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Abstract

Extensive urban and metropolitan development over the past decades has resulted in the

need to better move goods and people over the nation’s motorways. However, physical

limitations in motorway infrastructure and ine�cient use of existing infrastructure have

caused considerable economic loss through the late delivery of goods and loss of productive

labor, as well as environmental damage, national security concerns, and financial burden

resulting from fuel wasted during congestion.

Improving utilization of existing physical assets is a crucial and relatively inexpensive

means to achieving those ends. The proliferation of inexpensive mobile devices over the

past decade has fundamentally changed tra�c management, both from the perspective

of motorists, as well as planners and logisticians. Motorists now have rapid access to

realtime tra�c information, and can thus easily re-plan their journeys while already underway.

Likewise, organizations that operate these services have access to motorists’ whereabouts

and itineraries, and are in a position to shape and manage tra�c by providing instructions

to individual drivers.

This research addresses an exploratory agent-based approach towards modeling a road

network in which agents 1. have varied routing behaviors and 2. may or may not have access

to realtime rerouting capabilities. The objective is to explore what e↵ect modifying driver

portfolios will have on the “price of anarchy” associated with a commuter network. This

information can be used by urban planners to determine which driver and information-access

portfolios result in the least vehicle delay and best use of motorway resources, thus informing

policies and incentives that can alleviate network congestion. Results on a Northern Virginia

test case demonstrate that active rerouting has overall modestly positive e↵ects on network

latency for small and moderately-sized populations; however, in larger populations, active

rerouting can lead to competitive pressures between agents, resulting in overall degradation

of performance. It is suggested that future work implement competing managerial agent

classes, as well as test over additional geospatial datasets.
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Introduction

Motorway congestion is a major cause of both material and immaterial costs for both

commuters and commercial freight operations. Delays caused by road tra�c are not only

an inconvenience to drivers, but additionally are associated with economic loss, such as

decreases in productive time resulting from protracted commuting, and the burning of fuel

while idling or moving at reduced speeds. Commercial operations are also subject to the

aforementioned costs; additionally, time-sensitive shipments depend on precise scheduling

that can be disrupted by events that slow transit.

Texas A&M University’s Transportation Institute compiles national transit and tra�c

data and releases its Urban Mobility Report1 which details congestion statistics and trends,

infrastructure changes and growth, and the environmental and economic e↵ects of tra�c

patterns. Data is compiled for 498 urban areas in all 50 states and the District of Columbia,

categorized as “very large” (x > 3 million people), “large” (3 million > x > 1 million people),

“medium” (1 million > x > 500 thousand people), and “small” (500 thousand people > x).

The 2011 report states the following findings:

• The total economic cost of congestion of the 498 surveyed areas in 2011 was approx-

imately $121bn. This was the result of both wasted fuel and delay-related expenses

(loss of productive hours, etc.). This amounts to 0.8% of the national GDP that year2.

• In 2011, Americans collectively spent 5.5bn hours stuck in tra�c. This translates into

38 hours, on average, per individual. The national average of the Travel Time Index,

which is the ratio of travel time during peak hours to travel time during free-flow

conditions, was 1.18. This indicates an 18% increase in travel time during peak hours

relative to free-flow travel time for a given commute (for example, a commute that

1Report available at http://mobility.tamu.edu/ums/report/ [1]
2Via http://data.worldbank.org/
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would be 30 minutes during free-flow conditions is instead over 35 minutes during peak

hours).

• In 2011, Americans collectively wasted 2.9bn gallons of fuel as a result of road congestion.

This resulted in an additional carbon dioxide output of 56bn pounds.

• The average monetary cost to an American commuter in 2011 was $818, more than a

threefold increase from 1980 (adjusting for inflation).

• Predictions indicate that in by 2020, the aggregate economic cost of congestion will

increase to $199bn (in 2011 dollars), with a total of 8.4bn hours wasted in tra�c and

4.5bn gallons of fuel wasted. The cost to the individual commuter will be $1,010 (again,

in 2011 dollars) with 45 hours wasted in tra�c.

Additionally, the report states that delays in truck deliveries - especially shipments

required for “just in time” manufacturing - resulted in a cost of $27bn (in 2011), much of

which was passed onto consumers. This constitutes 22% of the above $121bn value.

Moreover, unrelated research highlights the detrimental e↵ects occupational commuting

has on an individual’s mental and physical health; quality of sleep and chronic exhaustion

were specifically linked to long, congested commutes [2]. While this has obvious implications

with respect to quality of life, there also exist underlying public health concerns that could

be considered preventable.

The Urban Mobility Report prescribes certain treatments; these range from expanding

infrastructure to accommodate greater vehicle throughput, to encouraging changes in de-

velopment patterns in a way that makes metropolitan areas less susceptible to jams. Of

particular interest is a recommendation for developing management strategies that optimize

transit given current infrastructure limitations.

Advanced Traveler Information Systems and the Intelligent Transportation Sys-

tems Strategic Research Plan
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Advanced traveler information systems (ATIS) are defined as any system that provide infor-

mation intended to assist an overland vehicle operator in his or her planned journey. ATIS

have been discussed in the transportation literature as far back as the 1990s; however, the

rapid development and widespread proliferation of inexpensive and easy-to-use consumer

mobile technologies in recent years have resulted in a substantial boon to transportation

engineering, especially with respect to system-level infrastructure management. In 2009, the

United States Department of Transportation published its Intelligent Transportation Systems

(ITS) Strategic Research Plan 2010-20143, a broad research initiative intended to improve

roadway safety and mobility, as well as to ease the environmental impacts associated with

road travel.

While the initiative covers many research areas over several disciplines, tapping consumer

mobile technology and devices has been of considerable interest to the Department of Trans-

portation, as well as the private sector. The ability to collect data in realtime from vehicle

operators, as well as broadcast realtime information to said operators has the potential to aid

logisticians in managing vehicle tra�c and making optimal use of road infrastructure. The

ability to both access and broadcast data of such high resolution (down to the individual

vehicle) can allow planners and tra�c engineers to improve the regular use of roadways, as

well as e�ciently and appropriately respond to highly disruptive events and conditions.

Research Summary

An agent-based simulation has been employed to run a number of experiments over a sim-

ulated “rush hour,” approximately three real-time hours4, in which parameters pertaining

to total vehicle population, access to ATIS, and routing preferences have been varied. The

problem is formally defined in Section 2. How experiments have been designed and run are

explained in Sections 4 and 5. From these experiments, results pertaining to mean vehicle

3http://www.its.dot.gov/strategic plan2010 2014/index.htm
4According to Texas A&M’s Urban Mobility Report, a typical morning in a rush-hour in a large/very large

metro area lasts approximately three hours.
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travel time (compared to a hypothetical, unconstrained free-flow case) are analyzed and

implications are interpreted (Sections 5 and 6).
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Problem and Objectives

2.1 Problem Description

On any given day, motorists will commute to and from their places of employment (or other

destinations); the time it takes to travel from one’s origin to destination is dependent on

the vehicle operator’s driving behavior and route selection choices, the driving behavior and

route selection choices of other drivers, the number of drivers on the road at any given time,

tra�c accidents, non-vehicle obstructions, inclement weather, road closures, and acts of God.

In e↵ect, travel outcomes are determined by one’s own actions, the actions of others, and

externalities unrelated to agent decision-making.

Given the pervasiveness of smartphones and similar technologies, it is now possible for

services such as Google Maps, Waze, Nokia HERE, and INRIX to track, in realtime, where,

when, and under what circumstances delays and congestion occur with high spatiotemporal

precision. Moreover, the information gathered by these services can be disseminated back

to their users, who can revise their routes to shorten travel time. This continuous realtime

feedback process can be used to better manage aggregate motorway tra�c and shorten travel

time for individual vehicles.

However, executive functions are still left to the vehicle operator, so actual moving

behavior may occur irrespective of what information is available to any individual driver;

under real conditions, that decision is typically opaque. In other words, a driver may behave

in a way that seems contradictory to the routing information provided to him for reasons

unknown to a third-party or outside observer.

The work documented here explores several test cases in which drivers on a network

exhibit di↵erent moving behaviors/preferences, and may or may not heed to route alternatives

and/or revisions. Most importantly, their interactions with one another do indeed a↵ect their
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own transit outcomes. For each test case, performance against a hypothetical best case is

compared - this is further explained below.

2.2 Problem Definition

This research aims to simulate commuter tra�c over a road network by means of a mesoscopic

tra�c simulation built as an agent-based model. This simulation is designed to demonstrate

the “price of anarchy” on a road network - that is, how self-interested drivers with di↵erent

itineraries and travel strategies (utility preferences) independently interact with one another

and with the network itself, given varied levels of awareness of the network’s state. More

formally, this is defined as:

1. Agents are self-interested and seek to minimize their travel time (latency)1.

2. Agents will select a path based on factors that are not time-variant.

3. Agents are non-cooperative and have imperfect information on the state of the system.

4. A small number of agents have perfect information on the state of the system at all

times, and are willing (to a degree) to adjust their planned routes to avoid high-use

areas at the expense of distance traveled.

5. Given these conditions, determine how the partial population of the agents described in

(4) impacts mean latency. Additionally, determine whether these outcomes are bounded

or amplified by scale.

Observations pertaining to vehicle travel time and network congestion, given simulation

parameter settings, can be used by urban planners and entities providing navigation services

to inform policy and determine appropriate incentive strategies.

1“Latency” as defined here is equivalent to the US Department of Transportation Federal Highway
Administration’s term planning time index [3]. “Latency” is the term used in the game theory literature, and
will be used throughout this document
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2.3 Research Objectives

The objective of the documented research is to investigate how di↵erent driver portfolios

impact network congestion in a test case representative of a real-world motorway network.

More specifically, the goal is to determine how varying the number of drivers with access to

perfect information of the state of the system (as a fraction of the total population) a↵ects

travel latency for both types of drivers. Of interest are whether e↵ects are independent of total

test population sizes, whether one observes diminishing or increasing returns as population

fractions are adjusted, and if there exist any cases in which one observes a degradation in

performance in absolute terms.

The work is exploratory in nature and it is intended that methods and results presented

here can be used to inform high-level policy for urban planners, logisticians, and private

services such as Google Maps, Waze, Nokia HERE, and INRIX. This is especially useful in

the event that major changes are planned to physical infrastructure, in that systemic e↵ects

can be simulated beforehand.

More powerful (and perhaps less obvious) is the potential for providing actionable guidance

to urban planners to the e↵ect of informing policy as it pertains to driver incentives and future

development. Coupled with detailed information on commuter populations (obtained through

surveys, for example), urban planners can better engineer incentives and infrastructure

development to suit local communities. Both of the above are more thoroughly explained in

Section 6.
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Literature Review

The majority of the literature review pertained to tra�c simulation, addressing scope,

methodology, and their respective case-by-case utility. Supplemental research was done on

tra�c flow theory and game theory to better inform simulation mechanics. The research put

forth in this document draws from all three, but intends to contribute primarily to the first.

3.1 Simulation Methods in Tra�c Engineering

3.1.1 Scope

Microscopic Tra�c Simulation

A microscopic tra�c simulation (or microsimulation) is one in which individual vehicles

are modeled and observations are made at the unit-level. Microsimulations parameterize

individual vehicles’ position, velocity, and acceleration, and are often used to simulate

car-following, acceleration/deceleration behavior, and lane-changing behaviors. They are

useful in modeling how road features such as stoplights, bottlenecks (lanes merging), and

dedicated turn lanes can a↵ect vehicle movement and local congestion/tra�c patterns. Due

to large computational overhead, it is typically impractical to simulate a large area using

a microsimulation [4–7]. Several microsimulation platforms exist, notably TRANSIMS, a

project originally developed by Los Alamos National Laboratory; it is unique in that it can

simulate populations using census demographic data, adding a level of sophistication not

present in other platforms [8].
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Macroscopic Tra�c Simulation

A macroscopic tra�c simulation (or macrosimulation) is one in which aggregate system

dynamics are modeled, as opposed to individual units. Such simulations explicitly do not

model individual vehicles, their movement, or their interactions with one another. Instead,

they model and output aggregate metrics such as average vehicle speed, tra�c flow, and

tra�c density over a surveyed area. Such simulations are typically built on fluid dynamic

models. Because of their low resolution, they are limited to use on larger road networks or

highway systems, where unit-level detail is not necessarily required. However, even in this

application they are limited, since driver behaviors or distinct driver types that can a↵ect

system-wide outcomes are not distinguished from one another [5, 9, 10].

Mesoscopic Tra�c Simulation

Very generally, mesoscopic tra�c simulations fall between macroscopic simulations and

microscopic simulations in terms of resolution and actionable scope [5, 9]. Mesoscopic models

will typically model individual units (like microsimulations), or instead small groups of

units (“platoons”), providing higher resolution than would be available in a macrosimulation.

However, high-resolution vehicle behaviors characteristic of microsimulations, such as car-

following and lane-changing, are typically absent/omitted, or at least vastly simplified.

Mesoscopic models can be applied to larger areas/populations than would be practical for a

microsimulation, while a↵ording a level of detail absent from a macrosimulation.

Much of the tra�c engineering literature on mesoscopic simulation has involved building

hybridized mesoscopic/microscopic models [11–13]. These models are intended to model

and generally characterize large networks as accurately as possible, while allowing for high-

resolution modeling for specific segments of the network that are considered to be of greater

interest. Recent literature has also seen this approach applied to logistics analysis, in that it

is computationally less expensive than microsimulation, and is adequately detailed for larger

scale requirements and longer travel itineraries [14].
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3.1.2 Methodological Approaches

Fluid Dynamics

Fluid dynamic and gas-kinetic models (derived from the physical sciences) have been applied

to macroscopic tra�c simulation since at the 1950s. Lighthill and his former student, Whitham

[15] applied a kinematic wave model to describe tra�c flow and bottlenecking on single

lane “crowded arterial roads.” Richards [16] arrived at this same conclusions as Lighthill and

Whitman and published his findings in 1956. The characteristic equation of both publications

includes the Greenshields expression, which was formulated in the 1930s to relate vehicle

speed and travel density (see Section 3.2) [9]. Subsequently, Whitham and Payne [17] [18]

added a second equation to the 1955 publication, and the two together named for Lighthill,

Whitman, Richards, and Payne have since then been featured (and solved for) in the tra�c

engineering literature. This approach employs a system of partial di↵erential equations, for

which exact solutions exist [19].

Discrete Event Models and Cellular Automata

The Nagel-Schreckenberg model [20] is a well-known cellular automaton that models tra�c

flow. A single-lane road is divided into segments (cells) which have a state of either occupied

or unoccupied. Vehicles execute a simple set of instructions: a car not at the maximum speed

allowed by the model will accelerate, it will then reduce speed based on their current speed

and the distance between it and the vehicle ahead of it, it will then reduce its speed with

some random probability p, and finally it will execute its movement forward. Travel is in one

direction only, and vehicles cannot overtake one another. This model was noteworthy because

proved tra�c flow was an emergent phenomena, and modeled it at a very high granularity.

The aforementioned TRANSIMS model was developed by Nagel at Lawrence-Livermore, and

is based largely on the Nagel-Schreckenberg model [8]. The Nagel-Schreckenberg model has

been further extended to more complex, multi-lane simulations [21, 22].
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Discrete event simulation has been independently employed as a way to model tra�c

flows and vehicle movements. Burghout et. al. [11, 13] employ a discrete-event methodology

in the aforementioned hybrid micro/mesoscopic tra�c simulation, in which vehicle movement

is modeled as an arrival/queuing process.

Agent-Based Models

Agent-based models have been widely employed in the field of tra�c engineering to investigate

a wide variety of conditions and involved factors [23–25]. Human choice and decision-making

behaviors, route guidance, tra�c flow dynamics, and broad systemic phenomena have all

been approached and analyzed using ABMs at various levels of complexity and scope.

Most relevant to the research here are works by Hussein Dia [26], Wahle et. al. [27],

and Wahle et. al.[28], who explore the impact of real-time tra�c information provided to to

drivers (such as by means of as an ATIS) using ABM and cellular automata. Whale et. al.

are concerned more with the systemic e↵ects associated with ATIS utilization, specifically

what time of information is made available to motorist, and agent behavioral coding is fairly

simple. Dia employs a rather sophisticated agent utility framework derived from demographic

data and surveys distributed to human motorists in Brisbane, Queensland, Australia. This

provides a highly illustrative simulation environment, with respect to both agents and the

infrastructure on which they operate. The research proposed in this document is in a similar

vein to the three papers described above, with focus on the health of the overall infrastructure

network. Work by Buscema et. al. [29] features a simulation built in NetLogo that models

Braess’s Paradox with ATIS augmentation; this is perhaps the most obvious simulation

publication surveyed with a direct analog to network equilibrium in game theory (Section

3.3). Balmer et. al. demonstrate that ABM is well-suited for mesoscopic simulations [30].

Of methodological importance is also the platform used for simulation purposes. Multiple

ABM and platforms have been employed in tra�c engineering for simulation purposes, each

with its own strengths and weaknesses pertaining to model complexity and size, speed, and

16



ease of use. Of note are NetLogo1 (a Logo derivative developed at Northwestern University)

and Repast Simphony2 (developed at the University of Chicago). In addition to ABM and CA

platforms, there exist several tra�c-specific simulation toolkits, both closed-source proprietary

and open-source.

3.2 Infrastructure Capacity & Tra�c Flows

Motorway capacity and tra�c flow has typically been described using the fundamental

diagram of tra�c flow. Development began with work by civil engineer Bruce Greenshields,

first appearing in a publication in 1933 [31, 32]. In the decades since then, the fundamental

diagram has continued to serve as the basis on which tra�c flows and motorway congestion

are modeled, with some modifications and statistical validation in various case studies. The

diagram is typically expressed in the form of:

• Flux-Density: The relationship between flux (number of cars per hour) and density

(number of cars per mile).

A maximum exists in the relationship between flux and density, separating a stable free-flow

regime from an unstable congested flow regime. This maximum is considered the roadway

capacity. The diagram (or rather, the relationships represented in it) can also be expressed

as:

• Speed-Density: The relationship between speed (miles per hour) and density (number

of cars per mile).

• Speed-Flux: The relationship between speed (miles per hour) and flux (number of

cars per hour).

These alternate forms are often found and used in the tra�c engineering literature. Figure

3.1 below illustrates all three forms.
1http://ccl.northwestern.edu/netlogo/
2http://repast.sourceforge.net/
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Figure 3.1: The fundamental diagram of tra�c flow. From upper-left, clockwise: speed-

density, speed-flux, flux-density. Critical points are demarcated by faded lines indicating

changes in flow regime. Of most interest is the figure in the bottom left. To the left of

the critical point one experiences free or bounded flow. To the right, one experiences jams.

Capacity is measured by flow at the maximum [30].

While not directly included in the research completed here, the fundamental theory of

tra�c flow (from which the fundamental diagram is derived) is worth mentioning due to

its legacy and importance in tra�c engineering, especially as it pertains to infrastructure

capacity.

3.3 Game Theory and Tra�c Networks

Tra�c networks and routing have been examined in a game theoretical paradigm for several

decades, providing a rigorous theoretical basis on which to build a simulation (as is being done

here). In a paper published in 1952, John Glen Wardrop put forth two equilibrium principles

stating that self-interested drivers will non-cooperatively seek to minimize their travel costs

18



and that under equilibrium no driver can by himself lower his own cost, and that the average

journey time of all drivers is minimized at equilibrium [33]. Beckmann demonstrated that

tra�c flows on a network are satisfied by a unique Nash equilibrium [34]. Tsitslikis and

Bertsekas demonstrate that such equilibriums would arise over a distributed shortest-path

protocol [35]. Koutsoupias and Papadimitriou coin the term “price of anarchy” to describe

the detrimental e↵ects of noncooperative behavior [36]. Both they and Roughgarden and

Tardos demonstrate that selfish routing choices by agents on a transportation network have a

quantifiable impact on network performance [37]. One historically well-known example of

this is Braess’s paradox, in which cost-minimizing agents will end up reducing overall network

performance with the increase of network capacity [38, 39] by means of selfish routing behavior.

Roughgarden and Tardos [37], Koutsoupias and Papadimitriou [36], and Papadimitriou and

Valiant [40] independently present solutions to the performance degradation resulting from

selfish behavior. Roughgarden has independently investigated network problems associated

with selfish choice-selection in game theory [41]. Additional work has been done in applying

the price of anarchy to mixed games (“mixed price of anarchy”) [42, 43] and games of

imperfect information (“Bayes-Nash price of anarchy”) [44, 45].
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Methods

4.1 Overview

As described in Section 2, this research investigates how drivers with di↵erent preferences,

with access to varied amounts of information, a↵ect the system-wide performance of a tra�c

network. This is done by means of a mesoscopic tra�c simulation (Section 3.1.1), built using

an agent-based modeling platform. This approach was selected because, unlike others, it is

agent-oriented as opposed to process-oriented ; the interactions of individual entities with one

another, and with their environment, allows for emergent outcomes that would not necessarily

occur with a process-oriented or deterministic approach.

4.2 Platform and Software

The simulation developed for this project was built using NetLogo 5.1.01. NetLogo is a

dedicated agent-based modeling language and IDE written in Java and Scala. It is entirely

open-source and free to use, and is popular in academia as both a pedagogical resource and

research tool. NetLogo supports a number of extensions that allow for interfacing with other

programming languages and multiple data formats. Simulations written in NetLogo have

appeared in the tra�c engineering literature, and NetLogo comes bundled with a number of

simple tra�c simulation models.

Geospatial data was processed using ArcMaps 10.1 of the ArcGIS suite, produced and

maintained by ESRI.

1The installation used to write and run the simulation was modified in order to increase the memory
allocaiton pool in the Java VM. Attempting to run this simulation without increasing the memory heap will
result in a runtime error. Instructions available here: http://netlogo-users.18673.x6.nabble.com/Pointing-
NetLogo-to-64-bit-JVM-td5002961.html
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4.3 Geospatial Data

The Virginia Department of Transportation (VDOT) makes available online each annual

quarter a GIS map package of high spatial resolution. The Linear Referencing System Version

13.4 (LRS13.4) includes approximately sixty-six thousand motorway travel miles, broken

down into Interstate highways, US routes, state routes, frontage routes, secondary routes,

and urban roads, and is accurate as of the end of CY2013Q4. A linear referencing system (as

indicated in the name) is defined as a method of spatial positioning where the location of

events are indicated by distance along a road edge from a specified origin (e.g. mile marker

10 on Route 1, northbound). The LRS does still maintain the capability of event placement

by latitude-longitude referencing. Infrastructure information, such as structures (bridges,

ramps, etc.) and lane counts, is also present in the file.

Figure 4.1: Sample of LRS13.3 shapefile in the Northern Virginia Beltway area. All road
layers are pictured: Interstate (bold blue), US Route (red), State Route (bold black), Frontage
Road (blue), Secondary Routes (grey), Urban Road (black).

A portion of the VDOT LRS network consisting of approximately 120 miles of state, US,

and interstate highways covering Fairfax, Arlington, and Alexandria counties served as the
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modeling area. The map package was converted into .shp format, and two modifications were

made to the output to reduce computational complexity. They are as follows:

• Removal of urban routes, secondary routes, and frontage routes. The simulation

environment includes only interstate highways, VA state highways, US highways, and

their respective on/o↵-ramps. This was done to reduce computational complexity in

the simulation environment. Likewise, it also reflects that the majority of a high-milage

commute will occur on highway (as opposed to residential) roads.

• Consolidation of distinct travel directions. Throughways with distinct travel directions

that are separated by a barrier or median (such as most highways) are illustrated as

such.

Figure 4.2: A segment of I-66 from LRS13.4. Notice that travel directions are illustrated
seperately.

Southbound and westbound features were removed from the shapefile. This was done

to both reduce computational complexity, and to account for limitations in discerning

between directional features in NetLogo (explained below).
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The modified shapefile was then imported into NetLogo using NetLogo’s GIS extension.

The environment was built using a “node-and-link” approach; the ends of polyline features are

represented by a breed of non-moving turtles (called “nodes”), and the polylines themselves

are represented by links between said nodes.

The absence of southbound and westbound travel directions was corrected for by repre-

senting each polyline feature as a pair of opposite-facing directed links. This simplification

assumes structural symmetry between opposite travel directions. This approach was selected

instead of single undirected links for the purpose of tracking which and how many vehicles

were traveling in each direction.

Figure 4.3: A segment of highway from LRS13.4 imported into NetLogo. Nodes represent
polyline ends, and each directed link represents one travel direction. The nodes are color-
coded to reflect road type consistent with the LRS coding. Blue indicates Interstate highways,
red indicates US highways, and black indicates state highways.

4.4 Driver Classes and Behaviors

Drivers are divided into three classes that reflect di↵erent route selection behaviors. They

are as follows.
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• Stubborn Stubborn vehicles take the shortest point-to-point path from their origin

to destination. A stubborn vehicle’s route cannot be altered once it is initialized.

This shortest path has the option to be weighted based on road type, in which case a

coe�cient selected by the simulation operator can be used to penalize (and therefore

discourage) links with a multiplicative coe�cient. For example, the user could choose

to not penalize interstate features (coe�cient of one), penalize US highways with

a coe�cient of 1.5 (100 meters of US highway is of equal “score” to 150 meters of

interstate), and penalize VA state highways with a coe�cient of 2. This would be

done to reflect capacity and throughput asymmetry, resulting from features such as

the number of lanes, the presence of tra�c lights and intersections, etc. By default, all

coe�cients are set to 1, indicating no bias or preference by the simulation operator.

• Stupid Stupid drivers take a “random” path. A link’s score is the product of its

length and a uniformly-distributed random variable on the interval [1, 10]. Once a

stupid vehicle is initialized its route cannot be changed. While these vehicles may not

realistically be observed in the real world, their purposes is to further introduce a degree

of randomness into a system that is fundamentally anarchic.

• Smart Smart vehicles are functionally ATIS-equipped (and compliant). Smart vehicles

have complete information regarding the state of the tra�c network (including the

whereabouts of both stubborn and stupid vehicles), and will take a weighted shortest

path that sacrifices travel distance to avoid high-tra�c areas. The score of any given

link is computed as follows:

sL = dL + ckL

Where sL is the link’s score, dL is the length of the link, kL is vehicle the density of the

link, and c is an empirically-derived constant that, given high density tra�c conditions,

approximately doubles the score of a link with dL equal to the mean link length of
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the entire network (in other words, given heavy vehicle density, ckL ⇡ d̂). This is

recomputed at each tick, and vehicles of this class are rerouted accordingly; that is, a

vehicle’s path is updated while it is already underway.

Paths are found using NetLogo’s bundled NW-Extension2, which employs a modified

version of Dijkstra’s algorithm.

Speed is set and adjusted based on the local density of its current link. Calibration is

explained in Section 5.3.

4.5 Paramaters, Initialization, and Runtime

The simulation environment is initialized by importing the GIS shapefile and corresponding

projection file, which is converted into a list of coordinate pairs, and subsequently built

using node-and-link construction in the NetLogo world3. Road type classifiers (interstate,

US highway, VA state highway) are preserved during this stage and features are assigned

accordingly. Additionally, penalty coe�cients for each road type can be assigned by the user

at this stage.

Subsequently, a user-specified number of each vehicle type is initialized. These first-

generation vehicles are assigned a random origin on the network, a destination (this is always

a leaf node, i.e. a node connected to only one other node), and a path between the two

dictated by the vehicle’s type.

NetLogo employs tick-based updating, where a tick is an arbitrary, discrete unit of time.

Vehicles follow their assigned path4, adjusting speed as a function of the current link’s vehicle

density during that tick. Every vehicle’s speed and every link’s vehicle density are recorded

and stored as agent attributes during each tick. Vehicles are “killed” upon reaching their

destination. At the beginning of every tick following initialization, each vehicle population is

2NW-Extension was first bundled with version 5.1.0 and replaces the previous Network-Extension.
3Code from Newcastle Cycling Experiment [46] used with permission.
4Code from Axwoman [47] used with permission, as well as Link Walking Turtles [48] and Move Towards

Target [49] from the bundled NetLogo models library.
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Figure 4.4: Netlogo Interface featuring all parameters and the simulation enviornment.

counted, and new vehicles are initialized at leaf nodes to keep the overall population and

constituent subpopulations constant. As stated previously, ticks are an arbitrary unit of time

that do not necessarily translate to a real-world value; the model is calibrated such that,

given unrestrained tra�c flow, a vehicle will travel at what would be 65 miles per hour. The

model is updated and agent attributes recalculated what would be once every thirty seconds

in realtime.
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4.6 Output and Metrics

At the end of each tick, mean, maximum, and minimum speed of each vehicle population (and

overall aggregate) is reported and plotted. In addition, the simulation reports and records

mean vehicle latency. Game theorists writing on the “price of anarchy” measure the cost

of selfish routing on networks as the ratio of the Nash equilibrium latency to the best-case,

non-congested latency [37, 38, 41, 43, 45]. The latency ratio employed as a metric here is

similarly defined to the aforementioned “price of anarchy”; it is the ratio of the in-simulation

observed travel time to the best-case shortest-path origin-to-destination travel time given a

bounded free-flow speed (practically speaking, a speed limit). Under ideal circumstances (or

if the vehicle is the only one present), this value approaches one. In practice, it is greater

than one.

The latency ratio is a useful metric for stubborn vehicles, since their routes are locked-in

when a vehicle is initialized and the only variable during the vehicle’s commute is its speed.

However, this is not the case with smart vehicles, as both their speeds and routes will change

as they travel. To compensate this, a third metric is introduced specific to smart vehicles: a

ratio of the vehicle’s actual path length over the length of shortest path between the origin

and destination. Under ideal conditions this would be equal to one. In practice it tends

to be greater than one. This metric can be compared against the latency ratio to quantify

how much a smart driver has been “inconvenienced” from a milage standpoint to avoid

high-density areas.
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Results and Analysis

5.1 Experiment Design

A total of 2475 experiments were run on populations of 500, 750, 1000, 1500, 2250, 3000,

5000, 7000, and 10000 total vehicles (225 experiments per population). The simulated trial

period was equivalent to three realtime hours. In all cases, the stupid vehicle population

was set to 5% of the total to introduce a low level randomness or “noise” into the system.

The smart vehicle population was varied between 0% and 25% in increments of 2.5%. This

amounted to twenty-five trials per permutation. Penalty coe�cients were set to 1 for interstate

highways, 1.1 for US highways, and 1.2 for state highways in all cases. These values were

determined through heuristic trials to discourage use of lower-capacity options (US and VA

state highways) without causing unrealistically long detours. Maximum free-flow speed was

set to 110 NetLogo world-coordinate units per tick, or what would be approximately 65 miles

per hour in reality.

5.2 Results

Analysis of mean vehicle speed indicates a positive correlation between fraction of smart

drivers drivers present and an increase of mean vehicle speed over the entire system. The

impact of smart drivers is increasingly pronounced in larger total populations, with a non-

trivial performance roll-o↵ in the largest populations. Numeric results are presented in Figure

5.1, as well as the constituent graphs in Appendix A.

In all cases, the most substantial relative increase in overall mean vehicle speed occurs

either between zero and 2.5% or 2.5% and 5%. Improvements still accrue as the fraction of

smart drivers is increased, however there appears to be a roll-o↵ in e�cacy as the fraction
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Figure 5.1: Mean vehicle speed plotted as a function of total population size and partial
population of smart drivers. Individual population plots for the sake of clarity are presented
in Appendix A.

is increased. Each 2.5% increase of smart drivers resulted in, on average, an increase of

mean speed of 0.181% for the 500 driver experiments, 0.323% for the 750 driver experiments,

0.433% for the 1000 driver experiments, 0.643% for the 1500 driver experiments, 0.841% for

the 2250 driver experiments, 0.984% for the 3000 driver experiments, 1.13% for the 5000

driver experiments, 0.875% for the 7000 driver experiments, and 0.611% for the 10000 driver

experiments. Between zero and 25% smart driver fraction, this amounts to a 1.82%, 3.2%,

4.42%, 6.62%, 8.73% 10.3%, 11.9%, 9.08%, and 6.26% increase in speed respectively.

A few trends should be noted. First, the mean speed of stubborn vehicles monotonically

increases with each fractional increase of smart vehicles. In no instance does the mean

speed of stubborn vehicles decrease in any population size, even as the overall mean speed
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% Smart 500 750 1000 1500 2250 3000 5000 7000 10000
0%-2.5% 0.1951 0.4472 0.4552 0.7298 1.0111 1.1278 1.358 1.4613 1.5479
2.5%-5% 0.2263 0.3647 0.5551 0.7432 0.8732 1.0964 1.3172 1.3463 1.564
5%-7.5% 0.2042 0.3455 0.4188 0.6515 0.8428 1.0689 1.3158 1.3877 1.3703
7.5%-10% 0.1925 0.3124 0.4308 0.6048 0.9095 1.0609 1.1975 1.225 1.1116
10%-12.5% 0.2242 0.2743 0.481 0.6791 0.8559 0.9891 1.1724 1.1523 0.1748
12.5%-15% 0.1242 0.3246 0.4068 0.6613 0.9023 0.8984 1.0572 1.1811 0.4173
15%-17.5% 0.1857 0.3048 0.4495 0.6109 0.8081 0.952 1.1288 0.8145 0.0677
17.5%-20% 0.1677 0.3126 0.4257 0.6079 0.7400 0.9065 1.0473 0.4241 -0.3335
20%-22.5% 0.1395 0.2513 0.3883 0.5609 0.7922 0.8624 0.9623 0.3009 0.3586
22.5%-25% 0.1464 0.2895 0.32 0.5778 0.6704 0.8776 0.7804 -0.5433 -0.1657

Table 5.1: Percentage change in overall mean speed at 2.5% increments of smart partial
population. Column headers indicate overall vehicle population (500 cars, 750 cars, etc.).
Tables for stubborn and smart vehicles alone are available in Appendix B.

or smart mean speed levels o↵ or worsens (as seen in 7000 and 10000 vehicle populations.

Second, there exists a performance roll-o↵ as a function of population size when increasing

the fraction of smart drivers. As population increases, the relative improvement experienced

by each 2.5% increase in the smart vehicle population increases up to populations of 5000

vehicles. Beyond 5000 vehicles, that relative improvement begins to worsen. Third, the

smart vehicle mean speed remains approximately stagnant regardless of their proportion to

the total population, up to overall populations of 5000. In 5000 vehicle populations, smart

vehicles travel approximately 4% slower when representing 25% of all cars than they do when

representing 2.5%. In 7000 vehicle populations, they travel 17% slower over the same range.

In 10000 vehicle populations, that change is even worse, at 27%. In fact, smart vehicles in

this population travel only 8% faster than stubborn vehicles.

Latency results indicate that populations with no smart drivers do no better than a

latency ratio of 1.65 (trips are roughly 65% longer time-wise than they would be at free-flow

conditions). Introduction of smart drivers improves the latency of remaining stubborn drivers

by 0.170%, 0.263%, 0.346%, 0.408%, 0.459%, 0.456%, 0.399%, 0.314%, and 0.321% for vehicle

populations of 500, 750, 1000, 1500, 2250, 3000, 5000, 7000, and 10000 for every 2.5%

fractional increase. Overall latency (across all driver types) was improved by 0.200%, 0.313%,
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0.420%, 0.526%, 0.615%, 0.626%, and 0.498% per 2.5% increase, respectively, for populations

up to 5000; for 7000 and 10000 vehicle populations, overall latency actually worsened by

0.179% and 0.945%, respectively. In these two populations, modest improvements averaging

0.344% and 0.341% are observed for smart vehicle fractions between 2.5% and 17.5%, and

2.5% and 7.5%, respectively; beyond those proportions, overall values experience degradation.

Between zero and 25% smart driver fraction, greedy vehicles enjoyed a 1.69%, 2.60%, 3.40%,

4.00%, 4.49%, 4.47%, 3.93%, 3.10%, and 3.17% improvement in vehicle latency for the

previously stated range, and the improvement across all vehicles was 1.98%, 3.09%, 4.12%,

5.14%, 5.98%, 6.09%, and 4.87% up to and including 5000 vehicles, with overall degradation

to the e↵ect of 1.76% and 9.81% in 7000 and 10000 vehicle populations.

Figure 5.2: Mean vehicle latency plotted as a function of total population size and partial
population of smart drivers. Individual population plots for the sake of clarity are presented
in Appendix C.
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% Smart 500 750 1000 1500 2250 3000 5000 7000 10000
0%-2.5% -0.1475 -0.4344 -0.5474 -0.6644 -0.8512 -0.8107 -0.66 -0.5035 -0.4162
2.5%-5% -0.3587 -0.3852 -0.4476 -0.5904 -0.6477 -0.6803 -0.6248 -0.4928 -0.343
5%-7.5% -0.3312 -0.3936 -0.5177 -0.5227 -0.5597 -0.6501 -0.5772 -0.375 -0.265
7.5%-10% -0.0426 -0.2151 -0.4394 -0.5875 -0.6459 -0.736 -0.5439 -0.3731 0.127
10%-12.5% -0.1935 -0.3112 -0.4406 -0.5238 -0.6891 -0.6127 -0.5596 -0.2889 1.3543
12.5%-15% -0.287 -0.3536 -0.4156 -0.5257 -0.5891 -0.5298 -0.4445 -0.3391 1.134
15%-17.5% -0.0974 -0.3157 -0.3364 -0.5239 -0.6321 -0.6115 -0.5018 -0.0362 1.7896
17.5%-20% -0.2234 -0.2012 -0.4306 -0.4946 -0.4741 -0.5735 -0.516 0.787 2.4458
20%-22.5% -0.0897 -0.3151 -0.2455 -0.3852 -0.5802 -0.5401 -0.4158 0.9339 1.3188
22.5%-25% -0.2229 -0.203 -0.3798 -0.4407 -0.4825 -0.5185 -0.1378 2.4741 2.3062

Table 5.2: Percentage change in mean overall vehicle latency at 2.5% increments of smart
partial population.

% Smart 500 750 1000 1500 2250 3000 5000 7000 10000
0%-2.5% -0.0562 -0.2834 -0.3706 -0.4086 -0.5379 -0.4906 -0.3184 -0.242 -0.2874
2.5%-5% -0.3097 -0.2744 -0.292 -0.381 -0.3752 -0.3762 -0.3441 -0.2939 -0.2744
5%-7.5% -0.2423 -0.3461 -0.3967 -0.3441 -0.3298 -0.4008 -0.3557 -0.2376 -0.2819
7.5%-10% -0.0461 -0.1178 -0.3461 -0.4319 -0.4062 -0.4949 -0.3357 -0.2783 -0.3148
10%-12.5% -0.1609 -0.2377 -0.342 -0.3604 -0.5482 -0.4357 -0.4069 -0.3163 -0.2774
12.5%-15% -0.2699 -0.3519 -0.3486 -0.4427 -0.4456 -0.3413 -0.3563 -0.3323 -0.3664
15%-17.5% -0.008 -0.2644 -0.3261 -0.4627 -0.5246 -0.5163 -0.4214 -0.342 -0.3425
17.5%-20% -0.293 -0.2305 -0.4241 -0.4262 -0.414 -0.5036 -0.5054 -0.3557 -0.2994
20%-22.5% -0.0503 -0.3134 -0.2245 -0.3628 -0.5312 -0.4996 -0.4313 -0.3429 -0.3645
22.5%-25% -0.2626 -0.2144 -0.3866 -0.4548 -0.4737 -0.505 -0.5245 -0.4066 -0.4082

Table 5.3: Percentage change in mean stubborn vehicle latency at 2.5% increments of smart
partial population.

As stated previously, latency is more di�cult to interpret (and not particularly useful on

its own) for smart vehicles, as they are constantly being rerouted while already underway to

avoid congested areas. Thus, they will likely incur a distance penalty that can be substantial.

To account for this, another metric, the distance ratio, was recorded for these vehicles - the

ratio of actual traveled distance to the point-to-point distance had they instead been stubborn.

Mean distance ratio was 1.18 for a total population of 500 (meaning travelled routes were

roughly 18% longer than the shortest path), 1.22 for a total population of 750, and 1.24 for a

total population of 1000, 1.31 for a population of 1500, 1.41 for a population of 2250, 1.51

for a population of 3000, 1.78 for a population of 5000, 2.95 for a population of 7000, and

6.96 for a population of 10000. Interestingly this did not necessarily vary monotonically as a

32



function of smart partial population, as was the case with latency.

% Smart 500 750 1000 1500 2250 3000 5000 7000 10000
0%-2.5% null null null null null null null null null
2.5%-5% 0.3731 0.1128 0.3973 0.0302 0.2641 0.1992 0.6728 0.5995 1.2449
5%-7.5% -0.594 0.3011 -0.0796 0.204 0.3692 0.3828 0.3722 1.0331 1.3481
7.5%-10% 0.5474 0.0772 0.0836 0.1319 -0.144 0.1149 0.4276 0.6898 5.251
10%-12.5% 0.0548 0.0742 -0.0258 -0.06 0.3468 0.2454 0.3595 1.1701 14.4703
12.5%-15% -0.1514 0.1939 0.1033 0.2027 0.1692 0.1188 0.6015 0.4957 9.3593
15%-17.5% -0.1222 -0.1011 0.2545 0.0996 0.0676 0.2683 0.2444 2.0921 11.8828
17.5%-20% 0.1335 0.1734 -0.0771 0.0914 0.2588 0.2086 0.392 5.9932 14.8143
20%-22.5% 0.0093 0.0115 0.1335 0.096 0.0762 0.1464 0.3459 5.4107 4.2493
22.5%-25% 0.0757 0.0923 0.006 0.1101 0.1341 0.152 1.6189 13.095 9.8487

Table 5.4: Percentage change in mean smart vehicle latency at 2.5% increments of smart
partial population.

The distance ratio for smart drivers blows up at 17.5% in a population of 7000 and 12.5%

in a population of 10000. At 25%, smart drivers su↵er from a distance ratio greater than

seven in a population of 7000, and greater than 13 for a population of 10000.

% Smart 500 750 1000 1500 2250 3000 5000 7000 10000
0%-2.5% 1.2061 1.2052 1.2391 1.3359 1.4144 1.5233 1.7582 2.0013 2.3645
2.5%-5% 1.1497 1.2302 1.2371 1.3118 1.4054 1.5149 1.737 2.002 2.3344
5%-7.5% 1.1739 1.2231 1.2495 1.3132 1.4081 1.5156 1.7602 1.9702 2.3645
7.5%-10% 1.1677 1.2117 1.2377 1.3116 1.4145 1.5052 1.7562 1.9893 2.953
10%-12.5% 1.1829 1.1976 1.2457 1.2991 1.4204 1.5009 1.743 1.9869 5.8039
12.5%-15% 1.1666 1.2189 1.2367 1.3113 1.4046 1.5018 1.7534 1.9848 7.3791
15%-17.5% 1.1758 1.222 1.251 1.3239 1.4101 1.4966 1.7552 2.2691 9.4225
17.5%-20% 1.1774 1.2146 1.241 1.3199 1.4012 1.499 1.7508 3.5007 11.6462
20%-22.5% 1.1767 1.2184 1.2481 1.3123 1.4061 1.5103 1.7497 4.6679 11.9725
22.5%-25% 1.1749 1.2096 1.2471 1.3098 1.4064 1.5003 2.0717 7.1645 13.3683

Table 5.5: Distance ratios for smart vehicles as a function of partial population.

Both speed and latency metrics indicate a performance roll-o↵ and, ultimately, severe

degradation beyond certain proportions of smart drivers in larger populations. This is likely

attributable to constraints of the network itself. There exists a finite number of paths

between any origin and destination. Any link that appears in that path may also appear

in the paths of other OD-pairs. In cases of large commuter populations, actively rerouting

33



vehicles to avoid congestion is largely futile when most links are already highly congested.

Congestion-conscious link selections are only marginally better than congestion-ignorant

ones, and have the e↵ect of keeping vehicles on the network far longer than they would

be otherwise. As the number of smart drivers increases, one witnesses the emergence of

competition between them; smart vehicles are aware of other smart vehicles’ locations, but

not their destinations or planned paths. This will cause them to recursively reroute to avoid

one another, resulting in detrimental e↵ects to their own driver class and stagnation of the

performance of the system.

Practically speaking, the results indicate that in small and moderately-sized populations,

rerouting can ease congestion and improve individual itineraries without incurring severe

distance penalties. However, in large populations, the limiting factor simply becomes the

amount of pavement on the network. Improvement resulting from rerouting will only occur

when a small fraction of drivers practice such behavior in these populations. As that fraction

increases, one observes the emergence of competitive behaviors between such drivers.

5.3 Model Calibration

The NetLogo model is calibrated according to metrics adapted from Homburger, Perkins,

and Kell [50], adjusted to reflect real-world data documented and made available by the

Virginia Department of Transportation (VDOT)1, the Texas Transportation Institute (TTI)2,

and the Center for Advanced Transportation Technology Laboratory at the University of

Maryland (CATT Lab)3. Establishing an upper performance bound of 10,000 vehicles/25%

smart partial population, the model was calibrated so that the worst congestion conditions

would occur at that total population (at an unknown smart partial population, hypothesized

to be zero percent). This resulted in a minimum vehicle speed of 55 patches per tick (32.5

miles per hour, the approximate upper bound of level-of-service F). This was set as the

1http://www.virginiadot.org/info/ct-tra�ccounts.asp
2http://mobility.tamu.edu/ums/congestion-data/
3http://www.cattlab.umd.edu/
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lower bound because modeling an unstable flow regime (i.e. LOS F) requires implementing

stop-and-go movement mechanics, which was not practically feasible given the scope and

scale of the model.

It is necessary to note that itineraries and road use are distributed isotropically; that is,

any origin-destination pair is as likely as any other. This distribution is time-independent

over the duration of the simulation. In reality, certain roads experience substantially more

use than others (interstate highways experience higher tra�c than VA state highways), and

roads experience di↵erent levels of use at di↵erent times of the day (I-66E experiences more

tra�c in the morning as people commute into Washington, DC for work, and less in the

evening as those commuters are returning home on I-66W).

The test populations represent levels of use assuming a given real-world sample scenario

is characteristic of the entire test system at any given point in time. Again, while this is

obviously not what is observed in the real-world, it is adequate and convenient as far as

exploratory work is concerned. Real-world speed values were obtained from the Regional

Integrated Transportation Information System (RITIS) at the University of Maryland’s

CATT Lab4. RITIS aggregates raw speed data from motorists using INRIX on enabled

devices, and complies usage statistics on intervals ranging from five minutes to one hour.

Table 4.1 compares test populations are zero percent smart vehicles to weekday (Monday

through Friday) conditions during the month of July 2013. This month was selected due

to the absence of inclement weather; precipitation and snowfall can adversely a↵ect driving

conditions, introducing a complicating factor that would otherwise need to be controlled for.

Values were based on fifteen minute averages over morning hours.

4https://www.ritis.org/
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Total Mean Simulated Mean Simulated Real-World at Time Comparable Real- Level of
Population Speed (ppt) Speed (mph) World Example Observed Speed (mph) Service

500 94.82 56.03 I-66W at Exit 73 05:00 Weekday Average 56.01 A
750 92.13 54.44 I-66E at Exit 75 07:00 Weekday Average 54.71 B
1000 89.59 52.94 I-395S at Exit 10 08:45 Weekday Average 52.99 B
1500 84.89 50.16 I-66W at Exit 73 09:00 Weekday Average 50.61 C
2250 79.55 47.01 VA-110N at Memorial Drive 09:00 Weekday Average 47.39 C
3000 75.58 44.66 US-50E at Fort Myer Drive 07:45 Weekday Average 44.66 D
5000 68.8 40.65 US-50W at US-27 08:00 Weekday Average 40.05 D
7000 65.14 38.49 US-50E at N. Courthouse Road 08:00 Weekday Average 38.15 E
10000 61.49 36.34 US-29S at N Veitch St 08:00 Weekday Average 36.56 E/F

Table 5.6: Comparison between simulation speeds and observed speeds for weekday mornings,
July 2013.

5.4 Verification and Validation

Verification and validation are inherently di�cult to perform on agent-based models (when

compared to other simulation methodologies), and there exists a substantial body of literature

both describing this di�culty, as well as indicating the absence of consensus on how to do

so [51–55]. However, it is possible to put forth an ad hoc approach for this specific case. In

order to employ this methodology in simulating ATIS use and road network congestion, it is

necessary to understand that results are bounded by the assumptions and mechanics of the

simulation itself. First, driver behaviors and preferences are, in reality, often opaque, meaning

that decision-making criteria is not necessarily obvious to a third-party and is often not

consistently followed by the drivers themselves. This means classifying drivers on a set of very

straightforward routing criteria (as done here) that are assumed to be consistently followed will

produce constrained results. Second, the largest population tested was 10000 vehicles, whereas

the average annual daily tra�c of the highest-volume sample segments numbers in the tens

of thousands5. Modeling populations of this size is computationally impractical, especially

using a platform like NetLogo. Third, the origins and destinations of vehicles was generated

randomly and transit corridors were treated as isotropic; this does not appropriately reflect a

workday commuter scenario, where certain origins, destinations and thoroughfares are more

likely to be visited than others at some point in the day. Fourth, trading granularity for scope

5From virginiadot.org/info/2013 tra�c data.asp. A section of I-66 in Fairfax County had an AADT of
96,000 in 2013.
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results in the omission of certain factors that do impact congestion. Acceleration/deceleration,

car-following, and lane-changing behaviors all critically impact tra�c flow and the likelihood

of a vehicle accident. Infrastructure characteristics, such as lane width, lane merging/splitting,

and turn curvature, are also important in flow modeling and accident prediction. However, as

indicated in the literature review, these are appropriately modeled on a much smaller scope

by means of microsimulation, and would be impractical to model in a simulation of this scale

and scope.

Validation is complicated by the fact that data pertaining to ATIS provided by commercial

entities is not publicly available for analytics purposes. Organizations that o↵er free ATIS

services, notably Google Maps, Waze, Apple Maps, Nokia HERE, and INRIX do not make

their navigation data or user statistics openly available. Google does collect location data by

means of cellular and aGPS tracking on users who have agreed to this service, even for users

who are not currently using Maps or another guidance platform [56]. However, the number of

Northern Virginia commuters who use ATIS-enabled phones or devices, have location services

enabled, and at any given point are using Google Maps for route guidance purposes, is not

public information. It should be noted, however, that the cited article suggests a hypothetical

scenario in which 5% of Google Maps users could be actively rerouted, indicating that, at the

time of its authorship, the actual amount is far lower.

The results here are more powerful to the e↵ect of informing high-level policy and

implementation targets for said services. That is, the documented methodology and outcomes

are more valuable as a methodological proof of concept than they are a highly-accurate

predictive tool. However, it is possible to present a validation procedure that could be

implemented in future work. Validation would consist of long-term observation of a real-

world tra�c network (in this case, the used portion of Northern Virginia), with a high

degree of information on who and how many are using ATIS guidance, and when and

under what circumstances drivers are using them. Such an e↵ort would require cooperation,

coordination, and some amount of participatory modeling between consumer and commercial
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ATIS providers, public safety and law enforcement o�cers and o�cials, local and state

government, and regular motorists (who would need to consent to being surveyed). This

would allow for better constraint revisions and calibration; moreover, it would inform whether

emergent outcomes are practically and politically actionable and/or desirable. This is further

explored in sections 6.3 and 6.4.
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Conclusions and Considerations,

Future Work, and Applications

6.1 Conclusions and Contributions

Not surprisingly, rerouting a fraction of agents did result in, in most cases, a modest

improvement of mean vehicle speed and in latency relative to the theoretical maximum across

the entirety of the network and all agents on it. This improvement was most substantial in

medium and medium-large vehicle populations. However, very large populations experienced

the emergence of competitive pressure between constantly-rerouting vehicles. This suggests

that further development of realtime rerouting by ATIS platforms and continued adoption by

motorists should have beneficial e↵ects on easing systemic congestion in high-tra�c metro

areas. However, it is also apparent that the network itself did have a bounding e↵ect on the

potential for improvement by way of this approach. While agent-based modeling has been

successfully used in the past to evaluate tra�c augmentation by way of ATIS, this research

demonstrates the e�cacy of applying it to a larger area, more complex network, and di↵erent

methodological approach (mesoscopic instead of microscopic) than has appeared in the tra�c

engineering literature.

6.2 Considerations

While the improvements may seem marginal, the cumulative e↵ect when applied to tens or

hundreds of thousands commuters is nontrivial. Recall that the Urban Mobility Report lists

the economic cost of congestion at $121bn. An adoption of 2.5% ATIS use and compliance

with a total improvement of latency by 0.4% would therefore reduce this loss by $500M. It is
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therefore necessary to keep in mind the aggregate potential of ATIS implementation, even if

the individual e↵ects seem trivial.

6.3 Future Work

Future work should include supplementing the simulation with both accurate driver survey

and demographic data to better inform driver models, as well as road sensor data to better

represent typical commutes as a function of time of day. Most importantly, it should include

data, wherever available, from consumer ATIS providers that describes how drivers respond

to presented data. This would allow for the establishment of a better experimental baseline,

preallocating agents to specific roadways and OD-pairs that are most likely to experience

tra�c. This would also enable more sophisticated preference coding for the agents themselves.

Additionally, it would be advisable to test on another geospatial dataset; while it is

intuitively reasonable to assume that a tra�c easing methodology that does not directly rely

on local network topology will work on any nontrivial network, it is likely that results will

vary between locations because of network connectivity and infrastructure assets, and certain

metro areas will enjoy greater benefit than others using this approach. Given appropriate

geospatial data, the existing simulation can easily be used to test somewhere other than the

Northern Virginia area investigated here.

Finally, it is suggested that structural components be augmented and competitive pressures

between them implemented. This simulation assumes that there exists a single entity that

collects, stores, and disseminates the state of the network, and that vehicles are routed and

rerouted accordingly. It may be beneficial to test how competing ATIS providers a↵ect the

network (for example, some users use Google Maps, others use Apple Maps, others use Nokia

HERE). Granting privileges to a local “Department of Transportation” agent that can a↵ect

the accessibility of the network would also be important to investigate. For example, how

does the presence of HOV lanes, tra�c rerouting by means of policing, and congestion value
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pricing a↵ect commuter travel and possibly conflict with stated ATIS routes? These are

all features to consider when extending the research presented here for more comprehensive

system modeling.

6.4 Applications

The most obvious applications of the described research pertain to planning, testing, and

generalized prediction of tra�c and congestion as a function of ATIS implementation. First,

this approach could be used to inform ATIS adoption targets by drivers for mandated levels

of congestion improvement. Conversely, it can be used to predict how much congestion will

improve given an observed or hypothetical level of ATIS use. This is potentially useful for

consumer navigation services, such as Google Maps, Waze, Nokia HERE, and INRIX, as they

continue to roll out rerouting features on their respective mobile phone applications.

Applications are also promising for municipalities and transportation agencies that, as

stated in the introduction and problem overview, currently su↵er from (and further face)

extensive overuse of roadway infrastructure. This methodology would supplement other

strategies in a multimodal approach. Combining congestion easing by means of ATIS with

incentives, such as HOV lanes and congestion value pricing, has the potential to reduce

systemic congestion on high-tra�c corridors.

This simulation could be retooled for industry-specific applications, as well. ABM’s

primary appeal in the modeling field is in its ability to observe how individual entities, with

some degree of intelligence, interact with one another and their environment. Employing

this simulation with modified agent types or the addition of new ones would be promising

for industries such as commercial shipping and logistics, whose business can be impacted by

congestion-related delays.
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Appendix A

Below are the individual speed plots indicated in Figure 5.1. Units are scaled such that a

speed of 110 corresponds to 65 miles per hour. Bars indicate one standard devation of the

mean.
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Appendix B

Below are tables indicated the percentage change in speed for stubborn and smart vehicles.

% Smart 500 750 1000 1500 2250 3000 5000 7000 10000
0%-2.5% 0.1203 0.2985 0.2259 0.3763 0.4669 0.4522 0.3815 0.3264 0.2765
2.5%-5% 0.1442 0.2268 0.3673 0.4084 0.3758 0.4529 0.4043 0.2884 0.3223
5%-7.5% 0.1401 0.2194 0.2259 0.3485 0.3827 0.4765 0.4616 0.3636 0.3448
7.5%-10% 0.133 0.2102 0.2602 0.3055 0.4603 0.4853 0.3855 0.3388 0.3946
10%-12.5% 0.1765 0.1648 0.3262 0.42 0.4545 0.4725 0.4459 0.3751 0.4256
12.5%-15% 0.0623 0.229 0.2614 0.4306 0.541 0.397 0.3738 0.4361 0.494
15%-17.5% 0.1494 0.2294 0.3441 0.4029 0.4693 0.5217 0.5382 0.3664 0.5272
17.5%-20% 0.1276 0.2656 0.3256 0.4109 0.4334 0.5064 0.5191 0.4908 0.5341
20%-22.5% 0.1223 0.1902 0.3083 0.4029 0.509 0.4978 0.4691 0.4769 0.4564
22.5%-25% 0.117 0.2569 0.2277 0.4461 0.4293 0.5926 0.5827 0.6165 0.6192

Table 1: Relative percentage change in speed for stubborn vehicles as a function of the
fraction of smart vehicles.

% Smart 500 750 1000 1500 2250 3000 5000 7000 10000
0%-2.5% null null null null null null null null null
2.5%-5% 0.0347 -0.0467 -0.0699 0.0524 -0.0825 -0.0744 -0.3055 -0.498 -1.0126
5%-7.5% 0.0046 0.0346 -0.0388 -0.0227 -0.072 -0.1227 -0.2777 -0.7156 -1.3406
7.5%-10% -0.0242 -0.0319 -0.0206 -0.0039 0.0402 -0.0944 -0.3662 -0.6925 -3.2052
10%-12.5% 0.0237 -0.0014 0.0445 0.014 -0.1598 -0.1107 -0.3486 -1.0182 -7.0823
12.5%-15% -0.0073 0.0137 0.0092 -0.0471 -0.0129 -0.091 -0.4888 -0.6319 -4.1397
15%-17.5% -0.0029 -0.0119 -0.0412 0.0064 -0.045 -0.1382 -0.412 -1.6276 -4.7145
17.5%-20% -0.0089 -0.0083 0.0254 -0.0247 -0.0911 -0.1288 -0.4436 -3.1149 -5.4319
20%-22.5% -0.017 0.0001 -0.0357 -0.0164 -0.0112 -0.1373 -0.3893 -2.9002 -1.1018
22.5%-25% 0.009 -0.0118 -0.0023 -0.0288 -0.1307 -0.1696 -1.102 -5.4641 -3.4391

Table 2: Relative percentage change in speed for smart vehicles as a function of the fraction
of smart vehicles.
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Appendix C

Below are the individual latency plots indicated in Figure 5.3. Units are scaled such that a

speed of 110 corresponds to 65 miles per hour. Bars indicate one standard deviation of the

mean.
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