of models were created by adding flow parameters to the models selected in 

the previous step. Average speed, standard deviation of speed, and the difference between speed 

limit and average speed (called the delta speed hereafter) were selected to represent traffic flow. If 

the delta speed is negative, average speed is higher than the speed limit, meaning a free flow 

𝝆𝒄
𝟐 

𝝆𝒄
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condition exists (represented by Delta 1 in models). When this value is positive, speed limit is 

higher than average speed, meaning the segment is congested (represented by Delta 2 in models). 

AADT based models were not developed for this alternative since average speed over a year 

showed little variability.   

 

Table 6 shows the rural models that include speed parameters. Average hourly speed was 

positively related to total crashes, meaning that higher average speed is correlated with higher 

crash frequency. Standard deviation of speed was significant for all crash types and indicated that 

as more variation in hourly speeds are observed over a year, the frequency of crashes increases. 

The variable delta that represents difference between speed limit and average speed was significant 

for all crash types as well.  It was observed that injury crashes increase during free flow conditions 

(Delta 1) and decreases during congestion (Delta 2). This is a logical relationship given the relative 

velocities during collision. 

 

TABLE 6:  Parameter Estimates for Volume, Geometry and Flow Based Models for Rural Segments 

 

  Total Crashes Injury Crashes 

Fixed Effect Estimate Std. Error Pr(>|z|) Estimate 
Std. 

Error 
Pr(>|z|) 

Intercept -8.61 0.971 <2e-16 -6.73 0.375 <2e-16 

log (Volume) 0.54 0.076 1.5E-12 0.41 0.055 4.0E-14 

Radius of Horizontal Curve 

(mile) 
-0.06 0.019 0.00443 ─ 

─ ─ 

% of Horizontal Curve Length     

Less than 25% 0.53 0.107 6.60E-07 ─ ─ ─ 

>25% ~≤ 50% 0.11 0.096 0.000025 ─ ─ ─ 

>50% ~ ≤ 75% 0.41 0.093 1.20E-05 ─ ─ ─ 

> 75% 0.13 0.099 0.19522 ─ ─ ─ 

Speed 0.03 0.012 0.00974 ─ ─ ─ 

Standard Deviation 0.17 0.017 <2e-16 0.16 0.024 2.0E-11 

Delta   

Delta 1 0.31 0.068 9.05E-06 1.29 0.095 <2e-16 

Delta 2 0.04 0.067 0.57048 -0.29 0.117 0.0014 

Random Effect Intercept (Standard Deviation) Intercept (Standard Deviation) 

District 0.182 (0.017) 0.174 (0.035) 

Year 0.212 (0.045) 0.111 (0.013) 

Hour 0.508 (0.003) 0.263 (0.092) 

AIC 10679 5716.8 

BIC 10795.1 5782.1 

  0.29 0.18 
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Table 7 shows that the speed parameters showed consistent results for urban segments as 

well. Standard deviation of average speed always had an increasing effect on crash frequency for 

all crash types. The variable delta was significant for all crash types for urban segments as well. 

During free flow conditions (Delta 1), total crashes and injury crashes increase. This relationship 

is intuitive and consistent with rural segments. 

 

TABLE 7:  Parameter Estimates for Volume, Geometry and Flow Based Models for Urban Segments 

  Total Crashes Injury Crashes 

Fixed Effect Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|) 

Intercept -5.8 0.351 <2e-16 -6.79 0.459 <2e-16 

log (Volume) 0.44 0.044 <2e-16 0.37 0.057 3.9E-11 

Radius of Horizontal Curve (mile) -0.08 0.029 0.00563 -0.09 0.043 0.00408 

Length of Horizontal Curve     

≤ 0.5 0.76 0.174 1.4E-05 0.89 0.233 0.00013 

>0.5 ~≤ 1.0 1.06 0.171 6.4E-10 1.2 0.229 1.5E-07 

> 1.0 ~ ≤ 1.5 1.16 0.175 3.6E-11 1.34 0.244 4.4E-08 

> 1.5 0.75 0.177 2.1E-05 0.85 0.236 0.00034 

Standard Deviation 0.11 0.007 <2e-16 0.12 0.011 <2e-16 

Delta         

Delta 1 0.14 0.059 2.1E-04 0.98 0.088 <2e-16 

Delta 2 0.03 0.058 0.58262 -0.21 0.103 0.00438 

Random Effect Intercept (Standard Deviation) Intercept (Standard Deviation) 

District 0.137 (0.007) 0.152 (0.022) 

Year 0.326 (0.181) 0.254 (0.159) 

Hour 0.546 (0.032) 0.324 (0.092) 

AIC 10185.9 6025.2 

BIC 10293.1 6119.2 

  0.23 -0.24 

 

Figure 3 shows the CURE plots for average hourly volume from the volume, flow and 

geometry models. CURE plots are not only a reflection of the functional form of the particular 

explanatory variable, but also whether other relevant explanatory factors have been included in the 

model in an appropriate form. Figure 3 shows that for both rural and urban segments, the CURE 

plot for hourly volume are within the limit of 2 standard deviation. It reinforces the suitability of 

volume, flow and geometry models and also shows that inclusion of volume in average hourly 

level form is not inaccurate. 

𝝆𝒄
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(a)  

 

(b) 

FIGURE 3: Hourly Volume CURE Plot for (a) rural segments (b) urban segments 

 

6.4 Effect of Correlation 

This research focused on developing models that have both spatial and temporal random 

effect variables. The spatial correlation is represented by “District”. For all models, the intercept 

and standard deviation for this group reveals that even though a correlation is present between 

segments that belong to same district, in general, the spatial correlation is weaker than the temporal 

one. For all categories, the variance is much smaller for districts than it is for year or hour. This is 

due to the fact that the sample size among districts are not equally distributed, as seen on Figure 

1. A larger dataset where all the districts are equally represented could shed more light on the 

spatial correlation.  
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The temporal correlation was modeled using year and hour since the dataset consists of 

hourly data for seven years. For both urban and rural models, the temporal correlation was stronger 

than the spatial one, but still the variance in data explained by yearly correlation was smaller than 

the hourly one. The total crashes vary between years and total sample size while considering hourly 

correlation is higher as well.  Having more segments in both rural and urban category could 

produce a model where stronger temporal correlation have been defined.  

 

6.5 Model Comparison 

6.5.1 Comparison between Mixed Effect (GLMM) Models 

Tables 8 and 9 shows the comparison of performance among the models developed. For 

both rural and urban segments and for both crash types, prediction accuracy improved when speed 

variables were added. Models using average hourly data showed better predictive capability 

compared to AADT models. While using hourly data, the aggregation interval was not too 

disaggregated to capture the random nature of crashes, also not too aggregated to lose the variation 

in traffic. The AADT models didn’t include speed as a variable because averaging hourly speed 

over a year did not capture the effect of speed on traffic conditions and crashes. For comparison 

purposes, the volume, flow, and geometry model were compared to the AADT based volume and 

geometry models.  

 

For the rural hourly volume, geometry, and flow models, MAD, MAPE, and MSPE 

improved by 64%, 26% and 62% respectively for total crashes and 39%, 20%, and 40% 

respectively for injury crashes as compared to AADT models.  For the urban models, similar trends 

were observed where MAD, MAPE and MSPE improved by 51%, 18%, and 53% respectively for 

total crashes and 45%, 18% and 59% for injury crashes as compared to AADT models.  

 

All the models discussed in the prior section were developed using mixed effect modeling 

methodology, so the relative performance quantifies the effect of data aggregation and variable 

selection. The comparison results reinforce the importance of selecting an appropriate 

disaggregation level. Aggregated models that rely on AADT may fail to capture variations traffic 

flow that could influence safety. Hourly aggregation showed better performance compared to the 

AADT models. Another very important finding is that speed variables played a significant role in 

model performance. Currently, traffic volume is widely used as a measure of exposure. The same 
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traffic flow occurring on road sections with different capacities creates different operating 

conditions, and, therefore, different probabilities for crashes. That is why it is not enough to just 

consider volume and segment length as only variables while predicting crashes on freeways. 

Understanding the real traffic behavior requires quantification of some of the basic traffic flow 

characteristics.  Since current models only rely on volume, quality of volume data dictates the 

quality of model. This research showed that speed data from INRIX coupled with volume data 

with mixed data quality can significantly improve model performance compared to AADT models.   

 

TABLE 8: Model Comparison for Rural Segments * 

  

Total Crashes 

Average Hourly Volume AADT 

MAD MAPE MSPE MAD MAPE MSPE 

Volume, length, and geometry models 
1.16 55% 2.92 

3.1 69% 6.87 
(-63%) (-14%) -57% 

Volume, length, geometry, and flow state models. ** 
1.11 43% 2.59 

─ ─ ─ 
(-64% (-26%) (-62%) 

  

FI Crashes 
Average Hourly Volume AADT 

MAD MAPE MSPE MAD MAPE MSPE 

Volume, length, and geometry models 
0.73 33% 1.58 

1.09 48% 2.33 
(-33%) (-15%) (-32%) 

Volume, length, geometry, and flow state models. ** 
0.66 28% 1.39 

─ ─ ─ 
(-39%) (-20%) (-40%) 

* Value in the parentheses represents the change compared to respective AADT based models. 

** These models were compared to the AADT based volume, length, and geometry models. 

 

TABLE 9: Model Comparison for Urban Segments * 

  

Total Crashes 

Average Hourly Volume AADT 

MAD MAPE MSPE MAD MAPE MSPE 

Volume, length, and geometry models 
1.92 35% 47.92 

2.98 47% 79.43 
(-36%) (-12%) (-40%) 

Volume, length, geometry, and flow state models. ** 
1.45 29% 36.95 

─ ─ ─ 
(-51%) (-18%) (-53%) 

  

FI Crashes 

Average Hourly Volume AADT 

MAD MAPE MSPE MAD MAPE MSPE 

Volume, length, and geometry models 
1.09 12% 4.58 

1.69 26% 8.82 
(-36%) (-14%) (-48%) 

Volume, length, geometry, and flow state models. ** 
0.93 8% 3.63 

─ ─ ─ 
(-45%) (-18%) (-59%) 

* Value in the parentheses represents the change compared to respective AADT based models. 

** These models were compared to the AADT based volume, length, and geometry models. 
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6.5.2 Effects of Correlation and Volume Source 

The model comparison in previous section showed that the best models for this dataset were the 

volume, geometry and flow model. Similar results were found when researchers compared 

continuous count station models without any data correlation (Dutta and Fontaine, 2019b).  

 

To isolate the effects of using the broader dataset comprised of continuous count stations 

and short count stations and the effect of correlation, three types of volume, geometry and flow 

models were compared. Model 1 was developed using only continuous count station data (31 rural 

segments, 23 urban segments) and negative binomial regression. The results are used directly from 

previous research by Dutta and Fontaine (add ref).  Model 3 is the model discussed on section 7.4 

and developed using a combination of short and continuous count data (110 rural segments, 80 

urban segments) and mixed effect generalized linear model. Model 2 was developed by re-running 

model 3 without any correlation. This model used data from model 3 and negative binomial 

regression from model 1.  A comparison of all three models is shown in Table 10 based on total 

crashes. Table 10 shows how performance changes from using smaller dataset without correlation 

to the broader dataset with correlation. In each case, model 1 was used as base model for 

comparison. As mentioned before, the AADT models are based on volume and geometry only. 

 

TABLE 10: Model Comparison to Check for Data Quality and Correlation * 

  
Rural Segments 

Data Source Correlation MAD MSPE 

Model 1 Continuous Count Only No 3.24  23.5  

Model 2 Continuous and Short Count 
No 1.56 6.63 

(-52%) (-72%) 

Model 3 Continuous and Short Count 
Yes 1.11 2.59 

(-66%) (-89%) 

  
Urban Segments 

Data Source Correlation MAD MSPE 

Model 1 Continuous Count Only No 6.82  124.35 

Model 2 Continuous and Short Count 
No 2.89 90.54 

(-58%) (-27%) 

Model 3 Continuous and Short Count 
Yes 1.45 36.95 

(-79%) (-70%) 

* Value in the parentheses represents the change compared to Model 1. 

 

The results show that for both rural and urban segments, inclusion of the short count 

stations in Model 2 had a large beneficial impact on model performance compared to Model 1. 
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Acknowledging data correlation also had a positive effect as seen on MOEs for Model 3, although 

the incremental improvement was lower than that from the inclusion of the short count stations. 

For rural hourly models, MAD and MSPE improved by 52% and 72% respectively for Model 2 in 

comparison to Model 1. The improvement in model performance can be attributed to the size of 

the dataset. The MAD and MSPE further improved by 66% and 89% between Model 1 and Model 

3. The improved performance for model 3 was due to the more appropriate methodology 

acknowledging correlation and also using a broader dataset. The urban segments showed similar 

results as well. 

 

Since current models like those in the HSM only rely on volume, the quality of volume 

data dictates the quality of model. The analysis showed that using short count stations as a data 

source does not diminish the quality of developed models if speed related variables are used in the 

model. This means that a combination of different volume data sources with good quality speed 

data can lessen the dependency on volume data quality without compromising performance. Since 

short count stations are more common, this finding also ensures making the best use of available 

resources in future research and application. 

 

7 CONCLUSIONS AND FUTURE RESEARCH  

The relationship between traffic flow parameters and safety has important implications for the 

philosophy and policy of transportation planning, highway design criteria, and freeway 

management. The results from this study provide a better understanding of the impact of geometric 

and traffic variables on safety and how crash frequency varies over the course of a day. These 

findings will be useful for estimating the safety performance of the roadway systems, especially 

when examining how operational changes on a facility impact safety. The models that includes 

speed related variables in combination with volume and geometry provided superior predictions 

to ones that did not include speed variables. Availability of adequate detector coverage and quality 

of available data are a major issue in applying disaggregate models, but this paper shows that using 

available volume data to estimate hourly average volumes and probe data can be used to generate 

quality predictions.   

 

The essential requirement for establishing relationship between crashes and flow state on 

a disaggregate level is reliable information on crashes, hourly traffic flow data, and factors that 
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influence highway capacity. The reason why this type of analysis hasn’t been done in detail 

previously is because obtaining reliable data about crashes and traffic flow state is not a trivial 

task.  It has often been difficult to acquire consistent and good quality traffic flow information in 

a reasonable amount of time. Adequate detector coverage and quality of available data is a major 

issue in most states, making it difficult to acquire widespread information on quality of flow. From 

that perspective, this research sheds light on using various data sources to create a dataset of mixed 

quality volume data and good quality speed data.  

 

The random effect part of the modeling showed that the spatial correlation between districts 

were weaker than the temporal correlation. The variance in data between years and hours were 

small as well.  This finding was reinforced during model validation where having a broader and 

more inclusive dataset (irrespective of continuous volume data availability) had a greater impact 

than data correlation.  

 

Suitability of average hourly models opens up the possibility to a more accurate safety 

assessment of facilities with dynamic traffic control or geometry. Treatments such as part time 

shoulder use or variable speed limits are not active throughout the day but current practice of 

AADT based SPFs cannot capture the true nature of operation for these systems.  Using the 

methodology proposed in this paper, it would be possible in future to evaluate these facilities for 

the hours when they are active. The findings from this research can also be used for analysis of 

work zones since traffic impacts and configuration can also vary by hour. Aggregation of similar 

districts to have a better sample size in each category could be a logical step in future.  

 

REFERENCES 

Akaike, H., 1974. A New Look at the Statistical Model identification. IEEE Transactions on 

Automatic Control 19 (6) , 716–723. 

American Association of State Highway Transportation Officials, 2010. Highway Safety Manual, 

1st Edition. 

Anastasopoulos, P.C., Mannering, F.L., 2009. A note on modeling vehicle accident frequencies 

with random-parameters count models. Accident Analysis and Prevention 51, 153–159. 

doi:10.1016/j.aap.2008.10.005 

Bolker, B., 2019. Getting started with the glmmTMB package 2009 , 1–9. 

Brooks, M.., Kristensen, K., Van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, 



 

142 

 

H.J., Machler, M., Bolker, B.M., 2017. glmmTMB balances speed and flexibility among 

packages for Zero-inflated Generalized Linear Mixed Modeling. The R Journal 9 (2) , 378–

400. 

Cafiso, S., Di Graziano, A., Di Silvestro, G., La Cava, G., Persaud, B., 2010. Development of 

comprehensive accident models for two-lane rural highways using exposure, geometry, 

consistency and context variables. Accident Analysis and Prevention 42, 1072–1079. 

doi:10.1016/j.aap.2009.12.015 

Caliendo, C., Guida, M., Parisi, A., 2007. A crash-prediction model for multilane roads. Accident 

Analysis and Prevention 39, 657–670. doi:10.1016/j.aap.2006.10.012 

Chang, Gang-Len; Xiang, H., 2003. The Relationship between Congestion Levels and Accidents. 

Maryland State Highway Administration, College Park, Maryland. 

Chayanan, S., Shankar, V., Sittkariya, S., Ulfarsson, G., Shyu, M.-B., Juvva, N.K., 2004. Median 

Crossover Accident Analyses and the Effectiveness of Median Barriers. Washington State 

Transportation Center (TRAC). 

Chin, H.C., Quddus, M.A., 2003. Applying the random effect negative binomial model to 

examine traffic accident occurrence at signalized intersections. Accident Analysis and 

Prevention 35, 253–259. doi:10.1016/S0001-4575(02)00003-9 

Choudhary, P., Imprialou, M., Velaga, N.R., Choudhary, A., 2018. Impacts of speed variations on 

freeway crashes by severity and vehicle type. Accident Analysis and Prevention 121, 213–

222. doi:10.1016/j.aap.2018.09.015 

Dutta, N., Fontaine, M., 2019a. Developing Rural Four Lane Freeway Crash Prediction Models 

Using Hourly Flow Parameters. IATSS Research Under Review . 

Dutta, N., Fontaine, M., 2019b. Improving Freeway Segment Crash Prediction Models By 

Including Disaggregate Speed Data From Different Sources. Accident Analysis and 

Prevention Under Review . 

Frees, E.W., 2003. Longitudinal and Panel Data: Analysis and Applications for the Social 

Sciences. Cambridge University Press. 

Garber, N.J., 2000. The Effect of Speed, Flow and Geometric Characteristics on Crash rates for 

Different Types of Virginia Highways. Virginia Transportation Research Council, 

Charlottesville,Virginia. 

Geedipally, S.R., Pratt, M.P., Lord, D., 2017. Effects of Geometry and Pavement Friction on 



 

143 

 

Horizontal Curve Crash Frequency. Journal of Transportation Safety & Security. 

doi:https://doi.org/10.1080/19439962.2017.1365317 

Golob, T.F., Recker, W.W., Alvarez, V.M., 2004. Freeway safety as a function of traffic flow. 

Accident Analysis and Prevention 36 6 , 933–946. doi:10.1016/j.aap.2003.09.006 

Graham, J.L., Harwood, D.W., O’Laughlin, M.K., Donnell, E.T., Brennan, S., 2014. NCHRP 

Report 794: Median Cross-Section Design for Rural Divided Highways, Transportation 

Research Board of the National Academies. 

Han, C., Huang, H., Lee, J., Wang, J., 2018. Investigating varying effect of road-level factors on 

crash frequency across regions : A Bayesian hierarchical random parameter modeling 

approach. Analytic Methods in Accident Research 20, 81–91. 

doi:10.1016/j.amar.2018.10.002 

Hausman, J., Hall, B.H., Griliches, Z., 1984. Econometric Models for Count Data with an 

Application to the Patents-R & D Relationship 52 4 , 909–938. 

Hou, Q., Tarko, A.P., Meng, X., 2018. Investigating factors of crash frequency with random 

effects and random parameters models : New insights from Chinese freeway study. Accident 

Analysis and Prevention 120, 1–12. doi:10.1016/j.aap.2018.07.010 

I-95 Corridor Coalition I-95 Corridor Coalition Vehicle Probe Project: Validation of INRIX Data 

I-95 Corridor Coalition Vehicle Probe Project: Validation of INRIX Data, 2009. 

Imprialou, M.I.M., Quddus, M., Pitfield, D.E., Lord, D., 2016. Re-visiting crash-speed 

relationships: A new perspective in crash modelling. Accident Analysis and Prevention 86, 

173–185. doi:10.1016/j.aap.2015.10.001 

Ivan, J.N., Wang, C., Bernardo, N.R., 2000. Explaining two-lane highway crash rates using land 

use and hourly exposure. Accident Analysis and Prevention 32, 787–795. 

Jianming Ma, Kockelman, K., 2006. Crash frequency and severity modeling using clustered data 

from Washington State, in: 2006 IEEE Intelligent Transportation Systems Conference. 

doi:10.1109/ITSC.2006.1707456 

Khan, G., Bill, A., Chitturi, M., Noyce, D., 2013. Safety Evaluation of Horizontal Curves on 

Rural Undivided Roads. Transportation Research Record: Journal of the Transportation 

Research Board 2386 1 , 147–157. doi:10.3141/2386-17 

Knuiman, M., Council, F., Reinfurt, D., 1993. Association of median width and highway accident 

rates. Transportation Research Record: Journal of the Transportation Research Board 1401 , 



 

144 

 

70–82. 

Kononov, J., Hersey, S., Reeves, D., Allery, B., 2012. Relationship Between Freeway Flow 

Parameters and Safety and Its Implications for Hard Shoulder Running. Transportation 

Research Record: Journal of the Transportation Research Board 2280, 10–17. 

doi:10.3141/2280-02 

Li, L., Wenfang, T., Yuqi, M., Xiyuan, Z., Rujing, G., 2018. Traffic Accident Analysis With Or 

Without Bus Priority, in: 2018 International Conference on Civil and Hydraulic 

Engineering. 

Lord, D., Manar, A., Vizioli, A., 2005. Modeling crash-flow-density and crash-flow-V/C ratio 

relationships for rural and urban freeway segments. Accident Analysis and Prevention 37 1 , 

185–199. doi:10.1016/j.aap.2004.07.003 

Lord, D., Mannering, F., 2010. The statistical analysis of crash-frequency data: A review and 

assessment of methodological alternatives. Transportation Research Part A: Policy and 

Practice 44 5 , 291–305. doi:10.1016/j.tra.2010.02.001 

Ma, Z., Zhang, H., Chien, S.I., Wang, J., Dong, C., 2017. Predicting expressway crash frequency 

using a random effect negative binomial model : A case study in China. Accident Analysis 

and Prevention 98, 214–222. doi:10.1016/j.aap.2016.10.012 

Mannering, F.L., Bhat, C.R., 2014. Analytic methods in accident research: Methodological 

frontier and future directions. Analytic Methods in Accident Research. 

doi:10.1016/j.amar.2013.09.001 

Mccarthy, P.S., 1999. Public policy and highway safety: a city-wide perspective. Regional 

Science and Urban Economics 29, 231–244. 

McCullagh, P., Nelder, J.A., 1991. Generalized Linear Models., Second Edi. ed, Journal of the 

Royal Statistical Society. Series A (Statistics in Society). Chapman and Hall, Ltd. 

doi:10.2307/2983054 

Miaou, S., 1994. The Relationship Between Truck Accidents and Geometric Design of Road 

Sections: Poisson versus Negative Binomial Regression. Accident Analysis and Prevention 

26 4 , 471–482. 

Milton, J.C., Mannering, F.L., 1996. The Relationship Between Highway Geometrics, Traffic 

Related Elements and Motor Vehicle Accidents. Washington Srare Department of 

Transportation. 



 

145 

 

Mussone, L., Bassani, M., Masci, P., 2017. Back-propagation neural networks and generalized 

linear mixed models to investigate vehicular flow and weather data relationships with crash 

severity in urban road segments. Transport Infrastructure and Systems – Dell’Acqua & 

Wegman (Eds). 

Noland, R.B., 2003. Traffic fatalities and injuries: The effect of changes in infrastructure and 

other trends. Accident Analysis and Prevention 35, 599–611. doi:10.1016/S0001-

4575(02)00040-4 

Persaud, B., Dzbik, L., 1993. Accident Prediction Models for Freeways. Journal of the 

Transportation Research Board: Transportation Research Record 1401. 

doi:10.1016/j.amjcard.2005.11.025 

Sabey, B., Taylor, H., 1980. The known risks we run: the highway, Transport and Road Research 

Laboratory. 

Schwarz, G., 1978. Estimating the Dimension of a Model. The Annals of Statistics 6 2 , 461–

464. 

Shankar, V., Albin, R., Milton, J., Mannering, F., 1998. Evaluating Median Crossover 

Likelihoods with Clustered Accident Counts: An Empirical Inquiry Using the Random 

Effects Negative Binomial Model. Transportation Research Record: Journal of the 

Transportation Research Board. doi:10.3141/1635-06 

Shankar, V., Mannering, F., Barfield, W., 1995. Effect of roadway geometrics and environmental 

factors on rural freeway accident frequencies. Accident Analysis and Prevention 27 3 , 371–

389. doi:10.1016/0001-4575(94)00078-Z 

Solomon, D., 1964. Accidents on Main Rural Highways Related to Speed, Driver & Vehicle. 

U.S. Department of Commerce/Bureaue of Public Roads. 

Tanishita, M., van Wee, B., 2017. Impact of vehicle speeds and changes in mean speeds on per 

vehicle-kilometer traffic accident rates in Japan. IATSS Research. 

doi:10.1016/j.iatssr.2016.09.003 

Tegge, R. a, Jo, J., Ouyang, Y., 2010. Development and Application of Safety Performance 

Functions for Illinois. Illinois Center of Transportation. 

Ulfarsson, G.F., Shankar, V.N., 2003. An Accident Count Model Based on Multi-Year Cross-

Sectional Roadway Data with Serial Correlation. Transportation Research Record Journal of 

the Transportation Research Board 1840 1 , 193–197. 



 

146 

 

Venkataraman, N., Ulfarsson, G.F., Shankar, V.N., 2013. Random parameter models of interstate 

crash frequencies by severity , number of vehicles involved , collision and location type. 

Accident Analysis and Prevention 59, 309–318. 

Washington, S.P., Karlaftis, M.G., Mannering, F.L., 2010. Statistical and Econometric Methods 

for Transportation Data Analysis, Second Edi. ed. Chapman and Hall/CRC. 

Yu, R., Quddus, M., Wang, X., Yang, K., 2018. Impact of data aggregation approaches on the 

relationships between operating speed and tra ffi c safety. Accident Analysis and Prevention 

120, 304–310. doi:10.1016/j.aap.2018.06.007 

Zegeer, C., Stewart, R., Reinfurt, D., Council, F., Neuman, T., Hamilton, E., Miller, T., Hunter, 

W., 1990. Cost Effective Geometric Improvements for Safety Upgrading of Horizontal 

Curves. Federal Highway Administration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

147 

 

CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

 

Investigating the relationship between crash characteristics (e.g. occurrence, type, and severity) 

and traffic characteristics has been a prime focus in the field of traffic operations and safety. 

However, despite substantive progress in predicting road safety, most past studies are limited by 

their use of temporally aggregated traffic and/or crash data. This can be a critical limitation for 

locations where some explanatory variables experience considerable variations temporally (e.g., 

inclement weather, rush hours, and capacity reduction). This research explored how to effectively 

quantify highway safety on a short-term basis to overcome these limitations of current methods to 

provide better crash predictions. Major contributions of this research, applications of the developed 

techniques, and future research are summarized in this chapter. 

 

7.1 SUMMARY OF MAJOR FINDINGS AND CONCLUSIONS 

This research was conducted using volume, speed, and geometry data from 4-lane rural freeway 

segments and 6-lane urban freeway segments from 2011 to 2017 using Virginia Department of 

Transportation (VDOT) data systems.  Major findings across the papers in this dissertation are 

summarized below: 

• Development of crash prediction models using non-annual data: 

➢ Models using raw hourly data were found to be inferior to other levels of aggregation.  

The raw hourly models were influenced by the missing data in the dataset. About 23% 

of the raw hourly data in the validation dataset did not meet quality control standards, 

and thus could not be used to generate predictions. These models did not have a better 

prediction capability in comparison to the AADT model. 

 

➢ Using averages of available data in each hour or each 15-minute improved the model 

performance significantly over AADT models. The average volume calculation helped 

to smooth out the discrepancies created by missing raw hourly data. Models based on 

average 15-minute data did not always perform better than AADT models. For both 

rural and urban segments, models based on average hourly data outperformed the 

AADT based models across all MOEs. For total crashes on urban segments, models 

using hourly volume, geometry, and flow variables showed 20%, 22%, and 38% 

improvement in MAD, MAPE, and MSPE, respectively, as compared to the AADT 
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based model. Corresponding improvements for rural segments were 11%, 33%, and 

29%. 

 

➢ Due to the random nature of crash occurrence, the raw hourly data was heavily 

influenced by 0 crash observations and missing volume data, which negatively 

impacted the ability to generate useful models. Similarly, aggregated models that rely 

on AADT failed to capture variations traffic flow that could influence safety. Average 

hourly aggregation of data was the appropriate level of disaggregation to address the 

variation in volume and speed throughout the day without compromising model quality. 

 

• Inclusion of traffic flow state parameters: 

➢ Initially multiple flow parameters were investigated such as heavy vehicle percentage, 

v/c, speed, and density. Heavy vehicle percentage was not a significant variable. It was 

found that v/c ratio was often an unreliable indicator of traffic flow state since incidents, 

work zones, or other events might restrict flow at the site and these conditions are not 

always documented in agency databases.  Speed and density only had a logical and 

statistically significant relationship when they are used one at a time with volume or 

when they are both used in the same model, but no volume component is added. Since 

volume was deemed to be an important measure of exposure and speed is more widely 

available than density, models that used volume in conjunction with speed were 

selected as the best alternative. 

 

➢ Speed was used in the models in the form of average hourly speed, standard deviation 

of average speed, and difference between speed limit and average speed. Average 

hourly speed was positively related to total crashes, meaning that higher average speeds 

are correlated with higher crash frequency. Standard deviation of average speed was 

significant for all crash types.  This indicated that as more variation in hourly speeds 

are observed over a year, the frequency of crashes increases.  

 

➢ The variable that represents difference between speed limit and average speed was 

significant for all crash types as well.  It was observed that during free flow conditions, 

total crashes, injury crashes, and single vehicle crashes increase while PDO and multi 

vehicle crashes decrease.  During congestion, a reverse scenario was observed where 
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single vehicle injury crashes decrease and multi vehicle and PDO crashes increase. This 

is a logical relationship since there is a higher probability of having more than one 

vehicle involved in a crash during congestion. During free flow conditions, fewer 

vehicles are on the road so average speed is higher. Higher average speed increases the 

probability of injury crashes. 

 

➢ For all models, prediction accuracy was improved across all validation MOEs when the 

speed components were added relative to performance without speed measures. For 

example, for urban segments, MAD improved by 11% for total crashes and 5% for 

injury crashes when speed was added in different forms. Rural segments experienced 

similar improvements as well. 

 

• Effects of using sensor data and probe data for speed measures: 

➢ First, the volume, geometry, and flow models used speed and volume data from 

continuous count stations. Later, INRIX data was used in combination with detector 

volume while maintaining the same model format. For all the models, parameters for 

speed related variables didn’t vary much between two data sources. Since these two 

models essentially had the same data other than the speed component, this is an 

indication that the speed data from these two sources are not significantly different than 

each other in terms of their effect on the model. 

 

➢ When comparing an AADT-based model to an average hourly volume model for total 

crashes, the mean absolute prediction error improved by 11% for rural models and 20% 

for urban models. This result was based on volume and speed data from continuous 

count stations. When private sector probe speed data was used, the rural model 

performance improved by 10% and urban models by 20%.  This trend was consistent 

for all crash types irrespective of level of injury or number of vehicles involved.  Given 

that model performance was similar and probe data is more widely available, probe 

data offers a way to significantly expand the application of models that include speed 

measures. 

• Evaluation of model performance with non-continuous volume count stations: 

➢ Models using only continuous count station data were contrasted with the models using 

both short count and continuous count stations. For rural hourly models, MAD and 
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MSPE improved by 52%, and 72% respectively when short counts were added in 

comparison to continuous count only models. The respective values for urban segments 

were 58% and 51%.  
 

➢ The results show that for both rural and urban segments, inclusion of the short count 

stations had a large, beneficial impact on model performance.  Thus, using average 

hourly volumes can be coupled with averages of real-time speed data to generate 

models that offer substantially improved predictions over AADT-based models. 

 

• Effects of spatial and temporal correlation: 

➢ Results show that the spatial correlation effect is weaker than the temporal one. For all 

categories, the variance is much smaller for districts than it is for year or hour. This is 

due to the fact that the sample size among districts is not equally distributed. Even 

though the temporal correlation was stronger than the spatial one, the variance in data 

explained by yearly correlation was smaller than the hourly one. The total crashes vary 

between years and total sample size while considering hourly correlation is higher as 

well.   

 

➢ While comparing the models accounting for correlation to the models that used the 

same dataset but no correlation, the MAD, MAPE, and MSPE improved by 14%, 1%, 

and 17% respectively for rural segments and 21%, 1%, and 0.19% respectively for 

urban segments.  While accounting for correlation improved model performance, it 

provided smaller benefits than inclusion of the short count data in the models. 

 

7.2 POTENTIAL APPLICATIONS 

A major gap in existing literature as pointed out repeatedly in this dissertation is the absence of an 

existing methodology for safety assessment of facilities with dynamic traffic control or geometry. 

This is true for recurring situations that deviate from average conditions (e.g., day and night, peak 

periods) as well.  The crash prediction models developed in this study close the gap in these areas 

and will facilitate the assessment of a facility where conditions are different for different times of 

day. Some possible examples of the application of the models developed in this research include:  
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• Work Zones:  The temporary traffic control strategies at work zone generally affect both 

traffic safety and operations and are often only implemented during off peak periods. An 

important issue with work zone safety assessment is that work zones typically occur during 

off peak periods, particularly if lane closures are used. The HSM provides crash 

modification functions that account for the effects of project length and duration on crash 

frequency but do not allow for explicit comparisons of expected safety performance among 

different work or closure types, nor do HSM CMFs account for the time of day when the 

work zone is active (1).  The methods developed in this dissertation would allow engineers 

to explicitly look at expected tradeoffs in safety created by using different work hours or 

lane closure configurations. 

 

• Managed Lanes: The HSM does not address freeway facilities with high-occupancy vehicle 

(HOV) lanes, high-occupancy toll (HOT) lanes, or other managed-lane strategies [1]. 

Ideally, the managed lanes operate at higher speeds than general purpose lanes during peak 

period.  Since both HOV and HOT facilities are time varying in nature, the methodology 

described in this study could be extended to estimate safety for managed vs. general 

purpose lanes or to evaluate potential safety impacts of changes in operating hours. 

 

• Part-time Shoulder Use:  Part-time shoulder use is an increasingly popular strategy for both 

reducing freeway congestion and improving travel time and reliability. FHWA published 

a guide on part-time shoulder use in February 2016, and the lack of tools for quantifying 

the safety impact of part-time shoulder use was identified as a major research gap by the 

guide’s authors [2]. Quantitative safety analysis of the part-time shoulder use operations 

can be an excellent application of the methodology developed in this study. 

 

• Variable Speed Limits:  This research can also be helpful in evaluating a variable speed 

limit operation by separating the hours when the VSL is active as opposed to using an 

aggregated model without hourly variation. To improve safety on the I-77 corridor, the 

Virginia Department of Transportation has been using variable speed limits (VSLs) that 

change the posted speed based on current weather conditions, including fog, high winds, 

snow, and ice [3]. Since VSLs only post reduced speeds during fog events, traditional safety 

analyses would have difficulty estimating crash modification factors for this 
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countermeasure. This research can also help evaluating that system or any other ATM 

system in future. 

 
 

7.2.1 Case Study:  Work Zone Application 

 To illustrate the application of the developed models, a case study was carried out using 

data from four ongoing work zones on I-81 in the VDOT Staunton and Salem District. All these 

sites have a rural 4 lane freeway cross section, and work zones were active from 8 PM to 6 AM on 

weekdays. Each project involved roadway paving, and lane closures that created congestion were 

present during at least a portion of the work zone activities.  The earliest start date for these projects 

was May 2018 and latest end date was August 2018, although all of these projects had different 

durations within this timeframe. Volume data was collected from detectors that cover these sites. 

The location information of detectors was matched with the start and end points of TMCs from 

INRIX. Hourly volume data was downloaded from those detectors from VDOT and speed data 

was downloaded from INRIX. Geometry data was available from HTRIS. Properties for these sites 

are shown in Table 1.  

 

Table 1: Description of Work Zone Sites (During Work Zone Hours) 

 Total Work 

Days 

Total 

Crashes 

Length 

(mile) 
AADT 

Average 

Hourly Volume 

Average 

Hourly Speed 

(mph) 

Speed 

Limit 

(mph) 

Site 1 20 2 2.00 31860 625 49.47 60 

Site 2 26 2 1.51 31492 686 50.79 60 

Site 3 27 3 2.00 26699 581 60.72 70 

Site 4 19 2 1.60 29115 610 62.65 70 

 

The rural models for total crashes developed in this research were used to evaluate the 

safety effect during the hours work zone was active at these sites. Hourly predictions were 

calculated for the hours when work zone was active and the predictions were then summarized to 

generate annual predicted numbers of crashes during active hours.  

 

Annual predicted number of crashes was also predicted using the Virginia-specific SPF for 

2 lane rural interstates that uses AADT and segment length [4]. The predicted crashes from the 

AADT SPF were multiplied by a factor for each site data to focus on total number of days and 

hours when the work zone was active. The first part of the factor is a ratio of total hourly volume 

during work zone hours to total AADT. The second part is a ratio of total number of days to 365. 
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It was assumed that crash distribution will follow the same distribution as volume during active 

hours. This factor helps to take into account the crash experience in short duration rather than 

whole year.  

𝐹𝑎𝑐𝑡𝑜𝑟 =  
∑ 𝐻𝑜𝑢𝑟𝑙𝑦 𝑉𝑜𝑙𝑢𝑚𝑒6𝐴𝑀

8𝑃𝑀

𝐴𝐴𝐷𝑇
∗  

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑜𝑟𝑘𝑑𝑎𝑦𝑠

365
 

 

The results from both models were compared to check which model captures the safety 

effect of work zone better. MAD, MAPE, and MSPE were used as measure of effectiveness. Table 

2 shows the result. The hourly model developed in this research performed better than the current 

SPF used for Virginia freeways for all sites. Since work zones are only active certain hours a day, 

it is difficult to estimate safety using an AADT based model. The AADT based model also does 

not allow inclusion of speed related variables. Even though the annual predicted crashed were 

converted to annual crashes during work zone hours, that conversion was not enough to capture 

the variation in flow and associated safety effects of work zone. The MAD, MAPE, and MSPE 

improved by 36%, 27% and 33% on an average for the research models in comparison to Virginia 

SPF.   

Table 2: Model Comparison 

 Developed Model Virginia Model 

MAD MAPE MSPE MAD MAPE MSPE 

Site 1 
1.29 51% 1.55 

1.96 83% 2.25 
(-34%) (-32%) (-31%) 

Site 2 
1.04 53% 1.35 

1.67 83% 2.10 
(-38%) (-30%) (-36%) 

Site 3 
0.98 50% 1.39 

1.48 71% 1.99 
(-34%) (-21%) (-30%) 

Site 4 
1.25 51% 1.40 

1.96 75% 2.15 
(-36%) (-24%) (-35%) 

Overall 

 

1.14 51% 1.42 
1.77 78% 2.12 

(-36%) (-27%) (-33%) 
 

This case study highlights how the models can be used to assess safety for a short duration activity. 

The result of this study proves that the models developed in this research has better capability to 

assess safety than current SPFs for work zone application or any other application that is not active 

24 hours a day. 

7.3 RESEARCH CONTRIBUTIONS 

• While previous studies have defined relationships between crashes and geometric and 

environmental characteristics, there is a lack of robust research examining the relationship 
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between crash frequency and severity and speed and flow characteristics. A few states like 

North Carolina and California have developed additional SPFs that includes design speed or 

speed limit as variables in addition to AADT [5,6].  Even though they included additional 

variables, these AADT based SPFs don’t capture the variation in actual flow since no measure 

to capture actual traffic speed is present. The models developed in this research as documented 

in Chapters 4, 5 and 6 address this limitation in current literature. These models identified how 

interactions between flow parameters and crash frequency changes based on crash types and 

facilities. Such detailed analysis is currently not present especially for state level SPFs. The 

developed models will allow explicit consideration of the impact of traffic flow state on safety.   

 

• Despite the importance of the relationship between speed and safety, predictive models 

generally do not yet include speed measures, partially due to the lack of widespread speed data 

from point detectors. This research showed that private sector probe data (INRIX) could be 

successfully used in place of detector data for models that utilizes speed to generate 

predictions. Many states including Virginia already use INRIX data to support a variety of 

performance measurement and traveler information applications. Despite the availability of 

highly disaggregated speed data and broader spatial coverage, integrating probe data with data 

from loop detectors for safety modeling is not common. Chapter 5 shows the comparison 

between sensor data and INRIX data and proves that INRIX is a suitable alternative for speed 

data while developing crash prediction models. These findings will be helpful in closing the 

gap in existing practices and promote use of probe data in safety analysis. 

 

• Inclusion of speed related variables can help reduce the dependence on volume data alone. The 

quality of current crash prediction models is directly related to the quality of volume data used. 

As discussed repeatedly in this dissertation, access to adequate volume data may be a 

significant barrier to developing crash prediction models.   The developed models include flow 

variables that come from verified alternate data sources, thus providing an opportunity to both 

improve model quality and help to balance the influence of volume data. Even though the 

problems associated with reliance on volume data only are widely acknowledged, very little 

research focused on examining this topic. Chapter 5 and 6 documents how this dissertation 

explored different speed related variables and proved their superiority over volume-based 

model for different levels of aggregation and crash type. 
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• The larger impact of using an extensive dataset proved that using short count stations as data 

source does not diminish the quality of developed models if speed related variables are used in 

the model. As documented in Chapter 6, this means that a combination of different volume 

data source with good quality speed data can lessen the dependency on volume data quality 

without compromising performance. Since the use of short counts did not degrade the models, 

this shows that states with limited continuous count stations could still apply average hourly 

volumes from short counts to generate similar models. For example, there are only 70 

continuous count stations available for the roadway network maintained by North Carolina 

DOT [7]. On the other hand, VDOT maintains around 2900 count stations located on the 

interstates, around 150 of which are continuous counts [8]. The findings from this dissertation 

show that similar average hourly models could be generated nationally and do not rely on 

robust continuous data. 

 

• Accounting for correlation in developing SPFs is currently not very common. Spatial 

correlation for multilane highways is addressed by developing separate models for separate 

district. The models in chapter 6 used district as a grouping variable to capture overall 

correlation among districts without developing separate models. It also accounts for the 

temporal correlation by using year and hour as grouping variable.  

 

7.4 FUTURE RESEARCH  

While this research made significant progress in developing disaggregate SPFs that could be 

broadly applied to freeway segments, several possible avenues for future research have been 

identified.  Possible future research has been organized based on whether it is a near-term to long-

term research need. 

 

7.4.1 Near-Term Research  

A very interesting future research topic using the developed methodology would be to 

explore other facility types such as arterials. This research focused on rural 4 lane and urban 6 lane 

freeway segments because they are the most common freeway cross sections in Virginia. The 

methodology developed in this dissertation can be extended to other facility types in the future. It 

would be interesting to see how this methodology can improve crash prediction models for arterials 
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and signalized intersections in particular. The nature of operations on an arterial is different than 

freeways and investigating how that changes the models would be interesting. This will be 

particularly useful in places where time of day (TOD) based signal timing plans are used. Hourly 

models will help isolate the effect of these signal timings and accurately assess the safety 

effectiveness. This is a logical next step to evaluate the methodology developed in this dissertation 

and check its broader transferability. 

Further examination of the spatial and temporal correlation another way to refine the 

developed model. VDOT districts have been used to define spatial correlation in this dissertation. 

The results showed that there is indeed spatial correlation among districts, even though it is very 

low. This was largely due to the sample size in each district. Since neighboring districts might 

share some similar characteristics, grouping them together will increase sample size in each 

category and also simplify the modeling process. The current SPF for multilane highways in 

Virginia has different models for different district groups, and the grouping was done through an 

iterative process [4]. A similar approach could be adapted for future research. It is also possible to 

modify these models to capture the seasonal variability in data or even the difference in traffic 

trends between weekdays and weekends. This temporal disaggregation can help to capture the 

difference in driving behavior and also incorporate the effect of weather through the seasonal 

variable. Further exploration of the data correlation can be an immediate step for these models. 

In addition to different facilities, parallel efforts could be made to explore different crash 

types as well. This research primarily focused on total and injury crashes. Even though PDO, single 

vehicle, or multivehicle crashes were considered initially, they were not included in the final 

models. It would also be interesting to see how different crash types such as rear end or roadway 

departure crashes for freeways and head-on crashes or sideswipe crashes for intersections would 

be affected by more disaggregate predictions. It is also possible to extend this work to investigate 

bicycle or heavy vehicle crashes. 

 

7.4.2 Medium-Term Research  

Future research could also focus on developing default values for parameters that are hard 

to predict for future years. For example, knowing the standard deviation of hourly speeds for a 

future year may be hard to identify.  Research in this direction could focus on how to estimate the 
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parameters for future use so that developed models could be used more accurately for prediction 

as well as safety assessment.  

The cost of collecting accurate, high-quality volume data with traditional infrastructure 

sensors can be high, which is why real-time volume data remains relatively sparse and of varying 

quality on the majority of the freeway and major arterial networks. Data analytics companies such 

as Streetlight now provide probe data-based estimate of volume to leverage existing count stations, 

and these data products are expanding. The volume estimates from these sources still need to 

checked for accuracy, but quality is expected to improve in coming years, especially with the 

inclusion of connected and automated vehicles in the traffic stream. Probe volume estimates could 

be explored as a way to further extend these models as the data streams mature. 

 

7.4.3 Long-Term Research  

With the emergence of connected and automated vehicles, the available data on crash 

contributing factors could change significantly. It is expected that the CV-AV environment will 

change the quality, quantity, and type of data available for safety assessment.  Connected Vehicles 

(CV) can provide data such as instantaneous driving behavior, maneuvers, trajectory, individual 

origin and destination, and traffic data which previously were not obtainable. Currently, lane by 

lane speed data is sparse. In a connected vehicle environment, it would be possible to get speed 

data for each individual vehicle instead of an average value for the whole traffic stream at a certain 

time. That would ensure more accurate calculation of speed variance and detailed lane by lane 

analysis. The role of speed variance may be even bigger during transitional mixed automated and 

human-driven traffic periods, and it would be interesting to assess how different rates of market 

penetration and differences in speed changes affect safety in those scenarios.  

In a traditional traffic environment, data regarding the type of crash, time, location, and 

driver information is collected by law enforcement officers at the scene. All this information is 

collected after the crash already happened. In a connected vehicle environment, high-resolution 

trajectory and vehicle status data will become more available. These trajectory data can not only 

provide rich and timely traffic flow information, but also capture the exact location before, during, 

or after a crash for all the vehicles involved.  

In a human driven vehicle, the driver makes the decisions on vehicle operation based on 

his own perception of the driving environment. A connected vehicle is equipped with technologies 
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that gives the driver additional information on the surroundings and also the traffic conditions 

ahead of them. Knowledge about how the drivers use this information, how they maneuver in 

traffic, and what kind of behavior leads up to a crash can open up a possible path of future research. 

Connected vehicles will help us get more information on questions that has huge impact on crashes 

but is not available currently. Questions regarding the seatbelt use on drivers involved in crashes 

(or in general as well), driving patterns before crash (risk taking behavior, aggressive driving, too 

frequent lane changing etc.), variance in speed between the vehicles involved in crash and the 

traffic stream, etc. insights into the chain of events that lead to a crash.  

 

The improvement in data quality and availability of different types of data in future would 

enable a detailed analysis of safety. For example, the accuracy of crash data from police reports 

have always been a source of concern. Using connected vehicles, it will be possible to get the exact 

time and location of crashes, and the movement of all the involved vehicles before, during and 

immediately after a crash; significantly improving the currently available crash databases. This 

will also improve how we develop the crash models. Currently, the driver level information is not 

used for crash modeling. It is possible that in addition to geometry and traffic flow, driving 

behavior related information could also be included in the modeling process. This will be 

particularly useful for models based on level of injury and types of crashes. 

Availability of data for each individual vehicle will be particularly useful for safety 

assessment of managed lanes. The managed lanes operate at higher speeds than general purpose 

lanes during peak period.  Since both HOV and HOT facilities are time varying in nature, methods 

to estimate safety for managed vs. general purpose lanes or ways to evaluate potential safety 

impacts of changes in operating hours will be an interesting topic to explore.  

With an increasing rate of penetration of connected and automated vehicles in the near 

future, the models developed in this research would require revision to properly incorporate the 

effect of new technology and new data sources. It is expected that the interaction between the 

selected variables in the developed models and also the variables itself will change in that 

environment. More research is required in this direction to conclude on a direction of change. 
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