
Graph Matching on the Patterns of Life

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Bryan Kim

Fall, 2021

On my honor as a University Student, I have neither given nor received unauthorized
aid on this assignment as defined by the Honor Guidelines for Thesis-Related

Assignments

Daniel Graham, Department of Computer Science

Rosanne Vrugtman PHD, Department of Computer Science

Abstract
Though criminals constantly change their
phone numbers, making it difficult for law
enforcement to trace them, they rarely
change their contacts. The process of re-
identification can assist law enforcement
efforts to trace the identities of unknown
individuals by using graph networks from
the interactions between the old and new
phone numbers. The prototype pipeline I
designed during my internship can extract
call and message records from recorded
logs and convert them to a graph network,
creating a way to identify similar networks.
The pipeline was tested using data found
from Kaggle as well as some sample data
that represented the client data. The
outcome from the tests shows a promising
8.25% equal error rate in terms of correctly
identifying each network with the clients
satisfied with the results. This concept can
be applied to a wide variety of fields
including studies with brain networks and
even social media data for relevant
pandemic tracing. Next steps for the project
should be to implement machine learning
models to the pipeline like Graph Neural
Networks to reduce the very intensive
calculations and find ways to include social
media data in the graph networks.

1 Introduction
When a person replaces their phone
number, the only aspect that changes in the
person’s life is the number itself as their
contact numbers and their social circles will
most likely remain consistent. With the
same social group kept around this person,
there can be a noticeable number of
repeated interactions between them through
their phones. A certain pattern of life can be
found and mapped out as the repetition of
events continue, limited by the scope of the
interactions done with the phone number.

With every individual having a different
pattern of life in some way or another, such
patterns can be used as key identifiers
regardless of the phone number in use.

This is one of many cases of re-
identification. The main idea of this concept
is to take anonymized yet unique data and
identify the individuals who own it by
matching the data with entries from fully
identified databases. Such databases would
include other instances similar to the
anonymized data but with an identifiable
label. With the scenario above, the pattern
of life extracted from the interactions from
the phone would be the anonymized data
and the name of the owner for the phone
will then be entries from a known database.
One method for storing such complex
networks is to use the graph data type.
Consisting of nodes representing various
entities and edges setting relationships
between those nodes, graphs are able to
handle containing such non-linear data.
There are attributes within the nodes
themselves to add unique characteristics
and weights to the different nodes, allowing
for graphs to be unique.

Law enforcement often faces the problem of
reidentification with phone numbers in their
cases as the suspects would be swapping
their phone numbers, resulting in the
difficulty of identifying who is who when
looking at call and messaging logs.
Currently there is no working solution to this
issue, so during my internship I was tasked
to create a prototype data pipeline for the
client that would extract an interaction-
based graph network from call and
message logs and compare between
various networks to find the most probable
match to a specific phone number.

2 Review of Research
The need for graph matching was vital for
the solution of the project, resulting in
research in that area. This leads to an
important piece of work that is actually
implemented in the pipeline. The NetLSD
package, created by Tsitsulin and his team,
is a Network Laplacian Spectral Descriptor
that extracts unique descriptors based
solely on the graph’s structure and allows
for straightforward comparisons of large
graphs, outperforming in efficiency and
expressiveness [1]. This powerful tool is
used within the pipeline to provide a point of
comparison for the large interaction
networks generated from the phone
numbers.

Peter and Francois provide an overview on
the concept of graph matching and the
various techniques using different distance
measures [2]. Though the techniques in this
source were not used for the actual
calculations in the pipeline, it served as a
good starting point as the authors go over
topics that are found in other sources such
as spectral distances and explaining them in
a simplified manner.

Another relevant work that provides more
context to the data was published in 2015
by a team consisting of Blondel, Decuyper,
and Gauiter. The three go over the analysis
of social graph networks extracted from
anonymized data accumulated over the past
decade and explore the vast array of ways
this data can be used. This includes urban
sensing, tracking of epidemics and
geographical partitioning [3]. Much of the
information found in the trio’s work provided
the possibility of where to take the project
next as well as providing suggestions on
how to format the graphs in the pipeline as
well.

3 Project Design
To understand the data pipeline, it’s
important to understand the project’s
constraints and the technology used. The
client required that the prototype for the
pipeline in Python3 and run as a script on a
command line. Cloud services were not
recommended due to the sensitivity of the
data. The pipeline should be able to parse
in CSV files provided. Also, the data used
by the client were not labeled, so machine
learning algorithms like Graph Neural
Networks that require labeled data were not
feasible. From the sample data used to test
the pipeline, each CSV contains call and
message logs of one phone number with
each entry containing the date, source
phone number and destination phone
number.

Python includes various data analysis
packages that are used, including Pandas
and Numpy. NetworkX is another Python
package that contains the Graph data
structures and graph distance algorithms
that is used to create the networks. NetLSD,
discussed in the Review of Research
section, is also used alongside the distance
algorithms for the calculations for
determining graph matches. Matplotlib was
also used for visualizations of the graphs.

Figure 1: An example network

The pipeline has 3 distinct stages: parsing
in CSV files, extracting data into graph
networks, and finally calculating the
distances from other networks. In the first
stage, the CSV files are formatted in a
specific way that a simple Python could be
used to parse in data into a Pandas
Dataframe. The second stage runs a
function developed to loop through the
Dataframe and create a NetworkX graph
with all the phone numbers as nodes and
the interactions between the numbers as
edges.

An example of an extracted graph network
is shown in Figure 1 where the source
phone number is 111-111-1111 and the
adjacent nodes represent the numbers
interacting with the source number. The
final stage compares the newly created
network to a list of precompiled graph
networks, which will be referred to as PG, to
determine the most probable match. This
stage uses a combination of two distance
measures, Graph Edit Distance from
NetworkX and the NetLSD, using a simple
sum. The Graph Edit Distance returns the
number of changes required to convert from
one graph to another where changes
include adding or removing nodes,
attributes, and edges. This stage runs both
comparison algorithms to the new network
with PG. The values are normalized and
added together. This stage then returns a
Dataframe with each entry containing both
graphs compared and the sum of the
normalized distances. The most likely to
match will have the lowest distance sum
score.

Challenges during this project include
having no prior experience with the concept

of Graph Matching, a fellow intern not well
versed with Python, and having to work
remotely due to Covid-19. Reading papers
and frequently asking questions of the
managers was necessary in order to
understand the concepts of graph matching,
bringing us interns to the same page. Also,
assisting other team members and myself
with Python and eventually led my fellow
intern to be a sufficient coder near the end
of the internship. The pandemic also
hindered work schedules as the same intern
was located across the country, and the rest
of the team was out of state as well.
However, the team members provided a
welcoming online experience, resulting in
the team overcoming the distance and time
zones and growing as a unit.

4 Results
The metric used to measure the
performance of the data pipeline was the
equal error rate. This is the location on the
Receiver Operator Characteristic Curve, a
plot that shows the diagnostic ability of a
binary classifier system, where the false
acceptance rate is equal to the false
rejection rate, with a lower score resulting in
higher accuracy. The pipeline had an 8.25%
equal error rate which means it has a good
accuracy score that could most definitely be
optimized with further adjustments. Stage 3
of the pipeline takes most of the run-time,
mainly due to NetworkX’s Graph Edit
Distance. This algorithm is a NP-Hard
problem that can’t be optimized by a
significant amount. Thus the pipeline
requires 10-15 minutes to complete its
output. However, with a fairly low equal
error rate, the client was satisfied with the
outcome and pushed for further research
into this project.

5 Conclusion
This data pipeline was created with a simple
Python script to help a law enforcement
client with reidentifying unknown phone
numbers based on patterns of life. It is
important to remember that the purpose of
this pipeline is solely for law enforcement
cases rather than commercial use so lawful
citizens would not have to worry about their
privacy. This technology could also be used
for other industries such as pandemic
tracking and brain neuron mapping as well.

6 Future Work
Future work includes optimizing the
combination of the two distance measures,
finding ways to utilize Graph Neural
Networks, and using more in-depth data
such as social media data. The current
method of combining the Graph Edit
Distance and NetLSD is a simple sum,
which could be optimized to a better
combination. This can be done with adding
weights adding more attributes to the nodes
in the networks to help give more
distinguished comparisons. In the long run,
Graph Neural Networks can be
implemented to replace the inefficient Graph
Edit Distance algorithm with most of the
work going to labeling the data that was
missing from the beginning of the project.
This pipeline can be modified and used to
experiment with different types of data as
well. Exploring rich data like social media
can help improve the performance of the
pipeline.

7 UVA Course Evaluation
Many of the higher-level courses at UVA
promote large amounts of teamwork and
project experience that had been applied to
this project. Such classes include CS 4750
(Database Systems), CS 3240 (Advanced
Software Development), and CS 4640 (Web

Programming Languages). Along with
teamwork and time management skills, I
gained experience with using Big Data and
the technology with it in CS 4774 (Machine
Learning) that prepared me for a main part
of this project.

However, none of my coursework really
prepared me to analyze research papers
effectively and this took too much time to
read during my internship. Providing more
hands-on experience with research papers
would probably be the one change I would
suggest to the UVA CS curriculum.

References
[1] Anton Tsitsulin, Davide Mottin, Panagiotis
Karras, Alex Bronstein, and Emmanuel Müller.
2018. NetLSD: Hearing the Shape of a Graph.
In KDD ’18: The 24th ACM SIGKDD
International Conference on Knowledge
Discovery & Data Mining, August 19–23,
2018, London, United Kingdom. ACM, New
York, NY, USA, 10 pages.
https://doi.org/10.1145/3219819.3219991
[2] Peter Wills and Francois G. Meyer. 2019.
Metrics for graph comparison: A practitioner's
guide. (December 2019). Retrieved October
21, 2021 from
https://arxiv.org/abs/1904.07414
[3] Vincent D. Blondel, Adeline Decuyper, and
Gautier Krings. 2015. A survey of results on
mobile phone datasets analysis. (February
2015). Retrieved October 21, 2021 from
https://arxiv.org/abs/1502.03406

