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Abstract 

Tight glycemic control with insulin therapy protocols in the intensive care unit (ICU) can 

reduce mortality and morbidity from stress-induced hyperglycemia, but this control 

comes with the risk of hypoglycemia. Computer simulation can be an essential tool in 

evaluating protocols for insulin delivery in this setting, and to this end, it is necessary to 

have mathematical models that explain BG variability within this patient population. 

Current models of stress-induced hyperglycemia do not adequately incorporate the 

known physiology of stress hyperglycemia and are limited in their ability to account for 

the resistance to the actions of insulin found in these patients.  In this thesis, we 

develop, validate, and illustrate applications for a new model of glucose variability.  The 

new model is built from an existing model of glucose-insulin interactions for normal, 

pre-diabetic, and type II diabetic patients, with new features that account for the effects 

of trauma and physiological stress commonly experienced in the ICU.  Hourly blood 

glucose, insulin, and feeding data from 154 burn-unit patients were input to our model.  

The in silico patient whose simulated BG most closely matched the BG of a burn-unit 

patient was determined with the method of least squares.  For this in silico patient, a 

time-varying coefficient (“SA”, stress action) was fitted to modify hepatic glucose 

production (HGP) and peripheral glucose uptake (PGU) to produce a simulated BG that 

matched a BG of a burn-unit patient.  HGP was limited to a literature-derived maximum 

of 4.25 mg/kg/min.  From the data of the 154 unique burn-unit patients, 212 SA vectors 

of at least 24 hours each  and 86  unique in silico patients were identified.  The simulator 

incorporating this model is validated by comparing cumulative distributions of simulated 



 
 

BGs with the cumulative distribution of real burn-unit BGs  under the same intensive 

insulin therapy protocol used in the original data collection. This simulator, coded into a 

MATLAB Simulink simulation model, allows for testing insulin protocols in silico, before 

use in patients.  As an illustrative application, the simulation model is used to optimize 

process control thresholds for an insulin protocol used in the burn unit. 
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1.  Introduction 

1.1 Stress Hyperglycemia 

It has long been recognized that seriously ill or injured animals and humans are prone to 

abnormally elevated blood glucose (BG) levels [1–3] often referred to as “stress-induced 

hyperglycemia”, or “stress hyperglycemia” [4].  Depending on the patient population 

studied, the incidence of stress-induced hyperglycemia in the intensive care unit (ICU) is 

reported as 5-30% [5], sometimes as high as 50% [3].  Normal glucose homeostasis (a 

fasting BG concentration of 70-100 mg/dl) [6], is achieved with a dynamic balance of the 

regulatory hormone insulin, which decreases BG concentration, and of 

counterregulatory hormones, which increase BG concentration.  Serious illnesses, such 

as myocardial infarction, stroke, sepsis, burns, and multiple trauma, promote an 

excessive and highly variable release of these counterregulatory hormones, causing 

hyperglycemia that can vary greatly over brief periods of time [3], [7].    

 

Until relatively recently clinicians followed a permissive approach to the treatment of 

stress hyperglycemia, using insulin (intravenously--the only rapidly effective 

pharmacologic treatment), only when BG levels exceeded a threshold of about 200 

mg/dl [3].  It was thought that stress hyperglycemia was an adaptive response to serious 

illness [7] , one in which the body ensured adequate energy nutrition to vital organs.  

However, multiple studies have lately linked stress-induced hyperglycemia to poor 

outcomes, such as an increase in infectious complications, poor wound healing, and 
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mortality [7].  In 2001, with this link in mind, Van den Berghe et al. [8] performed a 

landmark randomized clinical trial involving adults in a surgical ICU.  Using a continuous 

intravenous insulin infusion algorithm in order to control BG to a near-normal target 

range of 80-110 mg/dl, they obtained an overall in-hospital mortality reduction of 34%, 

as compared to those patients whose BG was controlled to a target range of 180-200 

mg/dl.  In addition, there were reductions in morbidity:  bloodstream infections, need 

for dialysis, need for transfusion, prolonged mechanical ventilation.  Following that 

remarkable study, other researchers, including Van den Berghe’s group itself, performed 

studies using the same or similar insulin infusion algorithms, attempting to achieve the 

results of the 2001 study.  Some of these studies demonstrated limited success [9], [10], 

but others demonstrated a disturbing net harm with a high rate of hypoglycemia (BG 

less than 70 mg/dl) [11–13].   

 

The beneficial results of some studies and the call to use an insulin infusion protocol 

“with demonstrated safety and efficacy” [14] continue to drive interest in developing 

better protocols.  The conflicting results of the various ICU insulin infusion studies have 

raised the possibility that important variables other than, or in addition to, the insulin 

treatment algorithm may impact outcomes, such as the ICU population studied (medical 

vs. surgical), target level of BG control (“tight” vs. “loose”), frequency of BG 

measurement, measurement error, and human error in the implementation of 

treatment algorithms.  Further studies of insulin treatment algorithms on critically ill 

patients will help determine the effects of such variables, but performing them can be 
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costly in terms of danger to the patient (hypoglycemia), time, and resources.  There is a 

need for a tool, a computerized simulator, that can assist in identifying those variables 

and protocols worthy of clinical study. 

 

A computerized simulator of stress hyperglycemia in critically ill patients should have 

certain characteristics:  it should be based on a model of the physiology of stress 

hyperglycemia; it should account for a critically ill patient’s rapidly varying 

responsiveness to insulin; it should enable the creation and use of various populations 

of virtual, in silico ICU patients; it should be validated on data from actual ICU patient 

treatment protocols.   

 

To our knowledge, there have been two models of ICU stress hyperglycemia 

incorporated into simulators using in silico patients in the evaluation of insulin infusion 

protocols[15],[16].  Both models require one real patient to create one corresponding in 

silico ICU patient (“experimental in silico cloning” [17]), limiting the number of virtual 

patients that can be tested.   Both models apply the concept of “insulin sensitivity”, 

through time-varying modification of the model’s site of insulin action in order to 

account for stress hyperglycemia.  We propose a method that differs in two respects:  it 

more closely models the physiology of stress hyperglycemia by incorporating the effect 

of the actors in stress hyperglycemia at their sites of action; and it permits the creation 

of many new in silico ICU patients from the data of one real ICU patient.  
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1.2 Hypothesis 

It is our hypothesis that a simulator of stress hyperglycemia can be created and 

validated that incorporates virtual ICU patients composed of real patient parameters 

and patient-independent time-varying hyperglycemic stress parameters, which will then 

enable the construction of many new virtual ICU patients to extend the study of insulin 

infusion therapy of stress hyperglycemia. 

 

1.3 Summary of Contributions 

Insulin is the only effective pharmacologic treatment for stress hyperglycemia, and the 

mathematical modeling focus so far has been on the sites of insulin’s action on glucose 

homeostasis (insulin sensitivity [17], [18]).  We make the case that, since stress 

hyperglycemia is mediated by various agents, including counterregulatory hormones, 

cytokines, and administered drugs, a model should incorporate the hyperglycemic 

actions of these stress agents at the sites of their respective actions in the model.  This 

applies the known physiology in critically ill patients and opens the model to growth as 

more is learned about these actors.  Using literature on counterregulatory hormones, 

epinephrine in particular, and an adaptation of a previously validated model of the 

glucose-insulin system, we show that the time-varying action of stress from critical 

illness on BG levels (“Stress Action”) can be quantified and abstracted from the 

treatment data of actual ICU patients to develop numerous, novel, and realistic in silico 

ICU patients for use in simulation.  We then validate a simulator which uses these new 
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in silico ICU patients and demonstrate its application to the study of an insulin infusion 

protocol. 

 

 

2. Background 

 

2.1 Physiology of Stress Hyperglycemia 

Glucose, a carbohydrate distributed throughout the body in circulating blood plasma, is 

the chief energy currency of the body.  Its concentration in the blood is the result of a 

dynamic balance between the rate of glucose entering the blood and the rate of glucose 

leaving the blood  [19].  If the arrival of glucose in the blood exceeds its disposal, 

hyperglycemia occurs.  Glucose’s arrival in the blood is the sum of its rate of appearance 

from food in the gastrointestinal tract, the rate hepatic glucose production (HGP), the 

rate of renal glucose production, and the rate of any glucose administered 

intravenously.  Net renal glucose production is thought to be negligible and is generally 

ignored [20].  Glucose “disposal” from the blood is the rate of glucose uptake (or 

utilization) by the body’s tissues, some of which depend on insulin for this uptake (eg. 

skeletal muscle, adipose tissue), and some that do not (eg. brain, liver, kidney, red blood 

cells).  In addition, muscle activity (exercise) permits glucose to enter skeletal muscle 

cells without the requirement for insulin [21].  For this discussion, because of the 

bedridden nature of critically ill patients, exercise will not be addressed.   
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Normally, after a meal, BG concentration rises and stimulates the secretion of insulin 

into the bloodstream from the beta cells in the pancreas.  Insulin is the most powerful of 

the hormones known to lower (regulate) blood glucose concentrations and acts by 

suppressing hepatic glucose production (HGP) and stimulating peripheral glucose uptake 

(PGU).  Additionally, as long as there is a basal level of insulin in the blood, the liver is 

also sensitive to hyperglycemia per se, responding more quickly to BG concentration and 

with greater effect than to insulin [22],[23].  In the fasting state, the situation is 

reversed, as the BG concentration decreases and insulin secretion is minimal, releasing 

hepatic glucose production (HGP) to be the main source of glucose in the blood.  The 

liver produces glucose initially, and quickly, by glycogenolysis, whereby glycogen, stored 

previously in the liver after a meal, is metabolized to glucose and then released into the 

bloodstream.  Later, if the fasting state persists and the glycogen is depleted, the liver 

can create, more slowly, new glucose (gluconeogenesis) from lactate that was released 

from muscles or from amino acids [24].    

 

In the abnormal situation of a critically ill patient, altered carbohydrate metabolism 

resulting in stress hyperglycemia is only one of the manifestations of major injury or 

illness (stress).  Other physiological responses to stress include an increased metabolic 

rate, altered protein metabolism, increased release of free fatty acids into the 

bloodstream, and sodium and water retention [25].  In general, the more severe the 

injury or illness is, the greater is the stress response [3],[26].   

 



7 
 

With respect to stress hyperglycemia, the chief mediators between stress and altered 

carbohydrate metabolism are the counterregulatory hormones and cytokines [3],[25].  

Additionally, certain medications, such as pressors for maintenance of blood pressure, 

can act as counterregulatory agents (eg epinephrine).  As a result, these agents are 

often referred to as “stress hormones” [27], or as is used here, “stress agents”.  These 

include glucagon from the alpha cells in the pancreas, cortisol from the adrenal cortex 

or from exogenous administration, catecholamines (chiefly epinephrine from the 

adrenal medulla), growth hormone from the pituitary gland, and cytokines from tissue 

injury.  The stress hormones are released in response to afferent neural signals or 

hormonal signals to the hypothalamus [25].  Pain, anxiety, or tissue injury provoke the 

hypothalamus to release factors that then stimulate the pituitary to ultimately release 

adrenocorticotropic hormone (ACTH) and growth hormone (GH), among others.  ACTH 

in turn stimulates the release of cortisol.  The hypothalamus also channels signals 

through the sympathetic nervous system to the adrenal medulla to release epinephrine.  

Epinephrine itself can then stimulate glucagon secretion [25].    

 

Stress agents cause an inappropriate hyperglycemia by counteracting, to varying 

degrees, the regulatory effect of insulin by increasing hepatic glucose production (HGP) 

through glycogenolysis and gluconeogenesis and by decreasing the utilization of glucose 

by inhibiting peripheral glucose uptake (PGU) of insulin-dependent tissues.  The stress 

hormones have different onsets and durations of action, with glucagon and epinephrine 

having the most rapid, potent, and brief hyperglycemic effects, peaking within 15 
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minutes and possessing half-lives of 2-3 minutes [28].  In contrast, the effect of large 

amounts of cortisol (such as that given in the ICU) on peripheral glucose uptake (PGU) is 

much slower, developing 4-6 hours after administration, but lasting as long as 16 hours 

[29].  In addition to their individual effects, these stress agents are synergistic in their 

hyperglycemic action [30].   

It is the above actions of stress agents that must be considered in designing a model and 

simulator of stress hyperglycemia. 

 
 

2.2 Insulin Infusion Therapy Debate -- A Role for Systems Engineering 

After Van den Berghe’s landmark study demonstrating the effectiveness of intensive 

insulin therapy (IIT) by targeting BG concentrations of 80-110 mg/dl, other studies 

showed encouragingly similar results [31],[32].  Intensive insulin therapy was 

subsequently widely  adopted outside of the clinical trial setting, but questions arose as 

newer studies failed to reproduce the initially positive reports [33].  Two studies, VISEP 

[12], and GLUCONTROL [34], had to be discontinued due to excessive rates of 

hypoglycemia.  Then Van den Berghe et al. were unable to demonstrate a reduction of 

in-hospital mortality in a trial of IIT on medical rather than surgical ICU patients that 

used the same treatment protocol as their earlier study [9].  Following that, the largest 

multicenter trial of IIT, the NICE-SUGAR trial [11], found excessive rates of 

hypoglycemia, leading to their recommendation of a higher BG target of 180 mg/dl.  As 

a result of the danger of hypoglycemia and the uncertain benefits of controlling BG to 

near-normal levels, a consensus statement [14] of endocrinologists and the American 
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Diabetes Association was released containing these recommendations:  that insulin 

infusion therapy be started at a threshold BG of no higher than 180 mg/dl; to aim at a 

target BG range of 140-180 mg/dl; and to use “insulin infusion protocols with 

demonstrated safety and efficacy, resulting in low rates of occurrence of hypoglycemia.”   

 

In reviewing the studies concerning IIT, many differences become apparent, leading one 

to question whether or not these differences could account for the disparate outcomes.  

For instance, Van den Berghe’s studies were done at a single center, with a high ratio of 

nurses to patients, using an insulin infusion protocol that entailed considerable clinical 

judgment from providers [35], and with the majority of BG measurements made from 

arterial blood on a point-of-care (POC) blood gas/glucose analyzer [33].  The NICE-

SUGAR trial was an international, multicenter effort, which used a detailed insulin 

infusion protocol posted on the internet, contained a wide variety of patients, and 

permitted each hospital to use whatever BG measurement method that was in its 

normal practice—point-of-care handheld glucose monitors, blood gas/glucose analyzers, 

or laboratory (Simon Finfer, personal communication, February 17, 2010).  Consider 

some of the variables brought up by these two conflicting studies: 

 

Blood glucose measurement -- With insulin doses being determined by BG 

measurements, anything that affects the accuracy of BG measurement could affect 

clinical outcome.  “Fingerstick” (capillary) point-of-care (POC) handheld glucometer BGs 

are less accurate than arterial POC handheld glucometer BGs; arterial POC handheld 
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glucometer BGs are less accurate than arterial POC blood gas/glucose analyzer BGs; and 

arterial POC blood gas/glucose analyzer BGs are less accurate than laboratory reference 

values [36].  In applying an insulin infusion protocol, Kanji et al. found that BG 

differences in different measurement methods “led to frequent clinical disagreements 

regarding insulin dose titration” [36].  The use of less accurate techniques has so far 

been justified by their practicality and the thought that benefits (e.g. rapid turnaround, 

less blood loss, infection risk) outweighed risks of methods to obtain more accurate BG 

measurements [33].  Besides the source of blood (capillary, venous, or arterial), the 

state of the patient’s circulatory perfusion (peripheral vasoconstriction, shock) and 

interfering substances (e.g. acetaminophen) can affect POC BG measurements [37].   

  

Patient population -- Rather than treat all hyperglycemic ICU patients with IIT, some 

subsets of patients may benefit and some may not.  Surgical patients, as in Van den 

Berghe’s first study [8] and in a meta-analysis by Griesdale et al. [38], may benefit from 

IIT.  Patients with stroke or those with severe head injury are subpopulations whose 

outcomes are worse when hyperglycemic [39],[40], suggesting that IIT may be 

beneficial. 

 

Protocol attributes --  To our knowledge all but one of the insulin infusion protocols [41] 

studied have deferred nutritional intake to the judgment of the treating clinicians, 

perhaps because of specialized needs for certain conditions (e.g. the hypermetabolic 

state of burn victims).   Since the appearance of glucose from the gastrointestinal tract is 
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one of the three sources of glucose in blood (i.e. GI, HGP, intravenous glucose), variation 

in feeding may impact control of hyperglycemia and hence clinical outcomes [42].   

Another protocol attribute that varies is insulin dosing [33], with many differences seen: 

choice of starting insulin dose; continuous insulin infusion with or without insulin 

boluses; insulin boluses alone; sliding scale or “static” dosing; “dynamic” dosing in which 

rate of BG change is considered; ranges of insulin, with choice of dose left to the 

discretion of the clinician; and the potential frequency of insulin changes. 

 

Protocol implementation -- Nursing takes the brunt of the workload in implementing an 

insulin infusion protocol, as it is they who perform the frequent BG measurements 

(often with variable intervals of 1-4 hours, sometimes as often as every 15 minutes 

when there is hypoglycemia) and calculate and administer the prescribed insulin dose.  

The workload involved with protocol implementation, plus any concomitant other 

burden (e.g. changing clinical condition, caring for another patient) may limit 

compliance with the protocol, such as deviation from the prescribed timing of BG 

measurement and insulin dose changes.  Potentially adding resistance to 

implementation, nurses also express some professional concern over the effectiveness 

and safety of the protocol itself [43]. 

 

From the overall level of workplace and personnel interaction, through protocol choice 

and implementation, through selection and employment of BG measurement 

techniques, to the measure and control of hyperglycemia, the Systems Engineering tools 
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of statistical and systems analysis, modeling and simulation, risk and decision analysis, 

optimization and control, and systems integration can be used.  This thesis focuses on 

developing a model and simulator at the level of an individual patient’s glucose-insulin 

system for the purpose of assisting study and improvement of insulin infusion therapy 

protocols. 

 

2.3  Existing Mathematical Models / Simulation Tools 

So far, the concept of insulin sensitivity, defined as “the dependence of fractional 

glucose disappearance on plasma insulin” [44], has been central to modeling ICU 

hyperglycemia.  Chase et al. built their ICU hyperglycemia model upon the minimal 

model of Bergman and Cobelli [44], using population parameters and fitting insulin 

sensitivity with an integral technique as an hourly piecewise-linear time-varying 

parameter to account for the BGs observed in a real ICU patient [45].  When running the 

simulation, the fitted insulin sensitivity values are held piecewise constant at each hour.  

Like the minimal model, Chase’s model “lumps” HGP and PGU together.  Each of the 

resultant in silico ICU patients is comprised of the combination of population 

parameters and the corresponding fitted vector of time-varying insulin sensitivity.   

 

The model of Hovorka et al. [17] is more complex, being composed of 5 submodels, and 

uses parameters drawn from a “univariate informed probability distribution”, fitted 

time-invariant parameters, and an hourly-varying piecewise-linear parameter (“insulin 

sensitivity modifier”) fitted to the data of real ICU patients.  The time-varying parameter 
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modifies separately the terms for HGP and PGU, using equal weights.  Additionally, a 

regularization approach is employed to achieve smoothness of fitting, assessed visually. 

The assembled parameters from fitting one real ICU patient constitute a corresponding 

in silico ICU patient.   

 

The models upon which these two simulators are built use the concept of time-varying 

insulin sensitivity at the sites of insulin action rather than posing the problem more 

physiologically in terms of hyperglycemic actions of stress agents at their sites of action.  

Also, both simulators depend on the creation of a virtual patient from one 

corresponding real patient, rather than enabling the abstraction of stress action from 

one real patient that can be applied to the creation of multiple virtual patients. 

 

 

3. Modeling Stress Hyperglycemia via Stress Hormone Actions 

3.1 Epinephrine as Representative Stress Hormone 

The hyperglycemic actions of stress hormones are synergistic, with the best studied 

hormones being epinephrine, glucagon, and cortisol [46].  Already noted is the delayed 

hyperglycemic action of cortisol alone [29], but it was also shown in [30] that, for the 

short term of 5 hours or less, although cortisol did not provoke hyperglycemia by itself, 

it potentiated the effects of epinephrine and glucagon.  Epinephrine in turn stimulates 

glucagon release [47], and glucagon stimulates epinephrine release and cortisol release 

(via ACTH) [48].  Epinephrine and glucagon have onsets of action and clearances that are 
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each on the order of 2-3 minutes, although glucagon’s role in early glucose mobilization 

due to injury has been described as “equivocal” [26].  Epinephrine, glucagon, and 

cortisol increase hepatic glucose production (HGP) [26].  Epinephrine [49] and cortisol 

[25] suppress peripheral glucose uptake (PGU); glucagon does not.   

 

Since it is likely that all three of the above stress hormones are present in significant 

levels in critically ill patients [50], since some of them stimulate the release of the 

others, since their individual actions overlap, and since each individual hormone’s level 

is unknown in clinical cases, it would be useful to have a “composite” stress hormone 

that embodies their combined synergistic hyperglycemic effects.   

 

Epinephrine’s relatively well quantified stress-related actions would serve well as stand-

ins for those of such a composite stress hormone.   Its metabolic actions appear to 

plateau at plasma levels of approximately 1000 pg/ml [51].  In injured patients the 

plasma levels of epinephrine are positively correlated to the severity of injury.  The 

greater the severity of injury, the higher the levels of epinephrine [26].  Stepped 

increments of infusions of epinephrine, yielding blood levels seen in the critically ill, 

were given to normal volunteers by Clutter et al. [49] who demonstrated increasing 

hyperglycemia with increasing plasma levels of epinephrine.  Also demonstrated in that 

study, increasing epinephrine levels were simultaneously correlated with increases in 

endogenous glucose production and decreases in glucose clearance.  With respect to 

the relative effects of epinephrine on production versus disposal, Gustavson et al. [28] 
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showed an increase of HGP in non-ICU patients from complete suppression without 

epinephrine to an output of 3.3 mg/kg/min with epinephrine.  This compares well with 

the measured HGP of 4.25 mg/kg/min in critically ill burn patients in a study by Wolfe 

[2] and 3.5 mg/kg/min in a study of septic patients by Chambrier [52].  Guy et al. [53] 

showed an approximately 65% suppression from baseline of peripheral glucose uptake 

by epinephrine.  In studies of epinephrine’s effects, HGU suppression was found to be 

only transiently released despite the use of sustained epinephrine infusions[28][54][55], 

but countering this observation, some of these studies also show the liver’s ability to 

increase HGP with additional infusions of epinephrine [56], which is more consistent 

with the expected variable physiology of stress hyperglycemia.   

 

 Assembled together, these actions of epinephrine make it a useful representative, or 

stand-in, for all of the stress agents to incorporate into a model of stress hyperglycemia.  

Ultimately, as more is learned about the individual mediators of hyperglycemic stress, 

the contribution of each agent can be synergistically combined to model reality more 

closely. 

 

3.2 Stress Modified Meal Model 

The model used for this research is an adaptation of the Glucose-Insulin-Meal (GIM) 

model of Dalla Man et al. [57], which was designed around glucose and insulin flux data 

obtained from 204 normal and 14 Type 2 diabetic subjects with the use of triple-tracer 

techniques [58].  From that database, along with additional data from 62 normals, 35 



16 
 

prediabetics, and 23 type 2 diabetics,  300 in silico meal-model patients were derived.  

One hundred of these in silico patients were “normals”, who after removal of 

endogenous insulin parameters, had spanned the “observed variability of key metabolic 

parameters in the general population of people with T1DM in a previous application” 

[59].  One hundred were “prediabetic” in silico patients and another 100 were “type 2 

diabetic” in silico patients whose range of simulated BGs approximated the variability of 

observed BGs from the real population.  As adapted, the model has 28 free parameters 

for each in silico patient, of which those dealing with hepatic glucose production and 

peripheral glucose uptake are the most important for our purposes.  Any one of these 

300 in silico patient parameter sets can potentially serve to approximate a non-critically 

ill, “unstressed” patient, which can then be modified in a time-varying manner by the 

actions of stressors in order to match the BG course of a real, treated ICU patient. 

 

Stress Modified GIM Model – The Glucose Subsystem 

The glucose subsystem is represented by two compartments: plasma, which is rapidly 

equilibrating, and peripheral tissues, such as muscle and fat, which are slowly 

equilibrating.  

Plasma: 

  ̇     ( )       ( )       ( )       ( )    ( )      
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Tissues: 

  ̇      ( )       ( )       ( ) 

Where:  

    (mg/kg) is the glucose mass in the plasma 

    (mg/kg) is the glucose mass in the slowly equilibrating tissues 

   (mg/dl) is the plasma glucose concentration 

   (mg/kg/min) is the rate of glucose appearance in the plasma 

 EGP (mg/kg/min) is the rate of endogenous glucose production 

     (mg/kg/min) is intravenous glucose feeding 

     (mg/kg/min) is insulin-dependent glucose utilization in tissues 

     (mg/kg/min) is insulin-independent glucose utilization 

   (mg/kg/min) is renal excretion of glucose 

          (min-1) are rate parameters 

 

 

Glucose Subsystem--Appearance of Glucose (  ) from feeding 

In the Burn ICU of our study, critically ill patients were fed by continuous enteral 

infusion of a partially elemental formula that provided calories as 20% protein, 65% 

carbohydrate, and 15% fat.  Because the enteral feeding was through a tube placed into 

the upper part of the intestine (jejunum), bypassing the stomach, the equations of the 

original GIM model for the transit of glucose through the stomach and gut were 
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removed for the adapted model.  The rate of appearance (  ) of glucose into the 

glucose subsystem from feeding is described by: 

  ( )  
(      )

  
 

Where f is the fraction (0.9) of the glucose load in the intestine that appears as glucose 

in the plasma, irrespective of the composition of the meal [60], [61].  The meal is the 

continuous enteral feeding in carbohydrate mg/min.  BW is the patient’s body weight in 

kilograms. 

 

Glucose Subsystem--Endogenous Glucose Production (EGP) 

In the original GIM model, because renal glucose production is ignored, endogenous 

glucose production (EGP) is equated with hepatic glucose production (HGP): 

   ( )            ( )        ( )         ( ) 

Where: 

    (mg/kg) is the glucose mass in the plasma 

    (pmol/L) is a delayed insulin signal 

     (pmol/kg) is the amount of insulin in the portal vein 

     (mg/kg/min) is EGP extrapolated at zero insulin and glucose 

     (min-1) is the liver glucose effectiveness 

    (mg/kg/min per pmol/L) governs amplitude of insulin action on the liver 

   (mg/kg/min per pmol/kg) governs amplitude of portal insulin action on liver  

In our adapted model, in order to match the BG data of an actual ICU patient, 

hyperglycemic “Stress Action” (SA(t)) on EGP is incorporated by fitting it hourly with a 
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minimum value of zero (“no stress”) to a maximum value of one (“maximum stress”).  

Using epinephrine’s actions as our guide, SA(t) is applied to the terms of the EGP 

equation such that it counteracts suppression of EGP anywhere from completely to 

none at all: 

   ( )      (    ( ))  (      ( )        ( )         ( )) 

During the fitting,     is constrained to be nonnegative and less than or equal to  a 

literature-derived maximum value of 4.25 mg/kg/min [2]. 

 

Unlike previous models, our model modifies not only the insulin-dependent terms of 

EGP, but also the insulin-independent term of liver glucose effectiveness.  This is based 

on evidence that indicates a physiological role for epinephrine in modulating HGP 

separately from insulin [54], [62].  Also, indirect evidence for this is found in the 

observation by Lin et al. [63] that fitted values of liver glucose effectiveness for their ICU 

model were at the lower range of those for non-ICU patients in other studies. 

 

Glucose Subsystem – Insulin-dependent Glucose Utilization (   ) 

Insulin-dependent glucose utilization is the uptake of glucose from the slowly 

equilibrating glucose compartment into the peripheral tissues, mostly muscle and 

adipose tissue, that requires insulin.  Insulin-dependent transport of glucose into these 

tissues is saturable and is modeled by:  

   ( )  
(         ( ))    ( )

      ( )
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Where: 

    (mg/kg) is the glucose mass in the slowly equilibrating tissues 

 X (pmol/L) is insulin in the interstitial fluid 

   (mg/kg/min),     (mg/kg/min per pmol/L), and     (mg/kg)  

are parameters of the Michaelis-Mentin equation 

Adapting this equation to incorporate Stress Action on insulin-dependent peripheral 

glucose uptake, the equation becomes: 

   ( )  
(    (         ( ))       ( ))    ( )

      ( )
 

The weight of 0.65 was obtained from normal subjects in Guy, et al [26], who measured 

the suppression of glucose disposal during an epinephrine infusion.  This functions to 

allow at least a minimal level of insulin responsiveness, even when a patient is 

maximally stressed. 

 

Glucose Subsystem – Insulin-Independent Glucose Utilization (   ) 

Not all glucose disposal in the body requires insulin.  Brain, splanchnic tissue (liver, 

spleen, intestine), red blood cells, kidney, and cornea do not require insulin for glucose 

to be transported into their cells.  This insulin-independent glucose uptake rate (   ) is 

essentially constant under most conditions, so  our model retains  the original model’s 

constant value, estimated at 1 mg/kg/min. 
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Stress Modified GIM Model –The Insulin Subsystem 

Insulin is also modeled with two compartments.  It appears in the plasma compartment 

by direct intravenous injection or from the liver compartment after its secretion from 

the pancreas and passage through the portal vein.  Plasma insulin can then re-enter the 

liver.  This subsystem is adopted unchanged from the original model. 

Plasma compartment: 

  ̇       ( )  (     )    ( )    

  
  

  
 

Liver compartment: 

  ̇   (     )    ( )       ( )   ( ) 

Where: 

   (pmol/L) insulin concentration in the plasma 

   (pmol/kg) is the mass of insulin in the plasma 

    (pmol/kg) is the mass of insulin in the liver 

   (pmol/kg/min) is the rate of exogenous insulin injection given intravenously 

   (pmol/kg/min) rate of endogenous insulin secretion 

    (L/kg) distribution volume of insulin 

   ,    (min-1) rate parameters between liver and plasma 

   ,    (min-1) degradation rate parameters 
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Insulin Subsystem – Insulin Secretion  

The patients in our study were identified as “normal” or as “any type” of diabetic (Type 

1 or Type 2).  Unlike normals and Type 2 diabetics, Type 1 patients, who tend to be 

younger, do not create their own insulin.  Since our study population was mostly 

military and the average age of the 11 identified diabetics was 51, we made the 

assumption in our model that all of the 11 diabetics were Type 2.  Our model thus 

retains endogenous insulin secretion for all patients.  This portion of the subsystem is 

adopted unchanged from the original model. 

 ( )            ( ) 

   ̇            ( )     ( ) 

   ( )  {
 ( )     ̇( )                                    ̇                       

 ( )                                                       ̇                       
 

 ̇  {
       [ ( )       ( ( )   )]              (   ( ))    
        ( )                                        (   ( ))    

 

Where: 

   (pmol/kg/min) is rate of endogenous insulin secretion into plasma 

     (pmol/kg/min) is rate of endogenous insulin secretion into portal vein 

   (pmol/kg/min) rate, above basal, of endogenous insulin release from pancreas 

       (min-1) delay between glucose signal and insulin secretion 

      (pmol/kg/min per mg/dl) pancreatic responsivity to glucose 

       (min-1) transfer rate constant between portal vein and liver 

   (mg/dl) level of glucose above which the β-cells produce more insulin 

   (pmol/kg per mg/dl) pancreatic responsivity to glucose rate of change 
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Insulin Subsystem – Insulin Signaling 

This portion of the subsystem is adopted unchanged from the original model.  The 

insulin signal that stimulates peripheral tissue glucose utilization is modeled as: 

 ̇      ( ( )    )       ( ) 

Where: 

  (pmol/L) is insulin concentration in interstitium affecting tissue glucose use 

   (pmol/L) is the insulin concentration in the plasma 

    (pmol/L) is basal insulin concentration 

     (min-1) rate constant for movement of plasma insulin into interstitium 

In addition to the insulin signal that increases peripheral glucose utilization, there is a 

delayed insulin signal that suppresses endogenous glucose production by the liver.  It is 

modeled with a chain of two compartments as shown below: 

  ̇      (  ( )   ( )) 

  ̇      (  ( )    ( )) 

Where: 

    (pmol/L) insulin signal in first of two compartments 

    (pmol/L) delayed insulin signal to the liver 

    (min-1) rate parameter for the delay between insulin signal and its action 
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3.3 Study Data 

Our data was from patients who were treated with insulin for hyperglycemia after 

admission between January, 2002 through December, 2008 to the burn ICU at the U.S. 

Army Institute of Surgical Research in Fort Sam Houston, Texas.  The clinical data was 

obtained from treatment during the first 8 days of ICU hospitalization that was recorded 

in an inpatient electronic charting database (not from a clinical trial) and the 

demographic information was obtained from the burn registry.   The data included age, 

sex, height, weight, preexisting diabetes mellitus, military status, presence of inhalation 

injury, ICU and hospital length of stays, total body surface area of burn (TBSA), injury 

severity score (ISS), and mortality.  Approximately 77 % of the blood glucose readings 

were point-of-care (SureStep Flexx, Lifescan, Milpitas, CA), with the remainder done by 

the hospital lab.  Most were corrected for anemia if a hematocrit was less than 34%.  

Some of these BG values in the database were corrected retroactively, which means 

that the actual treatment may have been based on a BG not corrected for anemia.   

 

A total of 1513 patients were in the database.  In order to create a simulator to evaluate 

insulin infusion protocols, it was decided to select those patients who had at least 24 

hours of continuous insulin infusion data, preferably longer.  However, even though the 

insulin infusion protocol applied in the burn unit during that time called for hourly 

measurements of BG, missing data limited the number of patients and treatment 

durations.  To remedy this, treatment data with an average of no more than one missing 

data point (making for a 2 hour interval) in any 12 hour period was allowed.  Linear 
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interpolation was done through the missing data point.  If a BG value was recorded at an 

earlier or later time than scheduled per the protocol, that value was also linearly 

interpolated to the scheduled time.  This yielded 212 BG and insulin data segments from 

154 unique burn patients, with minimum lengths of 24 hours and a maximum length of 

140 hours (median of 52 hours).  The total duration of insulin treatment was 10,939 

hours, with 5.2% of those hourly BG data points having been interpolated due to missing 

data.   

Demographic characteristics of the 154 unique burn patients are shown in tables 3.1 & 

3.2 . 

 

 

 

Actual feedings were not provided with the burn patient data.  Instead they were 

calculated using the same formula employed by the clinicians in the burn ICU.  Adopting 

the practice of the burn ICU, we made the assumptions that all patient feedings 

Table 3.2 - Additional demographics. TBSA=Total Body 
Surface Area (burn); ISS=Injury Severity Score (max=75); 
CHO=Carbohydrates, per estimation formula 

Table 3.1 - Demographic 
characteristics of the study 
population. Any DM = any type of 
Diabetes Mellitus 
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followed the formula and that all feedings were continuously given by enteral tube 

(bypassing the stomach).   

The feedings were calculated using the “Carlson Equation” [64]: 

    (    (        (                 ))           ) 

Where: 

      Estimated Energy Requirement (kilocalories/day, or Calories/day) 

      Basal Metabolic Rate (kilocalorie/m2/day, or Calorie/m2/day) 

       Total Body Surface Area of burn (%) 

      Body Surface Area (m2)  
             

    
 

    Activity Factor (1.4), estimates the increment by which metabolic  
expenditure in the clinical environment exceeds resting energy expenditure  

 

    is calculated by the Fleisch equation for males or females: 

                   (           )  (           
 )  (           ) 

                    (           )  (           
 )  (           ) 

 

From the total Calories/day determined with the     formula, since the enteral feeding 

consisted of 65% carbohydrates, the portion of the feeding Calories due to 

carbohydrates was calculated as         .  The remainder of the Calories were in the 

form of fat and proteins, which do not enter into our model. 
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3.4 Determining Hyperglycemic Stress Action  

 The original, unadapted Glucose-Insulin-Meal Model of Dalla Man et al. [58] permits 

one to choose from any of 300 in silico patient parameter sets (referred to hereafter as 

“MM in silico patients”) to simulate BG output with any desired sequence of testing 

inputs of carbohydrate feeding and insulin.  Our adaptation of the model uses the 

rationale that a parameter set of one  of the 300 MM in silico patients can be found that 

approximates that of a real ICU patient.   Further, any modifications of those parameters 

that are required to better fit the BG tracing of a real ICU patient represents the stress 

of being critically ill in an ICU.  Those time-varying modifications define a Stress Action 

vector (“SA vector”).  The pairing of the MM in silico patient with its corresponding 

fitted SA vector that most closely matches the real ICU patient defines an “ICU in silico 

patient”.  At this point, that pairing is a “virtual clone” of the real ICU patient.  

 

All calculations were done in the MATLAB software environment.  First, the calculated 

feeding and the recorded intravenous insulin rates for each of the 212 real burn ICU 

patients were input to the simulator with each of the 300 MM in silico patients without 

any parameter fitting.  These simulated BG tracing outputs were stored for a later step.  

Stress Action, “SA”, was then fitted hourly in our model using nonlinear least squares 

with the same feeding and insulin inputs as above, simulating 300 candidate “stressed” 

ICU patients for each burn ICU patient.  Initial conditions in both cases were constructed 

by first simulating BG with the real feeding and insulin rates from the first hour of each 

burn patient together with the parameters of each MM in silico patient until steady 
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state was achieved (12 hours was used).  After that, for fitting hourly SA, the final 

conditions of the previous hour’s fitting were used as initial conditions for the next hour.   

 

After all of the simulations were performed, the SA vector for each of the 212 real burn 

ICU patients was identified by selecting the MM in silico patient + SA vector pairing with 

the smallest Mean Absolute Percentage Error (MAPE) between the simulated “stressed” 

BG tracing and the real ICU BG tracing.  If more than one pairing had the same MAPE or 

if it was within 3% of the best MAPE, then the previously simulated  BG tracing of a MM 

in silico patient with the largest Coefficient of Determination was used to choose the 

best pairing of those.   An example of a best fitting is shown in Figure 3.1. 

Figure 3.1 - Example fitting. EGP=Endogenous Glucose Production; Uid=insulin dependent 
glucose utilization 
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This procedure identified 212 SA vectors, each paired with one of 86 (of the original 

300) unique MM in silico patients.  Over the 10,939 hourly fittings with these pairings, 

96.7% had less than 10% fitting error, and 91% had less than 1% fitting error (Figure 

3.2). 

 

 

 

 

 

 

 

These 212 SA vectors plus matching MM in silico patients then defined ICU in silico 

patients, or “virtual clones” of the original burn ICU patients.  If we stopped at this 

point, our model and ICU in silico patients would offer little more than offered by 

previous ICU hyperglycemia models:  we would have one virtual ICU patient having been 

derived from one real ICU patient. 

 

If one makes the assumption that the parameters of the matched MM in silico patient 

approximate  those of a real ICU patient, then the SA vector represents the stress of 

being critically ill in an ICU.  Our model uses the concept of a stand-in agent with the 

hyperglycemic actions of epinephrine to mediate this stress.  Since the SA vector then 

Figure 3.2- CDF of fit error for 10,939 
BG points 
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embodies the hyperglycemic stress imposed upon the MM in silico patient, it can stand 

alone, allowing it to be combined with a completely different MM in silico patient to 

yield a completely new ICU in silico patient.  This extends our model considerably.  The 

potential variability from such recombination would be advantageous in testing 

treatment protocols.   In addition to their use in the creation of new ICU in silico 

patients, the SA vectors from a study population could serve as a basis for creating a 

model of Stress Action for that population.  For the purpose of validation of our 

simulator, we chose to use the already identified set of 86 MM in silico patients. 

 

 

4. Validation of the Simulator 

In this section we first describe verification of the simulator by using it together with the 

“virtual clones” of real burn ICU patients to reproduce, in aggregate, the outcome 

measures of the real burn ICU patient population.  Secondly, we describe the validation 

of the simulator by using it with new, “non-cloned” ICU in silico patients to recreate, 

again in aggregate, the outcome measures of the real burn ICU patient population. 

 

4.1 Verification:  Reproduction of burn ICU BG tracings 

The earlier-calculated initial conditions used for fitting our “virtual clone” ICU in silico 

patients were not used for simulation, since those conditions will not be known for the 

remaining “non-cloned” ICU in silico patients and we wanted to be consistent across the 

populations.  Instead, we initialized the system at its steady state with the known 
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feeding of the real ICU patient and the already-known basal BG of the MM in silico 

patient that was paired with the SA vector of the burn ICU patient. 

 

In order to verify our model, we simulated the 212 fitted “virtual clone” pairings using 

the Army Insulin Infusion Protocol (coded in Simulink) employed by the clinicians in the 

burn ICU of the study population (Appendix) to reproduce, in aggregate, the outcome 

measures of the real burn ICU patient population.  This was done twice:   once, starting 

the simulation with the real ICU patient’s initial insulin rate and then continuing with 

dosing per the protocol; the second time, the entire course of insulin dosing was per 

protocol.  This was done to compare the effects of initial conditions on outcome 

measures. 

 

The outcome measures chosen were calculated on a per-patient basis which were then 

reported in average for the simulated population:  mean blood glucose (mg/dl), time to 

target BG range of 80-110 mg/dl (hours), time in target range (% of treatment time), 

percent of time in hypoglycemia (BG less than 60 mg/dl), mean insulin use (Units/hr), 

and Average Daily Risk Range (ADRR).   

 

A measure not previously employed in the context of simulation of ICU hyperglycemia 

was taken from Hermanides et al. [65].  In order to find other factors potentially 

affecting ICU outcomes besides hyperglycemia per se, the Mean Absolute Glucose 

change per hour (“MAG”) was used in that study to evaluate glucose variability in the 
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ICU, because it would pick up variability that standard deviation may underestimate.  

They found that high BG variability, as determined by a high MAG score, was associated 

with ICU and in-hospital death.  The combination of high mean BG levels and high MAG 

scores was synergistically associated with ICU death.  We calculated the per-patient 

MAG for our simulations as another means to compare the results of simulations of 

different populations of ICU in silico patients.   

 

Examples of a simulated “virtual clone” ICU in silico patient are in Figures 4.1 and 4.2.  

Both figures show the originally observed BG and insulin tracings in blue, with the 

simulated tracings in green.  The simulation in Figure 4.1 used the original, real first-

hour insulin dose, whereas the simulation in Figure 4.2 used the protocol-determined 

initial insulin dose.  The lower initial insulin dose dictated by the protocol permitted the 

simulated BG to rise above the observed BG level, which ultimately affected the 

outcome measures.  

 

 

 

 

 

 

 

Figure 4.1 - Simulation using "virtual clone" ICU in silico patient with first hour of insulin the 
same as real ICU patient 
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The differences between observed and simulated tracings could be explained by several 

factors:  real initial conditions were unknown, and those we used may not have 

approximated them well; because real feedings were not provided, we input feedings 

according to a formula, which may not have been used for any particular real patient; 

feedings were assumed to be continuous, but in reality may be started and stopped for 

various reasons; intravenous boluses of glucose to treat hypoglycemia were assumed to 

have been given per protocol, but they are not recorded in our data and may not have 

been given; protocol compliance may have varied, especially the recording of timing of 

BG measurements and timing of insulin changes; administered medicines and surgical 

procedures were not recorded in our data and are not incorporated in our model. 

 

Table 4.1 shows the per-patient outcome measures of the original burn ICU patients, 

and the two simulated versions.   

 

Figure 4.2 - Simulation using "virtual clone" ICU in silico patient with all 
insulin given per protocol 
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Per Patient Stats 
mean(sd) 

   

 Group 1 (black) 
212 Real ICU 
patients 

Group 2 (blue) 
Sim 212 w 1st 
insulin, then 
protocol 

Group 3 (red) 
Sim 212 w all insulin 
per protocol 

Achieve target (%) 98.11 99.53 99.53 
Time to target (hr) 6.68 (6.36) 6.72 (5.81) 8.14 (5.25) 
Time in range (%) 39.13 (18.94) 42.86 (15.98) 39.7 (15.31) 
Time in 
Hypoglycemia (%) 0.78 0.33 0.35 
BG mean (mg/dl) 116.73 (15.03) 115.99 (10.52) 119.71 (12.64) 
BG median (mg/dl) 113.63 112.73 115.14 
MAG (mg/dl) 14.02 (4.54) 13.78 (4.27) 14.5 (4.32) 
ADRR 13.86 (6.4) 12.12 (4.6) 13.95 (5.73) 
Insulin (U/hr) 7.01 (4.41) 7.32 (3.92) 6.89 (3.72) 

Table 4.1 - Per patient outcome measures of original burn ICU patients and of two simulated 
versions using different starting doses of insulin 

 

Figure 4.3 shows the empirical CDF of all the BGs of each population. 

 

Figure 4.3 CDF of whole-cohort BGs of real ICU patients and simulated "virtual clone" ICU in 
silico patients 
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As expected, in Figure 4.3 the simulation (group 3, red) with the lower initial insulin has 

a greater proportion of high BGs and a longer time-to-target compared to the others.  

The simulation (group 2, blue) with the higher initial insulin rate has a smaller 

proportion of high BG levels and a greater time-in-range.  Interestingly, both simulations 

decrease the number of low BGs as compared to the real BG tracing.  The two sample 

Kolmogorov–Smirnov test rejects the null hypothesis of any of the population BG CDFs 

being from the same distribution. 

 

Table 4.1 shows that the per-patient BG means of all three cases are within 3 mg/dl of 

each other, and ANOVA of per-patient BG means of the three groups (Figure 4.4) implies 

that at least the first two groups (the ones with the same starting doses of insulin) are 

from the same population. Group 3, although statistically rejecting the null hypothesis 

of being from the same population as the others, is well within measurement error 

clinically.    

 

 

                                                                                          Figure 4.4 
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ANOVA of the per-patient BG medians (Figure 4.5) argues for no significant difference 

among all three groups.  

 

                                                                                        Figure 4.5 

ANOVA of MAG, a measure of BG variability, also implies no significant difference 

among all three groups (Figure 4.6).

 

                                                                                          Figure 4.6 

Lastly, ANOVA of per-patient insulin means shows no significant difference among the 

three groups (Figure 4.7). 

 

                                                                                          Figure 4.7 
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The reasons given earlier for differences between real and simulated outcomes once 

again come into play, with initial conditions, feeding variability, and protocol compliance 

probably being the most important.  Keeping those qualifiers in mind, these results of 

these simulations  are  verification that our simulator produces, in aggregate,  

acceptably similar BG means and medians, hypoglycemia time, time-in-target, MAG 

score, ADRR score, and insulin dosing to those of the original burn population.  

 

4.2  Validation:  Simulation with new ICU in silico patients 

We intend to use our simulator for testing the sensitivity of outcome measures 

(frequency of hypoglycemia, time in BG target range, BG mean, insulin mean) to 

changes in protocol variables (e.g. measurement error, sampling intervals, choice of  

treatment thresholds) for burn ICU patients.  For validation for this purpose we looked 

for the ability of our simulator, while using newly created ICU in silico patients from a 

burn ICU, to produce aggregate outcome measures that were not significantly different 

from real burn patients at the p=0.05 level.  Further validation will be sought later for  

application of the simulator in different patient populations. 

 

Departing from the use of our 212 “virtual clone” ICU in silico patients, we performed 

simulations with new ICU in silico patients by combining an SA vector with a completely 

different MM in silico patient from that which it was originally matched.  These 

simulations were done by combining each of the 212 SA vectors with randomly selected 
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MM in silico patients from the remainder of the pool of originally-matched 86 unique 

MM in silico patients.    

 

The simulations were varied as follows: 

Sim #1- 212 SA vectors x 3 random MM in silico patients + 4.1 gm/kg/day CHO feeding 

Sim #2- 212 SA vectors x 3 random MM in silico patients + 5.5 gm/kg/day CHO feeding 

Sim #3- 212 SA vectors x 3 random MM in silico patients + 7 gm/kg/day CHO feeding 

The different feedings were used because these new ICU in silico patients did not 

necessarily have the same nutritional requirements as the real ICU patients (e.g. TBSA 

and ISS determinants of Estimated Energy Requirement were unknown).  The value of 7 

carbohydrate (CHO) gm/kg/day was obtained from the average of all the originally 

calculated feedings.  It was noted during retrospective review of the original-feeding 

simulations that 5.5 CHO gm/kg/day was a feeding level above which insulin 

requirements rose quickly, leading to the selection of that value for simulation.  The 

lowest feeding of 4.1 CHO gm/kg/day was derived from the recommendations of [66] 

for nutrition of ICU patients.  It is apparent that our study population, as is usual for 

hypermetabolic burn patients, was fed at significantly high rates.  As we shall see later, 

feeding is an important variable with respect to evaluating outcome measures. 

Examples of simulations of one SA vector with 3 different MM in silico patients, using 

the original feeding (Figure 4.8): 
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Each of these tracings represents the output of a new ICU in silico patient interacting 

with the Army Insulin Infusion Protocol.  Differences in BG control and insulin dosing 

reflect the different parameter sets for each patient. 

Per-patient statistics for each simulation group are summarized in Table 4.2.  CDFs of 

group population BGs are in Figure 4.9. 

Figure 4.8 – Examples of simulations of 3 
ICU in silico patients derived from one 
real ICU patient 
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Per Patient Stats 
mean(sd) 

    

 Real ICU 
patients Orig. 
feed 

Sim #1 
4.1 gm/kg/d 

Sim #2 
5.5 gm/kg/d 

Sim#3 
7 gm/kg/d 

Achieve target 
(%) 

98.11 99.36 98.56 94.27 

Time to target 
(hr) 

6.68 (6.36) 6.71 (5.59) 7.61 (6.08) 9.94 (8.43) 

Time in range 
(%) 

39.13 (18.94) 44.27 (22.49) 42.53 (20.58) 38.15 (21.8) 

Time in 
Hypoglycemia 
(%) 

0.78 
 
1.05 

 
0.59 

 
0.32 

BG mean (mg/dl) 116.73 (15.03) 115.03 (14.66) 118.23(15.81) 123.69 (18.73) 

BG median 
(mg/dl) 

113.63 113.07 115.16 119.14 

MAG (mg/dl) 14.02 (4.54) 13.69 (5.13) 14.53 (5.37) 14.56 (5.11) 

ADRR 13.86 (6.4) 15.25 (7.49) 14.1 (6.02) 13.65 (5.96) 

Insulin (U/hr) 7.01 (4.41) 5.11 (3.85) 6.48 (4.86) 8.96 (7.23) 

Table 4.2 Per-patient statistics for each simulation group of new ICU in silico patients 

 

Figure 4.9 – CDFs of whole-cohort BGs for real and for each simulation group of new ICU in 
silico patients 
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The simulation in which the average of the original feedings was used with new ICU in 

silico patients (Sim #3 in Table 4.2) is notable for higher BG mean and median, for longer 

time-to-target, for less time-in-range, and for higher insulin needs than the lower 

feeding values.  This may have arisen because our fitting procedure for SA did not 

account for differences in body weight between real and in silico patients.  Also, this 

may reflect a mismatch, on average, between the feeding rate and the new ICU in silico 

patients’ nutritional needs, which are unknown.  The lower feeding rates (low with 

respect to burn patients, not other patient populations) probably lessen the effect of 

any such nutritional mismatch, and they are associated with outcome measures more 

similar to the original ICU patients.  Efforts to find correlations between patient 

demographic characteristics (e.g. TBSA, ISS) and high Stress Action values or high insulin 

needs were unsuccessful.  There may be other factors in play that were not in our data, 

such as medications.  It may be that some of the high calculated levels of feeding were 

not in reality given, because of interruptions, bowel immotility, or intolerance of the 

rate, and this would skew the SA values to be higher than they would have been 

otherwise.  Another possible explanation for nutritional mismatches may be that, 

despite the variability of the parameters in the 300 MM in silico patients, the MM in 

silico patient which was matched most closely with the real ICU patient may still not be 

“close enough”.  This would contaminate the SA vector with patient-specific 

characteristics.   
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The times-in-hypoglycemia for the simulations were inversely proportional to feedings 

and mostly were lower than for the real patient results.  This probably reflects the 

absence of real-life feeding errors and treatment variation with our “perfect” 

implementation of the protocol. 

The two sample Kolmogorov–Smirnov test rejects the null hypothesis of any of the 

population BG CDFs being from the same distribution. 

 

Comparing per-patient outcome measures for statistical significance, ANOVA of per-

patient BG means and medians (Figures 4.10 & 4.11) reflects the feeding differences 

already mentioned.  The per-patient BG mean and median for the higher feedings are 

significantly different from the real ICU and lower feeding groups. 

 

 

                                                                                   Figure 4.10 
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                                                                                         Figure 4.11 

When comparing the characteristic of BG variability using the MAG score, none of the 

groups are significantly different with respect to MAG from the real ICU group (Figure 

4.12). 

 

 

                                                                                  Figure 4.12 
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Lastly, per-patient insulin use is significantly different in the groups with feedings at 

either extreme (Figure 4.13). 

 

 

                                                                                  Figure 4.13 

When it comes to reproducing the outcome measures of our original ICU patients with 

new ICU in silico patients, our simulator is sensitive to the lower and higher ends of the 

feeding rate range, for possible reasons as given above.  However, new ICU in silico 

patients don’t necessarily have to behave as the real ones, since they are indeed new 

and they theoretically comprise a totally different patient population.   

 

We conclude that our simulator incorporating new ICU in silico patients is validated, 

when using 5.5 gm/kg/day of carbohydrate intake, to begin studying the sensitivity of 

outcome measures to changes in protocol variables.   
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5.  Analysis of Protocols via Simulation 

5.1 Addressing Treatment Variables 

Our goal in creating this simulator was to enable us to evaluate insulin infusion 

protocols for ICU hyperglycemia.  As mentioned earlier, several variables have been 

discussed in the literature that may confound the results of studies of insulin infusion 

therapy, such as measurement error, measurement frequency, protocol compliance, 

protocol attributes, and patient populations.  Already seen in the process of validating 

our simulator is the importance of a variable as simple as feeding.  Using our simulator, 

we can isolate, control, or change some of these variables, beginning to apply Systems 

Engineering to the study of insulin infusion therapy for ICU hyperglycemia.  An example 

follows. 

 

5.2 “Tuning” of the Army Insulin Infusion Protocol 

In the process of validating our simulator, we observed an increase in the per patient 

outcome measure of time-in-hypoglycemia as feeding rates were decreased (Table 4.2).  

In an application of our simulator, we hypothesized that we could reduce time-in-

hypoglycemia, without adversely altering other outcome measures, by changing the BG 

treatment target range of the protocol.  Taking a cue from [67], we altered the Army 

Insulin Infusion Protocol, already presented above, to have a more narrow treatment BG 

target range of 90-110 mg/dl and incorporated it into our simulator.   However, we still 

used the outcome measure of 80-110 mg/dl, reasoning that “shooting” for a smaller 
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target may improve our chances of hitting the surrounding, larger target.  Using the 

changed protocol, we ran a simulation with each of the 212 SA vectors combined with 3 

random MM in silico patients and with the feeding rate of 5.5 CHO gm/kg/day.  The 

results are in Table 5.1. 

Per Patient Stats 
mean(sd) 

   

 Sim #1 
212x3  
Target 80-110 
Outcome Target 80-110 

Sim #2 
212x3  
Treatment Target 90-110 
Outcome Target 80-110 

 

Achieve target (%) 98.56 98.89  
Time to target (hr) 7.61 (6.08) 7.64 (6)  
Time in range (%) 42.53 (20.58) 38.15 (20.15)  
Time in 
Hypoglycemia (%) 0.59 0.44  
BG mean (mg/dl) 118.23 (15.81) 121.8 (16.33)  
BG median (mg/dl) 115.16 119.11  
MAG (mg/dl) 14.53 (5.37) 15.01 (5.23)  
ADRR 14.1 (6.02) 12.66 (5.93)  
Insulin (U/hr) 6.48 (4.86) 5.88 (4.66)  

Table 5.1 – Per patient outcome statistics comparing simulations using two different 
treatment target ranges in the Army insulin protocol 

Time-in-hypoglycemia decreased slightly from 0.59% to 0.44%.  And somewhat to be 

expected, since the protocol needed to order less insulin, the BG mean and median 

increased from 118.23 to 121.8 mg/dl and 115.16 to 119.11 mg/dl, respectively.  ADRR 

appropriately improved with the lessened risk of hypoglycemia.  But the outcome 

measure of percent time in the BG target range of 80-110 mg/dl worsened from 42.53% 

to 38.15%, probably because of the increased hyperglycemia. 

Then hypothesizing that we needed to narrow the BG target range further by both 

raising the lower limit and lowering the upper limit, we changed the treatment BG 

target range to a very narrow 90-100mg/dl and performed the simulations again.  We 
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retained the outcome measure of BG target range of 80-110mg/dl as before.  The results 

are summarized in Table 5.2. 

Per Patient Stats 
mean(sd) 

   

 Sim #1 
212x3 with 
5.5gm/kg/day 
Treatment Target 
80-110mg/dl 
Outcome Target  
80-110mg/dl 
 

Sim #2 
212x3 with 
5.5gm/kg/day 
Treatment Target 
90-110mg/dl 
Outcome Target  
80-110mg/dl 

Sim #2 
212x3 with 
5.5gm/kg/day 
Treatment Target 
90-100mg/dl 
Outcome Target  
80-110mg/dl 

Achieve target (%) 98.56 98.89 98.57 
Time to target (hr) 7.61 (6.08) 7.64 (6) 7.75 (7.32) 
Time in range (%) 42.53 (20.58) 38.15 (20.15) 42.64 (21.88) 
Time in 
Hypoglycemia (%) 0.59 0.44 0.44 
BG mean (mg/dl) 118.23 (15.81) 121.8 (16.33) 119.33 (17.68) 
BG median (mg/dl) 115.16 119.11 116.50 
MAG (mg/dl) 14.53 (5.37) 15.01 (5.23) 15.28 (5.03) 
ADRR 14.1 (6.02) 12.66 (5.93) 13.06 (5.61) 
Insulin (U/hr) 6.48 (4.86) 5.88 (4.66) 6.05 (5.11) 
Table 5.2 – Per patient outcome statistics comparing simulations using three different 
treatment target ranges in the Army insulin protocol 

 

Compared to the previous protocol change, time-in-hypoglycemia stayed at the lower 

value, while hyperglycemia improved, and time-in-target returned to the original level.  

We achieved a mild improvement in time-in-hypoglycemia. 

While such a narrow treatment BG target range may ultimately prove unworkable once 

other variables are factored in, such as measurement error and protocol compliance, 

this exercise with the simulator illustrates its ability to handily perform “what if” 

scenarios that may hasten the development of improved treatment protocols. 
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5.3 Protocol Comparisons and Optimization 

Insulin infusion protocols have so far been based on discrete BG measurements at 

intervals from 15 minutes to 4 hours. But protocols based on continuous glucose 

monitoring (CGM), already in use in the outpatient setting for Type 1 diabetics, could 

yield improved outcome measures.  Limitations such as sensor error, sensor drop out, 

and BG measurement lag time, could be modeled in a proposed CGM-controlled insulin 

protocol in our simulator, and those outcomes could be compared with current, discrete 

BG measurement protocols.  

 

Our simulator should also be a useful tool in determining which combinations of desired 

outcomes are achievable, and to what degree.  As seen above, optimizing an insulin 

infusion protocol to avoid the most obviously dangerous outcome of hypoglycemia 

carries the risk of adversely affecting other outcome measures, such as BG time-in-

range.  These other outcome measures, including BG variability per se, have also been 

shown to detrimentally affect mortality [63], and need to be assigned some weight in 

optimization.   
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6. Conclusions and Future Work 

The tantalizing success of Van den Berghe et al. [8] in using insulin infusion therapy, 

particularly for “tight glucose control”, to reduce mortality and morbidity from stress 

hyperglycemia in critically ill patients has been overshadowed by subsequent mixed 

and sometimes conflicting reports.  Many differences in the studies that potentially 

contribute to the confusion have been identified, such as patient populations, protocol 

attributes, measurement error, and protocol compliance.  More research addressing 

these variables is called for, but studying them directly in clinical settings on real 

patients carries costs of money, time, and danger.  A tool, a computerized simulator of 

stress hyperglycemia, could greatly assist and hasten this research.   

 

This thesis has presented such a simulator.  It started with a detailed model by Dalla 

Man et al. [57] which was built on a database of glucose and insulin fluxes and levels 

measured from real, non-critically ill patients.  We presented an approach to adapt the 

model for stress hyperglycemia that uses the known physiology of stress mediators, 

such as epinephrine.  Using treatment data from critically ill patients in an Army burn 

ICU, we matched the original model in silico patient parameter sets to real ICU patients 

and used them to fit Stress Action (SA) vectors that account for the time-varying 

stresses experienced by them.  This yielded a collection of 212 “virtual clone” ICU in 

silico patients, from which the SA vectors and patient parameter sets can be extracted 

and variously recombined to create totally new ICU in silico patients.  We validated our 

simulator using both the “virtual clones” and the new ICU in silico patients. 
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Our model and simulator differ from other ICU simulators [18], [46] in two respects.  

First, instead of the concept of insulin sensitivity, we employ the idea of 

“hyperglycemic stress” mediated by agents, such as epinephrine, that work at their 

own sites of action in the model. This opens the model to the addition of new 

knowledge concerning stress mediators, and insulin sensitivity returns to being an 

observed characteristic of the patient.  Second, from one population of real ICU 

patients, we are able to generate numerous, new ICU in silico patients, amplifying our 

efforts and providing our simulator with a larger number of patients for study. 

 

For the future: 

- Fittings of the SA vectors were done without regard to matching the body weights 

of real burn patients with MM in silico patient weights.  This may partially explain 

feeding mismatches when doing simulations with new ICU in silico patients.  A 

fitting procedure that accounts for body weight should be developed. 

- The use of epinephrine as a stand-in for all of the stress hormones is adequate for 

our intended use, but future applications of the simulator may require the 

incorporation of the specific actions of the stress hormones. 

- The sensitivity of simulation outcome measures to the weights assigned to the 

differential effects of epinephrine on HGP and PGU should be evaluated.  

- Improvements to, and increased confidence in, our simulator can come from 

applying and validating it on new patient populations and different insulin infusion 
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protocols.  A library of Stress Action vectors could be compiled from these different 

patient populations, enabling study of different protocols on various populations.   

- This time we relied on a formula-based estimation of feeding and the assumption of 

continuous enteral feeding during our fitting process, which may have 

overestimated patient intake.  Patient data with more detailed feeding information 

could improve the accuracy of our fitting process, lessening potential nutritional 

mismatches between “cloned” and newly created ICU in silico patients.   

- The distance spanned between each metabolic parameter of the 300 MM in silico 

patients may be too great.  Creating a finer gradation of metabolic variability, or 

“filling gaps”, by adjusting current parameter sets and creating new in silico 

patients to fill those spaces, would expand the database of in silico patients for 

potential matches with real patients.  This would lessen the risk of contaminating a 

fitted Stress Action vector with patient-specific characteristics. 

- A stochastic SA “generator” based on a model of the SA vectors from our burn 

patient population, or from any future population studied, would extend our 

simulator, particularly simulating longer treatment durations.   

 

As our simulator is applied to various populations and protocols, it will be undoubtedly 

be modified and refined, but in its current state the simulator is ready to begin studying 

the sensitivity of outcome measures to changes in protocol variables.   
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7. Appendix 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 – Copy of Army burn ICU insulin therapy protocol during the time of patient data 
acquisition 
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