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Abstract— There is substantial need to increase donor
heart utilization in pediatric heart transplantation.
Almost half of pediatric heart donors are discarded,
despite nearly 20% waitlist mortality. Physicians have
limited time to view heart condition data and decide to
accept the donor heart once the heart becomes available.
Due to the large amount of data associated with each
donor heart and the lack of data-driven guidelines,
physicians often do not have adequate metrics to
determine acceptable heart quality. This research
characterizes the differences in the clinical course
between accepted and rejected pediatric donor hearts. A
longitudinal study assessing the effect of static and
dynamic measurements on the donor heart’s function
from the time of declaration of brain death to either
disposal or heart procurement is developed by analyzing
donor data via DonorNet, the system used by the United
Network for Organ Sharing (UNOS) to match donors to
a ranked order of recipients based on blood type, heart
size, urgency status of the recipient, and other factors.
Cardiovascular milieu (i.e. blood pressure, heart rate,
medical management) and surrogate markers of organ
perfusion, such as kidney and liver function, also inform
our analyses and determine whether there are direct or
indirect associations between these myriad markers and
heart function. It also analyzes the proportion of
measurements in stable and acceptable ranges over time,
as well as typical minimum, maximum, and final
measurements for different functions. All analyses are
compared between accepted and rejected hearts using
logistic regression and statistical analysis. Using the most
recent measurements for each donor at 24 hours after
brain death, the analysis identified significant factors in
predicting donor heart acceptance: Left Ventricular
Valve Dysfunction, Age, Shortening Fraction, and 4
Chamber Ejection Fraction. Additionally, visual tools
were created as deliverables to aid physicians to decrease
decision time and increase confidence in donor heart
acceptance or rejection.
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I. INTRODUCTION

Despite advancements in the medical field, the
utilization rate for organ donations for pediatric heart
transplants remains low. The number of available pediatric
donor hearts discarded reaches as high as 45% in the United
States [1]. Due to numerous factors such as the high
rejection rate, limited supply and the lack of universally
accepted guidelines etc., children in need of a heart
transplant generally spend up to 6 months on the waitlist,
and an estimated 17% of children die while on the waitlist
[2]. As part of a broader effort to increase the survival rate
for patients on the waitlist, we investigated the factors

contributing to donor heart utilization and provided
deliverables for physicians to optimize the selection of
donor hearts. The United Network for Organ Sharing
(UNOS) created UNet and DonorNet to place candidates on
waiting lists, match donors to recipients, and upload and
view relevant data on donors [3]. Algorithms match donors
and recipients in a tiered fashion based on recipient urgency
and other factors that determine donor-recipient suitability
[4]. Physicians are notified when their waitlisted patient is
matched to a potential donor and have approximately one
hour to decide to accept or reject the offer [5]. Factors
including medical history, vitals, laboratory testing,
radiological results, and distance from the hospital are
viewed to inform this decision [6]. This process continues
down the list of potential recipients until a heart is accepted
or the donor is no longer viable [3]. The large amount of
data given to physicians under the harsh time constraint can
decrease the confidence in heart selection [7]. Accepting an
inadequate heart increases risk of recipient morbidity and
mortality which can result in possible program termination
[1]. Conversely, rejecting a usable heart may lead to the
candidate dying on the waitlist. This research compares the
accepted and rejected hearts by analyzing the DonorNet
data. The most important heart characteristics relating to
acceptance and rejection are determined using logistic
regression, thus providing an evidence-based approach for
physicians to make this decision.

II. LITERATURE REVIEW

A majority of the available scientific literature
regarding donor heart acceptance practices focuses on the
larger adult experience and is generally not applicable to the
pediatric population. The results of a recent international
survey assessing pediatric donor heart acceptance practices
demonstrated wide practice variation between physicians,
suggesting the need for data driven guidelines [7]. These
results helped prompt a thorough review of the pediatric and
adult literature to produce a consensus statement for the
International Society of Heart and Lung Transplantation
which suggested none of the ‘static’ donor characteristics
(e.g. cause of death, history of CPR, cardiac enzyme levels,
or inotrope exposure) were relevant for recipient outcomes.
Seemingly, only donor ischemic time (the period of time a
donor heart is outside a body) and ultrasound evidence of
heart function (as demonstrated by an echocardiogram)
influenced recipient survival after heart transplantation,
although these assertions were extrapolated from small
pediatric and larger adult studies and always used only the
final, pre-transplant echocardiogram for assessment [8].

No study has attempted to assess the potential donor
heart’s response to impending brain death and the period
afterwards, which are characterized by a supraphysiologic
insult followed by a complete cessation of neurohormonal
support by the body, respectively. Considering the pediatric
heart’s intrinsic ability to recover from significant stressors,
it would be expected that given adequate time and medical



support, most pediatric donor hearts should be salvageable
for donation. The only way to determine this potential,
however, is to assess the entirety of available donor data,
and provide a complete representation of the donor heart’s
external stressors and its subsequent response and compare
against physician’s donor acceptance practices and ultimate
recipient outcomes.

III. DATA DESCRIPTION

The data used in the analysis consists of three sets
describing 7100 donors that were either accepted or rejected
for a pediatric heart transplant from 2009 to 2020.

The first set was created to describe the test results
of cardiovascular milieu (heart measurements),
surrogate markers of organ perfusion (kidney and liver
measurements) and inotropic agent levels (medication
given to a patient to change the force of heart
contractions).

● Heart Measurements: blood pressure, heart rate,
pulse, central venous pressure (CVP), troponin,
and creatine kinase-MB (CKMB)

● Kidney Measurements: Creatinine, Sodium 170,
Potassium, PAO2, Positive End-Expiratory
Pressure (PEEP), Hemoglobin (HGB), Hematocrit
(HCT), and Schwartz score.

● Liver Measurements: Serum Glutamic Oxaloacetic
Transaminase (SGOT), Serum Glutamic Pyruvic
Transaminase (SGPT), Bilirubin (direct and
indirect), Prothrombin, International Normalized
Ratio (INR), and Model for End-stage Liver
Disease (MELD)

● Inotropic Measurements: Dopamine, Dobutamine,
Epinephrine, Milrinone, Vasopressin, and
Norepinephrine, and Vasoactive Inotropic Score
(VIS)

The Schwartz score is a quantifiable calculation to
assess the level of renal failure [9, 10]. The MELD score
provides a singular measurement describing liver
functioning [11]. VIS, a singular measurement calculated
from the inotropic values, indicates the level of medication
required for the heart to remain viable [12]. All variables
contained time-stamped measurements, and all tests that
were conducted on the potential donors starting from 24
hours before brain death until they were ultimately accepted
for transplantation were included.

The second set of variables is a static set of identifying
characteristics from each donor: Donor ID, Date and Time
of Brain death, donor Acceptance/Rejection, Date of Birth,
Age, Height, and Weight. These identifiers provide insight
into demographic characteristics when analyzing other
variables.

The final set is a summary of the echocardiogram
(echo) measurements at various times in a donor’s clinical
life course. Each observation in the data includes the Donor
ID, the time that the measurement was taken, and
quantitative and qualitative measurements of heart function.
These measurements include Global Left Ventricular
Dysfunction, Global Right Ventricular Dysfunction, Focal
Left Ventricular Free Wall Dysfunction, Focal
Interventricular Septal Dysfunction, and Focal Right
Ventricular Free Wall Dysfunction. Ordinal scores
representing Qualitative Status and Quantitative Status of
heart function were developed from these echo
measurements to describe heart functioning as moderate to
severe, mild, or normal at the time the tests were conducted.

The three subsets were combined to create a superset
for evaluation. Variables were organized by Donor ID into a
format with columns of the test name and corresponding
value, the time of the test, and the identifying
characteristics. For each Donor ID, there may be multiple
measurements associated with different parts of the body at
different times (DT). Duration, defined by the time
difference between BrainDeath and DT, was calculated to
determine the time after brain death these measurements
were taken. Ranges of normal values for each test were
included for each observation.

IV. DATA ANALYSIS

Data analysis was conducted on both an aggregate and
individual level. Logistic regression analysis was performed
on relevant variables to determine which ones were
significant in predicting whether a heart was ultimately
accepted or rejected.

A. Aggregate Level Analysis

In order to better understand how heart metrics changed
over time and differed between accepted and rejected
donors, a graphical data exploration was conducted on an
aggregate level. Boxplots produced for each variable show
every datapoint against time since brain death (in hours) to
visualize measurement variability across the clinical course
of the donors. Additional boxplots show the range of
minimum, maximum, and final values, and whether they
were in a normal range [13]. These were all differentiated
by age group and whether they were accepted or rejected.
The analysis also included tables and plots showing the
numbers and proportions of values that are too low, in
range, and too high from 24 hours before brain death to 48+
hours after, differentiated by accepted/rejected. As an
example, the Creatinine proportion plot can be seen in Fig.
1. All plots were combined into an html file organized by
the associated organ or functioning. These four types of
graphics enable physicians to visualize to what extent the
measurements are similar for accepted and rejected donors
and to quickly see information about the normal range of the
variable.



B. Individual Level Analysis

Individual level analysis was also conducted in order to
help physicians make more effective and confident
decisions on whether to accept a donor heart by plotting
each of the indicative scores (VIS for inotropic medications,
Schwartz for kidneys, and MELD for liver) from brain death
(for one individual donor) to acceptance or rejection. These
are precise data points calculated using generally accepted
formulas [9, 10, 11, 12]. These also show whether
measurements were in the normal range. As seen by the
light blue background in Fig. 2, this particular donor had all
abnormal measurements for

Fig. 1. The proportions of Creatinine over time for all accepted and rejected
donors. Proportions of values that are too low are shown in brown, in range
are shown in dark green, and too high are shown in tan.

Fig. 2. The measurements of the Schwartz score and echo results over time
for an individual donor.

their Schwartz score, indicating renal failure. Overlaying
this plot are the ECHO results for that donor, both
quantitative and qualitative, with red, yellow, and green
vertical lines signaling an ECHO test at that time point that
indicated moderate to severe heart dysfunction, mild heart
dysfunction, and normal functioning, respectively.
Quantitative and qualitative ECHO tests are often conducted
at the same time, and may have different results, so they are

distinguished by the type of line, either straight or dashed
for qualitative and quantitative readings, respectively. As
ECHO data provide the most objective measurement of
heart functioning, physicians can visually determine how
normal or abnormal a given donor is with respect to the
given variables and general heart functioning.

C. Logistic Regression Analysis

Modeling techniques were used to determine the most
important heart factors that contribute to a donor’s
acceptance. Due to the high percentage of missing data
caused by different measurement time intervals for each
variable, data imputation was required. The most recent
measurement was used if a donor was missing data.
Variables still with more than 80% of the data missing were
excluded from the imputation, and only 25 variables met the
criteria. The remaining missing data was imputed using
predictive mean matching [14].

Logistic regression was performed on an 80% training
set. The response variable (Accepted) was a binary variable
indicating an accepted donor heart or not accepted. Static
donor characteristics (Age, Weight, and Height), echo
measurements (Left Ventricular Dysfunction, Shortening
Fraction, and 4 Chamber Ejection Fraction, Qualitative
Status, Quantitative Status), heart measurements (Blood
Pressure, Pulse, and CVP), Body Temperature, and VIS were
the predictors at t hours after brain death. The model only
considered a 24-hour period after brain death in order to
create a scenario that simulates the reality as much as
possible.

The predictor variables were selected by remaining
variables with sufficient data and previous literature. Age,
Weight, Height were the only static donor identifiers that
could influence donor heart acceptance at a fixed 24-hour
duration. Qualitative Status, Quantitative Status, Left
Ventricular Dysfunction, Shortening Fraction, and 4
Chamber Ejection Fraction were the ECHO measurements
used as predictors. Previous research indicated that ECHO
measurements, especially ejection fractions, were significant
in heart acceptance, so Qualitative Status and Quantitative
Status were as summaries of ECHO measures, as well as the
ejection fraction measures [8]. Blood Pressure, Pulse, and
CVP were the only heart measurements with sufficient data
and therefore included in the model. No liver or kidney
variables contained sufficient data, so liver and kidney
measurements were not included in the analysis. Previous
research suggested no inotropes were relevant in heart
acceptance, so VIS was the only inotropic included in the
analysis as a representative of all inotropes to further
investigate the claim [8]. Body Temperature was used as a
predictor because it had sufficient data and was not part of
any of the donor data groups, so it was decided it was
relevant.



The regression model was analyzed by ANOVA to
identify significant factors correlated to heart acceptance. A
prediction model was developed on the 20% testing set [14].
The prediction model examined the results of the logistic
regression model using sensitivity analysis and correlation
matrix.

V. RESULTS

The aggregate level analysis identified many general
trends for both accepted and rejected donor hearts. For
accepted hearts, troponin, CKMB, and pulse all had values
higher than the specified normal range, but decreased by
about 73%, 59%, and 6% respectively in accepted donors.
PEEP was in the specified normal range and decreased by
about 19%. SGOT and SGPT had a 42% and 40% decrease
in values, respectively, and became in their normal range by
the 36-48 hour bins. In rejected hearts, PEEP, CVP,
temperature, sodium, potassium, prothrombin, CKMB,
troponin, and HGB were in their specified normal ranges for
the majority of the time, while Bilirubin, INR, and PAO2
were not.

Fig. 3. SGOT measurements over time for accepted and rejected donors.
The blue rectangle indicates the range of values considered to be normal
SGOT levels, and the mean at each time bin is represented by the red dot.

In both accepted and rejected hearts post brain death,
blood pressure, bilirubin, CVP, and Schwartz increased by at
least 5%. The values of PAO2 were higher than the normal
range (i.e., greater than 100 mmHg), and notably increased
by 15% for accepted hearts, and 26% for rejected hearts
from 0 to 48+ hours. Variables that decreased at least 5% for
both accepted and rejected hearts over this same time period
include pulse, CKMB, HCT, HGB, VIS, Potassium, PEEP,
Prothrombin, SGOT, and SGPT. Additionally, the aggregate
analysis of SGOT and pH showed visually similar trends
between accepted and rejected hearts, as seen in Fig. 3 and
4. Two variables, Troponin and Creatinine, had opposite
trends for accepted and rejected donors. While troponin
decreased by 73% for accepted hearts, it increased by 51%
for rejected hearts (Fig. 5). Creatinine increased by 11% for

accepted hearts and had more normal measurements as
compared to rejected hearts, which decreased by 4% over
time (Fig. 6).

Fig. 4. pH measurements over time for accepted and rejected donors. The
blue rectangle indicates the range of values considered to be normal pH
levels, and the mean at each time bin is represented by the red dot.

Fig. 5. Troponin measurements over time for accepted and rejected
donors.The blue rectangle indicates the range of values considered to be
normal troponin levels, and the mean at each time bin is represented by the
red dot.



Fig. 6. Creatinine measurements over time for accepted and rejected
donors. The blue rectangle indicates the range of values considered to be
normal creatinine levels, and the mean at each time bin is represented by
the red dot.

In comparing normal and abnormal measurements over
time, the levels of HCT, pH, HGB, temperature, sodium,
SGOT, potassium, CKMB, CVP, PEEP, prothrombin, and
INR were all visually similar between accepted and rejected
hearts. HCT values became more abnormal over time, while
pH, HGB, Temperature, Sodium, SGOT, Potassium, and
CKMB became more normal over time. CVP, PEEP,
Prothrombin, and INR remained relatively constant over
time. However, a Chi-square test was conducted on the
number of normal and abnormal measurements for each
time bin of the variables, and concluded that only the
measurements for prothrombin and HGB were not
significantly different. The remaining variables (other than
PEEP and CKMB) had disproportionately more rejected
hearts having abnormal measurements than expected and
accepted hearts having less in the last duration bin of 48+
hours. Differences in variables between accepted and
rejected donor hearts were evident in pulse, bilirubin,
troponin, SGPT, and PAO2, as all of these variables had
higher proportions of abnormal measurements in rejected
hearts. On the contrary, Creatinine, diastolic blood pressure,
and systolic blood pressure had higher proportions of
abnormal measurements in accepted hearts. When looking
at pulse and creatinine by age group for both accepted and
rejected hearts, pulse values seem to fall within the normal
measurement range until age 3, while for creatinine values
for donors under 10 years old, there were more extreme
outliers for accepted hearts compared to rejected hearts, as
seen in Fig. 7.

When comparing measurements at the last duration
value, the majority of the percentages of abnormal and
normal measurements were similar between accepted and
rejected hearts. pH, PEEP, HGB, HCT, temperature,
dopamine, milrinone, SGOT, SGPT, prothrombin, CKMB,
systolic blood pressure for ages 0-6 months and 6-12 years,
diastolic blood pressure for ages 6-12 months, 1-3 years,

6-12 years, and 12+ years, pulse for ages 6-12 years, and
creatinine for ages 10 and over all had less than a 2%
difference between accepted and rejected hearts. Large
differences between accepted and rejected heart values were
found in bilirubin direct, troponin, systolic blood pressure
for ages 6-12 months, diastolic blood pressure ages 0-6
months, and pulse ages 6-12 months.

Logistic regression was modeled on donor data 24
hours after brain death, and significant measurements
correlated to heart acceptance were determined [14]. It
identified two highly significant factors (p-value < 0.001)
correlated to heart acceptance: Age and Left Ventricular
Dysfunction. A correlation matrix of factors is visualized by
the heatmap shown in Fig. 8.

A confusion matrix from the test set found the
prediction model to have an 0.890 accuracy rate, with a 95%
confidence interval: [0.7954, 0.952]. The sensitivity of the
prediction model is shown in the ROC curve in Fig. 9. The
area under the ROC curve is 0.79.

Fig. 7. Creatinine measurements over time by age group (less than 10 years
old, and greater than or equal to 10 years old) for accepted and rejected
donors.



Fig. 8. Heatmap of correlation matrix of predicted values. A blue square
represents a negative correlation. A red square represents a positive
correlation.

Fig. 9: Plot of ROC curve. Describes the true and false positivity rate for
predicted values on the testing set.

VI. CONCLUSIONS

The plots of individual donor data provide a deliverable
for physicians to view trends over time for the donor they
are considering for their recipient. They can visually analyze
trends over time and evaluate the functioning of the kidney
and the liver through the Schwartz and MELD scores, as
well as inotropic medications, and see how it is related to
the functioning of the heart in relation to the given
quantitative and qualitative ECHO readings.

The aggregate level analysis and the identification of
trends among accepted and rejected heart donors provide
information to physicians about the timeline of pediatric
hearts following brain death and enables the comparison of
accepted and rejected donor hearts. Future work in this area
includes assessing the effect of modeling at different times
after brain death. This will allow for a better understanding
of heart function, and could identify optimal time ranges for
heart extraction. Furthermore, data analysis on waiting lists
and recipient data could improve understanding on
donor-recipient compatibility, as well as identifying heart

factors that contribute to both heart acceptance and
successful transplants.

Ultimately, this research and future work will make the
decision process for doctors faster and easier, and give them
greater confidence in an optimal outcome for the recipient.
By doing so, it is expected that fewer donor hearts will be
rejected, and waitlist mortality for pediatric heart transplant
recipients will decrease.
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