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ABSTRACT 

Annular labyrinth seals are designed as tortuous paths that force a working fluid to 

expand and contract repeatedly through small clearances between high and low pressure 

stages of turbomachinery. The resulting expansion and recirculation reduces kinetic energy of 

the flow and minimizes leakage rate between regions of high and low pressure through the 

seal. Most current seal geometries are selected based on what has worked in the past, or by 

incremental improvements on existing designs. In the present research, a balance drum used in 

a multi-stage centrifugal pump was selected as a starting point, and design of experiments 

studies were performed to investigate the influence of groove shape and scale on leakage rate 

across the seal for a fixed pressure differential. 

The CFD model of the baseline labyrinth seal has an upstream region leading to 20 

evenly spaced semicircular grooves along a 267 mm seal length, with a clearance region of 

0.305 mm. For each test parameterization, the definition of the seal geometry was specified by 

a set of five factors. The first parameterization factors allow for variation in scale of the 

semicircular grooves within a pattern of five independently scaled grooves repeated four times 

along the seal length. The second parameterization factors allow for a single repeated groove 

shape variation between a rectangular, triangular and semi-circular groove. 

The seal was constructed with two parameterized CFD models in ANSYS CFX as a 5 

degree sector of the full 3D seal. A designed experiment involving a non-central composite 

design was performed to investigate the effects of 5 parameters, representing seal groove radii, 

on leakage rate and rotordynamic coefficients of the seal. A second designed experiment was 
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performed as a five-level fractional factorial design to investigate groove shape on seal 

performance characteristics. This study demonstrates a practical approach for investigating the 

effects of various geometric factors on leakage rate and rotordynamic coefficients for balance 

drum seals. The empirical linear regression models fitted to the responses of the experimental 

designs suggest geometric parameters that could be applied to improve performance of future 

seals. 
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CHAPTER 1:  INTRODUCTION 

Contact seals are used infrequently in rotating machinery due to wear and loss of 

energy to heat through friction. Instead, non-contacting annular seals are utilized, along 

secondary flow paths, to maintain distinctions of pressure between various regions in the 

primary flow path. These seals employ tight clearances, and specific geometry to promote fluid 

expansion, contraction, and recirculation within the seal, to dissipate energy and reduce the 

fluid leakage rate across the seal. Minimization of fluid leakage rate also maximizes the 

pressure differential across the seal, improving the overall efficiency of the turbomachine 

system. 

The tight clearances are the cause of other interactions between the annular seal and 

the overall turbomachine system. The rotors, or shafts, of turbomachines tend to vibrate during 

operation. Rotordynamics is the study of the vibrations in rotating systems to predict resonant 

frequencies and, with that information, design safe systems. These vibrations are modeled with 

the vibrational equations of motion for a mass-spring-damper system, given as [1]: 

 [𝐹] = [𝑀][𝑥̈] + [𝐶][𝑥̇] + [𝐾][𝑥] (1) 

As the rotor vibrates, compression of the liquid between the vibrating rotor and the 

stator wall acts as a restorative force radially, but also causes tangential forces in the direction 

of rotation [2, 3]. These circumferential forces are dependent on the instantaneous radial 

eccentricity of the rotor and result in cross-coupling of the above vibrational equations of 

motion. That is to say, the conservation equations for the radial direction are not separable 

from those for the circumferential direction. Thus, in addition to the leakage rate of the 
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working fluid, the rotordynamic coefficients for the seal are critical components of its operating 

characteristics. Typically, operating characteristics of such seals are calculated using bulk flow 

models, computational fluid dynamics (CFD), or recently a hybrid bulk flow/CFD method [4]. 

1.1 Analysis Methodology 

Analytical analysis of annular seals has grown from the initial study of the effect of the 

direct stiffness forces in the clearance region on dynamic stability by Lomakin in 1958 [2]. 

Current bulk flow analytical models are derived from initial work by Hirs [5], followed by Nelson 

[6]. Arghir and Frêne [7] review present advances in bulk flow analysis before presenting their 

own three control volume theory. Bulk flow models have the advantage of being derived 

analytically from the general Navier-Stokes equations of fluid motion. The solutions of flow rate 

and the rotordynamic stability characteristics of a seal are a simple numerical iteration solution 

of the bulk flow equations. These solutions have the advantage of being intuitively 

understandable, in addition to requiring relatively low cost in solution time or necessary 

computational power. Offsetting these advantages, the assumptions made to simplify the full 

Navier-Stokes equations limit the accuracy of bulk flow analysis methods. Specifically, the 

empirical models for friction factors, which govern fluid-solid wall shear interactions, are 

dependent on experimental observations and can vary widely based on the particular seal 

geometry and the operating conditions. Additionally, bulk flow analysis methods can be 

somewhat restrictive in terms of potential seal geometry. The complexity of formulating the 

bulk flow governing equations increases significantly when any grooves are added to a plain 
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seal, let alone if the grooves themselves have complex geometric shapes or are non-uniform 

along the axial length of the seal. [8] [7] [9] [10] [11] [12] [13] 

The alternative to bulk flow analysis, is the use of CFD for solving the complete Navier-

Stokes equations in conjunction with an appropriate turbulence model [7-13]. Unlike the bulk 

flow models, computational fluid dynamics makes no simplifying assumptions based on the seal 

geometry, shear stress at the wall, relationship between wall shear stress and mean fluid 

velocity, or characterization of interfaces between control volumes through empirical friction 

factors. The annular seal flow behavior is obtained while rapid flow variations at the interface 

between the groove and land sections are inherently incorporated into the solution. Although 

lack of the above simplifying assumptions provides increased accuracy for CFD methods, CFD 

models can be expensive in terms of modeling time and computational power. Even neglecting 

the time and effort required to create a quality mesh of the fluid region and the availability of 

modern parallel computing clusters, a full seal model can take hours or days to solve a single 

case. Considering that it is necessary to run each seal geometry at multiple whirl speeds to 

determine the rotordynamic coefficients, performing large scale experimentation can be 

impractical.  

Recently, a new method has been developed by Migliorini et al. [4] that combines the 

benefits of both bulk flow and CFD methods. This method replaces the base state of the bulk 

flow equations with the solutions from a CFD model representing a small sector of the full non-

eccentric seal. Using a smaller CFD model with a steady state solution greatly decreases 

solution time, while still providing an accurate representation of the unperturbed flow behavior 
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in the seal. The bulk flow methodology can then be applied to solve for the rotordynamic 

coefficients of the seal. The increased accuracy over standard bulk flow analysis, decreased 

solution time, and decreased computational expense make this analysis method the most 

practical for testing potential seal geometric designs. 

1.2 Prior Work 

Rhode, Ko, and Morrison [14] performed optimization of leakage rate through step 

labyrinth annular seals. The leakage rate of the step seal was calculated using a numerical 

Navier-Stokes code based on the TEACH algorithm with a variation in the QUICK differencing 

scheme and the high Reynolds number k-ε turbulence model. Seven characteristic geometric 

parameters were varied over 16 simulation experiments. The simulation experiment with 

minimum leakage rate was selected to be investigated experimentally for verification of the 

numerical code. The predicted optimal seal geometry had a 60% less leakage than their 

baseline seal geometry, and suggested some significant factors relating step seal geometry to 

leakage rate. The results of this work show the benefits of optimizing seal geometry designs for 

improved leakage rate. 

Schramm, Denecke, Kim and Wittig [15] performed simulated annealing optimization of 

step labyrinth seal geometry. The step seal geometry shape was parameterized for only two 

design variables representing step position and step height. A three-dimensional CFD mesh was 

automatically generated and TASCflow3D was used to solve for the seal’s flow properties. Nine 

hundred simulation experiments were performed with factor values selected by the 

optimization algorithm. Both factors converged to predicted optimum values after 
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approximately 600 simulations, resulting in an improved leakage rate of greater than 10%. The 

resulting data was plotted to perform a sensitivity study relating the step position and step 

height to seal discharge coefficient. Linking automated mesh generation, CFD and optimization 

codes was demonstrated to produce improved seal geometries, even with simple 

parameterizations. Additionally the application of the simulated annealing optimization 

algorithm was found to work with the design space of the stepped labyrinth seal parameters. 

Asok, et al. 2007 [16] employed an artificial neural network simulation model to 

optimize labyrinth seal groove geometries for minimal leakage rate. Initially five different 

aspect ratio square cavity labyrinth seal groove geometries were simulated in Fluent with the 

second-order upwind SIMPLEC algorithm. The CFD results for the square cavity labyrinth seal 

geometries were confirmed by physical experiment. Artificial neural network simulation and 

analytical modeling were then combined to predict the performance of new seal geometries 

based on the CFD results of the previous simulations. Additionally, based on the flow fields 

found in the square cavity grooves by CFD simulation, two new seal geometries were defined 

with curved cavity walls at the rear of the grooves. This additional curve creates a counter 

rotating double vortex in the groove cavity resulting in a pressure differential increase of more 

than 75%. The results of this study suggest that investigation of novel groove geometries can 

yield significant performance increases. 

Untaroiu, et al. [11] also performed CFD simulation and verified with physical 

experiments. The four factor parameterized seal geometry was meshed and simulated using 

ANSYS CFX. The design factors include the seal tooth front and back angles, the tooth tip width, 
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and the spacing between teeth. The CFD simulation results for five seal geometries were 

verified by physical experiment. Subsequently, design factor values selected based on the 

output of a genetic optimization algorithm. The genetic algorithm was used to generate design 

points for 38 simulated experiments and a sensitivity study was performed with this sample. 

This study demonstrates the effective use of a genetic optimization algorithm for prediction of 

local optimum design points. 

Bellaouar, Kopey, and Abdelbaki [17] performed a similar optimization of annular 

labyrinth seal tooth geometry using the multivariate Gauss-Seidel iteration method. The five 

parameterization factors under investigation include the seal tooth front and rear angles, and 

the rounding radii on each side of the base and tip of the seal tooth. Cosmos FloWorks 2009 for 

SolidWorks 2009 was the CFD code employed to model the performance of the test seal 

geometries. This study demonstrates the use of the Gauss-Seidel iteration method to optimize 

seal geometry for reduced leakage rates. 

Pierret, Coelho, and Kato [18] did not optimize labyrinth seal geometries. However, the 

optimization method employed by their study parallels the approach of this thesis. The NASA 

rotor 67 geometry is used as a baseline for the shape optimization of three dimensional 

compressor blades. A method was proposed to improve the efficiency of genetic algorithm 

optimization by applying the optimization algorithm to a multiple regression model instead of 

directly to the CFD simulation experiments. This requires first creating a design of experiments 

(DOE) to select initial design points for simulation. The responses of these design points were 

then analyzed to produce a multiple regression model relating the design factors to the 
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response data. The genetic algorithm was applied to these analytical models to predict optimal 

design points, which are then simulated, added to the library of simulation data, and used to 

modify the analytical model further. This study demonstrates the applicability of design of 

experiments statistics and multiple regression analysis to simplify and increase the efficiency of 

optimizing a geometric flow problem. 

1.3 Motivation and Plan of Work 

Current seal geometry designs are usually based on what has worked in the past, or by 

incremental improvements on existing designs. The goal of this study is to demonstrate a novel 

approach to iterative seal design. This will be done by investigating the effects of various 

geometric factors on leakage rate for a labyrinth seal model using CFD. The balance drum 

labyrinth seal, Figure 1.2, from the eight-stage pump, Figure 1.1, was selected as a baseline for 

comparison of results. Two seal geometry parameterizations will be chosen and tested. Design 

of experiments will be used to create efficient test plans to explore and model the effects of 

seven response variables characterizing the behavior of an annular seal in a larger 

turbomachine system model. The seven characteristic responses of the annular seal model will 

be leakage rate plus the six rotordynamic coefficients that form the skew-symmetric coefficient 

matrices for the dynamic stability equations of motion. Multiple linear regression analyses will 

be employed to provide a sensitivity analysis of the seven responses with respect to the 

parameterization factors. The sensitivity analysis can also act as a map for seal designers to 

minimize leakage or tune a seal’s geometry to provide particular rotordynamic coefficients to 

match their larger turbomachine system. Thus, a practical approach for seal design that 
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combines CFD with characterization of the performance characteristics via experimental design 

and statistical modeling of the relevant response variable is proposed.  

 
Figure 1.1: FlowServe 8-stage water pump 

 

 
Figure 1.2: Balance drum labyrinth seal, cutaway view 
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CHAPTER 2:  BACKGROUND 

This chapter contains an overview of the computational, analytical and statistical 

methods employed by this study. First the fluid mechanics of the computational fluid dynamic 

(CFD) simulations performed in ANSYS CFX will be discussed. The CFD results will be used as the 

base state for the zeroth-order bulk flow equations to improve the accuracy of the bulk flow 

solutions for rotordynamic coefficients. A summary of bulk flow theory is presented, followed 

by the hybrid CFD/bulk flow methodology. A discussion of experimental design and its 

application to optimization of CFD parameters is then presented. Finally, statistical criteria for 

judging the quality of multiple linear regression models are discussed. 

2.1 ANSYS CFX 

CFD simulations for this study are performed in ANSYS CFX versions 13.0 and 14.0. CFX 

numerically solves a discrete formulation of the full unsteady Navier-Stokes conservation 

equations [19, 20, 21]. This study assumes a Newtonian incompressible fluid due to the 

properties of the working fluid and operating conditions of the seal. Thus the energy 

conservation equation and the equation of state are neglected. Conceptually, any flow can fully 

be defined by the solution of the Navier-Stokes equations. Unfortunately, any significant 

turbulence in the flow means that present day computational power is not sufficient to solve a 

mesh that would be fine enough to resolve the smallest turbulent length scales by direct 

numerical simulation (DNS). To overcome this challenge, CFX relies on modifications to the 

original Navier-Stokes equations and additional information provided by an appropriate 

turbulence model. 
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2.1.1 Governing Equations: Reynolds Averaged Navier-Stokes Equations 

Because it is not feasible to calculate the behavior of every temporal and spatial 

turbulent disturbance in the flow, the Reynolds averaged Navier-Stokes (RANS) equations are 

used to represent the average characteristics of the flow properties for larger time and space 

scales. To achieve this statistical representation of the flow, the RANS equations redefine the 

dependent variables of the Navier-Stokes equations as time-averaged and instantaneous 

perturbation terms. Time-averaged terms are averaged over a time scale that is much smaller 

than the entrainment time for a fluid element in the seal, but large compared to the turbulent 

perturbations. The dependent variables in question are pressure and velocity for the 

conservation and momentum equations. This study employs an incompressible model; 

however, were compressibility an issue, the independent variables would be time averaged 

with a density weighting. The compressible perturbation terms fluctuate over time and 

pressures, and thus would not automatically average to zero like a variable that is only 

perturbed in time. Substituting the new dependent variables into the previous continuity and 

momentum equations and time-averaging the equations as a whole, gives the RANS equations 

for an incompressible flow. All perturbation terms vanish due to the time averaging process, 

except for the term representing stresses from turbulent mixing. This term is known as the 

Reynolds stress tensor. The Reynolds stresses are now an additional unknown term without an 

additional equation to solve. Annular seal literature commonly applies the two equation k-ε 

turbulence model to allow the solution of the additional unknown in the momentum 

conservation equation [21]. The k-ε turbulence model is an “eddy viscosity” turbulence model. 



 

11 

This category of model is defined by the Boussinesq assumption in which turbulence is 

characterized by spontaneous evolution and break-up of small eddies [22]. The fluid stresses 

resulting from eddies are correlated to the time-averaged strain rate by a determined constant 

representing the viscosity of the turbulent flow in an eddy,  𝑡 [23].  

2.1.2 Scalable Wall Function 

Both the rotor and stator walls are defined by a no-slip boundary condition. CFX deals 

with a no-slip wall by defining the tangential velocity in the turbulent boundary layer as a 

function of wall shear stress,   , and distance from the wall,    or  +. Near the wall, in the 

“viscous sublayer”, the relationship between distance and velocity tangent is linear before 

transitioning to a logarithmic relationship as the flow becomes fully turbulent. The ANSYS CFX 

“scalable wall function” is designed to mitigate the near wall mesh sensitivity of these 

calculations. This is done by setting a minimum value for the normalized distance from the wall 

to 11.06. The specific value is chosen by the intersection of the velocity predictions for the 

viscous sublayer and the fully turbulent region [21].  

2.1.3 Numerical Solution Method 

The Navier-Stokes equations do not have analytical solutions for flows as complex as 

those presented in this study. Instead, ANSYS CFX discretizes the fluid domain into small control 

volumes using a user defined mesh. The fluid properties for the domain are stored at each 

node, or corner, of the control volumes. The RANS conservation equations and turbulence 

model are then integrated over the control volume. Source and time differentiation terms are 

evaluated at the centroid of the control volume, while flux integrals are evaluated at the 
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midpoint of a line connecting the centroid of the control volume to the respective face. The 

flow properties are then found by application of a backwards, or implicit, Euler method to the 

governing equations. This numerical iteration method equates the differential form of the 

governing equations to change in flow properties between times    and   +   , through the 

integrated governing equations. In the case of a steady-state simulation, the time step both 

resolves turbulent time scales and functions as a limiter on the rate of convergence.  

2.1.3.a Shape Functions 

The fluid flow variables and flow properties stored at each node are combined with 

simple algebraic “shape functions” and summed to represent the approximate influence of 

each node in a given control volume at the points of integration, shown in Equation 2. The 

shape functions,  𝑖, allow the value of the flow properties, represented by  , and the influence 

of the element’s nodes to vary throughout each element. The summed shape functions for 

each element act as general solutions to the discretized RANS equations. 

  = ∑ ( 𝑖 𝑖)
𝑛𝑜𝑑𝑒𝑠
𝑖  (2) 

ANSYS CFX employs different shape functions based on the number of nodes defining an 

element, which is dictated by the shape of the elements used to mesh the fluid domain. 

Because the fluid domains in the present work are meshed with a sweep method, the only type 

of elements employed herein are hexahedral and “wedge”, or triangular prism, elements. The 

sweep method takes a two-dimensional mesh of triangles and/or quadrilaterals and “sweeps” it 

across a three-dimensional body of constant cross section to create three-dimensional prism 
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elements. The various element shapes and their shape functions are given in ANSYS 

documentation [19-21,23]. [19] [20] [23] [21] 

2.1.3.b Solution and Determination of Residuals 

The discretized RANS equations formulated for each element in the domain form a 

system of linear equations. Equation 3 shows the general matrix representation of the 

equations. The variable  𝑗 represents the solution vector composed of shape functions as seen 

above. Matrix  𝑖𝑗 consists of coefficients and 𝑏𝑖 is a measure of solution residual errors. All 

conservation equations are coupled, which requires larger memory capacity to store 

coefficients, but increases solution efficiency and robustness. 

 [ 𝑖𝑗][ 𝑗] = [𝑏𝑖] (3) 

ANSYS CFX employs a “Multigrid (MG) accelerated Incomplete Lower Upper (ILU) 

factorization technique” to solve the linear system of equations [19, 21]. The “Multigrid”, or 

“Algebraic Multigrid”, portion of the technique refers to the process of using a progressively 

coarser mesh, composed of multiple control volumes from the base mesh, as iterations 

progress and transferring the resulting solution back to the “fine” or base mesh. Each iteration 

of a fine mesh can smooth out residuals within each individual element, however more widely 

spread residuals, or larger, will take many iterations to be corrected. The algebraic multigrid 

method sums the solutions for several fine grid elements to simulate the use of a coarser grid 

structure, increasing the rate at which residuals may be reduced. This coarser grid allows larger 

steps to improve large residuals, and allows the small scale errors to average out in the larger 

control volume, later to be dealt with by the fine mesh residuals.  
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Errors in the simulation can occur in any control volume element in the domain, and 

similar to the variables for which we are trying to solve, these errors can be diffused to 

neighboring elements. The neighboring elements may have their own errors that amplify or 

cancel errors being transmitted to them. The primary method of reducing the inception of error 

sources is to increase mesh density in regions of the fluid domain that have large gradients of 

the variables being solved.  

2.2 Bulk Flow Analysis 

Bulk flow models have been used to model annular seals for more than 40 years [5]. 

Bulk flow models are an analytical application of the Navier-Stokes equations [1]. These 

equations are simplified by various assumptions and separated axially into several large control 

volumes, in which each flow property is assumed to be equal to a “bulk”, or average value. Bulk 

flow models have evolved, presently using 1, 2 or 3 control volumes depending on geometry, 

working fluid, and preference [1,6,24-26]. The fluid region of the baseline labyrinth seal, from 

the 8-stage pump shown in Figure 1.1, is shown in Figure 2.1, with a cross-section of one of the 

seal grooves. As labeled, the flow moves from the high pressure region on the left side into the 

upstream cavity, between the last pump impeller and the seal, and into the seal’s clearance 

region to exit on the right side. This work selects a single control volume bulk flow model and 

approximates the semi-circularly grooved labyrinth seal as a smooth walled plain seal. The plain 

seal simplification was chosen for the simplicity of the analytical model. [24] [25] [26] [6] [1] 
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Figure 2.1: Fluid region and groove cross-section of the baseline labyrinth seal 

2.2.1 Assumptions 

The working fluid and dimensions of a typical plain, or grooved, labyrinth seal allow for 

some assumptions: 

1. The flow is turbulent. 

2. Radial pressure variation in a CV is negligible compared to axial pressure variation. 

3. Velocity components are averaged radially and over each control volume axially and 

circumferentially. 

4. Curvature of the seal in the circumferential direction may be neglected. 

5. The rotor eccentricity is no larger than 10% of the seal’s radial clearance. 

6. When the rotor is not eccentric, the flow is steady state and fully developed.  

7. The working fluid is assumed to be a Newtonian incompressible fluid. 

The first assumption of turbulence can easily be demonstrated by calculating an 

approximate Reynolds number for the example labyrinth seal. A low estimate for velocity is 

obtained by temporarily neglecting the pressure differential and assuming Couette flow 
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between two infinitely long and concentric cylinders with the inner cylinder (of radius a) 

rotating at 3455 RPM, specified as the operating speed of the nominal seal from industry, with 

the outer cylinder (of radius b) held stationary [27, 28]. This method gives an estimated 

Reynolds number on the order of 13,000, defined by Equation 4 below [9]. The Reynolds 

number is based on twice the clearance region height representing the two wetted surfaces. 

Reynolds numbers greater than 2,000, for pipe flow, are assumed turbulent, thus the flow in 

the seal is assumed turbulent.  

 𝑅𝑒 =
2𝜌𝑈𝑐

𝜇
 (4) 

The second and third assumptions define the “bulk” flow approach by assuming a bulk 

value for the flow variables. These second and third assumptions also define velocity as a 

function of only circumferential coordinate (θ), axial coordinate (x), and time ( =  ( , 𝑥,  )). 

The fourth assumption is justified by the ratio of seal clearance to radius being on the order of 

0.003 [1]. The ratio indicates that the difference between integrating circumferentially on the 

rotor surface and the stator surface can be neglected. The fifth assumption, limiting the 

assumed scale of rotor eccentricity, is not necessary for the formulation of the modified Navier-

Stokes equations; however, it becomes necessary for the estimation of both the wall shear 

stresses and the seal’s rotordynamic coefficients. The small eccentricity assumption supports a 

further assumption of linear perturbation of the rotor’s eccentricity. The sixth assumption, of 

steady state conditions, applies only to the initial solutions of the governing equations without 

rotor eccentricity. The last assumption, that the working fluid is Newtonian and incompressible, 

is only relevant to our particular example seal with its working fluid of water. It is assumed that 
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the water temperature does not change significantly along the length of the seal, thus allowing 

the energy equation to be omitted [29]. 

2.2.2 One Control Volume 

The one-control-volume bulk flow model is primarily for smooth rotor/smooth stator 

annular seals. The simplification of modeling the labyrinth seal as plain makes for a simple 

formulation of the Navier-Stokes equations for the problem. The single control volume fluid 

element is illustrated in Figure 2.2, and free body diagrams of the CV are shown in Figure 2.3. In 

the free body diagrams the shear stresses on the rotor and stator walls are represented by τ’s, 

methods for approximating the shear stress will be discussed in a later section. The mass, axial 

momentum and circumferential momentum equations are shown in order as Equations 5-7 [1, 

6]. From the left the terms in the continuity equations represent the gradient of flow 

circumferentially across the fluid element, the axial flow along the seal, and the change in 

clearance with respect to time as the fluid whirls around the eccentric rotor and the rotor 

rotates about its axis.  

 
Figure 2.2: Single Control Volume Fluid Element 
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Figure 2.3: Free Body Diagrams, with ∑𝑭𝒙 on the left, and ∑𝑭𝜽 on the right 
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2.2.3 Shear Stress Models 

Wall shear stress is modeled with an empirical friction factor, relating the resultant 

shear stresses to the resultant relative velocities, as seen in Equation 8. This friction factor can 

then be estimated in many ways; however, all of the estimates are functions of Reynolds 

number, defined above in Equation 4. Hirs and Childs use a Blasius friction factor model, 

Equation 9, where n and m are the empirical coefficients [1, 5]. However, Childs also uses a 

Moody friction factor, Equation 10, where the a’s and b’s are empirical coefficients, and e is the 

absolute roughness of the wall [1, 30]. Other potential friction factor models include Fanning 

and Darcy-Weisbach friction factors [1, 5].  
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 𝑓 =
𝜏

1
2⁄ 𝜌𝑈

2 (8) 

 

 𝑓𝐵 = 𝑛(Re)
𝑚 (9) 

 

 𝑓𝑀 =  1 [1 + (
𝑏2𝑒

2𝑐
+
𝑏3

Re
)
1
3⁄

] (10) 

2.2.4 Rotordynamic Coefficients 

The rotordynamic coefficients represent the terms of the stiffness, damping, and mass 

matrices in the rotor system’s vibrational equations of motion [1]. These matrices are skew-

symmetric and homogeneous when written in Cartesian coordinates. The coefficients may be 

solved for by treating the vibration of the rotor as a small linear perturbation. Perturbation 

theory allows the solution of differential equations by treating them as slight variations on a 

known solution. The resulting additional equations allow for the calculation of the flow through 

the seal for different operating conditions. The rotordynamic stiffness, damping, and mass 

coefficients are then determined from the perturbed pressure profiles. 

2.2.4.a Nondimensionalization and Perturbation of the RANS Equations 

Perturbation theory is similar to the idea of Taylor series approximations. The 

approximation starts at some known value and increasingly higher-order terms are included to 

approach the true solution. For the purposes of this study, only the zeroth and first-order 

equations are used. The first step towards setting up the perturbation equations is to 

nondimensionalize the governing equations. Nondimensionalization is performed to allow the 

scaling of the rotor’s eccentricity to the nominal height of the straight seal clearance region. 

This is common practice and establishes the small perturbation parameter as the rotor’s 



 

20 

nondimensional eccentricity which is not typically analyzed at greater than 10% of the 

clearance region. The seal length is assumed to be much less than that of the rotor allowing any 

axial variation in clearance to be neglected. This small perturbation of clearance height is then 

assumed to create proportional perturbations in axial velocity, circumferential velocity and 

pressure. Performing these substitutions and separating equations of different orders, after 

simplification, results in two zeroth-order momentum equations, for the axial and 

circumferential directions respectively; and three first-order equations, for continuity and axial 

and circumferential momentum. The zeroth-order equations become ordinary differential 

equations in nondimensional pressure and circumferential velocity as a function of axial 

position; for a straight smooth seal the axial velocity is constant. The zeroth-order momentum 

equations are solved by numerical iteration in conjunction with the boundary conditions. The 

coefficients of the first-order perturbation equations are dependent on the results of the 

zeroth-order equations. 

The first-order equations are subsequently solved by defining the nondimensional 

clearance as a harmonic function dependent on the operating speed of the rotor and the 

amount of fluid whirl assumed [1]. These variables assume similar harmonic solutions with 

separation of variables techniques. The resulting six real harmonic equations are simplified to a 

system of three complex ordinary differential equations. The eccentricity of the spinning rotor, 

and thus the fluid in the seal, precesses around the nominal axis, accounting for the time 

dependence of the other perturbation variables [1, 31]. Application of homogeneous boundary 

conditions to the system of complex equations provides the reaction force components in 
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terms of precession frequency. Least-squares linear regression is then used to fit vibration 

coefficient matrices to data points generated by the solution of the first-order perturbation 

equations at multiple precession frequencies [1, 6]. 

2.3 Design of Experiments 

Design of experiments is a branch of statistics concerned with getting the most 

information out of a minimum number of experiments. This is done by planning the 

experiments to span the design space efficiently based on the multifactor linear regression 

model which is selected to fit the data [32-34]. [32] [33] [34] 

A classic example of DOE is a factorial design, invented by R. A. Fisher in response to the 

common misconception that to obtain information about the effect of a factor you must hold 

other factors in a given system at constant levels [26-28]. Instead, a 2k factorial design not only 

allows variation of multiple factors at a time, but also allows for calculation of interaction 

effects between factors. Interaction between two factors occurs when the effect of one factor 

depends on the level of a second factor. A two-level factorial design in three factors, shown in 

Figure 2.4, has design points at each corner of a cube in the three-dimensional design space. 

This design has 23, or 8, experiments.  

 
Figure 2.4: 2

3
 Factorial Design 
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An empirical linear regression model to fit results from a 23 design might contain three 

first-order parameters, three two-factor interactions, and an intercept parameter, as shown 

here:  

 = 𝛽 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽12𝑥1𝑥2   

 +𝛽13𝑥1𝑥3 + 𝛽23𝑥2𝑥3 + 𝑟 (11) 

where y is the response being modeled, the x’s are the three design factors, and the β’s 

represent the linear parameters estimating each factor effect, or interactions between factors, 

that define the model. Each experiment in the design provides a degree of freedom (df) for 

estimating a parameter, thus the 23 design has eight total degrees of freedom. With seven 

parameters in the model, only one degree of freedom is left for estimating residuals (r). 

Residuals have two sources: lack of fit of the model, and experimental uncertainty. Experiments 

at additional factor levels provide degrees of freedom for estimating the lack of fit of the 

model; replicate experiments at previous factor combinations provide degrees of freedom for 

estimating experimental uncertainty [34, 35]. However, the number of experiments in a 

factorial design increases exponentially with an increase in the number of factor levels. Thus, 

typically, few factor levels are used, or fractional factorial designs may be employed [32, 34, 36, 

37]. A fractional factorial design incorporates a fraction, usually a negative power of the 

number of factor levels, of the experimental points in a full factorial design. For example, a 25-2 

is a ¼ fraction of a 25 factorial design having 8 design points instead of 32. As previously stated, 

it is only necessary to have more degrees of freedom from performing experiments than the 

number of parameters in the regression model. However, if only a subset of the experiments in 
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the full factorial design are performed, some factor interaction effects may be confounded with 

each other. Confounding means that certain factor effects are indistinguishable from each 

other. Specific fractional factorial designs, such as the many Placket-Burman designs, exist to 

minimize the amount of confounding or limit confounding to higher order factor effects, but 

are not employed herein [32, 34, 38]. 

Performing experiments at only two levels of each factor does not permit estimation of 

quadratic, or higher-order, factor effects. To offset this deficiency and still remain relatively 

efficient for experiments with few factors, the two level factorial design can be combined with 

a “star” design to make a Box-Wilson “central composite" design, as shown in Figure 2.5 [32, 

34, 39]. The star design is a three level design that consists of a central design point around 

which additional design points are defined by varying one factor at a time to high and low 

values. The central composite design provides five levels for each factor, enabling the fitting of 

a model that includes linear effects, quadratic effects, and interaction effects between factors 

(Equation 12). The resulting empirical equation may be seen to be the equivalent of the first 

few terms of a Taylor expansion.  

  = 𝛽 + 𝛽1𝑥1 + 𝛽2𝑥2+ 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽12𝑥1𝑥2 + 𝑟 (12) 
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Figure 2.5: Central Composite Design in Two Factors 

Factor levels for a central composite design are commonly selected by first choosing the 

center point and the levels representing the factorial design. These factor levels are coded in 

terms of an alpha value at -1, 0, and 1. The levels of the star’s end points are then selected 

either by some overriding practical concern or to conform to convention. Three common 

conventions are (1) to select this alpha for rotatability of the design, (2) to obtain a spherical 

design, or (3) to obtain a face-centered design [32, 34]. A rotatable design is defined by the 

variation in response prediction being constant as the design is rotated around the center point 

at a constant radius. The coded factor level or alpha associated with a rotatable design is 

calculated by Equation 13. A spherical design indicates that the design points will all lie on the 

surface of a sphere centered at the central design point, and a face-centered central composite 

design has only three levels, with the star design’s end points centered on the face of each 

factorial square. Selection of these levels is dependent on the goals of the design and the 

limitations of the design space. 

 𝛼𝑠𝑡𝑎𝑟 = (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹 𝑐 𝑜𝑟𝑖 𝑙 𝐷𝑒𝑠𝑖𝑔𝑛 𝑃𝑜𝑖𝑛 𝑠)
1
4⁄  (13) 
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2.4 Hierarchical Multiple Regression Model Fitting 

Multifactor least-squares linear regression analysis was applied to the results of each 

designed experiment using Design Expert v.6 (Stat-Ease, Minneapolis, MN). There are several 

widely accepted statistics that evaluate the quality of a regression model. The most common is 

the coefficient of determination, R2, which has values between 0 and 1 and describes the 

fraction of the variation in the data about its mean that is accounted for by the parameters of 

the regression model. Because of how it is calculated the coefficient of determination always 

increases with the addition of terms to the model, until the number of parameters matches the 

number of experiments and R2 equals one [34, 35]. Thus, while R2 represents an important and 

easily understood metric of model quality, it is not sufficient. In addition to the coefficient of 

determination, an “adjusted” and “predicted” coefficient of determination are used in this work 

in conjunction with F-tests based on analysis of variance (ANOVA) of the individual parameter 

estimates and various graphical methods to select and provide for a judgment of the adequacy 

of the fitted regression models. It should be noted that a standard F-test for lack-of-fit of the 

model to the data is excluded in the present situation due to the lack of replicate experiments 

(experiments at the same factor levels that provide an estimate of experimental uncertainty). 

No replicate simulation experiments were performed because the CFD simulation converges to 

the same solution every time when given a set number of iterations and a consistent initial 

value. 

The adjusted R2 offsets inflation of the coefficient of determination by comparing the 

number of parameters used in the model to the number of experiments [35]. The adjusted R2 is 
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always less than the standard R2, and decreases as additional parameters are added to the 

model that do not also proportionally increase the correlation between model and data. The 

predicted R2 is calculated by removing one point at a time from the data set, refitting the 

regression model and predicting the response of the omitted point. The residual differences 

between the measured responses and the cross-validated predictions are then used to 

calculate the predicted R2 [35]. Again, the predicted R2 value is always less than the standard R2 

and decreases as additional parameters are added to the model that do not also improve 

prediction of the response. Ideally, all three coefficients of determination are approximately 

equal to indicate a good model. However, both the adjusted and predicted R2 values can be 

negative, indicating that the regression model fails to explain more variation in the observed 

data than a simple average [35]. 

Further validation of the fitted model can be achieved by using F-tests to determine the 

statistical significance of each single model parameter by calculating the ratio of the parameter 

estimate to its standard error. This approach is equivalent to calculating the confidence interval 

for each parameter to determine if it is significantly different from zero at a stated level of 

confidence (e.g., 95%). For the hypothesis test that a parameter is not significantly different 

from zero, a p-value can be derived that indicates the probability that the outcome for that 

parameter occurred by chance. Statistical confidence level can be stated as the probability that 

the outcome did not occur by chance. Thus, p-values less than 0.05 are consistent with the 95% 

confidence interval for not containing zero and the parameter estimate being different from 

zero at or above the 95% level of confidence. [32-35]. [32] [33] [34] [35] 
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The coefficients of determination and individual parameter ANOVA are used to judge 

the fit of a particular regression model, but do not give an indication of what model to begin 

with. Instead, the method of sequential sum of squares is applied [35]. Beginning with only the 

regression model’s intercept parameter, additional parameters are added to a model in 

hierarchical groupings provided that sufficient experiments have been performed at multiple 

factor levels. The change in residual sum of squares is then weighted by the additional 

experimental degrees of freedom consumed by the new parameters and can be tested for 

significance at the desired confidence level. Analogously, a combined F-test statistic could be 

calculated to determine the level of confidence at which the additional parameters are 

collectively different from zero. For example, if the mean and first-order factor effects are 

found to be significant, then the first-order two factor interaction effects might be evaluated 

for inclusion in the model, followed by second order factor effects and second-order (two-

factor) interactions, cubic effects and three-factor interaction effects, and so on. Sequential 

sum of squares analysis describing the modelling power of these added parameters is then used 

to infer the order of model complexity best suited to the data. The other metrics of model 

quality may then be used to provide the basis for judging the tradeoff between model 

complexity and adequacy of prediction. 

For example, these metrics may indicate that a quadratic regression model explains 

slightly more variation in the data about its mean, but fails the sequential sum of squares F-test 

for increased significance over a linear, or first-order factor effect, model. Parameters that are 

not significantly different from zero at the desired confidence level (say, 95%) are removed to 
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improve the model’s balance of parameters [34, 35]. Occasionally, it is desirable to leave terms 

in the model that are not individually found significant if there is a physical justification based 

on the experiment or if they preserve the model hierarchy. For example, if a second order 

factor effect is found significant the associated first-order factor effect should be included 

regardless of significance. However the first-order interaction effects associated with it need 

not be included if found insignificant. This allows the regression model to be refined on a term 

by term basis to include only, or at least primarily, statistically significant factor effects. 

Additional qualitative tests of model quality can be demonstrated by various plots 

showing randomness of residual patterns. Plotting the actual response value against the 

predicted response value can demonstrate the fit and lack of bias of the model. Randomized 

residuals can be demonstrated by plotting the residuals against the actual or predicted 

response to validate the assumptions of least-squares regression [35]. 

The present work used the coefficients of determination and single parameter F-tests to 

select parameters to include in each regression model. The resulting regression models thus 

reflect only the factor effects that are statistically significant at a high level of confidence, 

allowing seal designers to ignore factor effects shown to be statistically insignificant.  
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CHAPTER 3:  METHOD 

This chapter covers the methodology used in this study. First was the selection of a 

baseline for the seal design. Multiple methods were examined to parameterize this initial 

design. The goal was to reduce the parameters to be varied while maintaining as much 

potential variation in the seal geometry as possible. Computational models were then created 

in ANSYS CFX, and multiple meshing schemes and densities were tested to balance 

computational expense and accuracy. As discussed in the next chapter, experimental designs 

were then selected and performed to evaluate the design parameters. Simulation data were 

processed using a hybrid bulk flow/CFD method and modeling by multiple least-squares 

regression. The resulting regression equations were used to map the design spaces and identify 

design points with minimum leakage rates. 

3.1 Selection of Seal Model 

The baseline seal CFD model for this investigation was selected from Untaroiu et al. [12]. 

The annular labyrinth seal is a sub component of the 8-stage pump, shown in Figure 1.1, and 

has a working fluid of water. The labyrinth seal was modeled as a five degree sector to decrease 

the time required to generate a well meshed model and the time to solve for the seal’s flow 

properties. The fluid region of the seal is shown again below in Figure 3.1 with a highlighted 

cross section indicating where the five degree sector fits into the full 360° seal model. The five 

degree sector of the annular labyrinth seal, shown in Figure 3.2, consists of an inlet pre-swirl 

cavity feeding into the clearance region of the seal. The geometry of the seal itself consists of 

twenty parallel semi-circular grooves oriented perpendicular to the axis and evenly spaced 
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axially beginning 9.53 mm from the pre-swirl cavity and ending 9.53 mm before the seal’s exit 

boundary. This model was selected for the simplicity of its geometry and because it gives all of 

the relevant dimensions and flow variables needed to recreate the seal. The flow variables of 

the base seal model are listed in Table 1. It should be noted that the original seal was solved as 

a full 360 degree model with eccentricity, whereas the fluid model used in the present study is 

a five degree sector of an unperturbed seal. Also, the original seal model has specified inlet 

velocity components. In combination with the fixed area of the inlet, this defines the flow rate 

exactly as given by a mass conservation calculation. A boundary condition that fixes the flow 

rate as constant would defeat the purpose of minimizing flow rate. So an inlet pressure was 

specified based on the CFD results of Untaroiu, et al. [12]. 

 
Figure 3.1: Labyrinth seal’s fluid region with highlighted seal cross-section 
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Figure 3.2: Baseline seal geometry, a 5° sector of the full seal 

 

Table 3.1: Baseline seal geometry 
  𝑆 

[mm] 
D 

[mm] 
c 

[mm] 
N 
[-] 

W 
[mm] 

𝑙 𝑖 , 𝑙 𝑙 
[mm] 

d 
[mm] 

267 111.9 0.0305 20 3.18 9.53 1.59 

 

3.2 Parameterization of Seal Model 

The baseline annular labyrinth seal was modeled as a five degree sector model in ANSYS 

Design Modeler [40], shown in Figure 3.2. A five degree sector was chosen because ANSYS CFX 

is a 3-dimensional CFD solver. Rather than create a model of one element thickness, a five 

degree sector allows for potential refinement of the flow in the circumferential direction 

without as much added solution time as a larger sector or full 360 degree model. This baseline 

model was then modified to create two reduced parameter models. The first parameterization, 

shown in Figure 3.3, describes the seal with five factors representing sequential distinct seal 

groove radii that are repeated four times along the length of the seal. The landing between the 

grooves was calculated, based on the seal length and groove widths, to set each groove 

equidistant from each other, as given by Equation 14 and seen in Figure 3.4. This arbitrary 
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parameterization allows investigation of the effect of groove scale along the entire length of 

the groove without resorting to a 20-factor model to include each radius individually.  

 
Figure 3.3: Parameterization of seal geometry 

 
Figure 3.4: Groove axial spacing geometry along the seal 

 𝑙𝑙 =
(𝐿𝑠−2𝑙𝑖−8∑ 𝑅𝑗

5
𝑗 )

19
 (14) 

This parameterization was chosen because a full parameterization, allowing the scale of 

each groove to vary independently, would consist of 20 parameters. The number of 

experiments necessary for obtaining information on quadratic and two factor interaction 

effects must be more than the number of parameters in the resulting linear regression 

equation, given by Equation 15 [34]. Here, p is the number of parameters and k is the number 

of factors. 20 factors would require a minimum of 231 experiments, but five factors only needs 

21. This makes a study of five parameters much more computationally cost effective. Equation 
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16 shows the full linear regression model with Rn representing radius number n and r still 

representing the residuals between measured and predicted response of mass flow rate 

leakage through the seal (y). 

 𝑝 =
1

2
(𝑘 + 1)(𝑘 + 2) (15) 

 = 𝛽 + 𝛽1𝑅1 + 𝛽11𝑅11
2 + 𝛽2𝑅2 + 𝛽22𝑅22

2 + 𝛽3𝑅3 + 

 𝛽33𝑅33
2 + 𝛽4𝑅4 + 𝛽44𝑅44

2 + 𝛽5𝑅5 + 𝛽55𝑅55
2 + 𝛽12𝑅1𝑅2 + 

𝛽13𝑅1𝑅3 + 𝛽14𝑅1𝑅4 + 𝛽15𝑅1𝑅5 + 𝛽23𝑅2𝑅3 + 𝛽24𝑅2𝑅4 + 

 𝛽25𝑅2𝑅5 +  𝛽34𝑅3𝑅4 + 𝛽35𝑅3𝑅5 + 𝛽45𝑅4𝑅5 + 𝑟 (16) 

The second parameterization, shown in Figure 3.5, repeats a single “flexible” groove 

geometry twenty times equally spaced along the length of the seal. The groove geometry is 

considered flexible because variations in the defining parameters describe a groove whose 

shape can vary smoothly between triangular, rectangular and semi-circular extremes. The 

flexible groove shape consists of a trapezoid defined by the groove’s width, the width of the flat 

truncating the groove, the groove depth, and the entrance and exit angles. The radii within the 

groove cavity are equal to each other and dependent on the five design variables. The extremes 

are shown in Figure 3.6 through Figure 3.8, with the relevant geometric constraint for each 

extreme in Equations 17 through 19 below each respective figure. The second parameterization 

repeats the individual groove shape along the length of the seal because every additional 

independently variable shaped groove adds five more parameters to the model. Allowing each 

of the 20 grooves to have independent variable shapes would require at least 100 parameters 

even without additionally variable spacing between grooves. The parameterizations employed 

herein are only some of many options for a reduced parameter model. As with all such models, 
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the parameterization directly affects the meaning that can be derived from the results, and 

subsequent simulations with different parameterizations are recommended by this author. 

 

 
Figure 3.5: Second seal geometry parameterization example groove, intermediate shape 

 

 
Figure 3.6: Maximum groove flat width constraint, rectangular groove extreme 

 𝛼 <
𝜋

2
 (90°)  

 𝛽 <
𝜋

2
 (90°)  

 W − f ≥ 0.01 (17) 
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Figure 3.7: Maximum groove depth constraint, triangular groove extreme 

 𝑑𝑚𝑎𝑥 = (W− f)
sin𝛼 sin𝛽

sin[𝜋−𝛼−𝛽]
 (18) 

 

 

  
Figure 3.8: Minimum groove depth constraint, arced or semi-circular groove extreme 
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Figure 3.9: Geometric diagram for calculation of minimum depth 

 𝑃𝑥 =
tan(𝛽)(𝑊−𝑓)

tan(𝛼)+tan(𝛽)
 𝑃𝑦 =

tan(𝛼)tan(𝛽)(𝑊−𝑓)

tan(𝛼)+tan(𝛽)
  

 𝐴𝑥 = L𝑚𝑖𝑛 cos 𝛼 𝐴𝑦 = L𝑚𝑖𝑛 sin 𝛼  

 |𝑃𝐴̅̅ ̅̅ | = √(𝑃𝑥 − 𝐴𝑥)2 + (𝑃𝑦 − 𝐴𝑦)
2

  

 𝑅 = √|𝑃𝐴̅̅ ̅̅ |2
1−cos(𝜋−𝛼−𝛽)

1−cos(𝛼+𝛽)
  

 𝑑𝑚𝑖𝑛 = 𝐴𝑦 + 𝑅(1 − sin (
𝜋

2
− 𝛼)  

 For 𝛼 > 𝛽 and 0 ≠ tan𝛽 + tan
|𝛼−𝛽|

2
 (19) 

3.3 Mesh Generation and Dependence 

The mesh for each model was generated automatically in ANSYS Workbench from a 

parameterized geometry file. The mesh was created with a sweep around the seal’s axis, 

dividing the five degree sector into 30 equal segments circumferentially. The target face of the 

sweep method was selected as the radially sliced face to the right looking along the seal axis. 

Element sizing requirements were set for the target face and its boundaries to ensure quality 

mesh generation. The target face was then inflated along the edges that meet the rotor and 

stator surfaces respectively to increase the number of elements near the wall. The procedure of 
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applying inflation layers is required to capture more detailed boundary layer effects near the 

walls. A representative section of the mesh is shown in Figure 3.10.  

 
Figure 3.10: First parameterization seal groove mesh 

The base model, with all radii equal to 1.59 mm, was simulated with multiple meshes of 

decreasing mesh element density until the resulting flow properties deviated from the 

simulations performed with higher mesh densities. Meshes with element densities of about 2.5 

million elements down to 570,000 elements were tested. The pressure profile along the length 

of the seal, Figure 3.11, is qualitatively the same for every simulation. Similarly, the axial 

velocity profile is qualitatively the same for each mesh density simulation, Figure 3.12. 

Qualitatively and quantitatively there is no consistent distinction between the flow variables for 

the different mesh densities. The median density was chosen to balance potential increased 

accuracy with computing time constraints.  
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Figure 3.11: Pressure profile mesh dependence 

 
Figure 3.12: Axial velocity profile mesh dependence 
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For the second parameterization models, a mesh of approximately the same element 

density (1,538,910 Elements) was created for geometry of the nominal size, as defined by 

comparison with the base model of parameterization one. This mesh was also swept, however 

the 2D mesh of the target face was defined differently than that of the first parameterization. 

Instead of dividing each edge into a fixed number of equal segments, the software was set to 

automatically generate a new mesh with elements of an approximate size that was specified for 

each edge. This will result in a larger increase in the number of mesh elements for larger groove 

geometries. This is necessary because of inconsistent relative sizes of each edge that defines 

the groove shape. An example of the mesh for a groove defined with the second 

parameterization is shown in Figure 3.13. 

 
Figure 3.13: Second parameterization seal groove mesh 

3.4 CFD Simulation Definition 

CFD simulations were performed with ANSYS CFX version 13.0 and 14.0. This 

commercial software solves the Reynolds averaged Navier-Stokes equations in discrete volumes 

defined by the mesh of a fluid model. Conservation equations for mass and momentum were 

applied to each element. The working fluid of the domain was set to be water at 25C. Water 
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was not expected to change temperature significantly along the length of the seal so the energy 

equation was omitted. A standard k-ε model was used to resolve turbulence within the seal 

[13]. The domain was set to be rotating at 3500 RPM about the axis of the seal and the rotor 

surface was defined as a no-slip wall at rest relative to the domain. A counter rotating no-slip 

wall boundary condition was applied to the stator surface of the seal. The inlet boundary was 

defined by a static pressure of 18.575 MPa which corresponds to the pressure drop across the 

base seal [12]. The flow was specified to be normal to the inlet boundary for a zero pre-swirl 

flow. Turbulence was set to 5%, or medium intensity, at the inlet and initially throughout the 

seal. The outlet was set to an average relative, or gauge, static pressure of zero and a blend of 

5%. The left and right walls of the seal were defined with a fluid-fluid interface as rotationally 

periodic boundaries about the axis of the seal. The rotational periodic boundary condition 

specifies the solution at one interface to be a phase shifted periodic function of the other 

interface. The simulation was judged to be converged when the mass flow rate remained 

steady for 300 iterations and the RMS residuals of the Reynolds Averaged Navier-Stokes (RANS) 

equations reached or fell below values of 10-6. Comparison of the leakage rates between the 

five degree seal sector model herein and the full 360° seal model simulated by Untaroiu, et al. 

[40] show that this study’s CFD results predict higher leakage rates for the same seal groove 

geometry. It is assumed that the discrepancy in leakage rate can be explained by the lack of 

eccentricity in the five degree sector model and lack of prescribed pre-swirl at the inlet. As long 

as leakage rates for this study are accurate relative to each other, the absolute leakage value is 
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not relevant, because the same trends associating the geometric factors to the leakage rate 

response will apply. 

3.5 Hybrid Bulk Flow/CFD for Labyrinth Seals 

The hybrid bulk flow/CFD method of analysis for annular fluid seals was developed by 

Migliorini, et al. [4]. In this method, a circumferential sector of the full three dimensional seal is 

analyized using steady state CFD simulations at the nominal clearance of the seal, without rotor 

eccentricity. The resulting average flow properties and wall shear stresses from the CFD model 

are taken at 200 locations in the clearance region along the axial length of the seal. The values 

at these nodes are used in place of the solution to the zeroth-order perturbation of the 

governing bulk flow equations for a straight and smooth annular seal. This approach has been 

shown to increase significantly the accuracy of the subsequent bulk flow solutions for the 

rotordynamic coefficients of the seal over a standard bulk flow analysis. These increases in 

accuracy also increase the solution time of the entire analysis, however the process is much 

faster than running an equivilant CFD analysis on multiple full seal models at different whirl 

speeds. Though originally applied to hole pattern seal geometries, the method is not 

constrained to any particular seal geometry because the specific geometry of the seal in 

question is taken into account by the zeroth order solution values provided by the CFD 

simulation. This hybrid method was employed herein to allow calculation of rotordynamic 

coefficients for the 187 distinct seal geometries tested in this study. Performing a more 

traditional CFD simulation of the full seal model at multiple whirl speeds for each geometry 

would have required a minimum 600% increase in computational time. 
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3.6 Optimization Techniques 

Design space parameters yielding minimum leakage rate were found by running 

numerical optimization of the predicted least-squares multiple regression equations obtained 

from each design of experiments cycle. Two distinct methods were used according to the 

complexity of the regression equation fit to the data. For the first parameterization, the leakage 

was modeled with a simplified quadratic equation. Without interaction of factor effects and no 

geometric constraints to consider, an analytical approach to optimization was possible. Also 

conveniently, the quadratic parabola was concave. The second derivative of the regression 

equation is positive, so minimum factor values could be obtained by taking the first derivative 

with respect to each factor and setting it equal to zero. 

For more complex regression equations and seal geometries, such as the second 

parameterization, the interaction of factor effects and the presence of nonlinear geometric 

constraints prevent the analytical approach to optimization. A nonlinear optimization tool in 

Matlab 2012a was used to perform the optimization procedure on the multiple regression 

equation. The function fmincon finds minima of constrained nonlinear multivariable functions 

of generalized form [41]. Despite the regression equation being linear, the function was 

selected for its ability to accommodate the nonlinear geometric constraints imposed by the 

second parameterization, see Equations 17 through 19 above. The fmincon function can apply 

one of four distinct optimization algorithms [41]. The optimization algorithm selected for this 

application was “active-set”; this algorithm is not the fastest algorithm, but has the advantage 

of being capable of taking larger iterative steps which can be useful when the constraints are 
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less smooth. This algorithm employs the “sequential quadratic programing” (SQP) method [41]. 

All optimization methods are subject to becoming stuck around a local minimum of the 

objective function. To avoid this, the optimization function was initialized with 500 design 

points randomly generated between the extreme allowed values of each factor, and the design 

point with the overall minimum leakage among the resulting local minima was selected as the 

global optimum.  

It should be noted that the above optimization procedures only reflect the true 

optimum design points as much as the leakage rates obtained from the multiple regression 

equations reflect the true leakage rate of a particular labyrinth seal geometry. No attempts 

were made to optimize the seal geometry parameterizations for any other objective function. 

None of the rotordynamic coefficients have objectives that would apply universally to any 

turbomachine assembly.  
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CHAPTER 4:  DESIGN OF EXPERIMENTS – ITERATION AND RESULTS 

The goal of a designed experiment is to maximize the amount of information obtained 

to describe a given response using a minimum number of experiments. This study selected 

experimental designs for simulation experiments, in conjunction with the parameterizations, to 

explore as much of the design space for seal geometry as possible. The resulting data were 

analyzed by multiple least-squares regression to obtain empirical maps to guide seal geometry 

design. Thus, simulation outcomes from a set of systematically perturbed seal design 

parameters were applied to find and verify seal geometries that have minimal leakage rates. 

The design points and responses for each experimental design are tabulated in Appendices A 

and B respectively. 

4.1 First Parameterization Experimental Design 

A non-central composite design was selected to explore the design space of the first 

parameterization. The non-central composite design differs from a central composite design in 

that the star design, previously discussed with Figure 2.5, is not centered within the design 

points of the factorial design. The five levels of each factor for the experimental designs are the 

same, as they each represent the scale of a groove radius. The radius was allowed to vary from 

25% to 300% compared to the nominal base model. The levels of groove radius were 0.3975 

mm, 0.99375 mm, 1.59 mm, 3.18 mm, and 4.77 mm. The center of the star design was at 1.59 

mm for all factors. These factor levels were selected to combine the assumption that the base 

seal design from industry was near the optimal geometry with the desire to explore a broader 

design space.  
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A model, parameterized using five design variables representing a pattern of groove 

radial scales along the axial length of the seal, was simulated in ANSYS CFX. Forty-three 

simulated experiments characterized the leakage rate response of the seal resulting from 

variations in the parameterized groove radii. All steady-state simulations were started from the 

same initial conditions in a rotating reference frame. The fluid domain was initialized by the 

results from the previously performed mesh density study of seal sector model with radii at the 

nominal dimension of 1.59mm. No replicate experiments were performed, for any 

experimental design, because ANSYS CFX will reach the same results every time for a given 

solution residual level and starting position. Hierarchical multiple regression analysis was 

conducted for each of the desired response variables representing fluid leakage rate through 

the seal and the rotordynamic coefficients. Analysis of variance (ANOVA) was performed on 

each fitted model to generate the coefficient of determination, R2, the F-test for significance of 

regression (testing the null hypothesis that all factors effects were zero), and single parameter 

F-tests to find the significance level at which to reject null hypothesis that each parameter is 

equal to zero [10, 11]. 

4.1.1 First Experimental Design Results and Discussion 

A full quadratic 21-parameter linear regression model was initially proposed to describe 

the design space for each response. The quadratic model was selected as the minimum level of 

complexity that could allow prediction of a local optimum and as a model that minimizes 

aliasing of higher order effects with the effects included in the model. This full quadratic model 

was found not to best describe the data. The linear regression model was reduced from the full 
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quadratic to include only factor effects found to be statistically significant, or those necessary 

to maintain model hierarchy. A cubic model was not considered, for this experimental design, 

because the chosen design points alias cubic factor effects with higher order terms. Tabulated 

statistical results are shown in the next section for the first regression analysis; these tables are 

representative of the statistical results for the subsequent response variables. 

4.1.1.a Leakage Rate 

For the mass flow leakage response, the linear regression model was reduced to 11 

parameters. Figure 4.1, shows the Pareto chart of the relative significance of the factor effects, 

for the original 21-parameter regression model, based on the sum of squares associated with 

each parameter [35]. In the Pareto chart, the sum of squares for all of the two factor interaction 

effects, except the AB interaction relating radii 1 and 2, are significantly smaller than the sum of 

squares for the first-order and quadratic factor effects. ANOVA was performed on the full 

quadratic regression model, and the same nine two-factor interaction effects also fail to reject 

the null hypothesis that their parameters are equal to zero, based on the single parameter F-

tests for significance (p-value>0.05). These non-significant interaction factor effects were 

removed from the regression model. The factor effect AB, representing the interaction 

between the first and second groove radius in the parameterization pattern, was also removed 

as there should be no physical mechanism that would cause it to be different from the other 

interaction effects.  
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Figure 4.1: Pareto chart showing relative factor effects 

 based on explained sums of squares of variation 
 

The resulting 11-parameter reduced quadratic regression model included the intercept 

parameter and the first and second-order single factor effect parameters. ANOVA performed 

on the model produced an R2 value of 0.9015, implying a strong linear correlation between the 

model and the data. The F-test for significance of the regression model rejected the null 

hypothesis that all parameters are zero at better than 95% confidence and produced an F-value 

of 29.3 which, with an associated p-value of 0.0001, indicates only a 0.01% chance that an F-

value that large could arise from noise in the data. Parameters representing first-order factor 

effects of each radius individually rejected the null hypothesis that they were equal to zero at 

or above the 95% level of confidence. The quadratic factor effect parameter for R3 failed to 

reject the 95% confidence level hypothesis at a p-value of 0.0731 (i.e., significantly different 

from zero at only the 92.69% level of confidence). Quadratic factor effects for parameters R1, 

R2, and R4 have more modest confidence levels ranging from 86.8% to 88.6% with associated p-

vales found in Table 4.1. The quadratic factor effect for R5 only has a confidence level of 69%, 
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but is retained to preserve model hierarchy. Thus, all the parameters of the first-order factor 

effects and the quadratic effects of the first four radii are significant at or above the 86.8% 

confidence level. These p-values and the remaining results of the ANOVA are found in Table 4.1. 

Table 4.1: ANOVA Results 

Source Sum of Squares df Mean Square 
Calculated 
Value of F 

p-value 
Prob > F 

Model 0.93 10 0.093 29.3 < 0.0001 

A-R1 0.025 1 0.025 7.81 0.0087 

B-R2 0.025 1 0.025 7.84 0.0086 

C-R3 0.035 1 0.035 11 0.0023 

D-R4 0.022 1 0.022 6.9 0.0131 

E-R5 0.014 1 0.014 4.33 0.0456 

A^2 7.62E-03 1 7.62E-03 2.39 0.1316 

B^2 8.42E-03 1 8.42E-03 2.65 0.1136 

C^2 0.011 1 0.011 3.43 0.0731 

D^2 8.05E-03 1 8.05E-03 2.53 0.1216 

E^2 3.42E-03 1 3.42E-03 1.07 0.3076 

Residual 0.1 32 3.18E-03 
  

Corrected Total 1.03 42 
   

 

The sum of squares of residuals cannot be split into lack of fit and purely experimental 

uncertainty because no replicate experiments were included. However, CFD simulations with 

the same mesh and started from the same initial values will converge to the same result for a 

given convergence criteria. This makes the experimental uncertainty effectively zero. Without 

sum of squares of residuals for a formal lack of fit test, evidence of model quality can be 

demonstrated with plots of normalized residuals against predicted response and predicted 

response against actual response. Figure 4.2, shows randomly distributed residuals above and 

below zero without systematic bias, thus suggesting the model cannot be further improved. 
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Figure 4.3, shows a linear relationship between predicted and actual values of response, also 

indicating no significant model bias due to lack of fit. In these figures, the actual values refer to 

the results obtained from the CFD simulations and the predicted values refer to the values 

estimated from the empirical model. Parameter estimates and their standard errors are given 

in Table 4.2, and the resulting model is shown in Equation 20.  

 𝑄 = 9.88 − 0.13𝑅1 + 0.016𝑅1
2 − 0.13𝑅2 + 0.017𝑅2

2 − 0.16𝑅3 + 0.019𝑅3
2  

 −0.12𝑅4 + 0.017𝑅4
2 − 0.10𝑅5 + 0.011𝑅5

2 (20) 

Table 4.2: Parameter estimates and standard errors 
Factor Parameter Estimate Standard Error 95% CI Low 95% CI High 

Intercept 9.878 0.140 9.592 10.163 

A-R1 -0.132 0.0474 0.229 0.0359 

B-R2 -0.133 0.0474 0.229 0.0362 

C-R3 -0.157 0.0474 0.254 0.0607 

D-R4 -0.125 0.0474 0.221 0.0280 

E-R5 -0.0986 0.0474 0.195 0.00206 

A^2 0.0162 1.04E-02 0.00511 3.75E-02 

B^2 1.70E-02 1.04E-02 0.00428 0.0383 

C^2 1.94E-02 1.04E-02 1.92E-03 0.0406 

D^2 1.66E-02 1.04E-02 0.00467 3.79E-02 

E^2 1.08E-02 1.04E-02 -1.05E-02 0.0321 
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Figure 4.2: Residuals vs. predicted response 

 

 
Figure 4.3: Predicted vs. actual response 

Visualizations of the design space are shown in Figure 4.4 and Figure 4.5. The response 

surface looks similar from the perspective of the factors not shown. Factors kept constant are 

shown centered on the optimum response predicted by the regression model. The predicted 

optimum occurs at radii of 4.10, 3.91, 4.06, 3.75, and 4.55 mm for the design factors 

respectively, Figure 4.6. The predicted mass flow rate is 8.57 kg/sec, an 8.25% improvement 
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over the highest flow rate simulated, 9.34 kg/s, and 0.54% improvement from the lowest, 8.62 

kg/s. The predicted minimum flow rate in this design space is also 5.58% improved over the 

leakage of the sector representing the base model, all radii set to 1.59 mm. The response 

surfaces suggest reduced leakage rates as the radii are increased. The model indicates that 

increasing a single groove radius lowers flow rate by an average 0.129 kg/s per mm of radius, 

but the square of the radius raises flow rate by an average 0.0160 kg/s per mm2. The Pareto 

chart, Figure 4.1, suggests that the third parameterized groove radius has a larger effect on 

leakage rate than the other radii. However, the parameters for each radius are approximately 

the same suggesting that all radii affect the response equally. Any indication of an individual 

radius being more significant is likely a function of this parameterization rather than evidence 

of a physical mechanism at work. The removal of interaction factor effects from the model 

suggests that no specific pattern of varying groove radii would yield a significant decrease in 

leakage rate. The effect of each groove is individual and distinct from its neighbors. Because 

flow only travels from high pressure to low pressure through the seal this result makes sense. 

 
Figure 4.4: Response surface of fluid leakage rate vs. R1 and R2 
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Figure 4.5: Response surface of fluid leakage rate vs. R1 and R3 

 

 
Figure 4.6: Design point geometry for predicted optimal leakage rate 

 
Figure 4.7: Radii of grooves for  

base model (left) vs. optimal design point (right) 
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4.1.1.b Rotordynamic Coefficients 

A quadratic regression model was not found to adequately model the data for any of 

the rotor dynamic coefficients. The responses of cross-coupled stiffness and direct damping 

coefficients were found to exhibit strong linear correlation with a simple 6-parameter first-

order model. Coefficients for direct stiffness and direct mass are also best represented by a 6-

parameter model, but display weaker correlations with the data. The remaining two 

coefficients for cross-coupled damping and cross coupled mass terms display no significant 

linear correlation. These responses are discussed individually below, except for those relating to 

the cross-coupled mass coefficient which would duplicate the explanation of the cross-coupled 

damping coefficient. With only first-order factor effect models and no universal target for the 

rotordynamic coefficients there is no reason to attempt optimization of these responses. 

Direct Stiffness Coefficient 

The sequential sum of squares F-test failed to find that a full quadratic model, or a two 

factor interaction model, explained the variation in the data better than the first-order factor 

effect model. Additionally, ANOVA for the parameters of a full quadratic model failed to reject 

the null hypothesis that the parameters representing first-order interaction effects were equal 

to zero, at the 90% confidence level. Upon removing the interaction effects and testing first and 

second order factor effect, as in the above leakage model, three second-order factor effects 

were found significant at or above the 90% confidence level. Unfortunately, the first and 

second-order factor effect model’s predicted R2 was -0.61, which indicates poor linear 

correlation and prediction ability of the model.  
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When second-order factor effects were removed, the resulting 6-parameter model 

included an intercept parameter and the first-order factor effects. Interestingly, ANOVA 

showed that not all of the first-order factor effects were significant either. Only radii 3 and 5 

first-order effects were significant at or above the 90% confidence interval. The 3-parameter 

model, Equation 21, including the intercept and the R3 and R5 factor effects only explains 

28.68% of the variation in the data based on the R2. The diagnostic plots qualitatively confirm 

the assumption of linearity and the weak correlation between actual simulated response and 

the model predictions. 

 KXX = 2.013 × 10
7 − 1.086 × 105(R3) − 2.172 × 10

5(R5) (21) 

Clearly this parameterization of the seal geometry is not adequate to show the true 

relationship between direct stiffness and groove size, if any. The parameter estimates for R3 

and R5 factor effects indicate that the stiffness decreases with increasing radii at an average 

rate of 1.5 × 105 N/m per millimeter for those grooves. The lack of significance of radii 1, 2 and 

4 suggest that if groove scale is significant at all it may be related to groove axial position along 

the length of the seal.  

Cross-coupled Stiffness Coefficient 

The sequential sum of squares F-test found a first-order factor effect model for cross-

coupled stiffness to be more descriptive than the mean at a 99.99% confidence level. The full 

quadratic model and two factor interaction models both failed to improve the model with p-

values of 0.8391 and 0.9582. This means that there is only a 16% and 4% confidence that the 

interaction and second-order effect parameters are significant. Predictably, ANOVA performed 
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on the full quadratic model found no terms hierarchically higher than the first-order factor 

effects to be significant, while every first-order factor effect was found significant at better than 

99.99% confidence. This results in a 6-parameter regression model, with parameter estimates 

shown in Equation 22, having an R2 of 0.94. Adjusted and predicted R2 values of 0.93 and 0.92, 

respectively, further demonstrates great linear correlation.  

 KXY = 5.39 × 10
8 + 9.60 × 106(R1) + 1.01 × 10

7(R2)  

 +9.97 × 106(R3) + 7.73 × 10
6(R4) + 9.61 × 10

6(R5) (22) 

The general trend is that increased groove size increases the cross-coupled stiffness by 

an average of approximately 9.4 × 106 N/m per millimeter. The individual parameter estimates 

are not equal at a glance, however their error margins are sufficiently overlapping that more 

data would be required to be sure. Thus there is no indication that the parameterization 

significantly affected this response or that axial position of the groove is a likely contributor.  

Direct Damping Coefficient 

As with cross-coupled stiffness, a first-order factor effect model was found by sequential 

sum of squares to be the best fit regression model, significant at a 99.99% confidence level. The 

first-order factor effects all satisfied the ANOVA tests at a 99.99% confidence level, and higher 

order effects failed to reject the null hypothesis. The parameters of the model are given in 

Equation 23. The coefficients of determination were 0.936, 0.927, and 0.913 respectively for 

the standard, adjusted and predicted values. These R2 values indicate strong linear correlation 

and good prediction of the data’s variance about the mean by the model.  
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 CXX = 3.168 × 10
5 + 5101(R1) + 5483(R2)  

 +5267(R3) + 4048(R4) + 5239(R5) (23) 

On average, increases in groove radii appear to increase direct damping by 5027.6 N-

s/m per mm. The parameter estimates for each radius are roughly equal, with overlapping error 

estimates. As with cross-coupled stiffness, this seems to indicate that axial position of the 

grooves and the parameterization used had minimal effect on this response. 

Cross-coupled Damping Coefficient 

The sequential sum of squares F-tests were performed for the cross-coupled damping 

coefficient response. No regression model was found to reject the null hypothesis that all 

parameters aside from the intercept were zero at a 90% confidence level. Additionally, 

coefficients of correlation were calculated for each hierarchical regression model. Every 

potential model shows poor correlation in the standard and adjusted R2; however all of the 

predicted R2’s are negative. When the first-order factor effect parameters were added to the 

model, and removed one by one, the factor effect for R5 was found significant at better than a 

99% confidence level. This indicates that the cross coupled damping coefficient has some minor 

dependence on groove radius scale, but it is likely being obscured by the parameterization or is 

dependent on the axial location of the groove. The coefficients of determination were 0.19, 

0.17 and 0.11 respectively for the standard, adjusted and predicted values. The regression 

equation has only two parameters and is given in Equation 24. With such low correlation an 

additional test was performed by attempting to replace the factor effect associated with radius 

5 with any other first-order factor effect one at a time. If a single first-order factor effect was 
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found interchangeable it would suggest that the significance of the remaining factor effect was 

due to chance. Each first-order factor effect associated with radii 1 to 4 produced negative 

adjusted and predicted R2 values. The effect of the fifth groove radius remains significant at this 

time. 

 CXY = 28265.84 − 94.66(R5) (24) 

Direct Mass Coefficient 

Based on the sequential sum of squares F-tests for the direct mass coefficient response, 

adding the two factor interaction effect parameters to the regression model was significant at a 

92% confidence interval. The first-order individual factor effects were all significant above a 

99% confidence interval. However, all but two of the two factor interaction effects were not 

significant at the 90% confidence level. The remaining two interactions between the second 

and third radii and the third and fourth radii were judged significant with p-values of 0.047 and 

0.08 respectively. There were no similar interaction effects between the first and second radius, 

the second and third, or the first and fifth. There is no physical mechanism in the flow to 

explain two groupings of adjacent grooves interacting but not the others. Therefore, the two 

interaction factor effects were neglected and assumed to be caused by a peculiarity in the 

mesh or an artifact of the method used to parameterize the geometry. Only the 6-parameter 

regression model consisting of an intercept and the first-order factor effects was used to model 

the direct mass coefficient, shown in Equation 25. This regression model explains approximately 

73% of the variance in the data about the mean. 
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 MXX = 14.39 − 0.038(R1) − 0.047(R2)  

 −0.066(R3) − 0.037(R4) − 0.045(R5) (25) 

The individual parameter estimates are approximately the same and have very similar 

confidence intervals. This implies that there is minimal effect on this response from the 

geometric parameterization. The direct mass coefficient decreases by an average of 0.0466 kg 

per millimeter increase in groove radius.  

Cross-Coupled Mass Coefficient 

The sequential sum of squares F-tests were performed for the cross-coupled mass 

coefficient response. No regression model was found to reject the null hypothesis that all 

parameters aside from the intercept were zero at a 90% confidence level. Additionally, 

coefficients of correlation were calculated for each hierarchical regression model. Every 

potential model shows poor correlation in the standard and adjusted R2; however all of the 

predicted R2 values are negative. This indicates that the models are unable to predict the 

location of observed data points. There is no confidence that a linear regression model of the 

factors included by this parameterization of the seal’s geometry explains more variation in the 

cross-coupled mass coefficient response than the mean alone. 

4.1.2 Investigation of the Design Point of Predicted Optimal Leakage Rate 

As discussed above, the first parameterization and first experimental design regression 

model for leakage rate predicted a minimum leakage of 8.57 kg/sec at respective radii of 4.1 

mm, 3.91 mm, 4.06 mm, 3.75 mm, 4.55 mm. A single simulation experiment was performed at 

this location in the design space to verify the accuracy of the selected regression models. Table 

4.3 contrasts the actual responses found in the simulated experiment and the responses 
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predicted by the regression equations above. Impressively, even the regression models that 

were found to display weak correlation produced accurate predictions for the predicted 

optimum design point. The leakage rate prediction in particular was extremely accurate; 

however this is also affected by how flat the response surface is in the region of the selected 

design point. No prediction is shown for the cross-coupled mass coefficient because no 

regression model was found to better explain the variation in the response than the mean 

alone. 

Table 4.3: Actual response vs responses predicted by regression, 

 at the predicted optimum design point 

 
Actual 
Response 

Predicted 
Response 

Percent 
Error 

Leakage, Q [kg/sec] 8.540 8.570 0.36% 

Direct Stiffness, KXX [N/m] 1.914E+07 1.884E+07 1.61% 

Cross-Coupled Stiffness, KXY [N/m] 7.229E+08 7.309E+08 1.10% 

Direct Damping, CXX [N-s/m] 4.137E+05 4.195E+05 1.40% 

Cross-Coupled Damping, CXY [N-s/m] 2.865E+04 2.784E+04 2.84% 

Direct Mass, MXX [kg] 13.740 13.443 2.16% 

Cross-Coupled Mass, MXY [kg] 0.155 
  

 

4.2 First Parameterization Second Experimental Design 

A second experimental design was performed on the same ANSYS CFX model and initial 

conditions used for the first parameterization. The first experimental design indicated that the 

baseline seal design is not near the optimum design point for minimal leakage rate. The 

predicted optimum radii, from the regression model of the first study, were found to be 4 mm 

on average. In order to confirm this predicted optimum location, and perform a sensitivity 
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study around the optimum, the second study is centered at 4 mm for each groove radius. The 

second study of 43 experiments was also selected to be a central-composite experimental 

design with five levels. The new factor levels were selected based on the variation in value for 

the individual radii at the previous predicted optimum location, radii of 4.10, 3.91, 4.06, 3.75, 

and 4.55 mm for the design factors respectively. The goal no longer being to explore a large 

volume of the design space, and having chosen a central composite design, an alpha value of 

2.378 was selected to create a rotatable experimental design [32]. Based on the most extreme 

predicted optimum location of 4.55 mm a maximum was selected at 4.59mm. This placed the 

five levels of the central composite design at 3.41, 3.75, 4.00, 4.25, and 4.59 mm. The factorial 

design will be at the corners of the five-dimensional cube defined by 3.75 and 4.25 at each 

level, conveniently on or bracketing the original design’s predicted optimum locations.  

4.2.1 Second Experimental Design Results and Discussion 

As with the first experimental design, a 21-parameter full quadratic model was initially 

posited to model each of the seven responses. However, the majority of the responses from the 

design points had little to no correlation with the five factors that describe the parameterized 

geometry. This is likely due to the fact that the factor levels are much closer to each other, 

implying that the differences in responses between design points are proportionally smaller. 

This reduction in response range allows “noise”, or effects not taken into account by the factors 

used to parameterize the geometry, to overwhelm any effects from tested factors. 
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4.2.1.a Leakage Rate 

Only a 6-parameter linear regression model was found significant at a 98% confidence 

level, based on sequential sum of squares analysis. However, the ANOVA results suggest that 

this model only accounts for 30% of the variation in the response and, many of the individual 

factor effects were found significant only at confidence levels of 60-80%. When the adjusted 

and predicted regression coefficients, of 0.2 and 0.055 respectively, are also taken into account 

there is minimal confidence in this regression model. Removing the insignificant factor effect 

parameters leaves the intercept and the factor effects for radii 1 and 5. This lowers the 

coefficient of determination to 0.233, does not change the adjusted R2, and raises the predicted 

R2 to 0.097. This is still a very poor regression model, especially when contrasted to the success 

of the original experimental design’s regression model consisting of the first and second-order 

factor effects. However, the regression model from the first experimental design does predict 

that this region of the design space should produce rather flat leakage responses. As discussed 

above, a region of lower response variation may allow noise to overwhelm the regression 

model. This model has a signal to noise ratio of 6.69 (a ratio of 4 is considered minimum [42]), 

compared to a ratio of 23.9 for the original experimental design’s response. This potentially 

confirms that effects masked or unaccounted for by the groove radii scale parameterization are 

more significant than the tested factors nearer the predicted optimum design point. As there is 

no expectation that this regression model represents reality, the equation is not provided 

herein. 

 



 

62 

4.2.1.b Rotordynamic Coefficients 

Similarly to the leakage rate for this experimental design, the regression models for the 

rotordynamic coefficients were not found to be as well correlated as with the first experimental 

design. Only the coefficients for cross-coupled stiffness, direct damping and direct mass were 

found significantly different from the mean by the sequential sum of squares F-Test at a 90% 

confidence level. These three coefficient responses exhibited moderate to weak correlation 

with the data and were each fit with a simple linear 6-parameter model. The regression models 

for the remaining coefficients were not found to have coefficients that differed from zero. The 

adjusted and predicted correlation coefficients for these regression models were all negative. A 

negative adjusted R2 indicates that the parameters added to the model provide no additional 

explanation of the variation in the data beyond the mean, and as above, a negative predicted R2 

indicates that the model is incapable of predicting the location of existing data points with any 

accuracy. For this experimental design, only the responses with significant regression models 

will be discussed further. In the case of each response the first regression model investigated 

corresponded to the parameters found to be significant in the original experimental design. 

Cross-coupled Stiffness Coefficient 

A 6-parameter model consisting of the intercept and first order factor effect parameters 

was found to best represent this response with a model F statistic of 13.68, suggesting less than 

0.01% odds that such a model would apply by chance. Each first-order factor effect parameter 

was found to be significant at or above a 95% confidence level. The sequential sum of squares 

F-test and predicted R2 values for higher-order regression models provide no evidence that the 
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model would be improved with additional parameters. The chosen regression model is given in 

Equation 26, and has coefficients of determination of 0.649, 0.602, and 0.522 respectively. The 

individual parameter estimates averaged higher for this experimental design, being greater 

than or approximately equal to the upper 95% confidence interval estimates of the same 

parameters from the original study. This is likely due to a greater standard error associated with 

each parameter estimate and not due to any physical mechanism. Additionally the signal to 

noise ratio was 14.29, indicating less noise for this response than for leakage rate. This provides 

an expectation that the cross-coupled stiffness coefficient is less affected, than leakage rate, by 

unknown variables that are not represented in this parameterization. 

 𝐾𝑋𝑌 = 4.72 × 10
8 + 2.03 × 107(𝑅1) + 1.10 × 10

7(𝑅2)  

 +1.16 × 107(𝑅3) + 7.74 × 10
6(𝑅4) + 1.14 × 10

7(𝑅5) (26) 

Direct Damping Coefficient 

The direct damping coefficient response also continued to show a moderate linear 

correlation to the same factor effect parameters modeled in the first experimental design. The 

6-parameter linear regression model, shown in Equation 27, was found to best fit the data with 

each first-order factor effect significant at better than 95% confidence. The coefficients of 

determination were found to be 0.619, 0.568, and 0.482 respectively, showing an acceptable 

correlation explaining 62% of the variation in the data about the mean. Similar to the cross-

coupled stiffness coefficient, the parameter estimates average higher than those found for the 

original experimental design. However, the 95% confidence interval for each parameter 

estimate does overlap with the old estimates, except for the parameter associated with the 
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factor effect of radius 1 which is much higher. As before, the standard error associated with 

each parameter is also increased for this experimental design, nearly four times that of the 

original regression model for this parameterization. The increase in standard error makes the 

differences in the parameters most likely due to increased noise in this design rather than the 

different groove size levels being investigated.  

 𝐶𝑋𝑋 = 2.8 × 10
5 + 10882(𝑅1) + 6171(𝑅2)  

 +6421(𝑅3) + 4253(𝑅4) + 5559(𝑅5) (27) 

Direct Mass Coefficient 

Like the regression model for the first experimental design, the first-order parameter 

model was found significant by the sequential sum of squares F-tests. The full quadratic and 

two factor interaction models failed with p-values of 0.93 and 0.86 respectively. ANOVA was 

then performed on the 6-parameter linear regression model, finding only the factor effect 

parameters associated with radii 1 and 2 to be significant at a better than 90% confidence level. 

The final 3-parameter model, including the intercept and the two significant radii, was found to 

have a coefficient of determination of 0.286, explaining about 29% of the data’s variation about 

the mean. The adjusted and predicted R2 values of 0.25 and 0.166 confirm this model to be 

acceptable, if weakly correlated to the response data. Similarly to the leakage rate response for 

this experimental design, the ratio of signal to noise in this response was only 8, compared to 

17.57 for the original experimental design’s response. The differences in regression model are 

assumed to be caused by other untested factors whose significance is relatively greater in the 

second experimental design because of the smaller variations in radius scale. 
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4.3 First Parameterization Combined Experimental Designs 

While separately the results from the second experimental design produced less 

statistically significant regression models, when the data from these experiments was combined 

with the data from the first design in most cases it improved the significance of each regression 

model for those results. The same procedure was followed to determine the significance of 

individual factor effect parameters to be included in the regression models for each response. 

This resulted in the same factor effect parameters being included for every response except for 

the direct stiffness and cross-coupled damping coefficient responses. The direct mass 

coefficient was distinguished by the addition of a factor effect parameter that was not included 

in the original regression model from the first experimental design. Each of the regression 

models that did include the same factor effect parameters did experience a change in the 

parameter estimates, typically slight. This generally reinforces the validity of the regression 

models found from analyzing the responses of the first experimental design study. Table 4.3 is 

reproduced below, as Table 4.4, with the addition of the updated regression equations from 

the combination of the two data sets. Every regression model created with the combined set of 

data performed better at correctly predicting the actual response of the seal model simulated 

at the optimum design point predicted by the regression models from the first experimental 

design. No new optimum point was tested because the leakage regression models for the 

combined design were not greatly changed from the original regression models. 
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Table 4.4: Regression predictions vs actual simulation experiment responses 

  First Experimental 
Design 

Combined Experimental 
Design 

 Actual 
Response 

Predicted 
Response 

Percent 
Error 

Predicted 
Response 

Percent 
Error 

Leakage, Q [kg/sec] 8.540 8.570 0.36% 8.551 0.14% 

Direct Stiffness, KXX [N/m] 1.914E+07 1.884E+07 1.61% 1.900E+07 0.73% 

Cross-Coupled Stiffness, KXY [N/m] 7.229E+08 7.309E+08 1.10% 7.247E+08 0.25% 

Direct Damping, CXX [N-s/m] 4.137E+05 4.195E+05 1.40% 4.154E+05 0.40% 

Cross-Coupled Damping, CXY [N-s/m] 2.865E+04 2.784E+04 2.84% 2.843E+04 0.76% 

Direct Mass, MXX [kg] 13.740 13.443 2.16% 1.365E+01 0.65% 

Cross-Coupled Mass, MXY [kg] 0.155 
    

 

4.3.1 Results and Discussion 

4.3.1.a Leakage Rate 

The desire to have a regression model complex enough to optimize, led to fitting a 

quadratic model to the present data (as was done for the first experimental design). Unlike the 

leakage rate response for the first experimental design, the sequential sum of squares F-tests 

found the full quadratic model to be significant at better than a 96% confidence level. ANOVA 

results indicated all of the two factor interaction effects failed significance at a 90% confidence 

level, except for the two factor interaction between radii 1 and 2. No physical mechanism was 

found to explain this exception, so the regression model was benchmarked with the simulated 

experimental response from the first experimental design’s predicted optimal design point. The 

regression model performed worse at predicting the leakage rate response accurately, for the 

single test data point, with the two-factor interaction factor effect parameter included, thus it 
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was removed. The final regression model chosen contained the same factor effect parameters 

as those in the original experimental design’s regression model, each significant at a 90% 

confidence level. The first-order and second-order factor effect parameters make up an 11-

parameter least-squares regression model, with parameter estimates shown in Equation 28. 

The parameter estimate values were within the 95% confidence intervals for the values found 

from the original experimental design, thus not statistically different from the original 

stochastic values. The individual parameter estimates of each order of factor effect are 

approximately equal and have overlapping 95% confidence intervals. This suggests that each 

groove radius scale is equally influential and that axial position of grooves of varying scales has 

minimal effect on leakage rate, though there remains the possibility that the parameterization 

is obscuring other effects. 

 𝑄 = 9.82 − 0.11𝑅1 + 0.012𝑅11
2 − 0.12𝑅2 + 0.014𝑅22

2 − 0.15𝑅3 + 0.018𝑅33
2   

 −0.11𝑅4 + 0.013𝑅44
2 − 0.084𝑅5 + 0.0077𝑅55

2  (28) 

The new regression model for leakage rate was characterized by a signal to noise ratio 

more than doubling from 23.9 to 52.3, an approximately halved standard error for each 

parameter estimate, and improvements in the three respective correlation coefficients of 

approximately 7%, 10%, and an astounding 47%. The actual R2 values were 0.976, 0.973, and 

0.962 for the standard, adjusted and predicted correlation coefficients. The associated model’s 

F statistic was 303.83, with a p-value suggesting less than 0.01% probability that the estimated 

parameters are due to chance. 
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4.3.1.b Rotordynamic Coefficients 

As found in the regression models from the first experimental design, a 6-parameter, or 

less, first-order factor effects model was determined best to fit the responses for the 

rotordynamic coefficients. The full first order factor effect model was applied to the coefficient 

responses for cross-coupled stiffness and direct damping. The direct mass coefficient included 

the same first-order factor effects, but adds a single second order factor effect. Notably, the 

cross-coupled damping coefficient response regression model was previously unable to be fit, 

but exhibited moderate correlation with a 4-parameter model of the first-order factor effects 

excluding those associated with radii 4 and 5. The cross-coupled mass coefficient remained 

unable to be fit by the available linear models. The only other regression model to not gain 

statistical significance and show improved correlation was the model for the direct stiffness 

coefficient response. The selected least-squares regression models for the responses are 

discussed below, again excluding the response for cross-coupled mass coefficient, and no 

attempt is made to optimize the rotordynamic coefficients to a particular target value. 

Direct Stiffness Coefficient 

With only the first-order factor effects found significant at a 90% confidence level by 

sequential sum of squares F-tests, ANOVA was performed to determine the significance of the 

individual parameters. Every parameter, except the intercept and the factor effect associated 

with radius 5, failed to be found significant at a 90% confidence level. Thus the direct stiffness 

coefficient response is the only coefficient response to have fewer parameters and lower 

coefficients of determination than originally modeled in the first experimental design. The 2-
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parameter model, with parameter estimates shown in Equation 29, presented with standard, 

adjusted, and predicted coefficients of determination of 0.261, 0.252, and 0.219 respectively.  

 𝐾𝑋𝑋 = 1.986 × 10
7 − 1.886 × 105(𝑅5) (29) 

The model only explains 26% of the response data’s variation about its mean. The signal 

to noise ratio did increase, less impressively than for leakage rate, from the original 8.35 to 

13.28 with the combination of the data from the first and second experimental designs. As with 

the regression model, the low linear correlation implied by the R2 values suggests that groove 

radius scale may not be a factor in the determination of direct stiffness of an annular seal. This 

is reinforced by only one groove radius being found significant. To test the correlation of the 

regression model further it was decided to attempt to replace the factor effect associated with 

radius 5 by the factor effects associated with each other radius one at a time and observe the 

changes in model quality. While, the factor effect representing radius 5 displays the strongest 

correlation, any of the other factor effects were found statistically significant at a 90% or better 

confidence level. With any single radius producing a weakly correlated, but statistically 

significant regression model, interchangeably, there is no confidence that these regression 

models represent any physical mechanism relating groove radius scale and the direct stiffness 

stability coefficient response. 

Cross-coupled Stiffness Coefficient 

Based on sequential sum of squares and ANOVA, the same 6-parameter factor effect 

model was chosen to fit the response for the cross-coupled stiffness coefficient response as 

originally selected to fit the same response from the first experimental design. The model and 



 

70 

its individual parameters were each found significant at a confidence level better than 99.99%. 

As with the leakage rate response, the signal to noise ratio was approximately doubled from 

the original 43.6 to 86.3. The updated regression model was found to explain 98.3% of the 

data’s variation about its mean, with both adjusted and predicted R2 values above 0.98. Such a 

strong correlation suggests that all the major factors affecting the response have been 

accounted for. The regression model, Equation 30, gives the individual parameter estimates. 

Though the parameter estimates are apparently different for the radius 4 and 5 factor effects, 

the 95% confidence intervals for all of the parameter estimates overlap. Also, there is no 

physical mechanism to suggest that they should have different values, so it is assumed the 

effect of each groove radius scale is equal at an average positive correlation of 8.84 × 106 N/m 

per mm. There was no large change in the standard error associated with each parameter 

estimate, though there was a uniform minor decrease from the addition of the data points in 

the second experimental design. 

 𝐾𝑋𝑌 = 5.44 × 10
8 + 9.43 × 106(𝑅1) + 9.41 × 10

6(𝑅2)  

 +9.34 × 106(𝑅3) + 7.02 × 10
6(𝑅4) + 8.99 × 10

6(𝑅5) (30) 

Direct Damping Coefficient 

Like the response for the cross-coupled stiffness coefficient, the direct damping 

coefficient response was found to be fit by the same six regression parameters used for the first 

experimental design data. Sequential sum of squares and individual parameter ANOVA F-tests 

were all found significant at better than 99.99%. The signal to noise ratio was improved from 

41.9 to 80.5 by the addition of the second experimental design data to the data from the first 
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design. After the parameter estimates were updated to fit the additional data, the new 

regression model explained 98.1% of the response’s variation about its mean. The adjusted and 

predicted R2 values confirm the model’s linear correlation and prediction ability with values 

greater than 0.97. As with the last coefficient’s response, these coefficients of determination 

suggest that the primary factors influencing the direct damping coefficient only include the 

scales of the groove radii. The first-order factor effect parameter estimates are shown in 

Equation 31 with the intercept parameter. 

 𝐶𝑋𝑋 = 3.202 × 10
5 + 4943(𝑅1) + 5483(𝑅2)  

 +5267(𝑅3) + 4048(𝑅4) + 5239(𝑅5) (31) 

The parameter estimates and their associated standard errors were found to differ by 

less than 11%, except for the intercept parameter which experienced an approximately 50% 

reduction in standard error when compared to the model from the first experimental design. 

The parameter estimates associated with groove radii continued to have overlapping 95% 

confidence intervals, implying no likely difference in the effects of different groove radii’s scale. 

The average effect of groove radius on the direct damping stability coefficient is 4996 N-s/m 

per mm.  

Cross-coupled Damping Coefficient 

There was no regression model for the cross coupled damping coefficient response from 

the first experimental design data. With the addition of the data from the second experimental 

design and beginning with the sequential sum of squares analysis, the first-order, two factor 

interaction and quadratic effects were all found to be significant models above a 95% 
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confidence level. However, the adjusted R2 for the full quadratic only improved from 0.524, for 

the first-order and two factor interactions model, to 0.568; the predicted R2 only increased 

from 0.4176 to 0.4183. This implies that the second-order factor effects of the full quadratic 

regression model do not significantly add to the model’s ability to explain variation in the data 

or predict response values accurately. ANOVA was performed on the full quadratic model for 

confirmation and the least significant terms, not required for model hierarchy, were removed 

one at a time. All second-order factor effects and all but two two-factor interaction effects 

failed the test for significance at a 90% confidence level. The remaining two-factor interaction 

effects related the effects of radii 2 and 3 with those of radius 5. Because there is no physical 

mechanism to explain interaction between groove radii, let alone non-adjacent groove radii, 

these two-factor interaction effects were removed from the regression model. ANOVA was 

then performed with the 6-parameter first-order factor effect model and only the effects of 

radii 1, 2 and 3 were found significant at or above a 90% confidence level. The new regression 

model for the cross-coupled damping coefficient response explains 41.3% of the data’s 

variation about its mean, roughly twice the explanatory power of the first experimental 

design’s regression model for the same response variable. This weak correlation is confirmed by 

adjusted and predicted R2 values above 0.348. The parameter estimates are given in the 

regression model, shown in Equation 32.  

 𝐶𝑋𝑌 = 2.78 × 10
4 + 60.45(𝑅1) + 57.22(𝑅2) + 45.42(𝑅3) (32) 

The factor effects included in the model are significant, supported by the proximity of 

the second two coefficients of determination to the standard R2. However, it is clear by the 
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ratio of the factor effect parameter estimates to the intercept parameter that the groove radii 

scale does not change the cross-coupled damping coefficient by any large amount. This 

suggests that either the parameterization is interfering with fitting the true factors relating 

groove size to cross-coupled damping coefficient, or there are additional unknown factors that 

play a significant role in determining this response. 

Direct Mass Coefficient 

Unlike the regression model from the first experimental design, sequential sum of 

squares analysis found a full quadratic model, for the direct mass coefficient response, to be 

significant at a better than 99% confidence level. The coefficients of determination suggested 

that any model whose complexity was between a 6-parameter first-order model and a 21-

parameter full quadratic model would explain at least 80.9% of the data’s variation about its 

mean. However, the predicted R2 values for each model showed small gradations between the 

three hierarchical levels of model: first-order predicted R2 of 0.766, first-order and two-factor 

interactions predicted R2 of 0.806, and full quadratic predicted R2 of 0.826. This suggests that a 

more complex model may not significantly increase the ability to predict the response, and may 

instead “over fit” the data. If the model is over fit then it includes more factor effects than 

necessary and begins to model the noise as well as the signal of the response. ANOVA was 

performed on the full quadratic model which resulted in all of the two-factor interaction effects 

and all but one of the second-order factor effects failing to be found significant at a 90% 

confidence level. A 7-parameter model results, containing all five first-order factor effect 

parameters and the second-order factor effect parameter associated with radius 3. There is no 
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physical mechanism that explains the inclusion of a single radius and not the others so this 

second order factor effect is removed from the final regression model. However, it should be 

noted that this may be some indication that groove axial position along the seal could affect 

this response. The selected 6-parameter regression model, with parameter effects shown in 

Equation 33, contained only the first-order factor effects.  

 𝑀𝑋𝑋 = 14.21 − 0.022(𝑅1) − 0.029(𝑅2)  

 −0.043(𝑅3) − 0.018(𝑅4) − 0.026(𝑅5) (33) 

As stated above, this regression model explains 80.9% of the variation in the data about 

the mean, and the correlation and prediction capability are further confirmed by adjusted and 

predicted R2 values of 0.797 and 0.766 respectively. The parameter estimates all decreased 

slightly when compared to those found for the response from the first experimental design, but 

like every other response they remained within the original 95% confidence intervals and are 

not necessarily statistically different from previous values or each other. 

4.4 Second Parameterization Factorial Experimental Design 

The experimental design for the second parameterization of the seal geometry was 

more complicated due to the nonlinear constraints defining valid shapes. Defining a central 

composite design where more than half of the design points were valid geometries proved 

difficult. Instead a five level full factorial design was investigated. Nominally this would involve 

55, or 3125, experiments, however of the 3125 experiments only 98 were found to represent 

groove geometries within the constraints. Five levels were maintained to minimize the aliasing 

of the factor effects under investigation with higher order effects. 98 experiments were more 



 

75 

than enough to allow a full quadratic 21-parameter model or even a full cubic regression 

model. Unlike our previous parameterization the levels of each factor are distinct and shown in 

Table 4.5. The individual factor levels were selected to span the design space as widely as 

possible, but maintain the flexibility of investigating as many distinct shapes as possible. This is 

assisted by applying a full five level factorial design as every factor’s level was combined with 

every other factor’s level within the geometric constraints. 

Table 4.5: Factor levels for the second parameterization variables 

Alpha Index 
Groove Width 

[mm] 
Flat Width 

[mm] 
Angle In 

[degrees] 
Angle Out 
[degrees] 

Depth 
[mm] 

2.38 4.80 4.60 80 80 8.00 
1 3.50 3.30 60 60 5.80 
0 2.60 2.40 45 45 4.20 

-1 1.70 1.50 30 30 2.60 
-2.38 0.40 0.20 10 10 0.40 

 

4.4.1 Results and Discussion 

A different model, again parameterized with five design variables, was simulated in 

ANSYS CFX. The design variables allowed the seal’s groove shape to vary widely between the 

extremes that define the geometric constraints. 98 simulated experiments were performed to 

characterize the leakage rate and rotordynamic coefficients for the intermediate shapes. The 

additional experiments and their distribution in the design space allowed the investigation of 

cubic regression models in addition to the previous quadratic models. A full cubic model was 

unavailable previously, for the experimental designs applied to the first parameterization, due 

to the degrees of freedom it requires, 56, and the central composite arrangement of design 

points, which aliases terms of higher than quadratic order. With 98 experimental degrees of 

freedom, even using a full 56-parameter cubic model would leave 42 degrees of freedom for 
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calculation of residuals. As above, the linear regression model for each response was reduced 

to include only those factors necessary to maintain  the regression model hierarchy or found to 

be statistically significant at least a 90% confidence level. However, the sequential sum of 

squares F-tests found both full quadratic and full cubic models to be significant at greater than 

94% confidence levels for every response except those representing the mass matrix 

coefficients. Cubic models are seldom applied to regression analysis, unless there is a physical 

mechanism supporting that analysis, for fear of over fitting the data. As previously explained, 

over fitting is when the additional factor effects added to a regression model begin to fit noise 

as well as signal. An over fit model would appear accurate based on its coefficients of 

determination, and would only be exposed as flawed by failing to accurately predict a response 

from a new data point, not included in the regression analysis. Thus it was not known whether 

a quadratic or cubic regression model would better fit the variation in the response variables. 

The first step to investigate whether a cubic regression model would be valid is to plot each 

response against each factor and look for indications of an “S” pattern characteristic to cubic 

polynomials. Figure 4.8 is a representative sample of these plots, showing the direct damping 

coefficient response plotted against each variable of the parameterization. 
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Figure 4.8: Direct damping coefficient response vs each factor 

None of the plots has a clear “S” curve, however the plots against the leading and 

trailing groove angles have a potential flattened and backwards “S” shape to them. Equally 

significant, there is no clear indication of a parabola in any of the sub-plots to indicate a strong 

quadratic correlation. The one thing every plot has in common is the large variation in response 

at each factor level. Keeping in mind that the CFD simulations have a theoretical experimental 

error of zero, this variation at individual factor levels is likely due to the influence of various two 

or three-factor interactions. Multi-factor interactions are reasonable to assume for this 

parameterization. The geometric constraints on the groove shape alone provide some potential 

for factor interaction. Physically it also makes sense that the factors defining an individual 

groove’s shape can and will interact to affect the flow. For example, the width factor when 

combined with depth can measure an approximate cross-sectional area of the groove cavity 

which is a factor in the size of the recirculating vortex that could occupy that region. Further, 
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the periodic nature of any physical analysis for the factors that describe the intake and exit 

angles of a groove supports model parameters of cubic hierarchy to act as Taylor series 

replacements of a sine or cosine function. In short, both quadratic and cubic regression models 

are feasible and should be tested further. 

Thus for each response, when the sequential sum of squares analysis and ANOVA 

warrants, both quadratic and cubic least-squares regression models were fit to the data. The 

leakage rate response was optimized, over the nonlinear design space, for minimum response 

using both quadratic and cubic regression models as the objective function. An additional 

simulation experiment was then performed at each of the design points found by optimization 

of the quadratic and cubic regression models respectively. Comparison of the responses of 

these additional simulation experiments with the values predicted by the quadratic and cubic 

regression equations for each response was then used as an additional metric for selecting the 

final regression model. Tables showing the sequential sum of squares, model summary 

statistics, and ANOVA results were be shown for the leakage rate response analysis as a 

representative sample for this parameterization. The regression model found to best fit each 

response was visualized with multiple three-dimensional response surface generated with 

Design Expert. Only variation in two factors is shown per figure, the other three factors held 

constant in each figure were set to values that represent a design point of predicted minimum 

leakage rate, because this is the area most likely to interest a seal designer. The five-

dimensional nature of the full design space limits the ability to visualize the complete 

relationship between the model factors and responses. When reading these figures it should 
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also be noted that the response surfaces shown represent predictions of response for all 

continuous factor values between the minimum and maximum domain boundaries. Not all 

combinations of these factors will produce a valid geometric groove shape based on the 

nonlinear constraints. In addition to the empirical regression modeling, eight simulations were 

selected to discuss the relationship between their responses and figures representing the 

streamlines and pressure profiles for the first groove cross-section. 

4.4.1.a Leakage Rate 

The mass flow leakage rate response was modeled with a 14-parameter quadratic and a 

35-parameter cubic least-squares regression model. The sequential sum of squares analysis, 

Table 4.6, shows both the full quadratic and cubic models to be significant at better than 

99.99% confidence. The model summary statistics, Table 4.7, display the coefficients of 

determination, and either potential model explains more than 95% of the variation in the 

response data about its mean. The cubic model will always have a larger standard R2 value 

because it includes more parameters to explain the model, consuming more degrees of 

freedom. However, it also has adjusted and predicted R2 values that are similarly increased. 

These coefficients of determination imply excellent linear correlation between the model and 

the response values and a high degree of prediction accuracy. On the other hand, the quadratic 

model has the advantage of being less complex without sacrificing very much linear correlation 

or prediction accuracy. The selection process of the quadratic regression model will be 

discussed first, followed by the cubic model, the optimization for minimal leakage, and the final 

choice of regression model. 



 

80 

Table 4.6: Leakage rate response sequential sum of squares analysis 

Source 
Sum of 

Squares df 
Mean 

Square 
Calculated 
Value of F 

p-value 
Prob > F 

Mean vs Total 9515.45 1 9515.45 
  

Linear vs Mean 26.43 5 5.29 33.73 < 0.0001 

2FI vs Linear 12.05 10 1.2 41.66 < 0.0001 

Quadratic vs 2FI 1.4 5 0.28 22.01 < 0.0001 

Cubic vs Quadratic 0.83 35 0.024 7 < 0.0001 

Residual 0.14 42 3.40E-03 
  

Total 9556.31 98 97.51 
  

Table 4.7: Leakage rate response hierarchical model statistics 

Source Std. Dev. R
2
 Adjusted R

2
 Predicted R

2
 

Linear 0.4 0.647 0.6278 0.5798 

2FI 0.17 0.9419 0.9313 0.9085 

Quadratic 0.11 0.9761 0.9699 0.9568 

Cubic 0.058 0.9965 0.9919 0.9683 

 

To select the statistically significant terms for the quadratic regression model ANOVA 

was performed on the full 21-parameter quadratic model and individual factor effects were 

removed one at a time in order of least significant. This process removed the second-order 

factor effects corresponding to groove width, flat width, and exit angle. Additionally four two-

factor interaction effects were removed. The remaining 14 factor effects are significant at 

better than a 90% confidence level, many of them better than 99.99%. The ANOVA results for 

this 14-paramter model are given in Table 4.8 and the parameter estimates shown in Table 4.9. 

The regression model is shown in Equation 34. 
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Table 4.8: ANOVA for leakage rate response surface of a reduce quadratic regression model 

Source 
Sum of 

Squares 
df 

Mean 
Square 

Calculated 
Value of F 

p-value Prob 
> F 

Model 39.84 13 3.06 254.18 < 0.0001 

  A-Width 0.59 1 0.59 48.59 < 0.0001 

  B-Flat 0.54 1 0.54 44.49 < 0.0001 

  C-Angle In 2.63 1 2.63 217.95 < 0.0001 

  D-Angle Out 0.11 1 0.11 8.82 0.0039 

  E-Depth 0.075 1 0.075 6.21 0.0147 

  AB 0.56 1 0.56 46.58 < 0.0001 

  AC 0.33 1 0.33 27.48 < 0.0001 

  AD 0.34 1 0.34 28.45 < 0.0001 

  AE 0.24 1 0.24 19.57 < 0.0001 

  CD 0.29 1 0.29 24.01 < 0.0001 

  DE 0.24 1 0.24 20.3 < 0.0001 

  C^2 1.86 1 1.86 154.13 < 0.0001 

  E^2 0.71 1 0.71 59.15 < 0.0001 

Residual 1.01 84 0.012 
  

Corrected Total 40.85 97 
   

Table 4.9: Parameter estimates for the 14-parameter reduced quadratic regression model 

Factor 
Parameter 

Estimate 
df Standard Error 95% CL Low 95% CL High 

Intercept 12.457 1 0.190 12.078 12.835 

A-Width 0.284 1 0.0404 0.201 0.362 

B-Flat -0.387 1 0.0580 -0.502 -0.271 

C-Angle In -0.0643 1 0.00435 -0.0729 -0.0556 

D-Angle Out -0.0119 1 0.00401 -0.0199 -0.00394 

E-Depth -0.177 1 0.0711 -0.319 -0.0358 

AB 0.0860 1 0.0126 0.0609 0.111 

AC -0.00429 1 0.000818 -0.00592 -0.00266 

AD -0.00482 1 0.000905 -0.00662 -0.00303 

AE 0.0362 1 0.00818 0.0199 0.0524 

CD 0.00021 1 4.281E-05 0.000125 0.000295 

DE 0.00372 1 0.000826 0.00208 0.00536 

C^2 0.00049 1 3.955E-05 0.000412 0.000570 

E^2 -0.0298 1 0.00388 -0.0375 -0.0221 
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 𝑄 = 12.46 + 0.28W − 0.39f − 0.064α − 0.012β − 0.18d  

 +0.086Wf − 0.00429Wα − 0.00483Wβ + 0.036Wd  

 +0.00021αβ + 0.00372βd + 0.00049α2 − 0.030d2 + 𝑟 (34) 

This reduced quadratic regression model explains 97.5% of the response’s variation 

about its mean. The adjusted and predicted R2 values are 0.971 and 0.963 respectively, and the 

signal to noise ratio is 90.6 well above the minimum of 4. This model fits the response data 

extremely well and can be used to navigate the design space. 

Similarly, the ANOVA was performed on the full cubic model. 21 factor effects, of the 

original 56, failed to be found significant at a 90% or better level of confidence. All 21 of the 

terms that make up the full quadratic model were retained regardless of significance to 

preserve the model’s hierarchy. For example, if the three factor interaction effect ABC is 

significant then any lower-order combination of those terms must be a part of the model, such 

as AB, AC, BC, A, B, and C. One third-order single factor effect (associated with exit angle), three 

quarters of the third-order two-factor interaction effects, for example A2D, and half the three-

factor interaction effects were removed. The ANOVA for the remaining factor effects is given in 

Table 4.10. They make up a 35-parameter reduced cubic regression model, shown in Equation 

35, whose parameter estimates are provided in Table 4.11. 
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 𝑄 = 16.12 − 2.40W + 0.52f − 0.14α − 0.043β + 0.82d − 0.25Wf  

 +0.024Wα + 0.0027Wβ − 0.59Wd − 0.0099fα − 0.0013fβ + 0.39fd  

 +0.00055αβ − 0.010αd + 0.0032βd + 0.70W2 − 0.077f2 + 0.0013α2  

 +0.00010β2 + 0.10d2 + 0.0026Wfα − 0.067Wfd − 0.00012Wαβ + 0.0055Wαd  

 −0.0012fαd + 0.034W2f − 0.0045W2α + 0.061W2d − 0.027Wd2 − 0.0016αd2  

 −0.058W3 + 0.017f3 − (5.8 × 10−6)α3 + 0.0088d3 + 𝑟 (35) 

This reduced cubic model explains 99.48% of the leakage rate response variation about 

its mean, with adjusted and predicted R2 values of 0.992 and 0.98 respectively. The signal to 

noise ratio is also higher than the quadratic model at 110.4. These regression metrics indicate 

very strong linear correlation and good ability to accurately predict response values in the 

design space. 
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Table 4.10: ANOVA for leakage rate response surface of a reduced cubic regression model 

Source 
Sum of 

Squares df 
Mean 

Square 
Calculated 
Value of F 

p-value 
Prob > F 

Model 40.64 34 1.2 351.63 < 0.0001 

  A-Width 0.075 1 0.075 22.09 < 0.0001 

  B-Flat 9.96E-03 1 9.96E-03 2.93 0.0919 

  C-Angle In 0.22 1 0.22 63.35 < 0.0001 

  D-Angle Out 0.091 1 0.091 26.91 < 0.0001 

  E-Depth 0.028 1 0.028 8.37 0.0052 

  AB 0.01 1 0.01 3.07 0.0848 

  AC 0.059 1 0.059 17.29 < 0.0001 

  AD 5.82E-03 1 5.82E-03 1.71 0.1955 

  AE 0.091 1 0.091 26.91 < 0.0001 

  BC 0.017 1 0.017 5.04 0.0283 

  BD 8.05E-03 1 8.05E-03 2.37 0.1289 

  BE 0.062 1 0.062 18.12 < 0.0001 

  CD 0.073 1 0.073 21.41 < 0.0001 

  CE 0.022 1 0.022 6.39 0.014 

  DE 0.036 1 0.036 10.54 0.0019 

  A^2 0.081 1 0.081 23.74 < 0.0001 

  B^2 9.41E-03 1 9.41E-03 2.77 0.1012 

  C^2 0.088 1 0.088 26.03 < 0.0001 

  D^2 0.03 1 0.03 8.97 0.0039 

  E^2 0.023 1 0.023 6.91 0.0108 

  ABC 0.027 1 0.027 7.87 0.0067 

  ABE 0.061 1 0.061 17.8 < 0.0001 

  ACD 0.042 1 0.042 12.49 0.0008 

  ACE 0.11 1 0.11 31.86 < 0.0001 

  BCE 0.01 1 0.01 2.95 0.0908 

  A^2B 0.014 1 0.014 4.15 0.0458 

  A^2C 0.11 1 0.11 31.55 < 0.0001 

  A^2E 0.081 1 0.081 23.81 < 0.0001 

  AE^2 0.1 1 0.1 30.3 < 0.0001 

  CE^2 0.038 1 0.038 11.22 0.0014 

  A^3 0.062 1 0.062 18.36 < 0.0001 

  B^3 0.014 1 0.014 4.09 0.0475 

  C^3 0.05 1 0.05 14.61 0.0003 

  E^3 0.09 1 0.09 26.44 < 0.0001 

Residual 0.21 63 3.40E-03 
  

Corrected Total 40.85 97 
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Table 4.11: Parameter estimates for the 35-parameter reduced cubic regression model 

Factor 
Parameter 

Estimate df 
Standard 

Error 
95% CL 

Low 
95% CL 

High 

Intercept 16.120 1 0.698 14.726 17.514 

A-Width -2.399 1 0.510 -3.419 -1.379 

B-Flat 0.522 1 0.305 -8.75E-02 1.131 

C-Angle In -0.136 1 1.71E-02 -0.170 -0.102 

D-Angle Out -4.26E-02 1 8.21E-03 -0.059 -2.62E-02 

E-Depth 0.815 1 0.282 0.252 1.378 

AB -0.255 1 0.145 -0.545 3.60E-02 

AC 2.43E-02 1 5.85E-03 1.26E-02 3.60E-02 

AD 2.69E-03 1 2.06E-03 -1.42E-03 6.80E-03 

AE -0.592 1 0.114 -0.820 -0.364 

BC -9.87E-03 1 4.40E-03 -1.87E-02 -1.09E-03 

BD -1.28E-03 1 8.32E-04 -2.94E-03 3.82E-04 

BE 0.393 1 9.24E-02 0.209 0.578 

CD 5.47E-04 1 1.18E-04 3.11E-04 7.84E-04 

CE -1.02E-02 1 4.02E-03 -1.82E-02 -2.13E-03 

DE 3.20E-03 1 9.86E-04 1.23E-03 5.17E-03 

A^2 0.698 1 0.143 0.412 0.984 

B^2 -7.68E-02 1 4.61E-02 -0.169 1.54E-02 

C^2 1.27E-03 1 2.48E-04 7.71E-04 1.76E-03 

D^2 1.04E-04 1 3.49E-05 3.48E-05 1.74E-04 

E^2 0.100 1 3.82E-02 2.40E-02 0.177 

ABC 2.57E-03 1 9.15E-04 7.38E-04 4.40E-03 

ABE -6.72E-02 1 1.59E-02 -9.91E-02 -3.54E-02 

ACD -1.17E-04 1 3.30E-05 -1.83E-04 -5.07E-05 

ACE 5.47E-03 1 9.69E-04 3.53E-03 7.41E-03 

BCE -1.18E-03 1 6.88E-04 -2.55E-03 1.93E-04 

A^2B 3.38E-02 1 1.66E-02 6.55E-04 6.70E-02 

A^2C -4.54E-03 1 8.08E-04 -6.15E-03 -2.92E-03 

A^2E 6.13E-02 1 1.26E-02 3.62E-02 8.63E-02 

AE^2 -2.73E-02 1 4.96E-03 -3.72E-02 -1.74E-02 

CE^2 -1.65E-03 1 4.92E-04 -2.63E-03 -6.65E-04 

A^3 -5.75E-02 1 1.34E-02 -8.43E-02 -3.07E-02 

B^3 1.73E-02 1 8.55E-03 1.99E-04 3.44E-02 

C^3 -5.84E-06 1 1.53E-06 -8.89E-06 -2.79E-06 

E^3 8.84E-03 1 1.72E-03 5.41E-03 1.23E-02 
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Having created two high correlation regression models to predict leakage rate, the next 

step was to use them as objective functions to minimize the response. This procedure was done 

in Matlab as discussed in Chapter 3. Random design points were generated until 500 were 

found that met the non-linear geometric constraints. These 500 design points were then used 

as initial guesses for the optimization algorithm. The optimized design point with minimal 

leakage was selected for each of the two regression model objective functions. Both optimal 

design points predicted by the regression models have similar geometries. Figure 4.9 shows the 

seal geometry obtained from optimization of the quadratic regression model and shows an 

enlarged view of the geometry of an individual groove. The geometry is defined by a width of 

4.79 mm, a flat width of 3.66 mm, an entrance angle of 70°, an exit angle of 80°, and a depth of 

0.55 mm. As seen in the figure, this groove shape is squat and spread out. The quadratic 

regression model predicted a leakage rate of 8.8923 kg/sec for this groove geometry, while the 

cubic regression model expected 8.462 kg/sec of leakage. Optimization of the cubic regression 

model predicted the minimum leakage to occur from a similar groove shape, seen in Figure 

4.10, with a width of 4.8 mm, flat width of 3.6 mm, inlet and exit angle of 80°, and a depth of 

0.59 mm. For this potential optimum geometry the quadratic regression model predicted a 

leakage rate of 8.956 kg/sec and the cubic regression model estimated 8.230 kg/sec. The 

potential optimum designs were simulated in ANSYS CFX by the same procedure as the 

simulations performed for the experimental design. The actual simulation experiment results 

for these two designs are shown in Table 4.12 and Table 4.13 for the quadratic and cubic 
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regression models’ predicted design point respectively. Additional comparisons for each of the 

other responses are included in these tables and will be discussed in following sections. 

 
Figure 4.9: Baseline vs. predicted optimum seal groove geometry, 

 based on the reduced quadratic regression model 

Table 4.12: Actual responses vs predicted responses for the design point predicted by the reduced 

quadratic model 

Response Label 
Actual 

Response 

Quadratic 
Predicted 
Response 

Percent 
Error 

Cubic 
Predicted 
Response 

Percent 
Error 

Leakage, Q [kg/sec] 8.5865 8.89235 3.56% 8.4623 1.45% 

Direct Stiffness, KXX [N/m] 1.721E+07 1.726E+07 0.32% 1.741E+07 1.18% 

Cross-Coupled Stiffness, KXY [N/m] 7.683E+08 7.056E+07 8.17% 1.263E+08 64.44% 

Direct Damping, CXX [N-s/m] 4.399E+05 4.017E+05 8.69% 4.194E+05 4.66% 

Cross-Coupled Damping, CXY [N-s/m] 2.780E+04 2.727E+04 1.89% 2.709E+04 2.54% 

Direct Mass, MXX [kg] 13.44775 13.63325 1.38% 13.4627 0.11% 

Cross-Coupled Mass, MXY [kg] 0.19036 0.11148 41.44% 
  

 
Figure 4.10: Baseline vs. predicted optimum seal groove geometry, based on the reduced cubic 

regression model 
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Table 4.13: Actual responses vs predicted responses for the design point predicted by the reduced 

cubic model 

Response Label 
Actual 

Response 

Quadratic 
Predicted 
Response 

Percent 
Error 

Cubic 
Predicted 
Response 

Percent 
Error 

Leakage, Q [kg/sec] 8.386 8.956 6.80% 8.230 1.86% 

Direct Stiffness, KXX [N/m] 1.634E+07 1.854E+07 13.48% 1.806E+07 10.53% 

Cross-Coupled Stiffness, KXY [N/m] 7.722E+08 6.938E+08 10.15% 1.455E+09 88.41% 

Direct Damping, CXX [N-s/m] 4.433E+05 4.017E+05 9.40% 4.110E+05 7.29% 

Cross-Coupled Damping, CXY [N-s/m] 2.742E+04 2.751E+04 0.33% 2.753E+04 0.38% 

Direct Mass, MXX [kg] 13.508 13.690 1.35% 13.692 1.37% 

Cross-Coupled Mass, MXY [kg] 0.202 0.142 30.08% 
  

 

The cubic regression model for leakage outperformed the quadratic regression model at 

predicting the mass flow leakage rate for both simulated experiments. Also, the optimum 

design point found from the cubic regression model resulted in a lower leakage rate than the 

design point from the quadratic model. For mass flow leakage rate the cubic regression model 

better fits the response data, better predicts leakage rates within the design space, and predicts 

a lower minimum for leakage rate. The simulated leakage rate response of 8.3862 kg/sec, at the 

predicted optimal design point, represents a 1.8% improvement over the leakage rate found 

from the first parameterization and DOE, and a 7.28% improvement over the leakage rate of 

the baseline seal geometry. Figure 4.11 is a Pareto chart showing the sum of squares of 

variation for each factor effect. Larger absolute values indicate that the factor effect explains 

more of the response’s variation about the mean. Positive values indicate a direct correlation 

and negative values an inverse correlation. The higher order and interaction factor effects make 

it difficult to assign priority to the effects of a particular design variable; however, the groove 

flat width appears to have the least impact on leakage rate performance. Figure 4.12 through 
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Figure 4.14 show three-dimensional response surface plots of the leakage rate response 

represented by the chosen reduced cubic regression model. 

 

Figure 4.11: Pareto chart showing relative factor effects from the regression model for leakage 

rate response based on explained sums of squares of variation 
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Figure 4.12: Cubic Regression model response surface of leakage rate sensitivity near the 

predicted optimal design point, in terms of groove width and flat width 

 
Figure 4.13: Cubic Regression model response surface of leakage rate sensitivity near the 

predicted optimal design point, in terms of the groove entrance and exit angles 
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Figure 4.14: Cubic Regression model response surface of leakage rate sensitivity near the 

predicted optimal design point, in terms of groove width and depth 

 

Having selected the reduced cubic regression model to fit the leakage rate response 

data, the flow visualizations within the first axial groove of the seal were compared between 

the optimum groove geometry, the baseline groove geometry, and six other geometries from 

the experimental design. The six additional geometries were selected to be similar to the 

optimal geometry in all but one or two design variables to discuss the effects of changing each 

variable on the flow visualization, and ultimately, the leakage rate response. The design points 

of the example geometries are listed in Table 4.14, and their associated responses are given in 

Table 4.15. The flow visualizations include streamlines and pressure profiles for each of the 

selected groove geometries and are shown in Figure 4.15 and Figure 4.16 respectively. 
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Table 4.14: Design point geometries selected for flow visualization 
Run # Width Flat Width Angle In Angle Out Depth 

Baseline 3.18 1.59 90 90 1.59 
Optimum 4.8 3.6 80 80 0.59 

(Δf) 7 4.8 4.6 80 80 0.40 
(Δα, Δβ) 27 4.8 3.3 30 30 0.40 

(Δd) 28 4.8 3.3 80 80 2.60 
(ΔW) 36 3.5 3.3 80 80 0.40 
(Δα) 74 4.8 3.3 45 30 0.40 
(Δβ) 81 4.8 3.3 30 45 0.40 

Table 4.15: Responses for the design points selected for flow visualization 
Run # Q [kg/sec] KXX [N/m] KXY [N/m] CXX [N-s/m] CXY [N-s/m] MXX [kg] MXY [kg] 

Baseline 9.076 1.981E+07 6.053E+08 3.546E+05 2.810E+04 14.067 0.122 
Optimum 8.386 1.634E+07 7.722E+08 4.433E+05 2.742E+04 13.508 0.202 

(Δf) 7 8.941 1.756E+07 7.621E+08 4.347E+05 2.705E+04 13.342 0.428 
(Δα, Δβ) 27 10.956 2.055E+07 6.539E+08 3.668E+05 2.988E+04 13.848 -0.107 

(Δd) 28 9.312 2.100E+07 5.954E+08 3.508E+05 2.841E+04 14.209 -0.001 
(ΔW) 36 8.929 1.714E+07 6.874E+08 3.975E+05 2.717E+04 13.782 0.134 
(Δα) 74 10.314 1.972E+07 6.718E+08 3.813E+05 2.865E+04 13.702 0.020 
(Δβ) 81 10.541 1.772E+07 6.897E+08 3.868E+05 2.868E+04 13.792 0.280 

 

  
Figure 4.15: Velocity streamlines for flow visualization 
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Figure 4.16: Pressure profiles for flow visualization 

The optimum groove geometry streamlines exhibit a wide flat vortex, mirroring the 

groove shape, which spans approximately three quarters of the groove width. The jet flow 

region enters from the clearance region at the front and expands into the rear of the groove 

cavity starting at about half the width. The abrupt contraction of the flow back into the annular 

clearance region slows the flow as it leaves the groove. This slowing of the exit flow and the 

long contact with the recirculating vortex contribute to the minimum leakage rate response 

from this seal geometry. Additionally, the exiting flow in the groove cavity follows the curve of 

the groove wall closely. 

The highest leakage rate response of the example geometries was exhibited by groove 

geometry number 28, followed by runs 74 and 81. Each of these geometries is differentiated 
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from the optimum seal geometry by reduction of the groove entrance and exit angles. Smaller 

entrance angles reduce the effect of the recirculation vortex and smaller exit angles smooth the 

changes in flow direction contracting into the clearance region. These physical mechanisms 

agree with the conclusions from the reduced cubic regression model, and its response surfaces, 

that steep entrance and exit angles reduce the leakage rate response. Also, the highest leakage 

rate from any simulation was observed from groove geometry number 13, shown in Figure 

4.17. This further confirms that reducing the abruptness of fluid directional changes increases 

leakage rate. 

 
Figure 4.17: Groove geometry number 13, streamlines and pressure profile 

The next highest leakage rate responses are observed in the baseline and groove 

geometry number 28 simulations. These simulations also are characterized by deeper grooves 

with aspect ratios nearer to unity. This allows for large recirculation vortices, to the point of 

filling the groove cavity. However this leaves jet flow in the seal without room for directional 

changes, because there is minimal room for it to expand into the groove behind the vortex. This 

effect would be more pronounced for more narrow grooves as expected based on the response 

surfaces. With sufficiently wide grooves there is the potential for multiple vortices, explaining 
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the slight down trend in the leakage rate response as depth increases with wider grooves, as 

seen in the response surface. 

The remaining flow visualizations for simulation runs 7 and 36 are differentiated from 

the optimum geometry by decreasing groove width and increasing flat width respectively. 

These changes result in wide sharp cornered nearly rectangular grooves. The sharper corners 

reduce the size of the recirculation vortices, allowing the incoming jet flow to expand more 

gradually into the remaining portion of the groove cavity. Any reduction in the abruptness of 

changes in flow direction reduces the loss of kinetic energy from expansion or contraction. The 

response surface relating groove width to flat width is the most complex, exhibiting the most 

cubic curvature of the surfaces shown. This makes assigning physical mechanisms more 

difficult; however, these flow visualizations do not contradict the regression model. 

4.4.1.b Rotordynamic Coefficients 

Sequential sum of squares analysis and coefficients of determination for full quadratic 

and cubic regression models suggest either model would be reasonable to apply to the 

rotordynamic coefficient responses, except the cross-coupled mass coefficient response. The 

same comparison, between the ability of a reduced quadratic or cubic regression model to 

predict the responses of the simulation experiments performed at the design points for 

predicted optimum leakage rate, was used to determine the appropriate regression model for 

each relevant response. For each analysis, the potential regression models are given, as above 

with leakage rate, and their quality and prediction ability will be compared and discussed. 

Representative tables of the detailed results from each statistical analysis method are shown 
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for the leakage rate response above. A model with statistical significance of greater than 99% 

confidence was obtained for each response. Each regression model, except the one modeling 

the cross-coupled mass coefficient response, was found to explain more than 75% of the 

variation about the mean of its respective response. Despite the ability to optimize the 

quadratic and cubic regression models representing the stability coefficients for maxima and 

minima, no optimization study was performed for these responses as no universally desirable 

target can be applied to all turbomachine systems. 

Direct Stiffness Coefficient 

The full 21-parameter quadratic regression model was found significant at above a 97% 

confidence level a by sequential sum of squares F-test. Initially, the discrepancy between the 

standard R2, 0.829, and predicted R2, 0.562, was larger than the rule of thumb allowed 

difference of 0.2 [42]. ANOVA and backwards elimination of factor effects not found significant 

at above a 90% confidence level resulted in a 13-parameter model. The second-order factor 

effect for groove entrance angle was eliminated from the regression model along with seven 

out of ten two-factor interaction effects. The remaining interaction effects include groove width 

with exit angle, flat width with entrance angle, and entrance and exit angle. The only factor 

effect included in the model but not significant above a 98% confidence level was the first-

order factor effect for groove width. This factor effect was not eliminated to maintain 

regression model hierarchy, despite only being found significant above a 74% confidence level. 

The 13-parameter reduced quadratic regression model was found to explain 81.2% of the 

response’s variation about its mean. The reduction of the original full quadratic model also 
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resulted in an increase in predicted R2 to 0.638. The parameter estimates of the reduced 

quadratic regression model are given in Equation 36. 

 𝐾𝑋𝑋 = 3.351 × 10
7 − (7.888 × 105)W − (1.541 × 106)f − (1.349 × 105)α  

 −(2.370 × 105)β − (8.995 × 105)d − 22381𝑤β + 25614𝑓α + 1982αβ  

 +(2.920 × 105)𝑤2 − (2.595 × 105)α2 + 1402𝛽2 − (1.261 × 105)d2 (36) 

The competing reduced cubic regression model consisted of 40 parameters. Like the full 

quadratic model for this response, the full 56-parameter cubic regression model had a 

noticeable discrepancy between its standard R2 value of 0.982, and the predicted R2 value of 

0.678. The backwards elimination reduction of the full cubic model, based on ANOVA results, 

increased the predicted R2 value to 0.839. The 40-parameter reduced cubic regression model 

was found to explain 97.7% of the response’s variation about the mean. The adjusted R2 value 

of 0.962 implies that the parameters added to the model in addition to the full quadratic model 

do in fact add significant explanatory value to the end regression model. While the cubic 

regression model is expected to have a higher correlation to the response because of the extra 

parameters, this predicted R2 value is closer to the standard R2 value of 0.977 than the 

associated coefficients of determination for the reduced quadratic regression model. Three 

factor effects not found significant above a 90% confidence level were included in the 

regression model to preserve model hierarchy. The included insignificant factor effects are the 

single factor effect representing exit angle and the two-factor interaction effects between flat 

width and exit angle, and between groove width and exit angle. All the included factor effects 
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and their parameter estimates are given in the reduced cubic regression model, shown in 

Equation 37. 

 KXX = 5.64 × 10
7 − (2.45 × 107)W + (1.66 × 107)f  

 −(5.69 × 105)α − (1.14 × 105)β + (6.29 × 106)d − (7.05 × 106)Wf  

 +(2.06 × 105)Wα + 46778Wβ − (4.26 × 106)Wd − (2.12 × 105)fα − 48875fβ  

 +(4.39 × 106)fd + 10210αβ − (1.71 × 105)αd + (1.29 × 105)βd + (6.40 × 106)W2  

 +(1.47 × 106)f2 + 2282α2 − 7646β2 + (9.17 × 105)d2 + 27841Wfα + 40950Wfβ  

 −(3.51 × 105)Wfd + 41840Wβd − 35202fβd + (3.63 × 105)W2f − 29854W2α  

 −24555W2β + (3.25 × 105)W2d − (1.53 × 105)Wd2 − 19665f2β + 627fα2 − 75α2β  

 +1189α2d − 1484β2d − 13430βd2 − (3.44 × 105)W3 − 62.78β3 + 56084d3 (37) 

Based on the comparison of the test simulation results with the reduced quadratic and 

cubic predictive regression models shown in Table 4.12 and Table 4.13 above, the reduced 

quadratic regression model was selected to best fit the direct stiffness coefficient response. 

Each of the potential regression models was better at predicting the response around their own 

predicted optimal design point. The reduced quadratic regression model had a prediction 

accuracy of 0.32% vs the reduced cubic regression model’s 1.18% for the design point predicted 

to produce optimal leakage rate by the quadratic regression model for leakage response; while, 

for the design point predicted by the cubic regression model for leakage response, the reduced 

quadratic regression model’s prediction accuracy was 13.48% vs the reduced cubic model’s 

10.53%. However, the reduced quadratic model is less complicated and runs less risk of 

accidentally fitting noise in the response data. The Pareto chart in Figure 4.18 shows the 

relative explanatory power of each of the factor effects. The response surfaces representing the 

reduced quadratic model are shown in Figure 4.19 through Figure 4.21. 
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Figure 4.18: Pareto chart showing relative factor effects from the regression model for direct 

stiffness coefficient response based on explained sums of squares of variation 

 
Figure 4.19: Response surface of direct stiffness coefficient sensitivity near the predicted optimal 

design point, in terms of groove width and flat width 
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Figure 4.20: Response surface of direct stiffness coefficient sensitivity near the predicted optimal 

design point, in terms of groove entrance and exit angles 

 
Figure 4.21: Response surface of direct stiffness coefficient sensitivity near the predicted optimal 

design point, in terms of groove width and depth 
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The groove geometry optimized for minimum leakage rate also exhibited a low direct 

stiffness coefficient, the lowest of the seal geometries selected for flow visualization. The 

minimum direct stiffness coefficient response simulated was found to correspond to test 

groove geometry number 41, depicted below in Figure 4.22. This geometry of minimum direct 

stiffness is described by a width of 4.8mm, flat width of 0.2 mm, depth of 0.4 mm and entrance 

and exit angles of 10°. The geometry is distinguished from the geometry associated with 

minimum leakage rate by decreases in groove width, flat width and entrance angle. These 

trends are not reflected in the response surface relating groove width and flat width above, 

however those response surfaces are only displayed for values of the other design variables 

fixed at the optimal leakage rate design point. The response surface in Figure 4.20 is supported 

by the geometry associated with minimum stiffness, showing that for large exit angles 

decreasing the entrance angle decreases the direct stiffness. This also explains the low direct 

stiffness coefficient responses of groove geometry numbers 7 and 36. 

 
Figure 4.22: Groove geometry number 41, streamlines and pressure profile 
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The response surface in Figure 4.20 shows the effect of the interaction factor effects. 

While the direct stiffness coefficient decreases with decreasing entrance angle at high to mid-

range values of exit angle, the opposite is true at low exit angles. This relationship is supported 

by the response of groove geometry number 74. Figure 4.20 is further supported by the 

decrease in direct stiffness coefficient response with increasing exit angle comparing the 

responses of groove geometry number 81 to groove geometry number 27. Figure 4.19 and 

Figure 4.21 show a concave parabolic relationship between groove width and the direct 

stiffness of the seal. The direct stiffness decreases with increasing groove width, with the effect 

becoming less pronounced from wider grooves. This correlation is supported by the slight 

increase in direct stiffness response in run 36 as compared to the seal geometry associated with 

minimum leakage rate. Figure 4.19 also depicts a decrease in direct stiffness with increasing flat 

width. The response of groove geometry number 7 does not appear to support such a 

correlation; however the reduced quadratic regression model predicts the response within 

4.46% of the simulation result for the geometry of groove geometry number 7. This suggests 

that the failure is not in the regression model; merely that the response surface centered on 

the groove geometry of minimum leakage rate does not represent the flow behavior in groove 

geometry with additionally different flat width and groove depth. As previously mentioned, the 

response surfaces depicted in this work are two dimensional slices of a larger five dimensional 

design space and should not be expected to apply when the design variables held fixed in the 

figure are different from those describing the geometry of interest. 
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The highest direct stiffness coefficient response was found to be caused by wide and 

shallow triangular grooves. Wide and shallow triangular grooves also correspond to a maximum 

leakage rate response. This is observed in the simulations selected for flow visualization with 

the response of groove geometry number 27, and in groove geometry number 13 from the full 

data set. Interestingly, the highest direct stiffness, from the flow visualization examples, results 

from groove geometry number 28. The deeper groove and higher volume groove cavity 

contribute to increased direct stiffness by confining the jet flow to the clearance region, making 

the flow similar to a plain annular seal or journal bearing. The response surface in Figure 4.21 is 

in agreement with the increased direct stiffness when comparing groove geometry number 28 

to the geometry of minimum leakage rate. The direct stiffness peaks at groove depths of 

approximately 3.5 mm and decreases for larger and smaller depths at all groove widths. The 

groove geometry showing the highest direct stiffness response corresponded to the highest 

leakage rate response. Similarly, the groove geometry associated with minimum leakage rate 

exhibited a low direct stiffness; however, the geometry of minimum direct stiffness did not 

have a particularly low leakage rate. This suggests that while the causation of these effects may 

be related, the physical mechanisms explaining each response are not identical.  

Cross-coupled Stiffness Coefficient 

Both the full quadratic and full cubic regression models fit the cross-coupled stiffness 

coefficient response data with greater than 99% confidence. ANOVA and backwards elimination 

of insignificant factor effects was performed on the initial 21-parameter full quadratic 

regression model. This resulted in a 12-parameter reduced quadratic regression model 
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consisting of the intercept, the first-order factor effects, two two-factor interaction effects, and 

four of the five second-order factor effects. Each of these factor effects was found to be 

individually significant by the ANOVA at above a 90% confidence level, except for the first order 

factor effect corresponding to the flat width which only met a 71% confidence level, but was 

included to preserve model hierarchy. The parameter estimates that make up the regression 

model are given in Equation 38 and explain 90.97% of the response’s variation about its mean. 

The adjusted and predicted coefficients of determination are 0.898 and 0.863 respectively, 

indicating that the few if any of the parameters fail to add explanatory power to the regression 

model and that it has reasonable accuracy for predicting the responses of existing data points. 

 𝐾𝑋𝑌 = 3.74 × 10
8 + (3.53 × 107)W + (6.32 × 106)f + (8.27 × 105)α  

 +(4.00 × 106)β − (2.02 × 107)d − (5.05 × 106)fd − 20429αβ  

 −(2.15 × 106)W2 + (5.49 × 106)f2 − 19845𝛽2 + (2.58 × 106)d2 (38) 

ANOVA and backwards elimination of insignificant terms was also performed on the full 

56-parameter cubic regression model, resulting in a 39-parameter reduced cubic regression 

model. Enough higher order combinations of factor effects were found significant and included 

in the model that all 21 of the factor effects that would make up a full quadratic model are 

included to preserve model hierarchy, despite the first-order factor effect corresponding to 

entrance angle to the groove, and the two-factor interactions combining the effects of groove 

entrance angle with groove depth, and groove width with exit angle. The parameter estimates 

of this reduced cubic regression model are given in Equation 39. There is high linear correlation 

between the model and the response variable, explaining 98.5% of the response’s variation 
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about its mean. The adjusted and predicted R2 values are correspondingly high at 0.976 and 

0.936 respectively. 

 

 KXY = 2.58 × 10
8 + (2.96 × 108)W − (1.80 × 108)f  

 −(3.25 × 106)α + (3.45 × 106)β − (9.60 × 107)d + (9.42 × 107)Wf  

 −(1.64 × 106)Wα − (1.06 × 106)Wβ + (5.28 × 107)Wd + (1.15 × 106)fα +  

 (1.40 × 106)fβ − (7.13 × 107)fd − 20815αβ + 44167αd + (7.25 × 105)βd  

 −(7.74 × 106)W2 − (2.09 × 107)f2 + (1.24 × 105)α2 − 13543β2 − (8.70 × 106)d2  

 −(4.84 × 105)Wfα − (2.74 × 105)Wfβ + (4.97 × 106)Wfd − (4.00 × 105)Wαd  

 −(1.75 × 105)Wβd + (6.63 × 105)fαd − (6.22 × 106)W2f + (3.66 × 105)W2α  

 +(2.26 × 105)W2β − (3.59 × 106)W2d + (1.92 × 105)Wd2 + (3.66 × 105)f2α  

 −(2.20 × 106)f2d − 9586fα2 + (1.99 × 105)αd2  

 +(4.81 × 106)W3 − 690α3 − (9.81 × 105)d3 (39) 

Both the reduced quadratic and reduced cubic regression models display high linear 

correlation between the models and the response. Referencing Table 4.12 and Table 4.13 

above, however, makes it clear that when compared with the experimental simulation results 

around the design points of optimal leakage rate, only the reduced quadratic regression model 

appreciably represents reality with an 8.17% and 10.15% difference from the simulation 

responses. The reduced cubic model reports predicted values for the cross-coupled stiffness 

coefficient with 64.44% and 88.41% error from the actual simulation responses. This indicates 

that a regression model of more than quadratic complexity is likely overfitting the data. Figure 

4.23 shows the proportional strengths and signs of the correlations between the various factor 

effects and the cross-coupled stiffness response. The exit angle and groove depth are the 
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design variables with the most explanatory power. Figure 4.24 through Figure 4.26 show 

response surface representations of the cross-coupled stiffness coefficient response based on 

the chosen reduced quadratic regression model. 

 
Figure 4.23: Pareto chart showing relative factor effects from the regression model for the cross-

coupled stiffness coefficient response based on explained sums of squares of variation 
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Figure 4.24: Quadratic regression model response surface of cross-coupled stiffness coefficient 

sensitivity near the predicted optimal design point, in terms of groove width and flat width 

 
Figure 4.25: Quadratic regression model response surface of cross-coupled stiffness coefficient 

sensitivity near the predicted optimal design point, in terms of groove entrance and exit angles 
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Figure 4.26: Quadratic regression model response surface of cross-coupled stiffness coefficient 

sensitivity near the predicted optimal design point, in terms of groove width and depth 

The largest cross-coupled stiffness response occurred in the simulation with the seal 

geometry optimized for minimum leakage rate. The smallest cross-coupled stiffness response 

occurred in the simulation of groove geometry number 13. Groove geometry 13 also 

corresponds to the highest observed leakage rate and direct stiffness. This, along with general 

trends in the data, suggests that any attempt to minimize leakage rate through changing seal 

groove geometry may be likely to increase the cross-coupled stiffness coefficient of the seal. 

Thus there is a tradeoff between efficiency of the turbomachine and its vibrational stability. 

This trend is also opposite to the trend just discussed for the direct stiffness coefficient 

response, which was reduced near the seal geometry of optimum leakage rate. 

The second highest cross-coupled stiffness among the flow visualized simulations was 

the result of the geometry used in groove geometry number 7. The geometry of groove 

geometry number 7 has a much larger flat width, than the geometry of minimum leakage rate, 
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and a smaller groove depth. Based on the response surfaces shown above, this would suggest 

an increase in cross-coupled stiffness rather than the slight decrease actually observed. 

However, the reduced quadratic regression model predicts within 2.89% of the actual response 

resulting from the simulation. Thus interaction factor effects between design variables not 

connected in the above response surfaces are responsible for the seemingly unexpected 

behavior.  

The trends, seen in Figure 4.25, relating reduction in groove entrance and exit angles to 

a reduction of the cross-coupled stiffness coefficient are supported by the responses of groove 

geometry numbers 27, 74 and 81. The geometry, with reduced entrance angle and a middle 

value of exit angle, in groove geometry number 81 is the next highest response of cross-

coupled stiffness. This larger increase in response from groove geometry number 27 to 81, 

compared to the increase between 27 and 74, supports indications in the Pareto chart, Figure 

4.23, that the effect of groove exit angle is stronger than the other design variables. REASON 

WHY 

The lowest cross-coupled stiffness responses, observed in the flow visualization 

examples, occur when the fluid in the jet flow region is not allowed to expand very far into the 

groove cavity. The baseline simulation and groove geometry number 28 are examples of this, 

where the large recirculation vortices create flow boundaries approximating a plain seal instead 

of a labyrinth seal.  

Direct Damping Coefficient 
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At better than a 99% confidence level, sequential sum of squares analysis supports the 

potential effectiveness of both a quadratic and cubic regression model. The full 21-parameter 

quadratic model was analyzed and refined first with ANOVA and backwards elimination of 

factor effect parameters individually found not significant at a confidence level greater than 

90%. The resulting 13-parameter model, shown in Equation 40, includes the intercept 

parameter, all five first-order factor effect parameters, two two-factor interaction effect 

parameters and four of the five second-order factor effect parameters. The three coefficients of 

determination for this reduced quadratic model are 0.902, 0.888, and 0.846 respectively for the 

standard, adjusted and predicted values. These R2 values indicate that the fitted model is 

explaining the variation in the response well. 

 𝐶𝑋𝑋 = 2.23 × 10
5 + 14478W + 4477f + 697.91α  

 +2058β − 9542d + 82.83Wβ − 2645fd − 13.35αβ  

 −1268W2 + 2676f2 − 10.73β2 + 1418d2 (40) 

The same model reduction procedure was performed on a full cubic regression model. A 

reduced cubic regression model, shown in Equation 41, was formulated of the 37 parameters 

found individually significant at or above a 90% confidence level, or necessary to maintain 

model hierarchy. The six insignificant factor effect parameters included for hierarchical reasons 

represent the second-order factor effect of groove entrance angle, the two-factor interaction 

effects of groove depth with the entrance and exit angles, the two-factor interaction effects 

combining the groove width and flat width with the exit angle, and the first-order factor effect 

representing groove depth. Together the individually significant and insignificant parameters of 
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the reduced cubic regression model explain 98.2% of the variation in direct damping coefficient 

about the mean response. Adjusted and predicted R2 values of 0.972 and 0.917 respectively, 

demonstrate that the majority of the parameters add value and accuracy of prediction to the 

regression model. 

 CXX = 81662 + (1.83 × 10
5)W − 98100f + 1965α + 1097β − 16908d  

 +50622Wf − 1121Wα − 322Wβ + 22484Wd + 899fα + 353fβ − 32824fd − 8.85αβ  

 −65αd − 105βd − 48650W2 − 9488f2 + 2.30α2 − 4666d2 − 182Wfα − 155Wfβ  

 +2090Wfd − 238Wβd + 162fαd + 152fβd − 3835W2f + 160W2α + 150W2β − 1921W2d  

 +1088Wd2 + 155f2α − 776f2d − 5.48fα2 + 143βd2 + 3360W3 − 736d3 (41) 

Similarly to the cross-coupled stiffness coefficient response, the reduced quadratic and 

cubic regression models for the direct damping coefficient response are both highly linearly 

correlated with the response data. The benchmarking of these regression models shown in 

Table 4.12 and Table 4.13 above suggests that the reduced cubic model’s predictions might be 

slightly more representative of the true response. The third-order model appears to enjoy an 

accuracy margin of a few percent over the reduced quadratic model, though the error of the 

quadratic model in prediction of the direct damping coefficient response was more consistent 

over both simulations. Some care should be taken in case the chosen reduced cubic model’s 

prediction accuracy continues to diverge as other areas in the design space are investigated. 

Figure 4.28 through Figure 4.30 show response surface plots of the reduced cubic regression 

model over the domain and Figure 4.27 shows the relative contributions of the factor effects to 

explaining the data’s variation about its mean. The groove entrance and exit angles appear to 

have the least effect on the direct damping coefficient response. 
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Figure 4.27: Pareto chart showing relative factor effects from the regression model for the direct 

damping coefficient response based on explained sums of squares of variation 

 
Figure 4.28: Cubic regression model response surface of direct damping coefficient sensitivity 

near the predicted optimal design point, in terms of groove width and flat width 
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Figure 4.29: Cubic regression model response surface of direct damping coefficient sensitivity 

near the predicted optimal design point, in terms of groove entrance and exit angles 

 
Figure 4.30: Cubic regression model response surface of direct damping coefficient sensitivity 

near the predicted optimal design point, in terms of groove width and depth 
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As with the cross-coupled stiffness response, the largest direct damping response 

corresponded to the seal groove geometry that causes minimum leakage rate. The minimum 

direct damping response also was observed in the simulation for groove geometry number 13. 

The previously mentioned tradeoff of reduced leakage rate, and direct stiffness, increasing the 

cross-coupled stiffness appears to also include increasing direct damping. However, the 

response surface plots for describing the two responses exhibit mostly different curvature, and 

in a few cases different general trends. Only the groove entrance angle response curvature is 

the same between the responses. Despite the differences in response surfaces, the ranking of 

the responses of the simulations chosen for flow visualization is nearly identical. 

The second highest direct damping response is observed for groove geometry number 7, 

with an increased flat width compared to the geometry of minimum leakage rate. The third 

highest from groove geometry number 36, the fourth through sixth highest from geometries 

81, 74 and 27, and the lowest response from the baseline geometry and groove geometry 

number 28. This ranking of the geometries also corresponds to the ranking of the apparent 

average groove pressure from Figure 4.16.  

Cross-coupled Damping Coefficient 

The sequential sum of squares F-test only found the quadratic model for the cross-

coupled damping coefficient response significantly different from zero at or above the 94% 

confidence level. Like the direct stiffness coefficient response the three coefficients of 

determination, for the full quadratic regression model, also cover a broader range from the 

standard R2 of 0.877 to the predicted value of 0.681. ANOVA and backwards elimination of 
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individual terms not significant at above 90% confidence levels results in a decrease in the 

standard R2 to only explaining 86.6% of the response’s variation about its mean, but an increase 

of the predicted R2 to 0.734. The 14-paramter reduced quadratic regression model is shown in 

Equation 42 with the calculated parameter estimates. 

 𝐶𝑋𝑌 = 32700 + 684W − 1530f − 67.20α − 48.20β  

 −849.69d − 10.68Wα − 16.53Wβ + 17.72fβ + 0.68αβ  

 +16.06βd + 146.96W2 + 0.57α2 − 67.95d2 (42) 

The full cubic regression model was found significant by the sequential sum of squares 

analysis at better than 99% confidence. Refining of the cubic model to only include terms 

statistically significant above a 90% confidence level reduced the number of regression 

parameters to 41. The selected parameters formulate a reduced cubic regression model given 

by Equation 43. Accounting for model hierarchy requirements, six factor effect parameters 

were retained by the model despite failure to be found individually significant above a 90% 

confidence level. These parameters correspond to groove exit angle, groove depth, the two-

factor interactions of the groove width and flat width with the exit angle, the two factor 

interaction of the entrance angle and the depth, and the squared entrance angle. Despite the 

individual insignificance of six parameters, the entire 41-parameter model displays good linear 

correlation and fit to the response data. The three coefficients of determination for the 

reduced cubic regression model range from 0.985 to 0.847. 

 CXY = 45504 − 15262W + 8472f − 186α + 85.2β + 605d  

 −4485Wf + 124Wα + 18.29Wβ − 3189Wd − 115fα − 0.81fβ + 2770fd + 0.97αβ  

 −21.29αd + 95.24βd + 4452W2 + 1111f2 + 0.14α2 − 3.94β2 + 744d2 + 29.56Wfα  
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 +9.42Wfβ − 167Wfd + 12.05Wαd + 17.95Wβd − 11.22fαd − 14.31fβd − 0.43αβd  

 +253W2f − 22.34W2α − 10.69W2β + 195W2d − 71.02Wd2 − 14.56f2α + 0.30fα2  

 −0.42β2d − 10.42βd2 − 263W3 + 0.025β3 + 27.72d3 (43) 

Upon comparison of the two regression model’s predictions of the cross-coupled 

damping coefficient response to the actual responses of the two additional simulation 

experiments, in Table 4.12 and Table 4.13, the two regression models appear to have 

approximately equal predictive capability. Occam’s razor and the exact errors between the 

predicted and simulated responses suggest that the reduced quadratic regression model should 

be used to model this response. The chosen regression model is shown as a response surface in 

Figure 4.32 to Figure 4.34 below, with a Pareto chart showing the relative explanation of the 

response’s variation about its mean from each factor effect, Figure 4.31. Based on the Pareto 

chart, the most significant design variables relating to this response are the groove flat width 

and the groove depth. The trends observed in the response surfaces below are similar to those 

for the direct stiffness coefficient and the subsequent direct mass coefficient responses. 

Additionally, the simulations characterized by maximum and minimum direct stiffness 

coefficient responses correspond to near maximum and minimum cross-coupled damping and 

direct mass coefficient responses. Because the remaining rotordynamic coefficients are not 

critical to stability, and because of the similarities to previously discussed results, the response 

surface trends will not be discussed separately. 
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Figure 4.31: Pareto chart showing relative factor effects from the regression model for cross-

coupled damping coefficient response based on explained sums of squares of variation 

 
Figure 4.32: Quadratic regression model response surface of cross-coupled damping coefficient 

sensitivity near the predicted optimal design point, in terms of groove width and flat width 
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Figure 4.33: Quadratic regression model response surface of cross-coupled damping coefficient 

sensitivity near the predicted optimal design point, in terms of groove entrance and exit angles 

 
Figure 4.34: Quadratic regression model response surface of cross-coupled damping coefficient 

sensitivity near the predicted optimal design point, in terms of groove width and depth 
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Direct Mass Coefficient 

Unlike the previously analyzed responses, the sequential sum of squares F-test did not 

find that the full quadratic regression model was significant except above a 56% confidence 

level. However, a model consisting of the first-order factor effects and all two-factor 

interactions the full cubic regression model was found significant at better than 99% 

confidence. Because both higher and lower hierarchy models are potentially significant, a full 

quadratic model was still investigated through ANOVA and backwards elimination of terms that 

fail to be found significant at a 90% confidence level. Expectedly, the majority of the second-

order factor effect parameters were not found significant. Neither were seven out of the ten 

two-factor interaction effect parameters. The resulting 10-parameter reduced quadratic 

regression model is given in Equation 44 and consists only of terms found individually 

significant. This model fits the response data with reasonable linear correlation, explaining 

75.6% of the variation in the response about its mean. The adjusted and predicted coefficients 

of determination are acceptably close to the standard R2 to confirm the model’s 

reasonableness. 

 𝑀𝑋𝑋 = 14.65 + 0.043W − 0.18f − (1.33 × 10
−3)α − 0.012β + 0.032d  

 −(1.33 × 10−3)Wα + 0.043fd + (1.71 × 10−4)αβ − (8.86 × 10−3)d2 (44) 

A 39-parameter reduced cubic model was also produced by the same methodology, 

shown in Equation 45. Again four factor effect parameters are included in the regression model 

to maintain hierarchy, having failed to be found significant at a minimum confidence level of 

90%. These rejected factor effect parameters correspond to the first-order factor effect 
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parameter associated with groove exit angle and three two-factor interaction effect 

parameters. The reduced cubic regression model proposes to explain 96.4% of the variation in 

direct-mass coefficient response about its mean. The adjusted R2 of 0.941 indicates that there 

are few parameters included which do not carry their own weight and a predicted R2 of 0.822 

suggests an acceptable ability to predict the response of the tested data points.  

 MXX = 16.39 − 2.58W+ 0.77f + 0.042α + (9.81 × 10
−3)β − 0.81d − 0.70Wf  

 +(7.56 × 10−3)Wα + (8.89 × 10−3)Wβ − 0.31Wd − (2.10 × 10−3)fα + (6.72 × 10−3)fβ  

 +0.19fd − (7.18 × 10−4)αβ + 0.034αd + 0.016βd + 0.69W2 + 0.23f2 − (9.68 × 10−4)α2  

 −(3.00 × 10−4)β2 − 0.080d2 + (3.61 × 10−3)Wfα + (2.00 × 10−3)Wfβ  

 +(3.96 × 10−3)Wαd − (2.89 × 10−3)fαd − (1.90 × 10−4)αβd + 0.035W2f  

 −(2.62 × 10−3)W2α − (2.57 × 10−3)W2β + (7.71 × 10−5)Wβ2 − (2.23 × 10−3)f2β  

 −(1.46 × 10−3)f2β + 0.014f2d − (8.67 × 10−5)fβ2 + (7.91 × 10−6)α2β 

 −(2.48 × 10−4)α2d − 0.032W3 + (5.29 × 10−6)α3 + (5.11 × 10−3)d3 (45) 

The results of the additional simulation experiments, given in Table 4.12 and Table 4.13 

above, agree with the predictions of both the reduced quadratic and reduced cubic regression 

models approximately equally. The average error of the two comparisons hints that the cubic 

model might have marginally greater prediction accuracy, however any gains in accuracy can be 

assumed to be very slight. The reduced quadratic regression model is selected for its greater 

simplicity while maintaining equivalent prediction accuracy. Figure 4.36 through Figure 4.38 

below show this model plotted over the design space. The Pareto chart in Figure 4.35 suggests 

that variations in groove flat width and groove exit angle explain the majority of the direct mass 

coefficient’s variation about its mean. 



 

121 

 
Figure 4.35: Pareto chart showing relative factor effects from the regression model for direct 

mass coefficient response based on explained sums of squares of variation 

 
Figure 4.36: Quadratic regression model response surface of direct mass coefficient sensitivity 

near the predicted optimal design point, in terms of groove width and flat width 
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Figure 4.37: Quadratic regression model response surface of direct mass coefficient sensitivity 

near the predicted optimal design point, in terms of groove entrance and exit angles 

 
Figure 4.38: Quadratic regression model response surface of direct mass coefficient sensitivity 

near the predicted optimal design point, in terms of groove width and depth 

Cross-coupled Mass Coefficient 
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Unique among the responses for this parameterization and experimental design, no 

regression model more complicated than the 6-parameter model consisting of the intercept 

and first-order factor effects was found to significantly fit the cross-coupled mass coefficient 

response based on sequential sum of squares analysis. Additionally, the predicted coefficients 

of determination for more complex regression models were found to be negative, indicating no 

confidence in their capability to predict the responses of data points examined in the 

experimental design, let alone ability to predict responses associated with other areas of the 

design space. ANOVA was performed on the full first-order factor effects model and the groove 

width and flat width both failed to be found significant above a 90% confidence level. The 

remaining 4-parameter regression model, and the associated parameter estimates, is given in 

Equation 46. While, the model is statistically significant above a 99% confidence level, it only 

proposes to explain 22.1% of the response data’s variation about its mean. Associated adjusted 

and predicted R2 values of 0.196 and 0.149 respectively, confirm the likely significance of the 

included parameters. However, the low standard coefficient of determination suggests that the 

response is dependent on effects due to unmodeled factors as well as the few factors of the 

parameterization that fit the response. Due to the simplicity of this model no response surface 

plots were produced. 

 𝑀𝑋𝑌 = 0.11 + (3.07 × 10
−3)α − (2.56 × 10−3)β − 0.016d (46) 

4.5 Comparison of Parameterizations 

The regression model for the leakage rate response associated with the second 

parameterization predicted the lowest leakage rate among the potential seal geometries. The 
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second parameterization DOE also tested larger variations in seal geometry than allowed by the 

first parameterization. However, the regression models found to fit the response data for the 

first parameterization DOE’s were more accurate at predicting the responses of the design 

point predicted to have optimal leakage rate. The simplicity of the reduced quadratic and first-

order linear regression models fit to the response data of the first parameterization also made 

it easier to associate potential physical mechanisms to the response behavior. Both 

parameterization studies provided insight into the relationships between groove shape and 

scale parameters and seal performance characteristics, and are thus useful to the design and 

further optimization of annular labyrinth seal geometries. 
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CHAPTER 5:  CONCLUSIONS AND FUTURE WORK 

This study has demonstrated the application of experimental design and multiple 

regression modeling to the investigation of annular seal groove shape and scale factors on seal 

performance characteristics. For the first parameterization, a 21-parameter model was refined 

to 11 parameters, resulting in a strong linear correlation between the regression model 

representing groove scale factors and the leakage rate response. This model provides 

information on the sensitivity of leakage rate to groove scale and suggests a seal geometry with 

a predicted minimum leakage rate. Regression models were also obtained for the seal’s 

rotordynamic coefficients. The regression models for the response seal performance 

characteristics suggest some general trends relating the groove radii scale to each response, 

shown in Table 5.1. The flow rate is at a minimum with groove radii near 4 mm. The regression 

equations for the other responses were linear, with the direct stiffness and direct mass 

coefficients exhibiting an inverse correlation and the remaining coefficients a direct correlation 

A second stage of experiments was performed to verify the location of design point having 

predicted optimum leakage rate and refine the regression models’ sensitivity in the region 

around the predicted optimum. The combination of the response data from these DOE’s 

allowed the formulation of new regression models with enhanced prediction accuracy over 

original regression models.  
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Table 5.1: Trends from 1st parameterization 

R  Q 𝐾𝑋𝑋 𝐾𝑋𝑌 𝐶𝑋𝑋 𝐶𝑋𝑌 𝑀𝑋𝑋 𝑀𝑋𝑌 

 (>4mm)       – 

 (<4mm)       – 

 (>4mm)       – 

 (<4mm)       – 

 

A second parameterization of the baseline seal geometry was investigated to identify an 

optimal groove shape. Both reduced quadratic and reduced cubic regression models were 

found to fit the seal performance responses. The design points of predicted optimum leakage 

rate were investigated for each order of regression model and used as a benchmark to select 

the most accurate regression model for each response. For both parameterizations the seal 

leakage rate was improved over that of the base seal and sensitivity information covering the 

design space is provided by the regression models for each seal performance response.  

Figure 5.1 shows one dimensional relationships between each design variable and the 

seal performance responses. The range allowed for each design variable is plotted against the 

various seal performance responses normalized by the responses associated with the baseline 

seal groove geometry. Each figure is applicable only near the values of the design variables 

being held constant at the levels associated with the seal groove geometry of minimum leakage 

rate. The trends visible in these plots are not constant if other design variables are changed due 

to the strong two and three factor interaction effects present in the regression models. For 

more complete information on trends relating the design variables to the seal performance 

characteristics, refer to the response surfaces in the chapter four or the regression models 

themselves. 
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Figure 5.1: One-dimensional relationships between the second parameterization design variables 

and the seal performance responses, for the optimal leakage rate geometry and normalized by the 

baseline seal responses 

W=4.8 mm, f=3.6 mm, α=80, β=80, d=0.59 mm 
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Starting from the seal geometry found to have minimum leakage rate, decreasing 

groove width increases the leakage rate. As the leakage rate increases, direct stiffness and 

cross-coupled damping increases quadratically, the cross-coupled stiffness decreases linearly, 

direct damping decreases quadratically, and the mass coefficients remain largely unchanged. As 

the flat width is increased, leakage, cross-coupled stiffness, and direct damping increase 

quadratically; while direct stiffness decreases quadratically. The flat width has little effect on 

the cross-coupled damping coefficient or the mass coefficients. The effects of groove depth are 

characterized by shallow convex parabolas for leakage rate, direct stiffness, and both damping 

coefficients, with maxima near a depth of 4 mm for each response. Cross-coupled stiffness 

decreases gradually with increased groove depth, and the cross-coupled mass coefficient 

exhibits a large linear decrease. Changes in both the entrance and exit angles cause small 

variations in the cross-coupled stiffness and damping and the direct mass coefficients. Leakage 

rate decreases quadratically with increases in both angles at approximately the same rate. 

There is more variation in direct damping from the groove entrance angle than the exit angle 

but both have a positive correlation. The largest differences between the effects of each angle 

are seen in the direct stiffness and cross-coupled mass coefficients. The entrance angle is 

positively correlated with direct stiffness with variation down to near 50% of the baseline seal 

response at low angles, while the exit angle exhibits a negative correlation from approximately 

120% of the baseline response at low angles to about 80% at high angles. The cross-coupled 

mass coefficient seems most strongly affected by the two angles with a positive correlation to 

entrance angle and a negative correlation to exit angle. 



 

129 

The geometry associated with minimum leakage rate also exhibited near minimum 

direct stiffness, near maximum cross-coupled stiffness, and near maximum direct damping. This 

suggests that shallow rectangular grooves best minimize leakage rate and direct stiffness, while 

maximizing direct damping. Correspondingly, seal groove geometry number 13, which has the 

highest leakage rate, displays the highest direct stiffness, the lowest cross-coupled stiffness, 

and the lowest direct damping. Seal groove geometry number 13 is a triangular groove with a 

wide base and shallow entrance and exit angles. These maxima and minima, along with the 

regression trends discussed previously, suggest that a prospective seal designer will have to 

accept a potential tradeoff of decreased vibrational stability for reductions in leakage rate 

through the seal. This demonstrates the viability of the application of design of experiments 

and multiple regression to annular labyrinth seal design. 

Although design spaces of greater than three factors can be difficult to visualize, 

compared to iterative design methods, this approach more broadly spans the potential design 

space and may provide combinations of factors that are not intuitive. Every additional 

experiment increases knowledge of the design space and allows the testing of more complex 

models to describe system behavior. While computationally expensive these simulations can be 

less time consuming than a pure optimization routine because the DOE simulations can be run 

simultaneously. 

The next iteration of the work discussed in this thesis begins with the addition of more 

simulation response data to the library being used to generate the least-squares regression 

models. The selection of new design points, at which to perform simulation experiments, could 
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be done by experimental designs or optimization algorithms, with or without regression 

analysis. New experimental designs would be selected to focus on areas of the current design 

space where experiments have not yet been performed, or to expand the limits currently set on 

the design variables. New limits could be imposed on the second parameterization design 

variables to allow new groove shapes such as parallelograms or inverted trapezoids. 

Alternatively, multiple optimization algorithms could be used to select new design points with 

goals such as confirmation of the current geometry associated with minimum leakage as a 

global minimum, or to meet the requirements of an objective function that selects for 

preferable rotordynamic coefficients, for a given system, as well as leakage rate. Optimization 

algorithms such as genetic algorithms, artificial neural networks, or simplex optimization could 

then be compared for convergence speed and agreement on global minima. 

Verification of the validity of this study’s rotordynamic coefficients could be performed 

by calculating the rotordynamic stiffness coefficients from full 360° seal CFD models that 

include rotor eccentricity. Verification could also be obtained by accumulation and regression 

analysis of experimental seal performance data for similar groove shapes, or experimental 

testing of the seal groove shapes simulated in this thesis. Simulation experiments could be 

performed on a plain seal with the same overall geometry to see if the intercept parameters 

from the regression models correspond to their responses. Additionally, simulation error can be 

estimated by starting the CFD simulations from multiple random initial conditions, or through 

comparison with physical experiment.  
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In future studies, more geometric effects on seal leakage rate could be explored through 

the generation of additional geometric parameterizations of labyrinth seal grooves. The more 

general the parameterization the more information the regression model can provide about the 

sensitivity of leakage rate to geometric factors along a labyrinth seal. In particular, a large study 

investigating the effects of allowing each of the 20 grooves in the baseline seal to vary by scale, 

or varying the spacing between grooves would identify seal performance responses that are 

affected by the groove’s axial location. Individual groove scales could be allowed to vary with a 

converging or diverging axial pattern to reduce the number of design variables. Groove cavity 

geometry could be defined by horizontal and vertical coordinates specifying points on a spline 

curve to allow wild variations in groove cavity geometry. Image processing could be used to 

track the center coordinates of the groove cavity vortices and regression models applied to link 

geometric design variables to vortex properties. Finally, the methods herein could be applied to 

more complex stepped labyrinth seals, other non-labyrinth annular seal geometries, to 

compare seals with different working fluids and operating conditions, or to other 

turbomachinery flow problems such as journal bearings or squeeze film dampers. 

Learning processes have been characterized as an iterative inductive/deductive cycle 

[32]. Data are gathered and, by a process of induction, ideas (a model) are generated to explain 

them. New hypotheses (predictions of the model) are generated by deduction. More data are 

gathered and the cycle continues. This process is a never ending refinement on the present 

understanding. This study proposed an alternate approach for investigating the effects of 

various geometric factors on leakage rate for balance drum seals. A systematic experimental 
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design was conducted to investigate the effects of five factors on leakage rate of a selected seal 

model. The fitting of linear models and analysis of variance of those results have revealed the 

significant geometric factor effects of the parameterized seal geometries. These results provide 

information that could be used to guide further experimentation in this design space to achieve 

an improved seal design. 
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APPENDIX A: EXPERIMENTAL DESIGN DATA POINTS 

Table A.1: First parameterization, first experimental design: non-central composite 
Run # Radius 1 Radius 2 Radius 3 Radius 4 Radius 5 

1 0.99 0.99 0.99 0.99 0.99 
2 0.99 0.99 0.99 0.99 3.18 
3 0.99 0.99 0.99 3.18 0.99 
4 0.99 0.99 0.99 3.18 3.18 
5 0.99 0.99 3.18 0.99 0.99 
6 0.99 0.99 3.18 0.99 3.18 
7 0.99 0.99 3.18 3.18 0.99 
8 0.99 0.99 3.18 3.18 3.18 
9 0.99 3.18 0.99 0.99 0.99 

10 0.99 3.18 0.99 0.99 3.18 
11 0.99 3.18 0.99 3.18 0.99 
12 0.99 3.18 0.99 3.18 3.18 
13 0.99 3.18 3.18 0.99 0.99 
14 0.99 3.18 3.18 0.99 3.18 
15 0.99 3.18 3.18 3.18 0.99 
16 0.99 3.18 3.18 3.18 3.18 
17 3.18 0.99 0.99 0.99 0.99 
18 3.18 0.99 0.99 0.99 3.18 
19 3.18 0.99 0.99 3.18 0.99 
20 3.18 0.99 0.99 3.18 3.18 
21 3.18 0.99 3.18 0.99 0.99 
22 3.18 0.99 3.18 0.99 3.18 
23 3.18 0.99 3.18 3.18 0.99 
24 3.18 0.99 3.18 3.18 3.18 
25 3.18 3.18 0.99 0.99 0.99 
26 3.18 3.18 0.99 0.99 3.18 
27 3.18 3.18 0.99 3.18 0.99 
28 3.18 3.18 0.99 3.18 3.18 
29 3.18 3.18 3.18 0.99 0.99 
30 3.18 3.18 3.18 0.99 3.18 
31 3.18 3.18 3.18 3.18 0.99 
32 3.18 3.18 3.18 3.18 3.18 
33 1.59 1.59 1.59 1.59 1.59 
34 0.4 1.59 1.59 1.59 1.59 
35 4.77 1.59 1.59 1.59 1.59 
36 1.59 0.4 1.59 1.59 1.59 
37 1.59 4.77 1.59 1.59 1.59 
38 1.59 1.59 0.4 1.59 1.59 
39 1.59 1.59 4.77 1.59 1.59 
40 1.59 1.59 1.59 0.4 1.59 
41 1.59 1.59 1.59 4.77 1.59 
42 1.59 1.59 1.59 1.59 0.4 
43 1.59 1.59 1.59 1.59 4.77 

Optimum 4.10 3.91 4.06 3.75 4.55 
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Table A.2: First parameterization, second experimental design: central composite 
Run # Radius 1 Radius 2 Radius 3 Radius 4 Radius 5 

1 4.00 4.00 4.00 4.00 3.41 
2 3.41 4.00 4.00 4.00 4.00 
3 4.00 4.00 4.59 4.00 4.00 
4 4.25 4.25 4.25 3.75 3.75 
5 3.75 3.75 3.75 3.75 3.75 
6 3.75 3.75 3.75 4.25 4.25 
7 4.25 3.75 4.25 3.75 4.25 
8 3.75 3.75 4.25 4.25 4.25 
9 4.00 4.00 4.00 4.59 4.00 

10 4.25 4.25 3.75 4.25 4.25 
11 3.75 3.75 4.25 3.75 3.75 
12 3.75 3.75 4.25 3.75 4.25 
13 3.75 4.25 3.75 3.75 3.75 
14 3.75 4.25 3.75 3.75 4.25 
15 4.25 3.75 4.25 3.75 3.75 
16 4.59 4.00 4.00 4.00 4.00 
17 4.00 4.00 4.00 4.00 4.00 
18 3.75 4.25 4.25 4.25 4.25 
19 4.00 4.00 4.00 4.00 4.59 
20 3.75 4.25 3.75 4.25 3.75 
21 4.25 4.25 4.25 4.25 3.75 
22 3.75 4.25 3.75 4.25 4.25 
23 4.00 4.59 4.00 4.00 4.00 
24 3.75 4.25 4.25 4.25 3.75 
25 4.25 3.75 4.25 4.25 3.75 
26 4.25 3.75 3.75 4.25 4.25 
27 3.75 3.75 4.25 4.25 3.75 
28 4.25 4.25 4.25 3.75 4.25 
29 4.25 3.75 3.75 4.25 3.75 
30 4.00 4.00 4.00 3.41 4.00 
31 3.75 3.75 3.75 3.75 4.25 
32 4.25 3.75 3.75 3.75 4.25 
33 4.25 3.75 4.25 4.25 4.25 
34 4.25 4.25 3.75 3.75 3.75 
35 3.75 3.75 3.75 4.25 3.75 
36 4.25 4.25 3.75 4.25 3.75 
37 3.75 4.25 4.25 3.75 4.25 
38 4.25 4.25 4.25 4.25 4.25 
39 4.25 3.75 3.75 3.75 3.75 
40 4.00 4.00 3.41 4.00 4.00 
41 4.25 4.25 3.75 3.75 4.25 
42 3.75 4.25 4.25 3.75 3.75 
43 4.00 3.41 4.00 4.00 4.00 

 

 



 

139 

Table A.3: Second parameterization, five-level factorial design 
Run # Width Flat Width Angle In Angle Out Depth 

1 4.8 2.4 80 80 4.2 
2 2.6 0.2 80 80 5.8 
3 2.6 1.5 60 30 0.4 
4 4.8 2.4 80 80 5.8 
5 4.8 0.2 80 80 5.8 
6 2.6 0.2 80 80 4.2 
7 4.8 4.6 80 80 0.4 
8 1.7 0.2 80 80 4.2 
9 4.8 2.4 80 60 2.6 

10 3.5 2.4 80 30 0.4 
11 3.5 0.2 80 80 2.6 
12 1.7 0.2 80 80 2.6 
13 4.8 0.2 10 10 0.4 
14 2.6 1.5 80 80 2.6 
15 3.5 2.4 30 45 0.4 
16 4.8 2.4 80 80 2.6 
17 3.5 0.2 30 10 0.4 
18 2.6 0.2 80 60 2.6 
19 4.8 0.2 60 80 2.6 
20 3.5 0.2 80 80 8 
21 3.5 2.4 45 30 0.4 
22 3.5 0.2 80 45 2.6 
23 1.7 0.2 30 45 0.4 
24 4.8 1.5 60 60 2.6 
25 4.8 1.5 80 60 4.2 
26 4.8 1.5 80 45 2.6 
27 4.8 3.3 30 30 0.4 
28 4.8 3.3 80 80 2.6 
29 3.5 0.2 45 80 2.6 
30 3.5 2.4 60 30 0.4 
31 4.8 0.2 80 60 5.8 
32 3.5 1.5 80 60 2.6 
33 1.7 0.2 30 30 0.4 
34 3.5 0.2 80 60 4.2 
35 2.6 2.4 80 80 0.4 
36 3.5 3.3 80 80 0.4 
37 4.8 0.2 60 45 2.6 
38 4.8 0.2 45 80 2.6 
39 4.8 1.5 45 80 2.6 
40 3.5 2.4 60 45 0.4 
41 3.5 2.4 30 80 0.4 
42 4.8 2.4 60 80 2.6 
43 4.8 3.3 80 80 4.2 
44 3.5 1.5 60 80 2.6 
45 2.6 0.2 80 80 2.6 
46 4.8 0.2 60 80 4.2 
47 4.8 0.2 80 80 8 
48 2.6 1.5 30 80 0.4 
49 4.8 3.3 45 45 0.4 
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Run # Width Flat Width Angle In Angle Out Depth 

50 2.60 1.50 60.00 45.00 0.40 
51 3.50 2.40 30.00 60.00 0.40 
52 4.80 0.20 80.00 80.00 2.60 
53 1.70 1.50 80.00 80.00 0.40 
54 3.50 2.40 45.00 60.00 0.40 
55 4.80 0.20 60.00 80.00 5.80 
56 1.70 0.20 45.00 45.00 0.40 
57 2.60 1.50 30.00 45.00 0.40 
58 1.70 0.20 45.00 30.00 0.40 
59 3.50 2.40 45.00 45.00 0.40 
60 3.50 0.20 60.00 80.00 4.20 
61 2.60 1.50 30.00 60.00 0.40 
62 4.80 1.50 10.00 30.00 0.40 
63 3.50 2.40 80.00 80.00 2.60 
64 2.60 0.20 60.00 80.00 2.60 
65 0.40 0.20 80.00 80.00 0.40 
66 4.80 1.50 60.00 80.00 2.60 
67 3.50 0.20 80.00 80.00 5.80 
68 4.80 1.50 30.00 10.00 0.40 
69 2.60 1.50 45.00 30.00 0.40 
70 3.50 0.20 80.00 80.00 4.20 
71 3.50 0.20 10.00 30.00 0.40 
72 4.80 0.20 80.00 80.00 4.20 
73 3.50 0.20 60.00 60.00 2.60 
74 4.80 3.30 45.00 30.00 0.40 
75 4.80 1.50 80.00 60.00 2.60 
76 3.50 0.20 60.00 80.00 2.60 
77 2.60 1.50 45.00 60.00 0.40 
78 3.50 2.40 60.00 60.00 0.40 
79 4.80 0.20 80.00 60.00 2.60 
80 4.80 1.50 80.00 80.00 8.00 
81 4.80 3.30 30.00 45.00 0.40 
82 2.60 0.20 30.00 30.00 0.40 
83 4.80 0.20 60.00 60.00 2.60 
84 4.80 1.50 80.00 80.00 4.20 
85 4.80 0.20 80.00 45.00 2.60 
86 2.60 1.50 60.00 60.00 0.40 
87 3.50 0.20 80.00 60.00 2.60 
88 3.50 1.50 30.00 30.00 0.40 
89 3.50 1.50 80.00 80.00 2.60 
90 4.80 1.50 60.00 80.00 4.20 
91 4.80 2.40 30.00 30.00 0.40 
92 4.80 1.50 80.00 80.00 5.80 
93 2.60 1.50 45.00 45.00 0.40 
94 4.80 1.50 80.00 80.00 2.60 
95 4.80 0.20 80.00 60.00 4.20 
96 2.60 1.50 80.00 30.00 0.40 
97 4.80 0.20 45.00 60.00 2.60 
98 3.50 1.50 80.00 80.00 4.20 

Optimum 4.80 3.60 80.00 80.00 0.59 
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APPENDIX B: EXPERIMENTAL DESIGN RESULTS 

Table B.1: First parameterization, first experimental design: non-central composite 
Run # Q [kg/sec] KXX [N/m] KXY [N/m] CXX [N-s/m] CXY [N-s/m] MXX [kg] MXY [kg] 

1 9.340 1.990E+07 5.921E+08 3.461E+05 2.808E+04 14.088 0.209 
2 9.112 1.964E+07 6.086E+08 3.545E+05 2.796E+04 14.077 0.001 
3 9.116 1.952E+07 6.062E+08 3.532E+05 2.803E+04 14.139 0.308 
4 9.082 1.897E+07 6.251E+08 3.633E+05 2.775E+04 13.968 0.461 
5 9.009 1.857E+07 6.125E+08 3.563E+05 2.767E+04 13.989 0.555 
6 9.007 1.893E+07 6.360E+08 3.689E+05 2.774E+04 13.826 0.128 
7 9.016 1.938E+07 6.270E+08 3.627E+05 2.817E+04 13.908 0.372 
8 8.924 1.895E+07 6.410E+08 3.713E+05 2.776E+04 13.860 0.297 
9 9.201 1.942E+07 5.997E+08 3.497E+05 2.816E+04 14.162 0.118 

10 9.080 1.942E+07 6.313E+08 3.659E+05 2.799E+04 13.931 0.307 
11 9.007 1.950E+07 6.359E+08 3.681E+05 2.810E+04 13.858 0.238 
12 8.939 1.933E+07 6.455E+08 3.738E+05 2.788E+04 13.849 -0.039 
13 9.026 1.970E+07 6.324E+08 3.672E+05 2.823E+04 13.952 0.357 
14 8.959 1.976E+07 6.484E+08 3.750E+05 2.822E+04 13.905 -0.023 
15 8.861 1.940E+07 6.506E+08 3.760E+05 2.806E+04 13.811 0.019 
16 8.784 1.930E+07 6.658E+08 3.854E+05 2.822E+04 13.810 -0.140 
17 9.204 1.990E+07 6.062E+08 3.520E+05 2.822E+04 14.153 0.156 
18 9.049 1.910E+07 6.315E+08 3.665E+05 2.776E+04 13.902 0.237 
19 9.093 1.990E+07 6.191E+08 3.589E+05 2.828E+04 14.008 0.040 
20 8.927 1.909E+07 6.491E+08 3.755E+05 2.779E+04 13.847 0.129 
21 8.926 1.945E+07 6.431E+08 3.717E+05 2.800E+04 13.778 0.250 
22 8.915 1.935E+07 6.489E+08 3.754E+05 2.807E+04 13.903 0.107 
23 8.898 1.915E+07 6.497E+08 3.764E+05 2.799E+04 13.864 0.206 
24 8.782 1.958E+07 6.657E+08 3.849E+05 2.821E+04 13.777 -0.313 
25 8.999 1.930E+07 6.382E+08 3.705E+05 2.791E+04 13.844 0.178 
26 8.844 1.912E+07 6.540E+08 3.779E+05 2.796E+04 13.900 0.293 
27 8.853 1.970E+07 6.492E+08 3.765E+05 2.805E+04 13.905 -0.036 
28 8.774 1.886E+07 6.634E+08 3.846E+05 2.809E+04 13.798 -0.025 
29 8.833 1.884E+07 6.550E+08 3.792E+05 2.797E+04 13.730 0.194 
30 8.702 1.916E+07 6.693E+08 3.872E+05 2.817E+04 13.760 0.160 
31 8.815 1.981E+07 6.584E+08 3.801E+05 2.844E+04 13.837 0.270 
32 8.616 1.909E+07 6.906E+08 3.984E+05 2.808E+04 13.773 0.132 
33 9.076 1.981E+07 6.054E+08 3.546E+05 2.810E+04 14.067 0.122 
34 9.178 2.047E+07 5.968E+08 3.465E+05 2.863E+04 14.110 0.236 
35 9.024 2.021E+07 6.327E+08 3.654E+05 2.841E+04 13.937 0.694 
36 9.185 2.034E+07 5.972E+08 3.477E+05 2.847E+04 14.137 -0.083 
37 9.036 1.918E+07 6.428E+08 3.721E+05 2.798E+04 13.788 0.286 
38 9.241 2.032E+07 5.970E+08 3.473E+05 2.839E+04 14.229 0.075 
39 8.994 1.949E+07 6.365E+08 3.681E+05 2.810E+04 13.759 1.041 
40 9.246 2.034E+07 5.929E+08 3.462E+05 2.836E+04 14.127 -0.032 
41 9.029 1.945E+07 6.357E+08 3.672E+05 2.787E+04 13.809 0.819 
42 9.210 2.055E+07 5.964E+08 3.477E+05 2.842E+04 14.151 0.096 
43 9.001 1.841E+07 6.446E+08 3.729E+05 2.751E+04 13.773 0.302 

Optimum 8.540 1.914E+07 7.229E+08 4.137E+05 2.865E+04 13.740 0.155 
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Table B.2: First parameterization, second experimental design: central composite 
Run # Q [kg/sec] KXX [N/m] KXY [N/m] CXX [N-s/m] CXY [N-s/m] MXX [kg] MXY [kg] 

1 8.571 1.896E+07 7.186E+08 4.116E+05 2.836E+04 13.673 0.372 
2 8.539 1.891E+07 7.200E+08 4.137E+05 2.854E+04 13.716 0.404 
3 8.548 1.920E+07 7.350E+08 4.197E+05 2.880E+04 13.607 0.426 
4 8.589 1.895E+07 7.197E+08 4.116E+05 2.844E+04 13.714 -0.109 
5 8.566 1.894E+07 7.120E+08 4.088E+05 2.856E+04 13.756 0.153 
6 8.592 1.927E+07 7.099E+08 4.052E+05 2.835E+04 13.767 0.309 
7 8.546 1.935E+07 7.325E+08 4.196E+05 2.857E+04 13.696 0.406 
8 8.570 1.885E+07 7.138E+08 4.086E+05 2.836E+04 13.675 0.387 
9 8.547 1.905E+07 7.258E+08 4.166E+05 2.870E+04 13.626 0.119 

10 8.513 1.845E+07 7.321E+08 4.193E+05 2.837E+04 13.640 0.235 
11 8.577 1.862E+07 7.122E+08 4.098E+05 2.820E+04 13.671 0.082 
12 8.564 1.915E+07 7.102E+08 4.062E+05 2.850E+04 13.829 0.350 
13 8.606 1.865E+07 7.052E+08 4.069E+05 2.817E+04 13.690 0.127 
14 8.533 1.920E+07 7.130E+08 4.080E+05 2.844E+04 13.715 0.328 
15 8.554 1.889E+07 7.137E+08 4.098E+05 2.853E+04 13.687 0.766 
16 8.565 2.002E+07 7.229E+08 4.138E+05 2.861E+04 13.612 0.087 
17 8.582 1.885E+07 7.163E+08 4.110E+05 2.844E+04 13.668 0.457 
18 8.519 1.886E+07 7.249E+08 4.174E+05 2.849E+04 13.662 0.185 
19 8.558 1.993E+07 7.219E+08 4.135E+05 2.877E+04 13.640 -0.135 
20 8.553 1.878E+07 7.131E+08 4.101E+05 2.827E+04 13.655 0.045 
21 8.544 1.920E+07 7.358E+08 4.217E+05 2.812E+04 13.654 0.096 
22 8.550 1.978E+07 7.171E+08 4.105E+05 2.848E+04 13.593 0.939 
23 8.554 1.943E+07 7.314E+08 4.180E+05 2.880E+04 13.630 -0.019 
24 8.573 1.942E+07 7.159E+08 4.104E+05 2.852E+04 13.723 0.145 
25 8.530 1.903E+07 7.271E+08 4.168E+05 2.848E+04 13.719 0.061 
26 8.562 1.958E+07 7.297E+08 4.167E+05 2.865E+04 13.632 0.200 
27 8.585 1.895E+07 7.104E+08 4.079E+05 2.834E+04 13.744 0.068 
28 8.534 1.911E+07 7.390E+08 4.244E+05 2.829E+04 13.591 -0.054 
29 8.560 1.915E+07 7.154E+08 4.114E+05 2.837E+04 13.674 0.275 
30 8.551 1.900E+07 7.188E+08 4.125E+05 2.844E+04 13.670 0.355 
31 8.625 1.880E+07 7.043E+08 4.056E+05 2.814E+04 13.680 0.146 
32 8.540 1.897E+07 7.160E+08 4.108E+05 2.850E+04 13.786 0.348 
33 8.549 1.864E+07 7.302E+08 4.195E+05 2.829E+04 13.625 0.062 
34 8.581 1.918E+07 7.184E+08 4.125E+05 2.836E+04 13.567 0.291 
35 8.625 1.896E+07 7.094E+08 4.073E+05 2.848E+04 13.747 0.452 
36 8.566 1.887E+07 7.236E+08 4.148E+05 2.835E+04 13.673 0.127 
37 8.559 1.909E+07 7.244E+08 4.147E+05 2.832E+04 13.669 0.375 
38 8.515 1.844E+07 7.362E+08 4.224E+05 2.827E+04 13.643 0.286 
39 8.557 1.974E+07 7.124E+08 4.084E+05 2.865E+04 13.695 0.107 
40 8.539 1.958E+07 7.194E+08 4.113E+05 2.870E+04 13.627 0.217 
41 8.534 1.926E+07 7.354E+08 4.209E+05 2.845E+04 13.610 0.140 
42 8.600 1.937E+07 7.091E+08 4.060E+05 2.868E+04 13.714 0.489 
43 8.539 1.939E+07 7.251E+08 4.150E+05 2.849E+04 13.624 0.379 
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Table B.3: Second parameterization, five-level factorial design 
Run # Q [kg/sec] KXX [N/m] KXY [N/m] CXX [N-s/m] CXY [N-s/m] MXX [kg] MXY [kg] 

1 9.498 2.031E+07 5.851E+08 3.497E+05 2.768E+04 14.150 0.072 
2 9.814 2.128E+07 5.499E+08 3.286E+05 2.836E+04 14.322 0.056 
3 9.891 2.103E+07 5.838E+08 3.387E+05 2.885E+04 14.136 0.210 
4 9.298 1.950E+07 5.887E+08 3.573E+05 2.711E+04 14.097 -0.076 
5 9.349 2.010E+07 5.921E+08 3.557E+05 2.747E+04 14.129 0.014 
6 9.831 2.115E+07 5.522E+08 3.299E+05 2.834E+04 14.295 0.066 
7 8.941 1.756E+07 7.621E+08 4.347E+05 2.705E+04 13.342 0.428 
8 10.198 2.243E+07 5.323E+08 3.141E+05 2.933E+04 14.396 0.046 
9 9.490 2.106E+07 5.895E+08 3.469E+05 2.842E+04 14.205 -0.016 

10 9.668 2.006E+07 6.274E+08 3.614E+05 2.809E+04 13.888 0.370 
11 9.897 2.306E+07 5.458E+08 3.209E+05 2.948E+04 14.421 0.097 
12 10.198 2.254E+07 5.333E+08 3.143E+05 2.938E+04 14.391 -0.027 
13 12.753 3.826E+07 4.824E+08 2.627E+05 3.957E+04 15.327 -0.136 
14 9.976 2.219E+07 5.447E+08 3.211E+05 2.916E+04 14.381 0.150 
15 10.296 1.979E+07 6.311E+08 3.584E+05 2.851E+04 13.777 0.189 
16 9.255 2.094E+07 5.962E+08 3.526E+05 2.824E+04 14.133 -0.053 
17 11.222 2.551E+07 5.376E+08 3.057E+05 3.173E+04 14.328 0.110 
18 9.909 2.241E+07 5.483E+08 3.237E+05 2.910E+04 14.427 0.139 
19 9.321 2.050E+07 6.044E+08 3.540E+05 2.820E+04 14.121 0.107 
20 9.507 2.052E+07 5.673E+08 3.416E+05 2.781E+04 14.256 0.075 
21 10.151 2.025E+07 6.201E+08 3.548E+05 2.840E+04 13.775 0.205 
22 9.770 2.152E+07 5.685E+08 3.355E+05 2.860E+04 14.305 0.139 
23 10.557 2.241E+07 5.423E+08 3.134E+05 2.977E+04 14.377 0.144 
24 9.575 2.076E+07 5.999E+08 3.508E+05 2.840E+04 14.113 -0.016 
25 9.459 2.047E+07 5.942E+08 3.535E+05 2.793E+04 14.167 -0.020 
26 9.656 2.170E+07 5.916E+08 3.455E+05 2.872E+04 14.165 0.342 
27 10.956 2.055E+07 6.539E+08 3.668E+05 2.988E+04 13.848 -0.107 
28 9.312 2.100E+07 5.954E+08 3.508E+05 2.841E+04 14.209 -0.001 
29 9.688 2.006E+07 5.880E+08 3.445E+05 2.825E+04 14.196 -0.084 
30 9.851 2.065E+07 6.212E+08 3.572E+05 2.842E+04 13.911 0.220 
31 9.411 2.059E+07 5.957E+08 3.532E+05 2.796E+04 14.121 0.221 
32 9.820 2.193E+07 5.596E+08 3.303E+05 2.873E+04 14.321 0.150 
33 10.821 2.390E+07 5.278E+08 3.040E+05 3.049E+04 14.412 0.178 
34 9.619 2.151E+07 5.672E+08 3.368E+05 2.860E+04 14.384 0.096 
35 9.132 1.938E+07 6.249E+08 3.645E+05 2.786E+04 14.004 -0.054 
36 8.929 1.714E+07 6.874E+08 3.975E+05 2.717E+04 13.782 0.134 
37 9.717 2.074E+07 6.042E+08 3.519E+05 2.835E+04 14.076 0.251 
38 9.494 2.028E+07 6.129E+08 3.564E+05 2.814E+04 14.072 0.191 
39 9.476 2.034E+07 6.099E+08 3.562E+05 2.809E+04 14.017 0.077 
40 9.615 1.858E+07 6.442E+08 3.695E+05 2.794E+04 13.901 0.386 
41 9.654 1.559E+07 6.892E+08 3.937E+05 2.688E+04 13.678 0.032 
42 9.402 2.053E+07 5.983E+08 3.514E+05 2.819E+04 14.064 -0.078 
43 9.460 2.026E+07 5.865E+08 3.514E+05 2.767E+04 14.163 0.156 
44 9.754 2.124E+07 5.667E+08 3.337E+05 2.868E+04 14.287 0.166 
45 10.005 2.234E+07 5.401E+08 3.192E+05 2.915E+04 14.360 0.126 
46 9.317 1.992E+07 6.067E+08 3.596E+05 2.776E+04 14.052 0.092 
47 9.271 1.949E+07 5.969E+08 3.611E+05 2.701E+04 14.068 -0.109 
48 9.740 1.817E+07 6.245E+08 3.601E+05 2.759E+04 13.800 0.038 
49 9.970 1.592E+07 6.979E+08 3.967E+05 2.806E+04 13.754 -0.146 
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Run # Q [kg/sec] KXX [N/m] KXY [N/m] CXX [N-s/m] CXY [N-s/m] MXX [kg] MXY [kg] 

50 9.709 2.065E+07 5.961E+08 3.452E+05 2.871E+04 14.142 0.061 
51 9.974 1.662E+07 6.634E+08 3.791E+05 2.843E+04 14.047 -0.280 
52 9.150 2.057E+07 6.013E+08 3.550E+05 2.820E+04 14.136 0.205 
53 9.675 2.144E+07 5.651E+08 3.316E+05 2.886E+04 14.295 0.099 
54 9.556 1.795E+07 6.560E+08 3.774E+05 2.756E+04 13.751 0.085 
55 9.369 1.975E+07 6.037E+08 3.587E+05 2.753E+04 14.028 0.023 
56 10.166 2.245E+07 5.468E+08 3.188E+05 2.953E+04 14.394 0.128 
57 10.312 2.106E+07 5.856E+08 3.364E+05 2.929E+04 14.158 -0.011 
58 10.417 2.327E+07 5.375E+08 3.115E+05 3.002E+04 14.443 0.247 
59 9.811 1.874E+07 6.387E+08 3.661E+05 2.804E+04 13.862 0.386 
60 9.631 2.064E+07 5.758E+08 3.415E+05 2.823E+04 14.279 0.041 
61 10.033 1.943E+07 6.068E+08 3.491E+05 2.853E+04 14.045 0.019 
62 12.263 2.466E+07 6.346E+08 3.453E+05 3.247E+04 14.103 -0.030 
63 9.832 2.220E+07 5.503E+08 3.250E+05 2.908E+04 14.391 0.145 
64 9.857 2.144E+07 5.580E+08 3.291E+05 2.869E+04 14.318 0.063 
65 10.799 2.535E+07 5.050E+08 2.919E+05 3.127E+04 14.560 0.050 
66 9.373 2.061E+07 6.005E+08 3.529E+05 2.824E+04 14.123 -0.115 
67 9.574 2.014E+07 5.616E+08 3.378E+05 2.781E+04 14.248 0.181 
68 11.329 2.645E+07 5.606E+08 3.156E+05 3.239E+04 14.141 0.139 
69 10.160 2.167E+07 5.735E+08 3.313E+05 2.919E+04 14.157 0.270 
70 9.642 2.121E+07 5.657E+08 3.363E+05 2.835E+04 14.301 0.149 
71 11.883 2.201E+07 6.033E+08 3.346E+05 3.073E+04 14.109 0.102 
72 9.565 2.083E+07 5.722E+08 3.417E+05 2.808E+04 14.191 0.141 
73 9.732 2.149E+07 5.738E+08 3.368E+05 2.870E+04 14.291 0.113 
74 10.314 1.972E+07 6.718E+08 3.813E+05 2.865E+04 13.702 0.020 
75 9.471 2.126E+07 5.871E+08 3.456E+05 2.863E+04 14.224 0.221 
76 9.761 2.137E+07 5.629E+08 3.312E+05 2.887E+04 14.294 0.139 
77 9.662 1.881E+07 6.092E+08 3.536E+05 2.802E+04 14.020 0.115 
78 9.336 1.781E+07 6.662E+08 3.842E+05 2.742E+04 13.772 0.150 
79 9.381 2.118E+07 5.910E+08 3.478E+05 2.854E+04 14.211 0.160 
80 9.175 1.907E+07 5.972E+08 3.641E+05 2.669E+04 14.064 -0.001 
81 10.541 1.772E+07 6.897E+08 3.868E+05 2.868E+04 13.792 0.280 
82 10.680 2.258E+07 5.624E+08 3.218E+05 3.003E+04 14.220 0.218 
83 9.516 2.085E+07 5.980E+08 3.497E+05 2.841E+04 14.107 0.237 
84 9.499 2.067E+07 5.799E+08 3.461E+05 2.782E+04 14.116 0.113 
85 9.625 2.134E+07 5.897E+08 3.451E+05 2.875E+04 14.227 0.226 
86 9.479 1.951E+07 6.108E+08 3.549E+05 2.816E+04 13.986 0.057 
87 9.829 2.242E+07 5.558E+08 3.280E+05 2.912E+04 14.393 0.076 
88 10.681 2.129E+07 6.067E+08 3.441E+05 2.951E+04 13.884 0.284 
89 9.793 2.233E+07 5.517E+08 3.267E+05 2.900E+04 14.381 -0.028 
90 9.406 2.002E+07 6.060E+08 3.589E+05 2.752E+04 14.014 0.011 
91 11.014 2.135E+07 6.464E+08 3.612E+05 3.034E+04 13.905 0.049 
92 9.314 2.009E+07 5.920E+08 3.558E+05 2.750E+04 14.127 0.003 
93 9.880 1.990E+07 5.940E+08 3.434E+05 2.851E+04 14.092 0.215 
94 9.286 2.100E+07 5.931E+08 3.498E+05 2.844E+04 14.198 0.080 
95 9.460 2.041E+07 5.905E+08 3.509E+05 2.797E+04 14.199 0.239 
96 9.752 2.135E+07 5.805E+08 3.377E+05 2.892E+04 14.203 0.243 
97 9.503 2.039E+07 6.215E+08 3.609E+05 2.825E+04 14.007 0.053 
98 9.606 2.100E+07 5.607E+08 3.358E+05 2.815E+04 14.309 0.085 

Optimum 8.386 1.634E+07 7.722E+08 4.433E+05 2.742E+04 13.508 0.202 
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