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Abstract

There has been a surge of interest in Multimodal Machine Learning (MML) in

recent years. MML focuses on building frameworks for understanding or synthe-

sizing the multimodal world and is one of significant fields paving the way toward

artificial general intelligence. However, in the field of MML, the practice of learn-

ing through multi-agent collaboration, namely Collaborative Multimodal Machine

Learning (CoMML), remains relatively underexplored. CoMML draws the inspi-

ration from the peer-to-peer learning behavior observed in humans and aims to

build frameworks that enable multiple MML agents to collaborate with each other

efficiently, achieving a comprehensive understanding of the multimodal world that

surpasses what any individual agent could achieve alone. This thesis conducts a

systematic study on CoMML, and particularly, we emphasize the importance of

Personalization in CoMML focusing on supporting the special needs and prerequi-

sites of individual MML agents throughout all stages of collaborative learning.

However, achieving effective personalization while encouraging efficient collabo-

ration in the multimodal learning system poses many practical challenges. This the-

sis specifically endeavors to pursue the following research goals in Personalization-

aware CoMML. (1) First, we investigate a variety of technical challenges during

collaboration brought about by user personalization. The various user needs and

capabilities among learning agents lead to increased knowledge diversity, which

complicates the discovery of shareable knowledge among individual agents. We

aims to achieve a good balance between personalization and collaboration under

such knowledge heterogeneity. (2) Second, the patterns of personalization may vary

dramatically depending on application scenarios, users’ unique attributes and roles,

locality constraints, system budgets, and other factors. This thesis investigates

different personalization patterns, including modality, task, concept, and architec-

ture preferences, and further explores the necessary technical efforts and proposes

novel approaches for dealing with each pattern. (3) Third, we aim to advance

the compatibility and applicability of personalization-aware CoMML frameworks

in multimodal general intelligence. A broad range of modality types, including

language, image, audio, video, 3d shapes, and diverse types of multimodal learning

tasks, will be studied within our frameworks.
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Chapter1

Introduction

1.1 Motivations and Research Problem

The world is multimodal–things happen and are perceived by us in different ways.

For example, when learning the concept of an object, we hear its sounds, observe

its shapes, feel its texture, smell its odors, and more. In this multimodal world,

humans develop our cognitive abilities of analyzing multimodal information and ad-

vance our interaction experiences with the environments. In recent years, a broad

community of researchers has emerged in the field of Artificial General Intelligence

(AGI) focusing on the ambitious goal of emulating human-like cognitive abilities in

the multimodal world [1, 2, 3]. Multimodal Machine Learning (MML) is one

of significant fields paving the way toward AGI, focusing on building frameworks for

understanding or synthesizing the multimodal world. The general MML research

covers a broad range of modality types, including but not limited to language,

image, audio, video, 3d motions, and graphs, and there are a variety of research

subfields associated with MML, scattered across different domains depending on

the modalities involved and how they combine to form task settings [4]. For in-

stance, in cases involving audios and images, tasks may include audio-visual object

recognition or retrieval, where both modalities serve as inputs, or image-to-audio

synthesis when images serve as inputs and audios are the outputs.

Humans are not isolated in the world. We are members in a larger community,

wherein we learn knowledge not only based on our own experiences (i.e., direct

1
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learning) but also from the experiences of others in a peer-to-peer learning manner

(i.e., indirect learning) [5]. Such a peer-to-peer learning community is essen-

tial for humans due to the limited learning capabilities and diverse backgrounds of

individuals–i.e., individuals’ learning scopes are restricted by where we are (how

we perceive the world) and the historical era to which we belong. Similar to the

learning limitations of individual humans, individual machine learning agents also

encounter constraints such as data limitations and system constraints, which im-

pedes the ability of a single AGI agent to generalize the diverse knowledge in the

world. In response to this challenge, recent advancements of Multi-agent Collab-

orative Machine Learning [6, 7, 8, 9] has drawn inspiration from the peer-to-peer

learning behavior observed in humans: the goal is to leverage the collaboration of

multiple AI agents, each of which have they own views and learning behaviors, to

potentially expand the learning abilities of individual AI agents. However, in the

field of AGI and MML, the practice of learning through multi-agent collaboration

remains relatively underexplored. To address this gap, this thesis focuses on a sys-

tematic study of Collaborative Multimodal Machine Learning (CoMML),

which aims to build frameworks that enable multiple MML agents to collaborate

with each other efficiently, achieving a comprehensive understanding of the multi-

modal world that surpasses what any individual agent could achieve alone.

While humans collaborate within groups, the satisfaction of our individual needs

is also important. Preserving our individuality during collaboration is an inherent

human ability [10]. Likewise, in CoMML, individuality also plays a significant role,

particularly when individual learning agents are utilized to serve specific users

that have unique and strong preferences and abilities related to data, concepts,

and model performance. Therefore, it is essential to emphasize the importance

of Personalization in CoMML, which focuses on supporting the special needs

and prerequisites of individual MML agents throughout all stages of collabora-

tive learning. However, achieving effective personalization within a collaborative

multimodal learning system poses many practical challenges. (1) First, personaliza-

tion implies heterogeneity–the various user needs and capabilities among learning

agents lead to increased knowledge diversity. This heterogeneity among agents

complicates the discovery of shareable knowledge among individual agents, mak-
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ing it challenging to achieve an appropriate balance between personalization and

collaboration performance. (2) Second, the patterns of personalization may vary

dramatically depending on application scenarios, users’ unique attributes and roles,

locality constraints, system budgets, and other factors. For example, in some cases,

agents may have different device setups, resulting in varied input modality types.

In other cases, agents might be used to serve different target tasks. Given dif-

ferent personalization patterns, the algorithms governing how agents collaborate

may have various objectives and evaluation tradeoffs, highlighting the necessity for

systematic exploration of which collaboration mode fits each pattern.

Motivated by the above challenges, this thesis endeavors to pursue the follow-

ing research goals in Personalization-aware CoMML. (1) The first is to tackle the

heterogeneity challenge caused by personalization, aiming to find appropriate

strategies for knowledge sharing among diversified MML agents to achieve a good

balance between personalization and collaboration. (2) The second is to investi-

gate different personalization patterns in real-world scenarios and to further

determine the necessary technical efforts required for each pattern. Specifically, we

will consider the following five possible personalization patterns between agents:

• Modality Preference: Agents have specific input modality types or construc-

tion of multiple modalities due to their distinct device setups, the job environ-

ments, network connections, sensor affordability, and use cases. For example,

in a driving scenario with two vehicles connected and collaborating with each

other; a vehicle may use its onboard camera to capture videos to predict traffics,

and another vehicle may use both video and RADAR signals to predict traffics.

• Task Preference: Agents may target different downstream tasks based on their

use cases. For example, while an agent deals with image classification, another

agent may focus on audio synthesis conditioned on the input image.

• Domain Preference: Agents are situated in diverse environments, resulting in

unique perceptions shaped by specific biases in what they see, hear, or feel. This

includes two cases: i) Domain preferences within each modality type, such as

object rotations or environmental lighting in images, and background noise or

speaker identity in audios. ii) Varied multimodal interaction behaviors among

agents. For example, given two agents equipped with both image and text modal-



4

ities, the common knowledge shared by a pair of image and text may be within

the background for one agent but around the contours of objects for the other.

• Concept Preference: Agents have their own target class categories, distinct

definitions for concepts, or prior knowledge during decision-making. For exam-

ple, many users are only interested in a minority of classes. Additionally, differ-

ent agents might assign different label IDs to the same object. These concept

preferences result in shifts in label spaces among agents.

• Architecture Preference: Agents have the freedom to specify their model

architectures, resulting in differences in model depth, width, or topology (i.e.,

the family of neural network architecture). There are four real-world reasons

motivating the necessity of considering architecture preference. i) Task complex-

ity varies among agents, leading some to require larger neural network sizes or

even varied network families to address more complex problems. ii) Inter-modal

interaction mechanism can vary across agents, necessitating distinct network

connections (e.g., concatenation, element-wise product, cross-attention fusion,

tensor fusion) for effectively capturing such interactions [11]. iii) The computa-

tion resource budget can also vary greatly across agents, and the computation

device might range from mobile phones and tablets to personal computers. This

imposes restrictions on the sizes of model architectures for agents. iv) In con-

tinual development workflows, the model architecture can be modified over time

[12] or even embedded in neural architecture search loops [13]. In such cases,

consideration of architecture preference supports such extension flexibility.

Finally, (3) we aim to advance the compatibility and applicability of Personalization-

aware CoMML frameworks in multimodal general intelligence. A broad range of

modality types, including language, image, audio, video, 3D shapes, and diverse

types of multimodal learning tasks, will be studied within our frameworks.

1.2 Thesis Overview

An overview of this thesis is summarized in Table 1.1.1. We unfold 9 research

topics centered around Personalization-aware CoMML, which are categorised into

three parts: We begin with relatively simple personalization patterns–the modality
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Table 1.1.1: Thesis Overview. Research topics are centered around Personalization-
aware Collaborative Multimodal Machine Learning, addressing various technical
challenges arising from the existence (or potential coexistence) of five personaliza-
tion patterns: Modality Preference (M), Concept Preference (C), Domain Prefer-
ence (D), Task Preference (T), and Architecture Preference (A).

Individual Collaboration Mode
Chapters Keywords

Preference Shareability Final Goal
M Data

General Model
Chapter 3 Heterogeneous Graph

C
Meta-gradients

Chapter 4 Contrastive, OOD
M+C Chapter 5 Graph Meta Leaner

M+C+D
Parameter Weights

Chapter 6 Split Transfer
Chapter 6 Agent Sampling

M+C+D+T
General Model + Chapter 7 Gated Transfer
Personal Models Chapter 7 Disentanglement

M+C+D+A
Inference Outputs Chapter 8 Co-Distillation
Latent Knowledge Chapter 8 Hypernetwork

preferences and concept preferences, in Part I (Chapter 3, Chapter 4, and Chapter

5), wherein we address the heterogeneity by formulating the collaboration problem

within a centralized global training paradigm and explore graph-based, contrastive,

and meta-learning approaches. Then, in Part II (Chapter 6 and Chapter 7), we

turn to the global-local personalized collaborative learning paradigm to more ef-

fectively address complex agent heterogeneity, particularly when introducing two

additional personalization patterns–domain preferences and task type preferences.

We explore approaches for explicitly optimizing knowledge transfer among het-

erogeneous agents. Finally, in Part III (Chapter 8), we incorporate architecture

preferences into the system, wherein we continue to utilize the global-local decen-

tralized collaborative learning paradigm but switch to explore implicit information

sharing approaches to optimize knowledge transfer among heterogeneous agents.

In addition to the aforementioned three parts, Chapter 2 offers background infor-

mation and a literature review relevant to all these chapters. Chapter 9 delves into

broader impacts, future directions in CoMML and personalization approaches, and

provide a summary of this thesis.
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1.3 Contributions

The contributions of this thesis are summarized as follows:

• Exploring multi-agent collaboration to advance the frontier of understanding

the multimodal world remains an underexplored research direction. To the best

of our knowledge, this thesis is one of the first endeavors to systematically study

in this direction, namely Collaborative Multimodal Machine Learning (CoMML).

• To improve applicability, we formulate and address a variety of real-world sce-

narios of CoMML by considering multiple personalization patterns, ranging

from modality preferences to architecture preferences. These scenarios might in-

volve the existence of one of these patterns as well as the simultaneous existence

of several personalization patterns. We hope such a comprehensive investigation

will provide valuable insights for future research in this field.

• We propose several novel approaches to tackle the heterogeneity challenge and

strike a balance between personalization and collaboration. We discuss chal-

lenges associated with each specific personalization patterns and introduce novel

approaches to solve each of them.

– We introduce graph-based, contrastive, and meta-learning approaches to han-

dle the modality gap and adapt to concept shifts (Part I).

– To address the more complex statistical heterogeneity, along with modality

gap and downstream task differences, we propose explicitly optimizing positive

knowledge transfer among agents through techniques such as split learning,

gated knowledge sharing, and disentanglement (Part II).

– To address the coexistence of statistical and architectural heterogeneity, we ex-

plore implicit collaboration, investigating feature-sharing methods and propos-

ing a novel agent-bridgeable latent knowledge sharing approach (Part III).

• We conduct experiments on diverse simulated scenarios of personalization-aware

CoMML, which involve various modality types (e.g., images, texts, 3D point

clouds, videos, and audio signals) and different multimodal learning tasks (e.g.,

audio-video classification, scanned document span retrieval, multimedia emo-

tion analysis, and image-conditioned audio generation). Experimental results

demonstrate the efficacy of our proposed approach compared to baselines.



Chapter2

Background and Literature Review

2.1 Notations

Table 2.1.1 present the notations used throughout all chapters.

Table 2.1.1: Notations.

Notations Descriptions

N Number of Agents
M Number of Modality Types across Agents
O Number of Downstream Task Categories across Agents
i Agent ID i ∈ [N ]
m Modality ID m ∈ [M ]
o Task ID o ∈ [O]

X (m) The feature space associated with the modality m, i.e., X (m) = RFm

Ii A set of input modality categories at agent i. In practice, Ii ⊆ [M ]
Oi A set of target task categories at agent i. In practice, Oi ⊆ [O]

ni Number of samples on each agent i
Di Local dataset at agent i, consisting of ni samples
j Sample ID j in the agent i

x
(m)
ij The modality m within the input of sample j on agent i

y
(o)
ij The target o within the label of sample j on agent i

x̃ij The input of the sample j on agent i, where x̃ij = Join(x
(m)
ij |m ∈ Ii)

ỹij The label of the sample j on agent i, where ỹij = {y(o)ij |y ∈ Oi}

Ai The model architecture of agent i
θi Personal model weights of agent i, from the weight space θi ∈ Rdi
fAi(·;θi) The input-to-output mapping function at agent i

D̂colab A collection of all agents’ data

7
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2.2 Multimodal Machine Learning (MML)

2.2.1 Fundamental Principles of Multi-modality

Multi-modality refers to the various representational modes of a real-world instance

or phenomenon. There are the two fundamental principles that have driven tech-

nical challenges and subsequent research innovations of MML [14, 15].

• Principle 1 (Discrepancy between Modalities): Multiple modalities (e.g.,

images, texts, audios, videos, 3D point clouds, 3D motions, graphs) are gathered

from diverse sources. Consequently, when these different modalities represent

the same real-world subject, they demonstrate discrepancies not only in their

(1) data structures but also in the (2) cognitive information conveyed by the

representations. For instance, when representing an apple, an image displaying

an apple on a plate conveys its color, shape, and potential container holding it,

whereas the written or spoken word “apple” contains linguistic knowledge and

phonetic information.

• Principle 2 (Connection between Modalities): Multiple modalities, when

representing the same real-world subject, are also connected; they often share

partial cognitive information or are causally related to each other. (1) Inter-

modality correlation exists when the values of one variable relate to the values of

another. Statistically, this could lead to correlation–the degree in which elements

are linearly related, or other non-linear associations. For example, two cognitive

concepts may co-occur in two or more modalities. (2) Inter-modal dependency

goes beyond correlation and requires an understanding of the statistical causality

between modalities.

Figure 2.2.1 illustrate the two basic principles. With the two principles, multiple

modalities that represent the same real-world subject provide complementary

information that unveil the fundamental characteristics of the subject.
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Figure 2.2.1: Principles of Multi-modality. Here shows a 3-modality case. The
three modalities have discrepant properties as well as connected with each other.

2.2.2 Basic Network Components

MML is a broad field that studies a variety of tasks related to multimodal modal-

ities, such as multimodal fusion, cross-modal data generation, cross-modal align-

ment, multimodal representation learning, cross-modal retrieval, multimodal ground-

ing, and so on. Different MML tasks may employ distinct neural network architec-

tures or leverage a unified general Transformer-based architecture [16, 17].

Based on the two principles mentioned in Section 2.2.1, there are several basic

network components that are utilized to form various MML task networks.

• The Combinatorial Input. Depending on task types and hardware setups,

a subject or phenomenon can be represented by any single modality type or

jointly by a combination of several modality types that provide complementary

information. We denote the input of a sample as x̃ = Join(x(m)|m ∈ I), where

x(m) ∈ RFm represents the modality m in x, Fm is the input dimension of the

modalitym, and I denotes a set of input modality categories. |I| = 1 if the model

is intended for a single-modal deterministic task or a cross-modal generation task,

and |I| = 2 for a bimodal deterministic task or bimodal grounding.

• Unimodal Embedding & Encoder. (1) Unimodal embedding, denoted as

f
(m)
emb: RFm → RLm×Dm , ∀m ∈ I, aims for low-level feature extraction, or dis-

cretization, incorporating a trainable codebook. Each modality type has its own
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Figure 2.2.2: An example pipeline of Multimodal Learning for inference tasks on
two input modalities.

representational structure so that different modalities are discretized in different

ways [17]. For example, text data is tokenized using a vocabulary, while im-

ages are processed using patch embedding with a visual codebook. The output

of the embedding consists of Lm ordered segments, each represented by an dm-

dimensional embedding vector, such as the token sequence in the text modality

[18], the multi-scale spatially-ordered image patches of the image modality [19],

and the multi-scale spatiotemporally-ordered 3d patches of the video modality.

Note that multimodal networks that do not employ attention mechanisms typi-

cally may not incorporate the embedding process (i.e., Lm = 1, Fm = Dm). (2)

Unimodal Encoder, denoted as f
(m)
enc : RLm×Dm → RLm×D′

m , ∀m ∈ I, aims for

high-level feature extraction by modeling the intra-modal interactions. For ex-

ample, the self-attention mechanism of Transformer-based encoders models the

relationships between every pair of discretized segments [19]. If the Transformer

model is too expansive, it is possible to resort to traditional modeling networks.

• Inter-modality Interaction Modeling. In scenarios where the input com-

prises multiple modalities, which complementarily demonstrate the fundamental

characteristics of the subject, Inter-modality Interaction Modeling, denoted as

finter: RL1×D′
1 × RL2×D′

2 ... × RL|I|×D′
|I| → RL′×D̃, aims to model how different

modalities are interconnected with each other. Addressing such high-order rela-

tionships is a key technical challenge that has sparked numerous research inno-

vations in MML. Inter-modality interaction modeling typically consider the rela-

tionships between every pair of segments (or neurons) from two different modal-

ities. Traditional inter-modality interaction models were leveraged manually-

designed or non-parametric strategies like addition, element-wise product, cross
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product, or low-rank product [20, 21]. Modern Transformer-based alternatives

have explored cross-attention mechanisms to adaptively learn how modalities are

connected [22]. The output format depends on the task for which the model is

utilized: L′ = 1 for multimodal fusion tasks or simple non-autoregressive gen-

erative tasks, and L′ > 1 for sequential data generation tasks, where L′ is the

number of segments in the outputs needed by the downstream task.

• Downstream Task Decoder. A decision making function fdec: RL′×D̃ →
RL′×F , where F represents the feature space aligned with user needs. Again,

L′ = 1 for multimodal fusion tasks or simple non-autoregressive generative tasks,

and L′ > 1 for sequential data generation tasks, where L′ denotes the number of

segments in the outputs.

Figure 2.2.2 illustrates an example pipeline for a multimodal inference task from

two modalities, consisting of the network components mentioned above.

2.3 Collaborative Machine Learning

2.3.1 Learning Paradigms

Collaborative Machine Learning emulates the peer-to-peer learning society of

humans. It harnesses the collaboration between multiple AI agents, each of which

have they own perspectives and learning behaviors, with the aim of potentially

expanding the learning abilities of individual AI agents [6, 7, 8, 9].

Setup of Agents: Assuming there are N agents, each agent i = 1, 2, ..., N

• has its observations for the world within a local dataset Di = {(x̃ij, ỹij)}ni
j=1,

sampled from an input distribution x̃ij ∼ Pi(x̃) and the conditional output

distribution ỹij ∼ Qi(ỹ|x̃ij), where Pi, Qi are agent-specific distributions over

the agent-specific input and output spaces Xi, Yi, respectively;

• has a local mapping function fAi
(·;θi) characterized by its agent-specific

model architecture Ai parameterized by trainable weights θi ∈ Rdi , where di

indicates the structure of the weight space associated with Ai; and

• aims to solve its local objective minθi Li(θi) := E(x̃,ỹ)∼Di
l (ỹ, fAi

(x̃;θi)),

where l(·, ·) is the loss function for each sample.
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Multi-agent Collaboration Paradigms: Information sharing among agents can

boost individual agents’ performance by providing a broader view of global gener-

alization, allowing local unseen data to benefit from the knowledge of others [6, 7,

8, 9]. The collaboration procedure, which facilitates beneficial information sharing

among agents, has often been formulated within two learning paradigms:

• Global Centralized Paradigm aims to learn a single global model that can

easily adapt to individual models of each agent [23, 24, 25, 26, 27]. The global

objective is to obtain a single global model θ ∈ Rd and an auxiliary adaption

model ϕ ∈ Rd′ to jointly minimize the local objectives using adapted models

min
θ,ϕ

[
1

N

N∑
i=1

Li (Adapt(Di,θ;ϕ))

]
(2.1)

where Adapt(·, ·;ϕ) is the process of adapting global model to agent-specific

preferences. Adapt(·, ·;ϕ) takes two inputs–the global model and the personal

task, and its role is to find a personal model θ∗i = Adapt(Di,θ∗;ϕ∗) with a

good generalization-personalization balance based on the two inputs.

• Global-local Decentralized Paradigm [28, 29, 30] simultaneously learn

the individual models θ1 ∈ Rd1 ,θ2 ∈ Rd2 , ...,θN ∈ RdN of each agent while

encouraging global knowledge transfer among their learned knowledge. The

global objective is

min
θ1,θ2,...,θN ,ϕ

[
1

N

N∑
i=1

Li(θi)

]
+R(θ1,θ2, ...,θN ;ϕ), (2.2)

which (1) jointly optimizes the local objectives of all agents and meanwhile

(2) encourages a global knowledge sharing scheme among agents R in order to

boost each agent’s local model performance. A good balance between gener-

alization and personalization is managed by R, which controls the impact of

knowledge transfer on local knowledge. Depending on the method of conduct-

ing knowledge sharing, R can be either parametric or non-parametric (ϕ = ∅).

The two learning paradigms fit different application scenarios and have distinct

advantages and disadvantages depending on the context. For instance, the Global-
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local paradigm is better suited to situations with high-order agent heterogeneity,

whereas the global paradigm might encounter challenges when the personal models

need to be highly distinguished from the global model. Furthermore, Global-local

paradigm can be used in privacy-preserving learning such as Federated Learning.

In Section 2.4, we will review the existing works in the two paradigms.

2.3.2 Collaborative MML (CoMML)

CoMML focuses on the multi-agent collaboration for multimodal intelligence. Fol-

lowing the setup in the previous section, CoMML specifies M modality types

(e.g., image, video, text, audio, tabular) and O types of downstream tasks

across the N agents. An agent i may solve any or multiple MML tasks, taking

either single modality or multimodal modalities as inputs. Accordingly, each agent

has the following properties:

• Every agent i is associated with a subset of modality types Ii ⊆ {1, 2, ...,M},
leading to a combinatorial input space Xi := XIi = Join(X (m)|∀m ∈ Ii),
where X (m) is the subspace associated with the modality type m.

• The agent-specific input distribution Pi(x̃) is defined over the space XIi , where

x̃ = Join(x(m)|m ∈ Ii). In the local dataset Di, every sample’s input can be

written as x̃ij ∼ Pi(x̃) where x̃ij = Join(x
(m)
ij |m ∈ Ii).

• Likewise, Every agent i has a subset of downstream task typesOi ⊆ {1, 2, ..., O},
which leads to an output space consisting of multiple independent label

spaces of each local tasks Yi := YOi
= {Y(o)

i |∀o ∈ Oi}, where Y(o)
i is the

subspace for the task type o and has its agent-specific concept definitions.

• The agent-specific conditional output distribution Qi(ỹ|x̃) is defined over YOi
.

In the local datasetDi, every sample’s target can be written as ỹij ∼ Qi(ỹ|x̃ij),
where ỹij = {y(o)

ij |o ∈ Oi}.

• The agent-specific neural architecture Ai, which determines the weight

space topology Rdi for trainable parameters θi, typically consists of unimodal

embedding and encoder, inter-modality interaction module, and decoders. We

will separately define the trainable weights of each module. For example, we

will use θ
(m)
enc,i to denote the trainable weights for modality-m’s encoder module



14

of agent i, and the decomposed forward function for this module will be de-

noted as fA(m)
enc,i

(·;θ(m)
enc,i). If all agents use the same sub-architecture in this mod-

ule, we will simplify the notations as fA(m)
enc,1

= fA(m)
enc,2

= ... = fA(m)
enc,N

= f
(m)
enc .

Details will be introduced in each chapter.

• The local objective can be rewritten as the multitask objective minθi Li(θi) :=

E(x̃,ỹ)∼Di

1
|Oi|
∑

o∈Oi
L(o)

(
y(o), fAi

(x̃;θi)o
)
.

The aforementioned properties, along with Section 2.3.1, delineate the general se-

tups of CoMML. Every subsequent chapter of this thesis will adhere to these setups

or concentrate on specific cases thereof.

2.3.3 Personalization in Collaboration

This thesis will focus on five real-world personalization patterns between agents

in Personalization-aware CoMML, including modality preferences (M), concept

preferences (C), domain preferences (D), task preferences (T), and architecture

preferences (A). Each of these personalization patterns will result in specific het-

erogeneity patterns among collaborative agents. Therefore, we provide terminology

and definitions for these heterogeneity patterns here.

• Modality Gap. Due to modality preferences, agents vary in their input

spaces. That is, for any pair of agents (i, i′), it is possible that XIi ̸= XIi′ due

to their different input modality types Ii ̸= Ii′ . For example, in a multi-vehicle

collaboration system, a vehicle may use its onboard camera to capture videos

to predict traffics, while another vehicle may use both video and RADAR

signals to predict traffics.

• Task Difference. Due to task preferences, agents might vary in their output

spaces. That is, for any pair of agents (i, i′), it is possible that YOi
̸= YOi′

since they target at different downstream tasks Oi ̸= Oi′ . For example, in a

multi-purpose surveillance system where all camera-based agents take videos

as input, agents installed at conferences may focus on video activity classifica-

tion tasks, while other agents intended for daily life observations may prioritize

object detection from video.
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• Domain Drift. Due to the different environments from which agents collect

observations, agents may vary in their input distributions. That is, Pi ̸=
Pi′ . Specifically, we consider the joint distribution drifts, meaning that the

multimodal interaction behaviors can vary between agents. For example, if

there are two agents that both have image and text modalities, the image-text

relationships can happen in the background contexts at one agent but occur

around the contour of objects at the other agent.

• Concept Shift. Due to concept preferences, agents have different interested

concepts or different definitions for the same concept. That is, they vary in

their conditional output distributions Qi ̸= Qi′ . The label space of classifica-

tion can be represented at different concept granularities: (1) instance-level

concept shifts and (2) segment-level concept shifts. For instance, in computer

vision, image classification labels correspond to each sample, image segmen-

tation labels correspond to each pixel, and video event recognition labels cor-

respond to each frame, Likewise, text classification labels are associated with

each text sequence, while named entity recognition segmentation labels are

associated with each word, and so on.

• Architecture Gap. Due to architecture preferences, agents vary in their

weight spaces. That is, for any pair of agents (i, i′), it is possible that Rdi ̸= Rdi′

since they use different neural architectures Ai ̸= Ai′ . Specifically, there could

be four cases of architecture gap. (1) Different input modalities or target

tasks lead to variations in the input channels (i.e., construction of unimodal

encoders) and output channels (i.e., task-specific decoders). (2) Topology Dif-

ference is a common situation in multimodal neural architecture. Two agents

might use different model families (e.g. one agent is based on Transformer

while the other is based on ResNet) or use different multimodal fusion strate-

gies for different input modality types (e.g. one agent uses alignment while the

other uses concatenation). (3) Depth Difference refers that two agents having

the same topology (e.g. both are based on ResNet) but their numbers of lay-

ers/modules are different. (4) Width Difference describes a situation where

two agents having the same topology and same depth, but their numbers of

neurons at each layer are different.
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Domain drifts and concept shifts have also been referred to as statistical heterogene-

ity, as discussed in [31, 12], while the other three heterogeneity patterns (modality

gap, task difference, architecture gap) have received less attention previously. We

will review the previous works addressing these heterogeneities as follows.

2.4 Literature Review

Review on Collaboration Paradigms: (1) Federated Learning (FL). FL

is a distributed collaborative AI approach [32]. By pushing AI data training to the

network edge at Internet-of-Things devices where the data reside, FL benefits both

network operators and IoT user agents in terms of network resource savings and

privacy enhancement. Early works such as FedAvg [33] builds the global model

based on averaging the local Stochastic Gradient Descent (SGD) [34, 35] updates.

Then, Various methods [24, 36, 37, 38] are introduced to improve the robustness of

the global model under non-IID settings. For example, FedProx [24] adds a proxi-

mal term to the local objective. Personalized FL [25, 26, 27] has been proposed as

an alternative to deal with non-IID data, where the global model plays the role of a

meta-model to be used as initialization for few-shot adaptation at each client. For

example, pFedMe [26] used Moreau envelopes, while PerFedAvg [27] took advances

of meta learning approaches [39]. In the context of multi-modality, [40] learns

the correlated alignment information from multiple modalities in the unsupervised

manner, and [41] uses the co-attention mechanism in personalized FL to fuse the

complementary information of different modalities. FL approaches can be further

categorised into vertical FL, horizontal FL, Federated transfer learning, and so on.

(2) Mutual learning. The idea of collaborative learning has been explored in

Mutual Learning, also referred to as Online Knowledge Distillation (OKD). DML

[42] shows that a group of models can benefit from mutual learning of predictive

class probability distributions. CL [43] further extends this idea to a hierarchical

architecture with multiple classifier heads. PCL [9] introduces an extra temporal

mean network for each peer as the teacher role. In contrast to mutual mimicry,

KDCL [44] construct an online teacher via a weighted ensemble logit distribution

but differ in various aggregation strategies. Mutual Contrastive Learning [45, 46]
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proposes mutual transfer of self-supervision augmented distributions and perform

mutual interaction and transfer of contrastive distributions. Mutual Learning has

recently been integrated with FL to scale up to a large number of participating

agents [47, 48, 49, 50]. (3) Meta Learning can be utilized in the multi-agent

collaboration scenarios due to its generalization ability over a distribution of mul-

tiple tasks. Recent meta-learning approaches can be divided into two categories:

inductive and transductive few-shot classification. Inductive few-shot learning has

been more widely studied than transductive few-shot learning. Inductive methods

mainly includes metric-based and optimization-based algorithms. Metric-based ap-

proaches learn an embedding metric space shared by all tasks, on which data

samples of different classes can distinguish with each other based on distance mea-

surements [51, 52, 53, 54]. While metric-based methods directly measure data

similarities of all tasks in a common metric space, optimization-based approaches

train a meta-learner as an optimizer to fine-tune the meta-prior, thus adapt the

class distribution to each specific task [39, 55, 56, 57]. Further, [58, 59] incorpo-

rated meta learning into multimodal fusion tasks by employing recurrent neural

networks or modality modulators. The three families of frameworks have been

actively integrated with each other, and each of them can be further categorised

into either the global or the global-local paradigm defined in Section 2.3.1. We will

review personalized approaches within each of the three frameworks as follows.

Handling Statistical Heterogeneity in Collaboration: In recent years, the

fields of Federated Learning, Mutual Learning, and Meta Learning, have been ac-

tively investigating the challenges posed by domain shifts and concept shifts across

tasks. (1) Personalized Federated Learning (PFL). Statistical heterogene-

ity, or Non-IIDness, has been widely discussed in Federated Learning (FL). While

global-only FL has addressed this challenge [24, 36, 37, 38] by modification of local

objective or gradient update process, PFL [25, 26, 27], an alternative family of FL

methods that allow agents to train their own local models, have employed fine-

tuning methods (e.g., FedPer [60], pFedMe [61], Per-FedAvg [27]), meta-learning

methods (e.g., MAML [39]), mixture methods (e.g., APFL [62], PFL-MoE [29],

Factorized-FL [63]), multi-task learning methods (e.g., MOCHA [28]), graph based
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methods [64, 65], and hypernetwork based methods (e.g., HyperPFL [30, 66]).

(2) Task-adaptive Meta Learning. The Learning-to-learn framework of meta

learning provides freedom of injecting agent-specific domain or concept knowledge

into inner-loop adaptation. [52, 67, 68] have improved the metric- or optimization-

based methods in terms of task adaptability by introducing task-adaptive metric

space [52], modulation network [67], or explicitly modeling structured task rela-

tionships [68]. Among existing works, approaches addressing concept shifts have

primarily focused on an instance-level granularity. However, finer-grained con-

cept shifts, such as variations in label definitions for tasks like object detection

and token labeling, remain relatively less explored. (3) Domain-aware Mutual

Learning. DaFKD [69] discerns the importance of each agent’s model to each

distillation sample, enabling optimization of the ensemble of soft predictions from

diverse domains. CCDistill [70] explores fine-grained cross-agent domain correla-

tions by utilizing comprehensive knowledge extracted from features, such as content

and style knowledge from images, and then conducts correlation-aware distillation.

Handling Modality Gap and Task Difference in Collaboration: We re-

view two families of approaches that have been used to address modality gaps and

task differences across collaborative agents. (1) Single-path Alignment Ap-

proaches. At first glance, straightforwardly applying single-modal single-head col-

laborative learning approaches to our modality-heterogeneous multi-task settings

[33, 24, 28, 71] is feasible. Specifically, by unifying all possible input and output

spaces using agent-specific adaptors, one can fit single-modal single-task models

for multimodal multi-tower tasks. For example, [40] employ cross-modal align-

ment on an agent-shared latent representation space, enabling the global model to

serve both unimodal agents and agents employing various combinations of multiple

modalities. This strategy often suffers from erroneous information sharing during

collaboration especially when different modality types entail highly discrepant in-

formation or when task types are highly distinguished. (2) Multi-path Transfer

Approaches. Alternatively, recent works [72, 73] encourage agents’ models to par-

tially share input and output channels, leveraging a unified global network where

each agent-specific input-output mapping function uses only a subset of pathways
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within this model. The computational pathways of each agent can be predefined or

dynamically searched using techniques like SparseMoE [74, 75, 76] and Reinforce-

ment Learning [77]. The different computational pathways of agent models share

knowledge with each other through either weight average (e.g., FedMoE [78]) or

feature distillation (e.g., [79, 80, 81]). For example, Cross-modal Mutual Learning

employs distillation on an agent-shared modality-shared latent space [82, 83, 84,

85], or distill on a learned latent modality structures [86]. FedMoE [78] employs

Mixture of Experts to dynamically assign gated weights to merge global models

and private models. More works on Multimodal FL, Multimodal Meta Learning,

and Mutual Co-Learning for multimodal tasks, have been surveyed in [87, 88, 89].

These lines of works have demonstrated limitations in ensuring efficient and accu-

rate knowledge transfer when both modality gaps and task differences exist, and

have also shown training inefficiency with highly discrepant agents.

Handling Architecture Gap in Collaboration: Given the recent real-world

application requirements for collaboration across diverse computation platforms

with varying resource budgets, the knowledge transfer across proprietary model

architectures has attracted significant research attention in collaborative learn-

ing. (1) Feature-sharing Approaches via Distillation. In the field of Federated

Learning (FL), Federated Mutual Learning utilizes Knowledge Distillation to share

predictions or intermediate features of local models among agents, making it a

natural choice for facilitating knowledge transfer across diverse architectures. For

example, FedDistill [90], FML [49], PFML [91], and FedGKD [92], adopt collabora-

tive knowledge distillation to align predictions among diverse client models on the

server. Without requiring a public dataset at server, Data-free Federated Distilla-

tion learns an additional data generator to simulate local data on the server [93,

94]. (2) Weight-sharing Approaches via Supernetwork and Hypernetwork. An-

other line of works in Federated Learning (FL) has explored direct weight-sharing

approaches to handle diversified network architectures. HeteroFL [95] allows par-

ticipants to share parameters among prototypes. Another line of works, such as

Split-Mix [72], DepthFL [96], and DisPFL [97], leverages a large supernetwork,

where each agent is aligned to partial parameters in this supernetwork indicated
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by a supermask learned by pruning techniques, and/or adopts progressive distilla-

tion to handle depth difference. While supernetwork-based methods have shown

their unsuitability for topology differences across architectures, other approaches

have explored hypernetworks to address these topology differences by generalizing

architecture graphs [98, 66]. However, these approaches have limitations in multi-

modal scenarios and cases involving joint architectural-statistical heterogeneity.

Collaborative Learning for Large Foundation Models: There has been a

growing concern regarding data privacy during the pre-training and fine-tuning

phases of Multimodal Foundation Models. For example, the massive multimodal

corpora for pre-training might include sensitive or personal information, thus cen-

tralizing these data is not possible; also, commercial competition tend to isolate

users’ feedbacks, hindering direct collaboration and knowledge sharing for down-

stream task fine tuning. (1) Collaborative Pre-training. Recent works have

shown that text-only LLMs can be pre-trained with Federated Learning. For ex-

ample, FedBERT [99] enables agents with limited computing capability to par-

ticipate in pre-training a large language model. Subsequently, FedBFPT [100]

employs multiple smaller local models to further pre-train a global model tailored

for specific tasks. (2) Collaborative Fine-tuning. [101, 102, 103, 104, 105,

106] have investigated fine-tuning text-only LLMs using FL. Federated Instruc-

tion Tuning (FedIT) [107] adopts FL as the learning framework for instruction

tuning of LLMs, effectively utilizing users’ diverse instructions stored on local de-

vices while addressing concerns related to data sensitivity and transmission costs.

OpenFedLLM [108] builds a codebase for collaborative and privacy-preserving LLM

training on distributed private data via FL, allowing multiple data owners to train

a shared model without transmitting raw data. GPT-FedRec [109] introduces a

federated recommendation framework leveraging ChatGPT and a hybrid Retrieval

Augmented Generation (RAG) mechanism. Despite these initial explorations, the

field is still in its early stages. More significantly, there is a lack of discussions on

decentralized Artificial General Intelligence (AGI) focusing on Multimodal LLMs,

and no existing work has addressed complex inter-agent heterogeneity in this area.



Part I

Collaboration with Graph and

Meta Learning

21



Chapter3

Heterogeneous Hypernode Graph

Learning for Collaborative Informa-

tion Fusion with Modality Gap

3.1 Introduction

In this chapter, we address situations where merely modality preferences of in-

dividual MML agents are allowed, assuming all agents solve the same classification

task with a shared label space from a shared domain. One real-world applica-

tion scenario of such a setting is the task of multimodal information fusion where

some modalities may be missing [110]. Each agent solves an information fusion

task, which takes multiple modalities as input, fuses their complementary infor-

mation, and then makes a decision. Yet it’s common that not all modality types

are available; modalities are often missing due to reasons such as agents’ disuse,

sensor damage, and data corruption. This chapter aims to study and experiment

on this specific use case–incomplete multimodal information fusion via multi-agent

collaboration, to delve into the research on “CoMML with modality preferences”.

Given the modality preferences of individual agents, different agents might have

different combinations of input modalities, as illustrated in Figure 3.1.1. Such a

heterogeneity pattern caused by modality preference is called modality gap. The

modality gap among agents poses two technical challenges. (1) First, they bring

22
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Figure 3.1.1: An illustration of modality preferences in a trimodal multi-agent
collaboration scenario. There are at most seven input feature spaces.

about inconsistent input data structures, and thus introduce difficulties in applying

complete multimodal fusion models [20, 111, 112, 113] that require the same input

structure, consisting of all modalities, to be fed to their model architecture. (2)

Second, modality gap might lead to inconsistent input information. Effective mul-

timodal fusion requires learning about complementary information, the modality-

specific information as well as the multimodal interactions [15]. However, agents

that take fewer modalities as inputs (e.g., only a single modality) may lack relevant

information compared to other agents with additional input modalities.

Prior works have addressed these challenges by imputing the absent modali-

ties and then conducting collaboration with the imputed homogeneous infor-

mation. Traditional imputation techniques include zero/average imputation and

matrix completion. Deep learning based imputation approaches employ genera-

tive models to synthesis those modalities that cannot be seen at the agent based

on the observable modalities [114, 115, 116]. Then, multimodal fusion can be

achieved simultaneously [117, 118, 119] or after imputation [116, 114]. However,

these methods may introduce extra noise to the original data which has negative

impacts on the performances, and they are sometimes associated with complex

auxiliary models such as deep generative models.

To avoid potential noises, we choose to pursue an alternative line of research,

which skips the imputation and directly collaborates with heterogeneous

information [120, 121, 122]. Multi-source feature learning method [120] partitions

the agents into multiple complete subgroups, and then integrates representations of
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the subgroups as a sparse multi-task learning problem. Multi-hypergraph learning

method [123] incorporates high-order relationships of subgroups and learn directly

on the output. However, these methods ignore the complex intra- and inter-modal

interactions and fail to learn the fine-grained relationships among all agents.

Motivated by the limitations of existing approaches mentioned above, in this

chapter, we introduce a new fundamental framework that facilitates both (1) the

complex intra-agent information extraction as well as (2) the inter-agent informa-

tion sharing between modality-heterogeneous agents without the need for imputa-

tion. The proposed framework, namely Heterogeneous Graph-based Multimodal

Fusion (HGMF), models the multi-agent collaboration in a heterogeneous graph

structure, and then exploits graph neural network-based transductive learning to

extract complementary information from the highly interacted incomplete multi-

modalities and fuse the information from different subspaces into a unified space.

The proposed approach also tackles a series of technical challenges posed by the

graph construction, the exploitation of multimodal interactions, and the informa-

tion sharing schemes between modality-heterogeneous agents through graph learn-

ing. Here is a summary of this chapter.

• We propose leveraging a Heterogeneous Hypernode Graph (HHG) to model

the collaboration behavior between modality-heterogeneous agents. Such

graph representation connects the agents that have various types of input

modality combinations, and will help to explore the complex multimodal in-

teractions and inter-agent relationships.

• We propose a novel transductive learning framework based on graph neural

network, applied to the constructed HHG, which handles both intra-agent

feature extraction and inter-agent information sharing. The key idea is to

derive relevant information from the agents having observations of specific

modalities, to enhance those without them.

• We conduct experiments in multiple levels of modality gap and demonstrate

that our method can deal with real scenarios with a high degree of freedom in

modality preferences. We show the effectiveness of our model by comparing

it with both inductive and transductive baselines on three datasets.
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3.2 Related Work

In addition to the literature reviewed in Section 2.4, our proposed techniques are

related to and inspired by three lines of work: 1) multimodal fusion; 2) multimodal

data analysis with incomplete modalities; 3) graph-based transductive learning.

Multimodal Information Fusion. Data from multiple sources can provide

complementary information that reveals the fundamental characteristics of subjects

and phenomenons [15]. Integrating multimodal information thus can promote the

concept understanding. Therefore, multimodal data fusion has become a widely-

studied topic across various application scenarios, such as object detection [124,

125], sentiment analysis [126, 112, 111], emotion recognition [112, 123, 20], and dis-

ease diagnosis [123]. Extensive work [127, 4, 128] has been developed to combine

different modalities and perform predictions. These approaches focus on learning

representations to exploit the complementarity and redundancy of multiple modal-

ities [129, 130, 131, 132, 133] and fusing information to perform the prediction

tasks [134, 135, 136, 15, 137]. The majority of prior studies on deep multimodal

fusion assume complete feature sets (i.e., all modalities are available for the inputs).

Early fusion methods refer to concatenating multimodal data at the input level [138,

139], while late fusion methods [140, 113] integrate unimodal outputs. Graph-based

methods such as hypergraph neural networks (HGNN) [141] perform early fusion

(concatenation) as well as late fusion which exploits graph structural relationships

among unimodal representations to integrate outputs. However, these methods

have limited capabilities in exploring complementary information from high-order

modality interactions, and cannot deal with missing uni-modalities. Recent meth-

ods that perform intermediate fusion include multimodal sequential learning [111,

112] for sequential data (time series, language, audio and video), and post-dynamic

learning for general data [20, 21]. However, these works cannot model multimodal

interactions with the presence of modality preferences.

Incomplete Multimodal Data Analysis. Imputation methods [119, 114,

116] that complete or generate incomplete modalities may introduce extra noise
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to the fusion process. Non-imputation methods such as multi-source learning [120]

and multi-hypergraph learning [123] first partition the incomplete data to multiple

complete subgroups, and then integrate subgroup representations using multi-task

learning or shallow graph learning through graph Laplacian. However, these works

fail to effectively model the interactions between modalities with missingness, and

fail to explore the relationships between different incompleteness patterns.

Graph-based Transductive Learning. Several graph-based transductive learn-

ing models designed generally are also related to our work. Graph Attention Net-

works (GATs) [142] compute attention coefficients using an edge-wise mechanism,

which is extended in our work to learn a heterogeneous hypernode graph where

there is not an immediately-obvious structure. We employ the graph attention

mechanism to learn the unknown relationships between different incompleteness

patterns within a heterogeneous hypernode graph. In addition, several GNN vari-

ants [143, 144] propose to handle node embedding in heterogeneous graphs. HGNN

[141] and multi-hypergraph learning [123] perform late fusion on graphs constructed

from complete or incomplete multimodal data, through traditional graph Laplacian

or graph neural networks. These methods cannot deal with the complex multimodal

hypernode structure formulated in this chapter.

3.3 Problem Formulation

Definition 3.1 (Collaborative Multimodal Fusion with Modality Gap).

Suppose there are M modality types across N agents. For simplicity, in this chap-

ter, we assume that each agent i = 1, 2, ..., N has only one sample, i.e., ni = 1.

We define D̂colab consisting of a collection of Ntrn training agents and Ntst test-

ing agents, where each agent has one labeled or unlabeled sample, along with an

indicator specifying its preferred modality set

D̂colab := {D1,D2, ...,DNtrn ,D∗
1,D∗

2, ...,D∗
Ntst
},

Di := (x̃i, Ii, yi), i = 1, 2, ..., Ntrn

D∗
i := (x̃∗

i , I∗i ), i = 1, 2, ..., Ntst

(3.1)
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where x̃i = {x(m)
i }m∈Ii . Recall that Ii ⊆ [M ] is the modality-preference style–a

set of preferrable or available modalities–on agent i. The goal is to train a global

model θ∗ from the training agents, which can capture modality interactions from

all agents with different styles. θ∗ should perform well on testing agents, even if

they have different modality-preference styles compared to the training agents.

3.4 Methodology

3.4.1 Overview

Given the above setup and objective, we will formulate a Transductive Learning

framework [123] to handle multi-agent collaboration with modality gap. Different

from inductive learning, transductive learning directly incorporates the feature

information implicit in other samples [145]. Our key idea is that an agent lacking

certain input modality can derive relevant information from other agents possessing

it within the transductive learning framework. Agents with different modality-

preference styles can effectively exchange their modality-specific and inter-modal

interaction information, and multimodal fusion can be achieved along the way.

Among transductive learning variants, graph-based transductive learning meth-

ods achieved promising performance in practice [145, 141]. Recent advancements in

graph neural networks (GNNs) also allow high-level features and high-dimensional

representations to be learned from graph structural original data. Since graphs are

powerful representations to model data relationships, in this chapter, we use graphs

to exchange significant information between multimodal agents, and formulate our

problem in a novel GNN-based transductive learning framewok, HGMF.

In this section, we present our HGMF method which is built based on a GNN

transductive learning framework. The HGMF has three stages: 1) modeling incom-

plete multimodal data in a proposed heterogeneous hypernode graph structure; 2)

encoding the highly interacted multimodal data with the presence of missingness

into more explicit modality-specific and cross-modal interaction information; and

3) aggregating and exchanging information among multimodal agents across differ-

ent modality-preference styles, through which all data can be fused into the same
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Figure 3.4.1: The three-stage workflow of Heterogeneous Graph-based Multimodal
Fusion (HGMF). It shows a four-agent example over three modalities in total, but in
real tasks, the graph can be larger in scale and more complex. First, D include four
agents with four styles of modality preferences. G and X are constructed after HHG
graph construction stage. Genc and Xenc are obtained through intra-hypernode
encoding stage. Multimodal agents are finally fused into joint representations Z
through multiple MBGAT layers’ graph embedding stage.

embedding space. Figure 3.4.1 illustrates the three-stage HGMF workflow using a

simple four-data example. Note that in real scenarios, graphs can be larger and

more complex than those shown in Figure 3.4.1. In the following, we will introduce

the technical details in each stage.

3.4.2 Modeling Collaboration in Heterogeneous Graph

The multi-agent collaboration with multiple modality-preference styles can be mod-

eled as a k -NN affinity graph structure, where each node is an agent. However, as
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each agent contains multiple data sources, belongs to different modality-preference

styles, and has different feature spaces, we cannot use a simple affinity graph to

model our problem. To this end, we first define a new family of graph structures,

namely Heterogeneous Hypernode Graphs (HHG) as follows.

Definition 3.2 (Heterogeneous Hypernode Graph). A Heterogeneous Hy-

pernode Graph (HHG) is denoted as G = (V , E , ψ, ϕ), containing the following

components and properties.

• V = {vi}Ni=1 is the hypernode set, where each hypernode is self-interacted.

Different from simple graphs in which each node is associated with the same

dimensional feature, hypernodes contains different numbers and dimensions

of features, and each hypernode’s features may be implicitly or explicitly

interacted. A hypernode refers to a multimodal agent, and we define the

feature set of graph as X = {x̃i|i = 1, 2, ..., Ntrn} ∪ {x̃∗
i |i = 1, 2, ..., Ntst}.

• E = {ej}|E|j=1 is the edge set. As we construct a k-NN affinity graph for

agents, to more efficiently represent the high-order connections among nodes,

we use the hyperedges1 of hypergraphs instead of pairwise edges [123, 141]. A

hyperedge is a subset of (hyper)nodes, connecting k agents who share some

similar information, and showing a k-NN relationship among some nodes.

Hyperedges E can be represented by an incidence matrix H ∈ {0, 1}|V|×|E|,

where each row represents a hypernode vi and each column represents a

hyperedge ej. For each entry in the incidence matrix, H(vi, ej) = 1 indicates

that the hypernode vi is connected with some others through the hyperedge

ej. Each hyperedge ej is associated with a single-valued weight wj. In this

chapter, all edge weights equal to one.

• ψ : V 7−→ U is the node type-mapping function, where U = {1, 2, ..., 2M − 1}
is all possible modality combinations in a multi-agent collaboration system

with individual preferences over M modality types. Given M modality types,

there could have up to (2M − 1) modality-preference styles. Figure 3.1.1

illustrates a trimodal (M = 3) case with seven modality-preference styles

1hyperedges: edges in hypergraphs are called hyperedges or hyperlinks. A hyperdge connects
two or more than two vertices.
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Figure 3.4.2: Pipeline of HHG graph construction from the multi-agent dataset
with individual modality preferences.

[120]. Those with solid colors indicate those preferable or available modalities

on each agent, and the other blocks represent unpreferable or non-available

modalities. This figure also shows that agents can be divided into separate

groups such that in each group all agents have the same modality-preference

style and each agent only belongs to one style. The graph is heterogeneous

because hypernodes (agents) have different modality-preference styles, so we

define ψ to distinguish multimodal agents.

• ϕ : U 7−→ P(M) \ ∅ defines a function that maps a style to a combination

of modalities, where P(M) denotes the power set (all subsets) of the set

M = {1, 2, ...,M}.

Heterogeneous Hypernode Graph Construction. Figure 3.4.2 shows an

overview of the HHG graph construction process. On the left of the figure shows

an trimodal incomplete dataset, where columns denote modalities and rows de-

note agents. Given such a multimodal dataset D, one can easily obtain ψ(·), ϕ(·),
V , and X based on data availability and corresponding features. On the right in

Figure 3.4.2 is the seven-style HHG constructed from the input, where different
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colors denote different styles. Note that each node here is a hypernode containing

multi-modalities. We also provide an illustration of heterogeneous hypernodes in

Figure 3.4.1(b), where each agent constructs a hypernode who contains at least one

modality. The bottom region in Figure 3.4.2 illustrates the hyperedge calculation

process. E can be calculated from D as follows. As multimodal agents (hypernodes)

have complex connections, each modality can provide a certain view of the data

relationships. Motivated by [141, 123, 120], to capture the multi-view and high-

order relationships among multimodal agents, we first reconstruct the blockwise

incomplete dataset into B blocks according to different combinations of available

modalities, and then calculate a set of hyperedges among all agents involved in

each block. Let Vb and Mb denote the hypernodes and the modality set involved

in the block b, respectively. We calculate the normalized distance between each

pair of agents in a block (∀vi, vi′ ∈ Vb) as follows:

d(b)(vi, vi′)
∆
=

1

|Mb|

√ ∑
m∈Mb

||f (m)
emb(x

(m)
i )− f (m)

emb(x
(m)
i′ )||22/Zm, (3.2)

where Zm =
∑

i,i′∈Vb
||f (m)

emb(x
(m)
i ) − f

(m)
emb(xi′,m)||22 and {f (m)

emb(·),m = 1...M} are

the pre-trained unimodal embedding models that are used to initialise shallow

unimodal features. After calculating all distances, each hyperedge is calculated

using k nearest neighbor method centered with each node [123]. As shown at the

bottom region in Figure 3.4.2, for all pre-defined blocks, B sets of hyperedges are

calculated independently depending on the feature extraction models’ parameters.

Suppose their incidence matrix are {H1,H2, ...,HB}, the final incidence matrix for

HHG is the concatenation form H = [H1;H2; ...;HB]. In this way, agents that do

not have certain modalities can be connected with those that have the modalities,

and then the incomplete data problem can be alleviated. In Figure 3.4.1(b), the

hyperedges in different colors connects agents according to different blocks.

3.4.3 Intra-hypernode Encoder

After constructing the input graph G and feature set X , we propose an intra-

hypernode encoder to capture complementary information [15] from the highly
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Figure 3.4.3: Architecture of intra-hypernode encoder, which takes as input each
hypernode feature set x̃i and output new feature set h̃i. Partial neurons are blocked
based on which modalities are unpreferrable/non-available at each agent.

interacted modalities with the presence of missing data. The intra-hypernode en-

coder, whose architecture is shown in Figure 3.4.3, consists of two components: 1)

Unimodal Encoder Networks take unimodal data as input, and output unimodal

embeddings, and 2) Feature Interaction Networks captures the modality interac-

tions among these embeddings, and extract complementary information (modality-

specific and cross-modal interaction information) from them.

3.4.3.1 Unimodal Encoder Networks

Since the original data in X is very high-dimensional, sparse, and inconsistent

with respect to data structure, it is hard to calculate interactions among original

modalities. We thus setup a series of source-specific Deep Neural Networks (DNNs)

to learn compressed and rich feature representations from unimodal original data.

Based on real data structures in the datasets on which we perform our models,

we mainly consider three types of architectures to build unimodal encoder net-

works: 1) Convolutional Neural Networks (CNN) for embedding image modalities;

2) Bidirectional Long-short Term Memory (BI-LSTM) for embedding sequential
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modalities, such as video, free texts (e.g., clinical records) and spoken language;

and 3) Stacked fully connected layers followed by nonlinear activation functions,

for embedding high-dimensional or sparse feature-based modalities, such as gene

expressions. Suppose f
(m)
enc (·;θ(m)

enc ) be the m’s unimodal encoder network with learn-

able parameter θ
(m)
enc . For each hypernode vi whose content is x̃i = {x(m)

i }m∈ϕ(ψ(i)),

its modality-m is embedded as

hmi = f (m)
enc (x

(m)
i ;θ(m)

enc ), (3.3)

where hmi ∈ RFm . Fm is the embedding dimension of modality-m.

3.4.3.2 Feature Interaction Networks

A hypernode contains unimodal components that are highly interacted. Such

modality interactions are high-order and implicit, and therefore difficult to be rep-

resented. The goal of feature interaction networks is to capture such interactions,

to extract modality-specific and cross-modal interaction information from them.

The high-order modality interactions can appear individually, between each

pair of modality and among more than two modalities. Let P(·) denote the power

set operation and M = {1, 2, ...,M}. As each subset ∀S ∈ P(M) \ ∅ denotes

a combination of modalities, we can learn from each S one type of multimodal

interaction and a piece of information, namely factor.

A hypernode’s complementary information consists of many factors. Let each

factor be represented by a F ′-dimensional vector. A factor can be calculated as

follows. If there is only one element in S (i.e., |S| = 1), meaning that we are

calculating modality-specific information for the modality m ∈ S, we can calculate

modality-specific information hm,mi as

h
m

i = gm(hmi ;Um, bm)

Gm
i = (hmi )(hmi )T

hm,mi = gm,m(Gm
i ;Um,m, bm,m) + h

m

i ,

(3.4)

where Um ∈ RF ′×Fm , bm ∈ RF ′
, Um,m ∈ RF ′×(Fm)2 and bm,m ∈ RF ′

are parameters
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of the neural networks gm(·) and gm,m(·), respectively. Gm
i ∈ RFm×Fm is the Gram

matrix of unimodal encoder hmi , which represents the covariance, the feature self-

interaction information; and h
m

i can be viewed as the mean, low-dimensional, and

specific information for modality-m.

If there are more than one elements in S (i.e., |S| > 1|), meaning that we

are calculating cross-modal interaction information among all unimodal encoders

{hmi |∀m ∈ S}. Inspired by [20], we can calculate cross-modal interaction informa-

tion hS
i as

CS
i = ⊗m∈Sh

m
i

hS
i = gS(CS

i ;US , bS),
(3.5)

where CS
i represents the |S|-fold cross-product of the involved unimodal encoders,

andUS ∈ RF ′×(
∏

m∈S Fm) and bS ∈ RF ′
is the learnable weights of the neural network

gS(·). A special case is that, for example, the bimodal interaction information

between m and m′ can be extracted as hm,m
′

i = gm,m′((hmi )(hm
′

i )T ;Um,m′ , bm,m′).

3.4.3.3 Summary

In this section, our intra-hypernode encoder leverages all combinations of unimodal-

specific and cross-modal interactions, and extracts pieces of complementary infor-

mation from multi-modalities with the presence of missing data. We let θe consist

of a collection of all parameter weights in Eq.(3.4) and Eq.(3.5).

The architecture shown in Figure 3.4.3 is shared by all hypernodes. Intra-

hypernode encoder takes as input each hypernode feature set x̃i = {x(m)
i }m∈ϕ(ψ(i))

and output new feature set h̃i = {hS
i }S∈P(ϕ(ψ(i)))\∅. Then, we obtain a new hetero-

geneous hypernode graph Genc = (Venc, E , ψ, ϕ) associated with a new feature set

Xenc = {h̃i}Ni=1, which is illustrated in Figure 3.4.1(c).

3.4.4 Multi-fold bilevel Graph Attentional Layer

In the previous step, the intra-hypernode encoder outputs new HHG Genc and

feature set Xenc, which contains more explicit modality-specific and cross-modal

interaction information than the input feature set. The hypernodes in Genc are

also heterogeneous, because hypernodes with different modality-preference styles
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Figure 3.4.4: Multi-fold bilevel Graph Attentional Layers (a) Multi-fold embedding
space projection. (b) Bilevel node aggregation at any intermediate layer. (c) Bilevel
node aggregation at the final layer.

contain different numbers and categories of factors; there are a total of (2|ϕ(ψ(i))|−1)

factors calculated for hypernode vi.

In this section, we focus on learning the interactions between different incom-

peteness styles, and propose to simultaneously fuse multimodal data with different

missingness within a graph-based transductive learning architecture. Specifically,

we propose to solve a sub-problem described as follows.

Definition 3.3. ((2M − 1)-fold Heterogeneous Graph Embedding). Given

the heterogeneous hypernode graph Genc = (Venc, E , ψ, ϕ), where the node set can

be divided into |U| = 2M −1 non-overlapping subsets Venc = {Vp|∀p ∈ U} based on

ψ(·), and each node vi ∈ Vp is associated with a set of F ′-dimensional vectors h̃i =

{hS
i |∀S ∈ P(ψ(p)) \ ∅}, the task is to learn to map the heterogeneous hypernodes

in 2M − 1 embedding spaces, into a homogeneous embedding space Z ∈ RN×d.

By solving this sub-problem, hypernodes with different modality-preference

styles can be projected onto the same feature space; multimodal agents with miss-

ing information (missing factors) can derive such information from others; and, the

final node embeddings can be the fused multimodal representations.

To solve this sub-problem, in this section, we propose Multi-fold Bilevel Graph

Attention Networks (MBGAT) inspired by graph attention networks (GATs) [142].

In the following, we state the overall goal of each MBGAT layer, and then introduce

technical details.
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3.4.4.1 Main Idea

At each MBGAT layer, the goal is to project the existing features in 2M − 1 spaces

onto 2M−1 new spaces (see Figure 3.4.4) that are close to each other. However, ag-

gregating information from heterogeneous nodes is challenging as the relationships

between different feature spaces are unknown. In the context of multimodal fusion,

such difficulty comes from the unknown relationships between different modality-

preference styles.

To tackle this problem, inspired by self-attention mechanism [18] and GATs

[142], we design a bilevel attention strategy to aggregate neighborhood information

among different styles. An MBGAT layer consists of two components: multi-fold

intra-style aggregation that aggregates nodes in the same space independently, and

inter-style aggregation that learns style relationships, and fuses all neighbors into

one target space.

At each MBGAT layer, we represent the multi-space inputs as z = {{zpi |∀vi ∈
Vp}|∀p ∈ U}, where zpi ∈ Rdp is the dp-dimensional feature associated with the

style-p node vi. The layer’s multi-space outputs are represented as z′ = {{zpi ′|∀vi ∈
Vp}|∀p ∈ U}, zpi ′ ∈ Rd′p , where d′p is the dimension of the new feature space

of style-p. Note that at the first layer, we initialize the input node featues z(0)

by concatenating all feature vectors in hypernodes, since the previously extracted

features within a hypernode are separate pieces of information. In the following,

we present the technical details on how to aggregate neighborhood information for

a target node vi whose style is p = ψ(i).

3.4.4.2 Multi-fold Intra-style Aggregation

As the lower-level aggregation, we focus on aggregating neighbors in the same

feature space (multimodal agents that miss the same modalities).

Multi-fold Projection. Each node should be projected onto its new and lower-

dimensional feature space to get prepared for aggregation. As we prepare all nodes

at the same time, each node in any style’s feature space will need to be com-

bined with nodes in any other style’s space. We therefore define {Wpq|∀p, q ∈ U}
as our |U|-fold projection scheme, where Wpq ∈ Rd′q×dp is learnable matrix that
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projects nodes from the style-p’s feature space to the style-q’s new feature space.

Figure 3.4.4(a) illustrates the multi-fold projection, where nodes in different colors

(different styles) are projected onto different spaces.

Intra-patten Aggregation. Suppose Nq(i) denote the style-q neighboring node

set of vi, which can be defined as Nq(i) = {vi′|∀vi′ ∈ Vq ∧ (HHT )i,i′ > 0}, where

H is the incidence matrix (constructed in Section 3.1). We then calculate the

importance of each neighboring node in Nq(i) to the target node vi by performing

the attention mechanism, a⃗q ∈ R2d′q×1. The calculated attention coefficients for

each style-q neighbor vi′ is

αqi,i′ =
exp(LeakyReLU(a⃗q[Wpqz

p
i ;Wqqz

q
i′ ]))∑

k∈Nq(i)
exp(LeakyReLU(a⃗q[Wpqz

p
i ;Wqqz

q
k]))

. (3.6)

Finally, the intra-style aggregation result from all style-q neighbors of node vi is

sqi = σ

 ∑
j∈Nq(i)

αqi,i′Wqqz
q
i′

 (3.7)

where σ(·) denotes the sigmoid function. In Figure 3.4.4(a) and (b), we can see that

nodes in the same colors (same style) are aggregated to a certain double-circled

feature points on the new space.

3.4.4.3 Inter-style Aggregation

After aggregating the neighborhood information within each style, we aim to

learn the relationships between different styles, so that multimodal agents that have

different modality preferences can derive information from each other. To achieve

the goal, we perform inter-style aggregation as the higher-level aggregation.

Similarly, given the intra-style aggregation results {s1i , s2i , ..., s2
M−1
i }, sqi ∈ Rd′q ,

we can calculate the importance of the style-q neighbors to the style-p target by

performing the attention mechanism, bp ∈ R2d′p×1. The calculated attention coeffi-

cients is:

βpq =
exp(LeakyReLU (⃗bp[Vpps

p
i ;Vqps

q
j ]))∑

r∈U exp(LeakyReLU (⃗bp[Vpps
q
i ;Vrpsri ]))

, (3.8)
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Algorithm 1: HGMF

1: Input data: M, U , V , ϕ, ψ, D = {x̃i}Ni=1, Ytrn
2: Input parameters: k, η
3: Initialise networks with ramdom parameters θe, θg, θp.
H ←− kNN(D, k) using Eq.(3.2)

X = {{x(m)
i }m∈ϕ(ψ(i))⊆M}Ni=1 ←− D

G = (V , E , ψ, ϕ)←−H ,X
4: t←− 0
5: while stopping condition is not met do
6: for vi ∈ V do
7: h̃i ←− InHyNEncθe(x̃i) using Eq.(3.2)–Eq.(3.4)
8: end for
9: Genc,Xenc ←− {h̃i}vi∈V
10: Z ←− MBGATθg(Genc,Xenc) using Eq.(3.5)–Eq.(3.8)

11: Ŷ ←− Predictionθp(Z)

12: L ←− Ŷtrn,Ytrn using Eq.(3.9)
13: Update θe,θg,θp ←− minθe,θg ,θpL
14: t←− t+ 1
15: end while
16: return: θ∗e ,θ

∗
g ,θ

∗
p, and Ŷtest

where Vqp ∈ Rd′p×d′q denotes the space-to-space transformation from style-q to

style-p. Once obtained, the attention coefficients are used to compute a linear

combination of intra-style aggregation results. Finally, we can update the embed-

ding for target node vi as:

zpi
′ = σ

(∑
q∈U

βpqVqps
q
i

)
. (3.9)

As shown in Figure 3.4.4(b) and (c), double-circled points (intra-aggregation

results) are aggregated to the blue star node on d′p space (the node vi’s new em-

bedding point on style-p’s new space).

3.4.4.4 Summary

In this section, we proposed MBGAT, which performs multimodal fusion through

an 2M −1-fold heterogeneous graph embedding procedure. At each MBGAT layer,

the two levels of aggregation enable each node to receive information from its 2M−1
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styles of neighboring nodes, in which learned attention coefficients are responsible

to handle how different modality interaction information exchanges between agents.

We stack multiple MBGAT layers, so that the heterogeneous multimodal nodes

can be embedded and fused layer by layer. In this chapter, we let L = 2 in all

experiments. Note that at the final layer, all styles of nodes are projected to a

consistent feature space (see Figure 3.4.4(b)). In other words, we let d = d
(L)
1 =

d
(L)
2 = d

(L)
3 = ... = d

(L)

2M−1
. Finally, the output embedding Z = Z(L) ∈ RN×d is the

fused representations for all multimodal agents.

3.5 Experiments

We conduct experiments with the aim of answering two questions: 1) How does

HGMF perform for multimodal classification tasks with different percentages of

missingness? And, 2) How does HGMF perform compared with inductive and

transductive baselines?

3.5.1 Simulations

Datasets: We perform experiments in both bimodal and trimodal settings, con-

sidering three datasets. (1) ModelNet40 [146] is a 3D CAD dataset, containing

12,311 3D shapes covering 40 common categories, including airplane, bathtub, bed,

bench, bookshelf, bottle, bowl, cone, cup, and so on. (2) NTU [147] dataset is

composed of 2,012 3D shapes from 67 categories, including car, chair, chess, chip,

clock, cup, pen, plant leaf and so on. ModelNet40 and NTU are used as bimodal

datasets. Following [141], the two input modalities are the two views of shape rep-

resentations extracted from Multi-view Convolutional Neural Network (MVCNN)

[124] and Group-View Convolutional Neural Network (GVCNN) [125]. Both the

MVCNN and the GVCNN features are calculated by employing 12 virtual cameras

to capture views with a interval angle of 30 degree. (3) IEMOCAP [148] dataset

consists of a collection of 151 videos of recorded dialogues, with 2 speakers per ses-

sion for a total of 302 videos across the dataset. Each segment is annotated for the

presence of 9 emotions (angry, excited, fear, sad, surprised, frustrated, happy, dis-

appointed and neutral). IEMOCAP is used as trimodal dataset. Following [20, 21],
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Table 3.5.1: Simulation Datasets of Modality Gap. NoIS: Number of Modality
Preference Styles. M : number of modalities; and |C|: number of classes)

Dataset #Agents (Ntrn/Nval/Ntst) #Modalities (M) NoIS |C|

ModelNet40 7,387/1,231/3,693 2 4 40
NTU 1,207/201/604 2 4 67
IEMOCAP 2,680/447/1,340 3 7 2

we adopted the same feature extraction scheme for language, visual and acoustic

modalities. Language features are obtained from the pre-trained 300-dimensional

Glove word embeddings [149], which encode a sequence of transcribed words into a

sequence of word vectors; visual features are extracted as indicators of facial muscle

movement, using Facet [150], include 20 facial action units, 68 facial landmarks,

head pose, gaze tracking and HOG features; and, acoustic features are obtained

from time-series audio using the COVAREP acoustic analysis framework [151],

including 12 Mel frequency cepstral coefficients (MFCCs), pitch, voiced/unvoiced

segmentation, glottal source, peak slope, and so on. We obtain the above features

from CMU Multimodal SDK [112]. Samples in the SDK are annotated according

to the presence of four emotion categories (i.e., happy, sad, neutral and angry).

For each emotion, we conduct a binary classification task.

Simulation of Modality Gap: We evaluate the performance of HGMF un-

der different percentages of data incompleteness. From each multimodal dataset,

we prepare the input data by creating several blockwise incomplete multimodal

scenarios. Given a Multimodal Incompleteness Ratio (MIR) ρ% and suppose the

dataset is M -modal, we randomly delete data from the original complete datasets

such that a total of ρ% instances have different conditions of missing modalities.

In particular, for each incomplete scenario, we let each modality-preference mode

has N × ρ/(2M − 1)% instances. For example, given a bimodal dataset, for each

class, we randomly sample N × ρ/2% instances to remove their first modality, and

sample N × ρ/2% from the rest to remove the second modality.
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Data Split: All datasets are split into training, validation, and testing sets. In

general, to ensure balanced datasets, for each class and each modality-preference

mode, 60% data are used for training, 10% for validation, and 30% for testing.

Table 3.5.1 shows a summary of the datasets and data split information.

3.5.2 Baseline Models

To achieve a comprehensive and comparative analysis of HGMF, we compare it

with previously proposed neural multimodal fusion models, which can be divided

into two categories. (1) Inductive multimodal fusion models. Concat baseline per-

forms fusion by concatenating unimodal features before a fully connected classifier.

Our model use the same unimodal embedding networks as this baseline. Tensor

Fusion Network (TFN) [20] introduces tensor product mechanisms to model uni-

modal interactions. It is an inductive multimodal fusion model which is proposed

without considering the existence of unexpected missing modalities. Low-rank

Fusion Network (LFM) [21] tries to approximate the expensive tensor products

by performing efficient multimodal fusion with modality-specific low-rank factors,

which is also an inductive learning method not designed for handling incomplete-

ness. Multi-task multimodal learning (MTL) combines the proposed intra-

hypernode encoder and pattern-specific classifiers. We directly use the original in-

complete data to train this baseline without imputation. All multimodal instances

share the same intra-hypernode encoder, but different patterns of instances use

different classifiers. This baseline aims to test the impact of graph fusion strategy.

(2) Transductive models. Hypergraph Neural Network (HGNN) [141] studies

deep graph learning and node classification in traditional hypergraph structures. It

also applies the approach to multimodal prediction tasks, but simply concatenates

unimodal features as the input node features. This method cannot deal with the

heterogeneous and highly-interacted incomplete multimodal data.

Reproducibility: Details to implement baselines are as follows. First, for the

TFN, LFM, Concat and MTL baselines, the model sizes of unimodal networks and

final-layer classifiers are the same as those in the proposed model. Other hyperpa-

rameters follow their original settings. Second, for the baselines that cannot deal
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Table 3.5.2: Hyperparameters for HHG graphs and MGMF models.

Hyper-parameters HGMF (M=2) HGMF (M=3)

k 10 10
L 2 2
M {1, 2} {1, 2, 3}
T {1, 2, 3} {1, 2, ..., 7}
Fm, ∀m ∈M {128, 128} {128, 128, 128}
F ′ 128 128
d0p, ∀p ∈ T {512|∀p ∈ T } {512|∀p ∈ T }
d1p, ∀p ∈ T {128|∀p ∈ T } {128|∀p ∈ T }
d 64 64
learning rate 1e-4 1e-3

with missing modaities (i.e., Concat, TFN, LFM, HGNN), we preprocess the input

data by imputing the missing modalities with zero or values. We have also tested

average imputation, but the performances of the baselines using average imputa-

tion are worse than those using zero imputation. Thus, we use zero imputation

to perform all baselines in this chapter. Third, for HGNN baseline, we preprocess

the input data by concatenating all modalities in a node to shape proper feature

vectors as input feature matrix. Note that for multimodal dataset may comes with

2D- or 3D-tensor sequential data/features (e.g., image, video, and audio features),

we cannot concatenate them using the same way as 1D-tensor data. In order to

apply HGNN on such tasks, we take the sum value over the additional dimensions,

and then modalities can be concatenated. Graph edges were constructed using the

same way in our work. Similar to the proposed model, we also stack two HGNN

layers in all experiments.

3.5.3 Experimental Setup

Hyperparameters: We employed Pytorch3 to implement HGMF and all base-

lines, and conducted experiments on a single-core GPU. During graph construction,

the hypernodes are associated with the original pre-extracted features. Each ele-

ment in a hypernode can be of different dimension and are not concatenated; the

language modality is in 3D-tensor format and others are 2D-tensor. The k for con-
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structing the high-order hyperedges (in Section 3.1) equals 10 in each experiment.

Note that as we let edge weights be 1, we construct a graph that only reflect data

connection information. The intra-hypernode encoder parameter set in Algorithm

1 can be summarised as θe = {Θm,US ,bS |∀m ∈ M,∀S ∈ P(M) \ ∅}, Similarly,

the MBGAT’s parameter set can be represented as θg = {a⃗(l)
p , b⃗

(l)
p ,W

(l)
pq ,V

(l)
pq |∀p, q ∈

T , 0 ≤ l < L}. We built up HGMF models in bimodal and trimodal settings. Table

3.5.2 summarises the hyperparameters of the HGMF models used in our experi-

ments, including both graph structure and neural network hyperparameters. For

intra-hypernode encoder, the embedding dimension of unimodal hidden representa-

tions are 64 for visual and language modalities, and 128 for other modalities, which

are similar to those in baseline models. Encoded feature dimensions between differ-

ent patterns can be significantly different. We let the dimension of each factor (an

extracted modality-specific or interaction information) equal to 128. We stack two

MBGAT layers as the transductive fusion stage of HGMF. At the first layer, we

let each pattern’s new feature space dimension is half of input dimension. the final

embedding dimension for all patterns equal to 64, meaning that they are encoded

into the same space.

Model Training and Optimization: The overall training procedure is in Al-

gorithm 1. Since we construct multimdoal instances in an HHG graph struc-

ture, we formulate the training of our data fusion system HGMF as a semi-

supervised node classification task [152, 142]. After embedding the hypernodes

in Section 3.3, the fused representations of incomplete multimodal instances is

Z(L) ∈ RN×d. For |C|-class classification tasks, given the set of labels for train-

ing data Ytrn = {yi|∀vi ∈ Vtrn ⊂ V} where yi ∈ {c1, c2, ..., c|C|}, we minimize the

cross-entropy loss defined as follows:

L = −
∑
i∈Vtrn

|C|∑
c=1

yi · log(softmax(p(z
(L)
i ;θp))). (3.10)

where θp is the parameter of the classifier p(·), a fully connected deep neural net-

work shared by all nodes’ fused representation. Parameters of intra-hypernode

encoder and multi-fold bilevel graph attention network are initialized with uniform
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Table 3.5.3: Test Accuracy (%) on ModelNet40 and NTU (M=2) datasets com-
pared with baselines with various MIRs (NMG: No Modality Gap).

Method
ModelNet40 NTU

NMG 30% 45% 60% 75% NMG 30% 45% 60% 75%
Concat 96.54 95.72 94.89 92.33 91.41 89.34 88.45 86.65 83.67 81.56
TFN [20] 98.16 96.02 95.48 93.81 93.3 93.03 91.40 87.97 85.07 84.72
LMF [21] 97.62 96.10 95.94 93.30 92.47 90.94 89.73 85.62 82.25 78.72
HGNN [141] 97.80 96.52 96.10 93.80 91.83 92.73 91.13 87.58 85.41 84.24
MTL 97.40 96.13 95.12 94.12 93.2 90.70 89.91 86.36 83.08 82.39
HGMF (ours) 98.29 97.20 96.02 94.78 93.87 92.38 91.22 88.77 86.41 85.89

distribution. Before training the entire network, we do not consider node connec-

tions, treating each node independently to pre-train the intra-hypernode encoder.

Then, we train the whole model parameters via the Adam optimizer [153] with

tuned learning rates. We repeat the training iterations until the validation set’s

accuracy change between two consecutive iterations is sufficiently small.

3.5.4 Results and Analysis

We perform classification tasks to evaluate our model against baselines. For multi-

class datasets, we report classification accuracy Acc-K where K denotes the num-

ber of classes. For binary classification datasets, we report F1 score. The results of

our comparative evaluation experiments are summarized in Table 3.5.3 and Table

3.5.4. We examine the efficacy of the proposed HGMF model on both complete

scenarios and incomplete scenarios.

3.5.4.1 Comparison on no modality gap

We first evaluate the effectiveness of the proposed method on complete multimodal

data. In such scenarios, there is only one pattern in the dataset.

In Table 3.5.3, the results (columns NMG) on both datasets are higher than

baselines. It proves that the proposed model can also be used in complete multi-

moda fusion. Compared with inductive learning, our improvement on NTU dataset

is higher than that on ModelNet40 dataset. Our model performs only slightly bet-

ter than GNN-based methods because the two modalities that are also used in

HGNN may not highly-interacted.

In Table 3.5.4, we only compare with non-graph based inductive learning meth-
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Table 3.5.4: F1 scores on three emotion categories in IEMOCAP dataset (M = 3)
compared with baselines in different incompleteness scenarios (EMO&IS: emotion
categories and incompleteness scenarios; NMG: complete).

EMO&IS Concat TFN LMF MTL HGMF (ours)

Happy

NMG 86.26 88.72 89.69 87.52 88.87
30% 86.54 88.74 88.56 87.43 88.70
45% 85.92 87.51 86.38 86.21 87.93
60% 85.73 87.00 85.87 86.74 87.24
75% 83.27 86.53 84.56 86.02 86.02

Sad

NMG 83.69 85.09 85.45 84.71 85.72
30% 83.23 85.25 84.35 83.97 84.67
45% 82.61 84.58 83.47 83.88 84.55
60% 81.35 82.04 81.26 81.97 83.33
75% 80.69 81.95 79.89 81.06 82.32

Angry

NMG 86.74 88.22 88.74 87.75 88.38
30% 85.93 88.02 87.59 87.66 88.14
45% 84.86 87.42 86.38 86. 03 87.81
60% 83.29 86.17 85.25 85.26 87.34
75% 83.71 85.46 84.68 85.02 86.89

ods, because the graph-based baseline HGNN cannot deal with modalities in differ-

ent dimensional tensor in IEMOCAP dataset, and also cannot handle the modality

interactions. From the comparisons with inductive learning, our model’s results

outperform Concat and MTL, and either higher or similar to TMF and LMF. It

is because baselines do not need to impute data in complete scenarios, so that our

model and baselines are under the same circumstances.

3.5.4.2 Comparison on different degrees of modality gap

Now we consider the more realistic setting where blockwise modality gap is present.

We evaluate the influences of modality gap by changing the multimodal incomplete-

ness ratio from 30% to 75% with a intermittent 15%. As shown in both Table 3.5.3

and Table 3.5.4, our method tends to outperform baselines while there are higher

modality gap.

From Tables 3.5.3 and Table 3.5.4, as more modalities are missing, the perfor-

mances of Concat and LMF drop dramatically, while TFN, MTL and the proposed
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HGMF do not drop too much. It is because Concat and LMF do not explore

much inter-modalitiy interactions, and their network neurons can be significantly

affected by attacked values at the beginning. Also, when the missing ratio is not

lower enough (i.e., less than 45%), the results show that TFN does not drop too

much as the proposed method. It may be due to that the zero imputation can be

viewed as dropout layer at the beginning, and the dropout at a low rate does not

influence the higher-level neurons too much.

3.6 Conclusion

In this chapter, we have studied the multi-agent collaborative multimodal fusion

problem, focusing on a specific personalization pattern—the modality preferences of

individual MML agents. To address the modality gap challenge during inter-agent

collaboration, we have presented the heterogeneous graph-based multimodal fusion

(HGMF) framework. HGMF exploits a heterogeneous hypernode graph (HHG)

structure to capture modality interactions from the intra-agent available modali-

ties (intra-hypernode encoder) as well as learns the relationships among different

modality-preference styles (MBGAT). The idea is to exploit the powerful graphs

representations to enable the agents having certain unavailable modalities to de-

rive relevant missing information from other agents who have such information.

Through the node-to-node information propagation within HHG, the proposed

HGMF framework effectively fuses multimodal data into joint representations and

makes decisions based on them. Our experimental results demonstrated the signif-

icance of our approach.



Chapter4

Meta-learning based Collaborative

Visual-language Understanding with

Concept Personalizion

4.1 Introduction

In this chapter, we address situations where only concept preferences of individ-

ual MML agents are allowed: all agents deal with the same classification task and

take the same set of input modalities, but different agents might have their own

interested class categories or their own definitions for various class categories, i.e.,

personalized label spaces. It is worth noting that, the label space of classification

can be represented at different concept granularities. For instance, in computer

vision, image classification labels correspond to each sample, image segmentation

labels correspond to each pixel, and video event recognition labels correspond to

each frame; likewise, text classification labels are associated with each text se-

quence, while named entity recognition segmentation labels are associated with

each word, and so on. Sample-wise classification has been more widely explored in

CoMML, whereas tasks with smaller concept granularity (e.g., pixelwise or token-

wise) remain less investigated. Therefore, in this chapter, we focus on exploring

agents’ concept preferences at a small granularity.

A real-world example of such a setting is Visually-rich Document Entity Re-

47
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trieval (VDER) where users have their own interested sets of entities [154, 155,

156]. VDER is a visual-language bimodal task that aims to extracts key infor-

mation (e.g., date, address, signatures) from the document images (i.e., scanned

documents composed of structured and organized information, such as invoices and

receipts). These key information are the target concepts in document images, and

extracting them from document images is an fine-grained concept classifications

task (i.e., the token tagging or image segmentation task). In real-world VDER sys-

tems, concept personalization plays a critical role as new document types continu-

ously emerge at a constant pace and each of them might has its unique set of target

entity categories. This leads to the practical Entity-personalized VDER task. This

chapter will study and experiment on this special use case, Entity-personalized

VDER (EpVDER), via Multi-agent Collaboration, as an endeavor to delve into

the research on “CoMML with concept preferences”.

Existing efforts in VDER have leveraged pre-trained language models [157] or

prompt tuning [158] to obtain transferable knowledge from a source domain and

apply it to a target domain, where a small number of document images are la-

beled for fine-tuning. These prior works address the label space in a granularity

of document level, assuming a globally predefined entity space and balanced en-

tity occurrences across documents. However, Entity-personalized VDER presents

distinctive challenges that cannot be addressed by these document-level VDER

approaches. (1) Limited occurrences of certain entities in labeled documents (few-

shot scenarios). (2) The numbers of occurrences of each entity categories maintain

a significant imbalance across documents. (3) The small number of personally-

relevant concepts increases the complexity and prevalence of out-of-distribution

contents. Additionally, (4) prior methods face difficulties in quickly adapting the

model to each agent’s specific label space.

To address these challenges, we initiate the investigation for the unexplored

EpVDER. We adopt a meta-learning based framework build upon pretrained lan-

guage models, along with several proposed techniques for achieving task personal-

ization and handling out-of-task distribution contents. With the help of the meta-

learning paradigm, (1) the learning experiences on some example tasks could be

effectively utilized and (2) the domain gap between the pre-trained model and novel
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EpVDER tasks is largely reduced, promoting quicker and more effective fine-tuning

on future novel entity types. Yet we found popular meta-learning algorithms [39,

51, 159] are still not robust to the specific challenges of EpVDER tasks. Specif-

ically, the background context that does not belong to the agent’s personalized

entity types occupies most of the predictive efforts, and also, such noisy contextual

information varies a lot across tasks and documents. To address this, we propose

self-aware meta-learning techniques (ContrastProtoNet, ANIL+HC, etc.) to

allow the meta-learners to be aware of those multi-mode out-of-task distribution

background and achieve fast adaptation to the agent’s personalized entity types.

Here is a summary of the contributions of this chapter.

• Within the realm of CoMML, this is one of the first attempts that investigate

concept shifts among agents at a fine-grained concept level, departing from

prior works that primarily concentrate on sample-wise classification.

• In the context of visually-rich document understanding, this is the first work

examining the VDER problem through the lens of entity personalization,

which offers a supplementary research perspective alongside the majority of

document-level studies.

• We propose a meta-learning based framework for solving the newly intro-

duced task. While vanilla meta-learning approaches have limitations on this

task, we propose several self-aware meta-learners to enhance task personal-

ization by dealing with out-of-task distribution.

• Experiment results demonstrate our proposed approaches significantly im-

prove the performance of baseline methods.

4.2 Related Works

In addition to the literature reviewed in Section 2.4, since our proposed techniques

will be applied to Visually-rich Documents (VD) in NLP, we will also review three

lines of work: 1) models for general VD understanding; 2) the particular Entity

Retrieval (ER) task for VD; and 3) related meta-learning approaches for VD-like

problems in CV, NLP, and Multimodal domains.
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General VD Understanding. Pretrained LLMs for general VD understanding

have shown strong performance in general understanding of visually-rich multi-

modal documents, and therefore, can serve as pretrained prior for Few-shot VDER.

There are many LLM candidates our framework can use as the pretrained encoder,

such as LayoutLM [160], which extends the standard BERT [161], and the recent

LayoutLMv3 [162] and DocGraphLM [163], which show improvements by using ad-

vanced cross-modal alignment or local-global position embeddings. In this chapter,

we use the basic BERT model for experiments since our focus is how to improve

the post fine-tuning on few-shot downstream tasks, without a restrict on the spec-

ification of LLM type. Extending this research to other pretrained Document

Understanding LLMs could be one of future works.

Entity Retrieval from VD. The particular Entity Retrieval (ER) tasks for

VD have been studied for many years using Deep Neural Networls, Graph Neural

Networks, or traditional models [164, 165], or empowered by the contextual prior

knowledge provided by VD-understanding LLMs [154, 156, 166]. Recent advance-

ments in Few-shot VDER predominantly rely on pretrained LLMs and prompt

design, followed by fine tuning on a small number of VD documents [167, 157].

Despite their success, these works address the situation where the entity label

space is fixed over tasks and entity occurrences do not shift a lot. However, VDER

specializing entity-space personalization, where the concepts or entity categories

learned on each agent is user-specific, has garnered comparatively less attention in

prior research.

General Meta-learning for VD-like Problems. Meta-learning [51, 39] has

been emploited in various AI/ML domains in problems like Multitask Learning

(MTL), Few-shot Learning (FSL), Federated Learning (FL), and Optimization

[168]. In CV or NLP domains, there are two tasks closely related to Entity-

personalized VDER that also have been addressed using meta-learning: (1) Few-

shot object detection or segmentation [169, 170] aims at localizing objects in visual

data, where each object can be treated as an entity in VDER; and, (2) Few-shot

Named Entity Recognition (NER) aims at labelling tokens within a contextual
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text sequence [171, 172]. While few-shot NER and object detection algorithms can

provide inspirations for few-shot VDER, the challenges we face and methodology

details are relatively different. Beyond them, the scope of this chapter falls within

the field of Multimodal Learning. Multimodal Few-shot Learning has historically

been addressed by meta-learning approaches [173, 174]. Our work differs from

these methods in two key aspects: first, we combine the advantages of both Large

Language Model’s prior knowledge and meta-learning for balancing generalization

and concept personalization; second, to enhance the personalization performance

of EpVDER, we incorporate Out-of-distribution detection techniques in few-shot

context [175].

4.3 Problem Formulation

4.3.1 Local Task Setting on Each Agent

General VDER. A document image is processed through Optical Character

Recognition (OCR) [176] to form a sequence of tokens X = [x1,x2, . . . ,xL], where

L is the sequence length and each token xl = {x(v)
l ,x

(p)
l ,x

(b)
l , ...} is composed of

various information from the image and text modalities: the token id (v), the 1d

position (p) of the token in the sequence, the bounding box (b) representing the

token’s relative 2d position, scale in the image, and so on1. The goal is to predict

Y = [y1, y2, . . . , yL], which assigns each multimodal token xl a categorical label yl

to indicate either the token is one of entities in a set of predefined entity types or

does not belong to any entity (denoted as O class).

Definition 4.1 (Entity-personalized VDER (EpVDER)). Each agent deals

with an EpVDER task specialized by its own defined target entity types. The

EpVDER task at each agent is formulated as D = {S,Q, E}, which consists of a

train (support) set S containing Ms documents, a test (query) set Q containing Mq

1In this chapter, we assume modality uniformity. All the samples across different agents have
the same input modality sets so that we omit the tilde symbol from the input notations.
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documents, and a personalized target class set E containing U target entity types

S = {(X1,Y1), (X2,Y2), . . . , (XMs ,YMs)}

Q = {X∗
1 ,X

∗
2 , . . . ,X

∗
Mq
}

E = {e1, e2, . . . , eU},

(4.1)

where Xj = [xj1,xj2, ...,xjL] is the sequence of multimodal token features of doc-

ument j and Yj = [yj1, yj2, ..., yjL] is the sequence of token labels corresponding

to Xj, and ec denotes the c-th entity type in D. Note that we have referenced

the standard few-shot learning setup [39] when defining Eq.(4.1). Though our def-

initions have many differences from the standard definition as follows. “U-way”

refers to the U unique entity types the user is interested in, reflecting task person-

alization. It is important to highlight that within S and Q documents, there may

exist entities that fall outside the U target classes (e′ /∈ E). These entity types

come from the out-of-distribution in contrast to what the task D aims to train on,

which do not attract user interest, remain unlabeled, and thus are treated as the

background O class. “Soft-K-shot” refers that, among the Ms labelled documents

in S, the total number of occurrences of each entity type e ∈ E is within a range

K ∼ ρK, where ρ > 1 is the softening hyperparameter. An entity occurrence is

defined as a contiguous subsequence in the document with the same entity type as

labels. We do not impose a strict constraint on the exact count K sicne the entity-

level personalization scenario implies that the frequency of entity occurrences may

vary dramatically from one document to the other, which makes it difficult to

set a strict limit. For instance, an entity type may occur more frequent in some

documents and less so in others. The right area of Figure 4.3.1 shows an example

U -way soft-K-shot VDER task. The local objective of D is to obtain a personal

model f(·;θ) that assigns each token as either one of E (task-personalized entity

types) or O (background or out-of-task entity types), based on the few labeled en-

tity occurrences for those in E in support set S, such that the model achieves high

performance on the query set Q.
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Figure 4.3.1: Problem setting of Visually-rich Document Entity Retrieval for-
mulated in a meta-learning based multi-agent collaboration framework, with
personally-defined entity categories for each agent. Different colors represent dif-
ferent entity categories. The pie chart split on the left indicates that the target
classes in testing tasks are not seen in training tasks. On the right area, we show
an example 3-way soft-2-shot task. In this example, ρ = 2.

4.3.2 Multi-agent Collaborative EpVDER

Distribution over EpVDER Tasks. Based on the above formulation for a single

EpVDER task, we further formulate a task distribution P (D) over EpVDER tasks.

Assume there is a large pool of entity types C corresponding to the domain of P (D).

The task on any agent i ∈ [N ] can be sampled as,

Di = {Si, Qi, Ei} ∼ P (D), (4.2)

where its target entity types come from the class pool Ei ⊂ C. A collection of

tasks D̂colab can be viewed as a simulation of multiple EpVDER agents. D̂colab is

heterogeneous according to concept shifts E1 ̸= E2... ̸= EN across EpVDER agents.

Definition 4.2 (Collaborative EpVDER with Entity Shifts). We formulate

a multi-agent systems as D̂colab = {D̂trn
colab, D̂tst

colab} consisting of Ntrn agents that



54

have labelled validation set and Ntst agents that only have a few labelled examples

D̂trn
colab = {D1,D2...DNtrn} where Di = {Si, Qi, Ei} ∼ P (D)

D̂tst
colab = {D∗

1,D∗
2...,D∗

Ntst
} where D∗

i = {S∗
i , Q

∗
i , E∗i } ∼ P (D)

(4.3)

where any training agent focuses on personal entity types (i.e., concepts) Ei ⊂ Cbase
from a set of base classes Cbase and any testing agent focuses on personal concepts

E∗i ⊂ Cnovel sampled from Cnovel. The query sets of training agents are treated as

validation sets, Qi = {(X∗
ij,Y

∗
ij )}

Mqi

j=1 for ∀Di ∈ D̂trn
colab. The query sets of testing

agents are unlabelled testing data, that is, Q∗
i = {X∗

ij}
M∗

qi

j=1, ∀D∗
i ∈ D̂tst

colab. Figure

4.3.1 shows an overview of the simulation of the multi-EpVDER-agent collabora-

tion. We define the global objective following [39]. That is, we aim to train a

global generalization model θ∗ = arg minθ EDi∼P (D)Li(Adapt(Di,θ)) for P (D) such

that any agent’s task Di can take advantage of it to quickly obtain a good personal

model θ∗i = Adapt(Di,θ∗), where Li(·) is the local loss on query set and Adapt(·, ·)
is the local training result from the support set.

4.4 Methodology

We propose a meta-learning (i.e., learning-to-learn) framework to facilitate the

collaborative learning between the heterogeneous EpVDER agents with concept

shifts. Different from the recent advancements based on pre-training or prompts

[157, 158], meta-learning helps to significantly promote quick adaptation and im-

prove model personalization on task-specific entity types.

The proposed framework consists of three components: (1) a multimodal en-

coder (Section 4.4.1) that encodes the document images within a task into a task-

dependent embedding space (Section 4.4.2); (2) a token labelling function (Section

4.4.3); and (3) a meta-learner built upon the encoder-decoder model, where we

propose two task-personalized meta-learning methods (Section 4.4.4). Figure 4.4.1

shows an overview of the framework.
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Figure 4.4.1: The proposed self-aware meta-learning framework. The framework
is applicable to both the metric-based method (aiming to learn global parameters
θ = ϕ) and gradient-based method (aiming to learn global parameters θ = {ϕ,ψ})
.

4.4.1 Transformer-based Multimodal Encoder

We consider an encoder network represented by a parameterized function fenc(·;ϕ)

with parameters ϕ. The encoder aims to capture the cross-modal semantic re-

lationships between tokens in a document image. To achieve this, we employ a

BERT-base Transformer [161] with an additional positional embedding layer for

the 2d position of each input token, through which the complex spatial structure

of the input document can be incorporated and then interacted with the textual

contents via attention mechanisms. The embedding of token l in the document

image j of task Di is computed as hijl = fenc(xij;ϕ)l. In practice, before meta-

training, the multimodal Transformer is pretrained on the IIT-CDIP dataset [177].
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4.4.2 Task-dependent Embedding Space

Through the multimodal encoder, each task Di is encoded to a task-dependent

embedding space. As illustrated in Figure 4.4.1, on the task-dependent embedding

space, there are all the token embeddings in the task:

Hi = {hijl|l ∈ [L], (xij,yij) ∈ Si ∪Qi}. (4.4)

There are several properties on the task’s embedding space: (1) First, in addition

to in-task distribution (ITD) entities from the target classes, there exists a large

portion (nearly 90% as observed in our dataset FewVEX) of out-of-task distribution

(OTD) entities or background, which serve as the context for ITD entities but

dominate the task’s embedding space. (2) Second, the OTD entities follows a

multi-mode distribution P OTD
i that consists of several unimodal distributions, each

of which represents an outlier entity type aside from ITD. (3) Finally, it is not

guaranteed that each unimodal component of P OTD
i is observable in the train set

Si–in many cases, an OTD entity type could occur in the query documents but is

absent in the support documents. To sum up, the OTD distribution in a EpVDER

task is complex, dominates the entire task, and may vary between documents.

4.4.3 Token Labelling

On the basis of the task-dependent embedding space, the token labelling or decod-

ing process can either leverage a parameterized decoder fdec(·;ψ) that acts as the

classification head, or rely on non-parametric methods, like nearest neighbors.

4.4.4 Self-aware Meta Learners

We consider two main categories of the meta-learning approaches: the gradient-

based and the metric-based meta-learning, on each of which we propose our own

methods. We specifically pay attention to two properties when solving the Entity-

personalized VDER tasks: 1) Few-shot out-of-task distribution detection,

which aims to distinguish the ITD (i.e., the target U entity types) against the

OTD (i.e., background or any outlier entity type). 2) Few-shot token labelling
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for in-task distribution tokens, which assigns each ITD token to one of the U

in-task entity types.

4.4.4.1 Self-aware ContrastProtoNet

We first focus on metric-based meta-learning [51, 52]. The goal is to learn meta-

parameters ϕ for the encoder network, generally shared by all tasks Di ∼ P (D),

such that, on each task’s specific embedding space, the distances between token

points in Si and Qi are measured by some metrics, e.g., Euclidean distances.

ProtoNet with or without Estimated OTD. One of the most popular and

effective metric-based meta-learning methods is the Prototypical Network (Pro-

toNet) [51]. For each EpVDER task Di = {Si, Qi, Ei}, the prototype for each

entity type e ∈ Ei can be computed as the mean embedding of the tokens from Si

belonging to that entity type, that is, µi,e = 1/|Itrne |
∑

(j,l)∈Itrne
hijl, where Itrne is

a collection of the token indices for the type-e tokens in the support set. For the

out-of-task distribution (OTD), one may consider to estimate its mean embedding

as an extra O-type prototype: µi = 1/|ItrnOTD |
∑

(j,l)∈ItrnOTD
hijl.

A problem of the vanilla methods is that there is no specific mechanism distin-

guishing the ITD entities against the OTD entities, which are weakly-supervised

and partially observed from a multi-mode distribution P OTD
i . The prototype µi is

a biased estimation of the mean of P OTD
i and the covariance of P OTD

i can be larger

than any of the ITD classes. In consequence, the task-specific ITD classes may not

be clearly distinguished from the OTD classes on the task-dependent embedding

space and most of tokens will be misclassified.

Regarding the above challenges, we propose a self-aware method that adopts

two techniques to boost the performance.

Meta Contrastive Loss. During meta-training, we encourage the U ITD entity

types to be distinguished from each other as well as far away from any unimodal

component of OTD. To achieve this, we adopt the idea from supervised contrastive

learning [178] to compute a meta contrastive loss (MCON) from each task, which

will be further used to compute meta-gradients for updating the meta-parameters
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ϕ. Intuitively, our meta-objective is that the query tokens from the ITD type-

e should be pushed away from any OTD tokens and other types of ITD tokens

within the same task, and should be pulled towards the prototype µi,e of support

tokens and the other query tokens belonging to the same entity type. Formally, let

IvalITD = {(j, l)|l ∈ [L], (x∗
j ,y

∗
j ) ∈ Qi, y

∗
ijl ∈ Ei} denote a collection of ITD validation

tokens. The meta contrastive loss computed from Di is

LMCON
i =

∑
(j,l)∈IvalITD

−1

|A+(j, l)|
∑

v∈A+ (j,l)

aijl(v)

aijl(v) = log
exp(h⊤

ijlv)∑
u∈A(j,l) exp(h⊤

ijlu)
.

(4.5)

For each anchor, i.e., the ITD validation token l in document j, we let A
+

(j, l) =

{hirm|(r,m) ∈ IvalITD \ {(j, l)}, y∗ijl = y∗irm} ∪ {µi,e|e ∈ Ei, y∗ijl = e} denote a col-

lection of the positive embeddings/prototype for the anchor and let A(j, l) =

{hirm|(r,m) ∈ IALL \ {(j, l)}} ∪ {µi,e}e∈Ei contain all the ITD/OTD embeddings

and prototypes (IALL = {(j, l)|l ∈ [L], (xj,yj) ∈ Si ∪Qi}) in Di.

Unsupervised OTD Detector. During the inference time for novel entity types,

we adopt the nonparametric token-level nearest neighbor classifier, which assigns

xijl the same label as the support token that is nearest in the task’s embedding

space:

ŷnnijl = argmaxyirm where (r,m)∈ItrnALL
h⊤
ijlhirm, (4.6)

where ItrnALL = {(r,m)|m ∈ [L], (xr,yr) ∈ Si}. The ITD or OTD entity tokens in

Qi should be closer to the corresponding ITD or OTD tokens in Si that belong

to the same entity type. However, since the embedding space dependent on the

support set is not sufficiently rich, the network may be blind to properties of the

out-of-task distribution P OTD
i that turn out to be necessary for accurate entity re-

trieval. To tackle this, we exploit an unsupervised out-of-distribution detector [179]

operating on the task-dependent embedding space, in assistance with the classi-

fier. Specifically, we define an OTD detector: ŷijl = O if r(hijl) ≥ Ri; otherwise,

ŷijl = ŷnnijl , where Ri is the task-dependent uncertainty threshold and r(hijl) is

defined as the OTD score of each token computed as its minimum Mahalanobis
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distance among the U ITD classes: r(hijl) = mine∈Ei(hijl − µi,e)⊤Ω−1
i,e (hijl − µi,e).

Here, Ωi,e =
∑

(j,l)∈Itrne
(hijl − µi,e)⊤(hijl − µi,e) is the covariance matrix for entity

type e computed from the type-e tokens in the support set (Itrne ). The higher OTD

score indicates the more likely the token belongs to the background.

4.4.4.2 Gradient-based Meta-learning with OTD Detection

For gradient-based meta learning, the goal is to learn the meta-parameters θ =

{ϕ,ψ} globally shared over the task distribution P (D), which can be fast fine-

tuned for any given individual task Di.

Computation-efficient Meta Optimization. Although MAML [39] is the

most widely adopted approach, the fact that it needs to differentiate through the

fine-tuning optimization process makes it a bad candidate for Transformer-based

encoder-decoder model, where we need to save a large number of high-order gra-

dients for the encoder. Instead, we consider two alternatives which require less

computing resources and more efficient. ANIL [180] employs the same bilevel op-

timization framework as MAML but the encoder is not fine-tuned during the inner

loop. The features from the encoder are reused in different tasks, to enable the rapid

fine tuning of the decoder. Reptile [57] is a first-order gradient based approach

that avoids the high-order meta-gradients. To further boost training efficiency, we

exploit Federated Learning [181, 73] for meta-optimization of Transformer.

Self-aware Hierarchical Classifier (HC). A vanilla classifier can achieve high

performance in the label-sufficient VDER. However, it turns out to be not robust

in few-shot EpVDER tasks because of the existence of the complicated out-of-task

entities–the models usually either get overconfident on the U IID entity types or fail

to distinguish target entities from the OTD background. For this reason, we incor-

porate OTD detection into the decoder and propose a hierarchical classifier, which

has two classifiers ψ = {ψ1,ψ2}: 1) binary classifier f binψ1
, so that all ITD tokens

are classified against OTD ones, and 2) entity classifier f entψ2
, so that ITD tokens

are classified to one of the U entity types of the task. Specifically, suppose P OTD
i and

P ITD
i denotes the OTD and ITD of the task Di, respectively. The probability that

the token hijl is from OTD is denoted as P (yijl = O) = f entψ′
i1

(hl), which is used as
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the OTD score to weight the entity prediction. The probability that the token is the

entity type-e is computed as P (yijl = e|xijl ∈ P ITD
i ) = (1− P (yijl = O))f entψ′

i2
(hijl)e.

4.5 Experiments

4.5.1 Dataset

We setup a novel simulation, FewVEX, to evaluate Few-shot VDER tasks.

Collection of Entity Types and Documents. First, we collect the entity

types C associated with the task distribution P (D) and a set of document images

D annotated by these entity types. We use a source dataset, Consolidated Re-

ceipt Dataset for post-OCR parsing (CORD) dataset [182], that are widely used in

normal large-scale document understanding tasks such as entity recognition, pars-

ing, and information extraction. CORD consists of 1000 receipt images of texts

and contains 6 superclasses (menu, void menu, subtotal, void total, total, and etc)

which are divided into 30 fine-grained subclasses. For different entity types, the

total numbers of entity occurrences over the CORD images are highly imbalanced,

ranging from 1 occurrence of entity "void menu (nm)" to 997 occurrences of "menu

(price)". From the two datasets, we obtain a combined source dataset denoted

as D, which contains 1199 unique document images with original annotations on

33 classes. However, we observe that some fine-grained classes in CORD occurs

in less than maxi(Msi + Mqi) images, the maximum number of documents within

individual tasks. This will result in a large amount of repetitive usage of the same

documents within one task and between different tasks. Therefore, we further sort

the 33 classes by the number of unique document images where they occur and

then discard three entity types that occurs in low frequency. To sum up, we finally

have a total of |C| =30 entity types and |D| = 1199 unique document images anno-

tated by these entity types. The pie chart (on the left) in Figure 4.3.1 illustrates

the number of occurrences of the final entity types.

Simulation of Agent Entity Personalization. To ensure that testing tasks in

D̂tstcolab focus on novel classes that are unseen during meta-training D̂trncolab, we should
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Table 4.5.1: Simulation of fine-grained concept shifts as Few-shot VDER tasks.

Meta Training (from Cbase) Meta Testing (from Cnovel) Range of U
# Entity Types # Tasks # Entity Types # Tasks

18 3000 5 128 [1, 5]

split the total entity types C into two separate sets C = Cbase∪Cnovel, Cbase∩Cnovel = ∅
such that Cbase is used for meta-training and Cnovel for meta-testing. Specifically,

we use a split ratio γ to control the number of novel classes and randomly choose

γ|C| entity types from C as Cnovel. Then, Cbase = C \ Cnovel. Note that for the

cases that some entity types occurs in less number of documents than the others,

we set a threshold U and any entity type that occurs in less than U documents

are forced to be one of the novel classes. Each individual task D = {S,Q, E} in

either D̂trncolab or D̂tstcolab can be generated by the following steps. (2) Personalized

Class Sampling. The target classes of task E is generated by randomly sampling U

entity types from either Cbase (for the training task) or Cnovel (for the testing task).

(3) Document Sampling. Given the U target classes, we then collect document

images that satisfies the few-shot setting defined in Section 5.1.1. However, one

problem of document sampling from the original corpus is the inefficiency. It

is because, for each task, only a small number of documents that contain the

corresponding classes can be the candidate documents of the task. For example,

if each document contains only a small number of entity types, the majority of

documents would be rejected. To improve sampling efficiency, one strategy is

to count entities in each document in advance and, for each entity type, all the

candidate documents that contain this type are temporally stored in a new dataset.

We only look at the task-specific candidate datasets DE = {De|∀e ∈ E}, where

De = {(X,Y )|∀(X,Y ) ∈ D if e ∈ Y }. We randomly sample Ms documents

such that the total number of entity instances is satisfied–that is, K ∼ ρK shots

per entity type. Likewise, we sample Mq documents for Q, such that there are

Kq ∼ ρKq shots per entity type. We keep track a table to record the current count

of occurrences of each type of entity types in the task. (4) Label Conversion. In the

few-shot setting, the majority region of an document does not follow the in-task

distribution (ITD) of E . These regions’ tokens are treated as either background or
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the other types of entities from the out-of-task distribution (OTD), whose original

labels should be arbitrarily converted into O label. In addition, we map the original

labels of ITD tokens to relative labels. For example, if we use I/O schema, the

relative labels should range from label id 0 to label id (U − 1).

4.5.2 Setups and Evaluation Metrics

We compare the proposed framework with aforementioned meta-learning baselines.

Data generation and methods are implemented using JAX and Tensorflow. All

experiments ran on 32 TPU devices. We use the Adam optimizer to update the

meta-parameters. For gradient based methods, we use vanilla SGD for the inner-

loop optimization and fix 15 SGD updates with a constant learning rate of 0.015.

LLM-based Multimodal Encoder: We pre-train the multimodal Transformer

on the IIT-CDIP dataset [177]. It should be noting that this paper does not focus

on the pre-training technique. In fact, our framework does not require a well pre-

trained encoder, since the meta-learning will further meta-tune the pre-trained

encoder to capture the domain knowledge of P (D). Thus, we stop the pre-training

until an 81.5% token classification accuracy.

Training Parallelism: We employ the episodic training pipeline to learn the

meta-parameters from training tasks (i.e., episodes). At each meta-training step, a

total of τ episodes are trained and then validated to obtain the meta-gradients used

for updating meta-parameters. Both meta-training and meta-testing were run in a

multi-process manner. Each of our experiments was run on a total of 4 machines

and on each machine there are 8 local TPU devices. Since the parameter size of

the Transformer-based encoder is large, we use the 8 devices of each machine to

train one single episode in parallel. That is saying, at each meta-training step, a

total of 4 tasks are used to compute the meta-gradients. Both the support (train)

and query (test) documents in one task are divided and assigned to 8 devices.

The prototypes, the nearest neighbors of data points, or the adapted parameters

trained on the local support set, are computed on each local device. For validation

on the query set, however, we should consider, the scope of the entire task over
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different local devices. Therefore, we employ Federated Learning techniques [183,

184, 73, 181] operating on multiple devices for a distributed within-task adaptation,

where we collect the locally adapted parameters (at each inner-loop step) or the

prototypes from the 8 devices of a single episode and average their parameters.

Specifically, for training parallelism of each episode/task, there are 4 steps: (1) on

each device, we first adapt a model based on the partial support documents located

on the device; (2) then, we collect the adapted knowledge from each of the 8 local

devices and aggregate them; (3) on each device, we apply the collected adapted

knowledge to the partial query documents; (4) the validation loss on the query

subset on each devices are collected and we take an average of them.

Evaluation Metrics: We consider two types of quantitative metrics. (1) Overall

Performance: following [160], we use the precision (P), recall (R), and micro F1-

score over meta-testing tasks to measure the accuracy of entity retrieval. (2) Task

Specificity (TS): to evaluate how well the trained meta-learners can distinguish

in-task distribution (ITD) from out-of-task distribution (OTD) for any novel given

task, we plot ROC curves and calculate AUROC [185] using the ITD scores over

meta-testing tasks. A random guessing detector outputs an AUROC of 0.5. A

higher AUROC indicates better TS performance.

Visualization: To visualize the TS, we plot the ROC curves of all the meta-

testing tasks, where each curve represent one task. Another visualization for TS is

to show how ITD and OOD are distinguished against each other. We randomly

select a testing task and exploit tSNE [186] to visualize the learned embeddings

of all the tokens in the task, where ITD tokens are denoted as red points and

OTD tokens are blue points. Furthermore, we use tSNE to visualize the learned

embeddings of only the ITD token instances in the task, where different colors

represent different entity types.

4.5.3 Main Results

Table 4.5.2 reports the results on FewVEX. Under the same U and K setups, tradi-

tional meta-learning methods fail to balance the precision and recall performances:
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Table 4.5.2: Performance on 4-way 1-shot, 4-way 4-shot, 5-way 2-shot FewVEX.

Methods
4-way 1-shot 4-way 4-shot 5-way 2-shot

Overall TS Overall TS Overall TS

P R F1 AUROC P R F1 AUROC P R F1 AUROC

ProtoNet 0.02 0.10 0.03 N/A 0.02 0.09 0.03 N/A 0.02 0.09 0.03 N/A
ProtoNet+EOD 0.13 0.47 0.21 N/A 0.11 0.58 0.23 N/A 0.11 0.35 0.17 N/A
ContrastProtoNet 0.54 0.43 0.47 0.59 0.61 0.59 0.60 0.89 0.49 0.41 0.44 0.62

Reptile 0.48 0.10 0.15 0.58 0.62 0.44 0.51 0.67 0.39 0.09 0.14 0.59
ANIL 0.39 0.19 0.25 0.56 0.54 0.44 0.50 0.87 0.35 0.13 0.19 0.61
Reptile+HC 0.35 0.13 0.20 0.63 0.63 0.65 0.64 0.98 0.34 0.12 0.18 0.65
ANIL+HC 0.40 0.58 0.50 0.95 0.47 0.59 0.51 0.98 0.38 0.56 0.46 0.92

ANIL and Reptile using vanilla decoders achieved high precision but tended to

perform low recall; the vanilla Prototypical Networks tended to be opposite: low

precision but high recall. In contrast, ANIL+HC, Reptile+HC and ContrastPro-

toNet, achieved better precision-recall balance and thus higher F1 scores and TS,

proving that detecting and alleviating the influence of out-of-task distribution can

improve task personalization and accuracy. Such phenomenon is also illustrated in

Figure 4.5.1 and Figure 4.5.2, where we plot ROC curves and tSNE visualizations

of token embeddings after task adaptation. Comparing our methods against base-

lines, we observe an elevation in the curves and more distinct boundaries between

OTD and ITD and between ITD classes.

The reasons are as follows. First, ANIL and Reptile treat the dominant OTD

instances as an extra class as well. The problem turns out the imbalanced classi-

fication in meta-learning, one of the challenges in few-shot VDER tasks. By using

an OTD detector, ANIL+HC and Reptile+HC can faster adapt to the task-specific

boundary between OTD and ITD. Overall, this potentially increase the recall and

task specificity score and the overall F1 score. Second, for the vanilla metric-based

methods, where OTD instances are treated as one extra class, the ITD testing in-

stances tend to be close to ITD class centers so that we have high recall. However,

OTD instances dominate the task. It is possible that some OTD testing instances

are closer to ITD centers than the OTD class center (the average center of multiple

OTD classes) so that most of them are misclassified as one of ITD classes, i.e., low

precision. In opposite, ContrastProtoNet does not make any assumption on the

OTD distribution; instead, we enforce OTD to be far away from ITD classes and
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Figure 4.5.1: tSNE visualization of the learned embedding space for a randomly-
selected meta-testing task, comparing (a) vanilla ProtoNet and (b) ContrastPro-
toNet methods, under the 4-way 4-shot setting of FewVEX.

classify via token-level similarities while considering probabilistic uncertainty.

4.5.4 Class Structure Disentanglement

We examine the explanability and disentanglement of the learned representations

(generated by the meta-parameters of encoder). Figure 4.5.1 shows tSNE visualiza-

tions of the learned embedding space of a selected task. Overall, by comparing Fig-

ure 4.5.1 to Table 4.5.2, the higher performance appears to be consistent with more

disentangled clusters. Moreover, from the first column containing ITD (red) tokens

and OTD (blue) tokens, we observe that the blue points dominate the embedding

space and comprises multiple clusters, which demonstrates the out-of-task distri-

bution is multimodal, making it hard to identify in-task entities. Further, we try to

understand the disentangled structure of classes from the clusters. In the right col-
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Figure 4.5.2: Visualization under 4-way 4-shot and 4-way 1-shot settings of
FewVEX, for ANIL and ANIL+HC.
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umn in Figure 4.5.1, we zoom into the four ITD classes, where the 4 entity types

are represented by different colors: “menu (sub uniprice)” (violet), “sub total

(etc)” (red), “total (total etc)” (green), and “sub total (discount price)”

(blue). We observe that “menu (sub uniprice)” (violet) is far away from the other

three classes, while the other three classes are slightly entangled. Such class struc-

ture represents the relationships between these entity types, which is explainable:

the red and blue classes belong to the same superclass sub total; the green and

red are both etc information.

4.6 Conclusions

In this chapter, we studied the entity-personalized multimodal learning problem

for VDER (EpVDER) as a case study for CoMML with agent individual concept

preferences. We exploited both metric-based and gradient-based meta-learning

paradigms, along with a new technique we proposed to enhance task personalization

via out-of-task-distribution awareness. The experiments showed that the proposed

methods achieve major improvements over the baselines for EpVDER. For future

works, our approaches might be improved in the following directions: (1) A more

robust algorithm that distinguishes between the OTD and ITD. (2) An advanced

decoding process considering graphical structures or implicit correlations between

entity instance within each task. (3) Exploring the causal role of pretrained models.



Chapter5

Meta Graph Learning for Handling

Coexistence of Modality Gap and

Concept Shift

5.1 Introduction

In this chapter, we focus on scenarios where individual MML agents are permit-

ted to have both modality preferences and concept preferences. In such

cases, there exist simultaneous modality gaps and concept shifts among agents.

While Chapter 3 and Chapter 4 have addressed each of the two personalization

patterns, respectively, the coexistence of modality gaps and concept shifts

introduces additional complexity to the problem: the personally-defined concepts

can be represented by various combinations of modalities combining, which fur-

ther exacerbates the information gap when agents exchange shareable information.

Simply combining their solutions may not straightforwardly resolve this challenge.

A real-world example of such a coexistence setting can be found in Hybrid Few-

shot Learning (hFSL) problem. The hFSL problem, distinguished from standard

few-shot learning [39, 187], takes into account that personally-defined concepts can

be represented by various combinations of modalities. That is, the few-shot exam-

ples of the personal concepts in an agent can be further divided and distributed

across separate feature spaces. Figure 5.1.1(b) shows two hybrid 5-way 1-shot clas-

68
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Figure 5.1.1: Comparison between uniform and hybrid FSL. Colored shapes within
green rectangles denote training samples. In each task, different colors indicate the
different classes (concepts). Hollow shapes within red rectangles denote unlabeled
testing points. Note that in case-2, each of the grey regions denotes a data sample,
where a sample may contain more than one modality.

sification tasks, which can be regarded as two participating agents, where samples

may be diverged from each other in terms of their feature spaces. Therefore, in

this chapter, we aim to study and experiment on this specific use case–hFSL via

multi-agent collaboration, to delve into the research on “CoMML with both

modality preferences and concept preferences”.

The coexistence of modality gaps and concepts shifts in Multi-agent Collabora-

tive hFSL leads to two technical challenges. (1) First, compared with uniform FSL,

the data scarcity problem would be escalated in hFSL. Specifically, since the few

labeled samples per class may be spread in different feature spaces, in each space,

there would be less labeled data per class (i.e., less shots) or even no training data

available in some classes (i.e., zero shot). That is, the number of training samples

in each space may be reduced. For example, consider the task shown in Figure

5.1.1(b) agent-1, there is no modality-one training data in class-2, thus the agent-2

for modality-one is a zero-shot case. (2) Second, for a hybrid K-shot classification

task, the uneven split of K examples per class would result in a hybrid number of

labeled samples per class (i.e., hybrid shots) in each space. Typically, a model
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is designed for training and testing data that has the same input space. However,

the decreased and hybrid number of training examples in each space may bring

difficulties to the model training. Although one may consider training an align-

ment function to unify the training data from heterogeneous spaces, the accuracy of

such a task-specific alignment function still relies on the limited number of support

examples in each input space.

To alleviate the data-scarcity and hybrid-shot problems of hFSL, we propose

to formulate the hybrid few-shot task as a transductive learning task, which maxi-

mally leverages available information in the task to enrich our knowledge about the

target concepts, while learning the potential relationships between heterogeneous

data. Transductive inference for few-shot learning typically utilizes the query sam-

ples to improve the task-specific knowledge distillation [188, 189, 190]. Inspired

by this, we propose a transductive meta-learner which can incorporate some un-

labeled data containing information that is not possessed in the labeled samples.

Intuitively, our key idea is to jointly learn all the samples in the task with het-

erogeneous spaces so that the model can obtain extra information (from unlabeled

data) about the relationships between spaces and the data distribution to make

better predictions. In particular, we aim to learn the task-specific relationships 1)

between heterogeneous input spaces and 2) between samples within the same class

(intra-class samples) or belonging to different classes (inter-class samples), where

the underlying data relationships within a task are complicated and hard to be

learned due to data heterogeneity.

To achieve these goals, we propose Task-adaptive Topological Transduction

Network (TopoNet), a graph neural network-based transductive few-shot learn-

ing framework for hFSL. Basically, we introduce a topological transductive meta-

learner, which can learn the task’s class distribution by simultaneously exploring

relationships between concepts as well as relationships between the heterogeneous

feature spaces of data. We explicitly model a graph structure to connect all the

samples in a task to perform the transduction; edges expressively connect inter-

and intra-class samples as well as bridge heterogeneous samples, which helps to

leverage multi-space relationships and data semantic similarities. To capture both

the multi-space relationships and the inter- and intra-class data relationships, we
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first construct a node-heterogeneous multi-relation graph from the original multi-

space features, and then we propose the edge-enhanced heterogeneous graph neural

network to alternatively update edge and node features layer by layer, where het-

erogeneous input spaces are gradually unified while leveraging edge features to

incorporate inter- and intra-class relationships. An overview of this chapter:

• In the era of few-shot learning, this chapter studies a novel hybrid few-shot

learning problem, allowing a task to incorporate multiple feature spaces and

contains a hybrid number of shots per class in each space.

• In the era of CoMML, this chapter explores a solution for facilitating multi-

agent collaboration amidst simultaneous modality gaps and concept shifts.

• We propose to train a graph meta-learner to overcome the data-scarcity and

hybrid-shot challenges in hFSL by modeling a learnable and generalizable

topological structure.

• The experimental results on Collaborative hFSL simulations demonstrate

that our framework is superior to existing approaches.

5.2 Related Work

In addition to the literature reviewed in Section 2.4, our proposed techniques are

related to and inspired by three lines of work: 1) Meta-Learning for Few-shot

Classification; 2) Transductive Inference; and 3) Meta-learning for Graphs.

Meta-Learning for Few-shot Classification. Recent meta-learning approaches

can be divided into two categories: inductive and transductive few-shot classi-

fication. Inductive few-shot learning has been more widely studied than trans-

ductive few-shot learning. Inductive methods mainly includes metric-based and

optimization-based algorithms. Metric-based approaches learn an embedding met-

ric space shared by all tasks, on which data samples of different classes can distin-

guish with each other based on distance measurements [51, 52, 53, 54]. Optimization-

based approaches train a meta-learner as an optimizer to fine-tune the meta-prior,

thus adapt the class distribution to each specific task [39, 55, 56, 57]. Further,

several works [52, 67, 68] improved the metric- or optimization-based methods in
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terms of task adaptability. While these approaches presume the samples in a task

share a uniform input space, we assume a hybrid task setting involving a mixture

of different input spaces. Some recent works studied multimodal few-shot learning

[58, 59, 191]. Although we also use multimodal few-shot datasets, we allow for

the frequent occurrence and different conditions of missing modalities in real-world

multimodal few labeled data scenarios.

Transductive Inference. Transductive learning was first introduced in [192]. A

family of transductive methods were built upon graph learning frameworks, such

as graph propagation [193] and graph neural networks (GNN) [194, 195]. Trans-

ductive inference has been recently used to solve few-shot tasks, which has shown

substantial improvements over inductive counterparts as it utilizes unlabeled query

data to obtain more representative class distribution. Based on how the model in-

corporates unlabeled data, existing transductive approaches can be separated into

implicit and explicit methods. Implicit transductive methods directly use the entire

unlabeled feature information to enhance the classification boundaries [57, 189, 196,

197]. While implicit methods do not leverage data relationships during transduc-

tion, explicit transductive methods measures the underlying relationships between

data to enrich class features [198, 199, 200, 201, 188, 190] Our method follows the

explicit transductive paradigm in the sense that we also explore data relationships

during within-task transductive adaption. However, existing transductive methods

rely on a common metric space to measure data relationships. Yet this assumption

does not hold in the hybrid few-shot setting with heterogeneous input spaces. This

chapter mainly deals with the difficulties from the division of samples, where the

relationships between data could be more complicated and unclear.

Meta-learning for Graphs. Our framework utilizes Graph Neural Networks

(GNNs) [194, 202] for solving hybrid few-shot tasks. Yet we focus on jointly learn-

ing the graph structure and node representations, as well as how to generalize

and adapt the learnable structure over tasks. Some works [203, 204] proposed

techniques for optimizing graph structures together with GNN parameters using

meta-gradients, reinforcement learning, or discrete edge probabilities, but stud-
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ied different problems (e.g., completing corrupted edges and adversarial attacks)

on a single large-scale graph. Recent works incorporated graph structured data

into meta-learning [205, 206, 207, 208]. We also formulate our problem as graph-

structured semi-supervised node classification tasks plugged into meta-learning.

However, these methods assume a single large-scale graph whose structure is given.

In contrast, the graph structure of our task is not given, and moreover, we gener-

alize the graph structure knowledge across unlimited graphs and adapt the graph

learning procedure over different tasks.

5.3 Problem Formulation

5.3.1 Local Task Definition on Each Agent

Chapter 4 focused on Concept-shifted Collaboration. While there are concept shifts

among agents, the input modality types remain uniform across agents (e.g., both

text and modalities are fed to the input at all times). In this chapter, we consider

simultaneous modality preferences and concept shifts. Further, while Chapter 4

focuses on the fine-grained concept preferences, this chapter will resort to a simpler

version of Chapter 4–the instance-level concept preferences.

Definition 5.1 (Modality- and Concept-personalized Few-shot Learning).

An agent is defined as a U -way K-shot instance classification task D = {S,Q, C, I},
which consists of a support set S containing U×K samples, a query setQ containing

n samples, a personal label space C, and an indicator I that specifies its personal

and sample-unified modality set

S = {(x̃1, y1), (x̃2, y2), ..., (x̃U×K , yU×K)}
Q = {(x̃∗

1, y
∗
1), (x̃∗

2, y
∗
2)..., (x̃∗

n, y
∗
n)}

C = {c1, c2, ..., cU}
I ⊆ [M ],

(5.1)

where the input of each sample j is an ordered tuple x̃j = (x
(m)
j ∈ RFm |m ∈ I)

containing the data of modalities specified by I ⊆ [M ]. M is the number of

all modality types across agents. The goal is to obtain a personal model θ by
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optimizing the local objective minθ E(x̃,y)∼S l (y, f(x̃;θ)), where l(·, ·) is the loss

function for each sample and f(·;θ) is the trainable forward function.

Definition 5.2 (Modality-hybrid Concept-personalized Few-shot Learn-

ing (hFSL)). A more general case of Definition 5.1 is that the (UK+n) samples

within an agent might also have different input modality sets. This situation results

in the support/query samples of a concept in the task being further separated into

different feature spaces. An agent is defined as a hybrid U -way K-shot instance

classification task D = {S,Q, C} which consists of a support set S containing U×K
samples, a query set Q containing n samples, and a personal label space C

S = {(x̃1, y1, I1), (x̃2, y2, I2), ..., (x̃U×K , yU×K , IU×K)}
Q = {(x̃∗

1, y
∗
1, I∗1 ), (x̃∗

2, y
∗
2, I∗2 )..., (x̃∗

n, y
∗
n, I∗n)}

C = {c1, c2, ..., cU}

(5.2)

The modality set indicator Ij ⊆ [M ] is associated with each sample j. The input

of each sample j is an ordered tuple x̃j = (x
(m)
j ∈ RFm |m ∈ Ij) containing the

data of modalities specified by Ij. The goal is to obtain a personal model θ by

optimizing the local objective minθ E(x̃,y,I)∼S l (y, f(x̃, I;θ)).

5.3.2 Multi-agent Collaborative hFSL

We will deal with the more general case in Definition 5.2. Similar to Chapter 4,

we consider a task distribution P (D) over few-shot learning tasks. The task of

any agent i ∈ [N ] can be sampled as Di = {Si,Qi, Ci} ∼ P (D). We formulate a

multi-agent systems as D̂colab = {D̂trn
colab, D̂tst

colab} consisting of Ntrn agents that have

labelled validation set and Ntst agents that only have a few labelled examples

D̂trn
colab = {D1,D2...DNtrn} where Di = {Si, Qi, Ci} ∼ P (D)

D̂tst
colab = {D∗

1,D∗
2...,D∗

Ntst
} where D∗

i = {S∗
i , Q

∗
i , C∗i } ∼ P (D)

(5.3)

where any training agent focuses on personal concepts Ci ⊂ Cbase from a set of base

classes Cbase and any testing agent focuses on personal concepts C∗i ⊂ Cnovel sampled

from Cnovel. The query sets of training agents are treated as validation sets, Qi =
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{(x̃∗
ij, y

∗
ij, Iij)}nj=1 for ∀Di ∈ D̂trn

colab. The query sets of testing agents are unlabelled

testing data, that is, Q∗
i = {x̃∗

ij, I∗ij}nj=1, ∀D∗
i ∈ D̂tst

colab. We define the global

objective following [39]. We aim to train a meta-learner consisting of the global

generalization parameters θ and a personalization-aware adaptor Adapt(·, ·;ϕ)

θ∗,ϕ∗ = arg min
θ,ϕ

1

N

Ntrn∑
i=1

Li(Adapt(Di,θ;ϕ)) (5.4)

such that any seen or unseen agent Di can take advantage of it to quickly obtain a

good personal model θ∗i = Adapt(Di,θ∗;ϕ∗), where Li is the local loss on query

set and Adapt(·, ·;ϕ) is the local training result from the support set.

5.4 TopoNet: Graph Transductive Meta-learner

In a hybrid few-shot classification task, as defined in Eq.(5.2), data are hetero-

geneous in terms of the inconsistent feature spaces of data. That is, the limited

labeled samples per class (i.e., K shots) can be further partitioned by the different

feature spaces. Therefore, each space u only contains partial labeled samples for

each class, which leads to two subproblems: 1) the data-scarcity problem is ag-

gravated such that the number of training samples per class in each space is reduced

to less shots or zero shot; 2) the hybrid-shot problem, where different classes have

different number of training samples in each space u, as the K examples per class

have been unevenly split.

To overcome these challenges, we propose to employ the transductive infer-

ence for task adaption. We aim to train a transductive meta-learner that jointly

considers the knowledge about heterogeneous data in both S and Q:

pθ(y
∗|x∗,S,Q \ YQ), (5.5)

where YQ denotes the ground-truth labels of query samples in D, which means the

labels of query set are not required for solving each task, which is the truth in

reality. An assumption underlying Eq.(5.5) is that we know partial testing (query)

samples for solving a task. This assumption yet holds in meta-learning framework
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Figure 5.4.1: The proposed TopoNet framework.

as D̂traincolab contains the query data of each task to enable the training of meta-learner.

Intuitively, during the transductive task adaption, we incorporate unlabeled

samples and jointly learn all the samples in the task with heterogeneous spaces,

so that the meta-learner can obtain extra information about the task-specific data

distribution and the relationships between spaces to make better predictions. In

this section, we will introduce the proposed the Task-adaptive Topological Trans-

duction Network (TopoNet), whose overview is in Figure 5.4.1.

5.4.1 Feature Embedding

A feature embedding network fenc(·;θenc) is used to extract features of an input x̃j,

where θenc indicates its parameters. Suppose there are M modalities, fenc contains

M paralleled modality-specific subnetworks f
(1)
enc, f

(2)
enc, ..., f

(M)
enc . Each existing (not
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missing) modality x
(m)
j of a sample x̃j is embedded independently through the

subnetwork f
(m)
enc (·;θmenc),

z
(m)
j = f

(m)
enc (x

(m)
j ;θmenc) ∈ RF , (5.6)

where F is the dimension of each modality’s embedding. Hence, each sample x̃j is

embedded as a tuple containing |Ij| modality-specific embeddings, zj = (z
(m)
j |m ∈

Ij). With the transductive inference that jointly learns support and query data in

task D, we will obtain an embedded feature set for all support and query samples

within the task, i.e., Z = {zj|∀x̃j ∈ S
⋃
Q}. Note that for uniform multimodal

FSL, fenc will generate a feature set with fixed number of embeddings per sample

so that Z = Z ∈ R(UK+n)×MF .

5.4.2 Topological Transductive Learning

To overcome the hybrid-shot and data-scarcity dilemma of hFSL, our key idea

is to build connections and unify all different types of samples in a task during

model training. Therefore, we consider the transductive inference (as in Eq.(5.5))

that can jointly learn support and query samples from multiple input spaces. In

this transductive framework, we focus on solving two subproblems: 1) how to

explore the relationships between multiple input spaces so that samples can be

aligned in a uniform semantic space; 2) how to discover the inter- and intra-class

data relationships and then utilize them to improve the representativeness of the

learned class distribution.

To facilitate the exploration of data and multi-space relationships within the

transductive learning framework, we propose to explicitly model a learnable graph

structure to connect all the samples in a task. We consider the input set of a

task is believed to have some geometric structure, and the edges (topology) of a

graph structure can naturally connect different input spaces, as well as leverage

the potential inter- and intra-class data relations of the task. Therefore, given a

task D, our goal is to learn its underlying topological graph G = (V , E ;D), which

represents the relations among the support and query samples within the task.

V = {vj}UK+n
j=1 denotes the vertex set combining support and query samples, and
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E = {ej,j′}UK+n
i,j=1 is the edge set which connects each pair of samples from different

classes and different input spaces. Each node vj is associated with a node feature

hj, and each edge ej,j′ is also associated with an edge feature/weight ej,j′ which is

relevant to node relationships.

Solving an hFSL task can be viewed as learning the node and edge features of

graph G = (V , E ;D). We formulate such graph learning task as a semi-supervised

node classification task, supervised by the |S| labeled nodes. In this section, we will

first construct a multi-relation graph with its initialized node and edge features,

and then, edge and node features are refined step-by-step via an edge-enhanced

heterogeneous graph neural network.

5.4.2.1 Graph Construction with Multi-space Nodes

From the multi-space feature set Z produced by the feature embedding network,

we can construct a graph G = (V , E ;D) with initial node features H(0) and initial

edge features E(0).

The initial feature of each node vj is the concatenation of available modalities

of the sample, i.e., h
(0)
j = ||m∈Ijz

(m)
j , where || denotes concatenation. The initial

node feature set H(0) = {h(0)
j ∈ R|Ij |F}UK+n

j=1 is heterogeneous as different nodes

(samples) have different combinations of modalities. Note that if two nodes h
(0)
j

and h
(0)
j with Ij = {1, 2} and Ij = {2, 3}, although both are 2F -dimensional (i.e.,

|Ij| = |Ij| = 2), they still belong to different feature spaces.

Edge features leverage data relationships. However, it is unfeasible to directly

measure the similarity between a pair of heterogeneous nodes; also, some pairs

of nodes may not contain common modalities, such as node Ij = {1} and node

Ij = {2, 3}, but belong to the same class and should be connected. Considering

these difficulties, we initialize an multi-relation graph where each edge measures

multiple views of node relationships: 1) each modality-m can provide a view of

node relations by comparing the mth modality (if available); 2) the given labels

of support samples can provide an additional view of class similarities. We obtain

an edge-feature tensor E(0) ∈ R(UK+n)×(UK+n)×(M+1). Each (i, j,m)-entry of E(0)
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is calculated as

E
(0)
i,j,m≤M =

{
σ(gm(∆m

j,j′ ;θ
m
geo)) if m ∈ Ij

⋂
Ij′

0.5 if m /∈ Ij
⋂
Ij′ ,

E
(0)
i,j,M+1 =


1 if yj = yj′ and vj, vj′ ∈ S
0 if yj ̸= yj′ and vj, vj′ ∈ S
0.5 if vj ∈ Q or vj′ ∈ Q,

(5.7)

where ∆m
j,j′ = |z(m)

j − z(m)
j′ |; gm(·;θmgeo) is the metric function for modality-m,

a stacked Multilayer Perceptron network with parameter θmgeo; and σ is sigmoid

function. The edge feature (relationship) between a pair of nodes is an (M + 1)-

dimensional vector, constructed by measuring each view’s similarity scores. Note

that for some pairs of samples without common views but belong to similar classes,

they should have high similarity scores in some missing views but the missing views’

similarity scores cannot be calculated; we use 0.5 to account for these uncertain

views.

5.4.2.2 Edge-enhanced Heterogeneous Graph Neural Network

An hFSL classification task has been converted into a node-heterogeneous and

multi-relation graph G = (V , E ;D). In the proposed topological transduction frame-

work, solving an hFSL classification task can be formulated as the semi-supervised

node classification task on G, supervised by the training nodes S. Yet the difficulty

here is the complexity of learning a graph with several types of nodes and multi-

view node connections. Therefore, we employ the power of Graph Neural Networks

(GNNs) to facilitate transductive learning on G.

Given the initial heterogeneous node features H(0) and multi-relation edge fea-

turesE(0), the edge and node features are updated iteratively layer by layer through

a stacked edge-enhanced heterogeneous graph neural network (EHGNN):

H(l) = glnode(H
(l−1),E(l−1);θlnode)

E(l) = gledge(H
(l),E(l−1);θledge),

(5.8)

where θlnode and θledge are the node and edge updating parameters at layer l, respec-
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tively. Basically, nodes from multiple spaces are aligned into a unified semantic

space along the procedure; edge features are directly encoded in the node updating

model so that multi-view similarity scores can be incorporated to improve node

representativeness.

Heterogeneous Space Alignment via Node Update. At the first layer, we

are give the initial heterogeneous node features H(0). Each node feature h
(1)
j is

updated by aggregating its one-hop neighborhoods from each feature space

h
(1)
j =∥M+1

r=1 σ

∑
u∈UD

∑
j′∈N (j,u)

Ê
(0)
j,j′,rW

(1)
r,uh

(0)
j

 , (5.9)

where || is concatenation operation, UD ⊆ [2M + 1] denotes a set of input spaces

in D, and N (i, u) denotes a set of neighboring nodes for vj on the input-space u.

W (1) = {W (1)
r,u ∈ RF1×Fu |r ≤ M + 1, u ≤ UD} are parameters of node encoders for

nodes in each feature space and each view of relationship, where Fu is the dimension

of feature space u, and F1 is the dimension of node encoders’ outputs. Edge features

are incorporated into the neighborhood aggregation, where each view of the multi-

relation edge features generates a new node feature which is then concatenated

with other views’ new features. To avoid increasing the scale of output features

by multiplication, we normalized edge features over the neighborhood of vj, that

is, Ê
(0)
ijr =

E
(0)
ijr∑

k∈N (i)E
(0)
ikr

. Then, at layers l > 1, we simplify the aggregation process

for training efficiency as node features are early homogenized in an F1(M + 1)-

dimensional space. Given features obtained in the last layer H(l−1) ∈ R(UK+n)×Fl−1

and E(l−1) ∈ R(UK+n)×(UK+n),

h
(l)
j = σ

 ∑
j∈N (i)

Ê
(l−1)
j,j′ W

(l)h
(l−1)
j

 , (5.10)

where Ê
(l−1)
j,j′ =

E
(l−1)

j,j′∑
k∈N (j)E

(l−1)
jk

, and W (l) ∈ RFl×Fl−1 denotes the layer-l node encoder

shared by each sample.

Edge Update. Edge feature update is done by measuring the relationships of
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current node features. The goal of edge update is to modify the previous represen-

tations for inter- and intra- class relationships, making the topological structure

more relevant to the specific task. To simplify and reduce the parameter size, the

dimensions of edge features after the first layer are reduced to 1. Therefore, at the

first edge updating layer, the initial (M + 1)-view edge features are compressed

into a single view

E
(1)
j,j′ =

1

M + 1

M+1∑
r=1

α1
j,j′,rE

(0)
j,j′,r, (5.11)

where α1
j,j′,r = gledge,r(h

(1)
j ,h

(1)
j′ ;θ1edge,r) is a scalar that measures the relationship

between h
(l)
j and h

(l)
j′ , which can be calculated using any metric or attention func-

tion (e.g., additive attention, dot-product, multiplicative attention) [18]. Then, at

layers l > 1, to simplify the calculation, edge features are updated directly using

the attention scores over current node features,

E
(l)
j,j′ = gledge(h

(l)
j ,h

(l)
j′ ;θledge). (5.12)

To summarize, the information aggregation through edges takes into account

the current edge features, thus automatically leveraging the current learned inter-

and intra-class relationships and achieving. The information exchange among sup-

port and query samples jointly models different types spaces, where each space

could incorporate extra information from other spaces. This process implicitly

achieves multi-space alignment so that could alleviate the hybrid-shot and data-

scarcity challenges.

5.4.2.3 Task Modulation

Meta learning explores the transferable knowledge across tasks. In TopoNet, we

aim to generalize the underlying topological structure over different hFSL tasks,

including the multi-space alignment parameters and the parameters used in model-

ing intra- and inter-class data relationships. Despite the globally shared structural

knowledge, there is also specific knowledge about underlying topological structure

for each task. For example, the importance of each modality may vary between dif-

ferent tasks. Therefore, following [52], we build a task modulation network g(·;ϕ)
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to condition the topological transductive learning module, which utilizes external

task-level information to slightly adjust the prior knowledge for each task, may be

better suited for finding correct underlying task-specific class distribution.

5.4.3 Optimization

Task Objective. In our framework, a hybrid U -way K-shot classification task is

converted into a semi-supervised U -wayK-shot node classification task with hetero-

geneous nodes. After obtaining node features H(L) ∈ R(UK+n)×FL at the last GNN

layer L, we use a nonlinear classifier p(·;θp) followed by a softmax layer to make

class predictions for each node. The predictions are compared with ground-truth

labels to calculate cross-entropy losses. The inner-loop optimization is supervised

by the support labels, by minimizing the cross-entropy loss defined as follows:

LD̂(t) = −
∑

yj∈YSD̂(t)

yj · log(softmax(p(h
(L)
j ;θp))), (5.13)

where YSD̂(t)
denotes the UK labels in the support set SD̂(t). Note that the final-

layer node representation h
(L)
j of vj has aggregated the data information from both

SD̂(t) \YSD̂(t)
and QD̂(t) \YQDT

through GNNs. With the supervision of the support

labels, the topological structure learned by the topological learning network can be

relevant to true class distribution of the specific task.

Meta-objective. We train TopoNet following the optimization-based meta-learning

paradigm [39], which solves a bilevel optimization problem to find a prior θ as

the meta-learner’s parameters. The parameters of our three-module network is

θ = {θenc,ψ,θp}, where ψ = {θgeo,θnode,θedge} is the topological transduction

module. The meta-objective is to obtain a set of meta-initialization parameters θ0,

an appropriate generalization of prior knowledge for all tasks, plus the parameters

of the external task-modulation meta-network ϕ [52].

Bilevel optimization. Formally, let θ′t signify θ for the agent D̂(t) during the

inner-loop optimization, and let the initial θ′t = θ0. In the inner-loop adaption,
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Algorithm 2: Training Procedure of TopoNet

1: Requires: Distribution of hybrid few-shot tasks P (D)
2: Requires: Learning rates α, β; GNN layer number L
3: Randomly initialize task network θ and meta-network ϕ.
4: for each round t = 1, 2, 3, ..., T do
5: Sample batches of agents D̂(t) ∼ P (D)

6: for each agent Di ∈ D̂(t) do
7: Obtain data {Si,Qi} for each task Di.
8: Initialize task network θ′t = θ0, and replace ϕ0 using ϕ0,t.
9: Calculate embedded multi-space feature set Zt.
10: Construct graph Gt and initialize H

(0)
t and E

(0)
t .

11: Update node and edge features via EHGNN; obtain H
(L)
t .

12: Obtain predictions YSi
for support set, compute adapted internal

parameters with a fixed number of steps w.r.t. the UK examples from Si
as in Eq.(5.14).

13: Evaluate Lt(f(x̃;θ′t,ϕ), y∗;Qi) w.r.t. n testing samples of Qi.
14: end for
15: Update initialization of task network θ0 as Eq.(5.15).
16: Update meta-network ϕ as Eq.(5.16).
17: end for
18: return: θ0 and ϕ

during each gradient update, we compute

θ′t ←− θ′t − α∇θ′tLD̂(t)(f(x̃;θ′t,ϕ), y;Si), (5.14)

where f(·) is the forward function and LD̂(t)(·;Si) is the loss on the support set

of D̂(t) as in Eq.(5.13). Separately on each agent, after a fixed number of inner-

loop fine tuning steps, we obtain the personal parameters θ′j(θ0) from the meta-

initialization θ0. Then, the outer-loop optimization updates the θ0 and ϕ using

the feedback from a batch of agents:

θ0 ←− θ0 − β∇θ0
∑

D̂(t)∼p(D̂)

LD̂(t)(f(x̃∗;θ′j(θ0),ϕ), y∗;Qi) (5.15)

ϕ←− ϕ− β∇ϕ
∑

D̂(t)∼p(D̂)

LD̂(t)(f(x̃∗;θ′j(θ0),ϕ), y∗;Qi), (5.16)

where LD̂(t)(·;Qi) is the loss on the query set of task D̂(t). Algorithm 2 shows the
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overall training workflow of TopoNet.

5.5 Experiments

5.5.1 Dataset

Two source datasets are used to simulate the CoMML scenario studied in this chap-

ter, including the CUB-200 (image+text) [209] originated from CUB-200, where

each image is annotated with a 312-dimensional text (attribute) modality, and the

3D-object recognition dataset miniModel40 (view1+view2) constructed from

the ModelNet40 [146], which contains 3D CAD objects covering 40 common cate-

gories (split as |Ctrain| = 25, |Ctest| = 9, and |Cval| = 6) and each object is marked

by two views of feature representations as in [141].

From the two dataset, we construct the scenarios where concepts are scarcely

labeled and data is heterogeneous, we constructed two hybrid few-shot classification

datasets, as hFSL was never studied before and we cannot find existing datasets

available. The two simulations are named h-CUB-200 and h-miniModel40.

Each contains a hybrid combination of modalities. Specifically, in order to simulate

the irregular and frequent occurrence of missing modality in the real-world web

applications, each uniform task in the source dataset was turned into the hybrid

task by randomly deleting modalities from randomly picked samples. The deletion

process is as follows. For each task, we first union the support and query set,

and shuffle the instances. Then, we separate the combined set, which contains

(UK + n) instances, into 2M − 1 disjoint subsets (groups): given the hybrid ratio

0 < ρ < 1, the first group has (1− ρ)(UK + n) samples, and the other groups has

ρ(UK + n)/(2M − 2) samples. Each group except the first one is a proper subset

of {1, ...,M} indicating the modality availability, and for all the samples in the

same group, we remove the absent modalities from the original multimodal data.

Finally, in the first group, we picked ρ percentage of samples, and from each picked

sample, we randomly deleted one of modalities.
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5.5.2 Baseline Methods

We compared with three families of existing FSL approaches: 1) supervised learn-

ing approaches with inductive inference: ProtoNet [51], RelationNet [54], and

MAML [198]; 2) semi-supervised learning approaches with transductive inference:

GNN [198], TPN [210], TransductiveTuning [196] and LaplacianShot [190];

3) while the previous two families are single-modal baselines, we also consider re-

cent works on multimodal domain: AM3 [58] and MultiProtoNet [191]. As for

reproducibility of these single-modal baselines (e.g., MAML, ProtoNet, Relation-

Net, LaplacianShot, etc.), we imputed the missing modalities by zeros on the input

before concatenating all the original/imputed modalities.

5.5.3 Setups

Model Configurations: (1) Feature embedding network containsM = 2 modality-

specific feature extractors The feature extractor for CUB-200 images is ResNet-18

as in [190], followed by a fully-connected layers with output dimension F = 128;

the feature extractor for CUB-200 attributes consists of 3 fully-connected layers

with hidden dimensions F = 128; the feature extractor for miniModel40 view1

and view2 consists of 3 fully-connected layers with hidden dimensions F = 128.

(2) For graph construction, the metric function for constructing modality-wise node

connections consists of two fully-connected layers with weight shapes F ×F/2 and

F/2 × 1. (3) GNN layer numbers are fixed to L = 3 in all experiments. Graph

nodes are heterogeneous, with three node feature spaces Fu1 = 128, Fu2 = 128,

Fu3 = 256. At the first layer, nodes use different node encoders are 64 × 128,

64 × 128, and 64 × 256. Edges are 3-dimensional. During node update, we ag-

gregated the top-k (k = 8) neighbors instead of all the neighbors. The output

dimensions of GNN node encoders are F1 = 64, F2 = 64, and F3 = 32. For edge

updates, the parameter size of the attention mechanism at each layer is 2Fl × 1.

Hyperparameters. The number of inner-loop gradient updates are fixed to 10

steps in all experiments. The number of participants for updating the meta-learner

at each round was fixed to 4 training agents.
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Table 5.5.1: Average accuracy (%) of few-shot classification on testing agents.

Method
h-CUB-200 h-miniModel40

5-way 1-shot 5-way 5-shot 5-way 1-shot 10-way 1-shot

MAML 69.45 74.26 77.83 67.54
ProtoNet 62.44 68.5 69.30 57.10
RelationNet 73.90 78.72 80.45 67.4

GNN 67.41 72.34 73.45 62.58
TPN 71.17 76.38 79.83 66.05
TransductiveTuning 69.73 68.62 76.15 68.10
LaplacianShot 78.06 82.37 84.63 74.43

AM3-ProtoNet++ 72.46 76.55 78.68 67.18
AM3-TADAM 73.15 77.28 79.54 68.72
MultiProtoNet 71.34 77.44 79.71 69.44

TopoNet (Ours) 80.23 83.11 86.46 77.15

5.5.4 Results and Analysis

Main results. Table 5.5.1 reports the results on the two simulations with the

modality-gap level of ρ = 0.5. These results compare our method, which di-

rectly learned with the original heterogeneous data, against the baselines (designed

for uniform tasks), which used zeros to impute missing modalities so that hybrid

tasks were converted into uniform tasks. The effectiveness of our methods demon-

strated our heterogeneous neighborhood aggregation can comprehensively utilize

other samples’ information to alleviate the impact of missing information.

Impact of Modality-gap Levels. In Table 5.5.2 (columns 2, 3 and 4), we

increase the hybrid ratio of tasks over the dataset. The larger ρ implies that more

missing modalities and a larger number of agents or samples having a smaller subset

of modalities. The last column shows the results when, on each agent, the value of

ρ was not given but randomly sampled from a normal distribution with a mean of

0.5 and a std of 0.3, thus different tasks have different hybrid levels. As the hybrid

ratio increases, the less change on our method’s performance rather than baselines

demonstrates the effectiveness of our method to handle higher heterogeneity.
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Table 5.5.2: Hyperparameter and ablation studies on 5-way 1-shot h-CUB-200.

Method ρ = 0.3 ρ = 0.5 ρ = 0.7 dynamic ρ

TPN 73.29 71.33 66.23 67.42
AM3-TADAM 75.54 73.15 67.91 66.73
MultiProtoNet 73.67 71.34 64.78 69.72
LaplacianShot 80.31 78.06 72.01 75.13

TopoNet‡ 71.20 69.18 63.89 69.93
TopoNet† 80.16 68.50 69.82 77.34
TopoNet 81.67 80.23 75.13 74.96

Ablation Study. In Table 5.5.2 (rows 6, 7, and 8), we evaluate the influence of

each component in our model. TopoNet† replaces graph construction with a non-

parameter metric kernel (i.e., dot-product similarity) and removes missing-view

connections. TopoNet‡ deletes the GNN-based node and edge updating mecha-

nism, and replaces it with the non-parameterised Label Propagation [210] strategy.

As the heterogeneity level increased, the performance of TopoNet† and TopoNet‡

dropped more dramatically than TopoNet. These proved the ability of hetero-

geneous GNN in multi-space alignment, and the ability of the topology learning

module to generalize reliable inter- and intra-class data relationships across tasks.

5.6 Conclusion

In this chapter, we focused on CoMML where individual MML agents are permit-

ted to have both modality preferences and concept preferences. We delved into

this by formulating a novel hybrid few-shot learning (hFSL) task and employing

meta-learning to enable collaborative learning with multiple hFSL agents. We pro-

posed a task-adaptive topological tansduction network (TopoNet) to solve hFSL,

which trained a heterogeneous graph-based transductive meta-learner to handle

the special few-shot tasks with multiple input spaces. Our experimental results

demonstrated that TopoNet successfully generalized the meta-knowledge about

data and multi-space relationships over tasks, and could fast adapt to real tasks

with different levels of hybrid settings.



Part II

Collaboration with Explicit

Knowledge Transfer
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Chapter6

Splittable and Adaptive Transfer

for Fast Collaboration

6.1 Introduction

In this chapter, we focus on the collaboration between agents who are permitted to

simultaneously possess their modality preference, concept preferences, and

domain preferences, assuming agents are solving the same downstream task

type (e.g., object classification). In such CoMML cases, the existence of modality

gap, concept shifts, and domain drifts, jointly define the agent heterogeneity.

Meanwhile, we switch our focus to a new CoMML learning paradigm. Previous

chapters employing the global centralised CoMML paradigm (see Eq.(2.1)) tend

to be slow and lack robustness in handling the complex personalization patterns

that will be studied in the following chapters, as well as have other drawbacks

such as risk of data privacy. Since the complexity of heterogeneity will increase

starting from this chapter, we will switch to using the global-local decentralized

CoMML paradigm (see Eq.(2.2)), which simultaneously learns personal models

that frequently share information among each other. Real-world examples of such a

CoMML setting can be found in Multimodal Federated Learning [211, 40, 41]. Fed-

erated Learning (FL) currently stands as the dominant framework for distributed

training of machine learning models under communication and privacy constraints

[24, 36, 26, 27, 28]. A FL setting typically involves multiple agents collecting

89
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data and jointly train models without sharing their local data, inherently possess-

ing the natural property of statistical heterogeneity among agents (i.e., agents),

which includes domain drift and concept shift. Multimodal FL [211, 40, 41], as

an extension of FL, additionally addresses how different modalities of data dis-

tributed over multiple agents. Multimodal FL is naturally a setting that possess

both statistical heterogeneity and modality incongruity across agents. Therefore,

this chapter chooses to adopt the Multimodal Federated Learning (MFL) set-

ting to conduct the research on CoMML with simultaneous modality preferences,

domain preferences, domain concept preferences.

In MFL systems, agents can have personal definitions of concepts and inter-

ested concepts, personal environments for collecting data, and personal setups of

sensors. Therefore, they possess not only the statistical heterogeneity but also the

modality gap problems. The escalated heterogeneity among agents results in more

divergence between their personalized model parameters or between their gradient

directions during training, thus posing challenges to collaboration and knowledge

sharing across the agents. There are two technical challenges in the MFL. (1) The

first challenge lies in determining how much personal knowledge can be utilized for

appropriate collaboration. The greater the heterogeneity among agents, the more

difficult it becomes for each of them to find shareable knowledge to communi-

cate with peer agents. (2) The second challenge pertains to training stability and

convergence speed. Since only a subset of agents participate in the communicative

collaboration each round [24], greater heterogeneity leads to imbalanced knowledge

communication and collaboration bias. Knowledge that is more prevalent among

agents tends to be communicated more frequently than minority knowledge. As a

result, achieving generalization for minority knowledge (e.g., less-occurring modali-

ties or features) might be slow. Existing FMTL approaches either perform random

agent selection or just select nearly all agents (tasks) to participate in each round,

which is not efficient with modality gap settings. For faster convergence, it is of

importance to select different types of agents in a balanced manner at each round.

Prior FL and MFL approaches mainly focus on the solutions for statistical het-

erogeneity [24, 26, 27, 28], but there are fewer efforts for addressing the challenges

mentioned above. To tackle the aforementioned challenges, we formulate a new
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fundamental structure that learn to adaptively transfer knowledge amongst dif-

ferent types of multimodal agent models for fast collaboration. We propose the

FedMSplit framework. The key idea of FedMSplit is to employ a dynamic and

multi-view graph structure, where each vertex corresponds to an agent solving the

subproblem (local objective) on its local dataset, to handle the multi-view rela-

tionships among agents and hence to achieve adaptive and fast inter-agent weight

sharing. In particular, we propose to split agent models into smaller blocks–some

blocks are shared by all agents while some are shared amongst a subset of agents,

and allow each type of blocks to provide a specific view on agent relationships.

Then, given the graph representation of multimodal agents, the underlying sta-

tistical correlations between agents can be captured as the edge features in the

multi-view graph, and then be used to promote local model relations through the

neighborhood message passing in graph. This chapter is summarized as follows:

• In the eras of CoMML and FL, we study the less-explored field of Multimodal

Federated Learning (MFL), which has broad real-world applications, paving

the way for future research in this direction.

• We focus on the learning paradigm of explicit knowledge transfer in MFL,

where collaboration occurs on the model’s parameter space or subspaces.

While extensive approaches within the explicit knowledge transfer paradigm

has been proposed, we focus on the less-addressed challenges on both transfer

accuracy and transfer efficiency due to the modality gap among agents.

• A technical novelty in the proposed FedMSplit is that we leverage the splitta-

bility of model architectures to construct a multi-view dynamic graph, which is

utilized to facilitate adaptive and fast knowledge transfer among clients. The

graph stores real-time relationships among heterogeneous agents, enabling

fast collaboration.

• Another technical novelty in the proposed FedMSplit is that we utilize the

multi-armed bandit algorithm over the graph to perform efficient agent se-

lection among different agent architectures, enabling fast collaboration.

• The empirical results show the FedMSplit’s effectiveness.
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Figure 6.2.1: Multimodal federated learning (MFL) setup, where a total of M = 3
types of sensors are involved. The models shown here intend for multimodal fusion
tasks, yet can be replaced by other models. Any type of agent models can be split
into at most four different blocks.

6.2 Problem Formulation

Assuming M modalities across N agents, each agent i ∈ [N ] local datasets is

Di = {(x̃ij, yij)}ni
j=1, where x̃ij = (x

(m)
ij |∀m ∈ Ii) is the input modalities of each

sample i and Ii ⊆ [M ] is the set of active sensors at agent i. Similar to Chapter

3 and Chapter 5, there can be at most (2M − 1) types of agents in the network.

Different from them, in this chapter we will focus on the global-local decentralized

paradigm and consider domain drift in conjunction with modality gap and concept

shifts, by formulating the system in Personalized Federated Learning. In Figure

6.2.1, we show a trimodal federated dataset, where the cylinders in different colors

(yellow, green, and red) illustrate the data collected from different types of sensors

and there can be at most seven types of agents. For example, healthcare centers

in remote areas usually lack advanced medical equipment so that their models

relies on data collected by other available sensors; in dynamic systems or online

learning applications, sensor availability may be not stable over time, thus several

modalities can be missing frequently.
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Multimodal Split Networks. Given the modality gap amongst agents, agents

having different sensor setups do not share the same model architecture θi ∈ Rdi

where d1 ̸= d2 ̸= ... ̸= dN , as shown in the middle of Figure 6.2.1. This will lead to

difficulties in server-agent and cross-agent communication as different agent models

cannot be copied or aggregated directly. One may consider a heuristic strategy

unifying all agent models into the largest one by inserting missing blocks on the

input layers, or deleting some blocks for under-predominant modalities. Yet this

will introduce bias to model aggregation as well as not efficient. One may also

argue that the agents having different sensors should be totally separated from

each other during modal aggregation; however, this is not true as the different

modalities across agents may still have common knowledge to learn–for example,

the sound data and visual appearance of the same object can exists in different

but statistically closer agents. Therefore, instead of totally unifying or separating

agents, we aim to directly learn the original agent models. Inspired by the idea of

split learning [212, 213] we split each agent models into blocks such that there are

two types of model blocks among all agent models: 1) blocks shared globally by all

agents and can be aggregated amongst the entire network; 2) blocks shared locally

by the agents having the same corresponding sensors and can be aggregated across

partial agents. For example, as for multimodal integration tasks [138, 20, 21, 195],

which learn predictive models that integrate the information of given modalities

to make decisions, we can split any agent model into one or more modality-specific

feature extractors and a classifier that takes the cross-modal aligned features as

input. Figure 6.2.1 illustrates the multimodal split networks, i.e., the diverse model

architectures of different types of integration tasks. Formally, for parameter vector

θi ∈ Rdi at agent i whose sensor set is Ii, we can split as

θi = {θi,m|∀m ∈ Ii} ∪ {θi}, (6.1)

where θi,m ∈ Rd′m is the weight vector of the feature extractor for sensor-m and

θi ∈ Rd′ is the weight vector of the classifier. That is, we break the weight vector

of dimension as di = d′ +
∑

m∈Ii d
′
m. Then, the loss function for the multimodal
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sample (x̃ij, yij) can be computed as

lij(θi; x̃ij, yij, Ii) := li

(
finter

(
⊕m∈Iih

(m)
i ;θi

)
, yij

)
, (6.2)

where the modality-specific hidden feature h
(m)
ij =f

(m)
enc (x

(m)
ij ;θi,m) is obtained through

the sensor m’s specific feature encoder f
(m)
enc . Then, ⊕ denotes the sum of the hid-

den representations of individual modalities, which combines their complementary

information, and li(·) is the loss function for each sample at agent i.

Federated Multi-task Learning amongst Multimodal Split Networks. Re-

garding the modality incongruity between agents together with the statistical and

systematic challenges of FL problem, we formulate our problem based on the FMTL

framework. The idea is that FMTL naturally explores the agent relationships which

can also help to find relationships between the split blocks of agent models and is

suitable for multimodal FL. Formally, we aim to learn a set of implicitly correlated

models θ1, ...,θN having different parameter spaces by minimizing the objective:

min
θ1,...,θN ,Ω1,...,ΩM ,Ω

{ N∑
i=1

ni∑
j=1

lij(θi; x̃ij, yij, Ii) +R(⊕,Λ)

}
(6.3)

where ⊕ = {θi ∈ Rdi}Ni=1 represents a collection of the multimodal models and

Λ = [Ω1, ...,ΩM ,Ω] ∈ RN×N×(M+1) is a tensor representing multi-view relation-

ships amongst agent models. Each view of the relationships Λ·,·,m ∈ RN×N is a

matrix corresponding to the relationships amongst certain type of blocks of all agent

models. If agent i and agent i′ do not have the common block-m, Λi,i′,m = 0. Ba-

sically, the first term of Eq.(6.3) allows agents to learn on its own local data, while

the second term encourages them to take advantages of related models from other

agents’. It is noticeable that, for any pair of agent-i and agent-i′: (1) Observation

1 : their models θi,θi′ ∈ ⊕ may be not comparable as they may belong to different

parameter spaces, i.e., di ̸= di′ ; (2) Observation 2 : the relationship between wi

and θi′ is measured by a non-scalar but multi-dimensional vector Λi,i′,· ∈ RM+1.

As a result, directly optimizing R(⊕,Λ) to enforce nuanced model relations can

be intractable.
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Figure 6.2.2: A graph view for training separate but related agents having different
concepts, domains, and input modalities, with predefined splittable model archi-
tectures. Each vertex solves separate but related subproblems. Node features are
model parameters, which changes over time based on local data and related agents.

6.3 Proposed FedMSplit

In this section, we will introduce a federated training algorithm to solve the ob-

jective Eq.(6.3). We will focus on the following issues during the federated train-

ing with modality incongruity. (1) Adaptive model correlation with local

dynamics. The correlation tensor Λ is a measurement of statistical similarity

between local datasets. With the privacy requirements in FL, we cannot calcu-

late it in advance. Further, while we can arbitrarily provide Λ as priori [65, 64],

in real-world applications, the relationships of agents may not be fixed all the

time. For example, the statistics of local data can change through time such as

given time-series data or continual learning tasks. Therefore, adaptively learning

Λ with models is necessary. However, it is difficult to simultaneously optimize the

multi-space parameters ⊕ = {θi ∈ Rd′+
∑

m∈Ii
d′m}Ni=1 and the tensor Λ. We adopt

the alternative optimization approach following [28]. At each round t, while fix-

ing the structure Λ(t), we optimize local model parameters ⊕(t) based on local
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datasets Di, i = 1, ..., N and the penalized term given Λ(t); then, while fixing ⊕(t),

we optimize the model correlation tensor Λ(t + 1) based on current local models

⊕(t). The model correlation is dynamically updated along with the convergence

of local models. (2) Correlated model update constrained by multi-view

relationships : The individual models of different agents may be not compara-

ble if they belong to different parameter spaces. In this sense, how to measure

model relationships, and how to leverage relational local model training according

to multiple views of relations, remain unexplored. (3) Agent selection among

multiple types of agents : Vanilla FTML relies on the complete adjacency for

all the agents and update all the agent models at each round. Although a complete

relationship structure could benefit the correctness of correlated local updates, in

practical scenarios where massive agents participate in the training, the computa-

tion time and cost of storage at each round would huge. Regarding the systematic

challenge and communication limitation [211], instead of computing all agents at

each round, we sample a subset of agents to participate into training. However,

given the multimodal discrepancy, the difficulty is that how to select agents at

each round such that each model blocks are optimized in a balanced manner and

we efficiently find the optimal for all agents.

We propose the FedMSplit framework to allow federated training over multi-

modal agents without assuming the congruity of sensor types over agents. Details

of the framework are as follows.

6.3.1 Correlation-adaptive Model Update

According to the alternative optimization process, at each round t, while fixing the

structure Λ(t), we optimize local model parameters ⊕(t) based on local datasets

{Di}Ni=1 and the penalized term given Λ(t). In other words, the local model θi(t) of

each agent i updates depends on not only the local dataset Di but also its related

agents’ datasets Di′ , which is not seen but can be reflected by θi′(t). Then, any pair

of Λi,i′,·(t) can update based on θi(t) and θi′(t). Through this process, Λ(t),⊕(t)

are dynamically updated until convergence.

Given the heterogeneity of parameter space over agents, “updating ⊕(t) fixing

Λ(t)” would be difficult as the calculation of ∇⊕(t)R(⊕(t),Λ(t)) relies on the ⊕(t)
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having multiple parameter spaces, and the multi-view relationships Λ(t). The idea

is that we can allow the two sets of parameters Λ(t),⊕(t) to be embedded in a

dynamic graph and then solve them as a node-edge alternative updating problem.

6.3.1.1 Dynamic Multi-view Graph of Subproblems

We define a dynamic multi-view graph structure G(t) = (V ,Φ(t), E ,Λ(t), q) which

consists of the following components and properties:

• V = {vi}Ni=1 is the vertex set, where each vertex vi is associated with a agent

i containing a local multimodal dataset Di = {(x̃ij, yij)}ni
j=1. Each vertex

represents a subproblem: the agent i aims to fit a model θi ∈ Rdi to its local

data Di.

• Φ(t) = {θi(t) ∈ Rdi}Ni=1 is the content of vertices, representing the model

parameters of each agents at round t. In this way, the model parameters

of agents can be treated as agent embeddings in the graph. agent model

updating implies the changing of agent embeddings through time, so we say

the graph is dynamic. Recall that the agent models has different parameter

spaces θi(t) = {θi,m(t)|∀m ∈ Ii}∪{θi(t)} so that the vertices are multimodal

and message cannot be directly transferred across vertices.

• E = {ei,i′}Ni,i′=1 is the edge set. Edges are undirected and fully connected, and

each edge refers to the similarity between a pair of agents.

• Λ(t) = [Ω1(t), ...,ΩM(t),Ω(t)] ∈ RN×N×(M+1) represents the edge features.

An edge feature Λ(t)i,i′,· indicates the model weight similarities between two

agents and consists of multiple dimensions (multi-view) of Euclidean dis-

tances; each dimension is corresponding to a type of blocks in agent models.

If agent i and agent i′ do not have the common block-j, Λi,i′,m(t) = 0. The

edge features of a fully connected graph with massive agents can be huge.

Fortunately, in practice, the server does not need to calculate or store them

until the end of each round, and only the edges between participated agents

at each round will be calculated (see Section 4.2.2.).
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• q : RM+1 → R is a function to measure the similarity between any of the two

agents (i, i′) based on the multi-view correlation vector Λi,i′,· ∈ RM+1.

Figure 6.2.2 illustrates the defined dynamic graph structure, where we use different

shapes to indicate individual agents having different types of parameter spaces.

The embeddings of agents (model parameters) change over time. For simplicity,

we only show eight agents, three modalities, and four types of agents here. Note

that in real-world applications we would have more agent types in a large-scale

graph containing massive number of agents.

Giving the graph of local problems, then the intractable term R(⊕,Λ) can be

rewritten as the linear combination of multiple views of regularization terms (each

view is corresponding to a type of blocks):

R(⊕,Λ) = λR(W ,Λ,Ω) +
∑M

j=1 λmRm(Wm,Λ,Ωm) (6.4)

where W = [θ1, ...,θN ] ∈ Rd′×N and Wm = [θi,m;∀i if m ∈ Ii] ∈ Rd′m×Nm are

matrices. Each matrix is a collection of a specific block in all agents, over one

parameter space.

6.3.1.2 Correlation-adaptive Model Optimization

Updating correlation Λ(t) fixing ⊕(t) is treated as updating edge features based on

current node features (agent embeddings). Formally, for each pair of agents (i, i′)

and each split block j, their relationship can be measured as Ωj,kl = Att(θi,m,θi′,m)

using any metric or attention function Att(·, ·), such as additive attention, dot

product, multiplicative attention [18]. In the experiments, we use dot product for

all simulations.

Then, updating models ⊕(t) fixing the structure Λ(t) is viewed as updating

node features (agent models) based on local datasets as well as current edge features

(agent-agent relationships). The idea is to take into consideration the current

overall agent-to-agent relationships Λ(t) to the local training of each agent θi.

More specifically, we take two steps to incorporate such heterogeneous and multi-

space complex relationships. First, for each agent, we approximate its complex

neighborhood information, by aggregating other agent models through a multi-
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view, attentive, and graph-based message passing process. θ
agg

i ←−
∑N

l=1

q(Λi,i′,·)Ωi,i′∑N
p=1 q(Λkp·)Ωkp

θi′ ,

θaggi,m ←−
∑N

l=1

q(Λi,i′,·)Ωj,kl∑N
p=1 q(Λkp·)Ωj,kp

θi′,m for ∀m ∈ Ii ∩ Ii′ .
(6.5)

After that, each agent i independently performs local SGD on Di by τ steps,

meanwhile, it considers extra relational information:

θi ←− θi − α
1

ni

ni∑
j=1

(∇θilij(θi, x̃ij, yij; Ii) +∇θiλRi(θi)), (6.6)

where the multi-view relational information is incorporated by minimizing the

Mean Squared Error (MSE) loss between the model and the approximate neigh-

borhood information Ri(θi) = ||θi − θ
agg

i ||22 +
∑

m ||θi,m − θ
agg
i,m ||22. And λ is a

hyperparameter to balance the local personalization and global correlation.

In this way, the model parameters θi is updated based on Di (Eq.(6.6)) as well

as other models parameters θi′ which is related to θi (Eq.(6.5)). The dynamic

graph becomes stable once all the agent models converge and correlated.

6.3.2 Federated Training

We present the training workflow of FedMSplit. We show that the federated mul-

titask learning over the multimodal split networks of agents can be done in a way

like learning the agent embeddings in G(t) = (V ,Φ(t), E ,Λ(t), q) through multiple

rounds (t = 1, 2, ..., T ) of agent-server interactions until convergence.

6.3.2.1 Alternative Optimization on Subgraphs

The convergence of Φ is achieved by multiple rounds of alternative optimiza-

tion. However, due to communication cost and the systematic challenge [211],

it is consuming as well as impossible to calculate the complete correlation tensor

Λ(t) for all the agents and update all the agent models Φ(t)–in each round we

would have O(N2) time and space complexity. Therefore, instead of computing

all agents, we sample a subset of agents S(t) ⊂ V to participate at each round

t. In other words, at each round t, we select a subgraph Gs(t) of G(t) to per-
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Algorithm 3: Federated Training Algorithm of FedMSplit

1: Input: agents i ∈ [N ], modalities m ∈ [M ], multimodal datasets D1, ...,DN
and active sensor sets I1, ..., IN of agents

2: Hyper-parameters: α, T , τ , C, γ
3: For each client k in parallel, initialize θi and split the model into |Ii|+ 1

blocks as Eq.(6.1).
4: Initialize Ii(0) = Pi(0) = Li(0) = 0
5: Initialize θaggi = θi
6: for each round t = 1, ..., T do
7: Sampling a subset of C agents S(t) ⊂ [N ] using Eq.(6.8)
8: // local SGD independently
9: for each participant client k ∈ S(t) do
10: for each local update step do
11: update θi as in Eq.(6.6)
12: end for
13: end for
14: Send {θi}i∈S(t) to the server
15: // adapt model correlation via attentive aggregation
16: for each participant client k ∈ S(t) do
17: Split θi into blocks
18: for each related client l ∈ S(t) do
19: Calculate attention weight for each pairs of blocks θi and θi′ .
20: end for
21: Obtain aggregated model θaggi using Eq.(6.7)
22: end for
23: Server sends {θaggi }i∈S(t) to agents.
24: Update Ii(t), Pi(t), Li(t) using the selected agents in S(t) and counting each

type of blocks in S(t).
25: end for
26: return: Each client will store its final model θi.
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Figure 6.3.1: FedMSplit workflow at each server-agent communication round.

form alternative optimization. In particular, we consider a subgraph of agents and

their relationships Gs(t) = (S(t),Φs(t), Es,Λs(t), q) where Φs(t) = {θi(t)}i∈S(t)
and Λs(t) ∈ R|S(t)|×|S(t)|×(M+1). Instead of optimizing on the entire graph at each

round, our method is more practical in real operation–complexity is O(C2) where

C = |S(t)| << N , but note that we somewhat tradeoff the convergence speed

because only partial agents and their relationships are considered while neglecting

other related agents.

At each round, we perform one-step alternative optimization on subgraph Gs(t)
through the following agent-server communication. (1) On the server, we update

Λs(t) fixing Φs(t) and then propagate among the separate agent models over

subgraph S(t) as in Eq.(6.5). Note that in practice, the two steps can be re-

placed by applying a multi-head attention mechanism to node propagation among

a subgraph–treating Λs(t) as the attention coefficients (see the next section for

details). (2) The server then sends the aggregated relational information to each

agent. (3) On each agent, we improve Φs(t) on local datasets while considering
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potential agent relationship Λs(t). Each agent i ∈ S(t) perform local update by

local SGD and multi-relational regularization (Eq.(6.6)), and, finally, all partici-

pants send their new models Φs(t + 1) back to the server. Figure 6.3.1 shows the

overview of FedMSplit training at each round, and the pseudocode of FedMSplit is

summarized in Algorithm 3.

6.3.2.2 Neighborhood-attentive Model Aggregation

Once the server receives new agent models Φs(t + 1) = {θi}i∈S(t) (the models

after performing τ steps of local updates), it adapts current model correlation to

be able to promote more relational local models in future rounds. Since we use

the normalized relationships among all the neighbors of agent i in Eq.(6.5), this

model aggregation can be treated as 1-hop attentive message passing [214, 215,

195] among a subgraph. That is, for ∀i ∈ S(t), θ
agg

i ←−
∑

l∈S(t)
q(Λi,i′,·)Att(θi,θm)∑

p∈S(t) q(Λkp·)Att(θi,θi′ )
θi′ ,

θaggi,m ←−
∑

l∈S(t)
q(Λi,i′,·)Att(θi,m,θi′,m)∑
p∈S(t) q(Λkp·)Att(θi,m,θpj)

θi′,m for ∀m ∈ Ii ∩ Ii′ ,
(6.7)

where agents having similar statistics will become more related through the weighted

model aggregation.

6.3.2.3 Agent Sampling via Multi-armed Bandit

To reduce communication cost of FMTL, we operate on a subset of agent at each

round. Yet the random sampling strategy (i.e., unbiased agent selection) of typ-

ical FL frameworks may significantly suffer from non-IID local distributions as

well as the multimodal discrepancy of MFL. The problem is that the agents se-

lected at each round (i.e, a subset of vertices in the large-scale graph and per-

form message passing) may not contain balanced numbers of each type blocks,

thus we may not efficiently find the accurate correlations between different types

of agents and modalities. In order to achieve faster convergence, we aim to se-

lect agents having larger local loss (i.e., exploitation) [216, 217] as well as having

blocks that were less frequently seen before (i.e., exploration). Following [217],

to balance the exploration-exploitation trade-off in the multimodal agent selection
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problem. we employ Multi-Armed Bandit (MAB) algorithms [218] for the prob-

lem of agent selection in Multimodal FL. Regarding the local loss of individual

agents are non-stationary during training, we make use of the discounted MAB

algorithms as in [217]. The agents are viewed as arms in the MAB problem. The

discounted cumulative local loss of each agent is Li(t) =
∑t

t′=1 γ
t−t′Fi(t

′); the dis-

counted number of times each agent has been selected over the previous rounds is

Ii(t) =
∑t

t′=1 γ
t−t′1i∈S(t′); and, the discounted number of times each type of block

j has been sampled over previous rounds is, Pm(t) =
∑t

t′=1 γ
t−t′1m∈Ii ∀i∈S(t′). Here,

0 ≤ γ ≤ 1 is the discount rate.

Then, we define the estimated UCB reward of agent i up to round t as

Ai(t) = Li(t)/Ii(t) + Ui(t) (6.8)

where Ui(t) =
√∑t

r=1 γ
t−r/(Ii(t) +

∑
m∈Ii Pm(t)) is the exploration term for agent

i. At communication round t, we select the top C agents with largest discounted

UCB rewards. The first term of Eq.(6.8) enforces selecting agents with estimated

larger local loss (exploitation) [217]. However, if certain agent has not been selected

recently, or any type of model block of the agent has not been selected recently,

Ui(t) will get larger. This forces the server to select them regardless of their local

loss values (exploration).

6.4 Experiments

6.4.1 Simulations

Datasets: We choose three multimodal integration datasets to create our simu-

lation environments. (1) Vehicle Sensor [219] for classifying vehicles driving by

a segment of road. It contains 23 instances. Each instance is a separate agent

described by 50 acoustic and 50 seismic features and we predict between AAV-type

and DW-type vehicles. (2) ModelNet40 [146] dataset for multi-view 3D object

recognition tasks. It contains 12,311 3D shapes covering 40 common categories,

including airplane, bathtub, bed, bookshelf, chair, cone, cup, and so on. Each 3D

CAD object has M = 2 modalities as two views of its shapes [141]. (3) IEMOCAP
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Table 6.4.1: Statistics of Multimodal Federated Simulations.

Dataset #Agents #Modalities Feature Sizes ({modality m : Fm}) |Ii| range ni (mean, std) #Concept
Vehicle Sensor 23 2 {Acoustic: (50) , Seismic: (50)} [1, 2] N (255, 50) 2
ModelNet40 12 2 {View 1: (4096), View 2: (2048)} [1, 2] N (1026, 200) 5
IEMOCAP 15 3 {Acoustic: (74) , Text: (300) , Visual: (35)} [1, 3] N (297, 80) 2

[148] for emotion recognition tasks. It consists of a collection of 4,453 video seg-

ments of recorded dialogues. Each segment is annotated for the presence of 9

emotions (happy, angry, excited, fear, etc.), from which we use only the “happy”

tag for binary classification. We adopted the same feature extraction scheme [20]

for language, visual and acoustic modalities. The feature sizes of the modalities

are summarized in Table 6.4.1.

Simulation of Statistical Heterogeneity: The size of training samples at each

agent is sampled from a Gaussian distribution whose mean and standard deviation

is pre-defined as in Table 6.4.1. The domain shifts are created by randomly adding

noises to the original videos, audios, and images; randomly rotating the visual

objects; replacing the image backgrounds; or, replacing low-frequency signals in

raw audios with other sounds. The concepts shifts are created by permuting the

local label spaces and limiting the number of labels of each agent. The maximum

number of classes per agent is shown in Table 6.4.1.

Simulation of Modality Incongruity: We impose no restrictions on the modal-

ity or combinations of modalities used in the local agents. We simulate this real-

world scenario as follows. First, we assume the availability of each sensor j follows

a Bernoulli distribution Bernoulli(ρj) and different sensors are independent. Here,

we use a missing rate ρj to indicate the probability a agent does not have the

modality-j. We set equal missing rates for each modalities ρ1 = ... = ρM = ρ in

all experiments. After that, we shuffle the agents and for each possible sensor set

I ′ ⊂ {1...M} we separately pick N(I ′, ρ) agents and assign the sensor set I ′ to

each of them. For example, for IEMOCAP dataset (M = 3), there will be 7 types

of agents focusing on different tasks: audio-only, text-only, video-only, audio-text,

audio-visual, text-video, and audio-text-visual tasks.



105

6.4.2 Baselines

We compare FedMSplit with three categories of baselines: (1) Fully local training

on multimodal federated datasets: Local separately trains personal models that

have different building blocks, without considering their potential relationships.

(2) Fully global and multimodal FL frameworks: FedAvg, Multi-FedAvg, and

Multi-FedProx, where we apply the vanilla FedAvg [33] and FedProx [24] to

our multimodal federated datasets. (3) Local but globally related multimodal FL

methods: MOCHA and Multi-MOCHA.

Reproducibility and Hyperparameters: The local objectivs use cross en-

tropy losses. In all experiments, we fix γ = 0.9, τ = 4, and η = 0.005 for Vehicle

Sensor and ModelNet40; and fix τ = 1, η = 0.00002 for IEMOCAP. Model con-

figurations are as follows. The encoded modality’s hidden dimension is P = 32

for vehicle sensor dataset, P = 128 for ModelNet , P = 64 for IEMOCAP. Fe-

dAvg and MOCHA’s global model consists of 2 layers, {
∑

j∈M in dimj × P, P

× num class}. For local model training, we replace the missing sensor data by

zeros and then directly concatenate the input modalities into one feature. Multi-

FedAvg, Multi-FedProx, and Multi-MOCHA uses individual feature extrac-

tors for each modality (i.e., in dimj × P ) followed by a classifier (a fully connected

layer of size P × num class followed by Softmax). The output of feature extrac-

tors (modality-specific hidden representations) are combined using sum operation.

Local uses the partial architecture of Multi-FedAvg or Multi-FedProx, including

the feature extractors for only available modalities (i.e., in dimj × P) followed by

a classifier (a fully connected layer of size P × num class followed by Softmax).

Note that there is no feature extractor block in the agents having missing modali-

ties. FedMSplit’s model architectures are the same as the Local, which are partial

architectures of the complete model architecture of other methods.

6.4.3 Main Results

Table 6.4.2 reports the average local testing accuracy of FedMSplit compared with

baselines, under different levels of modality incongruity and non-IID scenarios. We
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Table 6.4.2: Average Testing Accuracy (%) on Agent Local Testing Data at global
round T=10 (Non-IID, C = 0.3N).

Method
Vehicle Sensor ModelNet40 IEMOCAP

ρ =0.5 ρ =0.7 ρ =0.8 ρ =0.3 ρ =0.5 ρ =0.7 ρ =0.5 ρ =0.7 ρ =0.9

FedAvg [33] 75.26 74.42 68.48 87.48 86.79 83.48 80.48 79.71 -
Multi-FedAvg [33] 76.98 73.61 75.59 85.75 75.46 74.60 70.86 - 60.48
Multi-FedProx [24] 76.92 74.69 72.52 93.48 74.57 - 79.62 79.33 79.14
Local 74.84 73.56 69.29 91.56 90.20 83.18 73.24 73.71 54.48
MOCHA [28] 80.28 76.65 73.28 90.03 95.88 88.54 82.38 82.10 82.86
Multi-MOCHA [28] 78.35 76.61 75.73 98.25 96.06 90.70 80.95 80.19 80.86

FedMSplit 81.92 78.85 77.68 98.34 98.54 98.38 85.24 84.16 84.95

report the performance of the global model (FedAvg, Multi-FedAvg, and Multi-

FedProx) or the globally stored separate models (Local, MOCHA, Multi-MOCHA,

and FedMSplit) on all the agents’ local testing data. From Table 6.4.2, we can

observe that, in general, the increasing modality incongruity between agents re-

sults in performance drops of all methods. It is because as ρ increases, models

receive less information used for fitting parameters. Overall, FedMSplit gained

more advantages over baselines as more agents have missing modalities and more

local models have inactive neurons. On ModelNet40, FedMSplit maintains its per-

formance as ρ increases. It is because FedMSplit does not train inactive neurons

as well as did not aggregate parameters as FedAvgs, FedProxs and FedMTLs. In

FedMSpit, inactive neurons or blocks are not uploaded to the server and do not

influence future models of other agents. Moreover, FedMSplit outperforms Local as

well, even though Local train the same local architectures as ours. It is because in

comparison to Local, the agent models in FedMSplit can obtain knowledge about

the task from other agents’ data.

6.4.4 Ablation Study

In Table 6.4.3, we evaluate the influence of each component in our model.

Adaptive Correlation v.s. Non-adaptive Correlation. First, we test a vari-

ant of FedMSplit, namely FedMSplit-nAC, such that we do not learn an adaptive

correlation tensor between agents; instead, we assume that the relationships be-
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Table 6.4.3: Ablation study of FedMSplit at global round t=10.

Method
Vehicle Sensor ModelNet40
ρ =0.5 ρ =0.7 ρ =0.5 ρ =0.7

FedMSplit-nAC 80.12 75.32 98.43 97.63
FedMSplit-rightAC 79.88 76.82 96.20 97.67
FedMSplit-leftAC 78.32 77.48 97.79 96.37
FedMSplit-πrand (C=0.3N) 80.47 77.36 96.62 94.33
FedMSplit-πUCB (C=0.3N) 81.92 78.85 98.54 98.38

tween agents is given (i.e., identity matrix). That is, at each round, all the partici-

pants having the same block contribute equally to each other. We can observe that

FedMSplit-nAC still outperform baselines since we split each model into blocks

and avoid transferring inactive neurons that are corresponding to missing sensors.

In addition, arbitrarily fixing the relationship (FedMSplit-nAC) leads to slightly

performance drop rather than adapting the relationships.

Impact of Multi-view Relationship Measurement. Second, since in our

model the agents relationships are measured as the linear combination of each

block’s relationships, we are interested in whether each block in the model con-

tributes equally to such measurement or not. In general, we use the measurement

function q(Λi,i′,·) = ||Λi,i′,·||1/(1 + |Ii ∩ Ii′|), where the classifier and modality-

specific feature extractors have similar importance. We then tested other types

of measurements: FedMSplit-rightAC, which measures two models based only

on their classifier weights q(Λi,i′,·) = Λi,i′,(M+1), and FedMSplit-leftAC, which

measures two models based only on their common feature extractors q(Λi,i′,·) =∑
m∈Ii∩Ii′

Ωm,i,i′/|Ii ∩ Ii′|. It can be observed that the equally weighed measure-

ment achieved the best performance, as the local data may have not only different

classes but also low-level appearance nuances.

Impact of Agent Selection Strategy. We finally tested our bandit-based agent

sampling strategy that encourages the server to explore agents who have blocks that

are less selected. We propose a variant FedMSplit-πrand, which replaces MAB with

the random agent selection strategy, and observed that random selection converged
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slower than the bandit-based counterpart, especially with a high level of modality

incongruity.

6.5 Conclusion

This chapter introduced the FedMSplit framework for addressing the efficient and

effective multi-agent collaboration with the co-existence of modality gaps, domain

drifts, and concept shifts among the agents. Focusing on explicit parameter-level

knowledge transfer, FedMSplit employs a dynamic graph structure to capture the

adaptive correlations amongst multimodal agent models that have been split into

smaller shareable blocks. The underlying statistical correlations between the dif-

ferent types of agents are captured as multi-view features and then are used to

promote model relations. Our empirical results demonstrated the effectiveness of

our method.



Chapter7

Disentangled and Gated Transfer

for Asymmetrical Collaboration

7.1 Introduction

In this chapter, we further extend the setting of Chapter 6 by incorporating task-

type preferences. That is, we study cases where CoMML agents possess the freedom

to have their own modalities, concepts, task categories, and domains. In such

CoMML cases, the agent heterogeneity pattern consists of the simultaneous exis-

tence of modality gap, concept shifts, task differences, and domain drifts.

We continue to use the global-local decentralized CoMML paradigm (Eq.(2.2)) as

in Chapter 6. However, unlike previous chapters where corresponding problem set-

tings can be found in some AI/ML fields, we have found no previous work that

strictly formulates the aforementioned CoMML setting for us to use. We therefore

propose a novel Modality-task Agnostic Federated Learning (AFL) setting

to conduct research on CoMML with modality, concept, domain, and task prefer-

ences. We formally define AFL as a setup where each agent independently trains

a personalized model on its own modalities and tasks, while periodically transfer

trained knowledge (e.g., weights or gradients) with each other through a central

server housing a global foundation model. AFL has real-world applications; one

such application is the ambiguous privacy-preserving pre-training or fine-tuning

frameworks of AGI that aim to learn a global multimodal foundation model as well

109
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Figure 7.1.1: Modality-task Agnostic Federated Learning (AFL). Agents learn
personal models for their specific modalities and tasks using local data.

as smaller personal local models for each agent, as illustrated in Figure 7.1.1.

Compared to existing settings in the FL community, the AFL problem intro-

duces highly Asymmetrical Knowledge Relationships (AKR) among agents,

implying that the types of mutual shareable knowledge between each pair of agents

vary dramatically. The reason for AKR is attributed to the MTDC heterogene-

ity of AFL–simultaneous Modality gaps (M), Task gaps (T), Domain shifts (D),

and Concept drifts (C) among agents. The high degree of AKR in AFL raises a

crucial challenge in learning an optimal inter-agent information sharing scheme

(i.e. maximizing positive transfer and minimizing negative transfer)–it would be

difficult to efficiently and automatically identify correct transferable knowledge for

each pair of agents through agent-server interactions. Existing FL works [63, 73]

mainly address the symmetrical knowledge transfer between agents, which strug-

gle to perform sufficient positive transfer and cannot fully avoid negative transfer

during the inter-agent collaboration under an AKR situation.

To overcome the abovementioned challenge in AFL and achieve an optimal

inter-agent information sharing scheme that maximizes positive transfer and mini-
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mizes negative transfer, we propose a novel knowledge disentanglement-based fed-

erated learning framework, namely DisentAFL. The key idea of DisentAFL is

to explicitly disentangle the original asymmetrical inter-agent information shar-

ing scheme into several independent symmetrical inter-agent information sharing

schemes, each of which corresponds to certain semantic knowledge type learned

from the local tasks. DisentAFL empowers the server-agent communication to be

aware of the true pairwise mutual knowledge type(s) through a Knowledge Dis-

entanglement (KD) and Gated Collaboration (GC) mechanism. KD has

two stages: the stage one leverages coarse-grained group-wise disentanglement to

reduce the original asymmetrical problem into several intermediate asymmetrical

subproblems, and the stage two leverages fine-grained knowledge-type disentangle-

ment that further decomposes each of the asymmetrical subproblems into several

independent symmetric information sharing schemes. The unique contributions of

this chapter compared with the previous ones are as follows:

• We propose DisentAFL to address the complex asymmetrical inter-agent

knowledge relationships of AFL. Technically, DisentAFL is one of first FL

methods that explicitly leverage the fine-grained disentanglement of inter-

agent relationships to achieve sufficient positive knowledge while excluding

negative knowledge.

• We evaluate DisentAFL on three AFL simulations with 4 modalities and 4

downstream tasks. Our model is based on encoder-only Transformers, the

testing modalities range from image and text to audio, video, and 3D point

clouds, and the downstream tasks include both generative and classification

tasks. Empirical results demonstrate the effectiveness of our method on a

variety of simulation scenarios.

7.2 Related Works

In addition to the literature reviewed in Section 2.4, our proposed techniques and

models are related to and inspired by two lines of work: 1) Disentanglement for

Knowledge Transfer, and 2) Unified Multimodal Large Foundation Models.
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Disentanglement for Knowledge Transfer. Disentanglement, initially stud-

ied in deep generative models [220, 221], has been recently utilized in multimodal

representation decoupling [222], cross-modal and cross-domain transfer learning

[223], and multimodal knowledge distillation [224] to enhance knowledge trans-

fer effectiveness. In Federated Learning community, recent works [225, 226, 63,

227] show disentanglement helps to achieve better interpretability and privacy pro-

tection, as well as perform better the global-local knowledge tradeoff. Different

from them, our work employs finer -grained disentanglement to purify the positive

knowledge transfer among agents.

Unified Multimodal Large Foundation Models. The Artificial General In-

telligence (AGI) aims to attain Foundation Models that emulate human-like in-

telligence on a variety of cognitive tasks across diverse modalities [1]. Multi-

modal Large Language Models (MLLMs) pretrained on large-scale multimodal data

have emerged as a pivotal paradigm for AGI [228, 229, 230]. Pretrained MLLMs

could quickly adapt to various multimodal downstream tasks through few-shot

fine-tuning or zero-shot inference, catering to both deterministic tasks (e.g. multi-

modal fusion) [195, 231, 232, 233, 234] and generative tasks (e.g. cross-modal video

generation) [235, 236]. To enhance the success of AGI, many Multimodal Inter-

action Modeling techniques have been incorporated into MLLMs and have played

important roles [229, 237], including model design (e.g., inter-modal interaction

architecture), training algorithms (e.g., co-training of different modalities), and

task adaptation mechanisms (e.g., hypernetworks, soft prompting, and the prompt

design of input structures that combines multiple modalities).

7.3 Problem Formulation

7.3.1 Modality-task Agnostic Federated Learning (AFL)

Assuming a total of M types of modalities and O types of downstream tasks over

the N agents. Each agent i it has its own input modality types Ii ⊆ [M ] and target

task types Oi ⊆ [O], and it aims to learn a personal input-to-output mapping
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function parameterized by trainable weights θi ∈ Rdi

f(·;θi) : XIi → YOi
. (7.1)

XIi := Join(X (m)|∀m ∈ Ii) is the a agent-specific structured/joint input space,

where X (m) denote the raw input space associated to the m-th modality type.

YOi
:= {Y(o)|∀o ∈ Oi} is the agent-specific label space consisting of multiple sub-

spaces for each type of local tasks, where Y(o) the label space for the o-th task.

Figure 7.1.1 shows an illustration of the mapping function differences over agents.

Each agent i has its agent-specific input distribution Pi(x̃) over the combina-

torial input space XIi and the conditional output distribution Qi(ỹ|x̃) over the

space YOi
. The local dataset Di = {(x̃ij, ỹij)}ni

j=1 is sampled from x̃ij ∼ Pi(x̃) and

ỹij = {y(o)
ij }o∈Oi

∼ Qi(ỹ|x̃ij). The local objective at agent i jointly minimizes

losses for multimodal local downstream tasks

min
θi
L̃i(θi) := E(x̃,ỹ)∼Di

1

|Oi|
∑
o∈Oi

L(o)
(
y(o), f(x̃;θi)o

)
(7.2)

where L(o) is the loss function for the type-o task. Then, following PFL [73, 61],

the global objective of AFL is formulated as

min
θ1,θ2,...,θN

[
1

N

N∑
i=1

L̃i(θi)

]
+R(θ1,θ2, ...,θN), (7.3)

where the regularizerR(·) indicates the information sharing scheme (i.e. knowledge

transfer) among agents, which is encouraged to transfer beneficial knowledge among

agents to boost each local model’s performance.

7.3.2 Four Heterogeneity Patterns in AFL

Since agents in AFL do not necessarily have the same input modalities or down-

stream tasks, there could be simultaneous 4 heterogeneity patterns between agents:

Modality gap, Task gap, Domain shift, and Concept drift (MTDC). (1) M

(modality gap): the agents vary in their input spaces due to their input modality

divergence, that is, XIi ̸= XIi′ when Ii ̸= Ii′ . For example, a vehicle may use its
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onboard camera to capture videos to predict traffics, while another vehicle may

use both video and RADAR signals to predict traffics. (2) T (task gap): agents

vary in their output spaces YOi
̸= YOi′

since they target at different downstream

tasks Oi ̸= Oi′ . For example, while a agent may focus on image classification, the

other agent may focus on image segmentation. (3) D (domain shift): slightly

different from traditional FL’s definition on domain shift, AFL considers the joint

distribution shift, meaning that the multimodal interaction behaviors can vary be-

tween agents. (4) C (concept shift): agents vary in their conditional output

distribution, or label space.

7.4 Asymmetrical Knowledge Transfer

We begin with discussing the key challenges in solving the AFL’s global objective

(Eq.(7.3)) due to MTDC heterogeneity.

Definition 7.1 (Positive & Negative Knowledge Transfer). Positive Trans-

fer (PT) is defined as the information sharing behavior between a pair of agents

that will lead to the improvement of each other models. Negative Transfer (NT),

on the other hand, is a phenomenon when sharing parameters between two local

models results in poorer results than solving individual tasks (or, unlearning).

Rethinking Information Sharing in Federated Learning. The information

sharing scheme R(θ1:N) in FL is essentially to find an inter-agent Pairwise Knowl-

edge Transfer (PKT) mechanism that can lead to the improvement of each agent

model. For any pair of agents, there exists both mutual common knowledge and

conflicting knowledge between them–if∇ψfi(ψ)∇ψfi′(ψ) > 0, we say the knowledge

representation ψ at agent i and agent i′ aligns/matches with each other; on the

other hand, if ∇ψfi(ψ)∇ψfi′(ψ) < 0, the knowledge ψ at agent i and agent i′ con-

flicts. As in [238], the transfer behavior of conflicting knowledge will result in Neg-

ative Transfer; and, the un-transfer of common knowledge will result in insufficient

Positive Transfer. Both need to be avoided for better performance. Therefore,

the optimal R(θ1:N) relies on a PKT mechanism that can maximize positive

transfer and minimize negative transfer between each pair of agents–that
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Figure 7.4.1: Comparison between symmetrical and asymmetrical inter-agent
knowledge relationships. In (a), the three example agents share the same modality-
task pair. In (b), the three example agents have different modality-task pairs.

is, all the true aligned knowledge is encouraged to be transferred and all the true

conflicting knowledge should be excluded during transfer.

Definition 7.2 (Symmetrical & Asymmetrical Knowledge Relationships).

Suppose Hi denotes the knowledge learned by the agent i and MI(Hi, Hi′) de-

notes the true mutual/common knowledge between by a pair of agents (i, i′).

We say the knowledge relationships over N agents is symmetrical if the mu-

tual information (common knowledge) between each pair of agents are the same

MI(Hi1, Hi2) = MI(Hi2, Hi3) = MI(Hi1, Hi3), ∀i1, i2, i3 ∈ [N ]. On the other hand, we

say the knowledge relationships over N agents is asymmetrical if MI(Hi1, Hi2) ̸=
MI(Hi2, Hi3) ̸= MI(Hi1, Hi3), ∃i1, i2, i3 ∈ [N ]. Figure 7.4.1 shows an comparison

between the two scenarios.

Challenge of Optimizing Information Sharing in AFL. Existing FL algo-

rithms mainly address the symmetrical knowledge relationships. For example,

Non-IID PFL [63, 29] with a universal domain shift and concept shift can be a
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symmetrical case (Figure 7.4.1(a)) since there exists global common knowledge

MIg = MI(Hi, Hi′) shared by all pairs of agents i, i′ ∈ [N ] and all the other learned

knowledge is considered as personalized knowledge. However, due to the complex-

ity of MTDC heterogeneity, AFL has more complex asymmetrical knowledge

relationships among agents, as illustrated in Figure 7.4.1(b). Using the 4 agents in

Figure 7.5.2 as an example, the common knowledge between agent 1 and agent 3 in-

cludes the modality-1’s encoding function, which is however not shareable between

agent 1 and agent 2 since the modality 1 is not learned at agent 2. Unfortunately,

the asymmetrical knowledge relationships in AFL brings difficulties in optimizing

the information sharing scheme R–it is hard to efficiently and adaptively identify

transferable knowledge for each pair of agents through agent-server interactions.

Existing FL methods may result in negative transfer or insufficient positive transfer

under the asymmetry of AFL.

Given such complex and unknown user-to-user knowledge sharing in AFL, it is

desirable to explicitly maximize positive transfer and minimize negative transfer

for the optimization of R. Ideally, for any pair of agents (i, i′), an optimal PKT

mechanism should perform the transfer to approximate the true mutual knowledge

MI(Hi, Hi′).

7.5 Proposed DisentAFL

In order to achieve an efficient and optimal PKT mechanism that maximizes pos-

itive transfer and minimizes negative transfer with the asymmetrical knowledge

relationships of AFL, we propose DisentAFL, whose overview is shown in Figure

7.5.1. The key idea is to disentangle the asymmetrical information sharing scheme

on the original knowledge space into K independent symmetrical information shar-

ing schemes on each of the disentangled knowledge subspaces

R(θ1,θ2, ...,θN) =
K∑
k=1

Rk({θ(k)i |∀i ∈ Ck}) (7.4)

such that each Rk(·) is a symmetric information sharing scheme among a subset

of agents Ck ⊆ [N ], where θ
(k)
i is the disentangled knowledge type k from θi.
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Figure 7.5.1: Overview of the proposed DisentAFL.

To find an optimal inter-agent communication solution for Eq.(7.4), DisentAFL

consists of two components: Knowledge Disentanglement (KD) and Gated Collabo-

ration (GC) mechanism. KD includes two stages: coarse-grained group-wise dis-

entanglement and fine-grained knowledge-type disentanglement. The two-stage

KD is shown in Figure 7.5.2. Then, the GC mechanism is used to automatically

route the disentangled knowledge to improve beneficial knowledge transfer during

inter-agent collaboration.
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Figure 7.5.2: The two-stage Knowledge Disentanglement with Gated Collaboration
mechanism in DisentAFL. (a) The intermediate asymmetrical information sharing
schemes after coarse-grained disentanglement; (b) The final symmetrical informa-
tion sharing schemes after fine-grained disentanglement.

7.5.1 Stage One: Coarse-grained Disentanglement

Group-wise disentanglement reduces the original asymmetrical problem with com-

plex MTDC heterogeneity into several intermediate asymmetrical subproblems with

less complex agent diversity. First, we separate the encoding and decoding related

knowledge such that the agents sharing the same modality or downstream task

could share the corresponding encoder or decoder parameters/representations. For

example, an agent aiming at image classification task using the ViT [239] encoder

and a MLP classification head, might share the image encoder with an image-text

classification agent that uses a Multimodal Transformer backbone [240]. We rewrite

the local parameters of i-th agent as θi = {θ(m)
enc,i}m∈Ii∪{θ

(o)
dec,i}o∈Oi

, where θ
(m)
enc,i de-

notes the modality m’s encoder and θ
(o)
dec,i denotes the decoder for the type-o down-

stream task. We define two types of knowledge groups: (1) encoding-knowledge

groups G(m)
enc = {θ(m)

enc,i|∀i ∈ [N ] if m ∈ Ii}, where each group is a collection of

encoders from those agents having the modality m within their inputs; and (2)

decoding-knowledge groups G(o)dec = {θ(o)dec,i|∀i ∈ [N ] if o ∈ Oi}, where each group is
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a collection of decoders from those agents having the target downstream task type

o. Then, we can rewrite the asymmetrical information sharing scheme R(θ1:N) as

R(θ1:N) =
M∑
m=1

RIE(G(m)
enc ) +

O∑
o=1

RID(G(o)dec)

+
M∑

m,m′=1

RXE(G(m)
enc ,G(m

′)
enc ) +

O∑
o,o′=1

RXD(G(o)dec,G
(o′)
dec ).

(7.5)

where the R(θ1:N) with MTDC agent heterogeneity is split into four sub-problems:

• RIE(·) indicates the information sharing scheme within each modality-specific

group G(m)
enc , which is an asymmetrical but single-modal task-agnostic problem

with TD heterogeneity (no modality shift and concept shift).

• RID(·) indicates that within each task-specific group G(o)dec, which is an asym-

metrical but modality-agnostic single-task problem with MC heterogeneity

(no task shift and domain shift).

• RXE(·, ·) indicates the potential encoding-information sharing between agents

having different modalities, which is an asymmetrical but cross-modal task-

agnostic problem with MT heterogeneity (no domain shift and concept shift).

• RXD(·, ·) indicates the decoding-information sharing scheme between the agents

that have diversified downstream tasks, which is an asymmetrical but cross-

task modality-agnostic problem with MT heterogeneity (no domain shift and

concept shift).

7.5.2 Stage Two: Fine-grained Disentanglement

We further disentangle each of the above four asymmetrical sub-problems into

several independent symmetric problems.

To achieve this, we first need to find the largest knowledge components that

can sufficiently describe the global asymmetric PKT problem as the combination

of several symmetric PKT problems. Specifically, we assume a total of K = M(D+

1) + O(N + 1) + (M + 1)(O + 1) fine-grained knowledge types globally existing
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Figure 7.5.3: The supernetwork θsup at the server.

over the N agents: (1) M(D + 1) knowledge types related to domain shift of

each modality; each domain d ∈ [D] consists of a domain-specific and a domain-

agnostic knowledge. (2) At most O(N+1) knowledge types related to concept drift

regarding individual fine-tuning on the decoder. (3) (M + 1)(O + 1) knowledge

types related to modality and task gaps, including the task-specific and task-shared

knowledge per modality; the modality-specific and modality-shared knowledge per

task type; and the knowledge shared by all tasks and all modalities, such as the

commonsense cognition.

7.5.2.1 Mixture-of-Knowledge-Expert Supernet at Server

In order to learn the K global fine-grained knowledge types mentioned above,

we design a wide and deep supernetwork θsup stored at the central server, whose
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overview is shown in Figure 7.5.3. The mission of θsup is to accommodate K

knowledge types. To this end, we design θsup as follows. Basically, θsup is a Multi-

input Multi-head Transformer-like architecture, consisting of M input channels

for all seen modalities over agents and O output channels for all seen tasks over

agents, where the interaction between modalities can be captured by cross-attention

mechanism. On the basis of that, we introduce several modules and operations to

learn fine-grained knowledge types from the model to further disentangling the

asymmetric RIE(·), RID(·), RXE(·, ·) and RXD(·, ·). Specifically, we adopt the idea

of Mixture of Experts and replace several layers in the Transformer with Mixture

of Domain Experts (MoDE) layers, Mixture of Task Experts (MoTE) layers, or

Mixture of Modality Experts (MoME) layers. The main ideas are as follows.

• We propose the MoDE layer (denoted as θmode) to capture D domain-

specific knowledge types. It consists of D parallel expert models, where each

expert model (denoted as MoDEd(·;θdmode)) in MoDE stands for the knowledge

type for a specific domain d. MoDE acts as a residual connection attached to

an original model block, which we treat as the domain-agnostic knowledge

(as show in Figure 7.5.3(a)). In practice, we apply MoDE layers to the query

and value linear layers.

• Suppose θ
(m)
left denotes a combination of modality-m’s embedding layers, at-

tention layers, and MoDE layers (as shown as the colored-contour rectangles

on the left of Figure 7.5.3). Let H(m) denote the feature space learned by θ
(m)
left

(after necessary cross-attention multimodal interaction). H(m) contains the

modality-m specific information. It is straightforward different modalities’

output space H(m) ̸=H(m′) contains complementary and heterogeneous infor-

mation that describe different aspects/views of any object. However, in order

to maximize positive transfer between different modalities that may contain

common knowledge, especially in the asymmetric RXE(·) (cross-modal multi-

task) problem, the modality-shared information should be learned as well.

Therefore, we follow [241] and split the modality-m’s output feature space

as H(m) into two types of information: [hshare||h(m)] = h′(m) ∈ H(m), where

|| denotes concatenation operation, h(m) ∈ Rdmodal
m represents the modality-
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private knowledge that is not shared with the other modalities and hshare ∈
Rdmodal

share represents the modality-shared knowledge type.

• Let T (o) denote the input feature space of the task o’s decoder network (de-

noted as θ
(o)
right). T (o) contains the information that specifically used for pre-

diction or decision making for the downstream task o. It is straightforward

different tasks’ input spaces T (o) ̸= T (o′) contains diversified information;

for example, the information for classification should be different from that

used for segmentation. However, in order to maximize positive transfer be-

tween different tasks that may contain common knowledge, especially in the

asymmetricRXD(·) (multi-modal cross-task) problem, it is beneficial to lever-

age any task-shared information as well. Therefore, we assume T (o) is a

fused space by combining a task-private and a task-shared feature space,

[tshare||t(o)] = t′(o) ∈ T (o). where t(o) ∈ Rdtasko represents the task-private

knowledge that is not shared with the other tasks and tshare ∈ Rdtaskshare rep-

resents the task-shared knowledge.

• The asymmetrical problems–the single-modality multi-task RIE and the cross-

modality multi-task RXE, both seek how one modality-level knowledge type

(i.e., modality-private or modality-shared) can serve diverse tasks. The rea-

son that may cause asymmetrical knowledge relationships in RIE or RXE

is the downstream task identity–those agents that share more downstream

tasks should transfer more knowledge then other pairs with less/no com-

mon downstream task. To this end, we propose the MoTE layer (denoted as

θmote) to capture (O+1) task-related knowledge type for each types of

modality-private/shared knowledge. In the server’s supernetwork, there

are a total (M + 1) MoTE layers: θ
(1)
mote,θ

(2)
mote, ...,θ

(M)
mote,θ

(share)
mote , where θ

(m)
mote

denote the MoTE layer for modality-m’s private knowledge and θ
(share)
mote de-

note the MoTE layer for modality-shared knowledge. The MoTE layer of each

modalitym contains (O+1) expert models θ
(m)
mote = {θ(m)1

mote, ...,θ
(m)O
mote ,θ

(m)share
mote }.

As shown in Figure 7.5.3(b), the output of all MoTE layers of the server

network can be represented as a tensor Z ∈ R(M+1)×(O+1)×dlatent consists of

(M + 1)(O + 1) features from each of the expert models, where dlatent is the
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feature dimensional of each knowledge type.

• The asymmetrical problems–the multi-modality single-taskRID and the multi-

modality cross-task RXD, both seek how one task-level knowledge type (i.e.,

task-private or task-shared) can be learned from diverse tasks. The reason

that may cause asymmetrical knowledge relationships inRID orRXD is the in-

coming modality identity–those agents that share more modality types should

transfer more knowledge then other pairs with less/no common modalities

types. To this end, We propose the MoME layer (denoted as θmome) to cap-

ture (M+1) modality-related knowledge types for each type of task-

private/shared knowledge. Similar to MoTE, we denote the MoME layer

for task-o’s private knowledge as θ
(o)
mome = {θ(o)1mome,θ

(o)2
mome, ...,θ

(o)M
mome,θ

(o)share
mome }.

The order of inputs feed to all the MoME layers of the server network is the

transposed Z⊤ ∈ R(O+1)×(M+1)×dlatent .

7.5.2.2 Disentanglement Losses

Disentanglement of Z is important for purifying and separating the semantics

of knowledge transfer. To encourage this, we introduce auxiliary losses to the

local objective. Many advanced disentanglement techniques can be applied here

[241]. (1) First, we incorporate an auxiliary loss added to local objective–the

alignment regularization loss between the shared feature learned by each modality,

f align
i (θ

(m)
left,i,m ∈ Ii) :=

∑
m,m′∈Ii ||h

′(m)

:dmodal
share

− h′(m′)

:dmodal
share

||22. (2) Second, in order to

explicitly enforce the latent space to be as disentangled as designed above, we

propose the orthogonal regularization loss between each knowledge types

f orth
i (θ

(m)
left,i,θ

(m)o
mote,i|m ∈ Ii, o ∈ Oi) :=

∑
(m,o),(m′,o′)∈Ii×Oi

Z⊤
o,m,·Zo′,m′,·. (7.6)

Without an accurate disentangled latent space, there would be false positive knowl-

edge transfer and false negative knowledge transfer. Only an accurate disentangled

space together with the designed parameter sharing strategy will encourage positive

transfer and avoid negative transfer.
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7.5.2.3 Proof of Symmetrical PKT After Disentanglement

We prove that the proposed two-stage disentanglement can successfully decompose

the original asymmetric agent relationships R(θ1:N) into K = M(D+ 1) +O(N +

1) + (M + 1)(O+ 1) independent symmetric agent relationships. Detailed proof is

provided in Section 7.6.

7.5.3 Sparsely-gated Collaboration via Network Routing

Each agent’s local network θi is a sparsely-activated version of θsup. Formally,

each agent has two auxiliary gating functions: (1) IoGate(·) takes the input

samples or the modality-task indicators Ii,Oi and outputs a binary gate matrix

Si ∈ {0, 1}(M+1)×(O+1), where each entry Si,m,o = 1 if (m ∈ Ii ∧ o ∈ Oi) ∨ (m ∈
Ii ∧ o = O + 1) ∨ (m = M + 1 ∧ o ∈ Oi) ∨ (m = M + 1 ∧ o = O + 1); otherwise,

Si,m,o = 0. The Si,M+1,O+1 always equals to one because any agent with any

modality-task pair learn the task-shared and modality shared knowledge, which

bridge the gap between a pair of agents with Ii ∩ Ii′ = ∅ ∧ Oi′ ∩ Oi′ = ∅. (2)

DomGate(·; ϕ) takes the input samples and produces a D-dimensional binary vector

gi ∈ {0, 1}D, where D <= N denotes the pre-defined number of domains over

agents and ϕ is the parameters of the function.

The binary outputs of the two gating functions Si, gi are used to route each

agent’s network through the supernetwork θi =ROUTE(Si, gi;θ
sup). The details of

module routing are as follows.

• MoDE layers are gated by the one-hot vector gi. Suppose the input feature is

h. The output of any MoDE layer is ∆h =
∑D

d=1 gi,dMoDEd(h;θdmode,i), which

will be added to the original model’s output. Since gi is one hot, only one

expert is activated and receives gradients from backward propagation. That

is, only one domain’s specific knowledge is learned at each agent. The

learned gi is treated as a guess of the domain identity of agent i.

• Modality encoders and task-specific decoders are gated by Ii and Oi, re-

spectively. The agent i’s network contains encoders {θ(m)
left }m∈Ii and decoders

{θ(o)right}o∈Oi
. Accordingly, the agent learns |Ii| modality-private knowledge
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Figure 7.5.4: The routed network structures at three example agents.

types, one modality-shared knowledge type, |Oi| task-private knowledge

types, and one task-shared knowledge type.

• MoTE and MoME layers are routed by the gate matrix Si. Given a sam-

ple, the agent model learns (|Ii|+1)×(|Oi|+1) modality-task interactive

knowledge types, which are represented in a sparse tensorZ ∈ R(M+1)×(O+1)×dlatent ,

where only (|Ii|+1)× (|Oi|+1)×dlatent values in this tensor is activated and

requires back-propagation. Examples are shown in Figure 7.5.2(c). For ex-

ample, given a modality-private feature h(m), the outputs of an MoTE layer

is |Oi|+ 1 features; each expert o ∈ Oi outputs Zo,m,· = MoTEom(h(m);θ
(m)o
mote,i).

After Z is learned, MoME layers reconstruct the task-private/shared knowl-

edge from Z. Specifically, the task o’s private and task-shared knowledge are

decoded as t(o) =
∑M+1

m=1 Si,o,mMoME
m
o (Zo,m,·;θ

(o)m
mome,i) and

tshare =
M+1∑
m=1

Si,o,mMoME
m
share(Zo,m,·;θ

(share)m
mome,i ). (7.7)
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Through the sparse routing process, the number of knowledge types that can be

disentangled from agent i’s model is Ki = 2|Ii| + 2|Oi| + (|Ii| + 1)(|Oi| + 1).

The collection of agent-specific knowledge types is a subset of globally shareable

knowledge types. Figure 7.5.4 shows three example agents and their agent-specific

knowledge types. In practice, Si, gi is very sparse, i.e., Ki << K. Hence the

agent network θi is much thinner than θsup and does not exceed the local memory

constraint. Also, the number of activated MoTE and MoME experts depends on

Ii,Oi, thus a larger M and O over the large-scale agents have no influence on the

size of the local model θi.

7.6 Details and Proofs

7.6.1 Global Knowledge Type Design

We aim to find the largest knowledge components that can sufficiently describe the

global asymmetric PKT (Pairwise Knowledge Transfer) problem as the combina-

tion of several symmetric PKT problems.

The four sub-problems after the 1st-stage group-wise disentanglement give us

the following inspirations: (1) First, to reduce the asymmetrical knowledge re-

lationships of the subproblem-1 (TD heterogeneity), we investigate how a single

modality serves different downstream tasks. Then, the problem is that, how to

disentangle the modality-specific knowledge into several knowledge types, each of

which serves a different task? And, how to disentangle the domain-specific knowl-

edge from domain-agnostic knowledge? (2) To reduce the asymmetrical knowledge

relationships of the subproblem-2 (MC heterogeneity), we investigate how multiple

modalities serve the same task. We need to disentangle the task-specific knowl-

edge into several modality types, each of which receive information from a different

modality, as well as to disentangle the concept-specific knowledge between agents?

(3) To reduce the asymmetrical knowledge relationships of the subproblem-3 (MT

heterogeneity), it is necessary to first learn the common knowledge shared by dif-

ferent modalities and then disentangle the modality-shared knowledge into several

knowledge types, each of which serves a different task. (4) To reduce the asym-
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metrical knowledge relationships of the subproblem-4 (MT heterogeneity), it is

necessary to first learn the common knowledge shared by different task and then

disentangle the task-shared knowledge into several knowledge types, each of which

decodes a different modality.

Inspired by them, we assume K = M(D + 1) + O(N + 1) + (M + 1)(O + 1)

fine-grained knowledge types over N agents can sufficiently describe the global

asymmetric PKT problem as the combination of several symmetric PKT problems.

For concept shift (C), we simply use fine-tuning for the last layer of the decoder.

The last layer each decoder is considered as one knowledge type. We assume the

early layers except the last layer of each decoder o ∈ [O] is globally shareable

by those agents that have task o. The last layer of each decoder is unique for

each agent. Therefore, a total of O(N + 1) concept knowledge over N agents will

be needed. For domain shift (D), each domain should contain a domain-specific

knowledge type and, in addition, there is a single domain-agnostic based knowledge

type, which results in M(D + 1) knowledge types related to domain shift of each

modality. Modality and Task shift (MT) are correlated and more complex.

for disentangling modality and task-related knowledge relationship asymmetric,

we consider three levels of knowledge types as follows. First, for each modality,

it can serve different tasks in different agents, and therefore, disentangling agents

implies disentangling the task-wise modality-specific knowledge. Likewise,

for each task, it can receive the information from different modalities in different

agents, and therefore, disentangling agents implies disentangling the task-specific

knowledge into modality-wise task-specific knowledge. More importantly,

sub-problem-3/4 seeks any common knowledge shared by modalities and task to

bridge the gap between agents that have neither similar modality nor similar tasks.

Without shareable knowledge or without private knowledge types, the positive

transfer is not maximized or the negative transfer can happen (see Appendix Figure

7.7.1). Therefore, it is straightforward to learn an additional modality-shared

knowledge type and task-shared knowledge type. Over all the N agents

with a total of O tasks, there would be O + 1 independent types of knowledge:

the task-shared knowledge and task-private knowledge per downstream task

type. In summary, we need (M + 1)(O+ 1) knowledge types for disentangling MT
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heterogeneity.

7.6.2 Proofs

We here prove that our fine-grained knowledge disentanglement can therefore de-

compose the original asymmetric agent relationships into K = M(D+ 1) +O(N +

1) + (M + 1)(O + 1) independent symmetric agent relationships, that is

R(θi|i ∈ [N ])

=
∑

m∈[M ]Rm
IE(G(m)

enc ) +
∑

o∈[O]Ro
ID(G(o)dec)

+
∑

m,m′∈[M ],m ̸=m′Rm,m′

XE (G(m)
enc ,G(m

′)
enc )

+
∑

o,o′∈[O],o ̸=o′R
o,o′

XD(G(o)dec,G
(o′)
dec )

=
∑K

k=1Rk(θ
(k)
i |i ∈ Ck ⊆ [N ]).

(7.8)

where G(m)
enc = {θ(m)

enc,i|i ∈ [N ],m ∈ Ii} and G(o)dec = {θ(o)dec,i|i ∈ [N ], o ∈ Oi}. The

notation θ
(m)
enc,i = {θ(m)

BE,i,θ
(m)
mode,i,θ

(m)
mote,i,θ

(share)
mote,i } consists of the modality m’s encoder

learned at agent i consisting of embedding, attention layers, MoDE layers, and

the MoTE layers for modality-m, as well as the MoTE layers for modality-shared

information. The notation θ
(o)
dec,i = {θ(o)mome,i,θ

(share)
mome,i,θ

(o)
BD,i,θ

(o)
final,i} consists of the

task-o MoME layers, the MoME layers for task-shared information, and the task

o’s decoder consisting of early layers and the final concept layers, which are learned

at agent i. The mixed knowledge captured in θi = {θ(m)
enc,i|m ∈ Ii}∪{θ

(o)
dec,i|o ∈ Oi}.

7.6.2.1 Knowledge Decomposition

We define (M+O+MO) subsets of agents: (1) For each modality type m, we define

a subset of agents that contain the modality m, that is, Cm
modal = {i|i ∈ [N ],m ∈

Ii}; (2) For each downstream task type o, we define a subset of agents that contain

the task o, that is, Co
task = {i|i ∈ [N ], o ∈ Oi}; and, (3) For each modality-task

pair (m, o), we define a subset of agents that share both the modality m and the

task o, that is, Cm,o
pair = {i|i ∈ [N ],m ∈ Ii ∧ o ∈ Oi}.

Each asymmetric term Rm
IE(G(m)

enc ) can be split into Km
IE = (D + 1) + 2(O + 1)
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symmetric terms

Rm
IE(G(m)

enc )

= Rm
IE

(
θ
(m)
enc,i|i ∈ [N ],m ∈ Ii

)
= Rm

BE

(
θ
(m)
BE,i|i ∈ [N ],m ∈ Ii

)
+
∑D

d=1R
m,d
MoDE

(
θ
(m)d
mode,i|i ∈ [N ], gi,d = 1

)
+Rm,share

MoTE

(
θ
(m)share
mote,i |i ∈ [N ],m ∈ Ii

)
+
∑O

o=1R
m,o
MoTE

(
θ
(m)o
mote,i|i ∈ [N ],m ∈ Ii ∧ o ∈ Oi

)
+Rshare,share

MoTE

(
θ
(share)share
mote,i |i ∈ [N ],m ∈ Ii

)
+
∑O

o=1R
share,o
MoTE

(
θ
(share)o
mote,i |i ∈ [N ],m ∈ Ii ∧ o ∈ Oi

)
= Rm

BE

(
θ
(m)
BE,i|i ∈ Cm

modal

)
+
∑D

d=1R
m,d
MoDE

(
θ
(m)d
mode,i|i ∈ Cd

MoDE

)
+Rm,share

MoTE

(
θ
(m)share
mote,i |i ∈ Cm

modal

)
+
∑O

o=1R
m,o
MoTE

(
θ
(m)o
mote,i|i ∈ C

m,o
pair

)
+Rshare,share

MoTE

(
θ
(share)share
mote,i |i ∈ Cm

modal

)
+
∑O

o=1R
share,o
MoTE

(
θ
(share)o
mote,i |i ∈ C

m,o
pair

)
,

(7.9)

where Rm
BE(·) denotes the information sharing over the modality-m domain-

agnostic knowledge type of a subset of agents that contain the modality m,

that is, Cm
modal. Rd

MoDE(·) denotes the information sharing over the domain-d-

specific knowledge across a subset of agents that belong to domain d, that is,

Cd
MoDE = {i|i ∈ [N ], gi,d = 1}. Rm,share

MoTE (·) denotes the information sharing over the

modality-m-private and task-shared knowledge across a subset of agents that

contain the modality m, that is, Cm
modal. R

m,o
MoTE(·) denotes the information sharing

over the modality-m-private and task-o-private knowledge across a subset of

agents that share both the modality m and task o, that is, Cm,o
pair. R

share,share
MoTE (·)

denotes the information sharing over the modality-shared and task-shared

knowledge across the group Cm
modal. R

share,o
MoTE (·) denotes the information sharing

over the modality-shared and task-o-private knowledge across Cm,o
pair.

Each asymmetric term Ro
ID(G(o)dec) can be split into Ko

ID = (N + 1) + 2(M + 1)
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symmetric terms:

Ro
ID(G(o)dec)

= Ro
ID

(
θ
(o)
dec,i|i ∈ [N ], o ∈ Oi

)
= Ro

BD

(
θ
(o)
BD,i|i ∈ [N ], o ∈ Oi

)
+
∑N

i=1R
o,i
concept

(
θ
(o)
final,i|{i} if o ∈ Oi else ∅

)
+Rshare,o

MoME

(
θ
(o)share
mome,i |i ∈ [N ], o ∈ Oi

)
+
∑M

m=1R
m,o
MoME

(
θ
(o)m
mome,i|i ∈ [N ],m ∈ Ii ∧ o ∈ Oi

)
+Rshare,share

MoME

(
θ
(share)share
mome,i |i ∈ [N ], o ∈ Oi

)
+
∑M

m=1R
m,share
MoME

(
θ
(share)m
mome,i |i ∈ [N ],m ∈ Ii ∧ o ∈ Oi

)
= Ro

BD

(
θ
(o)
BD,i|i ∈ Co

task

)
+
∑N

i=1R
o,i
concept

(
θ
(o)
final,i|{i} if o ∈ Oi else ∅}

)
+Rshare,o

MoME

(
θ
(o)share
mome,i |i ∈ Co

task

)
+
∑M

m=1R
o,m
MoME

(
θ
(o)m
mome,i|i ∈ C

m,o
pair

)
+Rshare,share

MoME

(
θ
(share)share
mome,i |i ∈ Co

task

)
+
∑M

m=1R
share,m
MoME

(
θ
(share)m
mome,i |i ∈ C

m,o
pair

)
,

(7.10)

where Ro
BD(·) denotes the information sharing over the task-o label-agnostic

knowledge type of a subset of agents that contain the task o, that is, Co
task.

Ro,i
concept(·) denotes the task-o’s concept that is specific on the agent i.

Rshare,o
MoME(·) denotes the information sharing over the task-o-private and modality-

shared knowledge across a subset of agents that contain the task o, that is,

Co
task. R

o,m
MoME(·) denotes the information sharing over the task-o-private and

modality-m-private knowledge across a subset of agents that share both the

modality m and task o, that is, Cm,o
pair. R

share,share
MoME (·) denotes the information shar-

ing over the task-shared and modality-shared knowledge across the group.

Rshare,m
MoME (·) denotes the information sharing over the task-shared and modality-

m-private knowledge across a subset of agents that share both the modality m

and task o, that is, Cm,o
pair.

Each cross-group asymmetric term Rm,m′

XE (G(m)
enc ,G(m

′)
enc ) with m ̸= m′ can be split
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into Km,m′

XE = O + 1 symmetric terms

Rm,m
′

XE (G(m)
enc ,G(m

′)
enc )

= Rm,m
′

XE

(
{θ(m)

enc,i|i ∈ [N ],m ∈ Ii}, {θ(m
′)

enc,i|i ∈ [N ],m′ ∈ Ii}
)

= Rshare,share
MoTE

(
θ
(share)share
mote,i ,θ

(share)share
mote,i′ |∀(i, i′) ∈ Cm

modal × Cm′
modal

)
+
∑O

o=1R
share,o
MoTE

(
θ
(share)o
mote,i ,θ

(share)o
mote,i′ |∀(i, i

′) ∈ Cm,o
pair × Cm′,o

pair

) (7.11)

where Rshare,share
MoTE (·) denotes the information sharing over the task-shared and

modality-shared knowledge across all pairs of agents from separate modality

groups, and Rshare,o
MoTE (·) denotes the information sharing over the modality-shared

and task-o-private knowledge across all pairs of agents from separate modality

groups as well as sharing the task o.

Each cross-group asymmetric term Ro,o′

XD(G(o)dec,G
(o′)
dec ) with o ̸= o′ can be split into

Ko,o′

XD = M + 1 symmetric schemes

Ro,o
′

XD(G
(o)
dec,G

(o′)
dec )

= Ro,o
′

XD

(
{θ(o)dec,i|i ∈ [N ], o ∈ Oi}, {θ(o

′)
dec,i|i ∈ [N ], o′ ∈ Oi}

)
= Rshare,share

MoME

(
θ
(share)share
mome,i ,θ

(share)share
mome,i′ |∀(i, i′) ∈ Co

task × Co′
task

)
+
∑M

m=1R
share,m
MoME

(
θ
(share)m
mome,i ,θ

(share)m
mome,i′ |∀(i, i

′) ∈ Cm,o
pair × Cm,o′

pair

) (7.12)

where Rshare,share
MoME (·) denotes the information sharing over the task-shared and

modality-shared knowledge across all pairs of agents from separate task groups,

andRshare,m
MoME (·) denotes the information sharing over the task-shared and modality-

m-private knowledge across all pairs of agents from separate task groups as well

as sharing the same input modality m.

7.6.2.2 Knowledge Independence

Considering Eq.(7.9) for each ofM modalities, the termsRshare,1
MoME,R

share,2
MoME, ...,R

share,O
MoME ,

Rm,1
MoME,R

m,2
MoME, ...,R

m,O
MoME,R

share,share
MoME , and Rm,share

MoME are encouraged to be indepen-

dent with each other through the auxiliary orthogonal loss over the latent space

Z. When adding up Eq.(7.9) over all modalities, the modality-specific terms in

different modalities R1,o
MoME,R

2,o
MoME, ...,R

M,o
MoME are independent due to the disen-

tanglement of the latent space; however, the (O + 1) modality-shared terms in

different modalities, Rshare,o
MoME and Rshare,share

MoME are not independent and can be com-

bined. The independence between domain-agnostic and domain-specific knowledge
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types can be done as first-order meta learning, where domain-agnostic parameters

are treated as the meta-parameters and domain-specific parameters are treated

as the inner-loop tunable parameters. Overall, by adding up Eq.(7.9) over all

modalities, we end up with KIE independent symmetric information sharing terms

KIE = (O + 1) +
∑M

m=1 [Km
IE − (O + 1)] = M(D + 1) + (M + 1)(O + 1). Like-

wise, by adding up Eq.(7.10) over all task types, we end up with KID independent

symmetric information sharing terms KID = (M + 1) +
∑O

o=1[K
o
ID − (M + 1)] =

O(N + 1) + (O + 1)(M + 1).

In Eq.(7.11), the termsRshare,share
MoME andRshare,o

MoME, o = 1, 2, ..., O are shared over the

M(M−1)/2 pairs of modalities. By adding up all pairs, we end up with KXE inde-

pendent symmetric information sharing termsKXE =
∑

m,m′∈[M ],m ̸=m′ K
m,m′

XE /(M(M−
1)/2) = O+1. Likewise, by adding up Eq.(7.12) over all task types, we end up with

KXD independent symmetric information sharing terms KXD =
∑

o,o′∈[O],o ̸=o′ K
o,o′

XD /

(O(O − 1)/2) = M + 1.

Moreover, Eq.(7.9-7.12) have the following correlations: the term Rshare,share
MoTE is

related to Rshare,share
MoME , the term Rshare,o

MoTE is related to Rshare,o
MoME, the term Rm,share

MoTE is

related to Rm,share
MoME , and the term Rm,o

MoTE is related to Rm,o
MoME.

Finally, we end up with the following independent terms

K = KIE +KID +KXE +KXD − 3(M + 1)(O + 1)

= M(D + 1) +O(N + 1) + (M + 1)(O + 1)
(7.13)

R(θi|i ∈ [N ])

=
∑

m∈[M ]RmBE

(
θ
(m)
BE,i|i ∈ Cm

modal

)
+
∑

o∈[O]RoBD

(
θ
(o)
BD,i|i ∈ Co

task

)
+
∑

m∈[M ]

∑D
d=1R

m,d
MoDE

(
θ
(m)d
mode,i|i ∈ Cd

MoDE

)
+
∑

o∈[O]

∑N
i=1R

o,i
concept

(
θ
(o)
final,i|{i}}

)
+Rshare,share

MoTE &MoTE

(
{θ(share)sharemote,i ,θ

(share)share
mome,i }|i ∈ [N ]

)
+
∑

m∈[M ]

[
Rm,shareMoTE &MoTE

(
{θ(m)share

mote,i ,θ
(share)m
mote,i }|i ∈ Cm

modal

)]
+
∑

m∈[M ]

∑
o∈[O]

[
Rm,oMoTE &MoTE

(
{θ(m)o

mote,i,θ
(o)m
mome,i}|i ∈ Cm,o

pair

)]
+
∑

o∈[O]

[
Rm,shareMoTE &MoTE

(
{θ(share)omote,i ,θ

(o)share
mome,i }|i ∈ Co

task

)]

(7.14)

Case Study (M = O = 2). For simplicity, we have assumed a single shared-
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knowledge space can shared by all pairs of modalities. If there is only two modalities

and two tasks, the single-shared knowledge assumption is true, and we have K =

M ·KIE+O·KID+M(M−1)KXE/2+O(O−1)KXD/2 = M ·KIE+O·KID+KXE+KXD.

7.6.3 Pseudocode and Workflow

The training workflow and pseudo-code of DisentAFL is provided in Algorithm 4.

Algorithm 4: DisentAFL Workflow
1: Input: Total number of agents N ; total number of modalities M ; total number of tasks O;

total communication rounds T ; each agent’s dataset Di, sensor sets Ii, and task types Oi,
∀i ∈ [N ].

2: Initialization: Randomly initialize supernetwork at server θsup0 and gating function ϕ0;
compute and fix each agent’s MoME/MoTE gate matrix Si = IoGate(Ii,Oi); each agent’s
memory buffer storing validation accuracy during policy search Bi = {}.

3: for round t = 1 to T do
4: Sampling a subset of agents Vt ⊂ [N ] with balanced load of MoME/MoTE experts.
5: // local SGD independently
6: for agent i ∈ Vt in parallel do
7: // Expert activation
8: Download the current policy ϕi,t ← ϕt.
9: Sample an MoDE expert with ϵ-greedy: g̃i,t = DomGate(Di;ϕi,t) + ϵ.
10: Query the current server model θsupt using g̃i,t and Si,t.
11: Receive the sparsely-gated model from server θi,t ← ROUTE(Si,t, g̃i,t;θ

sup
t )

12: // Local Training

13: θ̃i,t = θi,t
14: for each local update step do
15: Sample a batch of data Db

i from local training dataset Di

16: Local update θ̃i,t ← θ̃i,t − α∇θ̃i,t
fi(θ̃i,t;Db

i ).

17: end for
18: θi,t+ 1

2
= θ̃i,t

19: Evaluate the current sampled expert using local validation dataset and θi,t+ 1
2

20: Add (g̃i,t,ACC
d
i ) to memory buffer Bi

21: Update the policy ϕt+ 1
2
= ϕt − γ∇ϕtQ using Bi such that the best expert is produced.

22: Compute the best MoDE expert gi,t+1 = DomGate(Di;ϕi,t+ 1
2
).

23: Upload θi,t+ 1
2
, ϕt+ 1

2
, gi,t+1 to server.

24: end for
25: // Knowledge aggregation
26: Update ϕt+1 = 1

|Vt|
∑

i∈Ct
ϕt+ 1

2

27: for knowledge type k = 1 to K in parallel do

28: Aggregate knowledge type k’s corresponding parameters, θ
sup(k)
t+1 , from θ

(k)

i,t+ 1
2

, i ∈ Ck.

29: end for
30: end for
31: Output: Super-network at server θsupT and gating network ϕT ; each agent’s personalized

model θi,T = ROUTE(Si, gi,T ;θ
sup
T ), where MoDE gate gi,T = DomGate(Di;ϕT ).
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7.7 Experiments

7.7.1 Simulations

We select five multimodal or multitask datasets as the source to create three AFL

simulations. The five source datasets are listed in Table 7.7.1, including a 3D

object recognition dataset [146] containing four modalities–3d point clouds, voxels,

and two rendered views of each object; a three-modal multimedia human emotion

recognition dataset [242]; a bimodal human action recognition dataset [243] that

identifies human actions from RGB videos and 3D skeletal data; a single-modal two-

task dataset [242]; and, a bimodal audio-image digit classification dataset [242].

We then create three AFL simulations based on these datasets, whose details

are summarized in Table 7.7.2. Object4M2T simulates a single-domain 4-modal

2-downstream-task AFL scenario with MTC heterogeneity, wherein there are dis-

crepant modalities types (M), different tasks with different output spaces (T), and

concept shifts (C) across 50 agents. The goal is to utilize agent collaboration to

comprehensively understand real-world objects from various perspectives, including

different angles observing 3D objects, their spatial point clouds, and voxel repre-

sentations. Human4M3T simulates a multi-domain 4-modal 3-downstream-task

AFL scenario, with MTDC heterogeneity patterns across 50 agents, where agents

vary in their input spaces (M), output spaces (T), input distributions (D), as well

as concept shifts (C). It is created by combining CMU-MOSE, a human emotion

recognition dataset [242] containing video, audio, and text modalities, and NTU-

RGBD, a human action recognition [243] containing videos and 3D skeletal points.

The goal of this simulation is centered around human understanding–jointly learn-

ing the human facial emotions and the human physical motions. Mnist2M4T

simulates a multi-domain 2-modal 4-downstream-task AFL scenario having 4 pat-

terns of heterogeneity (MTDC) across 50 agents. The four downstream tasks in-

clude classifying the item on the top-left, on the bottom-right, generating the digit

images, and generating spoken English digits.

For classification tasks within these simulations, the sizes of local label spaces

are limited to at most 5. In Human4M3T and Mnist2M4T, the domain shifts across
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Table 7.7.1: Statistics of 5 Source Datasets.

Dataset # Samples Modalities Tasks

ModelNet40 [146] 12,300
{3dPointCloud, 3dVoxel, {Classification (40 object classes),

3dView1, 3dView2} Generation (point clouds)}

CMU-MOSEI [242] 22,777 {Audio, Text, Video} {Classification (6 human emotions),
Regression (sentiment scores) }

NTU-RGBD [243] 56,880 {Video, 3dSkeleton} {Classification (60 human actions)}

Multi-FMNIST [242] 70,000 {Image} {Classification Task 1 (10 digits),
Classification Task 2 (10 objects)}

AV-MNIST [242] 70,000 {Image, Acoustic}
{Generation Task 1 (image),
Generation Task 2 (audio),
Classification (10 digits)}

Table 7.7.2: Statistics of the three AFL Simulations for evaluating the complex het-
erogeneity of Modality Gap, Task Difference, Concept Shift, with Domain Drifts.

Simulations
Source Agents Modalities Tasks Modality-task Pairs
Datasets (N) (M) (O) (#Agents ×(XIi

→ YOi
))

Object4M2T ModelNet40 50 4 2

5 ×(X{view1} → Y{cls objects})

5 ×(X{view2} → Y{cls objects})

5 ×(X{view1, voxel} → Y{cls objects})

5 ×(X{voxel, view2} → Y{cls objects, point cloud})

5 ×(X{view1, view2} → Y{cls objects, point cloud})

5 ×(X{view1, view2} → Y{point cloud})

5 ×(X{point cloud, voxel} → Y{cls objects})

5 ×(X{point cloud} → Y{cls objects})

5 ×(X{view1, point cloud} → Y{cls objects})

5 ×(X{view1, view2, point cloud} → Y{cls objects})

Human4M3T 50 4 3

5 ×(X{video} → Y{emotions})

5 ×(X{audio} → Y{sentiment})

5 ×(X{text} → Y{sentiment, emotions})

5 ×(X{video, audio} → Y{emotions})

CMU-MOSEI 5 ×(X{audio, text} → Y{sentiment})

+ NTU-RGBD 5 ×(X{video, text} → Y{sentiment, emotions})

5 ×(X{video, audio, text} → Y{emotions})

5 ×(X{skeleton} → Y{cls action})

5 ×(X{video, skeleton} → Y{cls action})

5 ×(X{video} → Y{cls action})

Mnist2M4T 50 2 4

5 ×(X{image} → Y{cls digits})

5 ×(X{audio} → Y{cls digits})

5 ×(X{image, audio} → Y{cls digits})

Multi-FMNIST 5 ×(X{audio} → Y{cls digits, gen image})

+ AV-MNIST 5 ×(X{image} → Y{gen audio})

6 ×(X{image, audio} → Y{gen image, gen audio})

6 ×(X{image} → Y{cls digits, cls objects})

6 ×(X{image} → Y{cls objects, gen audio})

7 ×(X{image} → Y{cls digits, cls objects, gen image})
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Figure 7.7.1: Illustration of alignment-based and no-alignment baselines.

agents are created by randomly rotating the objects in images, adding different

noises in audio and images, replacing the image backgrounds, or, replacing low-

frequency signals in raw audios with other sounds. All samples on each agent use

the same random seed to generate noises. The N agents are divided into 5 groups

and each group use a unique random seed when generating noises or selecting

background. The number of samples and data split on each agent are determined

in the same ways as Chapter 6.

7.7.2 Baseline Methods

We compared DisentAFL with five baselines. Local lets agents separately train

their models without any collaboration–neither positive transfer nor negative trans-

fer R(·)=0. To apply FedAvg [33] in our settings, we split agents into several dis-

joint groups such that each group share the same modality-task pair. The collabo-

ration is within the same group of agents using FedAvg. Any information sharing

between different groups is prohibited. Cross-FedAvg, in addition to FedAvg,

encourages the sharing of certain modality-to-task transmitter between different

groups that have overlapping on both modalities and tasks, as illustrated in Figure

7.7.1(a). There is no modality-shared or task-shared representations in this base-

line. Align-FedAvg, in addition to FedAvg, encourages the sharing of certain

encoders/decoders between different groups that have either overlapping modali-

ties or overlapping tasks. The after-encoding and before-decoding representations

of all modalities and task are aligned onto the same latent space. Cross-PFL

is similar to Cross-FedAvg, except that using the personalized FL method [28] to

every modality-task pair group of agents.
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7.7.3 Setups

Hyperparameters: We implemented DisentAFL and baselines using Pytorch3

and ran all experiments on a single A100 GPU device. The hyperparameters are

briefly as follows. (1) Model configuration: dmodal = 768; dmodal
m = 384; dmodal

share =

384; dlatent = 128; dtasko = 384; the number of experts M , O are dynamically

determined by the server based on the modality types and task types observed in the

previously received agent models; and, the number of domain experts D = 5 and

the MoDE layers are attached to the early 1/2 attention layers. (2) Local training:

epoch numbers fixed to 10; batch size fixed to 64; learning rates 0.015, 0.05, 0.001 for

the three simulations, repetitively; for local optimizers we use Adam; the weights

of auxiliary loss are in average 0.08. (3) Global training: total round (T = 30);

agents sampling ratio (0.25% per round); ϵ-greedy sampling (ϵ = 0.3).

Evaluation Metrics. We have observed that the knowledge transfer quality in-

fluences not only the convergence speed (i.e., the number of rounds needed for

approaches to reach certain overall performance) as well as the overall performance

after convergence. In this chapter, since we mainly focus on the quality of knowl-

edge transfer (i.e., whether our approach help to avoid negative transfer to acceler-

ate the convergence and whether our approach can improve the performance after

positive transfer), we pay attention to the convergence progress evaluated on each

personal model–the average local performance that the approach can converge to on

a certain given round ID. While other metrics such as the time cost each round

and the memory cost could also provide perspectives for evaluating FL methods,

they are not one of the motivations of this chapter.

7.7.4 Results

Overall Performance. Table 7.7.3 shows a comparison of the globally-averaged

local performance achieved by different collaborative learning approaches at the

round T = 30. In general, our method outperforms baselines with a large margin

in all multi-task simulations. This demonstrates that our approach achieved better

convergence speed, indicating that the past knowledge transfer might have more
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Table 7.7.3: Average testing accuracy over all agents’ classification tasks at T .

Methods Object4M2T Human4M3T Mnist2M2T Mnist2M4T

Local 88.23 ± 0.72 70.23 ± 0.79 93.01 ± 0.30 92.38 ± 0.21

FedAvg [33] 84.63 ± 0.02 74.12 ± 0.93 92.79 ± 0.12 83.22 ± 0.35

Cross-FedAvg [33] 88.35 ± 0.20 72.41 ± 0.72 91.65 ± 0.32 88.65 ± 0.30

Align-FedAvg [33] 89.73 ± 0.68 69.65 ± 0.73 91.18 ± 0.38 85.18 ± 0.53

Cross-PFL [28] 90.11 ± 0.63 75.37 ± 0.26 94.20 ± 0.94 92.20 ± 0.25

DisentAFL† 95.91 ± 0.89 73.39 ± 0.32 95.37 ± 0.14 92.97 ± 0.93

DisentAFL 96.38 ± 0.41 75.68 ± 0.74 97.44 ± 0.36 95.95 ± 0.16

efficiently captured and conveyed the positive information among agents.

Impact of Downstream Task Difference. Table 7.7.3 (column 4) shows the

result of a two-task version of Mnist2M4T, where the two generative tasks are

removed from the original setting. Comparing column 5 to column 4, we observe

that the baselines exhibit a larger performance drop than our method when there

are more downstream tasks during collaboration. This indicates that our method

can better exclude conflicting knowledge that should be shared across agents.

Ablation Study. The last two rows in Table 7.7.3 compare the results with

and without auxiliary losses for knowledge disentanglement in the latent space.

DisentAFL† is a variant of DisentAFL that removes the disentanglement loss from

local objective functions. While the performance increase is not significant for

Object4M2T and Human4M3T, on Mnist2M4T, where the number of downstream

tasks is larger, it demonstrates the positive impacts of disentangling knowledge on

improving convergence speed. This underscores the importance of disentangling

knowledge for purifying knowledge transfer in the context of federated learning,

suggesting that the latent spaces of local models in AFL contain conflicting knowl-

edge. Therefore, utilizing disentanglement loss can help prevent negative transfer.

In the future, we will provide more experiments to examine the role of disentan-

glement loss in our framework.
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7.8 Conclusions

This chapter studied the Modality-task Agnostic Federated Learning (AFL) prob-

lem to address a specific CoMML situation where there are simultaneous four

personalization patterns–modality, concept, domain, and task type personaliza-

tion. We discussed a unique challenge in AFL rather than traditional FL due

to the asymmetrical inter-client knowledge relationships. Then, we introduced

a new DisentAFL approach that can addressed this challenge via a two-stage

Knowledge Disentanglement and Gating mechanism, whose main idea is to de-

compose the asymmetrical inter-client information sharing scheme into several

independent symmetrical inter-client information sharing schemes. Experiments

show that the proposed DisentAFL framework outperforms baseline approaches in

simulated cross-modal cross-task object recognition and human understanding sce-

narios, which demonstrates that our approach effectively addressed the challenge

of MTDC heterogeneity.



Part III

Collaboration with Implicit

Knowledge Transfer
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Chapter8

Latent Transfer for Architecture-

free Collaboration

8.1 Introduction

In this chapter, we explore scenarios in which CoMML agents have the flexibility

to define their own modalities, concepts, and domains, as well as the freedom

to design their own network architectures, while, for simplicity, we assume

that all agents are targeting the same downstream task. Such a setting can be

likened to a social scenario where individuals who think in different ways engage in

efficient communication with each other; a person thinking in a unique way can be

analogous to a unique architectural design that has a distinct computational flow

for processing the inputs. In addition, we continue to explore in the global-local

decentralized CoMML paradigm (Eq.(2.2)) as in Chapter 6 since it learns personal

models and thus is well-suited for the CoMML setting with personalized model

architectures. However, we found no previous work that strictly formulates the

aforementioned CoMML setting for us to use. Although there are architecture-

heterogeneous FL approaches proposed by [244, 93, 91, 92], their problem settings

differ from ours because they still assume agents’ model architectures have similar

computational flows or share common architecture families. To fill this gap, we

propose a novel Architecture-personalized Multimodal Federated Learning

(AMFL) setting to delve into the research on CoMML with simultaneous modality,

141
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Figure 8.1.1: (a) Local mapping functions per agent in Multimodal Federated
Learning (MFL). (b) Problem setting of Part II (previous chapters) that requires re-
strictive compositional neural architectures. (c) Problem setting of Architecture-
personalized MFL (AMFL), without a restriction on local model architectures.
In this AMFL example, “agent 1” and “agent 2” show a layer-width difference,
“agent 2” and “agent 3” show a depth difference, and “agent 3” and “agent 4”
show a topology difference, at multimodal interaction modules.

concept, domain, and model architecture preferences.

An illustration of AMFL is shown in Figure 8.1.1. Different from previous

chapters (Chapter 6 and 7) and different from traditional MFL [40, 73, 87] that

leveraged a compositional neural architecture design (i.e., neural architectures are

different but are made of common smaller blocks), in AMFL we assume no prior

knowledge on how the heterogeneous architectures of different agents are correlated

with each other. That is, in AMFL, the neural networks of different agents may

adopt structurally distinct computational flows and thus are non-splittable

into global common blocks. Example real-world applications of AMFL include: (1)

Task complexity difference. First, due to personalization, agents may vary greatly

in their complexity of modeling the inter-modal interactions, with some local tasks

being more complex than others. In this situation, it is essential for different agents

to employ diverse neural network sizes or even utilize varied network families that
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align with their personal data distributions. (2) Multimodal pattern difference.

Second, studies in Multimodal Fusion [245, 11] have demonstrated that the pat-

terns of inter-modal interactions can also shift across agents, necessitating using

different mechanisms (i.e. concatenation, element-wise product, cross-attention fu-

sion, tensor interaction, and so on) to learn the specific inter-modality interaction

style at each agent [245, 11]. For example, some image-text agents may benefit

from just a straightforward concatenation of different modalities’ features; some

image-audio agents may need an element-wise alignment; and some image-text-

audio agents may need a complex intra- and inter-modal interaction mechanism.

(3) Resource budget difference. Third, in real-world systems, agent devices can be

mobile phones, tablets, and personal computers, thus vary greatly in computation

resource budgets (e.g., computation capacity, memory, storage, and network band-

width). A resource-poor agent cannot afford a large model architecture, such as a

pretained large language model, while a resource-rich agent can benefit from it.

The unique challenge of AMFL is how to encourage beneficial knowledge shar-

ing between statistically heterogeneous agents whose model architectures might

have different computational flows. In tackling this challenge, one may con-

sider several straightforward approaches. (1) First, one might consider using a

globally-shared large language model that unify all different local tasks. However,

the communication would be forbiddingly expansive and many local devices may

not afford such an expansive model. (2) Second, recent FL approaches have ex-

plored the settings with diversified neural architectures, including feature-sharing

methods [244, 93, 91, 92] and explicit weight-sharing methods [95, 72, 96, 97], can

be used. However, these methods have shown inefficient in AMFL scenarios, since

the diverse model topologies in AMFL either impose a costly workload on the server

or require long time for uploading and downloading a large supernetwork at each

communication round. Also, these methods struggle to maximize the beneficial

knowledge sharing among agents, especially with significant topology differences

among models.

Different from existing works, we propose a novel implicit knowledge transfer

framework to solve the AMFL challenge, namely FedMBridge. The main idea is

that, instead of sharing original weights across diverse weight spaces, we introduce
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a global bridge function that learns to perform knowledge sharing on a globally-

shareable latent space. Intuitively, the bridge function is held on the server to act as

a “bridge”, which balances and digests the two disentangled heterogeneity patterns

(i.e. statistical and architecture heterogeneity) and then generates local weights in

the raw statistical-architectural entangled heterogeneity pattern. To achieve such

a bridge function, we introduce a Topology-Aware HyperNetwork (TAHN),

which is formulated as a two-stage process: the first stage encodes the implicit roles

of each layer using graph neural networks, and the second stage aims to combine

the layer-role information with task information to reconstruct local weights. This

chapter’s contributions are threefold:

• We study an under-explored AMFL problem. To the best of our knowledge,

this is one of the first works that tackle the collaboration of diversified mul-

timodal fusion strategies for general-purpose federated AI systems.

• We propose the FedMBridge framework to solve AMFL, where we introduce

a brand-new Topology-aware HyperNetwork to automatically balance and

digest architecture gap and statistical heterogeneity in an efficient manner.

• We evaluate our approach on four AMFL simulations, which demonstrates

the effectiveness of our approach for addressing AMFL.

8.2 Related Works

The majority of existing Federated Learning (FL) assumes a uniform neural ar-

chitecture shared across agents, including fine-tuning methods (e.g., FedPer [60],

pFedMe [61], Per-FedAvg [27]), meta-learning methods [39], mixture methods (e.g.,

APFL [62], PFL-MoE [29], Factorized-FL [63]), multi-task learning methods (e.g.,

MOCHA [28, 73]), and HyperNetwork based methods (e.g., HyperPFL [30]).

Given the recent real-world application requirements for collaboration across di-

verse computation platforms with varying resource budgets, the knowledge transfer

across proprietary model architectures has attracted significant research attention

in collaborative learning. We will review two orthogonal lines of approaches in FL

that handle architecture gaps during collaboration.
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Feature Sharing Approaches. Federated Mutual Learning utilizes Knowledge

Distillation to share predictions or intermediate features of local models among

agents, making it a natural choice for facilitating knowledge transfer across diverse

architectures. For example, FedDistill [90], FML [49], PFML [91], and FedGKD

[92], adopt collaborative knowledge distillation to align predictions among diverse

client models on the server. Without requiring a public dataset at server, Data-

free Federated Distillation learns an additional data generator to simulate local

data on the server [93, 94]. However, these methods have shown inefficiency in

AMFL scenarios, as Distillation typically requires an additional prediction inference

process and relies on an extra public dataset or multimodal data generator to

compute supervision signals.

Weight Sharing Approaches. Another line of works in Federated Learning

(FL) has explored direct weight-sharing approaches to handle diversified network

architectures. HeteroFL [95] allows participants to share parameters among pro-

totypes. Another line of works, such as Split-Mix [72], DepthFL [96], and DisPFL

[97], leverages a large supernetwork, where each agent is aligned to partial parame-

ters in this supernetwork indicated by a supermask learned by pruning techniques,

and/or adopts progressive distillation to handle depth difference. However, these

methods have shown inefficient in AMFL scenarios as well as suboptimal in trans-

ferring the knowledge among agents–due to the significant topology differences

across architectures, weight sharing in supernetwork becomes quite expensive and

fail to effectively align local model weights, thereby reducing knowledge-sharing

opportunities. This chapter introduces an efficient and effective weight-sharing

scheme to overcome the two limitations of prior works.

In this chapter, we will follow and improve the weight-sharing approaches, as

they require no extra public dataset or data generator on the server. In practice,

since the two lines of work (feature sharing and weight sharing) are orthogonal, we

can use them together. In our experiments, we will illustrate how our method can

be combined with the feature-sharing baselines.
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8.3 Problem Formulation

We deal with the setup of N agents with M modality types (e.g. image, video,

text, audio, tabular) working together to improve their local personal models

θ1,θ2, ...,θN . We introduce architecture heterogeneity; however, for simplicity,

in this chapter, we assume all agents solve the same downstream task, i.e., O = 1.

8.3.1 Local Task Setting on Each Agent

Each agent i ∈ {1, 2, ..., N} focuses on learning a subset of modality types Ii ⊆
{1, 2, ...,M} and has a combinatorial input space XIi := (X (m)|∀m ∈ Ii), where

X (m) is the subspace associated with the modality type m. For example, as illus-

trated in Figure 8.1.1(a), “agent 2” focuses on an image-text bimodal task; “agent

3” focuses on an audio-visual bimodal task; “agent 1” learns a text-only unimodal

task. Each agent i also has a personalized label space Yi. Each agent i has ac-

cess only to its local dataset Di = {(x̃ij, yij)}ni
j=1, sampled from x̃ij ∼ Pi(x̃) and

yij ∼ Qi(y|x̃ij), where Pi is the agent-specific input distribution over the combina-

torial input space XIi , and Qi is the conditional output distribution over the space

Yi. Each sample’s input consists of the modalities x̃ij = (x
(m)
ij )m∈Ii present as in

Ii, where x
(m)
ij denotes the modality m in x̃ij.

Each agent i aims to obtain a local mapping function

fAi
(·;θi) : XIi → Yi (8.1)

characterized by a agent-specific model architecture Ai and parameterized by

trainable weights θi ∈ Rdi , where di indicates the structure of the weight space

associated with Ai.

8.3.2 Multi-agent Collaboration with Architecture Gap

We follow the weight-sharing paradigm for Multimodal Federated Learning (MFL),

as it requires no extra public dataset or data generator on the server. MFL inher-

ently faces the challenge of network architecture heterogeneity among agents. To

distinguish this chapter from previous ones, we start by clarifying our task setting.
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Definition 8.1 (MFL with Splittable Architecture Gap): Given that local

models fAi
(·;θi), i = 1, 2, ..., N, have either one of modalities or multiple modali-

ties as inputs, when addressing the knowledge sharing among heterogeneous mul-

timodal model architectures, traditional MFL systems [61], as well as previous

Chapter 6 and Chapter 7, have leveraged a design of compositional/splittable

neural architectures Ai := {B(m)
enc |∀m ∈ Ii} ∪ {Bshare} ∪ {Bdec,i}, such that hetero-

geneous model architectures are manually split into smaller homogeneous blocks,

allowing any pair of agent to share some common blocks, as illustrated in Figure

8.1.1(b). The global objective of these weight-sharing approaches is formulated as

min
θ1,θ2,...,θN

[
1

N

N∑
i=1

Li(θi)

]
+R(θ1,θ2, ...,θN) (8.2)

s.t.

Ai ∩ Ai′ = {B(m)
enc |∀m ∈ Ii ∩ Ii′} ∪ {Bshare}, ∀i, i′ ∈ [N ]

(8.3)

which aims to (1) jointly optimize the local objectives of all agents minθi Li(θi) :=

E(x̃,y)∼Di
l (y, fAi

(x̃;θi)), and meanwhile, (2) leverage a central server to encourage

a privacy-preserving knowledge sharing scheme among agentsR(·) in order to boost

each agent’s local model performance. The constraint Eq.(8.3) allows R(·) to be

achieved through decomposed explicit weight sharing schemes.

Definition 8.2 (AMFL with Computational Architecture Gap): In this

chapter, we focus on the Architecture-personalized MFL (AMFL), which relaxes

the constraints of Eq.(8.3). AMFL addresses a more general MFL scenarios without

setting any restriction on the architecture design. Local models fAi
(·;θi), i =

1, 2, ..., N, can take on any neural architectures specified by local users, each with

potentially different computational flows. The global objective is

min
θ1,θ2,...,θN

[
1

N

N∑
i=1

Li(θi)

]
+R(θ1,θ2, ...,θN) (8.4)

which aims to (1) jointly optimize the local objectives of all agents minθi Li(θi) :=

E(x̃,y)∼Di
l (y, fAi

(x̃;θi)), where l(·, ·) is the loss function, and meanwhile, (2) lever-

age a central server to encourage a privacy-preserving knowledge sharing scheme
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among agents R(·) in order to boost each agent’s local model performance. The

server has no prior knowledge about the inter-agent weight-space sharing scheme.

It is possible that any pair of agents’ architectures Ai and Ai′ have structurally-

different computational flows. That is, for ∀i, i′ ∈ [N ], it is possible

Ai ∩ Ai′ = ∅. (8.5)

Given this relaxed design, there will be three particular cases of architecture

gap that are not permitted in traditional MFL: (1) Topology Difference is a most

common situation in multimodal FL systems. Two agents might use different model

types (e.g. one agent is based on Transformer while the other is based on ResNet)

or use different multimodal fusion strategies for different input modality types (e.g.

one agent uses alignment while the other uses concatenation). (2) Depth Difference

refers that two agents having the same topology (e.g. both are based on ResNet)

but their numbers of layers/modules are different. (3) Width Difference describes

a situation where two agents having the same topology and same depth, but their

numbers of neurons at each layer are different. Examples of the three cases are

illustrated in Figure 8.1.1(c).

8.4 Proposed FedMBridge

In the AMFL settings (Definition 8.2), any pair of agent models might have com-

pletely different computational flows. In order to solve Eq.(8.4) under such settings,

there are two challenges we are going to deal with. (1) Challenge 1: how to de-

sign and maximize the benefits of the inter-agent knowledge sharing scheme R(·),
wherein there are simultaneous architecture heterogeneity (A1 ̸= A2 ̸= ... ̸= AN) as

well as statistical heterogeneity (Non-IIDness) among agents? (2) Challenge 2:

Existing Multimodal FL approaches cannot address the computational architecture

gap. Therefore, it is desirable to particularly deal with how to automatically bridge

the computational architecture gap, for efficient and effective knowledge sharing

among agents with heterogeneous neural architectures and distributions.

We propose a new multimodal FL framework, FedMBridge, which automat-

ically bridges the architecture gap among statistically heterogeneous agents. We
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will first introduce the main idea of FedMBridge and then present its three compo-

nents: (1) the topological graph representation of local multimodal architectures;

(2) the hypernetwork that generates personal weights conditioned on the topolog-

ical graphs of architectures; (3) the federated training workflow.

8.4.1 Main Idea

Rethinking Implicit and Explicit Weight Sharing: Explicit weight sharing,

or the simple weight aggregation within a globally-shared weight space, is seen in

standard FL with homogeneous architectures [38, 30] or some Pruning-based FL

methods with only width or depth differences [246, 247, 248]. However, in AMFL,

an explicit weight sharing is not available since a globally shared weight space does

not even exist, especially if agent models vary significantly in their topologies or

depths. Alternatively, we explore an implicit weight sharing mechanism for AMFL:

instead of sharing original weights across diverse weight spaces, we aim to perform

knowledge sharing among agents within globally-shared latent space(s).

Definition 8.3 (Bridge Function): We propose an implicit weight sharing

mechanism for AMFL by introducing a global “bridge” function h(·, ·;ϕ), where

ϕ ∈ RD is the trainable weights of the bridge function. The original locally-trained

weights of N agents from diverse weight spaces θi ∈ Rdi , d1 ̸= d2 ̸= ... ̸= dN are

re-parameterized as the output of the bridge function conditioned on two agent-

specific generative factors

θi := h(Ai, ci;ϕ), ∀i ∈ [N ] (8.6)

where the first generative factor Ai ∈ G is the local neural architecture from a

globally-shared latent topology space G and the second generative factor ci ∈ T
represents the local task from a globally-shared latent task space T . While G man-

ages only architectural heterogeneity, T manages only statistical heterogeneity.

Intuitively, the bridge function h can be treated as a generative meta-learner that

can digest two disentangled heterogeneity patterns to solve the raw statistical-

architectural entangled heterogeneity pattern.
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Definition 8.4 (AMFL based on Implicit Weight Sharing): Given the

defined bridge function, we can rewrite our global objective in Eq.(8.7) as

min
c1,c2,...,cN ,ϕ

[
1

N

N∑
i=1

Li(h(Ai, ci;ϕ))

]
+R(c1, c2, ..., cN ;ϕ). (8.7)

where c1, c2, ..., cN are trainable agent embeddings and ϕ is the trainable weights

of the generative bridge function.

8.4.2 Multimodal Neural Architectures as Graphs

8.4.2.1 Local Neural Architectures in AMFL

Following standard configurations [20], we let the local neural architecture Ai of ev-

ery agent i ∈ [N ] in AMFL follows a many-to-one multimodal fusion pipeline that

basically consists of three parts: (1) Unimodal Encoders: At the first step, we

employ unimodal encoders to extract modality-specific features. For each modality

type in AMFL, different agents may utilize various architecture families for the uni-

modal encoder of that modality. For instance, if the image modality appears in mul-

tiple agents, they may employ ResNets, CNNs, MLPs, RNNs, or Small Transform-

ers as their image encoders. (2) Multi-modality Interaction Module: Then,

we model the complex intra- and inter-modality interactions to effectively fuse the

complementary information from multiple modalities. Such interaction modes can

be diverse across agent tasks. Therefore, in AMFL, we allow that a variety of mul-

timodal fusion strategies implemented in different local models. For example, some

agents utilize concatenation operation to fuse their input modalities, while others

might employ element-wise alignment operation. Additionally, some agents may

utilize higher-order modeling techniques such as tensor fusion [20], low-rank fusion

[111], or cross-attention fusion mechanisms. (3) Personal Final Layer: Finally,

a fully-connected classifier is employed to project the fused features to predictions.

Given that each agent has its own label space (i.e., personal concepts), the final

layers are unique for each agent.
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8.4.2.2 Graph Representation of Multimodal Neural Architecture

The neural architectures of local models, each with its own computational flow fAi
,

can be represented as graph structures. Formally, we represent the multimodal

neural architecture Ai of each agent i as a directed acyclic graph structure:

Ai := (Vi, Ei,Z(0)
i ). (8.8)

Each node v ∈ Vi stands for a computational operator fv in the neural architec-

ture. fv can be either non-parametric (e.g. a concatenation operator) or para-

metric (e.g. a linear layer with weights of size 16×64). Edges Ei represents the

computational flow of the neural architecture, where each edge ev′→v ∈ Ei indicates

that the output of the operator fv′ is the input of the operator fv. Every node

v is equipped with K types of configuration or prior information for the operator

fv, including layer types, layer levels, layer shapes, modality types or fusion stage,

etc. The node feature matrix Z
(0)
i ∈ R|Vi|×K holds such K configuration/prior

information types for all operators in the graph.

Figure 8.4.1 (left) shows three example architecture graphs. Agent-1 focuses

on image-text classification, using a CNN for image encoding and a Transformer

for text encoding, with feature summation for fusion. Agent-2 tackles audio-visual

classification, utilizing an MLP for audio encoding and outer-product interactions

followed by an MLP for fusion. Agent-3 also addresses audio-visual classification

but employs the cross-attention to fuse information from image and audio encoders.

The white nodes denote non-parametric computational operators or the input or

output nodes, and the colored nodes denote parametric computational operators.

8.4.2.3 Graph Construction

Collection of Edges and Nodes: First, we adopt DARTS (Differentiable Ar-

chitecture Search) [249, 250] and [251] to gather nodes Vi and edges Ei by tracing

the backward gradients of variables. We utilize the auto-differentiation tracer of

compilers to compute a chain of backward gradients, facilitating the construction of

the graph as follows. Initially, a model object is instantiated, and a dummy multi-

modal input sample is defined in advance. We feed the dummy input to the model,
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Figure 8.4.1: The proposed FedMBridge framework. The three example agents
shown here use different multimodal fusion strategies. The server holds the
Topology-aware HyperNetwork (TAHN) as a trainable bridge function for implicit
weight sharing, which simultaneously overcomes statistical heterogeneity and ar-
chitecture heterogeneity.
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which undergoes the forward function execution of the model. Subsequently, we

begin from the output variable’s gradient function, iteratively traversing the chain

of gradient functions in reverse order along the computational graph. During this

traversal, Breath First Search (BFS) is employed to collect nodes and edges. In par-

ticular, some gradient functions associated with parametric modules (such as the

weights or biases of a Linear layer, the weights of a Conv layer, etc.) are gathered

as parametric nodes , while other gradient functions, without associated modules

and named as ConcatBackward, AddBackward, ReluBackward, BmmBackward, or

ViewBackward, etc., are collected as non-parametric nodes. Since the traver-

sal order is inverse, the directions of edges are reversed after gathering. After

the automatic traversal, |Ii| input nodes are additionally attached to the those

operators with zero in-degrees, respectively. Each input node corresponds to a

modality type in Ii, determined by matching parameter names of the operators.

Finally, there should be |Ii| zero-indegree nodes and one zero-outdegree node.

Construction of Node Features: Second, we construct node features Z
(0)
i =

{z(0)i,v }v∈Vi
such that they provide sufficient context for learning the functionality

role of each layer. For each node v ∈ Vi. i.e. the computational operator fv within

the neural architecture Ai, its node feature z
(0)
i,v = [z

(0)
i,v,1, z

(0)
i,v,2, ...,z

(0)
i,v,k, ...,z

(0)
i,v,K ]

consist of K configuration/information types. In particular, we utilize K = 7 in-

formation types and each of them is categorical. (1) Branch Types (k = 1).

Based on where the operator fv is located within the computational flow and its

nearest node’s parameter name, we assign each node v to one of the unimodal

branches or to the fusion branch. Specifically, “0” indicates that the operator is

located at the multimodal fusion module, “1” indicates that the operator is in the

modality-1’s unimodal feature extractor, ..., and “M” indicates that the operator

belongs to the modality-M ’s unimodal feature extractor. (2) Operator Types

(k = 2). Each node v has its own function that transforms the input message

it receives from previous nodes, which can influence the roles of layers around it.

Therefore, it is assigned information about the operator type or layer type associ-

ated with fv. Since the nodes have been categorized into three types: parametric,

non-parametric, and input nodes, we define operator types into three families ac-
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cordingly. The input nodes, regardless of their modality, are assigned the index

”0”. Parametric operator types include “Linear/Conv weights” (indexed as “1”),

“bias” (indexed as “2”), “layer normalization” (indexed as “3”), “batch normal-

ization” (indexed as “4”), and so on. There are several non-parametric operator

types, including “sum”, “concatenation”, “element-wise dot product”, “inner prod-

uct”, “multiplication”, “Cartesian product’. The ReLU operators usually appears

together with parametric layer and thus are removed from the graph. (3) Layer

Levels (k = 3). The early layers typically learn fine-grained features, while deeper

layers tend to learn higher-level features or concepts. This difference in feature ex-

traction also influences the functionality of layers. Therefore, we enable each node

to be aware of which level it should be within the computation hierarchy. To achieve

this, we compute the relative layer level of each operator within its branch and use

this information as the categorical index. We set a maximum of 6 levels for this

dimension. (4) Parameter Shapes (k = 4, 5, 6, 7). Different parameter sizes for

the same layer necessitate varying densities of message during weight generation.

This is akin to accommodating different sentence lengths in text generation. To

control the weight generation density, it is necessary to feed the parameter shape

information to the layer-role learning pipeline. Therefore, we let the last 4 dimen-

sions contain the parameter shape information associated with parametric layers.

Specifically, to simplify, we assume that all types of parametric layers have a 4D

weight tensor–even layers with 2D weights, such as Dense layers, are considered

as 4D by expanding the last two dimensions by one. The original size spaces of

parameter shapes are linear–each size in [d1, d2, w1, w2] is taken from a range of [1,

max size], which lead to sparsity during learning. Therefore, we design a non-linear

mapping table, which maps the original sizes into a scale space. We rank the exact

layer size into several scales. Taking the linear layer as an example, if the weight

tensor size falls within 32 to 512, 32 is mapped to the scale “0”, 64 is mapped to

“1”, 128 is mapped to “2”, 256 is mapped to “3”, and 512 is mapped to “4”. For

those non-parametric operators and input nodes, we use a special token “<NPM>”

which is treated as a held-out scale value of the scale space (e.g., indexed as “5” in

the previous example).
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8.4.3 Topology-aware HyperNetwork

As in Eq.(8.6), we propose to learn a bridge function that can jointly digest the two

heterogeneity patterns (i.e. statistics and architecture heterogeneity). A challenge

underlying this goal is that how to balance and combine the two separate hetero-

geneity patterns, such as which pattern is more crucial and whether there is any

inter-pattern interactions.

We propose a Topology-Aware HyperNetwork (TAHN) to build such a bridge

function. The key idea of TAHN is to encourage h(·, ·;ϕ) to capture the implicit

roles of each layer within the neural architecture, which are then combined with

layer-invariant agent-specific task information. This is inspired by an intuition that

for a pair of layers from two different agents, if they act as similar roles within their

models, would tend to have similar operations and weights.

Specifically, we formulate TAHN as a two-stage process

h(Ai, ci;ϕ) = Comb (ci, Role(Ai;ϕ1);ϕ2) (8.9)

where the first stage Role(·;ϕ1) parameterized by ϕ1 learns the implicit roles of

layers such that layers across agents share a unified layer-role embedding space, and

the second stage Comb(·, ·;ϕ2) parameterized by ϕ2 aims to combine the two hetero-

geneity patterns and directly generates the weights. We represent ϕ = {ϕ1,ϕ2}.

8.4.3.1 Stage One: Layer-role Encoder

In order to encode the implicit roles of layers, we consider two types of information.

First, each layer’s configuration information are important to determine the layer

role. For example, if two layers from different architecture both are the Conv layer

and both are in the early level in the entire network, they tend to have similar

filter and role during the computational flow. Such information is specified in Z
(0)
i .

Second, the position and contexts of each layer within the graphical computational

flow is also important. For example, if two layers from different architectures are

located in the same position in the same computational flow, they tend to have

the same role. Such information is specified as the graphical structure Vi, Ei of the

computational flow.
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Incorporating the two types of information can be achieved by applying a Graph

Neural Network (GNN) on the neural architecture graph Ai = (Vi, Ei,Z(0)
i ) [252].

We formulate the layer-role encoder as a L-layer GNN

Z
(L)
i = Role(Ai;ϕ1)

:= gL ◦ gL−1 ◦ ... ◦ g1(Z(0)
i ;Vi, Ei),

(8.10)

where Z
(l)
i = gl(Z

(l−1)
i ;Vi, Ei,ψl) is the l-th GNN layer with trainable weights ψl.

Every computational operator z
(l)
i,v ∈ Z

(l)
i is encoded through message passing as

z
(l)
i,v = σ(W

(l)
selfz

(l−1)
i,v +W

(l)
in

∑
(v′,v)∈Ei

z
(l−1)
i,v′

+W
(l)
out

∑
(v,v′)∈Ei

z
(l−1)
i,v′ + b(l)),

(8.11)

whereψl = {W (l)
self,W

(l)
in ,W

(l)
out, b

(l)} are trainable parameters. ϕ1 = {ψ1,ψ2, ...,ψL}.
The output of the final GNN layer Z

(L)
i = {z(L)i,v ∈ RS}v∈Vi

is a collection of layer-

role embeddings for all parametric computational operators in Ai, where S is

the size of the layer-role embedding space.

8.4.3.2 Stage Two: Role-aware Weight Generator

The layer-role information obtained from the first stage Z
(L)
i is combined with

agent-specific task information ci and then is used to generate the agent weights

in a node-wise manner: θi = Comb
(
ci,Z

(L)
i ;ϕ2

)
. We represent the agent model

weights as a collection of weights for all computational operators θi = {θi,v|v ∈
Vi}. Specifically, θi is obtained using a HyperNetwork-based node decoder gnodec

applied to each node in the neural architecture graph. Let θi,v denote the weights

associated with the parametric computational operator v of agent i. Every θi,v is

computed

θi,v := gnodec

(
ci ⊕ z(L)i,v ;ϕ2

)
, ∀v ∈ Vi (8.12)

where ⊕ denotes an operation (e.g. concatenation or summation) combining two

embedding vectors: layer-specific role embedding z
(L)
i,v and a trainable agent-

specific layer-invariant task embedding ci ∈ RF , where F is the size of task
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embedding space. gnodec is an MLP-based neural network in all experiments.

8.4.4 Workflow

We let agents hold only their local personal models but the server holds the TAHN

model that acts as a bridge for knowledge sharing. During training, agents perform

their local model updates, and meanwhile, they communicate frequently with the

server to help to optimize the TAHN.

The training workflow of FedMBridge is as follows. Each communication round

r contains the following steps: (1) Download. The server predicts the weights

{θi}i∈Nt = {h(Ai, ci;ϕ)}i∈Nt or a subset of agents Nt ⊂ [N ], using the current

TAHN parameters and the current task embedding ci and conditioned on agent

architecture graphs Ai. Note that the graphs Ai can be auto-recognized and con-

structed on the server based on the uploaded agent models before the first round

starts, and therefore, they do not raise significant privacy issue. Each partici-

pant agent’s graph representation Ai should be up-to-date–whenever it is changed

during the collaboration, the agent re-conducts the graph construction process to

refresh the Ai representation. (2) Local Updates: Each selected agent i ∈ Nt
begins from the downloaded θi, performs several local optimization steps based on

its local data Di, and finally obtain new weights θ̃i. (3) Upload. Each agent

send its update direction ∆θi = θ̃i − θi to the server. (4) Global Update and

Knowledge Sharing. The server computes the updates for TAHN inspired by

the chain rule:

∆ci = ∇ciLi(θi) = ∆θi · ∇ciθi

∆ϕ2 =
1

|Nt|
∑
i∈Nt

(∆θi · ∇ϕ2θi)

∆ϕ1 =
1

|Nt|
∑
i∈Nt

(
∆θi · ∇Z

(L)
i
θi · ∇ϕ1Z

(L)
i

)
,

(8.13)

where the multi-step local update direction ∆θi has replaced the original single-

step local gradients∇θiLi(θi) that are not efficient in FL. We perform an average of

TAHN updates over agents Nt for implicit knowledge sharing. Figure 8.4.1 shows

an illustration of the workflow.
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8.5 Experiments

8.5.1 Simulations

We evaluated our approach in four AMFL simulation scenarios. SceneAMF is

constructed from the bimodal NYU-v2 dataset [253] that recognizes scenes from

pairs of aligned RGB and depth images for these scenes. We create 80 agents

covering 2 modality types, 3 types of input signals (RGB-only, depth-only, and

RGB-depth bimodal inputs), and 40 types of neural architectures for local models.

Each bimodal agent adopts one of the two traditional multimodal fusion strate-

gies: concatenation and element-wise product. Each agent has its personal label

space of size 50 sampled from a pool of 464 scenes. ObjectAMF is constructed

from the bimodal ModelNet40 dataset [146] whose task is 3D object recognition

from two views of 3D models. We create 112 agents in this simulation covering

56 types of neural architectures. For each bimodal agent, we employ one of three

multimodal fusion strategies: concatenation, average alignment, and tensor fusion

[20]. EmotionAMF is created from the CMU-MOSEI dataset [242] that focuses

on emotion recognition task from real-world online videos consisting of 3 modalities

(video, language script, and audio). Each video is annotated for the presence of

9 discrete emotions (angry, excited, fear, sad, surprised, frustrated, happy, disap-

pointed, and neutral). The local tasks can be unimodal, bimodal, or trimodal. We

employ three multimodal fusion strategies across agents: average alignment, tensor

fusion [20], and MultiEMO [254]. MnistAMF is made from AVMnist [242] and

MultiMnist [255] datasets, covering three modalities (image of style one, image of

style two, and the audio for digit). MnistAMF uses 4 multimodal fusion strategies:

average alignment, tensor fusion, MultiEMO, and cross-attention fusion [256].

The process of how we simulated the architectural heterogeneity are as follows.

We will use how we created ObjectAMF as an example. We use the ModelNet40

dataset [146] as the source to create ObjectAMF. Derived from ModelNet40, Ob-

jectAMF consists of N = 112 agents with M = 2 modality types and 56 different

local neural architectures. (1) Feature Extractors for the Video Modality : We use

MLP models extracting features for view1 or view2 images. For each view point,
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Table 8.5.1: Summary of the 4 simulations of AMFL. FS: number of different
multimodal fusion strategies. W: number of different widths for each unimodal
encoder. D: number of different depths for each unimodal encoder. T: number of
topology types for visual modality’s encoder. Acronyms for some modality types:
V (Video), L (Language), A (Audio), I1 (Style-one image), I2 (Style-two image).

Simulation #Agents Input modalities per agent #Target classes per agent #Architectures (W, D, T, FS)

SceneAMF 80 {RGB}, {Depth}, or {RGB, Depth} random 50 in 464 scenes 40 (1, 2, 2, 2)

ObjectAMF 112 {3D View1}, {3D View2}, or {3D View1, 3D View2} random 5 in 40 objects 56 (2, 2, 1, 3)

EmotionAMF 90 {V}, {L}, {A}, {V, L}, {V, A}, {L, A}, or {V, L, A} 9 emotions 66 (1, 2, 1, 3)

MnistAMF 86 {I1}, {I2}, {A}, {I1,I2}, {I1,A}, {I2,A}, or {I1,I2,A} random 4 digits in 0∼9 86 (2, 1, 1, 4)

there are 4 different MLP configurations across agents, including two different net-

work widths and two different network depths : 2-layer MLPs with a width of (64

,32) or (128, 64), and 3-layer MLPs with a width of (128, 64, 32) or (256, 128, 64).

(2) Multimodal Fusion Modules. For the 48 unimodal agents, there feature extrac-

tors are followed by the same 2-layer MLP with a width of (64, 32), where there

is no need for multimodal fusion. Then, for each of the 64 bimodal agents, we use

one of the three multimodal fusion strategies: Concatenation, Tensor Fusion [20],

and Average Alignment. As illustrated in Table 8.5.2 (row 2), those using align-

ment leverage a 2-layer MLP with (64, 32) to process the aligned features; those

using concatenation fusion leverage a 3-layer MLP with (64, 64, 32) to process the

concatenated features; and, those using the tensor fusion leverage a 3-layer MLP

with a wider configuration of (128, 64, 32). (3) Final Personal Layer. The final

layer on each agent is a dense layer with the output size of 5.

8.5.2 Baseline Methods

We compare FedMBridge with three families of baselines: (1) No Knowledge Shar-

ing, i.e., R(·)=0. Local separately trains local models that have different neural ar-

chitectures, without any knowledge sharing among agents. (2) Feature-sharing FL

approaches, such as FedDistill [33] and FedGKD [92], employs a public dataset

at server that facilitate mutual knowledge distillation across heterogeneous archi-

tectures. Since the public dataset should not break much privacy, we let only 5%

agents submitting only 5% of their samples to the server before the iteration starts.

We do not use data-free distillation methods as their require the additional gen-
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Table 8.5.2: Illustrations of Statistical and Architectural Heterogeneity in the Four
Simulations of Architecture-agnostic Multimodal Federated Learning (AMFL).

Simulations Modalities
Agent Heterogeneity Illustration

Statistical
Architectural Heterogeneity

Heterogeneity

SceneAMF

ObjectAMF

MnistAMF

EmotionAMF
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Figure 8.5.1: Baselines’ supernet architecture on the server.

erators for multimodal data on the server. (3) Parameter-sharing FL approaches,

such as HeteroFL [257] and extensions of the personalized FL or MFL methods

(APFL [258], HyperPFL [30]) combined with Pruning techniques [259].

Reproducibility: Local allow agents to separately train their own models. There

is no communication and knowledge transfer between agents. Hence a server is not

needed. As agents may converge at varying speeds, to ensure a fair comparison,

we adopt the practice of allowing each agent to showcase its optimal performance

post-convergence. Subsequently, we calculate the average accuracy over the best

performances of all agents. In FedDistill [33], the server utilizes an unlabeled

public dataset to enable feature sharing among uploaded agent models through

Knowledge Distillation (KD). When applying FedDistill to the AMFL scenarios,

we make the following adjustments. First, the uploaded model of each agent is

considered as a student. Second, before the start of federated training, a public

dataset is collected from the agents such that every pattern of modality combi-

nations has public samples available for agent-wise KD. Specifically, we randomly

sample ρ% agents from each group of agents having the same input structure (the

same combination of modality types). Considering the potential privacy leakage

of such data collection way, we mitigate this risk by deliberately keeping the hy-

perparameter ρ at a small value, specifically ρ = 5. In FedGKD, the server
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employs a memory buffer to store multiple historical global models from recent

rounds, which are used as teachers to guide the local model training via Knowl-

edge Distillation (KD). Students are the local models trained on the data owners.

Different from FedDistill, a public dataset is not needed in FedGKD since KD is

performed locally using the local dataset. When we apply FedGKD to the AMFL

scenarios, considering the limited storage capacity at local agents, the number of

downloaded teachers is determined according to local memory budgets. In our

implementations, each agent sends requests to the server to obtain s′ ∈ [4, 8] teach-

ers, and then, the server randomly sample s′ teachers from its the buffer to give

it back. HeteroFL [257] utilizes a global supernet on the server such that every

local model is a sub-network of this supernet. Each local model is associated with

a supermask indicating which parameters in the supernet are activated in the lo-

cal model. Although HeteroFL is designed for single modality and assumes the

same model family and the same network depths, we can adapt it to our AMFL

scenarios as follows. We need to manually construct a supernet to cover all local

networks. To obtain the supernet architecture, we merge all local neural networks

following three rules: (1) If there are different network widths using the same model

class (i.e. network topology) and the same depth, we can merge them into a single

network having the same model family and depth, but using the maximum width

per layer for the supernet. (2) If there are not only different widths but also dif-

ferent network depths using the same model class, we can also merge them into a

single network, with the maximum depths for the supernet and add residual con-

nections beginning from the layers corresponding to each local model’s end layer to

the final layer. The merge of widths is similar to the first rule. (3) If two agents use

different network topologies (i.e. model families) at the same module–for example,

agent-A uses a CNN-based network for the video feature extractor and agent-B uses

a ViT-based network for the video extractor, we cannot merge this part of their

networks. Instead, we construct a two-channel network, where each channel refers

to a model family, and the outputs of the two channels are added together. An

overview of the implemented supernet is shown in Figure 8.5.1. Second, HeteroFL

dynamically detects the complexity levels of agents during training, which are used

to determine the how many parameters are needed at local agents and then the su-
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permasks. Yet in AMFL the local models are given. Also, since HeteroFL does not

sort the trained weights, the supermasks are fixed during training. The supermasks

can be obtained according to the process of network merge. APFL + Pruning

[258, 259] makes the following two adjustments. First, we extend APFL to the

architecture-heterogeneous setting by straightforwardly combining AFPL with the

supernet idea of HeteroFL. We let both global and local models of APFL use the

supernet architecture instead. The supernet architecture is constructed using the

same way as in HeteroFL. Since local datasets may not contain all modality types

to feed to the supernet, those missing input modalities are imputed by zeros. Sec-

ond, model aggregation on the server is guided by the supermasks of each agent.

In contrast to HeteroFL, supermasks are dynamically updated at each round using

structured magnitude Pruning, with the target compression ratio determined by

the specific local network size. HyperPFL + Pruning solves the similar setup

as APFL + Pruning, except using the HyperNetwork on the server to generate the

local weights.

8.5.3 Setups

Model Architecture Setup of Server’s TAHN. FedMBridge leverages a

global GNN network ϕ1 to capture the roles of each parametric layer during the

inference process along with each local neural architecture. Before applying GNN,

we utilize seven embedding layers to embed each dimension of the categorical node

features. For each node, the seven embeddings are summed together before being

feed to GNN. Since the graph is directed, each GNN layer consists of a forward

aggregation layer and then a backward aggregation layer. In each forward aggre-

gation layer, every node/operator incorporates the computational flow structure

from the operators it receives messages from; in each backward aggregation layer,

every node/operator assimilates the computational flow structure from the opera-

tors that will receive messages from it. Both of them utilize a GRU cell to update

the node features when aggregating neighborhood features. Then, as for the node

decoders ϕ2 for weight generation, we design a HyperNetwork using a mixture of

experts. Different layer types (e.g., CNN, Dense, Embedding) may require distinct

reconstruction methods to convert the role embedding space into the weight space.
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Therefore, we automatically route different layer types to different HyperNetwork

experts. For example, although a GNN may recognize that a Conv layer and a

Dense layer play similar roles, we may use different reconstruction methods to de-

code their explicit weight space. In this way, the weights having different shapes

are generated using different experts. This above technique can be considered as

a Graph Neural Network with heterogeneous types of nodes, where nodes may use

different node encoders. Second, we employ chunked HyperNetwork techniques to-

gether with upsampling and downsampling. When the target weight width does

not match the generated size, we can downsample the generated weights if the

target size is smaller than the generated size; otherwise, we can downsample the

generated weights or iteratively generate multiple weight chunks of the layer.

Evaluation Metrics. We use two evaluation metrics. ACC refers to the average

accuracy on the testing datasets over all agents. CT equals to the average time

needed by each round of server-agent communication. CT is computed as the

sum of the time costs of the three stages in each round: Stage1 is the average

time for local training with 15 epochs; Stage2 is the communication between agent

and server, including the time for agents uploading its local models and the time

for agent downloading information from the server, such as the generated model

weights, supernetwork weights, and supermask; and, Stage3 is the time for updating

TAHN. We will run each experiment by 5 trials using different random seeds.

8.5.4 Main Results

Performance Comparison. From Table 8.5.3, in general, the FL methods

that utilize either features or weights for knowledge sharing outperform the non-

knowledge-sharing Local, showing that the knowledge learned at local agents were

successfully exchanged among agents and improved local performance. However,

we observe that the feature-sharing baselines (rows 4-5) were sensitive to the modal-

ity gap and statistical heterogeneity in AMFL since feature distillation is not suffi-

ciently robust to distribution shift; in addition to robustness issue, these methods

relied on a public dataset with complete modalities, which raises privacy risk.
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Table 8.5.3: Average performance comparison between different methods on all
AMFL simulations. “s”: seconds. “*”: privacy leakage risk.

Method
SceneAMF ObjectAMF EmotionAMF MnistAMF

ACC ↑ CT ↓ ACC ↑ CT ↓ ACC ↑ CT ↓ ACC ↑ CT ↓

Local 76.56 ± 0.99 0 91.41 ± 0.90 0 67.83 ± 0.93 0 91.83 ± 1.32 0
FedDistill* 78.20 ± 0.84 59.2s 91.49 ± 0.33 32.4s 71.47 ± 0.56 52.9s 92.33 ± 1.21 42.4s
FedGKD* 81.32 ± 0.83 65.8s 93.82 ± 0.98 35.7s 73.97 ± 0.86 56.4s 93.91 ± 0.63 44.9s
HeteroFL 77.90 ± 0.85 86.4s 91.98 ± 0.83 57.3s 72.65 ± 1.33 65.7s 92.82 ± 0.89 68.2s
APFL w/ Prune 77.36 ± 0.83 98.2s 92.65 ± 0.92 59.4s 71.61 ± 0.32 73.5s 91.95 ± 0.80 89.3s
HyperPFL w/ Prune 78.92 ± 0.91 128.4s 92.39 ± 0.33 72.7s 72.85 ± 0.91 98.6s 92.67 ± 0.43 87.2s

FedMBridge 83.92 ± 0.95 51.8s 94.64 ± 0.94 35.3s 75.96 ± 0.83 47.1s 95.78 ± 0.61 38.2s

Also, we observe that the Parameter-sharing baselines (rows 6-9) significantly suf-

fered from the architecture heterogeneity in AMFL: the more heterogeneous the

local neural architectures, the less shareable weights between agents, and therefore,

trained weights or gradients might be not sufficiently transferred among local mod-

els. In contrast, FedMBridge outperformed both feature- and Parameter-sharing

baselines. This is because FedMBridge does not rely on public data; does not rely

on knowledge transfer losses that is difficult to balance task shifts; and leverages

TAHN to implicitly maximize sufficient weight sharing instead of explicit aggrega-

tion of unaligned weight spaces.

Complexity Analysis. Local has the best time efficiency as it requires no

inter-agent knowledge sharing and thus no communication. Among all knowledge-

sharing FL methods that require extra communication time, we have the following

two observations. First, FedMBridge and feature-sharing baselines used the same

time for uploading local models, but FedMBridge required less time to perform

knowledge aggregation. This is because feature-sharing baselines need to compute

again the gradients for each local models for feature distillation, but FedMBridge

need only to compute the gradient for TAHN, which has less number of parame-

ters. Second, we observe that FedMBridge and Parameter-sharing baselines used

nearly the same time for knowledge aggregation, but FedMBridge requires less time

for model uploading. This is because while FedMBridge upload the original local

models, Parameter-sharing baselines upload a large-size supermask that indicates

which parameters are shareble among agents. Third, while it is true that directly
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Table 8.5.4: Ablation Study for FedMBridge using MnistAMF dataset.

FedMBridge Hyperparameters
ACC ↑ CT ↓

L ⊕ |Nt|/N w/wo FedGKD

4 concat 0.25 β = 0 95.78 38.2s
0 concat 0.25 β = 0 87.75 36.5s
4 sum 0.25 β = 0 95.51 37.2s
4 concat 0.40 β = 0 96.15 44.6s
4 concat 0.25 β = 0.01 95.92 62.6s
4 concat 0.25 β = 0.05 96.53 62.6s

block-wise averaging model parameters (Stage 3) is more efficient than updating

TAHN (Stage 3), the block-wise methods require defining extra large supermasks

and supernetworks to be usable in Architecture-personalized MFL settings. Con-

sequently, the time cost of Stage 2 in block-wise methods is longer than that of our

method’s Stage 2. Therefore, the total TC of block-wise methods is higher than

ours. While the time and memory costs per communication round of our method

are lower than those of the baselines, we have observed that a drawback of our

approach is its sensitivity to the number of agents selected at each round, affecting

the total number of rounds required for convergence. This highlights the need for

further improvements in the future.

Ablation Study. Table 8.5.4 reports the ablation study for our FedMBridge

framework. We investigated the impacts of four components or factors in FedM-

Bridge. (1) Impact of TAHN Stage One. The first stage of TAHN leverages

a GNN-based network to learn layerwise role embeddings. Table 8.5.4 (row 4) re-

moves the stage one by setting L = 0. The performance drop after this removal

demonstrates the importance of this module. (2) Impact of Role-Task Fusion

Operator (⊕) in TAHN Stage Two. The second stage of TAHN combines the

layer-role embeddings with the task embedding. Table 8.5.4 (row 5) replaces the

default concatenation with sum operation. The performance remains almost un-

changed. (3) Impact of Agent Selection (|Nt|/N). Table 8.5.4 (row 6) slightly

improves the performance by selecting more agents at each communication round.
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Yet the efficiency drops along with the performance increase. This main reason of

such communication time increase is that the number of input instances feed to

the TAHN network increases. (4) Combining with Feature-sharing FL. Table

8.5.4 (rows 7-8) show that FedMBridge can be combined with the feature-sharing

FL methods and can achieve better performance, where β denotes the importance

of the distillation losses during the feature sharing on the server.

8.6 Conclusion

In this chapter, we focus on the novel Architecture-personalized MFL (AMFL)

problem, which allows for free local multimodal neural architecture design with di-

versified multimodal fusion strategies. To attain an communication-efficient solu-

tion and improve beneficial parameter sharing in AMFL, we propose FedMBridge,

which leverages a topology-aware hypernetwork as a bridge function to balance

and digest the architecture heterogeneity and statistical heterogeneity. We conduct

comprehensive experiments on several AMFL simulations and the result demon-

strates the efficiency and effectiveness of FedMBridge over baselines.



Chapter9

Conclusion and Future Directions

9.1 Conclusion

This thesis have targeted at AI solutions that emulate the peer-to-peer learning dy-

namics observed in human societies–i.e., by collaborating and sharing experiences,

individuals achieve a comprehensive understanding of the multimodal world, sur-

passing what any single agent could achieve alone. To accomplish this goal, we have

systematically addressed several research topics focused on Multi-agent Collabora-

tive Multimodal Machine Learning (CoMML) systems, with a particular emphasis

on personalization for individual agents.

Specifically, we have investigated various personalization patterns found in the

real world, such as modality, concept, domain, task, and architecture preferences.

These patterns, individually or in combination, lead to specific heterogeneity among

collaborative agents. We have discussed various critical challenges that have been

underexplored or unexplored in prior work, proposing novel approaches to tackle

them. These approaches are presented across six chapters, collectively advancing

us toward our ultimate objective: Personalization-aware CoMML solutions. In

Part I, we addressed the modality gap and concept shift problems and proposed

graph-based, contrastive, and meta-learning approaches. In Part II, we addressed

two additional personalization patterns–domain preferences and task type prefer-

ences, and explored advanced explicit inter-agent knowledge transfer approaches

to enhance information sharing efficiency. In Part III, we investigated the novel

168
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computational architecture gap problem and explored implicit information sharing

approaches. Comprehensive experiments have been conducted in each chapter to

validate the effectiveness of the proposed approaches, wherein we also created new

datasets and simulations to provide a platform for future research in this direction.

9.2 Future Directions

Scalability of CoMML. With the increasing number of connected devices, scal-

ability becomes a critical aspect. The scalability of CoMML should be addressed

across various dimensions, including the growing number of agents participating in

collaboration, the expanding diversity of domains and environmental backgrounds

where agents operate (e.g., from multimedia to medical), and the heightened dis-

crepancy in concept definitions across agents. The importance of these scalabil-

ity aspects is that it helps in the system to work gracefully without any undue

delay and unproductive resource consumption and makes a good use of the avail-

able resources Additionally, to achieve a unified system, there is a desire to scale

CoMML to accommodate a broader variety of modality types and downstream

tasks. Presently, our evaluations have primarily focused combining classification

and cross-modal generation tasks, while other popular multimodal tasks like Visual

Question Answering and text-visual grounding can also be integrated into collabo-

ration. Furthermore, scaling CoMML to accommodate a wider variety of modality

types will yield more benefits and foster deeper cognition about the physical world.

For instance, integrating 3D scene modalities into the existing audio-video un-

derstanding CoMML framework can enhance our system’s capability for spatial

understanding in dynamic virtual reality applications.

Lifelong CoMML. Agents’ behaviors can evolve over time, resulting in dynamic

changes in their local data distributions, modality types, task types, and concept

spaces of interest. Hence the dynamics of collaboration among agents, including

which agents provide higher levels of assistance to each other, can also change over

time. A key objective of lifelong CoMML is to develop systems capable of contin-

uous learning, enhancing performance steadily over time and adapting to dynamic
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inter-agent collaboration environments without forgetting previous learning.

Explainable and Logic-aware CoMML. With the recent surge in explain-

able AI and the need to understand human-like logic rules and reasoning processes

in AI models, it’s worth exploring whether multi-AI-agent collaboration can en-

hance the symbolic reasoning ability of individual AI systems. Intuitively, humans

can learn from each other to acquire commonsense-aligned logic rules, facilitating

improved communication, even if our individual thinking processes differ slightly.

However, CoMML’s multi-agent interactive training framework usually makes it

challenging for explaining the decision-making rationale behind the resulting mod-

els. Moreover, different agents may capture highly distinct concepts and develop

their personal reasoning processes, akin to the diverse thinking processes observed

among individual humans. That is, agent models might learn different rule sets.

To address these challenges, in the future, we might leverage CoMML with sym-

bolic neural networks or concept learning to acquire personal yet globally aligned

logic rules and reasoning processes.

9.3 Broader Impact

Learning at Home. CoMML offers the convenience of learning at home, al-

lowing users to participate in knowledge transfer anytime and anywhere, without

risking the privacy of data collected at home. Therefore, CoMML can have signif-

icant practical applications in modern life, such as in-home health monitoring for

the aging population worldwide. With the assistance of CoMML, users at home,

equipped with diverse modalities and tasks, can explore collaboration opportunities

to expand their knowledge.

Artificial Internet of Things (AIoT). Internet of Things have widely pen-

etrated in different aspects of modern life and many intelligent IoT services and

applications are emerging. AIoT applications often deploy different types of smart

sensors or devices that generate data from different modalities (e.g., sensory, vi-

sual, and audio). For example, in one smart home, activities of a person can be
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recorded by body sensors in a smartwatch worn by the person, and also by a video

camera in the room at the same time. Meanwhile, for smart homes with differ-

ent device setups, some of them may have multimodal local data (i.e., multimodal

agents) while the others may have unimodal local data (i.e., unimodal agents).

With huge amounts of smart devices connected together in IoT, we are able to get

access to massive user data to yield insights, train task-specified machine learning

models and ultimately provide high-quality smart services and products. Despite

of rare existing work, CoMML will make substantial advances in all AIoT applica-

tions in our modern life, including Internet of Medical Things (IoMT), Internet of

Augmented Reality Things (IoART), intelligent transportation infrastructure, etc.

Applications on Multimodal Large Foundation Models. CoMML can be

used to help to develop Multimodal Large Foundation Models (MLFM). Here, we

provide three example use cases to show our thoughts on the connections between

CoMML and MLFM. (1) Case1 : CoMML can be used to pre-train MLFL. MLFL

need extensive and diverse data during pretraining. However, certain data types,

such as medical, life, and document data, might be sensitive and private, thereby

preventing MLFL from accessing them. By using CoMML, MLFL pretraining can

be conducted in a multi-party collaboration manner, thereby indirectly benefiting

from private data. Also, by being learned in CoMML systems, MLFL can reap the

advantages of scaling up the number of agents, even if each individual agent has a

limited number of samples. (2) Case2 : Given a pretrained MLFL, CoMML can

be used to maintain the generalization ability of MLFL in a lifelong manner. New

concepts emerge day by day, thus the abilities of MLFL should be continuously

developed in a lifelong manner. We believe that a pretrained MLFL would still

need to evolve over time to incorporate and generalize more up-to-date knowledge.

Such up-to-date knowledge is typically generated by humans, and therefore, can

be challenging to obtain due to privacy concerns. By employing CoMML on post-

training, MLFL can evolve over time. (3) Case3 : When a pretrained MLFL

is utilized to serve each user through fine-tuning with local user-specific data, a

challenge arises when the performance of local MLFL fine-tuning is constrained by

the privacy and limited sample size of local data. CoMML provides a way to fine-
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tune MLFL using more data across distributed agents without compromising data

privacy, referred to as Collaborative Fine-tuning for MLFL. Consider a scenario

where there is a pretrained MLFL model held by agent-A, who needs the fine-tuned

model, while agent-B and agent-C lack sufficient memory budgets and can only

afford a traditional multimodal model or a scaled-down version of the full MLFL.

There is architecture gap between agent-A, B, and C. During Federated Fine-tuning

of agent-A’s MLFL model, our proposed approach can facilitate knowledge transfer

among models of agent-A, B, and C. Thus the fine-tuning process on agent-A can

benefit from the data from agent-B and agent-C. These three cases suggest that,

if pretrained MLFL is available, it is still necessary to consider CoMML, since

CoMML can play an important role to let the MLFL benefit from being more

private and thus achieve better results rather than without CoMML.
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[15] Dana Lahat, Tülay Adali, and Christian Jutten. “Multimodal Data Fusion:
An Overview of Methods, Challenges, and Prospects”. In: Proceedings of
the IEEE 103.9 (2015), pp. 1449–1477. doi: 10.1109/JPROC.2015.2460697.
url: https://doi.org/10.1109/JPROC.2015.2460697.

[16] Yiyuan Zhang et al. “Meta-transformer: A unified framework for multimodal
learning”. In: arXiv preprint arXiv:2307.10802 (2023).

[17] Peng Xu, Xiatian Zhu, and David A. Clifton. “Multimodal Learning with
Transformers: A Survey”. In: ArXiv abs/2206.06488 (2022).

[18] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural
information processing systems. 2017, pp. 5998–6008.

[19] Yang Liu et al. “A Survey of Visual Transformers”. In: ArXiv abs/2111.06091
(2021).

[20] Amir Zadeh et al. “Tensor Fusion Network for Multimodal Sentiment Analy-
sis”. In: Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. 2017, pp. 1103–1114.

https://doi.org/10.1109/JPROC.2015.2460697
https://doi.org/10.1109/JPROC.2015.2460697


175

[21] Zhun Liu et al. “Efficient Low-rank Multimodal Fusion With Modality-
Specific Factors”. In: Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers). 2018,
pp. 2247–2256.

[22] Hao Chen and Feihong Shen. “Hierarchical Cross-modal Transformer for
RGB-D Salient Object Detection”. In: ArXiv abs/2302.08052 (2023).

[23] Brendan McMahan et al. “Communication-efficient learning of deep net-
works from decentralized data”. In: Artificial intelligence and statistics.
PMLR. 2017, pp. 1273–1282.

[24] Tian Li et al. “Federated optimization in heterogeneous networks”. In: Pro-
ceedings of Machine Learning and Systems 2 (2020), pp. 429–450.

[25] Alysa Ziying Tan et al. “Towards personalized federated learning”. In: arXiv
preprint arXiv:2103.00710 (2021).

[26] Canh T Dinh, Nguyen H Tran, and Tuan Dung Nguyen. “Personalized feder-
ated learning with moreau envelopes”. In: arXiv preprint arXiv:2006.08848
(2020).

[27] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. “Personalized feder-
ated learning: A meta-learning approach”. In: arXiv preprint arXiv:2002.07948
(2020).

[28] Virginia Smith et al. “Federated multi-task learning”. In: Proceedings of the
31st International Conference on Neural Information Processing Systems.
2017, pp. 4427–4437.

[29] Binbin Guo et al. “PFL-MoE: Personalized Federated Learning Based on
Mixture of Experts”. In: Web and Big Data: 5th International Joint Con-
ference, APWeb-WAIM 2021, Guangzhou, China, August 23–25, 2021, Pro-
ceedings, Part I. 2021, pp. 480–486.

[30] Aviv Shamsian et al. “Personalized federated learning using hypernetworks”.
In: International Conference on Machine Learning. PMLR. 2021, pp. 9489–
9502.

[31] Naichen Shi et al. “Fed-ensemble: Improving generalization through model
ensembling in federated learning”. In: arXiv preprint arXiv:2107.10663 (2021).



176

[32] Dinh C Nguyen et al. “Federated learning for internet of things: A com-
prehensive survey”. In: IEEE Communications Surveys & Tutorials 23.3
(2021), pp. 1622–1658.

[33] H Brendan McMahan et al. “Learning Differentially Private Recurrent Lan-
guage Models”. In: International Conference on Learning Representations.
2018.

[34] Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. “Local sgd: Unified
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