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Abstract 
  

 For the diagnosis and treatment of cancers, it is often assumed that all cells in a tumor are 
identical. However, solid tumors are composed of cells that differ in cell-type, genotype, and 
phenotype. Individual cancer cells in tumors regulate their behavior in response to complex 
internal and external cues. Together, these differences result in heterogeneous cancer cell states 
that influence tumor growth, metastatic progression, and treatment response. Characterizing the 
nature and prevalence of heterogeneous cancer cell states is fundamental to understanding why 
patients diagnosed with the same disease often have variable outcomes. 
 In this dissertation, we present experimental and bioinformatics approaches to measure 
heterogenous cancer cell states in breast and lung carcinomas. We coupled laser capture 
microdissection with sequencing measurements to obtain transcriptomic data from groups of 10 
cancer cells in their native context within tumors. This profiling method has improved 
measurement sensitivity compared to existing single-cell transcriptomic methods, enabling us to 
deeply interrogate cancer cell transcriptomes. Analyzing 10-cell transcriptomes with an 
abundance-based dispersion metric, we identified heterogeneously expressed genes that 
represent different cancer cell states. 
 To identify early differences between cells that may influence patient outcomes and 
treatment responses, we profiled five biopsy samples from patients with luminal breast cancer. 
We detected thousands of heterogeneously expressed genes in individual tumors that comprise 
many pathways relating to proliferation, immune response, and stress tolerance. Moreover, we 
identified a recurrent set of genes that are heterogeneously expressed in multiple breast tumors. 
Genes in this set suggest that breast cancer cells sporadically activate pathways that are known 
to drive other types of cancer.  
 To systematically measure the influence of heterotypic interactions on cancer cells, we 
profiled 3D cell culture and murine models of small cell lung cancer (SCLC). We profiled SCLC 
cells in isolated 3D cultures and metastatic liver colonies to decode the influence of 
heterogeneous tumor microenvironments on cancer cell states. We observed a shift in the 
plasticity of SCLC cells upon liver colonization, and identified an expanded set of heterogenous 
states that expressed markers of multiple cell-types.  
 In this dissertation, we interrogated heterogenous cancer cell states within isolated cells, 
solid tumors, and metastases. The findings presented here provide novel insight into the 
transcriptional landscapes of breast cancer and lung cancer cells, towards the goal of 
understanding differential outcomes for patients with these diseases. 
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1 Introduction 

 

1.1 Different scales and types of tumor heterogeneity  

 Tumors initiate when a single cell acquires genetic lesions that confer growth 

advantages (1–3). Through many generations of cell division, the mutant cancer cell grows into 

a multicellular tumor made up of millions of cells. Across human tumors, there is variation in the 

exact genetic lesions that initiate tumorigenesis (4–7). Further, tumors arise from a variety of 

cell types, in nearly every organ of the body (8). Tumors therefore vary in their genetics, 

lineages, and microenvironments (9,10).  

 

1.1.1 Inter-tumor heterogeneity 
 
Inter-tumor heterogeneity refers to differences in tumors from different patients (Figure 

1.1A). Tumors vary in tissue and lineage of origin, resulting in broad tumor types like breast 

cancer or lung cancer. These broad tumor types are further subcategorized based on molecular 

characterizations. For example, patients with breast cancer are diagnosed to have one of four 

subtypes, Luminal A, Luminal B, HER2-enriched, and basal-like. Extensive study of inter-tumor 

differences between breast cancer patients has identified distinct prognostic features for the four 

subtypes (11,12). The first two subtypes, Luminal A and B, are defined by tumor cell expression 

of the hormone receptors, estrogen receptor (ER) and/or progesterone receptor (PR). The third 

subtype is HER2-amplified tumors, defined by overexpression of the human epidermal growth 

factor receptor-2 or HER2. Basal-like breast tumors are defined as “triple-negative” by a lack of 

expression of ER, PR, and HER2 (13).  
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Figure 1.1 Different scales and types of tumor heterogeneity 
(A) Differences between individual patients’ tumors display inter-tumor heterogeneity when 
evaluated in bulk.  
(B) A simplified illustration of the complete tumor microenvironment. Within individual tumors, 
single cells display heterogeneity in lineage, genetics, and regulatory states  
(C) Cells of different developmental lineages comprise individual tumors. Lineage differences are 
illustrated by cell shape and color: mutant tumor cells (pink), stromal cells (yellow), immune cells 
(blue). The extracellular matrix is depicted in green.  
(D) Different genetic subclones of cancer cells exist in a single tumor. Colors of nuclei indicate 
genotype differences of subclones  
(E) Cancer cells also exist in diverse regulatory cell-states. Colors of the cytoplasm indicate 
phenotype variations between cancer cells. 
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 Tumor subcategorization has also led to targeted therapies for these subtypes such as 

targeted anti-estrogen therapy for luminal tumors and anti-HER2 therapy for HER2-amplified 

tumors (14,15). However, many patients within a single subtype still have unpredictable clinical 

outcomes and incomplete responses to therapy, indicating further variability amongst tumors 

(16,17). Measurements of inter-tumor heterogeneity are usually made in bulk and assume that 

all cells within individual tumors are identical, ignoring heterogeneity within tumors (18). 

Differences at the level of individual cells are categorized as intra-tumor heterogeneity and are 

associated with variable prognosis and treatment response in many tumor types (19–21). 

 

1.1.2 Intra-tumor heterogeneity 
 
Intra-tumor heterogeneity refers to many types of variations between the cells that 

comprise a tumor (Figure 1.1B). As tumors progress, mutant cancer cells interact with their 

neighboring normal cells in the tissue and with immune cells that respond to the tumor as it 

grows (22–24). The complete tumor microenvironment comprises the tumor cells, supporting 

tissue-resident stromal cells, a variety of immune cells, and the tissue extracellular matrix 

(25,26).  Within single tumors there are many permutations of interactions and 

microenvironments that can influence cellular genotypes and phenotypes. The following 

subsections define the different categories of intra-tumor heterogeneity and their influence on 

tumor growth and progression. 

 

1.1.2.1 Lineage heterogeneity between cell types in tumors 

 A solid tumor is comprised of cells that have heterogeneous developmental lineages, 

such as cancer cells that arise from local cells in the tissue and immune cells that derive from 

the hematopoietic system (Figure 1.1C). Differences in cell type (here used interchangeably 

with cell lineage) arise throughout the body during normal development, as progenitor cells 
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undergo differentiation to produce cell types with specialized functions (27) . For example, 

airways in the normal lung are lined with club cells that secrete antimicrobial peptides, goblet 

cells that secrete mucus, stromal fibroblasts that create extracellular matrix, and stem cells that 

regenerate the other cell types (28–33). When tumors arise in the lung, different non-malignant 

stromal cells remain present alongside the malignant cancer cells, and can even support tumor 

growth (34). Tumors also invoke inflammatory responses which cause lymphocytes to migrate 

and infiltrate the tumor, increasing the lineage heterogeneity within tumors (35,36). 

 Measurements of lineage heterogeneity in tumors have resulted in important insights for 

patient treatments (35,37). In certain lung cancers, increased numbers of CD8+ effector T-cell 

lymphocytes are associated with improved outcomes for patients (37,38). Further 

characterization of T-cells across multiple tumor types have identified similar effector T-cells 

with tumor suppressive effects, catalyzing the development of several novel strategies for 

cancer immunotherapy like adoptive cell transfer and checkpoint blockade (39–43). For 

personalized medicine, cataloging the nature and proportions of lymphocytes within individual 

tumors continues to be an important avenue to stratify patients for response to immunotherapy 

agents (44,45).  

 Stromal cells that normally reside in the tissue can play diverse tumor supportive roles, 

like cancer-associated fibroblasts (CAFs) that have been a focus of study in breast tumors (46–

48). In normal breast tissue, fibroblasts secrete and turnover the ECM and assist in epithelial 

cell differentiation during puberty (46). In tumors, CAFs participate in paracrine signaling via 

secreted ligands like HGF that support growth of the cancer cells, as well as chemokines like 

CXCL12 that promote invasion by causing tumor cells to take on a migratory phenotype 

(9,49,50). CAFs were also found to induce treatment resistance to both chemotherapies and 

anti-estrogen therapies when co-cultured with MCF7 breast cancers cells (51). In human breast 

cancers, heterogeneity within CAFs has been identified. A subset of CAFs that express CD146 

can promote resistance to anti-estrogen treatment by reducing cancer cell dependence on 
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signaling through the estrogen receptor (52). These multifaceted roles for CAFs demonstrate 

that heterotypic interactions between different cell-types in a tumor can modulate treatment 

resistance and tumor outcomes. 

 This section introduced lineage heterogeneity in tumors and how heterogenous cell 

lineages can influence tumor progression and patient outcome. The following two subsections 

detail heterogeneities that arise within a cell type, between the cancer cells within tumors. 

 

1.1.2.2 Genetic heterogeneity between cancer cells 

 Malignant transformation of normal cells to cancer occurs through multiple DNA 

modifications such as mutations, deletions, and amplifications (4,53,54). As cancer cells 

continue to replicate, individual cells develop different genetic lesions, resulting in genetic 

heterogeneity within tumors (55).  On a single-cell level, genetic changes are irreversible and 

mutations are passed on to daughter cells, leading to subclones within tumors that have 

different genotypes (Figure 1.1D) (56–58). Single-cell genetic methods have been developed to 

provide insight into the evolution of intra-tumor genetic variations as tumors initiate, progress, 

and ultimately metastasize (19,59–61).  

 Studies of genetic heterogeneity in individual tumors of breast cancer have substantiated 

a punctuated clonal evolution model (62,63). In this model, bursts of large-scale genomic 

changes occur early in cancer cells resulting in copy number alterations (CNAs) that cause 

gains and losses of various genes (59). Many ER positive breast tumors show recurrent early 

copy number gains in chromosome arms 1q and 8q, which are largely retained in clones 

throughout a tumor (60,64). Further diversity arises within subclones through individual point 

mutations within genes that accumulate over time and create subbranches within tumors (60).  

Tracking evolutionary dynamics of genetic heterogeneity has shed light on the initiation of the 

metastatic process, demonstrating that it can often begin early during the establishment of a 

primary tumor (65).   
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 In breast cancers, rare mutations present in <1% of cancer cells have been identified 

that modulate tumor evolution and treatment response (19,60). But for the remaining majority of 

mutations, relating specific DNA changes in cancer cells to their resultant phenotypes remains a 

challenge. The overall mutational burden within individual tumors can vary drastically between 

tumor types, with some tumors like triple-negative breast cancer having 13-fold higher mutation 

rates than other tumor types (60). In tumors with high mutational burdens, growth driving 

genetic changes are often accompanied by a large swathe of passenger mutations whose 

functional consequences are unclear (66–69). It becomes necessary to measure the repertoire 

of functional states of cancer cells to decipher the biological implications of genetic lesions. 

 
1.1.2.3 Regulatory heterogeneity between cancer cells 

Due to differences in the regulation of gene and protein expression, cancer cells display 

regulatory heterogeneity that causes them to have variable phenotypes (Figure 1.1E) (70). In 

this context, a regulatory cell state is defined as a set pattern of co-expressed genes and 

proteins that coordinate specific cellular phenotypes (71–74). Regulatory variations occur as 

cells transition between different expression states in reversible and context dependent ways 

(75,76). The different phases of the cell cycle are examples of cell states; cells express a 

consistent patterns of genes and proteins in the G2/M phases to enable proliferation, which are 

turned off when cells are in the G1/S phases (77). Expression patterns of proliferative genes 

have been used diagnostically in breast cancer to stratify patients for chemotherapy, and recent 

studies have identified that proportions of cells in G2/M cell-states are prognostic in melanoma 

and glioblastoma samples (78,79).  

 Regulatory heterogeneity can arise between genetically identical cells leading to 

different cell-states (Figure 1.2) (54–57).  This occurs as cancer cells integrate both internal 

(e.g. genetic) cues and external (e.g. microenvironmental) cues to modulate their cellular states 

(80,81).  In large tumors, regulatory variations arise in cancer cells due to spatial differences in 
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nutrient availability. Cells in the interior of tumors face a more hypoxic environment than cells on 

the periphery, which are closer to vasculature. Hypoxia-induced factors respond to the change 

in oxygen availability and pH to induce regulatory changes that switch cellular metabolism to 

hypoxia-tolerant pathways (82–85). Conceptually, such non-genetic regulatory changes allow 

cancer cells to rapidly respond to stimuli and survive longer while they undergo the necessary 

genetic changes. 

 Paracrine and juxtracrine interactions with other cell types in the tumor 

microenvironment also influence the regulatory states of cancer cells (86,87).  For example, 

cancer cells that comprise the leading edge on the periphery of tumors interact with heterotypic 

cell-types and have different functional roles compared to cells in the interior of a tumor (88). 

Multiple experimental models of breast cancer have demonstrated that cancer cell migration 

involves cooperation with other cell types (89–91). In these models, non-malignant stromal 

fibroblasts and macrophages lead malignant cancer cells outside the basement membrane into 

surrounding tissue. The molecular composition of the ECM and its biophysical characteristics 

also regulate leading edge cancer cells to activate cytoskeleton and matrix remodeling 

pathways, allowing the tumor to degrade the basement membrane and invade into the tissue 

parenchyma (92–95). 

 Some mechanisms of regulatory variation create very drastic differences in cell-state, 

such that cancer cells begin to represent lineages other than the ones from which the tumor 

arose (96). This hijacking of cellular regulatory mechanisms to enable specific, long-lived cell-

states is called “lineage plasticity”. A well-studied example of this is epithelial-to-mesenchymal 

transition, where epithelial carcinoma cells de-differentiate into a mesenchymal state that does 

not require anchorage and is able to migrate through vasculature (97–99). More recent studies 

have identified new forms of lineage plasticity especially in tumors where gene functions of 

TP53 and/or RB1 are lost.  In combination with treatment, these genomic changes enable 

epithelial cells to take on neuroendocrine lineages that are resistant to many treatments 
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(100,101). Treatment induced reprogramming into a mesenchymal-like state has also been 

identified across multiple tumors, where cancer cells can adopt a “persistor” cell-state that is 

treatment resistant (102–104). 

 Intra-tumor regulatory heterogeneity has many causes and results in differential rates of 

growth for tumors, creating uncertainty in existing models for patient prognosis (105–107). 

Several studies have shown that intra-tumor heterogeneity is further amplified upon treatment, 

as diverse single cells within a tumor react heterogeneously to interventions 

(19,20,104,108,109).  Therefore, pre- and post-treatment induced heterogeneity together 

contribute to uncertainty in prognosis and differential responses to therapy. Cancer cell 

regulatory heterogeneities, resulting from complex integration of internal and external cues are 

the main focus of this dissertation. 
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Figure 1.2 Genetically identical cells display functional heterogeneity 
(A) Schematic of 3D cell culture model of clonal multicellular spheroid growth from one single cell.  
(B) Gene expression of SOD2 and KRT10 in MCF10A-5E spheroids as detected by RNA FISH 
measurements. All cells in the 3D spheroid are clonally derived from a single cell as in (A). 
Dashed lines represent states in two different expression states, cell state #1 (orange) or cell 
state #2 (magenta). Scale bar is 10µm. 
RNA FISH image was provided by Kevin Janes. 
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1.2 Insights from single-cell gene-expression profiling of intra-tumor 
heterogeneity  
 

 Regulatory variations in cells arise as differences in the expression of mRNA transcripts 

and protein molecules in the cell. In this dissertation, we focus on transcriptomic measurements 

of total mRNA expression in cells to infer regulatory states. In the last decade, single-cell RNA-

sequencing (scRNA-seq) methods have become highly accessible, resulting in an ever-

increasing number of single-cell studies of intra-tumor heterogeneity (110–112). In this section, 

we will discuss some emergent themes from scRNA-seq studies of intra-tumor heterogeneity in 

human tumors (113). 

 

1.2.1 Shared roles for tumor infiltrating lymphocytes across multiple cancers 
 

 Gene-expression profiling provides an unbiased method to assess both cell-type and 

cell-state heterogeneity in tumors. Creating catalogs of cell populations that express different 

lineage markers is a primary goal of many scRNA-seq studies (113,114). Due to the presence 

of pre-defined lineage markers, tumor infiltrating lymphocytes (TILs) are easily identified in 

scRNA-seq datasets of multiple tumor types. Advances in immunotherapy have also catalyzed 

measurements of the proportions and diversity of TILs in solid tumors. To focus on TILs, three 

out of seven scRNA-seq studies of breast tumors pre-selected CD45+ immune cells and 

omitted cancer cells prior to expression profiling (19,115–120). One of these studies noted that 

expression profiles of immune cells in tumors were similar to those found in normal tissues, but 

showed increased diversity upon interacting with cancer cells (116). This study also detected a 

unique tumor-associated immune cell-type, myeloid-derived suppressor cells, that are 

immunosuppressive and tumor promoting (116).  

 TIL composition has been cataloged in many other tumor types like melanoma, lung 

cancer, and liver cancer (78,120–123). Studies across multiple tumor types have identified 
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shared phenotypes of TILs that are related to tumor progression and treatment response 

(65,112). An immunosuppressive environment facilitated by higher proportions of T-cells in the 

“exhausted” state compared to an “activated state” has been associated with poor patient 

prognosis in multiple tumor types (78,120–123). scRNA-seq studies have demonstrated that 

TILs display similarities to normal immune cells, and that TILs across different patients and 

tumor types are also similar (65,112).  These studies indicate that there may be convergent cell-

states for TILs that arise across tumors and present additional strategies for immunotherapy. 

 

1.2.2 Cancer cells display marked inter-tumor and intra-tumor heterogeneity  
 

 scRNA-seq studies of human tumors have uncovered marked expression differences 

between and within individual tumors. Compared to the expression patterns of TILs, malignant 

cancer cells across different patients show fewer shared transcriptional programs (124). When 

scRNA-seq data are clustered, TILs cluster by cell type with intermingling of different patients’ 

tumors while cancer cells separate predominantly by patient (19,78,117). A striking example of 

this was observed in squamous tumors of the head and neck, where T cells from 10 patients co-

clustered together, but cancer cells formed 10 separate clusters (125). Thus far, most scRNA-

seq studies of human tumors have focused on advanced tumors, which show marked inter- and 

intra-tumor genetic variations (78,124,125). Patient-specific genetic variations uniquely amplify 

the repertoire of regulatory variations within cancer cells (see Section 1.1). Therefore, due to the 

compounded effect of genetic and regulatory variations between and within tumors, finding 

convergent cancer cell-states remains a challenge. 

 Deep explorations within single subtypes of cancer have provided insights into some 

rare but recurrent states of cancer cells. In multiple studies of melanoma tumors, a rare 

population of cancer cells that express high levels of the kinase AXL have been shown to be 

associated with resistance to targeted therapies (20,78). In contrast, melanoma cells that 
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express high levels of the MITF transcription factors display sensitivity to the same targeted 

therapies (126). These findings have important implications for patient stratification and 

combination therapeutic options to prevent disease recurrence in melanoma. However, the 

AXL/MITF cell-states have not been generalizable to other tumor types beside melanomas, 

indicating that tumor type might be an important determinate of cancer cell-states (65,124). A 

recent study evaluating chemoresistance in triple-negative breast cancer identified sporadic pre-

treatment expression of cancer related genes like MYC and COL1A1 that may cause intrinsic 

resistance (19). However, the expression patterns were highly patient specific and non-

generalizable, suggesting that these approaches may need to be reevaluated for profiling 

epithelial tumors. There remains a need for focused studies of cancer cells within tumor 

subtypes to identify generalizable cancer cell states that could be diagnostically and 

therapeutically actionable. 

 

1.2.3 Diversity and convergence of regulatory heterogeneities in tumors and 
metastasis: open questions  
 

 Regulatory state variations of individual cancer cells remain difficult to measure and 

interpret (36,70,78,116,120,127,128). Most studies of intra-tumor heterogeneity have focused 

on late-stage tumors that are advanced or have metastasized (78,124,125). However, the 

dynamics of cell-state changes of cancer cells in late stage tumors are complicated, and have 

not been generalizable (124). It is unclear when regulatory state variations first arise in cancer 

cells or if there are convergent trajectories that cancer cells take in early tumors. Studies of 

genetic heterogeneity have shown that early variations create differences in metastatic potential 

and chemoresistance (19,57). Similarly, regulatory heterogeneities in early stages are likely to 

provide insight towards understanding disease progression and eventually, patient outcomes 

(63). It remains necessary to study cancer cell regulatory states in early tumors, and 

systematically measure how different microenvironments modulate cancer cell phenotypes. 
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 Regulatory variations between cells have been documented in cell culture (Figure 1.2), 

and in the setting of non-malignant cells as well, indicating that single-cell heterogeneity exists 

through cell-autonomous processes (20,76,129). However, it is not clear to what extent 

regulatory variations depend on the specific cell being examined, nor is it clear how regulatory 

states of the same cell would change in response to different microenvironments. The influence 

of genetic lesions, cell-type, and microenvironmental stimuli are often convolved when 

measuring cells in tissue. Separating the contributions of these different influences is critical to 

understanding the process of metastasis where cells have to adapt to new environments and 

heterotypic interactions. 

 Thus far in this chapter we introduced many influences that alter the regulatory states of 

tumor cells. Combined with stochastic variation and dynamic interactions with other cell types, 

there are seemingly infinite variations that could be measured amongst cells (75). This creates a 

significant challenge in interpreting the biological significance of any measurements of cancer 

cell heterogeneity (124). If certain regulatory states confer growth advantages, we would expect 

them to be selected for across multiple cells in multiple tumors. Therefore, understanding the 

biological implications of cancer cell variations requires integrating information over all scales of 

tumor heterogeneity. Identifying regulatory mechanisms that converge across patients would 

yield novel ways to stratify patients at the time of diagnosis and new strategies for combination 

therapies (130). 

 

1.3 Methods for single-cell transcriptomics and shared challenges 

 Since the first single-cell transcriptomic measurements were reported in 2009, many 

iterations of scRNA-seq methods have emerged (110,131–134). Different methods optimize 

different aspects of the core steps of the scRNA-seq workflow: cell isolation, RNA extraction, 

reverse transcription of RNA to cDNA, and cDNA amplification to generate starting material for 
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next-generation sequencing. Broadly, scRNA-seq methods can be divided into plate-based and 

droplet-based methods that prioritize sensitivity and throughput, respectively (111,135).  The 

next two subsections describe the leading methods in these two categories and their critical 

features. The last subsection discusses the overarching challenges that persist across all 

scRNA-seq methods.  

 

1.3.1 Plate-based methods 
 

 In plate-based methods, single cells are deposited into individual wells of microplates (or 

chambers of microfluidic chips) for cell lysis and mRNA extraction (134,135). SMART-seq2 is 

the leading protocol of choice for plate-based methods and has been used in ~35% of studies 

investigating intra-tumor heterogeneity in human tumors (112,113,136). For this method, 

individual single cells are isolated through flow sorting and deposited into 96-well plates. Flow 

sorting can be combined with antibody-labelling (fluorescence activated cell sorting, FACS) to 

selectively profile specific populations of cells. Once individual cells are lysed, poly-adenylated 

(polyA) mRNA is reverse transcribed using an oligo-dT primer to obtain the first-strand of cDNA. 

SMART-seq2 is named for its “Switching mechanism at 5’ end of RNA template” (SMART) 

reverse transcription, a critical technological advance that couples full-length cDNA generation 

with the incorporation of global primer for PCR (132,136,137). The SMART method relies on the 

intrinsic properties of certain reverse transcriptase enzymes like the Moloney murine leukemia 

virus (MMLV) reverse transcriptase. The MMLV reverse transcriptase consistently adds a string 

of cytosines to the 3’ end of transcribed cDNA. When a complimentary template switching 

oligonucleotide (TSO) is added that has a string of guanines to base pair with the 3’ CCCs, the 

MMLV is able to switch templates, and complete the 5’ end of the mRNA and add a global PCR 

primer that can be incorporated into the TSO. This allows for second-strand synthesis to be 

initiated automatically without the need for additional tailing of the cDNA molecule, enabling 
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amplification of full-length cDNA molecules. This improved cDNA generation method results in 

improved, full-length mRNA detection by SMART-seq2, with an estimated ~40% coverage rate 

of the transcriptome (the highest end of the range for scRNA-seq methods) (137). Full-length 

mRNA capture has several downstream analytical advantages. The first advantage is more 

accurate read alignments, as full-length measurements reduce the dependency on the 3’-end of 

genes that are often poorly annotated and difficult to map (136). Further, reads that span the 

full-length of a transcript allow detection of novel isoforms and splice-variants that would be 

impossible from 3’-end counting alone. These features result in SMART-seq2 having amongst 

the highest gene detection sensitivity across scRNA-seq methods, with most studies reporting 

4-9,000 genes detected per single-cell (132,134). 

 Several other plate-based methods diverge from SMART-seq2 in cell multiplexing and 

cDNA amplification. Massively Parallel Single Cell Sequencing or MARS-seq is one method that 

achieves increased throughput by multiplexing and sorting cells in to 384-well plates (138). 

MARS-seq foregoes TSOs to utilize a modified oligo-dT primer that additionally contains 

nucleotide sequences to serve as cellular and molecular barcodes (132,134,138). These 

barcodes are combinations of oligonucleotides that can be generated to uniquely label individual 

cells, allowing cells to be multiplexed at the earliest steps of the protocol. In addition to cellular 

barcodes, further combinations of oligonucleotides can be used to create Unique Molecular 

Identifiers (UMIs) which can be added to individual mRNA molecules during reverse 

transcription. MARS-seq also employs in vitro transcription (IVT) to amplify cDNA, as opposed 

to PCR based amplification in SMART-seq2. For IVT, the oligo-dT primer contains a promoter 

sequence for T7 RNA polymerase. After cDNA synthesis, the T7 enzyme transcribes multiple 

antisense RNA copies from the cDNA template. After multiple rounds of IVT, the RNA is once 

again reverse-transcribed to cDNA for sequencing (110,111). The combination of UMIs and IVT 

minimize the technical variation added by non-linear PCR amplification (134). After sequencing 

and alignment, gene expression is estimated by counting unique UMIs instead of total 
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sequenced reads to avoid counting PCR duplicates. While PCR based technical variation and 

counting noise is reduced in MARS-seq, this method only tends to detect 500-5000 genes per 

cell, demonstrating reduced sensitivity compared to SMART-seq2 (132,134).  

 

1.3.2 Droplet based methods 
 

 In droplet-based methods, individual cells are encapsulated into liquid droplet emulsions 

for cell lysis and mRNA extraction. For these methods, two separate flows of liquids are created 

– one flow contains beads with lysis buffer and reverse transcription reagents and the second 

flow contains cells in a limiting single-cell dilution (111,132). These flows are combined and then 

emulsified by adding oil drops at a specific frequency to create nanoliter droplets that each 

contain one cell and one reagent bead. DROP-seq and inDROP were the pioneering methods 

developed for droplet-based scRNA-seq (139,140). Recently, 10X Genomics has developed a 

commercial device and kit for droplet-based scRNA-seq that is becoming increasingly popular 

(113,141).  10X Genomics’ Chromium method uses a gel bead that contains oligonucleotides 

with other reaction components aimed at maximized multiplexing. The oligo-dT primer is 

extended to contain molecular barcodes to identify each cell as well as UMIs to identify 

individual mRNAs. The gel beads also contain TSOs containing sequencing adapters to be 

added with template switching reverse transcription. As individual cells and mRNAs are 

barcoded within the emulsion, all droplets can be broken together after mRNA capture and 

reverse transcribed and amplified in one reaction (139). These multiplexed reactions greatly 

reduce the reagent costs per cell and simplify the workflow, resulting in up to 100-fold increases 

in throughput compared to plate-based methods (111,135). 

 The high throughput of droplet-based methods allows for rapid cataloging of vast 

numbers of cells in a highly accessible, one-pot method. However, the efficiency of droplet-

based methods remains low and only ~50% of input cells are captured, and within those cells 
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only ~13% of mRNAs are measured (139,141). To be cost effective, droplet-based scRNA-seq 

libraries are usually sequenced at lower depth, exacerbating measurement losses (135). This 

results in markedly low detection sensitivity, with reported averages of 500-3000 genes/cell 

(132,134).  

 

1.3.3 Challenges and limitations for single-cell transcriptomics 
 

Several optimizations to scRNA-seq workflows have greatly improved throughput and 

detection sensitivity of different methods. However, there remain a common set of challenges 

that are discussed below. 

 

1.3.3.1 Challenges in isolating tumor cells in their native context 

The first step of all scRNA-seq processes tends to be the most disruptive: isolating 

single cells from a multicellular tumor. It is nearly impossible to select a single cell within a solid 

tumor without disrupting its native context. Current experimental procedures involve both 

mechanical and enzymatic cell dissociation, followed by sorting single cells either using flow 

cytometry (which further involves cell labeling), or microfluidic devices (136,142) . These 

experimental steps have been documented to invoke stress and injury responses in cells that 

cause artefactual changes to gene expression (143). Further, once cells are dissociated, all 

information regarding their spatial position in the tumor and microenvironment is lost, providing 

no context for the eventual gene-expression differences measured. Therefore, it is necessary to 

combine single-cell transcriptomic measurements with cell isolation procedures that retain cells 

in their native context and minimize disruption prior to measurements (129,144,145). 
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1.3.3.2 Limited dynamic range of scRNA-seq measurements  

scRNA-seq measurements are technically fraught due to the labile chemical structure of 

RNA and the picogram quantities obtained from single cells (146,147). These factors severely 

restrict the dynamic range of the transcriptome capture by single-cell measurements. It has 

been estimated that the majority of the transcriptome is at fewer than 50 mRNA copies in single-

cells (148). Additionally, the conversion efficiency of RNA to complementary DNA during 

reverse transcription is estimated to be between 10-40%, resulting in subsampling of most 

transcripts (148,149). Further subsampling occurs during next-generation sequencing, as only a 

limited number of reads can be obtained per cell. Together this results in most scRNA-seq 

measurements only capturing the highest expressed genes in any single cell, limiting the 

inferences that can be made about regulatory variations (150).  

 

1.3.3.3 Analytical challenges of scRNA-seq data 

 The major advantage of scRNA-seq is its high throughput, especially the droplet-based 

methods that enable simultaneous measurements from thousands of cells. The tradeoff is 

shallower read-depths which increases technical variance in measurement of lowly expressed 

genes. Several low-expressed genes appear to “dropout” in scRNA-seq data, meaning they are 

undetected in cells due to subsampling rather than true lack of expression (149,151). This 

results in large, high-dimensional datasets with a large number of zeros, creating left-censored 

distributions with difficult statistical properties (149,151). Several analytical advances to reduce 

dimensionality have aided in visualization and clustering of scRNA-seq datasets, of which 

uniform manifold approximation and projection (UMAP) is the latest to gain popularity (152). A 

non-linear dimensional reduction technique, UMAP is used extensively to cluster whole 

transcriptomes of single-cells to identify cell-type and cell-state subpopulations. This method is 

relatively computationally efficient even for very large datasets, and provides a rapid way to gain 

insights from high-dimensional datasets.  
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 A greater challenge is identifying the specific genes that give rise to cell-state clusters. 

Analytical methods for differential expression in bulk RNA-seq data fail for scRNA-seq data 

because they do not account for technical variation arising from drop-outs and zero-inflated 

datasets (152–156). This is particularly problematic for low abundance genes for which 

statistical assumptions of lognormal distributions fail (149). In scRNA-seq data, the variance 

associated with a transcript has an inverse relationship with its overall abundance in the 

population, therefore, noise models have to incorporate estimates of global abundance of genes 

in the population of cells measured (154). One way to incorporate these technical aspects is to 

model a transcript’s abundance as a mixture of drop-out and amplified components, as is done 

in SCDE, a scRNA-seq analysis method (154). SCDE models drop-outs as a Poisson process 

and the amplified component of a given transcript as a negative binomial process. Together, this 

enables the generation of a transcriptome-wide expectation model for all genes measured in a 

given set of samples (153,154). Differentially expressed genes can then be identified as those 

genes whose expression variances are not explained simply by technical variation. 

 Accurate noise models are especially critical for scRNA-seq data due to a lack of 

technical controls. Since every cell is measured uniquely, scRNA-seq measurements convolve 

both technical and biological variation. For analysis, the ability to measure one cell at a time is 

also a drawback and extracting biological significance of single-cell variations remains 

challenging. 

 

1.4 Identifying regulatory heterogeneities through stochastic profiling  

 To address the limitations of current approaches for measuring intra-tumor 

heterogeneity, our lab has previously devised a “stochastic profiling” approach. Stochastic 

profiling combines in situ cell isolation by laser-capture microdissection with gene expression 

measurements (129,157). In this approach, small pools of 10 cells are sampled to mitigate the 
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technical losses at the single-cell input level. Repeated transcriptomic measurements of 10-cell 

pools are made to obtain expression distributions on a gene-by-gene basis. Technical controls 

are incorporated into the stochastic profiling by pooling a larger number of cells and splitting 

down into 10-cell equivalents after RNA extraction. Expression distributions of genes are then 

evaluated to identify heterogeneous transcripts that differ from a null distribution of lognormal 

biological variability (Figure 1.3). Filtered transcripts that display increased biological variability 

are then clustered to identify co-fluctuating genes that comprise regulated transcriptional 

programs (129).   

 Despite 10-cell pooling, stochastic profiling can determine single-cell variations in gene 

expression through fluctuation analyses. Further, 10-cell measurements can be mathematically 

deconvolved to estimate the underlying single-cell expression frequencies for heterogeneously 

expressed genes (158). Experimental validation of stochastic profiling has confirmed frequency 

predictions for genes that are heterogeneously expressed in as few as 2-5% of the population 

(157,158).  Stochastic profiling has been applied to measure in vitro 3D cultures of breast 

epithelial cells to identify multiple cancer-related cell states (76,129). However, the original 

experimental pipeline for stochastic profiling is not compatible with next-generation sequencing 

methods. In this dissertation we will discuss updates to stochastic profiling to obtain 

sequencing-based transcriptomic measurements from groups of 10-cells isolated from tumors 

and tissues. 
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Figure 1.3 Stochastic profiling identifies heterogeneously expressed genes in 10-cell pools 
(A) Schematic of lognormal variation (Gene A) and regulatory heterogeneity (Gene B) that 
underlie stochastic profiling.  
(B) Repeated 10-cell samplings are used to compare expression distributions arising from 
lognormal noisy measurements (Gene A) to expression distributions with high variance due to 
biological heterogeneity (Gene B).  
Reprinted with permission from (129). 
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1.5 Cancer types studied in this dissertation 

 In this dissertation, we focused on epithelial tumors to identify recurrent cell states 

arising across multiple tumors (Chapter 3) or multiple microenvironmental settings (Chapter 4). 

We investigate these questions in two different tumors: human luminal breast cancers and a 

murine model of small cell lung cancer. Luminal breast cancers and small cell lung cancers 

differ in many aspects of tumor heterogeneity, as summarized below. 

 

1.5.1 Luminal breast carcinoma 
 
Breast carcinomas arise from the glandular epithelium in the breast. The luminal 

subtypes comprise 70% of all breast tumors and are diagnosed by their expression of hormone 

receptors for estrogen and progesterone (14,159). Due to screening mammography, most 

luminal tumors are detected early and surgically resected. Patients are additionally treated with 

adjuvant anti-estrogen therapy, with or without chemotherapy. However, 30-40% of luminal 

breast cancers are inherently resistant to anti-estrogen treatments through mechanisms that are 

still being investigated (160,161).  

 Many facets of the breast tumor microenvironment have been associated with altering 

tumor growth and treatment response. Studies of the breast tumor microenvironment have been 

pivotal in identifying tumor supportive roles for CAFs and macrophages (section 1.1.2). 

However, studies of cell-type heterogeneity in luminal cancers have not yielded new therapies. 

Due to an overall lack of TILs compared to other tumor types, luminal breast tumors are typically 

considered “immune cold” and poor candidates for immunotherapy, although new studies with 

scRNA-seq are challenging this view (116,162,163). 

 Extensive molecular characterizations of luminal tumors have identified inter-tumor 

differences in genetic variation and gene expression. Mutations in the kinase PIK3CA are 

observed in 29-45% of tumors, followed by TP53 mutations in 10-29% tumors, and lower 
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frequencies of mutations in several other genes (5). Mutations in PIK3CA also appear in luminal 

tumors after treatment resistance, which has motivated many trials to test combinations of anti-

estrogen and anti-PI3K therapies (161,164). While beneficial for metastatic disease, PI3K 

therapies have shown lack of efficacy in early tumors, possibly due to inter-tumor differences in 

mutations (164).  Stratification based on gene-expression profiling has been clinically actionable 

in luminal tumors, subdividing them into Luminal A (low proliferation) and Luminal B (high 

proliferation) (17,18). This subdivision has been useful in stratifying patients for chemotherapy, 

and gene-expression signatures for predicting chemotherapy response are used clinically. 

Targeting proliferation in luminal cancers has translated into the direct inhibition of cell cycle 

activators CDK4/6, which has significantly improved survival in patients with metastatic disease 

(166). 

 However, despite early diagnosis, genomic characterizations, and targeted therapies, 

greater than 30% of patients with luminal tumors suffer disease recurrence (16,17). Luminal 

tumors show marked inter-tumor heterogeneity in both genomic mutations and gene-

expression, but there are few studies exploring intra-tumor heterogeneity in these tumors (11, 

117, 118). Single-cell heterogeneities between cancer cells in early stages of luminal breast 

tumors may explain treatment resistance and variable rates of disease recurrence. To identify 

regulatory variations in luminal cancer cells, we leveraged their early detection to measure intra-

tumor heterogeneity in patient biopsies at the time of diagnosis (Chapter 3).  

 

1.5.2 Small cell lung carcinoma 
 

 Small cell lung carcinoma (SCLC) is a deadly form of lung cancer that arises from 

pulmonary neuroendocrine cells (PNECs) that line the respiratory airway (167,168). PNECs 

arise from epithelial lineages but retain stem-like capacity to differentiate into different cell-types 

in the lung in response to injury and inflammation (169,170). In contrast to luminal breast 
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tumors, SCLCs are usually detected late and have often metastasized by the time of diagnosis 

(6). Patients are treated with chemotherapy, but the vast majority acquire resistance to therapy 

over time resulting in a very low overall survival rate of ~5% for these tumors (6,171).  

High rates of acquired resistance to chemotherapy have prompted studies into 

heterogeneity of SCLC, uncovering that SCLC cancer cells in the same tumor can display 

heterogeneous expression of neuroendocrine markers (172,173). SCLC cells display lineage 

plasticity, retaining the ability of PNECs to differentiate into multiple cell-types (173). Re-

programming of PNECs is driven by interactions with other cell types during injury and 

inflammatory processes, indicating an important role for the microenvironment in regulating 

SCLC cell states (170,174).  Despite a lack of studies observing TILs in SCLC, immune 

checkpoint blockade has been attempted in SCLC because of their exceedingly poor prognosis. 

Immunotherapy trials thus far have had very limited success, indicating the need for better tools 

to stratify SCLC patients for these treatments (175). 

 SCLC tumors have stereotyped genetic lesions, and greater than 80% of tumors have 

loss of function of the genes TP53 and RB1 (6). Several other oncogenes driving growth 

pathways are mutated at ~20% frequency in SCLC patients (171). To target common 

proliferative effects of these mutations in SCLC, trials have tested inhibitors for Aurora kinases 

(which coordinate cell division), with promising early results (171,176). Recently, inter-tumor 

heterogeneity in gene expression has identified four major subtypes of SCLC. These are 

defined by transcriptional programs regulated by specific transcription factors: ASLC1 (SCLC-

A), NEUROD1 (SCLC-N), POU2F3 (SCLC-P), and YAP1 (SCLC-Y) (175). However, single 

tumors display expression of more than one of these classifying transcription factors and their 

prognostic value remain unclear (175,177). Given their inherent plasticity, it also remains 

unknown to what extent individual SCLC cells follow these transcriptional programs within single 

tumors (109,173,178). 
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 The phenotypic plasticity of SCLC in response to heterotypic interactions motivated a 

systematic analysis of cancer cell regulatory heterogeneity. SCLC tumors are frequently 

unresectable, making comparative measurements between tumors and metastases in human 

samples difficult. Therefore, to examine microenvironment influences on tumor heterogeneity 

we turned to a genetically engineered murine model (GEMM) of SCLC (Chapter 4) (179). Using 

a syngeneic model allowed us to retain the interactions between cancer cells and immune cells 

in vivo and study the influence of these interactions on cancer cell regulatory heterogeneity. 

 

1.6 Overview of this dissertation 

In this dissertation we developed novel approaches to measure cancer cell regulatory 

heterogeneity and identify recurrent variations in breast and lung carcinoma cells.  

In this chapter, we provided an introduction to how regulatory variations between cancer 

cells arise and how they influence cellular phenotypes and tumor progression. In Chapter 2, we 

present a method for in situ transcriptomic measurements which addresses the challenges in 

measuring tumor cell heterogeneity outlined in preceding sections. We present an experimental 

pipeline to obtain transcriptomic measurements from spatially resolved 10-cell pools, 

microdissected in situ (10cRNA-seq). 10cRNA-seq is readily applicable to tissues and tumors 

obtained from both clinical samples and murine models.  

In Chapter 3, we characterize the gene-regulatory heterogeneities of cancer cells in 

early stage breast cancer biopsies. Combining 10cRNA-seq measurements with stochastic 

profiling analysis, we uncover thousands of heterogeneously expressed genes in individual 

cases of luminal breast cancer. We identified a recurrent set of genes shared by multiple tumors 

that are known drivers for other cancer types, but not identified as driver genes in breast tumors.  

In Chapter 4, we study the microenvironmental modulation of cancer cell heterogeneity 

in a murine model of small cell lung cancer. We detail regulatory variations intrinsic to small cell 
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lung cancer cells, and how these variations dramatically expand in the context of liver 

colonization and heterotypic cell interactions. Upon liver colonization in vivo, we observe the 

ability of cancer cells to de-differentiate into cell states that express markers of multiple 

lineages.  

Finally, in Chapter 5, we bring together the findings from human and murine models of 

epithelial tumors to discuss the implications of shared regulatory variations and the future 

directions of research that emerge from them. We also discuss future applications of the tools 

and analytical methods developed in this dissertation. 

The work presented in this dissertation identifies shared themes in cancer cell 

heterogeneity across epithelial tumors and discerns the influence of complex 

microenvironments on cancer cell heterogeneities. We developed experimental and analytical 

approaches to characterize the diversity in cancer cell states and identify points of convergence. 

More broadly, this dissertation expands our understanding of cancer cell heterogeneity, 

providing insight into tumor progression, and ultimately, differential outcomes for patients 

diagnosed with the same disease. 

 

 

  



 36 

 

2 In situ 10-cell RNA Sequencing in Tissue and Tumor 
Biopsy Samples 

 

2.1 Foreword 

 Single-cell RNA-seq methods described in Chapter 1 classify new and existing cell types 

very effectively, but alternative approaches are needed to quantify the individual regulatory 

states of cells in their native tissue context. In this Chapter, we combined the tissue preservation 

and single-cell resolution of laser capture with an improved preamplification procedure enabling 

RNA sequencing of 10 microdissected cells. This in situ 10-cell RNA sequencing (10cRNA-seq) 

can exploit fluorescent reporters of cell type in genetically engineered mice and is compatible 

with freshly cryoembedded clinical biopsies from patients. Through recombinant RNA spike-ins, 

we estimate dropout-free technical reliability as low as ~250 copies and a 50% detection 

sensitivity of ~45 copies per 10-cell reaction. By using small pools of microdissected cells, 

10cRNA-seq improves technical per-cell reliability and sensitivity beyond existing approaches 

for single-cell RNA sequencing (scRNA-seq). Detection of low-abundance transcripts by 

10cRNA-seq is comparable to random 10-cell groups of scRNA-seq data, suggesting no loss of 

gene recovery when cells are isolated in situ. Combined with existing approaches to deconvolve 

small pools of cells, 10cRNA-seq offers a reliable, unbiased, and sensitive way to measure cell-

state heterogeneity in tissues and tumors (Chapters 3 and 4).  

 This work was published in Scientific Reports in March 2019 with me as co-first author 

(180). I have adapted the text and figures for this chapter in accordance with Springer Nature 

publishing policies.   
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2.2 Introduction 

 Tumors are complex mixtures of cells that are heterogeneous in their genetics, lineage, 

and microenvironment (21,181). Whole-tumor profiles of genes and transcript abundances yield 

inter-tumor differences that are clinically important for patient prognosis, but these cellular 

profiles are population averages (11,18,182,183). The tumor microenvironment contains several 

different cell types that vary among cases (25,47,184–187). At the single-cell level, cancer cells 

are heterogeneous and genetic subclones evolve as the disease progresses (58,59). Tumor 

cells also display non-genetic heterogeneity and can switch between regulatory states in a 

reversible and context-dependent manner (20,75,104). Together, these variations dictate 

phenotypic differences such as proliferative index, metastatic potential, and response to therapy 

(20,54,76,78,188,189).  

 Assessing intra-tumor heterogeneity of gene regulation requires precise transcriptomic 

measurements of a very small number of cells isolated from within the tumor context. The 

current methods for single-cell RNA sequencing (scRNA-seq) are powerful in their ability to 

profile thousands of individual cells and identify differences in genotype or lineage in a mixed 

population. However, the first step of most large-scale scRNA-seq methods is some form of 

tissue dissociation and single-cell isolation, which can alter transcriptional profiles and confound 

downstream analyses (143,190). Approaches such as laser-capture microdissection (LCM) can 

obtain samples for RNA-seq (144,191–193), but they usually require so many cells for reliable 

measurement that single-cell variation is obscured (Figure 2.1). Dissociation-based scRNA-seq 

methods also struggle with technical variability, including "dropout" of medium-to-low 

abundance transcripts that yield zero aligned reads (146,151,155,194). The 3–40% conversion 

efficiency (140,146,149,194,195) of RNA to amplifiable cDNA is problematic given estimates 

that 90% of the transcriptome is expressed at 50 copies or fewer per cell (148). While valid for 

the most consistently expressed genes and markers within a sample, scRNA-seq data miss a 
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large proportion of the transcriptome (148,196). Measuring single-cell expression profiles in situ 

is even more challenging because of losses incurred during biomolecule extraction as well as 

non-mRNA contaminants, which can be considerable in stroma-rich specimens. Collectively, 

these hurdles make it difficult to measure tumor- cell regulatory heterogeneities reliably and 

evaluate their functional consequences.  

 Multiple studies have reported a pronounced improvement in gene detection and 

technical reproducibility when using 10–30 cells of starting material rather than one cell 

(129,144,149,157,197–199). The increased cellular RNA offsets losses incurred during reverse 

transcription, enabling more reliable downstream amplification. The gains are irrespective of 

amplification strategy and detection platform, and they are more dramatic than when increasing 

the starting material another tenfold to 100 cells. Previously, we combined the technical 

advantages of 10-cell pooling with the in-situ fidelity of LCM to devise a random-sampling 

method called “stochastic profiling” (129,157).The method identifies single-cell regulatory 

heterogeneities by analyzing the statistical fluctuations of transcriptomes measured repeatedly 

as 10- cell pools microdissected from a cell lineage (70,129). Pooling increases gene detection 

and technical reproducibility; repeated sampling is used to extract the single-cell information that 

is retained in pools of 15 cells or smaller (Figure 2.1). Genes with bimodal regulatory states 

create skewed deviations from a null model of biological and technical noise, which 

parameterize the underlying population-level distribution more accurately than single-cell 

measurements (158,198,200). By applying stochastic profiling to spatially organized breast-

epithelial spheroids and gene panels measured by quantitative PCR or microarray, we 

uncovered multiple regulatory states relevant to 3D organization and stress responses 

(76,201,202). However, this early work did not stringently evaluate the importance of sample 

integrity for primary tissues from animals or patients, nor did it involve probe-free measures of 

10-cell data like RNA sequencing.  
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 Here, we report improvements in sample handling, amplification, and detection that 

enable RNA sequencing of 10-cell pools isolated from tissue and tumor biopsies by LCM and its 

extensions. We find that cryoembedding of freshly isolated tissue pieces is crucial to preserve 

the localization of genetically encoded fluorophores in engineered mice used for fluorescence-

guided LCM. By incorporating ERCC spike-ins at non-disruptive input amounts in the 

amplification, we calibrate sensitivity and provide a standard reference to compare with other 

scRNA-seq methods (150). Sample tagging and fragmentation (tagmentation) is accomplished 

by Tn5 transposase, which is compatible with the revised procedure as well as with past 10-cell 

amplifications (203). We sequence archival samples that had previously been measured by 

BeadChip microarray to provide a side-by-side comparison of transcriptomic platforms with 

limiting material (129,204). Applying 10-cell RNA sequencing (10cRNA-seq) to various mouse 

and human cell types isolated by LCM, we obtain substantially better exonic alignments, and 

increases in gene coverage are consistent with the single-cell sensitivity of prevailing scRNA-

seq methods. The realization of 10cRNA-seq by LCM creates new opportunities for stochastic 

profiling and other unmixing approaches  to deconvolve single-cell regulatory states in situ 

(158,198).  

 

2.3 Results 

 Methods for profiling small quantities of cellular RNA have evolved considerably over the 

past decade, but they all involve the same fundamental steps: 1) cell isolation, 2) RNA 

extraction, 3) reverse transcription, 4) preamplification, and 5) detection (205). The original 

protocol for in situ 10-cell profiling combines LCM for cell isolation followed by proteinase K 

digestion for RNA extraction (157). The extracted material undergoes an abbreviated high-

temperature reverse transcription with oligo(dT)24, and cDNA is carefully preamplified by poly(A) 
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PCR that generates sufficient 3’ ends (~500 bp in size) for microarray labeling and hybridization 

(Figure 2.2) (157,206).  

 Unsurprisingly, the earliest steps in the procedure are the most critical for achieving the 

maximum amount of amplifiable starting material. To avoid losses, steps 1–4 (cell isolation 

through preamplification) are normally performed without intermediate purification. Therefore, 

buffers and reagents must be carefully tested and titrated to be mutually compatible throughout 

the “one-pot” protocol. Since description of the procedure, multiple commercial providers 

merged or were acquired, leading to the discontinuation of multiple RNAse inhibitors, the Taq 

polymerase, and the BeadChip microarrays. The collective disruptions in sourcing prompted a 

modernization of 10-cell profiling toward RNA-seq of primary material at a biopsy scale, 

including how tissue–tumor samples were handled before the start of the procedure (Figure 

2.2).  
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Figure 2.1  Population averaging obscures single-cell regulatory heterogeneities in pools 
of more than ~15 cells.  
Monte Carlo simulations (157) of stochastic-profiling experiments are shown for 25 random 
samples, an expression fraction of 50%, a reference coefficient of variation of 0.3, and a fold 
difference in regulatory states of 5. False positives (orange) arise when a one-state gene with 
high variance relative to the reference distribution is incorrectly scored as having two regulatory 
states. False negatives (blue) arise when a two-state gene with low variance relative to the 
reference distribution is incorrectly as scored as having one regulatory state. Effective stochastic 
profiling (green) occurs when two-state genes are correctly scored as heterogeneously regulated. 
Cell input requirements for 10cRNA-seq are shown compared to applications of GEO-seq (191) 
and LCM-seq (193). Note the increases in false negatives for larger test variances observed with 
larger number of cells per sample. 
 
 
 
 

 

 

 
 
Figure 2.2  A revised transcriptomic pipeline for in situ 10-cell RNA sequencing.  
Substantive changes are indicated in green and gray. 
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2.3.1 Protein localization for LCM requires fresh cryoembedding  
 

 To minimize extra handling steps that could degrade RNA, in situ profiling of clinical 

samples is ordinarily performed with rapid histological stains (Figure 2.2) (129,205,207,208). 

LCM can also be guided by fluorescence in place of histology when using cells or animals 

engineered to encode genetic labels (209,210). However, new challenges arise when seeking to 

preserve localization and brightness of encoded fluorophores during single-cell isolation and 

RNA extraction. Compared to polysome-bound mRNAs, fluorescent proteins diffuse much more 

readily, and chromophores may be damaged by the fixation and dehydration steps needed to 

preserve RNA integrity. Fluorescent-protein structure is preserved by chemical fixatives, but 

covalent crosslinking of biomolecules is unsuitable for extracting RNA from tissue. 

Fluorescence-guided profiling therefore entails a competing set of tradeoffs that must be 

balanced for optimal performance.  

 We reasoned that the greatest flexibility would be afforded by reporter mice expressing 

tandem-dimer Tomato (tdT)—a bright, high molecular-weight derivative of DsRed (211). Key 

handling parameters were evaluated using Cspg4-CreER;Trp53F/F;Nf1F/F;Rosa26-LSL-tdT mice, 

a model of malignant glioma (212). In these animals, administration of tamoxifen elicits sparse 

labeling of oligodendrocyte precursor cells (OPCs) in the brain, enabling fluorescence retention 

to be assessed in single cells. Extensive optimization of cryosectioning and wicking conditions 

was required to preclude fluorophore diffusion while ensuring reliable LCM pickup (see 

Methods). We found that an accelerated 70-95-100% ethanol series maintained tdT 

fluorescence and localization of labeled cells through xylene clearing and dehydration (Figure 

2.3A). Separately, using freshly embedded tissue from a “mosaic analysis of double markers” 

(MADM) animal that labels various brain lineages with EGFP, tdT, or both, we confirmed that 

EGFP fluorescence was also acceptably retained with the 70-95-100% ethanol series (Figure 

2.4) (213,214). Although EGFP diffusion was noticeably greater compared to tdT owing to its 
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smaller size (~28 kDa vs. ~54 kDa), we could nonetheless reliably identify the cell bodies of 

single EGFP-positive cells for LCM. Surprisingly, we found that fresh-tissue embedding was 

critically important for preserving single-cell localization and brightness. Snap- freezing before 

cryoembedding caused considerable loss and delocalization of tdT fluorescence, even when 

prefrozen material was rapidly embedded in dry ice-isopentane (–40˚C) (Figure 2.3B,C). 

Brightfield images of these cryosections also showed considerable tissue damage compared to 

freshly embedded material (Figure 2.5). For mechanically challenging tissues in which 

embedding support is important for cryosectioning, we conclude that fresh-tissue embedding is 

essential for maximum biomolecular retention and integrity.  
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Figure 2.3  Fresh cryoembedding preserves tandem-dimer Tomato (tdT) fluorescence and 
localization better than snap-frozen alternatives.  
Brain samples from Cspg4-CreER;Trp53F/F;Nf1F/F;Rosa26-LSL-tdT animals were either  
(A) Freshly cryoembedded in Neg-50 medium with dry ice-isopentane (–40ºC) 
(B) Snap-frozen in dry ice-isopentane and then cryoembedded 
(C) Snap-frozen and slowly cryoembedded in a cryostat (–24ºC).  
Low- and high-magnification images were captured with the factory-installed color camera on the 
Arcturus XT LCM instrument. Images were exposure matched and are displayed with a gamma 
compression of 0.67. Insets have been rescaled to emphasize tdT diffusion away from the cell 
body. Scale bar is 25 µm.  Brightfield images from the same sections are shown in Figure 2.5. 
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Figure 2.4  Fresh cryoembedding and 70-95-100% ethanol dehydration retains sufficient 
EGFP fluorescence and localization to identify single cells alongside tdT.  
Tissue preparation was performed with a mosaic analysis of double markers (MADM) animal 
expressing Cre under control of the hGFAP promoter to label multiple brain lineages with EGFP 
(green), tdT (red), or both (yellow).  
(A) Low- and (B) high-magnification images were captured with the factory-installed color camera 
on the Arcturus XT LCM instrument. Red and green spectral channels were separated, false 
colored, and merged to generate final images. Scale bar is 25 µm. 

 

 

 

Figure 2.5  Fresh cryoembedding preserves tissue integrity better than snap-frozen 
alternatives. 
Brain samples from Cspg4-CreER;Trp53F/F;Nf1F/F;Rosa26-LSL-tdT animals were either  
(A) Freshly cryoembedded in Neg-50 medium with dry ice-isopentane (–40ºC) 
(B) Snap-frozen in dry ice-isopentane and then cryoembedded, or  
(C) Snap-frozen and slowly cryoembedded in a cryostat (–24ºC).  
Low- and high-magnification images were captured with the factory-installed color camera on 
the Arcturus XT LCM instrument and converted to grayscale. Scale bar is 25 µm.  Images of 
tdT fluorescence from the same sections are shown in Figure 2.3. 
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2.3.2 Improving poly(A) preamplification for modern RNA-seq  
 

 Previously, in situ 10-cell profiling was optimized for quantification by BeadChip 

microarray, but microarrays have been supplanted by RNA-seq for unbiased measures of the 

transcriptome (Figure 2.2) (215). An advantage of RNA-seq is that nucleic acids are detected 

regardless of origin, enabling use of exogenous RNA standards to calibrate sensitivity and 

quantitative accuracy when spiked into a biological sample (216–218). The versatility of RNA-

seq is also a caveat, because all nucleic acids in a sample will be sequenced, including 

unwanted preamplification byproducts and contaminating DNA from mitochondria or the nucleus 

(219–221). In the original scRNA-seq report that used a variant of poly(A) PCR, only 37 ± 9% of 

sequenced reads aligned to RefSeq transcripts, and exonic alignment rates below 50% remain 

common (131,134). Therefore, we focused improvements to poly(A) preamplification towards 

ensuring that most sequencing reads aligned to the 3' ends of cellular mRNAs.  

 In poly(A) PCR, cDNA is 3’ adenylated and then preamplified with a universal T24-

containing primer called AL1 (206). We previously found that the amount of AL1 strongly 

influenced overall sensitivity of gene detection, with improvements noted at concentrations as 

high as 25 μM (157). Excess AL1 also drives nonspecific amplification of low molecular-weight 

primer concatemers, which do not influence gene measurements by quantitative PCR or 

microarray but create overwhelming contamination for RNA-seq (222). To improve poly(A) PCR, 

we screened a range of commercial Taq and proofreading polymerases along with empirical 

blends of those that maximized the intended ~500 bp cDNA products relative to nonspecific 

concatemer. We obtained a better-than-additive preamplification by combining Taq and Phusion 

polymerases (see Methods). An equal mixture of the two enzymes dramatically increased the 

yield of ~500 bp preamplification products relative to nonspecific concatemer (Figure 2.6A, 

lower). The empirical blend also significantly improved the preamplification of both high-

abundance (GAPDH) and low-abundance (PARN) targets as measured by quantitative PCR 
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(Figure 2.6A, upper). The two-enzyme blend further enabled a 10-fold decrease in AL1 primer 

concentration without detectable loss in preamplification efficiency (Figure 2.6B). The Taq-

Phusion combination was superior for a primary breast-cancer biopsy (Figure 2.6) as well as 

two murine tissue sources: a murine small-cell lung cancer line derived from Trp53∆/∆Rb∆/∆ 

lung epithelium and tdT- labeled OPCs (Figure 2.7 and Figure 2.8), illustrating its generality 

(223). The enzyme modification created a viable starting point for combining poly(A) PCR 

preamplification with RNA-seq.  
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Figure 2.6  A blend of Taq–Phusion polymerases improves selective poly(A) amplification 
of cDNA and reduces AL1 primer requirements.  
Cells were obtained by LCM from a human breast biopsy and split into 10-cell equivalent 
amplification replicates.  
(A) Poly(A) PCR was performed with 15 µg of AL1 primer with Taq alone (10 units), Phusion 
alone (4 units) or Taq/Phusion combination (3.75 units/1.5 units).  
(B) Poly(A) PCR was performed with either 25, 5, 2.5 or 0.5 µg of AL1 primer and the Taq–
Phusion blend from (A). Above—Relative abundance for the indicated genes and preamplification 
conditions was measured by quantitative PCR (qPCR). Data are shown as the median inverse 
quantification cycle (40–Cq) ± range from n = 3 amplification replicates and were analyzed by 
two-way (A) or one-way (B) ANOVA with replication. Below—Preamplifications were analyzed by 
agarose gel electrophoresis to separate poly(A)-amplified cDNA from nonspecific, low molecular-
weight concatemer (n.s.). Qualitatively similar results were obtained separately three times. Lanes 
were cropped by poly(A) PCR cycles for display but were electrophoresed on the same agarose 
gel and processed identically. 
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Figure 2.7  Improvements with the Taq–Phusion polymerases blend generalize to murine 
small-cell lung cancer cells.  
Cells were obtained by LCM and split into 10-cell equivalent amplification replicates.  
(A) Poly(A) PCR was performed with 25 µg of AL1 primer with Taq alone (10 units), Phusion 
alone (4 units) or Taq/Phusion combination (3.75 units/1.5 units).  
(B) Poly(A) PCR was performed with either 25, 5, 2.5 or 0.5 µg of AL1 primer and the Taq–
Phusion blend from (A). Above—Relative abundance for the indicated genes and preamplification 
conditions was measured by quantitative PCR (qPCR). Data are shown as the median inverse 
quantification cycle (40–Cq) ± range from n = 3 amplification replicates and were analyzed by 
two-way (A) or one-way (B) ANOVA with replication. Below—Preamplifications were analyzed by 
agarose gel electrophoresis to separate poly(A)-amplified cDNA from nonspecific, low molecular-
weight concatemer (n.s.). Lanes were cropped by poly(A) PCR cycles for display but were 
electrophoresed on the same agarose gel and processed identically. 
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Figure 2.8  Improvements with the Taq–Phusion polymerases blend generalize to murine 
tdT-labeled oligodendrocyte precursor cells.  
Cells were obtained by fluorescence-guided LCM and split into 10-cell equivalent amplification 
replicates.  
(A) Poly(A) PCR was performed with 25 µg of AL1 primer with Taq alone (10 units), Phusion alone 
(4 units) or Taq/Phusion combination (3.75 units/1.5 units).  
(B) Poly(A) PCR was performed with either 25, 5, 2.5 or 1 µg of AL1 primer and the Taq–Phusion 
blend from (A). Above—Relative abundance for the indicated genes and preamplification 
conditions was measured by quantitative PCR (qPCR). Data are shown as the median inverse 
quantification cycle (40–Cq) ± range from n = 3 replicates collected over 3 separate LCM 
acquisitions (markers) and were analyzed by two-way ANOVA with replication. Below—
Preamplifications were analyzed by agarose gel electrophoresis to separate poly(A)-amplified 
cDNA from nonspecific, low molecular-weight concatemer (n.s.). Lanes were cropped by poly(A) 
PCR cycles for display but were electrophoresed on the same agarose gel and processed 
identically. 
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 Sensitivity, accuracy, and precision of the updated poly(A) PCR approach were 

assessed using recombinant RNA spike-ins as internal positive controls (218). A dilution of 

ERCC spike-ins was defined that did not detectably perturb the measured abundance of 

endogenous transcripts in RNA equivalents from 10 microdissected cells (Figure 2.9A). After 

poly(A) PCR of the spike-in dilution plus 100pg RNA (~10 cells), we measured the relative 

abundance of individual spike-ins, using quantitative PCR (qPCR) to eliminate RNA-seq read 

depth as a complicating factor. Purified qPCR end products served as an absolute reference of 

each spike-in for cross-comparison (see Methods). We observed good linearity across 22 spike-

ins spanning an abundance of ~104 (Figure 2.9B). Deviations, technical noise, and dropouts all 

increased considerably for spike-ins below ~250 copies per reaction, consistent with previous 

reports (146). This collective measurement uncertainty restricts interpretation of single-cell data 

to highly expressed transcripts, but 10-cell pooling reduces the threshold to ~25 copies on 

average per cell. With poly(A) PCR, we did not observe qualitative dropout in more than 50% of 

technical replicates for spike-ins as dilute as four copies per reaction (ERCC85; Figure 2.9B), 

indicating good sensitivity. RNA spike-ins do not mimic the characteristics of endogenous 

transcripts extracted from cells, but they can provide a common reference to benchmark 

preamplification methods for RNA-seq (150). These experiments indicated that the improved 

poly(A) preamplification was sufficiently reliable for unbiased profiling of 10-cell transcriptomes.  
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Figure 2.9  Optimized ERCC spike-in dilutions assess poly(A) PCR sensitivity and 
dynamic range without suppressing cDNA amplification of endogenous transcripts.  
(A) 100 pg RNA was supplemented with ERCC Mix 1 at the indicated dilutions and amplified via 
optimized poly(A) PCR. ERCC and endogenous gene abundances were measured by qPCR, and 
data are shown in grayscale as the inverse quantification cycle (40–Cq) from n = 4 amplification 
replicates. Negative effects of the ERCC spike-ins on endogenous genes (lower) were assess by 
two-way ANOVA with replication.  
(B) ERCC Mix 1 (6.23 x 104 copies) was spiked into 100 pg RNA and amplified via optimized poly 
(A) PCR. Proportional abundance of ERCC standards was estimated with a seven-log dilution 
series from purified qPCR end products. Data are shown as the median 40–Cq (black) for 22 
ERCC spike-in standards from n = 8 amplification replicates (gray) with undetected “dropouts” 
reported below (circles). 
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 For RNA extraction from the LCM cap, an optimized digestion buffer is used containing 

proteinase K to release mRNAs from precipitated ribosomes (129). Proteinase K also digests 

nucleosomes, which may cause elution of contaminating genomic DNA. In past and current 

analyses of human LCM samples preamplified ± reverse transcription, we never found genomic 

copies of genes amplified within ~0.4% of measured mRNA transcripts (∆Cq ≥ 8 for 16 genes 

measured in four human cell types, Figure 2.10). For mouse tissues, however, genomic copies 

were more prevalent and variable, with some genes measured as abundantly without reverse 

transcription as with it (Figure 2.11A and Figure 2.10). Gel electrophoresis showed weak-but-

detectable bands above the desired ~500 bp product in preamplifications without reverse 

transcription, implying nonspecific amplification (Figure 2.11A, lower). Concerned that the 

murine genome could compete with the amplification of cDNA, we appended an intermediate 

purification following reverse transcription with 5’-biotin-modified oligo(dT)24. Biotinylated cDNA 

was purified on streptavidin-conjugated magnetic beads, which could be separated from 

contaminants in the LCM extract and used as a starting template for poly(A) preamplification. 

Addition of the biotin cleanup step mildly improved the amplification of cDNAs and, importantly, 

eliminated the confounding abundance of murine genomic DNA (Figure 2.11B). We 

recommend biotinylated oligo(dT)24 and bead purification for mouse samples considering the 

recurrent challenges with genomic DNA (Figure 2.10 and see Discussion).  
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Figure 2.10  Prevalence of genomic DNA contamination during poly(A) amplification of 
mouse tissue.  
Differences in quantification cycles between LCM samples ± reverse transcription (∆Cq from no 
RT) are shown for various genes in HT-29 cells (human colon adenocarcinoma), primary human 
melanoma and breast cancer, and MCF-10A cells (human breast epithelial) compared to mouse 
oligodendrocyte precursor cells (OPC), mouse small-cell lung cancer cells (SCLC), and mouse 
kidney cells isolated by LCM. Human-mouse differences were assessed by rank-sum test. 
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Figure 2.11  Poly(A) amplification of murine sequences without reverse transcription 
is eliminated with 5’-biotin-modified oligo(dT)24 and streptavidin bead cleanup.  
(A) Reverse transcription-free preamplification of genomic DNA confounds accurate 
quantification of some mRNAs.  
(B) Bead cleanup eliminates nonspecific preamplification of genomic DNA. Above—Data are 
shown as the median inverse quantification cycle (40–Cq, gray) of n = 3 independent 
experiments (three amplification replicates per experiment). Differences with and without bead 
cleanup were assessed by Wilcoxon rank sum test in MATLAB. Below—Preamplifications 
were analyzed by agarose gel electrophoresis to separate poly(A)-amplified cDNA from 
nonspecific, low molecular-weight concatemer (n.s.) and genomic amplification. 
Electrophoretic traces were analyzed by densitometry to the left of the image, with genomic 
amplicons highlighted (arrows). Lanes were cropped by the indicated conditions for display 
but were electrophoresed on the same agarose gel and processed identically. 
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 Poly(A) PCR samples are kept dilute to avoid saturating the preamplification, but 

aliquots can be carefully reamplified up to microgram scale for microarray hybridization 

(129,157). In preparing libraries for sequencing, we pursued tagmentation using Tn5 

transposase because addition of sequencing adapters is sterically impossible within the ~40 bp 

distal ends of a PCR amplicon (224). The steric restrictions of Tn5 were advantageous for 

pruning away the long, A-repetitive universal primer from poly(A) amplicons that would 

otherwise be wastefully sequenced. Commercial Tn5 tagmentation kits (Nextera XT) require 

1000-fold less material than past microarray hybridizations, prompting reevaluation of how the 

10-cell libraries were prepared. We retained the mid-logarithmic reamplification approach 

described previously but substituted paramagnetic Solid Phase Reversible Immobilization 

(SPRI) beads for library purification (225). Two rounds of purification with 70% (vol/vol) SPRI 

beads eliminated ~99% of primer dimers and concatemers in 10-cell reamplifications from 

various sources (Figure 2.12 and Figure 2.13). Reamplified samples yielding at least 200 ng of 

purified product (Figure 2.14) were tagmented at 1-ng scale according to the Nextera XT 

protocol. Although poly(A) amplicon sizes are centered at ~500 bp (Figure 2.12A), we found 

that the higher SPRI bead ratio recommended for 300–500 bp inputs (180% [vol/vol] beads) 

was essential for purification of tagmented libraries (Figure 2.15). Under these conditions, both 

new and archival poly(A) PCR preamplifications are compatible with RNA sequencing.  
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Figure 2.12  Iterative SPRI bead purification eliminates low molecular-weight 
contaminants before tagmentation.  
(A) Poly(A) PCR reamplifications (41) of 10-cell human breast cancer samples were analyzed by 
gel electrophoresis without purification or after one (1x) or two (2x) rounds of purification with 70% 
(vol/vol) SPRI beads.  
(B) Contaminating low molecular-weight concatemers are significantly reduced after two rounds 
of SPRI bead purification. Data are shown as the mean (gray) of n = 3 independent 
reamplifications (circles) each purified three times (+). Differences were assessed by two-way 
ANOVA with replication. 

 

 

 

 

 

Figure 2.13  Two rounds of SPRI bead purification reduce low molecular-weight 
contaminants from 10-cell reamplifications of mouse small-cell lung cancer cells.  
Data are shown as the mean (gray) of n = 3 independent reamplifications (circles) each 
purified three times (+). Differences were assessed by two-way ANOVA with replication. 
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Figure 2.14  Maximal gene-detection sensitivity requires an SPRI bead yield of at-least 
200 ng poly(A) cDNA.  
Low-coverage RNA sequencing of mouse oligodendrocyte precursor cells or transformed 
derivatives (n = 96) was used to relate gene-detection sensitivity to SPRI bead yield quantified 
by Qubit fluorescence through a hyperbolic function with the indicated parameters (Max, 
Yield50). 

 

 

 

 

 

 

 

Figure 2.15  Higher SPRI bead ratio is essential for purification of tagmented libraries. 
TapeStation concentrations of sequencing libraries following tagmentation and purification 
with either 60% or 180% [vol/vol] beads. Differences in library concentrations were assessed 
by paired two-tailed t test. 
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2.3.3 Paired comparison of 10-cell transcriptomics by BeadChip microarray and RNA-
seq  

 Poly(A) PCR provides an abundant source of material for transcript quantification, 

creating an opportunity to revisit 10-cell samples profiled earlier on BeadChip microarrays. In 

the original application of stochastic profiling, 10-cell samples were locally microdissected from 

3D spheroids of a clonal human breast-epithelial cell line (129). We sequenced 18 biological 

replicates from this study (6.6 ± 2.3 million reads) along with three 10-cell pool-and-split controls 

that assessed technical variability (129,149). Technical correlation was as high within pool-and-

split replicates measured by RNA-seq as when the same replicates were measured by 

microarray (R ~ 0.9; Figure 2.16B,C,D,F–H). For both platforms, undetectable genes in one 

technical replicate were quantified up to ~102 = 100 transcripts per million (TPM) or ~103.3 = 2000 

BeadChip fluorescence intensity in another replicate. Among detected genes with at-least one 

technical replicate yielding zero measured TPM, we found that RNA-seq correlated with 

BeadChip intensity across replicates (R ~ 0.4, p ~ 0; Figure 2.17A). The concordance between 

the two platforms strongly argues that transcript losses are authentic dropout events, not 

artifacts of RNA-seq read depth or BeadChip detection sensitivity (154). Combining the reliable 

detection limits of 100 TPM (Figure 2.16B,C,F) and ~250 ERCC copies/reaction (Figure 2.9B), 

we predict (250 copies/reaction)/(10 cells/reaction x 100 TPM) = 250,000 mRNA copies per cell, 

consistent with published estimates (197).  

 When 10-cell transcript representation was compared, we found that RNA-seq TPM and 

BeadChip microarray intensities were correlated (R ~ 0.6; Figure 2.16A,E,I), albeit not as 

strongly as reported elsewhere (204,226). Some genes yielded background fluorescence on 

microarrays but moderate- to-high TPM, likely due to BeadChip probe sequences absent from 

the amplicons generated by poly(A) PCR. Among genes with a median TPM > 1000 by RNA-

seq, we identified 27 BeadChip probes exhibiting a median fluorescence less than 102.5. The 

median distance of the 27 probes from the 3’ end of the corresponding gene was 845 bases 
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(IQR: 492–1392 bases), upstream of the distal ~500 bp 3’ ends amplified by poly(A) PCR. The 

probe-independent nature of RNA-seq reinforces one of its critical advantages for 10-cell 

transcriptomics.  

 We also evaluated quantitative concordance of the 18 10-cell samples measured both 

by BeadChip microarray and RNA-seq. The variance of 7713 genes was twice their mean value 

measured on each platform, suggesting significant biological variation across the 18 samples (p 

< 0.01). For biologically variable genes, the median sample-by-sample Pearson correlation 

between BeadChip microarray and RNA-seq was 0.42 (interquartile range: 0.16–0.63), with 599 

transcripts showing R ≥ 0.8 (Figure 2.17B). Considering a median TPM of 17 (interquartile 

range: 4–49) for the 10-cell data analysed, these cross-platform correlations fall within the range 

reported for TCGA microarrays and RNA-seq (R ~ 0.4–0.9) (226). Our retrospective analysis 

indicates that 10cRNA- seq data corroborate BeadChip microarrays and provide broader access 

to 3’ mRNA ends not represented on oligonucleotide probe sets.  
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Figure 2.16  Paired comparison of 10-cell transcriptomes profiled by BeadChip 
microarray and 10cRNA-seq.  
(A–I) Three pool-and-split 10-cell replicates from before (41) were reamplified, purified, and 
tagmented for RNA-seq.  
Inter-replicate correlations among BeadChip microarray triplicates (D,G,H) and 10cRNA-seq 
triplicates (B,C,F) as well as intra-replicate correlations between platforms (A,E,I) are shown 
together with the log-scaled Pearson correlation (R). 
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Figure 2.17  Significant technical and biological covariation between BeadChip 
microarray and 10cRNA-seq. 
(A) Variably detected genes remain correlated between transcriptomic platforms. Genes with at-
least one pool-and-split TPM = 0 (n = 3256 genes) were plotted versus BeadChip fluorescence. 
(B) Significant sample-to-sample correlations between independent 10-cell pools (n = 18) 
measured by BeadChip microarray and RNA-seq. The median log-scaled Pearson correlation (R) 
is shown with the interquartile range in brackets for 7713 genes. 
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2.3.4 Advantages of 10cRNA-seq for diverse mouse and human cell types  
 

 Last, we aggregated the intermediate revisions to 10-cell transcriptomic profiling (Figure 

2.2) and asked whether there were more-overarching benefits to sequencing small pools versus 

single cells. Different methods for scRNA-seq have already been rigorously compared by 

multiple groups (134,150). Since a 10-cell approach could be adopted by many of these 

approaches, we focused instead on the data quality from published scRNA-seq datasets of 

various types relative to similar cells profiled by our 10cRNA-seq approach, including biological 

replicates and pool-and-split controls. We identified two scRNA-seq datasets for murine OPCs, 

two for murine lung neuroendocrine cells, two for human breast cancer, and one for MCF-10A 

cells (Table 2.1) (19,227–231). All raw data were identically processed and aligned to the 

transcriptome with RSEM (232). Using transcriptome references stringently emphasized exonic 

read alignments, and the RSEM model for expectation maximization enabled the degeneracy of 

3’-end sequences to contribute to transcript quantification. Data quality was gauged by the 

percentage of reads aligned, and sensitivity was assessed by the number of Ensembl genes 

with an estimated TPM greater than one.  

 For the mouse cell types, we observed significant increases in gene detection between 

10cRNA-seq and certain scRNA-seq datasets (Figure 2.18A). OPCs isolated by fluorescence-

guided LCM showed increased gene detection with 10cRNA-seq compared to scRNA-seq of 

OPCs purified by fluorescence-activated cell sorting (GSE75330). Gene detection in the sorted 

OPCs was poorer than when OPCs were collected randomly in a cell atlas of the mouse cortex 

(GSE60361), emphasizing the stresses caused by non-LCM methods of enrichment. We were 

unable to detect a significant increase in gene detection between small-cell lung cancer cells 

profiled by 10cRNA-seq and single neuroendocrine cells randomly dissociated from the mouse 

airway and profiled by plate- based scRNA-seq. However, neuroendocrine cells are so rare in 

this tissue that plate-based scRNA-seq was very underpowered (n = 5 cells). When droplet-



 64 

based scRNA-seq was used to increase statistical power to n = 92 cells, there was a significant 

reduction in gene counts compared to 10cRNA-seq profiling the equivalent of 120 cells (n = 12 

10-cell replicates). Results were similar but even more striking for human cell types (Figure 

2.18C). 10cRNA-seq of MCF-10A cells and primary breast cancer cells showed high alignment 

rates and routinely detected more than 10,000 Ensembl genes, the upper limit for any single cell 

profiled by three different scRNA-seq methods (19,230,231). In cases where gene sensitivities 

were comparable, we noted dramatically improved alignment rates for 10cRNA-seq (Figure 

2.18B,D), reinforcing the efficiency of data collection by adopting a 10-cell approach.  

 The increased detection of transcripts in 10cRNA-seq data could arise from the 

accumulation of sporadic gene-expression events among single cells in the 10-cell pool. 

10cRNA-seq collects 10-cell pools that are histologically indistinguishable by LCM, but it does 

not control for noisy transcriptional bursting or differences in cell-cycle phase. To evaluate 

whether the 10cRNA-seq detection statistics were consistent with those from scRNA-seq data, 

we randomly combined similar single-cell transcriptomes into 10-cell groups, modelling dropouts 

as a binomial probability for RNA-to-cDNA conversion (see Methods). We aggregated 48 

random 10-cell assemblies within each of the six scRNA-seq datasets and noted a significant 

increase in gene counts that was comparable to 10cRNA-seq data (Figure 2.19). On a per-cell 

basis, 10cRNA-seq matches the gene-recovery sensitivity of scRNA-seq and may be preferable 

when isolating single cells in situ is critical.  
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Table 2.1 Characteristics of published RNA-seq datasets analyzed in this study.  
Listed are accession numbers, tissue sources, method of transcript capture, read type and 
length, as well as read depth in millions (median and range).  

 

Study Tissue Method Read length Read depth x 106 
GSE75330 Mouse OPC Full-length 50bp single-end 1.34 (0.6-8.4) 
GSE60361 Mouse OPC Full-length 50bp single-end 1.85 (0.6-8.4) 

   GSE103354 
Plate-based 

Mouse lung    Full-length 
 

75bp single-end 0.32 (0.06-0.6) 

   GSE103354 
Droplet 

Mouse lung 3’-end 75bp single-end 0.07 (0.001-0.84) 

GSE66357 MCF10A cells 3’-end* 75bp paired-end** 0.17 (0.004-1.8) 
GSE113197 Human breast Full length 100bp paired-end 1.5 (0.00001- 4.4) 
PRJNA396019 Human breast 3’-end*** 75bp and 100bp 

paired-end 
0.88 (0.002-20.6) 

 *RNA printing 
 **Asymmetric paired reads: 25bp barcode sequence read 1 and 60bp sequence read 2 (231) 
 ***Single-nucleus RNA-seq 
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Figure 2.18  Increased gene detection and exonic alignment rates for 10cRNA-seq 
compared to scRNA-seq.  
(A) Detection of murine Ensembl genes for mouse oligodendrocyte precursor cells (OPCs) and 
lung neuroendocrine-derived cells.  
(B) Exonic alignment rate comparison for OPCs and lung neuroendocrine-derived cells.  
(C) Detection of human Ensembl genes for MCF-10A cells and human breast cancer cells.  
(D) Exonic alignment rate comparison for MCF-10A cells and human breast cancer cells.  
Public scRNA-seq data were obtained from the indicated accession numbers:  sc1=GSE75330, 
sc2=GSE60361, sc3a=GSE103354 (plate-based), sc3b=GSE103354 (droplet-based), 
sc4=GSE66357, sc5=GSE113197, sc6=PRJNA396019. 10cRNA-seq data were aggregated from 
independent 10-cell samples (circles) and 10-cell equivalents from pool-and-split controls. Pool-
and-split controls from the same day are indicated with non-circular markers corresponding to the 
shared day. Pairwise differences between 10-cell and single-cell methods were assessed by 
permutation test. 
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Figure 2.19  Gene-detection sensitivity increases predictably to that of 10cRNA-seq 
when scRNA-seq data are aggregated as 10-cell pools.  
Single cells from various scRNA-seq datasets (described in Figure 2.18) were randomly 
sampled and grouped with their nine nearest neighbours, and dropouts were modelled using a 
binomial process for RNA-to-cDNA conversion (n = 48 random samples for each of six datasets; 
see Methods). Gene detection from the original scRNA-seq datasets (sc, reprinted from Figure 
2.18), the simulated 10-cell pools (10c-simulated), and 10cRNA-seq (10c, reprinted from Figure 
2.18) were compared by permutation test. 
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Figure 2.20 10cRNA-seq gene detection saturates above 5 million reads per sample.   
10cRNA-seq reads from MCF10A-5E cells were aggregated, randomly sampled at the indicated 
depth, and aligned. Data are shown as the median number genes detected (TPM > 0.01) ± 
range of n = 10 random draws per depth. 
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2.4 Discussion 

 Single-cell transcriptomics has expanded or rewritten the catalogue of cell types in 

tissues, organs, and organisms (229,233–238). Yet, scRNA-seq does not obviate the need for 

complementary approaches, which accurately profile regulatory-state changes within a given 

cell lineage (70). The technical advances reported here demonstrate the immediate feasibility of 

10cRNA-seq for mouse and human samples obtained in situ by LCM (Chapters 3 and 4). We 

combined straightforward extensions of ERCC spike-ins and tagmentation with new approaches 

for fluorescence-guided LCM and cDNA purification that may prove beneficial for other 

applications (Figure 2.2). Although small-sample RNA-seq is never fully dissociated from tissue 

acquisition or cell handling, our data illustrate a workflow that can be paused and restarted 

when LCM is used as an intermediate step.  

 Previous descriptions of fluorescence-guided LCM relied upon exogenous fluorophores 

added by lectins, antibodies, or viruses (193,209,210,239). Through careful optimization of 

cryoembedding and LCM, we identified conditions that preserved the most-common fluorescent 

proteins used to engineer the mouse germ line. Compatibility with genomically encoded labels 

creates new opportunities for combining 10cRNA-seq with lineage tracing to examine early 

regulatory-state changes in development and disease (240). Compared to fluorophore 

localization, RNA integrity was not as exquisitely sensitive to sample preparation and handling. 

Nevertheless, we recommend fresh cryoembedding of all samples in case other protein-guided 

approaches, such as immuno-LCM, might be pursued (241). The breast core biopsies profiled 

here were prospectively obtained and cryoembedded during an outpatient procedure. However, 

a nearly identical protocol has been deployed intra-operatively for surgical pathology, implying 

that fresh cryoembedding is not prohibitive for biobanked clinical samples (242).  

 A startling result from the revised protocol was the extent of poly(A) amplification 

observed in murine samples when reverse transcription was omitted. Nonspecific amplification 
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was not as prominent in human samples obtained by LCM, pointing to specific differences in 

genome composition and the susceptibility to priming with AL1. A plausible explanation lies in 

transposable elements—specifically, the distinct classes of short interspersed nuclear elements 

(SINEs) in rodents and humans (243). Human-specific Alu SINEs and rodent-specific B-type 

SINEs both contain stretches of 10–20 As that could partially anneal to the T homopolymer 

sequence on the 3’ end of AL1 (244). However, to amplify during poly(A) PCR, an antisense 

SINE must be sufficiently nearby. The mouse genome is ~20% smaller than humans, and B-

type SINEs are ~25% more numerous in mice compared to Alu SINEs in humans (243). The 

differences reduce the expected spacing of sense-antisense SINEs from ~6 kb in humans to ~4 

kb in mice, consistent with a prior analysis of sense-antisense SINEs around transcription start 

sites (245). The shorter average spacing may be close enough for genomic fragments to 

compete with the ~500 bp cDNA amplicons generated during reverse transcription (Figure 2.6, 

Figure 2.11A). Such nonspecific products were prevented from coamplifying with cDNA by 

using biotinylated oligo(dT)24 and streptavidin beads, akin to the bead capture and primer 

extension of droplet-based approaches (140,246). This strategy may prove useful in other non-

murine settings, such as suspension cells, where genomic contamination will be more extensive 

than with LCM (157).  

 ERCC spike-ins provide a standard to compare 10cRNA-seq against single-cell methods 

for transcriptomic profiling. Using the metrics of Svennson et al., we estimate a 50% detection 

sensitivity of 45 copies per reaction (90% nonparametric CI: [15–485]) and a Pearson product- 

moment correlation coefficient of R = 0.86 (90% nonparametric CI: [0.71–0.91] from n = 72 

samples). The R accuracy is somewhat lower than prevailing techniques, but that may be overly 

pessimistic because 10cRNA-seq uses such a dilute mix of spike-ins (4 million-fold dilution of 

the ERCC stock). Detection sensitivity is comparable to that reported for the most popular plate-

based scRNA-seq methods, including SMART-seq2  and CEL-seq (136,247). The strength of 

10cRNA-seq lies in the use of 10- cell pooling to improve the per-cell technical sensitivity 
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beyond the best microfluidic- and droplet- based approaches for scRNA-seq (150). LCM 

minimizes disruptive tissue handling and provides histologic cues for microdissecting pools of 

cells within the same lineage. Adopting a 10-cell approach may prove similarly beneficial for 

other microdissection-based approaches, such as GEO-seq and the recent pairing of SMART-

seq2 with LCM (144,192).  

 When 10cRNA-seq was compared to scRNA-seq, we often observed significant 

improvements in exonic alignment. Methods for scRNA-seq typically yield exonic alignment 

rates below 50%, with the remainder of aligned reads splitting equally between intronic and 

intergenic sequences (136,231). 10cRNA-seq achieves exonic alignments of 70% or higher 

despite using oligo(dT)- primed reverse transcription with the same potential to prime internal A 

homopolymer sequence as with scRNA-seq (248,249). Interestingly, in one instance of similarly 

high exonic alignment (GSE66357, Figure 2.18B), the RNA-printing approach to scRNA-seq 

incorporated a DNase treatment absent from all other methods (231). This study also yielded a 

significantly reduced gene-detection sensitivity compared to 10cRNA-seq. Commingling 

genomic DNA may dilute exonic alignment percentages and inflate the number of genes 

detected due to chance sequencing of genomic DNA from exonic loci. Multiple scRNA-seq 

approaches incorporate unique molecular identifiers appended to oligo(dT) (150,250). The 

identifiers avoid redundantly counting the same product of reverse transcription, and they also 

retrospectively exclude sequenced reads that do not come from cDNA. The biotin cleanup 

approach we devised for mouse cells (Figure 2.11) achieves cDNA selection prospectively in 

situations where genomic contamination may be problematic.  

 Our work illustrates that 10-cell profiling can extend beyond microarrays  and quantitative 

PCR to compete favorably with scRNA-seq. Although ill-suited for lineage mapping of highly 

mixed cell populations, 10cRNA-seq exploits the precision of LCM to target specific cell types in 

situ and define their regulatory heterogeneities. LCM is also advantageous for sequencing cells 

that are delicate or difficult to dissociate rapidly (70,144). In Chapters 3 and 4, we apply 
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10cRNA-seq to cancer biology to characterize the diversification of tumour cells in patient 

samples and animal models. 

 

2.5 Methods 

2.5.1 Cell and tissue sources  
 The MCF10A-5E breast epithelial cell samples were described previously (129). KP1 

small-cell lung cancer cells  were grown as spheroids in RPMI Medium 1640 with 10% FBS, 1% 

penicillin- streptomycin, and 1% glutamine (223). KP1 spheroids were pelleted and mixed in 

Neg-50 (Richard-Allan Scientific) before cryoembedding. Animal housing and experimental 

procedures were carried out in compliance with regulations and protocols approved by the 

IACUC at the University of Virginia. Cspg4-CreER;Trp53F/F;Nf1F/F;Rosa26-LSL-tdT mice  were 

housed in accordance with IACUC Protocol #3955 at the University of Virginia (212). As per the 

approved protocol, animals were administered 200 mg/kg tamoxifen by oral gavage for five 

days, and brains were harvested at 12 days or 183 days after the last administration. A labelled 

glioma arising the olfactory bulb at 165 days after the last tamoxifen administration was also 

used. Human samples acquisition and experimental procedures were carried out in compliance 

with regulations and protocols approved by the IRB-HSR at the University of Virginia. In 

accordance with IRB Protocol #19272, breast cancer samples were collected as ultrasound-

guided core needle biopsies during diagnostic visits from participants who provided informed 

consent. Each core biopsy was divided into multiple pieces before cryoembedding. Unless 

otherwise indicated, all samples were freshly cryoembedded in a dry ice-isopentane bath and 

stored at –80˚C wrapped in aluminium foil.  

2.5.2 Cryosectioning  
 Samples were equilibrated to –24˚C in a cryostat before sectioning. 8 μm sections were 

cut and wicked onto Superfrost Plus slides. To preserve fluorescence localization of tdT and 

EGFP, slides were precooled on the cutting platform for 15–30 sec before wicking, and the 
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section was carefully placed atop the cooled slide with forceps equilibrated at –24˚C. Then, the 

slide was gently warmed from underneath by tapping with a finger until the section was 

minimally wicked onto the slide. All wicked slides were stored in the cryostat before transfer to –

80˚C storage on dry ice. Frost build-up was minimized by storing cryosections in five-slide 

mailers.  

2.5.3 Staining, dehydration, and laser-capture microdissection  
 For cryosections lacking fluorophores, slides were stained and dehydrated as described 

previously (129,157). Briefly, slides were fixed immediately in 75% ethanol for 30–60 sec, 

rehydrated quickly with water, stained with nuclear fast red (Vector Labs) containing 1 U/ml 

RNAsin-Plus (Promega) for 15 sec, and rinsed two more times with water before dehydrating 

with 70% ethanol for 30 sec, 95% ethanol for 30 sec, and 100% ethanol for 1 min and clearing 

with xylene for 2 min. tdT- and EGFP- labelled cryosections were not stained and instead began 

with the 70% ethanol dehydration step that also provided solvent fixation. After air drying, slides 

were microdissected immediately on an Arcturus XT LCM instrument (Applied Biosystems) 

using Capsure HS caps (Arcturus). The smallest spot size was used, and typical instrument 

settings of ~50 mW power and ~2 msec duration yielded ~25 μm spot diameters capturing 1–3 

cells per laser shot.  

2.5.4 RNA extraction and first-strand synthesis  
 RNA extraction and first-strand synthesis were similar to earlier protocols  with some 

minor modifications (129,157). HS caps were eluted for 1 hr at 42˚C with 4 μl of digestion buffer 

containing 1.25x First- strand buffer (Invitrogen), 100 μM dNTPs (Roche), 0.08 OD/ml 

oligo(dT)24 with or without 5’-biotin modification (IDT), and 250 μg/ml proteinase K (Sigma). 

Samples containing ERCC spike-ins included a four-million-fold dilution of ERCC spike-in 

mixture 1 (Ambion). Eluted samples were centrifuged into 0.5 ml PCR tubes at 560 rcf for 2 min, 

the digestion buffer was quenched with 1 μl of digestion stop buffer containing 2 U/μl SuperAse-

in (Invitrogen) and 5 mM freshly prepared PMSF (Sigma). 4.5 μl of the quenched extract was 
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transferred to a 0.2 ml PCR tube, and reverse transcription was performed with 0.5 μl of 

SuperScript III (Invitrogen) for 30 min at 50˚C followed by heat inactivation at 70˚C for 15 min. 

Samples were placed on ice and centrifuged for 2 min at 18,000 rcf on a benchtop 

microcentrifuge.  

2.5.5 Streptavidin bead cleanup of biotinylated first-strand products  
 For 5’-biotin-containing samples, streptavidin magnetic beads (Pierce) were prepared in 

a 0.2 ml PCR tube on a 96S Super Magnet Plate (Alpaqua). Beads (6 μl per sample) were 

magnetized, aspirated, and resuspended in binding buffer (5 μl per sample) containing 1x First-

strand buffer (Invitrogen), 4 M NaCl, and 0.02% (vol/vol) Tween-20. 5 μl of resuspended beads 

were added after first-strand synthesis, and samples were incubated for 60 min at room 

temperature with mixing every 15 min. Beads were pelleted on the magnet plate, resuspended 

in 100 μl high-salt wash buffer (50 mM Tris [pH 8.3], 2 M NaCl, 75 mM KCl, 3 mM MgCl2, 0.01% 

Tween-20). Beads were pelleted again on the magnet plate, and the pellet was washed once 

with 100 μl high-salt wash buffer. Next, beads were resuspended in 100 μl low-salt wash buffer 

(50 mM Tris [pH 8.3], 75 mM KCl, 3 mM MgCl2) and transferred to a fresh 0.2 ml PCR tube. 

Beads were pelleted again on the magnet plate, and the pellet was washed once with 100 μl 

low-salt wash buffer. After the last wash, the beads were resuspended in 5 μl 1x First-strand 

buffer for RNAse H treatment and poly(A) tailing.  

2.5.6 RNAse H treatment and poly(A) tailing  
 RNAse H digestion and poly(A) tailing were performed exactly as described previously 

(129,157). Briefly, template mRNA strands were hydrolysed for 15 min at 37˚C with 1 μl of 

RNAse H solution containing 2.5 U/ml RNAse H (USB Corporation) and 12.5 mM MgCl2. After 

RNAse H treatment, cDNA templates were poly(A)-tailed with 3.5 μl of 2.6x tailing solution 

containing 80 U terminal transferase (Roche), 2.6x terminal transferase buffer (Invitrogen) and 

1.9 mM dATP. The tailing reaction was incubated for 15 min at 37˚C and then heat-inactivated 
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at 65˚C for 10 min. Samples were placed on ice and spun for 2 min at 18,000 rcf on a benchtop 

centrifuge.  

2.5.7 Poly(A) PCR  
 Poly(A) PCR was carried out with several modifications to the earlier procedure 

(129,157). To each tailed sample, 90 μl of poly(A) PCR buffer was added to a final 

concentration of 1x ThermoPol buffer (New England Biolabs), 2.5 mM MgSO4, 1 mM dNTPs 

(Roche), 100 μg/ml BSA (Roche), 3.75 U Taq polymerase (NEB) and 1.5 U Phusion (NEB) and 

2.5 μg AL1 primer 

(ATTGGATCCAGGCCGCTCTGGACAAAATATGAATTCTTTTTTTTTTTTTTTTTTTTTTTT). 

Each reaction was split into three thin-walled 0.2 ml PCR tubes and amplified according to the 

following thermal cycling scheme: four cycles of 1 min at 94˚C (denaturation), 2 min at 32˚C 

(annealing) and 2 min plus 10 sec per cycle at 72˚C (extension); 21 cycles of 1 min at 94˚C 

(denaturation), 2 min at 42˚C (annealing) and 2 min 40 sec plus 10 sec per cycle at 72˚C 

(extension). The tubes were cooled, placed on ice, and the reactions from three tubes for each 

sample were pooled and amplified according to the following thermal cycling scheme: five 

cycles of 1 min at 94˚C (denaturation), 2 min at 42˚C (annealing) and 6 min at 72˚C (extension). 

Amplified samples were stored at −20°C until further use.  

2.5.8 Poly(A) PCR re-amplification  
 For sequencing, poly(A) PCR cDNA samples were reamplified as before in a 100 μl PCR 

reaction containing 1x High-Fidelity buffer (Roche), 3.5 mM MgCl2, 200 μM dNTPs (Roche), 100 

μg/ml BSA (Roche), 5 μg AL1 primer, and 1 μl of poly(A) PCR sample. Each reaction was 

amplified according to the following thermal cycling scheme: 1 min at 94˚C (denaturation), 2 min 

at 42˚C (annealing) and 3 min at 72˚C (extension). The appropriate number of PCR cycles was 

determined by a pilot reamplification containing 20 μl of the PCR reaction above plus 0.25x 

SYBR Green monitored on a CFX96 real-time PCR instrument (Bio-Rad). The number of 

amplification cycles for each sample was selected to ensure that the reamplification remained in 
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the exponential phase and there was sufficient cDNA for SPRI bead purification (typically 5–12 

cycles).  

2.5.9 qPCR  
 For detection of specific targets in poly(A) PCR samples, qPCR was performed on a 

CFX96 real-time PCR instrument (Bio-Rad) as previously described (251). 0.1 μl or 0.01 μl of 

each preamplification was used with the qPCR primers listed in Supplementary Table S2. For 

relative quantification between ERCC spike-ins, qPCR amplicons were purified by gel 

electrophoresis, extracted, ethanol precipitated, and quantified by spectrophotometry. Purified 

amplicons were used to create a six-log standard curve based on ERCC amplicon copy 

number. All spike-ins were normalized to ERCC130 copy numbers to obtain relative abundance.  

2.5.10 SPRI bead purification  
 Re-amplified samples were purified twice with 70% (vol/vol) Ampure Agencourt XP SPRI 

beads. SPRI beads were equilibrated to room temperature for 30 min, and 70 μl beads were 

added to the 100 μl reamplification product. After a 15-min incubation at room temperature, 

samples were magnetized for 5 min. The supernatant was removed with a gel-loading pipette 

tip, leaving ~5 μl volume in the well. Beads were gently washed twice on the magnet with 200 μl 

freshly prepared 80% (vol/vol) ethanol and aspirated with a gel-loading pipette tip. Residual 

ethanol was removed after the second wash, and beads were air-dried at room temperature for 

10 min before resuspension in 10 μl elution buffer (10 mM Tris-HCl [pH 8.5]). Samples were 

magnetized at room temperature for 1 min, and the eluted supernatant was transferred to a new 

0.2 ml PCR tube. The 10 μl elution was purified a second time with 7 μl beads and the same 

incubation, ethanol wash, and elution conditions as the first purification.  

2.5.11 RNA sequencing and analysis  
 Bead-purified cDNA libraries were quantified with the Qubit dsDNA BR Assay Kit 

(Thermo Fisher) using a seven-point standard curve and a CFX96 real-time PCR instrument 

(Bio-Rad) for detection. Samples were diluted to 0.2 ng/μl before tagmentation with the Nextera 
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XT DNA Library Preparation Kit (Illumina) according to the manufacturer’s earlier 

recommendation to purify libraries with 180% (vol/vol) SPRI beads (Figure 2.14). For each run, 

samples were multiplexed at an equimolar ratio, and 1.3 pM of the multiplexed pool was 

sequenced on a NextSeq 500 instrument with NextSeq 500/550 Mid/High Output v1/v2 kits 

(Illumina) to obtain 75-bp paired-end reads at an average depth of 4.2 million reads per sample 

(Figure 2.13) or 7.5 million reads per sample (all others). Simulated read depths of 10cRNA-seq 

data from MCF10A-5E cells confirmed saturation of gene detection above ~5 million reads per 

sample (Figure 2.20). Adapters were trimmed using fastq-mcf in the EAutils package (version 

ea-utils.1.1.2-537) with the following options: -q 10 -t 0.01 -k 0 (quality threshold 10, 0.01% 

occurrence frequency, no nucleotide skew causing cycle removal). Quality checks were 

performed with FastQC (version 0.11.7) and multiqc (version 1.5). Datasets were aligned to 

either the human (GRCh38.84) or the mouse (GRCm38.82) transcriptome along with reference 

sequences for ERCC spike-ins using RSEM (version 1.3.0) with the following options: --bowtie2 

--single-cell-prior --paired-end (Bowtie2 transcriptome aligner, single- cell prior to account for 

dropouts, paired end reads). RSEM read counts were converted to transcripts per million (TPM) 

by dividing each value by the total read count for each sample and multiplying by 106. 

Mitochondrial genes and ERCC spike-ins were not counted towards the total read count during 

TPM normalization. The number of genes with TPM > 1 for each sample was calculated relative 

to the number of unique Ensembl IDs for the organism excluding ERCC spike-ins.  

2.5.12 Analysis of public scRNA-seq datasets  
 FASTQ files were downloaded from GSE75330, GSE60361, GSE103354 (plate-based), 

GSE66357, GSE113197, and PRJNA396019. FASTQ files were not available for the droplet-

based dataset of GSE103354; therefore, BAM files were downloaded from SRR7621182 and 

converted to FASTQ format. Adapters were trimmed using fastq-mcf with the following options: -

q 10 -t 0.01 -k 0 (quality threshold 10, 0.01% occurrence frequency, no nucleotide skew causing 

cycle removal). To compare with the other datasets, seqtk (version 1.3) was used to clip 15 bp 
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unique molecular identifiers from the beginning of sequences in GSE60361 and GSE75330. All 

RNA-seq datasets were aligned to either the human (GRCh38.84) or the mouse (GRCm38.82) 

transcriptome as well as reference sequences for ERCC spike-ins, using RSEM with the 

following options: --bowtie2 --single-cell-prior (Bowtie2 transcriptome aligner, single-cell prior to 

account for dropouts). GSE103354 (plate-based), GSE113197, and PRJNA396019 also used --

paired-end (paired-end reads). TPM conversion and gene detection quantification were 

calculated as above. For post-hoc pooling (Figure 2.19), individual scRNA-seq profiles were 

selected at random (n = 48 per dataset) and grouped with the nine scRNA-seq profiles in the 

dataset that were nearest by Jaccard distance. To model dropouts, TPM values for each 

scRNA-seq profile were scaled to expected copies per cell assuming 250,000 mRNA copies per 

cell38 and transmitted to the 10-cell pool as a binomial random variable (N = expected copies 

per cell, p = RNA-to-cDNA conversion efficiency = 10% for Figure 2.19). Post-hoc pooling 

results were similar up to a conversion efficiency of ~30%.  

2.5.13 Paired analysis of BeadChip microarrays and 10cRNA-seq  
 Microarray data (GSE120030)  were batch processed with the lumi R package  using a 

detection threshold of 0.05 and simple scaling normalization to obtain log2-normalized values 

that were converted to log10-normalized values (252). Gene names from the BeadChip files were 

merged to the extent possible with Ensembl IDs from the RSEM alignments by using HUGO 

Gene Nomenclature synonym tables to match current and retired gene names.  

2.5.14 Monte Carlo simulations  
 Simulations of stochastic-profiling experiments were performed in MATLAB using 

StochProfGUI (157). Each parameter set was run 50 times to measure median p values and 

nonparametric confidence intervals. False positives were called when the median p value was 

less than 0.05 for a unimodal population (expression fraction = 0). False negatives were called 

when the median p value was greater than 0.05 for a bimodal population (expression fraction ≠ 

0).  
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2.5.15 Data availability  
 All 10cRNA-seq data are available through the NCBI Gene Expression Omnibus 

(GSE120261; Reviewer token: evyzaokcxnwfhcn). Step-by-step protocols for 10cRNA-seq, 

including critical steps and troubleshooting, are available here as a Supplementary Note and will 

be maintained on the Janes Laboratory website (http://bme.virginia.edu/janes/protocols/).  
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3 Pan-cancer Drivers are Recurrent Transcriptional 
Regulatory Heterogeneities in Early-stage Luminal Breast 
Cancer  
 

3.1 Foreword 

 As discussed in Chapter 1, the heterogeneous composition of solid tumors is known to 

impact disease progression and response to therapy. In Chapter 2, we developed 10cRNA-seq 

to access transcriptomes of cells in situ with increased sensitivity compared to scRNA-seq 

methods. In this chapter, we revised a statistical fluctuation analysis called stochastic profiling 

(Chapter 1) and combined it with 10cRNA-seq to identify signatures of different regulatory states 

of cancer cells. When applied to a cohort of late-onset, early-stage luminal breast cancers, the 

integrated approach identified thousands of candidate regulatory heterogeneities. Intersecting 

the candidates from different tumors yielded a relatively stable set of 710 recurrent 

heterogeneously expressed genes (RHEGs) that were significantly variable in >50% of patients. 

RHEGs were not confounded by dissociation artifacts, cell cycle oscillations, or driving 

mutations for breast cancer. Rather, we detected RHEG enrichments for epithelial-to-

mesenchymal transition genes and, unexpectedly, the latest pan-cancer assembly of driver 

genes across cancer types other than breast. Heterogeneous transcriptional regulation 

conceivably provides a faster, reversible mechanism for malignant cells to sample the effects of 

potential oncogenes or tumor suppressors on cancer hallmarks.  

 Acquisition of patient samples profiled in this chapter was enabled by Dr. Jennifer 

Harvey and Kathy Repich at the UVA Breast Care Clinic. A manuscript of this work with me as 

first author is under review (253). 
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3.2 Introduction 

 Approximately 80% of human tumors are epithelial carcinomas (254). Epithelial cells and 

progenitors proliferate considerably during normal tissue development, maintenance, and repair 

(255,256). Proper epithelial organization is enforced by basement membrane extracellular 

matrix (ECM), which becomes compromised during the epithelial cell-state changes underlying 

carcinomagenesis (26,95,257). Advanced carcinomas show considerable cell-to-cell variation in 

chromosomal gains–losses (59), overall mutational burden (54), and hybrid epithelial- 

mesenchymal traits (98). However, the state trajectory of carcinoma cells within large, rapidly 

progressing tumors is not stereotyped (258), complicating general interpretations of this 

variability. It is not known when intra-carcinoma cell heterogeneity meaningfully emerges, nor 

whether there might be common themes early in tumorigenesis that go on to diverge at later 

stages.  

 Thoroughly deconstructing intratumor heterogeneity requires transcriptomic approaches 

that can separate lineages and distinguish regulatory states with high cellular resolution 

(70,124). Conventional methods for single-cell RNA sequencing (scRNA-seq) either a) profile 

dozens– hundreds of cells at the maximum depth afforded by the single-cell sample, or b) 

shallowly scan (tens of) thousands of cells for molecular phenotyping (150). Regardless of the 

output, all leading approaches dissociate tumors into single-cell suspensions, requiring up to an 

hour of tissue processing and yielding a range of carcinoma proportions depending on cancer 

type (Table 3.3.1). The impact of these preparative steps on the transcriptomes of live cells is 

recognized (143,259), but they are considered to be an unavoidable tradeoff of the scRNA-seq 

approach.  

 Considering the drawbacks, we (180) and others (144,192) have developed approaches 

orthogonal to scRNA-seq that combine high-sensitivity transcriptomics with laser-capture 

microdissection (LCM) (Chapter 2). Using LCM, histologically distinguishable cell types can be 
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isolated with single-cell resolution from cryosections of snap-frozen tissue or tumor. 

Unfortunately, all LCM- based sequencing methods have substantially decreased sensitivity and 

technical reproducibility with fewer than 10 cells of microdissected material (144,157,192). To 

gain single-cell information, we reasoned that our 10-cell RNA sequencing (10cRNA-seq) 

method could productively identify carcinoma cell-regulatory heterogeneities if it were 

implemented as a type of fluctuation analysis called stochastic profiling (129). Previously, 

stochastic profiling was applied to 10-cell averaged gene-expression profiles collected 

repeatedly within a clonal cell line and measured by qPCR or microarray, leading to predicted 

single-cell heterogeneities that were subsequently validated (129,158,201). The distinct 

statistical properties of RNA sequencing data required design of a customized analytical 

pipeline for stochastic profiling by 10cRNA-seq. 

 Here, we combine 10cRNA-seq with an abundance-dependent overdispersion statistic 

that enables stochastic profiling of tumor cells in situ. Without any sample dissociation, we 

deeply profile carcinoma cell-to-cell heterogeneity in a cohort of five closely matched, late-onset 

and early-stage luminal breast cancers (Table 3.1 and Table 3.2), obtaining data on 21,255 

genes from 1400 carcinoma cells. The LCM component of 10cRNA-seq proved critical to obtain 

carcinoma heterogeneity profiles from cases with extensive immune infiltration. 10-cell pooling 

minimized the contribution of periodic transcripts that covary with cell-cycle phases. Stochastic 

profiling inferred 710 candidate transcripts that were recurrently heterogeneous in ≥50% of 

tumors. Subsampling tumors in the cohort consistently yielded 500– 1500 candidates by the 

same criteria, suggesting bounds for reliable variability between similar tumors. The shared set 

of candidates was largely devoid of detachment-induced artifacts (143) and, surprisingly, breast-

cancer driver genes (260). Recurrent heterogeneities were instead enriched in the collagen and 

matricellular constituents of a pan-cancer epithelial-to- mesenchymal transition (EMT) signature 

(261). The heterogeneities uncoupled canonical EMT marker genes that are tightly correlated at 

the population level. Most intriguing was an enrichment for dozens of non-cycling driver genes 
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for cancers other than breast (262). Our results raise the possibility that early-stage luminal 

breast cancers sample a much broader landscape of oncogenes and tumor suppressors 

through transcriptional heterogeneity than indicated by the genomic lesions characteristic of the 

subtype. 

 

3.3 Results 

3.3.1 Carcinoma-focused 10-cell profiling of early-stage luminal breast cancer  

 Women were selected for enrollment if they required ultrasound-guided biopsy for a 

suspected malignancy after screening mammography (BI-RADS 4C and higher). Just before 

diagnostic biopsy, we obtained written informed consent to collect an additional ultrasound- 

guided core sample, which was cryoembedded (180) within one minute of acquisition (Figure 

3.1A and Table 3.1). After clinical diagnosis of hormone-positive, HER2-negative breast cancer, 

we selected five cases that were as closely matched as possible (Table 3.2). The median tumor 

biopsy was Stage 1, Grade 3, and aged 63 years—the late-onset group for breast cancer (263).  

 Despite gross similarities in tumor characteristics, we noted elevated lymphocyte 

infiltration in two cases (UVABC3 and UVABC5) that rendered them problematic to microdissect 

by nuclear histology alone (Figure 3.1B and Table 3.2). Therefore, we devised an immuno-

LCM (241) procedure that combines an Alexa Fluor 488-conjugated, high-affinity monoclonal 

antibody against KRT8 with the red-orange nucleic acid stain YOPRO3 (see Materials and 

Methods). A one-minute incubation with the antibody-dye cocktail was sufficient to resolve 

KRT8-positive carcinoma cells from KRT8-negative stromal cells and the YOPRO3- negative 

autofluorescence of tissue collagen (Figure 3.2A). We could not find any evidence that the 

antibody or dye interfered with the critical early steps of 10cRNA-seq (Figure 3.2B) (180).  

 For each case, we collected 28 random pools of 10 carcinoma cells located throughout 

cryosections of the core biopsy. Pools were assembled as local 10-cell groups that reflect both 



 84 

clonal and microenvironmental heterogeneity. We recorded the spatial position of all cells 

microdissected in the 10-cell samples to leave open the possibility of retroactively linking 

transcriptomic changes to histological or topological features of the tumor. Samples were deeply 

sequenced at 6.04 ± 0.75 million reads per 10-cell pool to ensure saturation of gene detection 

and provide maximum sensitivity for identifying non-carcinoma contaminants. Across all cases, 

we found that the luminal markers KRT8 and ESR1 predominated by transcripts per million 

(TPM), whereas markers for myoepithelial cells (KRT14, KRT5), T cells (CD3D), B cells (CD19), 

and macrophages (FGCR1A) were rarely detected (Figure 3.1C). Even though desmoplasia 

was marked for all but one case (Table 3.2), fibroblast contamination was problematic in only 

~14% of 10-cell samples (using log2 FAP > 5 transcripts per million [TPM] ≈ 0.8 copies per cell 

(180) as a stringent threshold). These samples were excluded retroactively for downstream 

analyses related to EMT signatures (see below). Overall, the observations confirmed the fidelity 

of (immuno-)LCM for isolating spatially-resolved, carcinoma-specific transcriptomic profiles with 

minimal disruption of tumor architecture.  
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Table 3.1 Transcriptomic studies of intra-carcinoma cell heterogeneity from primary 
clinical cases. 
 
Cancer type Median stage [range] Dissociation time Carcinoma yield Read depth  

per cell 
Reference 

Head and neck T3N1 [T1N0–T4aN2c] 60 min 38% 1340K (125) 
Colon T3N2 [T1n0–T4bN0] 30 min 28% ≥100K (264) 

Pancreas IIb [Ib–IV] 45 min 7.8% 50K (265)  
T2N1 [T1cN0–T4N2] 40 min 6.3% 50K (122) 

Breast T2N0 [T1N0–T3N1] n.a. 62% 5800K (117)  
T2N0 [T0N0–T2N3] 60 min 62% 50K (118) 

Luminal breast T1N0 [T1N0-T2N1] 0 min ~100% 604K This study 
n.a., not available. 

 

 

 
Table 3.2 Early stage luminal tumors profiled in this study.  
 

Sample Age Race Stage Grade ER PR HER2 Mitoses 
(per hpf) 

TIL foci  
(per hpf) 

Desmoplastic 
reaction 

UVABC1 76 Caucasian 1 3 + + — 21/10 2/5 Marked 

UVABC2 52 Caucasian 2 3 + + — 32/10 2/5 Moderate 

UVABC3 63 Caucasian 1 3 + + — 11/10 5/5 Marked 

UVABC4 63 Caucasian 1 2 + + — 2/10 1/5 Marked 

UVABC5 59 Caucasian 1 1 + + — 2/10 3/5 Marked 

TIL = tumor infiltrating lymphocytes 
hpf = high powered field (400X magnification) 
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Figure 3.1 Focused transcriptional profiling of breast carcinoma cells without 
dissociation in early- stage tumor biopsies.  
(A) Biopsy tissue was immediately cryoembedded and later cryosectioned for laser-capture 
microdissection. Tumor cells were visualized with either a rapid nuclear stain or KRT8 
immunostain (Figure 3.2) before 10cRNA-seq (16).  
(B) Tumor histology of the UVABC cohort visualized by hematoxylin-eosin staining. Two cases 
(marigold inset) showed increased tumor infiltrating lymphocytes requiring KRT8 immunostain-
guided LCM.  
(C) Selective capture of epithelial carcinoma cells assessed by marker transcripts for luminal 
(KRT8, ESR1), basal (KRT14, KRT5), immune (CD3D, CD19, FCGR1A), and stromal (FAP) cells. 
Scale bar is 80 μm (B) or 10 μm (B, inset)  
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Figure 3.2 Immuno-LCM capture of 10-cell samples does not affect gene detection. 
(A) Rapid immunostaining of UVABC3 with an Alexa Fluor 488 (AF488)-conjugated antibody 
recognizing KRT8 (left) combined with YO-PRO-3 to stain all nuclei (middle). Epithelial cells were 
identified by dual red-green staining (right, dashed lines) compared to stromal cells that are KRT8-
negative and autofluorescent extracellular matrix that is free of nuclear staining. Scale bar is 25 
μm.  
(B) Relative abundance for the indicated transcripts as measured by quantitative PCR in 
UVABC4. Two exogenously spiked-in RNA transcripts (ERCC113, ERCC60) were quantified 
along with four endogenous genes. Data are shown as the median inverse quantification cycle 
(40–Cq) ± range from n = 4 replicates.  
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3.3.2 10cRNA-seq transcriptomes retain the inter-tumor and intra-tumor heterogeneity 
of luminal breast carcinoma cells profiled by scRNA-seq  
 

 As a first assessment, the 10cRNA-seq data were visualized by uniform manifold 

approximation and projection (UMAP) (266). Consistent with past descriptions of carcinoma 

heterogeneity by scRNA-seq (117,118,125), we found that 10cRNA-seq data clustered tightly by 

patient (Figure 3.3A). Batch effects were not evident within the patient clusters (Figure 3.4A–

E). Furthermore, we did not observe any clustering in a separate UMAP visualization using only 

the data from ERCC spike-ins added to every sample at the time of RNA extraction (Figure 

3.4F). The observed separation of 10cRNA-seq transcriptomes (Figure 3.3A) thus reflects bona 

fide inter-tumor differences between cases.  

 Next, we sought to classify individual 10cRNA-seq samples into intrinsic breast cancer 

subtypes (266). We adapted the microarray-based PAM50 classification of subtypes (12) to 

RNA-seq (268), but the 50-gene signature was not robust enough for 10cRNA-seq observations 

(Figure 3.5). As a substitute, we used expression-signature modules (269) associated with 

ESR1, ERBB2, and AURKA as proxies for the hormone, HER2, and proliferative status of each 

10-cell sample (see Materials and Methods). Within patients, there was considerable variability 

in module scores (Figure 3.3B), corroborating an earlier scRNA-seq study of multiple breast-

cancer subtypes (117). Although most 10-cell samples were classified as luminal A or luminal B 

subtype, all cases but UVABC4 contained observations scoring more strongly to other subtypes 

(Figure 3.3C). Two cases (UVABC1 and UVABC3) harbored instances of all four subtypes, 

analogous to scRNA-seq observations in glioblastoma (79). The clustering of mixed 

classifications implied that other patient-specific gene programs were dominant in the UMAP 

organization. Variations in subtype class were repeatedly documented in nearby samples 

microdissected from the same histologic section (Figure 3.6). Even for early-stage breast 

tumors, the 10cRNA-seq data suggested that local variations in regulatory state are pervasive.  
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 Toward a more-direct comparison of 10-cell data with single-cell measurements of gene 

expression, we extracted 78 KRT8+EPCAM+ carcinoma cells from three cases of luminal breast 

cancer profiled by scRNA-seq (117) (see Materials and Methods). As previously reported by us 

and others (144,180,195,197), there were significantly more transcripts detected in local 10-cell 

pools  compared to singly isolated cells (10,066 ± 1,416 genes vs. 5,957 ± 1,824 genes; p < 10-

15 by K- S test; Figure 3.3D). Overall, 3319 transcripts found in 10cRNA-seq pools were entirely 

undetected by scRNA-seq. Notwithstanding the differences in gene coverage, when scRNA-seq 

and 10cRNA-seq samples were projected on a shared UMAP, the separation between methods 

was comparable to that among patients (see Materials and Methods; Figure 3.3E). Together, 

the data argue that 10-cell pooling does not dilute out the cell-to-cell and tumor-to-tumor 

heterogeneities recognized by scRNA-seq.  

 

  



 90 

 

 

 

Figure 3.3 10-cell transcriptomes of luminal breast carcinomas are heterogeneous among 
and within tumors.  
(A) UMAP embedding of 10cRNA-seq samples from the UVABC cohort colored by tumor.  
(B) A three-signature classification system for identifying molecular subtypes of breast cancer in 
10cRNA-seq data. Module scores were used to classify samples as indicated.  
(C) Molecular subtype classifications of the 10cRNA-seq samples projected as in A.  
(D) Genes detected by 10cRNA-seq in the UVABC cohort compared to three luminal tumors 
profiled by scRNA-seq (sc-01, sc-02, sc-03) (117). p < 10-15 by K-S test.  
(E) UMAP embedding of tumors profiled by 10cRNA-seq and scRNA-seq.  
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Figure 3.4 Clustering of 10cRNA-seq data by tumor does not arise from batch effects.  
(A–E) Enlarged UMAP embedding for UVABC tumors from Figure 3.3A, with different batches 
of sample collections annotated by number.  
(F) UMAP embedding of the UVABC cohort based only on the ERCC spike-in transcripts of 
10cRNA-seq samples.  
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Figure 3.5 Microarray-based PAM50 classification is not adaptable to 10cRNA- seq.  
(A) Principal component plot adapting the microarray-based PAM50 predictor (12) to bulk RNA-
seq data of breast tumors from The Cancer Genome Atlas (TCGA) (268) (see Materials and 
Methods). Similar projections of the different data types indicate successful data fusion: 77% of 
RNA-seq samples were correctly subtyped, with an average confidence score of 0.99.  
(B) Principal component plot of UVABC 10cRNA-seq observations together with TCGA tumors 
subtyped with the adapted PAM50 classification of A. 10cRNA-seq projections are distinct from 
all classified subtypes of TCGA tumors, even though dispersion along PC2 indicates underlying 
subtype differences.  
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Figure 3.6 Different molecular subtypes are assigned to tumor cells microdissected from 
the same cryosection.  
(A) Enlarged UMAP embedding for UVABC5 from Figure 3.3C, highlighting six 10cRNA-seq 
samples (stars) obtained together in two separate cryosections.  
(B) Low-magnification grayscale LCM slide images indicating the regions microdissected in the 
UVABC5 cryosections.  
(C) Enlarged UMAP embedding for UVABC2 from Figure 3.3C, highlighting two 10cRNA-seq 
samples (stars) obtained together in one cryosection.  
(D) High-magnification grayscale LCM slide image indicating the regions microdissected in the 
UVABC2 cryosection. Scale bar is 50 μm (B and D).  
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3.3.3 Stochastic profiling by 10cRNA-seq identifies candidate regulatory 
heterogeneities  
 

 To go beyond qualitative descriptions of molecular subtype and inter-tumor differences, 

we sought to adapt the theory of stochastic profiling (129,157) to 10cRNA-seq (180). Fluctuation 

analysis by RNA-seq brings additional challenges and opportunities compared to microarray- 

based transcriptomics. The data are not biased by the position or quality of hybridization probes 

[as discussed in (180)], but they are sensitive to read depth, and low-abundance transcripts are 

susceptible to noise from counting statistics. Specifically, the discrete and left-censored 

character of rare transcripts partially obscures sample-to-sample fluctuations (Figure 3.7A) and 

deviates from lognormally distributed models used in earlier analyses (129,157,158). We 

surmounted these hurdles by extracting an abundance-dependent dispersion module from the 

SCDE package (153,154) and redeploying it as a separate inference tool for stochastic profiling. 

The module relates the squared coefficient of variation (CV) of each gene in a study (here, a 

patient) to the abundance magnitude of that gene, building an expectation model of variance at 

a given abundance (Figure 3.7B). The variance of each transcript is then normalized by the 

expected variance for that transcript’s abundance, yielding an overdispersion score for the 

transcript. For high-abundance genes, overdispersed transcripts show multiple modes or 

heavier tails than expected (Figure 3.7C, D). Low-abundance genes with overdispersion are 

skewed by multiple instances of moderate-to-high TPM (Figure 3.7E, F). The dispersion module 

incorporates discrete negative-binomial and Poisson processes to model aligned reads and 

dropouts. The overdispersion score thus provides a principled metric for stochastic-profiling 

analysis of 10cRNA-seq data.  

 In conventional scRNA-seq, each cell is considered as an N-of-1 observation that 

convolves biological variability and technical noise. For our study, technical noise could be 

quantified more rigorously by pool-and-split sequencing of 10-cell equivalents from hundreds of 

carcinoma cells microdissected in the same vicinity as the samples. Accordingly, we sequenced 
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20 pool-and-split controls in parallel with the 28 10-cell samples, analyzing the controls 

separately to construct a null distribution for transcript overdispersion in each tumor. The upper 

95th percentile in the null model defined an overdispersion cutoff for the 10-cell samples—

transcripts above this threshold in the 10-cell samples (but not in the null) were considered 

candidate regulatory heterogeneities (Figure 3.7G, H, and Figure 3.8).  
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Figure 3.7 Stochastic profiling by 10cRNA-seq through abundance-dependent 
overdispersion statistics.  
(A), Illustration of theoretical left-censored transcript, which is heterogeneously expressed at one 
copy per cell (filled, +) and measured with 50% efficiency. Low-frequency mixtures will be 
identically not detected (nd).  
(B), Dispersion-abundance plot illustrating the expected inverse relationship. Example transcripts 
with similar abundance but different dispersion (red) are annotated by the Figure 3.7 subpanel in 
which they appear. The blue trace indicates a smoothing cubic spline fit of the summarized 
10cRNA-seq fluctuations per transcript (gray).  
(C) and (D), 10cRNA-seq sampling fluctuations for high-abundance transcripts with expected 
dispersion (GABARAP, C) and overdispersion (MYL12B, D).  
(E) and (F), 10cRNA-seq sampling fluctuations for low-abundance transcripts with expected 
dispersion (DSCR3, E) and overdispersion (TXNRD3, F).  
(G), Distribution of adjusted variance scores for each gene measured transcriptomically in 
separate 10-cell samples (purple) compared to pool-and-split controls estimating technical 
variation (black dashed). The arrow indicates the upper 5th percentile of adjusted variance for the 
pool-and-split controls, which is used as the cutoff for 10-cell samples.  
(H), Examples of low-abundance (RPTOR) and high-abundance (MYL6) transcripts deemed to 
be significantly overdisperse given their relative abundance in 10-cell samples (purple) and their 
technical variation in pool-and-split controls (black dashed). For C–F, continuous traces 
(marigold) indicate the idealized dispersion expected given the observed transcript abundance, 
and the adjusted variance (Varadj) is reported. Gray bars represent drop-out events, which are 
modeled by a separate posterior (47,48). For B–H, data from UVABC4 were used as 
representative examples.  
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Figure 3.8 Abundance-dependent overdispersion statistics of individual cases in the 
UVABC cohort. 
(A–E), Distribution of adjusted variance scores for each gene measured transcriptomically in 
separate 10-cell samples (purple) compared to pool-and-split controls estimating technical 
variation (black dashed). The arrow indicates the upper 5th percentile of adjusted variance for the 
pool-and-split controls, which is used as the cutoff for 10-cell samples.  
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3.3.4 Stochastic profiling identifies recurrent transcriptional regulatory heterogeneities  
 

 By abundance-dependent dispersion, stochastic profiling identified 9206 candidate 

heterogeneities in the UVABC cohort, 161 transcripts of which were undetected by scRNA-seq 

(117). Only a few percent of candidate genes were found in loci of inferred copy-number 

variation (Figure 3.9), excluding major contributions from heritable differences among 

subclones in a tumor. 3627 candidates were exclusive to one of five patients, laying bare the 

extraordinary challenge of interpreting malignant cell-state heterogeneity beyond well- known 

markers of differentiation (124). Encouragingly, when the candidates were intersected, we noted 

a significant enrichment of transcripts that appeared repeatedly in three or more breast-cancer 

cases (Figure 3.10A). Such transcripts were classified as recurrent heterogeneously expressed 

genes (RHEGs), for which there were 710 in total. Generalizing the RHEG definition to 

candidates appearing in >50% of the cases considered, we examined the stability of RHEG 

numbers by subsampling the UVABC cases (see Materials and Methods). As the quantity of 

patients increased, RHEGs stabilized in the range of 500–1500 for this highly circumscribed 

cohort (Figure 3.10B and Table 3.2). RHEGs provide a conceptual framework for prioritizing 

cell-state regulatory heterogeneities identified in vivo (see Chapter 4) (270,271).  

 To evaluate RHEGs as an organizing principle, we revisited the UMAP visualization of 

UVABC cases from the standpoint of regulatory heterogeneity (Figure 3.3A). Because 

abundance-dependent dispersion evaluates fluctuations local to each tumor (Figure 3.7), it was 

first necessary to standardize the 10cRNA-seq transcriptomes separately and regenerate the 

UMAP (see Materials and Methods). Tumor-specific standardization intermingled the 10cRNA-

seq observations considerably, but two clusters remained enriched in samples from UVABC1 

and UVABC2 (Figure 3.10C). When the same approach was applied using RHEGs exclusively, 

we observed a projection that was different from when the whole 10cRNA-seq transcriptome 

was used (Figure 3.10D). For the same UMAP parameters, samples were more distributed than 
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clustered, with the UVABC1-enriched cluster disappearing and a new UVABC4-enriched cluster 

appearing. This analysis suggested that RHEGs could be used as a lens to refocus 

transcriptome-wide heterogeneity on the most-robust variations.  
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Figure 3.9 Most candidate heterogeneities do not reside in loci with inferred copy-
number variations (CNVs).  
(A) Chromosomal gains and losses predicted from 10cRNA-seq data by inferCNV (30). RNA-seq 
data from normal human luminal breast tissue obtained through GTEx (29) was used as the 
reference transcriptome. Gains in 1q (UVABC1, UVABC2) and 8q (UVABC2, UVABC4) and 
losses in 8p (all) and 16q (UVABC1, UVABC4) are characteristic of luminal A breast tumors (64).  
(B–F) Distribution of inferred CNVs corresponding to the candidate heterogeneities of individual 
cases in the UVABC cohort. Percentage of transcripts with inferCNV scores suggesting gain (red) 
or loss (blue) is shown.  
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Figure 3.10 Intersecting candidate regulatory heterogeneities across tumors yields a set 
of recurrent heterogeneously expressed genes (RHEGs).  
(A) Gene overlaps between and among cases in the UVABC cohort. Enriched categories were 
assessed statistically by Monte-Carlo simulation (see Materials and Methods).  
(B), RHEG size as a function of the number of UVABC tumors included. RHEGs were defined as 
transcripts that appear in >50% of the tumors included. Data are shown as the median ± range of 
5Cn combinations of n tumors in the UVABC cohort.  
(C) and (D), UMAP embedding of patient-standardized 10cRNA-seq transcriptomes (C) or 
RHEGs (D). Patient- enriched clusters are highlighted with dashed ovals.  
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3.3.5 RHEGs are not dominated by cell-cycle covariates 
  

 In scRNA-seq, the most-overarching contributor to heterogeneity is the phase of the cell 

cycle (125,246,272). However, it was not obvious whether such single-cell variations would also 

overrepresent in RHEGs derived from 10-cell pools. Using a panel of 863 transcripts associated 

with replicating cells (272), we identified 62 among the 710 RHEGs, a significant overlap (p < 

10-6 by hypergeometric test) but one comprising <10% of the list overall. Most of the overlapping 

genes were expressed acutely during one cell-cycle transition (e.g., G1/S, G2/M), which is akin 

to the two-state expression models foundational for the theory of stochastic profiling 

(129,157,158). When the cell-cycle search was restricted to 361 oscillating transcripts (273), the 

RHEG intersection reduced to 24 genes (p < 0.01 by hypergeometric test). Moreover, when we 

compared the periodicity of the overlapping genes to the most-symmetrically cycling transcripts, 

we found that RHEGs were significantly more biased toward up- or downregulation (see 

Materials and Methods; Figure 3.11A, B). These results are consistent with Monte-Carlo 

simulations of stochastic profiling that model a three-state distribution corresponding to G1, S, 

and G2/M populations (Figure 3.11C–F). Stochastic-profiling theory thus bolstered our 

experimental results indicating that cycling transcripts contribute <5% to the RHEGs identified.  
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Figure 3.11 Periodically cycling transcripts are disfavored by stochastic profiling.  
(A) Asymmetric cell-cycle oscillations in the RHEG DCTPP1 compared to the non-RHEG HJURP. 
Microarray data from synchronized HeLa cells (77) and pseudotime estimates were obtained from 
Cyclebase 3.0 (273). Time intervals above (red) and time (blue) the midpoint of each transcript 
are shown.  
(B) Asymmetry of cycling RHEGs quantified by ratio skew and compared to non- RHEG cycling 
transcripts (see Materials and Methods). Data are shown as boxplots from n = 1000 bootstrapping 
runs.  
(C) Abstraction of a two-state regulatory heterogeneity. Parameters of the probability distribution 
are described elsewhere (129,157,158).  
(D) Monte-Carlo simulations (157) of stochastic profiling in the two-state case. False-negative 
regimes are marked when a two-state heterogeneity is not detected in the 10-cell pool.  
(E) Abstraction of a three-state cell-cycle model. A uniform S-phase interval is added in between 
the first and second regulatory states modeling G1 and G2/M phases, and the fractional 
proportions are updated accordingly (see Materials and Methods).  
(F) Monte-Carlo simulation of stochastic profiling in the three-state case. The false- negative 
regime marks three-state heterogeneities that are not detected in the 10-cell pool. For D and F, 
the following simulation parameters were used: D = 3, σb1 =σb2 =σG1 =σG2 =0.2.  
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3.3.6 RHEGs are largely devoid of detachment artifacts and influence from breast-
cancer driver genes  
 

 We also considered other trivial explanations for genes in the RHEG set. Although 

tumors were not dissociated, it was possible that detachment-like regulatory variation was 

induced locally and rapidly from the tissue damage of the biopsy procedure. Using a 138-gene 

signature for dissociation-induced transcripts in muscle satellite cells (143), we intersected with 

the RHEG set and found that only two were shared (Figure 3.12A). This marginal under-

enrichment (1 – p < 0.05) indicated that our clinical-procurement and sample-handling 

procedures had avoided detachment-like damage responses in the breast carcinoma cells.  

 Next, we looked at known breast cancer drivers with the premise that mutations may 

arise subclonally in a breast carcinoma (274) and disrupt abundance of the encoded transcript 

(275). Among 29 robust driver genes for breast cancer (260), only one was shared with the 

RHEG set: CTCF (Figure 3.12B, left). As an insulator protein, CTCF abundance changes could 

cause secondary transcriptional alterations; however, we did not observe any enrichment for 

conserved CTCF-sensitive genes (276) in the RHEG set (Figure 3.12B, right). Although not 

classified as a RHEG, we also investigated transcriptional targets for the most-prevalent 

transcription factor mutated in luminal breast cancer, GATA3 (260). Again, we found no RHEG 

enrichment among 1213 transcripts altered by mutant GATA3 in luminal breast cancer cells 

(277) (Figure 3.12C). The lack of association collectively supported that RHEGs were more 

than a reflection of known sources of cell-to-cell heterogeneity in cancer.  
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Figure 3.12 RHEGs have little in common with detachment signatures or mutational 
drivers of breast cancer. 
(A–C), Venn diagrams intersecting the UVABC RHEG set with a cell-detachment signature (143) 
(A), a set of robust drivers for breast cancer (260) (B, left), a list of transcripts altered by CTCF 
knockout in a luminal breast cancer cell line (276) (B, right), and a list of GATA3 target genes 
(277) (C).  
Statistical significance of overlaps was assessed by the hypergeometric test.  
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3.3.7 RHEGs are enriched for EMT signatures and correlate with canonical EMT 
markers  
 

 scRNA-seq of dissociated tumors has identified (partial-)EMT states in some carcinomas 

(118,125) but not others (264). EMT-like transcriptional profiles also arise normally in the cell 

type of origin for serous ovarian cancer (278). For breast cancer, changes along the EMT 

spectrum are mostly described in hormone-negative cell lines, but more-recent work reports 

EMT-like activation patterns in 65–85% of primary luminal breast cancers (279). The literature 

thus supported a focused search for EMT states among RHEGs.  

 We intersected a pan-cancer EMT signature (280) with the RHEG set and found 

significant overlap in multiple collagens, matricellular proteins, and other transcripts in the 

signature (Figure 3.13A). The data suggest that ECM dysregulation in these tumors is jointly 

mediated by the carcinoma cells together with cancer-associated fibroblasts. RHEG enrichment 

was also found with an independently derived EMT signature (261) (Figure 3.14A), reinforcing 

the result. Formally, none of the canonical EMT regulators [ZEB1 (M), ZEB2 (M)] or markers 

[CDH1 (epithelial, E), VIM (mesenchymal, M), FN1 (M)] were RHEGs, even though all were 

detected reliably enough for stochastic-profiling analysis. We clustered these canonical EMT 

transcripts with the EMT RHEGs after stringently removing samples with any evidence of 

fibroblast contamination (14% of samples with FAP > 5 TPM ≈ 8 copies in one cell of the 10-cell 

pool). There was clear separation of E- and M-associated transcripts among 10-cell pools along 

with several notable subclusters by gene and by sample (Figure 3.13B). The organization by 

patient was unexpected; for example, UVABC2 showed the most evidence for the E state, even 

though it was one of the most-advanced stage tumors of the cohort (Table 3.2). Reciprocally, 

10-cell profiles of the high-grade UVABC3 tumor were no more scattershot in EMT transcripts 

than UVABC4 (grade 2) or UVABC5 (grade 1) (Figure 3.13B). Among samples with M 

characteristics, ZEB2 appeared to track with those samples abundant for some transcripts 

(FN1, COL6A1, SPARC, VIM) but not others (COL5A2, TAGLN). M-state fragmentation was 
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also observed in UVABC1, which was predominated by samples positive for VIM, SPARC, and 

SERPING1 but negative for CTSK, TAGLN, and mesenchymal collagens (Figure 3.13B and 

Figure 3.14B). The RHEG set thereby provided a transcriptomic resource for looking more 

deeply at EMT regulatory patterns in early-stage luminal breast cancers.  

 

3.3.8 RHEGs are enriched for pan-cancer driver genes and suggest transcription 
factor-target relationships in single cells  
 

 The dearth of breast-cancer driver genes among RHEGs (Figure 3.12B) prompted us to 

look at cancer drivers more broadly. We merged 299 robust drivers for any cancer type (260) 

with the latest pan-cancer analysis reporting 803 drivers from 2,658 tumors (281) and 

intersected with the RHEG set. There were multiple instances where RHEGs resided in the 

same complex, pathway, or gene subfamily as a cancer driver (Table 3.3). We included these 

proximal RHEGs and altogether found 46 genes as “RHEG drivers” shared between the two 

datasets (p = 0.001 by hypergeometric test; Figure 3.13C). Even with the expanded driver set, 

we found no enrichment for mutated breast-cancer driver genes (p = 0.6 by hypergeometric 

test). In the UVABC cohort, RHEG drivers may be leveraged noncanonically through 

transcriptional regulation rather than mutation.  

 Last, we clustered the RHEG drivers to ask whether there were interpretable 

covariations spanning multiple patients (Figure 3.13D). Associations among 10-cell samples 

were tightest for UVABC2 and UVABC4, in line with their separation on the earlier UMAP 

(Figure 3.10D). Repeatedly, co-clustering RHEG drivers suggested direct modes of action 

between transcription factors and target genes (Figure 3.13D, arrows). For example, 

knockdown of NFATC4 blocks induction of the neighboring RHEG driver, TNFSF10 (282), and 

there is literature that the reprogramming factor KLF4 is required for full induction of CDKN1A 

(283). Although no functional studies are available for CDKN2D, another co-clustering cyclin-

dependent kinase inhibitor (Figure 3.13D, arrows), the CDKN2D locus is occupied by KLF4 
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(284) and may warrant further study. Likewise, the MAD1L1 locus is reportedly among the top 

250 binding events in the genome for TP73 (285)—a RHEG driver absent from all luminal 

breast cancer cells profiled by scRNA-seq (117). Some of the debate involving MAD1L1 as a 

TP53 target gene [reviewed in (286)] could be explained by compensation from TP73 (287). 

RHEG drivers are variably expressed within luminal breast cancers, and our data suggest that 

some are variably active.  

 

 

Table 3.3 Multiple RHEGs proximal to established cancer driver genes 

RHEG Driver gene Cancer type(s) Proximal relationship 
EFNA4 EPHA4 LUAD EPHA4 signals through 

EFNA4  
GDF15 RET PANCAN, THCA, SKCM RET is a coreceptor for 

GDF15  
NQO1 NFE2L2 PANCAN, LUSC, LIHC NFE2L2 activity is marked by 

NQO1 abundance  
WNT4 WNT5A PRAD WNT5A and WNT4 are both 

non-canonical Wnt ligands  
RRAS KRAS PANCAN, COAD, LUAD, PAAD, UCEC, ESCA KRAS and RRAS are both in 

the Ras family  
TP73 TP53 PANCAN, BLCA, BRCA, GBM, COAD, ESCA, HNSC, 

KIRC, LIHC, LUAD, LUSC, DLBC, OV, PAAD, PRAD, 
SKCM, STAD, UCEC, SARC 

TP53 and TP73 are in the 
same family of transcription 
factors  

 
IKBKG 

 
IKBKB 

 
DLBC 

 
IKBKB and IKBKG are in the 
same IKK complex  

CDKN2D CDKN2A PANCAN, HNSC, ESCA, LUSC, PAAD, SKCM CDKN2A and CDKN2D are 
related CDK inhibitors  

MLST8 MTOR KIRC MTOR and MLST8 are in the 
same MTORC complex 
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Figure 3.13 RHEGs contain epithelial-to-mesenchymal transition (EMT) markers and 
driver genes for cancers other than breast.  
(A) Venn diagram intersecting the UVABC RHEG set with a pan- cancer EMT signature (280). 
Shared genes are listed.  
(B) Hierarchical clustering of the shared genes in A along with epithelial (CDH1) and 
mesenchymal (VIM, FN1, ZEB1, ZEB2) markers that were reliably detected by 10cRNA-seq. 
Stromal contamination was excluded by the relative abundance of the fibroblast marker FAP 
compared to the luminal markers ESR1, EPCAM, GATA3, and KRT8.  
(C) Venn diagram intersecting the UVABC RHEG set with a pan-cancer set of driver genes 
(260,281). The intersection was updated to include proximal RHEGs as described in Table 3.3. 
Shared genes (“RHEG drivers”) are listed.  
(D) Hierarchical clustering of RHEG drivers. Arrows between co-clustering drivers indicate 
possibly direct transcription factor–target gene relationships as described in the text. For A and 
C, statistical significance of overlaps was assessed by the hypergeometric test.  
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Figure 3.14. RHEGs are enriched for additional epithelial-to-mesenchymal transition 
(EMT) signatures.  
(A) Venn diagram intersecting the UVABC RHEG set with an independently derived EMT 
signature (261) from that of Figure 3.13A. Shared genes are listed.  
(B) Hierarchical clustering of the shared genes in A along with epithelial (CDH1) and 
mesenchymal (VIM, FN1, ZEB1, ZEB2) markers that were reliably detected by 10cRNA-seq. 
Stromal contamination was excluded by the relative abundance of the fibroblast marker FAP 
compared to the luminal markers ESR1, EPCAM, GATA3, and KRT8.  
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3.4 Discussion 

 This work combines 10cRNA-seq (180) and stochastic profiling (129) for disruption-free 

isolation of cancer cell-regulatory heterogeneities in a clinically practicable way. We targeted 

LCM isolation to breast-carcinoma cells here by using nuclear cytology or epithelial-targeted 

antibodies; the approach is also compatible with genetically encoded fluorophores (Chapter 4). 

For 10cRNA-seq, artifactual cell stress (143) is avoided by LCM (Chapter 4), and dominant 

cycling transcripts are mitigated by 10-cell averaging. But in many respects, 10cRNA-seq of 

malignant cells shares similarities with scRNA-seq: cases are very different from one another, 

and samples vary substantially within cases. What differs is overall gene coverage per sample 

(10cRNA-seq > scRNA-seq), as well as the analytical approach needed to discern single-cell 

differences. Abundance-dependent overdispersion can identify candidates from 10cRNA-seq, 

much like the nonparametric distribution tests first deployed for microarray data (157). As with 

microarrays, we anticipate future developments toward parameterizing the underlying single-cell 

distributions, which combine to yield 10cRNA-seq observations (158). The 10cRNA-seq-based 

subtype classifications predicted local differences not obvious from histology, and tools for 

spatial analysis of biomolecules are rapidly advancing (288,289). It will be especially intriguing 

when spatial transcriptomics (290) reaches the resolution and sensitivity of 10 cells.  

 RHEGs open the possibility of making more specific claims about intratumor 

heterogeneity beyond cell stress, cell cycle, and cell type (124). Partial EMTs in carcinomas 

have been documented by scRNA-seq (117,125), which we verify here in earlier-stage tumors 

without any pre-dissociation (Table 3.1). While there are many ways to elicit EMT-like states, a 

leading explanation for the UVABC cohort is tissue stiffness (99) given their marked 

desmoplasia. Notably, one RHEG is the hemidesmosomal integrin ITGB4, which acts as a 

critical sensor for matrix stiffness in breast epithelia (26). ITGB4 was undetected in every 

luminal breast cancer cell analyzed by conventional scRNA-seq (117).  
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 Secreted ligands and receptors (291) are not overly prevalent among RHEG drivers, but 

a pair with some coordination is the p53 target gene GDF15 (292) and its cognate receptor RET 

(293) (Figure 3.13D). In another carcinoma type in Chapter 4, we suggest that such receptor-

ligand pairs could engage as locally varying autocrine–paracrine circuits within a tumor and 

shape the immune microenvironment. For instance, among the 136 candidates shared by the 

two cases requiring immuno-LCM because of extensive lymphocytic infiltration, we identified an 

inhibitory ligand for NK cells [ADGRG1 (294)], a major histocompatibility class II receptor [HLA-

DRA (295)], a macrophage stimulatory ligand [MST1 (296)], and the palmitoyltransferase for 

PD-L1 [ZDHHC9 (297)]. Natural variation in such carcinoma transcripts could one day be 

mapped to associating changes in the type and extent of immune-cell recruitment (298).  

 Single-cell cancer biology must trade off coverage, throughput, and handling artifacts to 

retain the conceptual allure of measuring one cell. The approaches described and implemented 

here for late-onset, early-stage breast cancer are also a compromise, but one that triangulates 

differently by using cell pools to reduce handling and improve coverage. We see great potential 

in using stochastic profiling by 10cRNA-seq to deconstruct the very earliest stages of tumor 

initiation and premalignancy in engineered systems (271) and in precancerous in situ lesions of 

the breast where the need for treatment is actively debated (Chapter 5) (299).  

 

3.5 Materials and methods 

3.5.1 Tissue procurement and processing  
 Human sample acquisition and experimental procedures were carried out in compliance 

with regulations and protocols approved by the IRB-HSR at the University of Virginia in 

accordance with the U.S. Common Rule. In accordance with IRB Protocol #19272, breast 

cancer samples were collected as ultrasound-guided core needle biopsies during diagnostic 

visits from participants who provided informed consent. Each core biopsy was cut into two 
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pieces, freshly cryoembedded in NEG-50 medium (Richard-Allan Scientific) in a dry ice- 

isopentane bath, and stored at −80°C wrapped in aluminum foil. Cryosectioning and slide 

storage was performed exactly as described previously (180).  

3.5.2 Rapid histology–immunofluorescence and laser-capture microdissection  
 For samples with low immune infiltration (UVABC1, UVABC2, and UVABC4) slides were 

stained and dehydrated as described previously (129). For samples with high immune infiltration 

(UVABC3 and UVABC5), slides were fixed immediately in 75% ethanol for 30 seconds, 

rehydrated quickly with PBS, and stained with a mixture of Alexa 488-conjugated KRT8 

antibody (Abcam ab192467, 1:20 dilution), YO-PRO-3 (Fisher/Invitrogen Y3607, 1:1000 dilution) 

and 1 U/ml RNAsin-Plus (Promega) in PBS for one minute. Slides were rinsed twice with PBS 

before dehydrating with 70% ethanol for 15 seconds, 95% ethanol for 15 seconds, and 100% 

ethanol for one minute and finally clearing with xylene for two minutes.  

 Slides were microdissected immediately on an Arcturus XT LCM instrument (Applied 

Biosystems) using Capsure HS caps (Arcturus). Cells were either visualized by brightfield 

microscopy (UVABC1, UVABC2, and UVABC4) or with a dual FITC/TRITC filter (UVABC3, 

UVABC5). The smallest spot size and typical instrument settings (~50 mW power and ~2 msec 

duration) yielded ~25 μm spot diameters capturing 1–3 breast carcinoma cells per laser shot. 

 For each biopsy, adjacent clusters of 10 cells were captured as 10-cell samples 

throughout multiple cryosections to access different regions of the tumor. In addition, a matched 

number of cells was captured nearby the 10-cell samples on the same LCM cap, extracted as a 

pool, and diluted into 10-cell equivalents that serve as measurement controls (pool-and-split 

controls). For each tumor, 10cRNA-seq datasets include 10-cell samples and matched pool-

and-split controls captured across multiple days.  

3.5.3 RNA extraction and library preparation  
 RNA extraction and amplification of microdissected samples was performed as 

described previously (180). Briefly, RNA was eluted from the LCM caps by digesting with 
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proteinase K, and oligo-dT primed cDNA was synthesized. Residual RNA was degraded by 

RNAse H (NEB) digestion, and cDNA was poly(A) tailed with terminal transferase (Roche). 

Poly(A)-cDNA was amplified using an AL1 primer 

(ATTGGATCCAGGCCGCTCTGGACAAAATATGAATTCTTTTTTTTTTTTTTTTTTTTTTTT) and 

a blend of Taq polymerase (NEB) and Phusion (NEB) for 30 cycles.  

 Poly (A) PCR-amplified samples were first assessed by quantitative PCR for exogenous 

ERCC spike in standards and endogenous genes (GAPDH and RPL8 as loading controls and 

the epithelial marker KRT8) as previously described (180). New primers for this study were 

KRT8 (Fwd: GCCGTGGTTGTGAAGAAGAT, Rev: CCCCAGGTAGTAAACTCCCC) and RPL8 

(Fwd: CCCAGCTCAACATTGGCAAT, Rev: ACGGGTCTTCTTGGTCTCAG). Samples were 

retained if the geometric mean of quantification cycles for the GAPDH–RPL8 loading controls 

was within 3x the interquartile range of the median calculated across all 10-cell samples of the 

biopsy. Samples beyond that range were excluded because of over- or under-capture during 

LCM. For samples with increased immune infiltration, we additionally excluded samples with a 

detectable quantification cycle for the T cell marker CD3D (Fwd: 

TGCTTTGCTGGACATGAGACT, Rev: CAGGTTCACTTGTTCCGAGC).  

 Libraries for sequencing were re-amplified, purified, and tagmented as described 

previously (180). Briefly, each poly(A) PCR cDNA sample was re-amplified for a number of 

cycles where the amplification remained in the exponential phase (typically 10 to 20). Re-

amplified cDNA was then twice purified with Ampure Agencourt XP SPRI beads. After bead 

purification, samples were quantified on a CFX96 real-time PCR instrument (Bio-Rad) using a 

Qubit BR Assay Kit (Thermo Fisher). Samples were diluted to 0.2 ng/μl and tagmented with the 

Nextera XT DNA Library Preparation Kit (Illumina).  

3.5.4 RNA sequencing  
 Libraries from 10-cell samples were multiplexed at an equimolar ratio, and 1.3 pM of the 

multiplexed pool was sequenced on a NextSeq 500 instrument with NextSeq 500/550 Mid/High 
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Output v1/v2/v2.5 kits (Illumina) to obtain 75-bp paired-end reads. From the sequencing reads, 

adapters were trimmed using fastq-mcf in the EAutils package (version ea-utils.1.1.2-779), and 

with the following options: -q 10 -t 0.01 -k 0 (quality threshold 10, 0.01% occurrence frequency, 

no nucleotide skew causing cycle removal). Quality checks were performed using FastQC 

(version 0.11.8) and MultiQC (version 1.7). Data were aligned to the human transcriptome 

(GRCh38.84) along with reference sequences for ERCC spike-ins using RSEM (version 1.3.0) 

and Bowtie 2 (version 2.3.4.3). RSEM options for the 10cRNA-seq data also included the 

following: --single-cell-prior --paired-end. RSEM read counts were converted to transcripts per 

million (TPM) by dividing each value by the total read count for each sample and multiplying by 

106. Mitochondrial genes and ERCC spike-ins were not counted towards the total read count 

during TPM normalization.  

3.5.5 Molecular subtype assignments  
 Microarray-based PAM50 centroids and associated code were obtained from the UNC 

Microarray Database (https://genome.unc.edu/pubsup/breastGEO/PAM50.zip). To adapt the 

signature for RNA-seq data, RSEM aligned TPM data for TCGA breast tumors was obtained 

from the UCSC genome browser (268). Using a balanced number of estrogen receptor (ER)- 

negative and ER-positive tumors, median RNA-seq values for PAM50 genes were calculated 

and subtracted from the entire cohort for standardization. Standardized values were used to 

predict PAM50 subtypes by using downloaded centroids and code from the UNC Microarray 

Database (12). Successful model training was visualized by a principal component plot showing 

both training (microarray) and test (TCGA RNA-seq) data clustering by molecular subtype. The 

same median correction method was attempted for 10cRNA-seq data from UVABC tumors, but 

model calibration was unsuccessful due to a lack of ER-negative samples and some large 

differences in overall abundance of PAM50 genes between bulk and 10-cell data. As a 

substitute, 10cRNA-seq samples were scored for transcriptional modules associated with ESR1 

(464 genes), ERBB2 (27 genes), and AURKA (229 genes) using the “subtype.cluster” function 
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within the package “genefu” (version 2.16.0) in R. On the basis of these module scores, 

samples were subtyped as Luminal A (ESR1+, ERBB2–, AURKA–), Luminal B (ESR1+, 

ERBB2–, AURKA+), HER2 (ERBB2+), and Basal (ESR1–, ERBB2–).  

3.5.6 UMAP projections  
 All UMAP projections were generated using the R package “umapr” (version 0.0.0.9001) 

with the following parameters: neighbors = 4, distance metric = "correlation", minimum distance 

= 0. For UVABC embedding, RSEM counts for UVABC tumors were converted to TPM values 

and projected onto a UMAP using all endogenous transcripts. The same UMAP projection was 

re-colored by subtype classifications and batch number. Batch effects were excluded by 

visualizing TPM estimates of exogenous ERCC spike-in expression for all UVABC tumors on a 

separate UMAP. scRNA-seq data of breast tumors (117) were obtained as RSEM-aligned TPM 

values from the Gene Expression Omnibus (GSE75688). Epithelial carcinoma cells were 

separated from infiltrating cell types in the scRNA-seq data by selecting cells that expressed 

KRT8 and EPCAM at TPM > 1. 10cRNA-seq UVABC samples and filtered scRNA-seq data (78 

cells) were merged by transcript and projected on the same UMAP.  

 To account for tumor-specific differences in overall transcript abundance, we centered 

the expression of every transcript by the 25th quartile of its expression in 10-cell samples from 

each tumor. Quartile-centered samples for each tumor were then merged by transcript and 

projected onto a UMAP. From the merged quartile-centered data, expression of 710 RHEGs 

was extracted and projected onto a separate UMAP.  

3.5.7 Overdispersion-based stochastic profiling  
 10cRNA-seq analysis consisted of an identical algorithm applied separately to 28 10-cell 

samples and 20 pool-and-split controls from each UVABC tumor. RSEM values were rounded to 

integer counts, and transcripts with zero counts throughout were removed. Abundance- 

dependent expected expression and error models were generated separately for 10-cell 

samples and pool-and-split controls using the “knn.error.models” function in the package “scde” 
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(version 1.99.4) with k nearest neighbors set to 1⁄4 of the sample size for both sets. Only 

transcripts that had a minimum transcript count of 5 (min.count.threshold) in at least 5 samples 

(min.non.failed) were considered for model generation. From the abundance-adjusted error 

models, adjusted-variance estimates of overdispersion were calculated using the 

“pagoda.varnorm” function of the same package using the generated error models as input. The 

variance was further adjusted to account for read-depth using the “pagoda.subtract.aspect” 

function. Transcripts with adjusted variances in 10-cell samples that exceeded the 95th 

percentile of adjusted variances in pool-and-split controls were considered candidate 

heterogeneously expressed transcripts. Finally, transcripts with adjusted variances in the top 5th 

percentile of pool-and-split controls reflecting high measurement variability were filtered out of 

candidate lists. Overdispersion-based stochastic profiling was applied identically to each of the 

five UVABC cases to obtain candidate gene lists.  

3.5.8 Cohort subsampling for RHEG estimation  
 The five UVABC tumors were exhaustively downsampled as groups of n = 1 (five total 

possibilities), 2 (10 total), 3 (10 total), 4 (five total), or 5 (one total) and intersected with the 

operational RHEG definition of transcript heterogeneities that recur in ≥50% of the cases 

considered: one for n = 1 or 2, two for n = 3 or 4,and three for n = 5.  

3.5.9 CNV inference  
 To predict CNVs, we used InferCNV, which corrects the input expression data (here, 

10cRNA-seq) for average gene expression based on normal reference cells and applies a 

moving average with a sliding window of 101 genes within each chromosome. Smoothed 

expression values are once again corrected against the normal reference and estimated copy 

number alterations are reported. Normal breast tissue gene-expression data was obtained from 

GTEx (300) as a reference dataset for copy-number variation. The reference GTEx data, 

UVABC 10cRNA-seq data, and a reference genome position file (GRCh38.86) were input to the 

“CreateInfercnvObject” function in the package “InferCNV” (version 1.0.3) in R (301). The 
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InferCNV object was then analyzed with the “infercnv::run” function with dynamic threshold 

denoising to infer copy-number variations as previously described (79).  

3.5.10 Periodicity of cell-cycle RHEGs vs. non-RHEGs  
 We obtained 361 oscillating transcripts from Cyclebase 3.0 (273), reconciled aliases with 

official gene names, and intersected with the RHEGs from 10cRNA-seq, obtaining 24 shared 

transcripts. Next, using microarray data from synchronized HeLa cells (77), we identified 

probesets for 21 of the 24 shared transcripts along with those of the top 10 cycling transcripts 

according to Cyclebase 3.0 (273). The centered probeset data and HeLa pseudotime estimates 

are available through Cyclebase 3.0 for three complete cell cycles, but only the first two cycles 

show strong synchronization (273). We calculated the time interval above the mean value and 

compared it as a ratio to each of the adjacent time intervals below the mean value. For the ratio, 

the larger pseudotime interval (above or below the mean) was placed in the numerator. We 

calculated the skewness of the ratio distributions (indicating time-interval asymmetry above- vs.-

below the mean) for the 21 RHEGs with identifiable probesets vs. the top 10 cycling transcripts 

and estimated uncertainty by bootstrapping.  

3.5.11 Monte Carlo simulations of three-state stochastic profiling  
 Monte Carlo simulations of stochastic profiling under the assumption of two regulatory 

states were performed in MATLAB as described with available software (157). The two-state 

model assumes a binomial distribution for the cellular dichotomy and log-normal distribution of 

measured transcripts. To build a three-state model reflecting cell cycle-regulated variation, we 

used a multinomial distribution to reflect cell-cycle fractions, two lognormal regulatory states for 

G1 and G2/M phases, and a uniform “S-phase” interval between the two other regulatory states. 

Two- or three-state distributions were compared against a null distribution of lognormal variation 

using the Kolmogorov-Smirnov test. The simulations for a parameter set were run 50 times to 

measure the median p values and the associated nonparametric confidence intervals. 
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Stochastic sampling was deemed effective when the median p value for F ≠ 0 (multiple states) 

was less than 0.05 and the median p value for F = 0 (one state) was greater than 0.05.  

3.5.12 Gene signature overlaps with RHEGs  
 All overlaps were viewed using the “venn” function in the R package gplots (version 

3.0.1.1), and intersections were obtained using the “intersect” function. Significance of overlap 

was calculated using the hypergeometric test in R through the “phyper” function and a total 

gene count of 20,000. For assessing detachment-induced artefacts in the RHEG gene set, we 

obtained a murine detachment-induced gene signature (143) and converted mouse genes to 

human orthologs with the Ensembl biomart in R. Any remaining mouse gene names were 

capitalized in accordance with human gene symbol conventions. The human ortholog mapping 

was verified against the human transcriptome reference gene list used for 10cRNA-seq data. 

Breast driver genes were obtained from a larger gene list of cancer drivers (260) filtered for 

tissue of origin. We similarly assessed overlap with transcripts altered by CTCF knockout in 

luminal breast cancer cells (276), GATA3 target genes (277), EMT signature gene sets 

(261,280), and an aggregated pan-cancer driver gene set (260,281). For the last comparison, 

nine RHEGs were considered proximal to driver genes (Table 3.3) and treated as equivalent 

between the two sets. All mismatched gene aliases were corrected before overlap testing.  

3.5.13 Statistics  
 Sample sizes for stochastic profiling were determined by Monte Carlo simulation (157). 

Differences in genes detected per sample between 10cRNA-seq and scRNA-seq were 

assessed by Kolmogorov-Smirnov test using the “ks.test” function in R. Significance of overlaps 

between candidate genes identified in different UVABC tumors were assessed by Monte Carlo 

simulations that drew the total number transcripts per tumor randomly from a common pool of 

14,824 genes (total transcripts eligible for overdispersion analysis in all tumors). Observed 

overlaps were compared with 1000 Monte Carlo simulations to estimate a p value, which was 

adjusted for multiple comparisons by using the Šidák correction. All overlaps between the 
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RHEG set and other gene sets were assessed for significance by hypergeometric test using the 

“phyper” function in R and a background of 20,000 genes. Kolmogorov-Smirnov tests for Monte 

Carlo simulations for stochastic profiling were assessed using the “kstest” function in MATLAB. 

Hierarchical clustering was performed using “pheatmap” in R using Euclidean distance and 

“ward.D2” linkage.  

3.5.14 Data availability  
 10cRNA-seq data from this study is available through the NCBI Gene Expression 

Omnibus (GSE147356, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147356 

Reviewer token: wzcfouoijfodzij).  
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4 Fragmentation of Small-cell Lung Cancer Regulatory 
States in Heterotypic Microenvironments  
 

4.1 Foreword 

 Small-cell lung cancers (SCLC) derive from pulmonary neuroendocrine cells, which have 

stem-like properties to reprogram into other cell types upon lung injury. SCLC cells display 

phenotypic plasticity, which can be difficult to uncouple from heritable changes that evolve in 

primary tumors or select in metastases to distant organs. Conventional profiling approaches are 

problematic for SCLC if the required sample dissociation activates injury-like signaling and 

reprogramming.  

 In the previous chapter, we defined cell-state heterogeneities through 10cRNA-seq 

coupled with stochastic-profiling fluctuation analysis. In this chapter, we applied these 

approaches to a SCLC mouse model initiated by neuroendocrine deletion of tumor suppressor 

genes p53 and Rb. To dissect microenvironmental influences, we compared SCLC cells in 

spheroid cultures and in murine liver colonies seeded intravenously. Fluctuating transcripts in 

vitro were partly shared with other epithelial-spheroid models, and candidate heterogeneities 

increased considerably when cells were delivered to the liver. Liver colonization of mice drove 

the fractional appearance of alveolar type II-like markers and poised cells for paracrine 

stimulation from immune cells and hepatocytes. Candidate heterogeneities recurrent in the liver 

also stratified primary human tumors into discrete groups not readily explained by molecular 

subtype. We conclude that heterotypic interactions in the liver and lung are an accelerant for 

intratumor heterogeneity in small-cell lung cancer.  

 The work presented in this chapter includes significant experimental contributions from 

Dylan Schaff, an undergraduate student in the Janes Lab that I mentored. A manuscript of this 

work with Mr. Schaff and I as co-first authors is under review (270). 



 124 

4.2 Introduction 

 The categories, origins, and organization of tumor cell-to-cell heterogeneity are open 

questions of fundamental importance to cancer biology (124). Within normal tissues, single cells 

differ by lineage type and regulatory state (233). These distinctions blur, however, when cells 

lose their proper context because of tissue damage (170,302), transformation (303–305), or 

metastatic colonization (98,306). The details of such adaptive heterogeneity are expected to 

depend heavily on the originating cell type, the state of the cell when perturbed, and the local 

microenvironment where the cell resides.  

 Within the lung, the pulmonary neuroendocrine cell (PNEC) is a rare-but-important cell 

type that acts as an airway sensor for damaging stimuli (307). PNECs self-organize into 20–30- 

cell clusters at airway branch points through dynamic rearrangement of cell-cell contacts and 

reversible state changes suggesting epithelial-to-mesenchymal transition (EMT) (308). The 

latest evidence supports that certain PNECs have a reservoir of plasticity to convert into other 

lung cell types during tissue damage (170). A state of chronic wounding characterizes many 

tumors– metastases (309), and PNECs are the main cell type of origin for small-cell lung cancer 

(SCLC) (167–169), a deadly form of lung carcinoma.  

 Regulatory mechanisms of SCLC plasticity are beginning to be dissected through 

systems-biology approaches (177,178) and genetically-engineered mouse models (GEMMs) 

(173). Human SCLC requires loss of RB1 and TP53 (6,310)—two tumor suppressors that also 

developmentally restrict pluripotency (311,312). GEMMs with Rb1–Trp53 deleted by 

intratracheal delivery of Cre-expressing adenovirus (AdCMV-Cre) give rise to murine SCLCs 

similar to the classic ASCL1-high subtype of human SCLC (175,313). Deletion of additional 

tumor suppressors can synergize with Rb1–Trp53 loss (314–316). For example, progression is 

accelerated by compound deletion of the Rb-family member p130 (223). These GEMMs 
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(167,168) and others (169) were instrumental in defining PNECs as the cell type of origin for 

SCLC.  

 Interestingly, phenotypes of the resulting murine tumors depend on the maturation state 

of PNECs targeted for Rb1–Trp53 deletion. Restricting adenoviral Cre to PNECs positive for 

Calca causes far fewer SCLCs to develop compared to when Cre expression is driven by a 

strong cytomegalovirus (CMV) promoter (317). Both tumor models are metastatic, but only the 

CMV-driven GEMM upregulates the transcription factor Nfib, which promotes widespread 

chromatin opening (318) and cell-lineage changes in both primary and metastatic sites (317). 

Many murine SCLC-derived cell lines are admixtures of cells with neuroendocrine and “non-NE” 

mesenchymal features (319). Other non-NE SCLC subpopulations are maintained by Notch 

signaling (173), which may also become activated in normal PNECs during injury-induced 

reprogramming (170). There might be other triggers of cell-fate heterogeneity to uncover if 

SCLC regulatory states could be examined at single-cell resolution without injury-like 

dissociation of cellular context.  

 In this work, we examined the in situ transcriptomic regulatory heterogeneities of an 

established murine SCLC culture derived from an Rb1F/F; Trp53F/F animal administered AdCMV- 

Cre [KP1 cells (179); Figure 4.2A]. Using GFP-labeled cells, fluorescence-guided laser capture 

microdissection (LCM), and 10-cell RNA sequencing (10cRNA-seq) (180), we considered three 

biological contexts: 1) tumor spheroids cultured in vitro and liver colonies in mice 2) lacking or 3) 

retaining an intact immune system (Figure 4.2B). KP1 tumorspheres exhibited cell-to-cell 

regulatory heterogeneities in cell biology, aging, and metabolism that were shared with spheroid 

cultures of breast epithelia (129,180). Liver colonization gave rise to pronounced cell-state 

changes suggesting that paracrine signaling from the lung was partially resurrected in the liver. 

Liver colonies in immunocompetent animals showed an exacerbated breadth of cell fates, with 

observed alveolar type II (ATII) markers intermingling with many non-NE stromal markers 

documented in SCLCs (319) and PNECs (170). Intersecting the three datasets yielded core 
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recurrent heterogeneously expressed genes (RHEGs) and an in vivo RHEG set that was shared 

by all liver colonies but absent in tumorspheres. Core RHEGs from KP1 cells were broadly 

shared in bulk human SCLC transcriptomes, yet covariations among cases were not 

discriminating. By contrast, in vivo RHEGs showed weaker overall correlations but clustered 

human data into discrete groups that were separate from any 10-cell KP1 transcriptomes. The 

in vivo RHEGs defined here may reflect a set of injury-like SCLC adaptations that are possible 

during tumor growth and metastasis at different organ sites.  

 

4.3 Results 

4.3.1 Study design and rationale  
 

 We sought to define how SCLC regulatory heterogeneity was compiled in different 

microenvironments. To avoid confounding variation in GEMM tumors that arise 

autochthonously, we used KP1 cells, a polyclonal Trp53∆/∆Rb1∆/∆ line derived from a tumor 

initiated by intratracheal administration of AdCMV-Cre. We sequenced the bulk transcriptome of 

KP1 cells and found that they were very similar to three other Trp53∆/∆Rb1∆/∆ lines prepared in 

similar genetic backgrounds (GSE147358). By contrast, autochthonous SCLC tumors from 

related GEMMs (317) were different and also more variable among primary tumors, as expected 

(Figure 4.1). Before starting, we genetically labeled KP1 cells with EGFP for unambiguous 

isolation of cells administered in vivo (Figure 4.2A).  

 SCLCs frequently metastasize to the liver (320). We mimicked the terminal steps of 

metastatic colonization and outgrowth by tail-vein injection of EGFP-labeled KP1 cells, which 

readily establish lesions in the livers of athymic nude mice (Figure 4.2B). Although KP1 cells 

have a mixed genetic background, we discovered that subcutaneous xenografts and liver 

colonies were 100% successful in first-generation crosses (F1) of C57/B6 and 129S inbred 
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strains. Inoculating C57/B6 x 129S F1 hybrid animals thus afforded a third setting in which liver 

colonization and expansion could occur in the presence of a cell-mediated immune response.  

 

 

 

 

 

 

 

 

Figure 4.1 KP1 cells are representative of SCLC lines derived from Rb1F/FTrp53F/F mice 
administered CMV-driven adenoviral Cre (AdCMV-Cre).  
Autochthonous AdCMV-Cre-initiated and AdCalca-Cre-initiated tumors from 
Rb1F/FTrp53F/FRbl2F/F mice (317) are shown for comparison. Genotypes for the KP SCLC lines 
are: KP1, Rb1∆/∆Trp53∆/∆ (32); KP2, Rb1∆/∆Trp53∆/∆Ptch1+/Lacz (179); KP3, Rb1∆/∆Trp53∆/∆Axin2+/Lacz 
(321); KP5, Rb1∆/∆Trp53∆/∆TgBAT-lacZ (322).  
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Figure 4.2 Stochastic profiling of transcriptional regulatory heterogeneity in three 
isogenic SCLC contexts.  
(A) Derivation of KP1 small-cell lung cancer (SCLC) cells by intratracheal administration of 
adenovirus delivering cytomegalovirus promoter-driven Cre recombinase (AdCMV-Cre) to 
Rb1F/FTrp53F/F animals. The KP1 SCLC line was engineered to express ectopic enhanced green 
fluorescent protein (EGFP) for fluorescence-guided microdissection.  
(B) The KP1-GFP derivative line was 1) cultured as three-dimensional spheroids in vitro or 
colonized to the liver of 2) athymic nude mice or 3) C57/B6 x 129S F1 hybrid mice harboring an 
intact immune system. GFP-positive cells from multiple spheroids and liver colonies were 
randomly captured and measured by 10-cell RNA sequencing (10cRNA-seq) for stochastic 
profiling.  
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4.3.2 KP1 tumorspheres share adaptive transcriptional regulatory heterogeneities with 
breast- epithelial spheroids  
 

 Cultured KP1 cells grow as spheroidal aggregates that can be readily dissociated 

enzymatically, but juxtacrine cell-cell interactions may contribute to the overall heterogeneity of 

the population (173). Therefore, we processed KP1 spheroids exactly as if they were tissue, 

cryoembedding within seconds and sectioning–staining as described (180). Cells were 

microdissected from the outermost periphery of each spheroid to ensure that all cells profiled 

had equal availability of nutrients. We gathered 10-cell pools across multiple spheroids to 

average out subclonal differences within the line and highlight pervasive heterogeneities that 

characterize spheroid culture. Using 10cRNA-seq (180), we measured the transcriptomes of 28 

separate 10-cell groups of KP1 cells along with 20 pool-and-split controls as 10-cell equivalents 

obtained by LCM. The data were analyzed for candidate regulatory heterogeneities by 

stochastic profiling (129) implemented with an overdispersion metric optimized for RNA-seq as 

described in Chapter 3 (153,154,253). The analysis yielded 405 candidate genes that were 

much more variable in the 10-cell samples than expected given their average abundance and 

technical reproducibility (Figure 4.3A).  

 Samples were collected across multiple days to assess whether batch effects dominated 

the fluctuation analysis. We clustered gene candidates hierarchically and asked whether the 

fluctuation signatures clustered according to when the 10-cell samples were collected (Figure 

4.3B). Each grouping was comprised of 10-cell profiles from all batches, supporting that the 

analytical strategy was robust amidst day-to-day variations in LCM, RNA extraction, and sample 

amplification. Standard gene set enrichment analysis indicated hallmarks for cell-cycle 

transitions, Myc–mTORC1 signaling, and metabolism, consistent with the variable growth of 

spheres in the culture.  

 Previously, our group used 10cRNA-seq to revisit an earlier analysis of transcriptional 

regulatory heterogeneity in 3D cultured MCF10A-5E breast-epithelial spheroids (129,180). With 
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an analytical pipeline for stochastic profiling by 10cRNA-seq now in hand (Chapter 3), we 

quantified the gene-by-gene overdispersion and identified 1129 candidate heterogeneities 

(Figure 4.4A and B). The list included multiple transcripts that were independently validated to 

be heterogeneous by RNA fluorescence in situ hybridization (129,158), including one transcript 

(SOX4) that we validated here (Figure 4.4B and C). The analysis provided a second context for 

regulatory heterogeneity that exists during spheroidal growth.  

 Murine SCLC cells and human breast epithelial cells are undoubtedly very different, but 

normal PNECs derive from an epithelial lineage (308) and often adopt a columnar morphology 

similar to that seen in the breast. The KP1 study detected significantly fewer genes as regulated 

heterogeneously compared to MCF10A-5E (p < 10-15 by binomial test), corroborating the 

differences in spheroid culture format. MCF10A-5E cells were 3D cultured in reconstituted 

basement membrane, which traps secreted factors locally around the spheroids (202), whereas 

KP1 spheroids develop freely in suspension. Despite differences in the overall number of 

candidates, we found significant overlap in shared genes after mapping mouse and human 

orthologs (see Materials and Methods; Figure 4.3C). Intersecting the two gene groups only 

marginally enriched for cell-cycling transcripts (273) (six of 57 genes, p = 0.04 by 

hypergeometric test), suggesting other biological processes in addition to proliferation. The 

intersection raised the possibility that cell growth–competition within epithelial spheroids elicits a 

set of RHEGs, which generalize beyond a specific culture format.  

 We next asked whether there might be any common heterogeneities in regulation 

between the two contexts after correcting for transcript abundance. When the standardized 

fluctuations of KP1 and MCF10A-5E spheroids were coclustered by gene ortholog, there were 

multiple close pairings consistent with shared biology or biological category (Figure 4.3D). For 

instance, the importin KPNA2 covaried with its exportin, CSE1L (Figure 4.3E) (323). We also 

observed cross-species correlations in genes functioning at the interface of the plasma 

membrane and endoplasmic reticulum: ESYT1 and SPTAN1 (Figure 4.3F) (324). Although near 
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the detection limit for both cell types, we noted cofluctuations in SIRT3 and CTC1, two factors 

implicated in cellular longevity (Figure 4.3G) (325,326). Together, these gene pairings provide a 

basis for hypotheses about single-cell regulatory pathways that become co-activated when 

epithelia proliferate outside of their normal polarized context.  

 Elsewhere among the spheroid RHEGs, we found instances of mutually exclusive 

transcript heterogeneities, such as with HUWE1 and TRIP12 (Figure 4.3H). These E3 ubiquitin 

ligases have been reported to operate independently in triggering ubiquitin fusion degradation 

(327), an unusual proteasomal pathway not studied in cancer. Separately, we recognized a 

preponderance of metabolic enzymes related to lipids and clustered the fatty acid elongase 

ELOVL1, the β-oxidation dehydrogenase ACADVL, and the α-oxidation hydroxylase PHYH 

(Figure 4.3I). Even with 10-cell pooling, we rarely observed these enzymes abundantly 

expressed in the same sample, suggesting independent states of lipid synthesis and 

degradation that could be mined deeply in the future for covariates. Expanding candidate lists 

around positive and negative covariates has proved powerful in mechanistic follow-on work 

(202,328).  
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Figure 4.3 Shared transcriptional regulatory heterogeneities between KP1 spheroids and 
MCF10A-5E breast-epithelial spheroids.  
(A) Overdispersion plot showing 10-cell sample distribution for KP1 spheroids (green) overlaid on 
pool-and-split controls of 10-cell equivalents (dashed).  
(B)Clustergram of the 405 transcripts identified as candidate heterogeneities within KP1 
spheroids. Sample acquisition days are annotated. Data were log transformed before 
standardization.  
(C) Venn diagram of orthologous candidates between KP1 spheroids and MCF10A-5E spheroids 
analyzed in Figure 4.4. Significance of the intersection was assessed by hypergeometric test with 
12,612 total detectable transcripts in KP1 cells and 12,927 total detectable transcripts in MCF10A-
5E cells.  
(D) Clustergram of the spheroid RHEGs annotated by human ortholog.  
(E–H) Pairwise Pearson correlations between the indicated gene pairs in C among samples 
where both genes were detected (filled). nd, not detected.  
(I) Clustergram of three transcripts encoding enzymes for lipid metabolism.  
In D–I, 10-cell samples of KP1 cells (green) and MCF10A-5E cells (purple) were standardized 
separately by z-score before clustering or correlation.  
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Figure 4.4 Stochastic profiling of transcriptional regulatory heterogeneities in MCF10A-
5E spheroids by 10cRNA-seq.  
(A) Overdispersion plot showing 10-cell sample distribution for MCF10A-5E spheroids (purple) 
overlaid on pool-and-split controls of 10-cell equivalents of KP1 spheroids (dashed).  
(B) Clustergram of the 1129 transcripts identified as candidate heterogeneities within MCF10A-
5E spheroids. Data were log transformed before standardization. Indicated transcripts were 
independently validated as heterogeneous by RNA FISH (129,158).  
(C) RNA FISH validation of SOX4, a gene candidate identified by 10cRNA-seq stochastic 
profiling. Pseudocolor image for SOX4 is shown above a loading control hybridization comprised 
of GAPDH, HINT1, and PRDX6 (201). Scale bar is 20 μm.  
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4.3.3 SCLC reprogramming and paracrine signaling are initiated by colonization of KP1 
cells to the liver  
 

 To begin examining how heterotypic interactions augment SCLC regulatory 

heterogeneity, we dissociated KP1 spheroids and colonized the liver of athymic nude mice 

(Figure 4.2B). Upon entering the liver circulation, cancer cells extravasate from sinusoids and 

proliferate amidst hepatocytes. We ensured that SCLC-hepatocyte communication was 

reflected in the 10cRNA-seq data by sampling the margins of separate GFP+ KP1 liver 

colonies, analogous to the spheroid margins sampled in vitro (Figure 4.5A). Focusing on the 

KP1–hepatocyte interface implied that some level of cell contamination would be introduced by 

collateral pickup during the LCM step. We rigorously controlled for hepatocyte contamination 

through a two-step negative- selection procedure. Samples were excluded if hepatocyte 

markers were abundant by qPCR, and transcripts were removed post-analysis if they covaried 

with the residual hepatocyte content in the sequenced sample (Figure 4.5B). Additionally, we 

oversampled the in vivo samples, collecting 33 10-cell pools that were subsampled 100 times as 

random groups of 28 for the dispersion analysis (see Materials and Methods; Figure 4.5B and 

Figure 4.6). The pipeline collectively identified 898 robust candidates fluctuating independently 

of residual liver markers and appearing in ≥75% of subsampling runs (Figure 4.5C). 

 Enriched gene sets were virtually identical to spheroid cultures, except for the addition of 

STAT5 and interferon γ hallmarks likely resulting from innate immune responses. Beyond the 

significant increase in candidates (p < 10-15 by binomial test), we noted that sample-to-sample 

fluctuations were qualitatively more dramatic on the margin of liver colonies when compared to 

KP1 spheroids (Figure 4.3B and Figure 4.5C). Multiple, smaller subsets of candidates were 

especially interesting. For example, among the robust candidates were the alveolar type II (ATII) 

markers Cd74 (174) and Lyz2 (329), as well as the Cd74 ligand, Mif. Surprisingly, when the 

sample-by-sample fluctuations of these three genes were clustered, we did not detect any 

significant co-occurrence that would have suggested full transdifferentiation to an ATII 
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phenotype (see Materials and Methods; Figure 4.5D). The results agree with scRNA-seq data 

obtained in deprogrammed PNECs (170), where Cd74 and Lyz2 markers are anti-correlated 

among cells with a non-NE phenotype (Figure 4.7). The patterns detected by stochastic 

profiling suggest that a subset of KP1 cells reprogram into partial ATII-like states, only one of 

which senses Mif produced locally (Figure 4.5E).  

 Other groups of transcripts required inputs from non-KP1-derived cell types in the liver to 

rationalize. Two robust candidates were the NF-κB subunit Rela and an NF-κB target gene, 

Sod2 (330), which co-occurred strongly (p < 0.1) when considering that NF-κB is mostly 

regulated posttranslationally (Figure 4.5F). Within the candidate heterogeneities, we also 

identified the NF-κB-inducing receptor Ltbr (331), which varied separately from Rela–Sod2. 

However, the Ltbr ligand (Ltb) was effectively absent in KP1 cells (less than 1.5 TPM in bulk 

samples and pool-and-split controls from liver colonies). We searched Tabula Muris (332) and 

found that Ltb is abundantly expressed in hepatic natural killer (NK) cells, the most-prevalent 

lymphocyte population in the liver (333). Given that NK cell activity is retained or enhanced in 

athymic nude mice (334), their paracrine communication with KP1 cells is a plausible 

mechanism for heterogeneous NF-κB pathway activation in the liver.  

 We also found evidence for variable regulation in signal transducers of interleukin 1- 

family cytokines. The inhibitory adaptor Tollip (335), the mitogen-activated protein kinase 

(MAPK) kinase kinase Map3k7 and its activator Tab1 (336), the downstream stress-activated 

MAPKs Mapk8 (or Jnk1) and Mapk14 (or p38α), and the MAPK phosphatase Dusp8 were all 

robust transcript heterogeneities in KP1 liver colonies (Figure 4.5C). Clustering the 10-cell 

fluctuations of these genes indicated that elevated Mapk14 levels co-occurred with reduced 

abundance of Mapk8 and Dusp8 (1 – p < 0.1; Figure 4.5G). Signaling along these parallel 

MAPK effector pathways may be weighted differently among SCLC cells in the liver colony. 

Although no relevant receptors were detectably overdispersed in KP1 cells, we consistently 

detected Il1rl1, which is the receptor for Il33 of the interleukin 1 family. PNECs normally receive 
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Il33 stimulation as an alarmin from ATII cells during lung injury or infection (337), but Il33 is also 

highly expressed in hepatocytes and liver sinusoids (332,338). The widespread single-cell 

adaptations downstream of Il33 support the hypothesis that SCLC cells redeploy native 

damage-response pathways in the liver microenvironment.  
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Figure 4.5 KP1 liver colonization in athymic nude mice causes partial reprogramming and 
engages heterotypic paracrine-signaling networks.  
(A) Phase-contrast image of cultured KP1 spheroids (upper) compared to a brightfield 
hematoxylin-eosin stain of a KP1 liver colony in an athymic nude mouse (lower). Scale bar is 80 
μm.  
(B) Flowchart illustrating the experimental and analytical strategy controlling for liver 
contamination in 10cRNA-seq data and in candidate heterogeneities identified by stochastic 
profiling. Subsampling results from the 100 dispersion analyses of 28 10-cell samples are shown 
in Figure 4.6.  
(C) Relative abundance of liver markers (upper) and log-standardized 10-cell sampling 
fluctuations of robust candidate heterogeneities identified by stochastic profiling (lower).  
(D) Log-standardized sampling fluctuations of the alveolar type II (ATII) markers Cd74 and Lyz2 
together with the Cd74 ligand, Mif.  
(E) Schematic illustrating the hypothesized relationship between neuroendocrine (NE)- and ATII-
like states and Mif signaling.  
(F) Log-standardized sampling fluctuations of the Rela transcription factor, Sod2 (a Rela target 
gene), and Ltbr (a Rela-inducing receptor). The ligand for Ltbr is produced by liver-resident NK 
cells (332).  
(G) Log-standardized sampling fluctuations of the indicated signaling transcripts and their 
pathway relationships downstream of the Il33 receptor, Il1rl1, which is present in KP1 cells but 
not heterogeneously regulated. Il33 is produced by hepatocytes in the liver and ATII cells in the 
lung.  
For D, F, and G, enriched or unenriched coexpression was evaluated by hypergeometric test of 
10-cell observations above their respective logmeans. n.s., p > 0.1 and 1–p > 0.1.  
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Figure 4.6 Subsampling identifies robust transcriptional regulatory heterogeneities 
within KP1 liver colonies.  
(A) Subsampled dispersion analysis of 33 10-cell observations of KP1 cells colonized to the liver 
of athymic nude mice.  
(B) Subsampled dispersion analysis of 31 10-cell observations of KP1 cells colonized to the liver 
of immunocompetent C57/B6 x 129S F1 hybrid mice. Datasets were randomly downsampled to 
28 10-cell observations and analyzed for overdispersion as described in Chapter 3, and 
candidates appearing in >75% of subsampling runs were considered robust heterogeneities.  
 
 
 
 
 

 

 

 

 
Figure 4.7 Cd74 and Lyz2 are anti-correlated in single PNEC-derived non-NE cells.  
scRNA-seq reads of Lyz2 and Cd74 are shown for non-NE cells (170). Significance of the 
Pearson correlation (R) was tested after Fisher Z transformation (one-sided p < 0.05).  
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4.3.4 Immunocompetency exacerbates stromal non-NE phenotypes in SCLC liver 
colonies  
 

 We built upon the results in athymic nude mice by repeating the liver colonization 

experiments in C57/B6 x 129S F1 hybrid mice. Compared to KP1 colonies in athymic mice, the 

C57/B6 x 129S F1 hybrid colonies had a higher proportion of Cd3+ T cells and a reduced 

proportion of F4/80+ macrophages along the colony margin (Figure 4.8A–D), indicating 

different microenvironments. Stochastic profiling of the KP1 colony margins was performed in 

C57/B6 x 129S F1 hybrid livers exactly as for athymic nude animals (Figure 4.5B). Abundance 

of liver markers in the C57/B6 x 129S F1 hybrid samples were as low and uncorrelated as in the 

nude samples (Figure 4.9). From 31 10-cell transcriptomic profiles, we robustly identified 1025 

regulatory heterogeneities within KP1 cells colonized to an immunocompetent liver (Figure 

4.8E). 

 Gene set enrichment of the C57/B6 x 129S F1 hybrid candidates reconstituted most of 

the hallmarks identified previously along with a moderate signature for hypoxia.  In search of 

shared themes, we compared the KP1 candidate genes from the three biological contexts and 

found that all two- and three-way intersections were significant (p < 0.001 by Monte-Carlo 

simulation; Figure 4.8F). This suggested that biological meaning might be embedded in the 

heterogeneity trends between groups. In lieu of hard overdispersion thresholds (as in Figure 

4.3A), we next analyzed the adjusted variance as a continuous measure of predicted 

heterogeneity. Beginning with the 2007 transcripts predicted to be heterogeneously regulated in 

at least one context (Figure 4.8F), we searched for genes with significant overdispersion 

increases in the immunocompetent setting (see Materials and Methods). We identified 202 

transcripts meeting these criteria, which included multiple neuroendocrine markers (Rtn2, 

Pcsk1), Cd74, and a new group of stromal transcripts (Bgn, Sparc, Mgp, Cep19; Figure 4.8G) 

(170). Mesenchymal transitions of SCLC cells can be driven by activated Kras (319), and we 

noticed that the dispersion of wildtype Hras increased alongside the stromal transcripts. 
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However, when 10-cell fluctuations were clustered, we found that the co-occurrence of Cd74– 

Bgn–Sparc associated with a lack of elevated Hras abundance (Figure 4.8H), excluding a 

straightforward EMT-like state change. The stromal markers Mgp and Cep19 were also 

uncoupled from Cd74–Bgn–Sparc. We conclude that immunocompetency drives a further 

diversification of SCLC toward stromal phenotypes in the setting of liver colonization.  
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Figure 4.8 Stromal markers emerge heterogeneously when KP1 cells colonize 
immunocompetent liver.  
(A) Immunohistochemistry of athymic nude (left) and C57/B6 x 129S F1 hybrid (right) livers stained 
for the macrophage marker F4/80.  
(B) Quantification of F4/80+ cells per 10x field is shown as the median of n = 23 nude colonies 
and n = 14 C57/B6 x 129S F1 hybrid colonies.  
(C) Immunohistochemistry of athymic nude (left) and C57/B6 x 129S F1 hybrid (right) livers stained 
for the T cell marker, Cd3.  
(D) Quantification of Cd3+ cells per 10x field is shown (right) as the median of n = 24 nude colonies 
and n = 23 C57/B6 x 129S F1 hybrid colonies.  
(E) Log- standardized 10-cell sampling fluctuations of robust candidate heterogeneities identified 
by stochastic profiling.  
(F) Venn diagram comparing the heterogeneous transcripts identified in Figure 4.3B, Figure 
4.5C, and subpanel E. All two- and three-way intersections were significant (p < 0.001 by Monte-
Carlo simulation).  
(G) Regulatory heterogeneities with abrupt increases in abundance-adjusted variance in C57/B6 
x 129S F1 hybrid liver colonies. Stromal and neuroendocrine (NE) markers are highlighted.  
(H) Log-standardized sampling fluctuations for the markers highlighted in G.  
Enriched or unenriched coexpression was evaluated by hypergeometric test of 10-cell 
observations above their respective log means. For B and D, differences were assessed by rank-
sum test. Scale bar in A and C is 80 μm.  
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Figure 4.9 Liver contamination in KP1 samples from C57/B6 x 129S F1 hybrid liver 
colonies is low and uncorrelated as in athymic nude liver colonies.  
(A) Relative abundance of liver markers in 10-cell samples from nude liver colonies, reprinted 
from Figure 4.5C for comparison.  
(B) Relative abundance of liver markers in 10-cell samples from C57/B6 x 129S F1 hybrid liver 
colonies, column clustered as in Figure 4.8E.  
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4.3.5 Marker gene aberrations are partly retained in autochthonous SCLC tumors and 
metastases  
 

 The non-NE markers identified by stochastic profiling prompted a more-systematic 

evaluation of marker-gene status in 10-cell and bulk samples. For comparison, we used RNA- 

seq data from autochthonous tumors and metastases of Rb1F/FTrp53F/FRbl2F/F mice 

administered AdCMV-Cre or adenoviral Cre driven the Calca promoter (AdCalca-Cre) (317). 

Curiously, for the ATII markers Cd74 and Lyz2, the autochthonous samples indicated that 

abundance was higher in the primary tumor and reduced in the metastasis (Figure 4.10A and 

B, black squares vs. brown filled triangles). Similar results were obtained with the stromal 

markers, Bgn and Sparc, although the tumor-metastasis differences were less dramatic (Figure 

4.10C and D). These observations are reconcilable with the 10-cell data if the spheroid 

observations are not taken as a proxy for the primary tumor. Rather, in vitro cultures reflect the 

SCLC states achievable from purely homotypic cell-cell interactions. Paracrine inputs from non-

NE cells of the lung could just as feasibly drive SCLC reprogramming as non-NE cells of the 

liver. 

 Interestingly, abundance of the stromal marker Mgp was quite different between the two 

autochthonous GEMMs (Figure 4.10E). KP1 cells were isolated from an animal infected with 

AdCMV-Cre (179). The sporadic increases in Mgp abundance observed upon liver colonization 

were consistent with the other stromal markers found to be high in AdCMV-Cre tumors and 

metastases. By contrast, Mgp abundance in AdCalca-Cre-derived samples was uniformly low. 

AdCalca-Cre has been speculated to target a more-differentiated subset of PNECs compared to 

AdCMV-Cre (317). In support of this claim, we found that the KP1 gains in Mgp expression in 

vivo coincided with loss of endogenous Calca itself (Figure 4.10E and F). Mgp is an inhibitory 

morphogen for lung development (339) and its inducibility may mark the PNEC progenitor pool 

targeted by AdCMV-Cre.  
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 In addition to Calca, other neuroendocrine markers (Ascl1, Pcsk1) declined substantially 

when KP1 cells were engrafted to the liver (Figure 4.10G and H). Yet, deprogramming 

appeared incomplete, as multiple neuroendocrine markers (Uchl1, Resp18) remained largely 

unchanged and at comparable abundance to autochthonous models (Figure 4.10I and J). 

Among the markers identified by a gradient of 10-cell dispersion (Figure 4.8G), several showed 

no discernible change in median abundance (Figure 4.10K and L) and thus would be 

impossible to identify in bulk samples. One of the transcripts correlating strongly with non-NE 

markers in PNECs (Ldhb) (170) recurred as a candidate heterogeneity in all three KP1 settings 

(Figure 4.10M). Lastly, we identified a characteristic non-NE marker (Igfbp7) (319) where both 

median abundance and dispersion increased specifically in immunocompetent livers (Figure 

4.10N). Such miscoordination of markers could occur if SCLC cells fragmented their regulatory 

states upon encountering progressively more-diverse cellular microenvironments.  
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Figure 4.10 Comparison of 10cRNA-seq observations to bulk RNA-seq from primary 
SCLC tumors and metastases of SCLC GEMMs.  
(A and B) Sporadic expression of the ATII markers Cd74 (A) and Lyz2 (B) upon liver colonization 
of KP1 cells compared to SCLC GEMM tumors and metastases.  
(C–E) Abundance changes in the stromal markers Bgn (C), Sparc (D), and Mgp (E) in vivo.  
(F–J) Reduced in vivo abundance of the neuroendocrine markers Calca (F), Ascl1 (G), and Pcsk1 
(H), but not Uchl1 (I) or Resp18 (J).  
(K and L) Context-dependent dispersion changes without abundance changes for the stromal 
marker Cep19 (K) and the neuroendocrine marker Rtn2 (L).  
(M) The non-neuroendocrine marker Ldhb is a RHEG in KP1 cells.  
(N) Heterogeneous regulation of the non-neuroendocrine marker Igfbp7 in KP1 cells colonized to 
the liver of immunocompetent animals.  
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4.3.6 Mature Notch2 protein abundance is rapidly altered during KP1 cell dissociation  
 

 KP1 cells expressed multiple non-NE transcripts in the liver of C57/B6 x 129S F1 hybrid 

mice (Figure 4.8G and H), and single-cell transcriptomics has associated non-NE changes with 

activation of the Notch pathway (170,173). Unexpectedly, despite measurable expression of 

Notch2 by 10cRNA-seq (3.4 ± 9.4 TPM), we almost never detected the Notch target gene Hes1 

in vivo (0 ± 0.1 TPM). For normal PNECs, dedifferentiation to a non-NE state occurs during 

tissue damage, which may be mimicked by the cell-dissociation steps required for conventional 

single-cell expression profiling (170). Notch-pathway activation of cell lines also reportedly 

occurs during routine passaging (340), prompting us to ask whether such artifacts could arise in 

KP1 cells. Notch1 is nearly absent in the line (less than 0.5 TPM for Notch1 vs. 29 TPM for 

Notch2 in bulk; GSE147358), and reliable activation-specific antibodies for Notch2 are not 

available. Therefore, we used an antibody recognizing an intracellular epitope of full-length 

Notch2 and its processed transmembrane (NTM) subunit, which is the precursor for pathway 

activation (341). Within five minutes of KP1 dissociation using either trypsin or accutase, we 

noted considerable decreases in total Notch2 protein (full-length + NTM; Figure 4.11A–C). 

Furthermore, trypsin significantly increased the ratio of NTM-processed to full-length Notch2 (p 

< 0.01 by ANOVA; Figure 4.11D), suggesting that trypsinized cells may be more primed to 

activate Notch signaling. Our results support earlier speculation (170) that Notch activation in 

PNEC-like cells may be an artifact of the sample processing that precedes scRNA-seq but is 

avoided by 10cRNA-seq (180).  
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Figure 4.11 Cell-dissociation enzymes rapidly disrupt intracellular precursors of Notch2 
signaling in KP1 cells.  
(A and B) Immunoblots of full-length Notch2 and the processed Notch transmembrane (NTM) 
subunit in KP1 cells after treatment of 0.05% trypsin or 1x accutase for five minutes. Vinculin, 
tubulin, and GAPDH were used as loading controls.  
(C) Relative abundance of total Notch2 (full-length + NTM) for the indicated conditions. Data are 
normalized to control KP1 cells lysed without dissociation.  
(D) Ratiometric abundance of NTM / full-length (FL) Notch2 for the indicated conditions.  
For C and D, data are shown as the mean ± s.e.m. from n = 4 independent biological samples. 
Differences in means were assessed by ANOVA with Tukey HSD post-hoc test.  
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4.3.7 Human SCLCs are merged or stratified by different classes of KP1 RHEGs  
 

 We returned to two statistically significant overlaps from the three studies in KP1 cells 

(Figure 4.8F). The three-way intersection of 26 transcripts defined a core group of RHEGs, 

which we viewed as a set of cell-autonomous heterogeneities intrinsic to KP1 cells and perhaps 

SCLCs more generally. We tested this concept by identifying the human orthologs of the KP1 

core RHEG set and clustering our data alongside bulk RNA-seq profiles from 79 cases of SCLC 

in humans (342). The standardized fluctuations of the core RHEGs in human samples were 

largely indistinguishable from the KP1 observations, with most sample co-clusters containing 

mouse and human data (Figure 4.12A). Moreover, when the pairwise correlations of core 

RHEGs were organized hierarchically, it was difficult to discern any strongly linked groups of 

observations (Figure 4.12B). This would be expected if core RHEGs were broadly but 

independently “active” (induced heterogeneously). Accordingly, we found very little evidence of 

coordination outside a small row cluster of genes involved in biological processes that were 

largely unrelated—cell cycle-dependent ubiquitination (CCNF), carbonyl stress (HAGH), splicing 

(SNRNP200), calcium homeostasis (CHERP), and DNA methylation (MBD1) (Figure 4.12A). 

Although the existence of core RHEGs in mammalian SCLCs awaits direct testing in human 

samples, the analysis here provides a GEMM-informed set of targets worth examining further.  

 The second overlap of interest was the two-way intersection of 149 genes that emerged 

as candidate heterogeneities in both settings of liver colonization (Figure 4.8F). We defined 

these in vivo RHEGs as reflecting the SCLC regulatory heterogeneity triggered by heterotypic 

cell-cell interactions in the microenvironment. In contrast to core RHEGs, we expected different 

activation patterns of in vivo RHEGs in the liver versus the lung, and even among different 

SCLC subtypes or primary-tumor sites in the lung. We extracted human orthologs of the in vivo 

RHEGs and clustered the KP1 observations together with the human SCLCs (Figure 4.12C). 

There was far less intermixing between human and KP1 samples, consistent with the different 
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heterotypic interactions anticipated between primary and metastatic sites. The pairwise 

correlation structure of in vivo RHEGs was also qualitatively distinct, with multiple groups of 

covariates comprised entirely of human SCLCs (Figure 4.12D). Importantly, these clusters each 

contained mixtures of various SCLC subtypes based on the relative abundance of key 

transcription factors (175) (Figure 4.13). The KP1 observations in the liver reflect only one of 

four SCLC subtypes and do not precisely capture human variation in the lung. However, the in 

vivo RHEG set derived from those observations may stratify clinical cases by differences in 

tumor ecosystem.  
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Figure 4.12 Orthologous RHEG fluctuations in primary human SCLCs.  
(A) Core RHEGs and their orthologs intermix KP1 10-cell observations and bulk RNA-seq data 
from human cases of SCLC (342).  
(B) Pearson correlation matrix for core RHEGs clustered hierarchically. The Venn diagram 
intersection for core RHEGs is highlighted from Figure 4.8F.  
(C) In vivo RHEGs and their orthologs do not merge KP1 and human observations but identify 
subgroups of clinical SCLCs.  
(D) Pearson correlation matrix for in vivo RHEGs clustered hierarchically. Groups of covarying 
human SCLC cases are indicated in black triangles and yellow margins and numbered as in 
Figure 4.13. The Venn diagram intersection for core RHEGs is highlighted from Figure 4.8F. 
Murine data and human data were standardized separately by z-score before clustering or 
correlation.  
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Figure 4.13 In vivo RHEG clusters of human SCLC are not entirely explained by known 
SCLC subtypes.  
The SCLC-A, SCLC-N, SCLC-Y, and SCLC-P subtypes are based on the above transcription 
factor abundances (175). Cluster numbers are as in Figure 4.12D.  
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4.4 Discussion 

 PNECs are a particularly versatile cell type (170), and it is perhaps unsurprising that 

derivative SCLC cells show the deranged plasticity reported here. It is less obvious whether 

dispersed SCLC states are engaged hierarchically or chaotically—our work with a 

representative GEMM-derived SCLC line argues for the former. Cell-autonomous regulatory 

heterogeneities expand qualitatively in vivo through heterotypic cell-cell interactions absent from 

in vitro culture. The documented cell-state changes upon liver colonization could simply reflect 

the injury-like state of tumors and metastases (309). Alternatively, the reprogramming events 

could provide trophic support to the cellular ecosystem (173,305). The candidate 

heterogeneities identified by stochastic profiling and 10cRNA-seq create a resource to guide 

future functional studies that perturb specific emergent heterogeneities in vivo.  

 The KP1 results with Notch2 reinforce that SCLC cells are very sensitive to juxtacrine 

inputs (173). SCLC tumorsphere growth in vitro elicits its own cell-to-cell heterogeneities, which 

have some commonalities with spheroids of MCF10A-5E basal-like breast cells, a distant 

epithelial cell type. Intrinsic to spheroid culture are subclonal reorganization and competition, 

two processes important for primary tumor initiation and the end stages of metastatic 

colonization. Cell crowding and sequestration alter lipid metabolism (343,344), which could 

explain the catabolic and anabolic lipid enzymes identified within the spheroid RHEG set. The 

notion of spheroid RHEGs may generalize to clonogenic soft-agar assays of anchorage-

independent growth, which remain widely used as surrogates for tumorigenicity (345).  

 The candidate regulatory heterogeneities identified in KP1 liver colonies reflect several 

of the deprogramming and reprogramming events recently described in PNECs (170). In 

addition, they suggest routes of paracrine communication that are equally realistic for the lung 

as for the liver. From this perspective, the stratification of primary human SCLCs by in vivo 

RHEGs is intriguing. SCLCs usually initiate in the bronchi, but there are differences in cell 
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composition at different depths of the lung (346) as well as lobular biases in the primary sites 

typical for SCLC (347). Different SCLC subtypes (175) might arise in similar microenvironments, 

yielding the mixed-subtype clusters identified here. The stromal heterogeneities induced by the 

immunocompetent setting may also relate to fibrotic lung diseases, where PNECs hyperplasia is 

known to occur (348). The genome of SCLCs is known to be highly mutated (6), but our study 

indicates that cell-fate variability arises on a much faster time scale in vivo.  

 

4.5 Materials and methods 

4.5.1 Cell and tissue sources  
 KP1 cells (179) were cultured as self-aggregating spheroids in RPMI medium 1640 

(Gibco) with 10% FBS, 1% penicillin-streptomycin, and 1% glutamine. There was no cell-line 

authentication, and cells were not tested for mycoplasma contamination. KP1-GFP cells were 

prepared by transducing cells overnight with saturating lentivirus and 8 μg/ml polybrene as 

previously described (201). GFP-encoding lentivirus was prepared with pLX302 EGFP-V5 

cloned by LR recombination of pLX302 (Addgene #25896) and pDONR221_EGFP (Addgene 

#25899). Stable transductants were selected with 2 μg/ml puromycin until control plates had 

cleared. Cultured KP1-GFP spheroids were kept to within 10 passages and cryoembedded as 

described previously (180).  

 To seed liver colonies, KP1-GFP spheroids were dissociated with 0.05% Trypsin/EDTA 

(Life Technologies), counted using a hemocytometer, and 2x105 cells were injected via the tail 

vein of athymic nude (Envigo) or C57/B6 x 129S F1 hybrid strain of mice (Jackson laboratory). 

Animals were not randomized. Liver colonies were resected after ~30 days and immediately 

cryoembedded in NEG-50, frozen in a dry ice-isopentane bath, and stored at –80˚C (180). KP1 

spheroids were cryosectioned at –24˚C and liver colonies were cryosectioned at –20˚C, both at 

8 μm thickness as previously described (180). All mice were maintained according to practices 
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prescribed by the National Institutes of Health in accordance with the IACUC protocol #9367. All 

animal procedures were approved by the Animal Care and Use Committee at the University of 

Virginia, accredited by the Association for the Assessment and Accreditation of Laboratory 

Animal Care (AAALAC).  

4.5.2 Fluorescence-guided LCM  
 KP1-GFP sections were fixed and dehydrated with ethanol and xylene as described 

previously for fluorescent cryosections (180). Freshly fixed samples were immediately 

microdissected on an Arcturus XT LCM instrument (Applied Biosystems) using Capsure HS 

caps (Arcturus). The smallest spot size on the instrument captured 3–5 SCLC cells per laser 

shot.  

4.5.3 RNA extraction and amplification  
 RNA extraction and amplification of microdissected samples was performed as 

described previously to minimize contaminating genomic amplification (180). Briefly, biotinylated 

cDNA was synthesized from RNA eluted from captured cells and purified with streptavidin 

magnetic beads (Pierce) on a 96S Super Magnet Plate (Alpaqua). Residual RNA was degraded 

with RNAse H (NEB), and cDNA was poly(A) tailed with terminal transferase (Roche). Poly(A)-

cDNA was amplified using AL1 primer 

(ATTGGATCCAGGCCGCTCTGGACAAAATATGAATTCTTTTTTTTTTTTTTTTTTTTTTTT) and 

a blend of Taq polymerase (NEB) and Phusion (NEB) for 25 cycles. RNA from bulk KP cell lines 

was isolated by RNEasy kit (Qiagen). 

4.5.4 10-cell sample selection by quantitative PCR (qPCR)  
 Detection of transcripts by qPCR was performed on a CFX96 real-time PCR instrument 

(Bio-Rad) as described previously (251). 0.1 μl of preamplification material was used in the 

qPCR reaction. For each sample, we quantified the expression of Gapdh and Rpl30 as loading 

controls. Samples were retained if geometric mean quantification cycle of Gapdh–Rpl30 was 

within 3.5x interquartile range of the median; samples outside that range were excluded 
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because of over- or under-capture during LCM. For liver colonies, we also excluded samples 

with detectable quantification cycles of three high-abundance hepatocyte markers: Alb, Fgb, 

and Cyp3a11.  

4.5.5 Library preparation  
 Ten-cell sequencing libraries were prepared by reamplification, purification, and 

tagmentation as described previously (180). Briefly, each poly(A) PCR cDNA sample was re- 

amplified by PCR within its exponential phase (typically 10 to 20 cycles). Re-amplified cDNA 

was then twice purified with Ampure Agencourt XP SPRI beads, and samples were quantified 

on a CFX96 real-time PCR instrument (Bio-Rad) using a Qubit BR Assay Kit (Thermo Fisher). 

Samples were diluted to 0.2 ng/μl and tagmented with the Nextera XT DNA Library Preparation 

Kit (Illumina). Bulk KP libraries were prepared from 500 ng of total RNA by the Genome 

Analysis and Technology Core at the University of Virginia using mRNA oligo dT-purified with 

the NEB Next Ultra RNA library preparation kit (NEB).  

4.5.6 RNA sequencing  
 10cRNA-seq data were sequenced and aligned as previously described (180). Ten-cell 

samples were multiplexed at an equimolar ratio, and 1.3 pM of the multiplexed pool was 

sequenced on a NextSeq 500 instrument with NextSeq 500/550 Mid/high Output v1/v2/v2.5 kits 

(Illumina) to obtain 75-bp paired-end reads. Bulk KP RNA samples were sequenced on a 

NextSeq 500 to obtain 50-bp single-end reads. Adapters were trimmed using fastq-mcf in the 

EAutils package (version ea-utils.1.1.2-779) with the following options: -q 10 -t 0.01 -k 0 (quality 

threshold 10, 0.01% occurrence frequency, no nucleotide skew causing cycle removal). Quality 

checks were performed with FastQC (version 0.11.8) and multiqc (version 1.7). Mouse datasets 

were aligned to the mouse transcriptome (GRCm38.82), reference sequences for ERCC spike- 

ins, and pLX302-EGFP by using RSEM (version 1.3.0) and Bowtie 2 (version 2.3.4.3). RSEM 

processing of the 10cRNA-seq data also included the following options: --single-cell-prior -- 

paired-end. Counts from RSEM processing were converted to transcripts per million (TPM) by 
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dividing each value by the total read count for each sample and multiplying by 106. Total read 

count for TPM normalization did not include mitochondrial genes or ERCC spike-ins.  

4.5.7 RNA FISH  
 A 150-bp fragment of human SOX4 was cloned into pcDNA3, used as a template for in 

vitro transcription of a digoxigenin-labeled riboprobe for RNA FISH, and imaged as previously 

described (129). Loading-control riboprobes for GAPDH, HINT1, and PRDX6 were previously 

reported (201).  

4.5.8 Immunohistochemistry  
 Staining was performed by the Biorepository and Tissue Research Facility at the 

University of Virginia with 4 μm paraffin sections. For F4/80, antigen retrieval and 

deparaffinization were performed in PT Link (Dako) using low pH EnVision FLEX Target 

Retrieval Solution (Dako) for 20 minutes at 97°C. Staining was performed on a robotic platform 

(Autostainer, Dako). Endogenous peroxidases were blocked with peroxidase and alkaline 

phosphatase blocking reagent (Dako) before incubating the sections with F4/80 antibody (AbD 

Serotech, #MCA497R) at 1:200 dilution for 60 minutes at room temperature. Antigen–antibody 

complex was detected by using rabbit anti-rat biotin and streptavidin-HRP (Vector Laboratories) 

followed by incubation with 3,3’-diaminobenzidine tetrahydrochloride (DAB+) chromogen 

(Dako). For Cd3, sections were deparaffinized using EZ Prep solution (Ventana), and staining 

was performed on a robotic platform (Ventana Discover Ultra Staining Module). A heat-induced 

antigen retrieval protocol set for 64 min was carried out using Cell Conditioner 1 (Ventana). 

Endogenous peroxidases were blocked with peroxidase inhibitor (CM1) for 8 minutes before 

incubating the section with CD3 antibody (Dako, #A0452) at 1:300 dilution for 60 minutes at 

room temperature. Antigen-antibody complex was detected using DISCOVERY OmniMap anti- 

rabbit multimer RUO detection system and DISCOVERY ChromoMap DAB Kit (Ventana). All 

slides were counterstained with hematoxylin, dehydrated, cleared, and mounted for 

assessment. For both F4/80 and Cd3 stains, cells were counted visually and reported as the 
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average of multiple 10x-field images surrounding individual KP1 cell colonies in liver sections 

obtained from athymic nude and C57/B6 x 129S F1 hybrid mice.  

4.5.9 Immunoblot analysis  
 Quantitative immunoblotting was performed as previously described (202). Primary 

antibodies recognizing the following proteins or epitopes were used: Notch2 (Cell Signaling 

#5732, 1:1000), vinculin (Millipore #05-386, 1:10,000), GAPDH (Ambion #AM4300, 1:20,000), 

tubulin (Abcam #ab89984, 1:20,000).  

4.5.10 Mouse-to-human ortholog mapping  
 Human orthologs for mouse genes were obtained from the Ensembl biomart in R using 

the getAttributes function. For genes with multiple human-ortholog mappings, we used 

expression characteristics of the human datasets considered [MCF10A-5E (180) and human 

SCLC (342)] to favor more-reliable clustering afterwards. For mouse genes with two human 

mappings, the human ortholog with higher expression variance in the corresponding human 

dataset was retained. For mouse genes with greater than two human mappings, two orthologs 

with the highest expression correlation were identified. From these, the ortholog with the higher 

expression variance was retained, as in the two-mapping case. Any remaining mouse gene 

names were capitalized in accordance with human gene symbol conventions.  

4.5.11 Overdispersion-based stochastic profiling  
 Stochastic profiling with 10cRNA-seq data was performed exactly as described in 

Chapter 3.  

4.5.12 Robust identification of transcriptional heterogeneities through subsampling  
 To minimize the contribution of outliers to the overdispersion analysis in samples 

collected from liver colonies, we generated 100 subsampled simulations for overdispersion- 

based stochastic profiling. After sample selection (see above), there were 33 10-cell samples 

plus 35 pool-and-split controls for nude liver colonies and 31 10-cell samples plus 24 pool-and- 

split controls for C57/B6 x 129S F1 hybrid liver colonies. For each dataset, overdispersion- 
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based stochastic profiling was performed 100 times with random downsampling to 28 10-cell 

samples and 20 pool-and-split controls, as in Chapter 3. Only genes that recurred as candidates 

in >75% of simulations were evaluated further as candidate heterogeneously expressed genes.  

4.5.13 Filtering out hepatocyte contamination in heterogeneous expressed genes 
 Among overdisperse transcripts in liver colonies, we further excluded genes that might 

vary because of residual hepatocyte capture during LCM. For each 10-cell sample, we 

calculated the geometric mean abundance of 11 liver-specific markers (Alb, Fgb, Cyp3a11, 

Ambp, Apoh, Hamp, Ass1, Cyp2f2, Glul, Hal, and Pck1) from published studies (332,349–354). 

Candidates that were significantly correlated with the mean liver signature (p < 0.05 by Fisher Z- 

transformed Spearman ⍴ correlation) were removed from further consideration for the in vivo 

study.  

4.5.14 Continuous overdispersion analysis  
 Overdispersion values from the 2007 transcripts identified as candidate heterogeneities 

in either the KP1 spheres or in vivo conditions were recorded for 100 subsampling iterations. 

For the KP1 in vitro spheroids, 100 iterations of leave-one-out crossvalidation were performed 

as detailed in co-submitted work (271). Transcripts were retained if the 5th percentile of 

overdispersion in the C57/B6 x 129S F1 hybrid condition was greater than the 95th percentiles of 

the other two conditions. If a gene was not expressed in a condition, the 5th and 95th 

percentiles were set to zero, and the gene was assigned to the overall median overdispersion 

during clustering.  

4.5.15 Statistics  
 Sample sizes for stochastic profiling were determined by Monte Carlo simulation (157). 

Significance of overlap between candidate genes in KP1 spheroids and MCF10A-5E spheroids 

was evaluated using the hypergeometric test using the “phyper” function in R and a background 

of 20,000 genes. Pearson correlation between pairs of transcripts detected in both KP1 and 

MCF10A-5E spheroids were assessed using the “cor.test” function. Significant increases in 
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number of candidate genes between different conditions were assessed by the binomial test 

using the “binom.test” function in R. Spearman ⍴ correlation between overdisperse transcripts 

and liver markers was calculated using the “cor.test” function. Spearman ⍴ correlations were 

Fisher Z-transformed using the “FisherZ” function from the R package “DescTools” (version 

0.99.31). Co-occurrence of transcript fluctuations was evaluated by hypergeometric test after 

binning 10cRNA-seq above or below the geometric mean of the two transcripts compared. 

Differences in cell number by immunohistochemistry were assessed by the Wilcoxon rank sum 

test using “wilcox.test”. Significance of overlaps between candidate genes identified in 

spheroids, nude mice, and C57/B6 x 129S F1 hybrid mice were assessed by Monte Carlo 

simulations and corrected for multiple hypothesis testing as described in Chapter 3. Significance 

of differences in protein abundance by immunoblotting were assessed by one-way ANOVA with 

Tukey HSD post-hoc test. Hierarchical clustering was performed using “pheatmap” with 

standardized values, Euclidean distance, and “ward.D2” linkage or non-standardized values, 

Pearson distance, and “ward.D2” linkage. Gene set enrichment analyses were performed 

through the Molecular Signatures Database (355). Overlaps between gene lists and hallmark 

gene sets were computed using a hypergeometric test with false-discovery rate correction for 

multiple comparisons.  

4.5.16 Data availability  
 Bulk and 10cRNA-seq data from this study is available through the NCBI Gene 

Expression Omnibus (GSE147358, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147358 Reviewer token: 

ufczqoiwzbwjnet). Other RNA-seq datasets were obtained from the Gene Expression Omnibus 

(GEO): MCF10A-5E 10cRNA-seq (GSE120261), AdCMV-Cre and AdCalca-Cre GEMM 

(GSE116977), and human SCLC tumor (GSE60052).  
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5 Discussion and Future Directions 

 

5.1 Dissertation discussion 

 This dissertation focused on characterizing recurrent regulatory variations between 

epithelial cancer cells in multiple tumor models and microenvironments. We presented 10cRNA-

seq - a method for obtaining in situ transcriptomic measurements from 10-cell samples isolated 

from tumor samples (Chapter 2). We extended the theory of stochastic profiling (Chapter 1) to 

10cRNA-seq measurements using an abundance-dependent dispersion statistic (Chapter 3). 

We combined 10cRNA-seq and stochastic profiling to identify early-stage regulatory variations 

in cancer cells in clinical cases of luminal biopsies (Chapter 3). To systematically measure 

microenvironmental influences on regulatory variations of cancer cells, we applied 10cRNA-seq 

profiling to in vitro and murine models of small cell lung cancer (Chapter 4). In Chapters 3 and 4, 

we identified recurrent heterogeneously expressed genes (RHEGs) to focus on generalizable 

markers of cancer cell variations. For luminal breast cancers profiled in Chapter 3, we defined 

RHEGs as genes identified to be significantly overdispersed in the majority of tumors sampled. 

We found that luminal breast cancer RHEGs did not reflect common sources of cell-state 

variations, but were instead enriched for genes known to be drivers of multiple tumor types. In 

SCLC cells and metastases in Chapter 4, we defined different types of RHEGs to decode the 

relative influences of different microenvironments on cancer cell states. Comparing in vitro 

RHEGs to in vivo RHEGs we identified SCLC cell-intrinsic regulatory variations, as well as an 

expanded set of regulatory variations that arise from cell extrinsic influences. The next two 

subsections discuss the impact and relevance of our approach and findings. 
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5.1.1 Implications of cancer cell heterogeneity for treatment response 
 

 Both studies of cancer cell heterogeneity presented in this dissertation assessed 

samples prior to any treatment, raising questions about how the identified regulatory variations 

would influence treatment response. Individual cancer cells within tumors are either intrinsically 

drug resistant or able to regulate their cell-states to acquire resistance. Intrinsic treatment 

resistant populations marked by high expression of AXL have been identified in many 

melanoma tumors as a route to disease recurrence (20,104). In a recent study of triple-negative 

breast cancer, post-treatment cancer cells had high expression of growth-supporting cancer 

genes like MYC, which were also detected in a small proportion of cells in the same patient prior 

to treatment (19). However, pre- and post-treatment gene expression patterns in triple-negative 

breast cancer were highly patient specific, limiting the ability to make generalizable conclusions 

(19). 

 RHEGs identified in luminal breast cancer in Chapter 3 may present genes that are 

markers of intrinsic drug-resistant cell-states across multiple tumors (Figure 5.1A).  This 

hypothesis is supported by the enrichment for both pan-EMT and pan-cancer driver genes in 

luminal breast cancer RHEGs (Figure 3.13), as alterations in these genes have been shown to 

support tumor growth in numerous other cancers (260–262,280). Multiple luminal RHEG drivers 

–RET, PRKCZ, and MLST8–converge upon AKT/mTOR related growth signaling, a pathway 

that is frequently activated as a route to both hormone and chemotherapy resistance in breast 

and ovarian tumors (356–360).  A luminal cancer RHEG driver, COL1A1, was also detected as 

a potential marker of intrinsic treatment resistance in one triple-negative breast cancer tumor in 

the study described above (19). Further, partial mesenchymal states reflected by RHEG EMT 

markers in Chapter 3 (Figure 3.13 and Figure 3.14), and in vivo RHEG stromal markers in 

Chapter 4 (Figure 4.8), have been associated with multiple drug resistance in epithelial tumors 

of the lung and pancreas (280,361–363). RHEG driver genes in luminal cancer also include 
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transcriptional regulators including KAT8, a histone acetyltransferase, indicating specific cancer 

cells that are differentially poised to activate survival pathways in response to treatment (364–

366). Combination therapies with  drugs that target histone modifiers have shown efficacy in 

models of both breast and lung cancer (316,367–369). 

 We observed the ability of cancer cells to differentially alter their regulatory states in 

Chapter 4 in response to heterotypic interactions and microenvironments. KP1 cells acquired 

heterogeneous expression of genes Cd74, Lyz2, Bgn, Sparc, and Mgp (Figure 4.10) after 

colonizing the liver. Similar phenotypic plasticity of SCLC cells could occur in response to drug 

treatments, leading to acquired drug resistance (Figure 5.1B).  EMT-related gene upregulation 

was recently uncovered as a form of acquired therapy resistance in SCLC (109), indicating that 

despite having different selective pressures, the metastatic process and drug treatment may 

share regulators of phenotypic plasticity. Bioinformatically predicted transcription factors that 

regulate in vivo RHEGs include IRF1, SP1, and E2F1, which have all been implicated in 

chemoresistance in SCLC (370).  

 Reversible, dynamic responses enable additional strategies for mitigating resistance by 

designing dosing schedules that include drug-holidays to allow cells to revert to non-resistance 

states (371). Clinically, this would be immensely useful for SCLC treatment, where tumors start 

as chemo-sensitive but become chemo-resistant to result in ~5% overall survival (171,175). To 

tackle heterogeneity in treatment response, combination therapies are a promising strategy if 

candidate targets for treatment response can be evaluated a priori. To fully test this, matched 

measurements and functional tests of specific genes pre- and post-treatment are necessary and 

are discussed later in this chapter.   
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Figure 5.1 Potential roles for breast and lung cancer RHEGs in treatment resistance 
(A) Schematic for intrinsic drug resistance to treatments. Luminal breast cancer RHEGs 
represent pre-treatment cell-states to be tested for intrinsic drug resistance.  
(B) Schematic for acquired drug resistance to treatments. SCLC in vivo RHEGs represent 
differential epigenetic reprogramming capacity. Upstream regulators could represent mediators 
of acquired drug resistance.  
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5.1.2 Convergence of regulatory variations across multiple tumors and models 
 

 Another important question that remains is whether our approaches identify epithelial 

cancer cell variations that are shared across multiple tumor types (372).  While luminal breast 

cancers and small cell lung cancer differ in cancer-initiating driver mutations (Chapter 1), it is 

possible that they may share regulatory variations to give rise to shared phenotypes, such as 

the hallmarks of cancer identified across human tumors (3,372,373). In Chapter 4 we observed 

cross-species and cross-tissue convergence in regulatory variations when comparing in vitro 3D 

cell cultures of KP1 cells (SCLC) and MCF10A-5E cells (breast epithelia). Coordination was 

observed for the same genes involved in protein transport and nuclear shuttling as well as 

cellular longevity in both sets of samples (Figure 4.2).  A starting point for evaluating shared 

regulatory variations of SCLC cells with luminal breast cancer cells is to compare different 

categories of RHEGs identified in Chapters 3 and 4. 

 In Chapter 4, we identified a set of core RHEGs that were heterogeneously expressed in 

SCLC cells in all 3 evaluated contexts (Figure 4.8). Of these 26 core RHEGs, 5 genes were 

shared with the luminal breast cancer RHEGs identified in Chapter 3 (Figure 5.2A). However, 

core RHEGs include contributions from in vitro measurements, and may not reflect heterotypic 

interactions experienced in vivo. In Chapter 4, we observed that in vivo RHEGs stratified human 

cases of SCLC while core RHEGs did not. When compared to 149 in vivo RHEGs, UVABC 

RHEGs shared 13 genes that spanned diverse functions (Figure 5.2B). One of these genes is 

CD74, which encodes for the invariant chain of the MHC Class II molecule (374). Initially 

thought to only be expressed on antigen presenting cells like macrophages and dendritic cells, 

many studies have demonstrated CD74 expression in many other cell types (375). CD74 

expression has been detected in epithelial cells at baseline (Figure 5.2C), with increased 

expression during inflammation (174,376), as well as in multiple tumor types in both human and 

murine studies (377–379). The protein CD74 is a cell surface receptor for its ligand, 
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macrophage inhibitory factor (MIF). Upon MIF binding, the CD74 receptor activates growth and 

proliferation through the MAPK pathway, leading to increased phagocytic activity in 

macrophages (380). In tumor cells, signaling through cell-surface CD74 causes increased 

growth and improved cancer cell survival (379,381). Cell-to-cell heterogeneity in CD74 protein 

expression in observed in normal tissue samples (Figure 5.2C), indicating that expression 

variation of CD74 is likely due to differential regulation and not genetic alteration. An immediate 

next step is to test the functional role of cancer cell expression of CD74 in our model of SCLC 

(section 5.3). 

 All shared genes that display recurrent heterogeneous expression in both studies have 

to be evaluated for technical and biological explanations (Figure 5.2A and B). Cross-study 

recurrent genes could represent the detection of similar cell-states across multiple epithelial cell 

types, enabled by our deep interrogation of carcinoma cells. Alternatively, the heterogeneous 

detection of these genes could be due to specific sequence features or genomic structure that 

causes measurement artefacts, and that many studies might find these genes to be 

heterogeneously expressed. Such cross-study differential expression has been observed in bulk 

studies, where several genes are always detected as differentially expressed regardless of the 

hypothesis being tested (382). Identifying such genes in 10cRNA-seq data could help refine 

future analytical approaches for evaluating transcriptional heterogeneity. 

 Previous studies have discovered that cancer cells converge on similar phenotypes by 

regulating expression of different sets of genes, depending on the mutational and epigenetic 

landscape of the cancer type (124,383). In addition to comparing specific marker genes of cell-

states as done here, future comparisons made by grouping genes into their signaling pathways 

would be another way to assess generalizability across cancer types (373).   

  

  



 168 

 

 

 

 

 

 

 

Figure 5.2 Shared RHEGs provide insight into regulatory variations across cell types 
(A) Intersection of five shared RHEGs between luminal breast cancers profiled in Chapter 3 and 
all SCLC conditions profiled in Chapter 4. 
(B) Intersection of twelve shared RHEGs between luminal breast cancers profiled in Chapter 3 
and in vivo SCLC samples profiled in Chapter 4 includes CD74. 
(C) Immunohistochemistry from Human Protein Atlas (HPA) showing cells with no CD74 
expression (flat arrows) adjacent to cells that display expression of CD74 (arrowheads) in 
normal tissue from breast (upper) and lung (lower). Scale bar is 25µm. 
For (A), (B), statistical significance was assessed using the hypergeometric test.  
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5.2 Future studies of RHEGs identified in Chapters 3 and Chapter 4 

 In Chapter 3 we profiled five cases of luminal breast tumor biopsies and identified 

thousands of heterogeneously expressed genes within individual tumors (Figure 3.10). While 

these individual datasets have several remaining opportunities for computational analysis, the 

next few sections focus on validating and testing a prioritized list of RHEGs that emerged across 

multiple luminal breast tumors.  

 Similarly, we will focus on SCLC RHEGs that were shared amongst the two in vivo liver 

colonies profiled in Chapter 4. I will present plans for testing the phenotypic effects and 

regulation of in vivo RHEGs to understand their implications for disease progression. 

  

5.2.1 Experimental tests for luminal breast cancer RHEG drivers 
 

 Luminal breast cancer RHEGs had a significant overlap with genes identified as drivers 

for many cancer types (Figure 3.13). We identified 46 “RHEG drivers” that comprise a diverse 

array of functions including growth signaling, stress tolerance, and transcriptional regulation 

(355). The next two subsections discuss approaches to further validate and characterize the 

functional value of these RHEG drivers and their protein products. 

 

5.2.1.1 Validating heterogeneous expression of RHEG drivers 

 Heterogeneous gene predictions by stochastic profiling have been experimentally 

validated by RNA FISH in matched samples in Chapter 4 (Figure 4.3) and published studies 

(76,129,158). Therefore, we expect experimental measurements of RNA transcripts to have a 

high rate of validation for RHEGs. To relate gene-expression based predictions to cellular 

phenotype, the next step is to validate RHEG driver expression heterogeneity at the protein 

level.  
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 A component of the mTOR signaling complex, MLST8 was a recurrent heterogeneity in 

all 5 UVABC tumors profiled in Chapter 3 (Figure 5.3A) (358,384). I observed heterogeneity of 

MLST8 protein expression in immunohistochemistry measurement of an ER+ breast tumor 

available through the Human Protein Atlas (HPA) (Figure 5.3B).The HPA has IHC data for 44 of 

the 46 proteins encoded by RHEG drivers in normal breast tissue and breast tumors, however, 

comparing bulk changes in these proteins showed no consistent trends (Figure 5.3C), 

supporting a need to evaluate these proteins at the single-cell level in cancers. A next step is to 

obtain high-resolution images of IHC data, identify and digitally segment individual cancers cells 

to quantify intra-sample variation in RHEG driver expression in both normal and tumor tissues. 

 Additionally, validated antibodies obtained through the HPA enable us to measure 

single-cell coordination of RHEG driver proteins in matched UVABC samples. In a pilot study, I 

confirmed that immunofluorescence can be performed on cryosections of patient tissue used for 

10cRNA-seq in Chapter 3 (Figure 5.4, see Materials and Methods). Since the MLST8 gene is 

heterogeneously expressed in all 5 tumors, I would expect MLST8 protein expression to confirm 

this pattern. Next, I would prioritize multi-color immunofluorescence measurements of co-

varying RHEGs (CDKN2D, KLF4, and CDKN1A; TP73 and MAD1L1; NFATC4 and TNFSF10; 

GDF15 and its receptor RET) and quantify degree of single-cell covariation through quantitative 

image processing. Single-cell coordination of protein expression would confirm that co-varying 

transcripts detected in 10cRNA-seq data reflect differentially regulated expression states. 

 Protein expression studies will validate RHEG classification, but they will not provide 

further information regarding the mechanism of heterogeneous regulation. While we ruled out 

large scale copy number changes as a cause of RHEG classification (Figure 3.9), ruling out 

single nucleotide variants is impossible due to lack of full-length reads in 10cRNA-seq data. It 

remains possible that heterogeneous expression of RHEG driver genes is the result of 

mutational changes. To test mechanisms of regulation and functional consequences of RHEGs 
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beyond the UVABC cohort, appropriate experimental models are necessary. The next section 

will discuss testing RHEG predictions with experimental models. 

 

 

 

Figure 5.3  Variable protein expression of RHEG drivers in Human Protein Atlas 
(A) UMAP of all UVABC tumors colored by expression of mTOR component gene MLST8 
showing heterogeneous expression in all 5 tumors 
(B) Immunohistochemistry for MLST8 protein in an ER+ breast tumor (Case #1874) from the 
HPA, depicting heterogeneous expression of MLST8 in breast cancer cells. Arrows highlight 
cells with higher expression (375). 
(C) Semi-quantitative comparison of total protein expression of 44 RHEG drivers between 
normal breast tissue and breast tumors shows inconsistent trends  

 

 

 

Figure 5.4 Heterogeneous expression of Vimentin protein confirmed in matched tissue 
from UVABC1.  
Two-color immunofluorescence performed in matched patient tissue cryosections confirming 
heterogeneous expression of Vimentin (red, white arrows), an overdispersed candidate gene in 
2 tumor samples, compared to Keratin 8 (green), which is a homogenously expressed luminal 
marker. Scale bar is 20µm. 
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5.2.1.2 3D organoid models for experimental tests of RHEG drivers 

 Tumor derived 3D organoids are an appropriate model to test RHEG drivers in a 

clinically relevant system that can be propagated and perturbed experimentally. A biobank of 3D 

organoids derived from ~95 luminal human breast tumors was recently described, along with 

matched bulk genomic and transcriptomic measurements (385). In luminal organoids which 

express RHEG drivers in bulk transcriptomic data, a next step would be to measure protein level 

of RHEG drivers using iterative-IF or imaging mass cytometry (Figure 5.5A) (288,289). This 

experiment would serve two purposes: first, validating RHEG driver heterogeneity in an 

independent cohort at the protein level, and second, providing a quantitative and spatial 

assessment of expression of RHEG driver proteins at the single-cell level. The next experiment 

would be to test if pre-treatment heterogeneous expression of RHEG drivers represents 

intrinsically resistant cell-states. Treatment of 3D tumor organoids with the anti-estrogen drugs 

tamoxifen and fulvestrant have been shown to demonstrate differential responses (385,386). 

Here we would further correlate the extent of response with RHEG driver expression pre- and 

post-treatment (Figure 5.5B). Proportions of resistant cells will be matched quantitatively to the 

frequency of RHEG driver expression prior to treatment, to narrow down the putative resistant 

markers. For a potential marker of intrinsic resistance like MLST8, I expect organoids with 

higher expression pre-treatment to display more resistance to tamoxifen. Since organoid models 

can be perturbed genetically, individual candidate gene expression will be induced exogenously 

to measure their ability to confer resistance in organoids that are otherwise sensitive to 

tamoxifen (Figure 5.5C). 

 Additionally, establishing protocols for testing drug responses in organoids can be 

extended to testing patient-specific models from UVA’s Breast Care Clinic (385,387,388). This 

would allow for personalized treatment modeling, and testing dynamic responses to different 

dosing schedules. Ideally, organoids established from patients would be treated with different 
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combinations in different dosing frequencies to identify the most effective strategy. Organoid 

based treatment models would then be used as a personalized regimen for that patient.  

 
 
 
 
 

 
 
Figure 5.5 Experimental plan to test for intrinsic drug resistance in 3D organoids of 
luminal breast cancer 
(A) 3D organoids of luminal breast cancer established from existing biobank or from patients at 
UVA. Viable cells and protein expression of RHEG drivers are measured across multiple 
organoids.  
(B) Cells are treated with appropriate drug (eg. 1µm Tamoxifen or 0.5 µm Fulvestrant) and 
viable cells and protein expression of RHEG drivers are measured across multiple organoids. 
To identify RHEG drivers that confer intrinsic drug resistance, post-treatment persistor cells 
frequency will be matched to pre-treatment expression of RHEG drivers. 
(C) The ability of specific RHEG drivers to confer drug resistance will be directly evaluated by 
comparing treatment responses in between wildtype organoids and organoids with exogenous 
RHEG driver overexpression. 
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5.2.2 Testing a potential role for oxidative stress in regulating variations between 
luminal cancer cells  
 

 A stress-responsive gene, NQO1, is a luminal breast cancer RHEG and a readout of the 

activity of pan-cancer driver gene NFE2L2 (NRF2) (Figure 3.13). NQO1 protein is a detoxifying 

quinone reductase whose expression is induced by NFR2 in response to oxidative stress (389–

391). The metabolism of estrogen to reactive quinones creates oxidative stress in luminal 

cancers, and could explain variable detection of NQO1 (375,392). Other RHEGs also included 

CDKN1A and GDF15 that are transcriptionally regulated by the protein p53. Recent work in our 

lab has shown that oxidative stress responses are heterogeneous in breast epithelial cells and 

triple-negative breast tumors, and that these responses are mediated by NRF2 in coordination 

with p53 (328).  Together, this suggests oxidative stress mediated activation of NRF2 and p53 

may regulate heterogeneity between luminal cancer cells. 

 In previous work, a predictive model of oxidative stress response coordinated by NRF2 

and p53 was developed (328). This model can be extended to 10cRNA-seq data from luminal 

cancers. I confirmed expression of all model inputs in luminal breast cancer 10cRNA-seq data 

from Chapter 3 (Figure 5.6). Transcript abundances indicate differential activation of these 

pathways within and across tumors, but model predictions will yield quantitative assessments of 

NRF2-p53 coordination and stress tolerance that cannot be not inferred by evaluating gene-

expression changes alone. 10cRNA-seq data will be used to adjust the initial conditions to build 

individual stress dynamic models for each 10-cell measurement within tumors.  I expect a 

subset of 10-cell samples to show high ROS tolerance and coordinated NRF2-p53 signaling. 

For these 10-cell samples, NRF2 and p53 would be candidates for transcriptional regulators of 

cell-states, which would then be tested in vitro using the model systems described in the 

previous section. 10-cell samples that do not show coordinated NRF2 and p53 mediated ROS 

tolerance would represent cell-states that might be vulnerable to increased oxidative stress. 
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Figure 5.6 Oxidative stress as a cause of luminal breast cancer regulatory variations 
Hierarchical clustering of 10-cell samples from UVABC tumors for transcripts that represent 
species in the NRF2-p53 coordinate model for oxidative stress tolerance shows heterogeneous 
expression within and across tumors. Expression values will be used to adjust model inputs and 
generate predictions for NRF2-p53 coordination and oxidative stress tolerance for each 10-cell 
sample. 
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5.2.3 Functional roles for RHEGs in SCLC cells measured in murine liver colonies 
 

 In Chapter 4, we observed that regulatory variations in KP1 SCLC cells expand 

dramatically when cancer cells are grown as liver colonies in both immunodeficient and 

immunocompetent mice. To focus on patterns of cancer cell variation that occur upon 

heterotypic interactions, we defined genes that were overdispersed in KP1 liver colonies of both 

mice as a set of in vivo RHEGs. The next subsections discuss approaches to further 

characterize the role of in vivo SCLC RHEGs. 

 

5.2.3.1 Requirement for ATII markers: Cd74 and Lyz2 

 We observed heterogeneous expression of ATII cell type markers, Cd74 and Lyz2, in 

KP1 cells after liver colonization, whereas their expression was were never detected in isolated 

3D spheroids of KP1 cells (Figure 4.10). ATII differentiation occurs from pulmonary 

neuroendocrine cells (the cell of origin for SCLC) following injury and inflammation (174). 

Additionally, Cd74 is expressed by several epithelial cancer cells to promote survival signaling 

and cell growth (379,393). This suggests that Cd74 and Lyz2 expression and ATII differentiation 

may be necessary for liver colonization and metastatic growth for SCLC. Since Cd74 can be 

expressed by multiple cell-types, I confirmed that GFP+ SCLC cells in liver colonies also 

expressed Cd74 protein level in a pilot experiment (Figure 5.7A).  

 To test if ATII cell-type marker expression is necessary for liver colonization, I would 

utilize the CRISPR-Cas9 gene editing system to engineer KP1 cells that either lack functional 

Cd74 or Lyz2 genes. Since KP1 cells grown in culture have undetectable expression of Cd74 

and Lyz2, I would not expect the knockouts to have any phenotypic consequences in vitro. 

Control and knockout KP1 cells would then be assessed for liver colonization in C57/B6 x 129S 

F1 mice with intact immune systems as described in Chapter 4. If PNEC differentiation into ATII 

serves to resolve injury and inflammation and promote growth, deleting these genes should 
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impair the metastatic process. Therefore, we would expect fewer liver colonies formed by KP1 

cells that have Cd74 and Lyz2 knockouts as compared to parental cells. This would result in 

overall less metastatic disease in these mice, as well as longer survival (Figure 5.7B).  

 Cd74 is a cell surface receptor for its ligand Mif, and Mif binding induces Cd74 mediated 

signaling as well as transcriptional regulation (380). Interestingly, KP1 cells express Mif at 

abundant levels in vitro and in vivo (Figure 4.10), suggesting a ligand-receptor signaling 

interaction that may selectively play a role in the metastatic process of liver colonization. 

Although there were instances of 10-cell samples that show expression coordination for both 

Cd74 and Mif (Figure 4.5), 10-cell pooling limits our ability to determine if this interaction occurs 

through autocrine, paracrine, or juxtracrine signaling. To understand the mode of signaling for 

this ligand-receptor pair, I would perform multi-color immunofluorescence for Cd74 and Mif in 

KP1 liver colonies to assess if their expression is co-localized in single-cells or in adjacent cells, 

and whether it is restricted to KP1 cells or other cell-types in the liver. These experiments would 

confirm that RHEGs identified from 10cRNA-seq data reflect cell-state heterogeneities that are 

important for tumor growth and progression. 

 

5.2.3.2 Regulation of KP1 cell de-differentiation 

 The mechanisms that induce the fragmented differentiation states in KP1 liver colonies 

remain unclear. In previous single-cell studies of SCLC GEMMs, non-neuroendocrine 

differentiation of PNECs has been associated with activation of the Notch pathway, but we did 

not see any evidence to suggest Notch pathway activation (Chapter 4, section 4.3.6). Further, 

the diverse, uncoordinated changes in marker expression by KP1 cells in vivo are suggestive of 

widespread changes in chromatin accessibility and transcriptional regulation. To begin exploring 

upstream regulators, I utilized bioinformatic tools to identify potential transcription factors (TFs) 

associated with the expression of all in vivo RHEGs. As different TF tools yield variable results 

due to differences in motif analysis methods, I used the intersection of three TF searching tools 
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to obtain a list of 21 candidate transcription factors (394–396).  From these 21 bioinformatically 

derived candidate TFs, I would next narrow down to TFs that show gene-expression correlation 

with in vivo RHEGs. An additional confirmation would be to manually mine existing data from 

chromatin immunoprecipitation sequencing (ChIP-seq) experiments of the candidate TFs for 

evidence of binding events to coding sequences of RHEGs.  

 Further confirmation of regulation at the level of single genes and single transcription 

factors would require further experimental testing. One approach is performing ChIP-seq 

experiments with pull down of each candidate TF, and compare binding events between in vitro 

KP1 spheroids and in vivo KP1 colonies; this would provide confirmatory evidence at the level of 

a single candidate regulator. A whole-genome alternative is assay for transposase-accessible 

chromatin sequencing (ATAC-seq) measurements of in vitro KP1 spheroids and in vivo KP1 

colonies to detect total changes in chromatin accessibility and occupancy (397). Compiling both 

levels of data will yield insights into differential chromatin occupancy as well as the most likely 

regulators of phenotypic plasticity in SCLC cells. 

 

 

Figure 5.7 Testing the role of ATII-like SCLC cells in liver colonization 
(A) Two-color immunofluorescence performed in C75/B6 F1 liver cryosections confirming 
heterogeneous expression of ATII marker Cd74 (red, white arrows) by GFP-labeled KP1 cells 
(green). Colocalization of Cd74 and GFP is indicated by white arrows. Border of SCLC colony 
and liver tissue is marked by white dashed line. Scale bar is 20µm. 
(B) Experimental plan to test functional role of ATII marker genes Cd74 and Lyz2 in liver 
colonization by KP1 cells. Both marker genes will be separately knocked out from KP1 cells 
using CRISPR-Cas9 mediated gene editing. Cells from all conditions will be delivered via tail 
vein to C75/B6 F1 mice and assessed for liver colonization and overall survival to quantify 
metastatic capacity. 
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5.3 Future application of approaches in Chapters 2-4: risk stratification in 
breast premalignancies  

 Lobular carcinoma in situ (LCIS) is a non-invasive lesion of the breast with highly 

uncertain management and prognosis (398). CIS in the breast can arise as cells grow 

abnormally in the ducts (DCIS) or lobules (LCIS). DCIS lesions are considered obligate 

precursors to invasive cancer and therefore routinely excised. However, LCIS lesions are non-

obligate precursors and their management is often institution dependent (399,400). LCIS lesions 

arise bilaterally and multifocally in patients, and have been associated with 8-11x increases in 

breast cancer risk of either breast despite a lack of association with germline mutations (399–

402). Following a finding of LCIS, patients have to be monitored continually and consider drastic 

options like double mastectomies due to lack of prognostic biomarkers (400,403). The lack of 

clarity regarding the relation of LCIS to eventual tumors has created a clinical need for tools that 

stratify LCIS patients (399).  

 The molecular trajectory of normal cells to multifocal LCIS and cancers remains unclear. 

Previous work has identified recurrent losses in chromosomes 1q and 16q associated with loss 

of CDH1 that persist across multiple LCIS foci and are retained in subsequent invasive tumors 

(400,404,405). These findings in multifocal disease suggest an early genomic event in normal 

mammary development that results in cells that are differentially poised to undergo malignant 

transformation. To understand tumor initiation, spatially resolved molecular characterizations of 

normal, premalignant, and malignant cells from patients diagnosed with LCIS are needed. 

10cRNA-seq is uniquely suited to target cells that comprise different pathological features with 

single-cell precision, without losing cells to dissociation or sorting. Recently, we have shown the 

success of these approaches in characterizing trajectories of premalignant cells in a GEMM of 

gliomagenesis (271). 

 An ideal clinical sample for this study would include normal cells, LCIS foci, as well as 

invasive tumors, which co-occur in ~12% of diagnosed invasive breast cancers (406). For this 
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study, sample processing is likely to be the most challenging step. A large amount of breast 

tissue will have to be cryoembedded and sectioned because different pathological features will 

be spatially separated (Figure 5.8A). Since LCIS lesions and invasive tumors can be 

differentiated based on cell morphology, we can use nuclear stains to target epithelial cells for 

laser capture. We will obtain multiple 10-cell measurements from cells in normal lobules, cells in 

LCIS foci, as well as cancer cells in the same patient. Use analytical methods that can align 

cells in  “psuedotime” based on transcriptional signatures, 10-cell transcriptomes will be used 

create a molecular trajectory for normal cells to malignancy (Figure 5.8B) (407–410). Further, 

heterogeneously expressed genes will be identified using stochastic profiling for all conditions. 

Combining heterogeneous expression with trajectory inference will enable a tracking of cell-

states that are heterogeneous prior to malignancy (in normal and LCIS cells) but become 

selected for homogenous expression as cells become invasive (Figure 5.8C). Future 

extensions to stochastic profiling that enabe matched genomic measurements from cells will 

also allow us to relate transcriptional trajectories to genomic evolution in these lesions (411). 

 While this detailed characterization will be patient-specific, it is an important step in 

understanding this complex disease. LCIS foci also display inter-patient variations, and future 

measurements will have to include morphological variants of LCIS (400,412). Candidate genes 

identified using the outlined prospective approach can then be measured in banked 

retrospective samples to assess generalizability. Further, LCIS has been identified in 

pathological assessments of breast tumors profiled by the TCGA. Since TCGA expression data 

has matched clinical outcomes, it can be used to relate the expression of candidate genes to 

overall survival to identify prognostic biomarkers. Together, these approaches will suggest 

biomarkers to predict higher risk of invasive disease and enable better patient stratification at 

diagnosis. 
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Figure 5.8 Using 10cRNA-seq to profile the malignant trajectory of cells in cases of co-
occurring LCIS and invasive breast cancer 
(A) Schematic of a human breast depicting that normal cells, foci of LCIS, and invasive cancers 
can be co-occurring but spatially separated across the breast 
(B) Schematic of psuedotime analyses generated from 10-cell transcriptomes of normal, LCIS, 
and cancer cells from the same patient. 
(C) Schematic of expression of a normal and LCIS heterogeneous gene projected on the 
psuedotime analysis from (B). Such genes that get selected for expression over the malignant 
trajectory would be potential biomarkers for patient stratification. 
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5.4 Concluding remarks 

 Cancer cell behavior is the result of a complex integration of internal and external cues, 

creating phenotypic diversity beyond what is observed in normal cells. The breadth of regulatory 

variations in human tumors is only beginning to be uncovered and is the first step in relating 

molecular and cellular variations to overall patient outcomes. In this dissertation, we developed 

complimentary experimental and bioinformatic approaches to identify markers and modulators 

of heterogenous cancer cell behaviors within isolated cells, solid tumors, and metastases. By 

identifying expression signatures that are unique to some sample types and shared across 

multiple others, we begin to decode the complex network of interactions that influence cellular 

states. The findings presented in this dissertation provide novel insight into the transcriptional 

landscapes of breast cancer and lung cancer cells, towards the goal of understanding 

differential outcomes for patients with these diseases. The approaches for in situ profiling 

presented here are readily applicable to other tumor models, particularly those where the 

microenvironmental determinants of cellular states remain unknown. 

 

5.5 Materials and methods 

 Immunofluorescence on cryosections was performed as previously described with minor 

modifications (201). Briefly, cryosectioned slides stored at –80˚C were immediately fixed in 

3.7% para-formaldehyde solution in PBS for 15m. Slides were then rinsed three times with PBS 

for 5m, prior to 1 hour blocking with 1X Western Blocking Reagent (Roche #11921673001) 

diluted in PBS + 0.3% Tween-20. The following primary antibodies were used: KRT8 (Millipore 

MAB3414, 1:200), Vimentin (Abcam ab16700, 1:200), GFP (Abcam ab13970, 1:1000), Cd74 

(BD Bioscience 555317, 1:200). Slides were incubated with primary antibody at room 

temperature overnight and with secondary antibody (1:200) for 1hr. Slides were counterstained 

with 0.5µg/ml DAPI to visualize nuclei and imaged the same day. 
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