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Abstract 
Though criminals constantly change their 
phone numbers, making it difficult for law 
enforcement to trace them, they rarely 
change their contacts. The process of re-
identification can assist law enforcement 
efforts to trace the identities of unknown 
individuals by using graph networks from 
the interactions between the old and new 
phone numbers. The prototype pipeline I 
designed during my internship can extract 
call and message records from recorded 
logs and convert them to a graph network, 
creating a way to identify similar networks. 
The pipeline was tested using data found 
from Kaggle as well as some sample data 
that represented the client data. The 
outcome from the tests shows a promising 
8.25% equal error rate in terms of correctly 
identifying each network with the clients 
satisfied with the results. This concept can 
be applied to a wide variety of fields 
including studies with brain networks and 
even social media data for relevant 
pandemic tracing. Next steps for the project 
should be to implement machine learning 
models to the pipeline like Graph Neural 
Networks to reduce the very intensive 
calculations and find ways to include social 
media data in the graph networks.  
 
1  Introduction 
When a person replaces their phone 
number, the only aspect that changes in the 
person’s life is the number itself as their 
contact numbers and their social circles will 
most likely remain consistent. With the 
same social group kept around this person, 
there can be a noticeable number of 
repeated interactions between them through 
their phones. A certain pattern of life can be 
found and mapped out as the repetition of 
events continue, limited by the scope of the 
interactions done with the phone number. 

With every individual having a different 
pattern of life in some way or another, such 
patterns can be used as key identifiers 
regardless of the phone number in use.  
 
This is one of many cases of re-
identification. The main idea of this concept 
is to take anonymized yet unique data and 
identify the individuals who own it by 
matching the data with entries from fully 
identified databases. Such databases would 
include other instances similar to the 
anonymized data but with an identifiable 
label. With the scenario above, the pattern 
of life extracted from the interactions from 
the phone would be the anonymized data 
and the name of the owner for the phone 
will then be entries from a known database.  
One method for storing such complex 
networks is to use the graph data type. 
Consisting of nodes representing various 
entities and edges setting relationships 
between those nodes, graphs are able to 
handle containing such non-linear data. 
There are attributes within the nodes 
themselves to add unique characteristics 
and weights to the different nodes, allowing 
for graphs to be unique. 
 
Law enforcement often faces the problem of 
reidentification with phone numbers in their 
cases as the suspects would be swapping 
their phone numbers, resulting in the 
difficulty of identifying who is who when 
looking at call and messaging logs. 
Currently there is no working solution to this 
issue, so during my internship I was tasked 
to create a prototype data pipeline for the 
client that would extract an interaction-
based graph network from call and 
message logs and compare between 
various networks to find the most probable 
match to a specific phone number. 
 



2  Review of Research 
The need for graph matching was vital for 
the solution of the project, resulting in 
research in that area. This leads to an 
important piece of work that is actually 
implemented in the pipeline. The NetLSD 
package, created by Tsitsulin and his team, 
is a Network Laplacian Spectral Descriptor 
that extracts unique descriptors based 
solely on the graph’s structure and allows 
for straightforward comparisons of large 
graphs, outperforming in efficiency and 
expressiveness [1]. This powerful tool is 
used within the pipeline to provide a point of 
comparison for the large interaction 
networks generated from the phone 
numbers. 
 
Peter and Francois provide an overview on 
the concept of graph matching and the 
various techniques using different distance 
measures [2]. Though the techniques in this 
source were not used for the actual 
calculations in the pipeline, it served as a 
good starting point as the authors go over 
topics that are found in other sources such 
as spectral distances and explaining them in 
a simplified manner.  
 
Another relevant work that provides more 
context to the data was published in 2015 
by a team consisting of Blondel, Decuyper, 
and Gauiter. The three go over the analysis 
of social graph networks extracted from 
anonymized data accumulated over the past 
decade and explore the vast array of ways 
this data can be used. This includes urban 
sensing, tracking of epidemics and 
geographical partitioning [3]. Much of the 
information found in the trio’s work provided 
the possibility of where to take the project 
next as well as providing suggestions on 
how to format the graphs in the pipeline as 
well.   

 
3  Project Design 
To understand the data pipeline, it’s 
important to understand the project’s 
constraints and the technology used. The 
client required that the prototype for the 
pipeline in Python3 and run as a script on a 
command line. Cloud services were not 
recommended due to the sensitivity of the 
data. The pipeline should be able to parse 
in CSV files provided. Also, the data used 
by the client were not labeled, so machine 
learning algorithms like Graph Neural 
Networks that require labeled data were not 
feasible. From the sample data used to test 
the pipeline, each CSV contains call and 
message logs of one phone number with 
each entry containing the date, source 
phone number and destination phone 
number. 
 
Python includes various data analysis 
packages that are used, including Pandas 
and Numpy. NetworkX is another Python 
package that contains the Graph data 
structures and graph distance algorithms 
that is used to create the networks. NetLSD, 
discussed in the Review of Research 
section, is also used alongside the distance 
algorithms for the calculations for 
determining graph matches. Matplotlib was 
also used for visualizations of the graphs.  
 

 



Figure 1: An example network 
 
The pipeline has 3 distinct stages: parsing 
in CSV files, extracting data into graph 
networks, and finally calculating the 
distances from other networks. In the first 
stage, the CSV files are formatted in a 
specific way that a simple Python could be 
used to parse in data into a Pandas 
Dataframe. The second stage runs a 
function developed to loop through the 
Dataframe and create a NetworkX graph 
with all the phone numbers as nodes and 
the interactions between the numbers as 
edges. 
 
An example of an extracted graph network 
is shown in Figure 1 where the source 
phone number is 111-111-1111 and the 
adjacent nodes represent the numbers 
interacting with the source number. The 
final stage compares the newly created 
network to a list of precompiled graph 
networks, which will be referred to as PG, to 
determine the most probable match. This 
stage uses a combination of two distance 
measures, Graph Edit Distance from 
NetworkX and the NetLSD, using a simple 
sum. The Graph Edit Distance returns the 
number of changes required to convert from 
one graph to another where changes 
include adding or removing nodes, 
attributes, and edges. This stage runs both 
comparison algorithms to the new network 
with PG. The values are normalized and 
added together. This stage then returns a 
Dataframe with each entry containing both 
graphs compared and the sum of the 
normalized distances. The most likely to 
match will have the lowest distance sum 
score.  
 
Challenges during this project include 
having no prior experience with the concept 

of Graph Matching, a fellow intern not well 
versed with Python, and having to work 
remotely due to Covid-19. Reading papers 
and frequently asking questions of the 
managers was necessary in order to 
understand the concepts of graph matching, 
bringing us interns to the same page. Also, 
assisting other team members and myself 
with Python and eventually led my fellow 
intern to be a sufficient coder near the end 
of the internship. The pandemic also 
hindered work schedules as the same intern 
was located across the country, and the rest 
of the team was out of state as well. 
However, the team members provided a 
welcoming online experience, resulting in 
the team overcoming the distance and time 
zones and growing as a unit.  
 
 
4  Results 
The metric used to measure the 
performance of the data pipeline was the 
equal error rate. This is the location on the 
Receiver Operator Characteristic Curve, a 
plot that shows the diagnostic ability of a 
binary classifier system, where the false 
acceptance rate is equal to the false 
rejection rate, with a lower score resulting in 
higher accuracy. The pipeline had an 8.25% 
equal error rate which means it has a good 
accuracy score that could most definitely be 
optimized with further adjustments. Stage 3 
of the pipeline takes most of the run-time, 
mainly due to NetworkX’s Graph Edit 
Distance. This algorithm is a NP-Hard 
problem that can’t be optimized by a 
significant amount. Thus the pipeline 
requires 10-15 minutes to complete its 
output. However, with a fairly low equal 
error rate, the client was satisfied with the 
outcome and pushed for further research 
into this project.  
 



5  Conclusion 
This data pipeline was created with a simple 
Python script to help a law enforcement 
client with reidentifying unknown phone 
numbers based on patterns of life. It is 
important to remember that the purpose of 
this pipeline is solely for law enforcement 
cases rather than commercial use so lawful 
citizens would not have to worry about their 
privacy. This technology could also be used 
for other industries such as pandemic 
tracking and brain neuron mapping as well.  
 
6  Future Work 
Future work includes optimizing the 
combination of the two distance measures, 
finding ways to utilize Graph Neural 
Networks, and using more in-depth data 
such as social media data. The current 
method of combining the Graph Edit 
Distance and NetLSD is a simple sum, 
which could be optimized to a better 
combination. This can be done with adding 
weights adding more attributes to the nodes 
in the networks to help give more 
distinguished comparisons. In the long run, 
Graph Neural Networks can be 
implemented to replace the inefficient Graph 
Edit Distance algorithm with most of the 
work going to labeling the data that was 
missing from the beginning of the project. 
This pipeline can be modified and used to 
experiment with different types of data as 
well. Exploring rich data like social media 
can help improve the performance of the 
pipeline.  
 
7  UVA Course Evaluation 
Many of the higher-level courses at UVA 
promote large amounts of teamwork and 
project experience that had been applied to 
this project. Such classes include CS 4750 
(Database Systems), CS 3240 (Advanced 
Software Development), and CS 4640 (Web 

Programming Languages). Along with 
teamwork and time management skills, I 
gained experience with using Big Data and 
the technology with it in CS 4774 (Machine 
Learning) that prepared me for a main part 
of this project.  
 
However, none of my coursework really 
prepared me to analyze research papers 
effectively and this took too much time to 
read during my internship. Providing more 
hands-on experience with research papers 
would probably be the one change I would 
suggest to the UVA CS curriculum.  
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