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Abstract

We introduce a dynamic directional model (DDM) for studying brain effective con-

nectivity based on intracranial electrocorticographic (ECoG) time series. The DDM

consists of two parts: a set of differential equations describing neuronal activity of

brain components (state equations), and observation equations linking the under-

lying neuronal states to observed data. The combined high temporal and spatial

resolution of ECoG data result in a much simpler DDM, allowing investigation of

complex connections between many regions. To identify functionally-segregated sub-

networks, a form of biologically economical brain networks, we propose the Potts

model for the DDM parameters. The neuronal states of brain components are rep-

resented by cubic spline bases and the parameters are estimated by minimizing

a log-likelihood criterion that combines the state and observation equations. The

Potts model is converted to the Potts penalty in the penalized regression approach

to achieve sparsity in parameter estimation, for which a fast iterative algorithm

is developed. An L1 penalty is also considered for comparison. The methods are

applied to an auditory ECoG data set and extensive simulation studies.
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Chapter 1

Introduction

The ordinary differential equation (ODE) model has been used in many scientific

disciplines to describe temporal changes in physical, biological or biochemical sys-

tems, and provides mechanistic insights and causal interpretation of the relation-

ship among system components. However, when using ODEs to model a high-

dimensional dynamic system such as the brain, difficulties with model specification,

estimation and validation raise challenges. Consequently, only a few statistical meth-

ods are available for modeling and inference of high-dimensional dynamic systems

within an ODE framework. These challenges, the demand for novel statistical meth-

ods to solve high dimensional ODE models and the high quality of real data are the

motivation of this dissertation. We will first review the existing strategies to esti-

mate parameters of ODEs in Section 1.1. Although ODE models can be applied

in many areas, in this dissertation we are particularly interested in modeling brain

effective connectivity through the Electrocorticography (ECoG) time series data be-

cause of its high temporal and spatial resolution. In Section 1.2 we will introduce

different brain imaging data especially ECoG time series.



2

1.1 Overview of Parameter Estimation Strategies

for Differential Equations

1.1.1 Problem Setup

A dynamic system is built up by time-dependent neuronal state functions whose

evolution processes are characterized by a set of ordinary differential equations.

Motivated by the problem of our ECoG data to study brain connectivity, we consider

a general ODE model with non-time-varying coefficient:

dx(t)

dt
= F (x(t),u(t),Θ),

where t ∈ [0, T ] is time (independent variable), x(t) = (x1(t), . . . , xd(t)) is a d-

dimensional vector of neuronal state functions that constitutes the system, u(t) is a

known input function vector, Θ is a multi-dimension parameter set that we aim to

estimate, and F = (F1, . . . , Fd) is a d-dimensional vector of differentiable functions

with known forms but unknown parameter set Θ, the ith function Fi describes the

dynamics of the ith neuronal state function characterized by interactions of both

neuronal state function vector x(t) and input function vector u(t). The neuronal

state function vector x(t) are measured at time t1, . . . , tn with measurement errors,

i.e.,

yi = x(ti) + εi, 1 ≤ i ≤ n,

where yi is the ith observation vector, and εi is a d-dimensional vector of error terms

with mean zeroes and variance-covariance matrix Σ. The strategies to estimate

parameter of ODEs tend to fall into two categories: discretization methods using
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numerical approximation and basis function expansion.

1.1.2 Existing Approaches

Ogunnaike and Ray (1994) proposed a nonlinear least square (NLS) method to

estimate the parameters of the ODE model. The NLS iterates between two steps

to search for the Θ that minimizes the sum of squares of the discrepancies between

observed and fitted neuronal states:

SSE(Θ) =
n∑
j=1

(x̂(tj; Θ)− yj)2,

where x̂(tj,Θ) is the estimated value of x at tj as a function of parameter set Θ

(they assume single state function). For each trial parameter set Θ, the ODEs

can be solved numerically by standard numerical schemes such as Runge-Kutta

algorithm, obtaining the fitted value x̂. Hence by trying different parameter sets we

can build the whole SSE surface as a function of Θ, then the parameter estimation

boils down to locating the global minimum in the SSE surface. They described an

iterative algorithm which was commonly used to estimate ODE parameters. First

the ODEs are solved using numerical schemes and trial parameters (and initial

values). Then an optimization algorithm will improve the parameter estimation by

providing a better search direction. By linearizing the SSE with first order Taylor

approximation, we can rewrite SSE as

SSE(Θ + δΘ) = ||∆(Θ + δΘ)||2

= ||∆(Θ) +
∂∆

∂Θ
||2

= ||∆(Θ)||2 + 2δΘT (
∂∆

∂Θ
)T∆ + δpT (

∂∆

∂Θ
)T (

∂∆

∂Θ
)δΘ,
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where ∆ = x̂(Θ) − y is the discrepancy between fitted and observed value. Now

we can identify the best “direction” by solving a quadratic problem. Sensitivity

equations can be solved to find the Jacobian matrix. Iteration between numerically

solving ODEs and updating parameters continues until the optimization function

cannot be improved by some pre-specified significance level. Although this method

is straightforward and many other works are based upon it, it suffers from many

drawbacks, such as expensive computational cost with most computational effort

spent on solving ordinary differential equations numerically, high sensitivity of nu-

merical scheme of solving ODE, low convergence rate, and the need for initial or

boundary conditions to solve ODE numerically.

Varah (1982) proposed a spline least square method which opened another direc-

tion for ODE parameter estimation. The biggest advantage of this method is that

it avoids solving ODEs numerically hence reduces the computation burden tremen-

dously and overcomes other drawbacks caused by solving ODEs as well. The spline

least square method is a two-step approach. In the first step the state functions and

their derivatives are represented by cubic splines:

x̂i(t) =

p∑
j=1

Γijφj(t),

where φ1(t), . . . , φp(t) are the basis functions, p is the number of basis, and Γij

is the coefficient corresponding to jth basis function when approximating for ith

state function. Then the curve fitting is converted to a problem of estimating the

coefficient matrix Γ. The criterion of selecting Γ is to minimize the sum of squares
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of the fitted errors:

n∑
j=1

||yj − x̂(tj)||2 ,

where yj is the jth (observed at tj) observation vector across all state functions. In

the second step the parameters were estimated by minimizing the following objective

function:

Θ̂ = argmin
Θ

n∑
j=1

∣∣∣∣∣∣∣∣dx̂(tj)

dt
− F (x̂(tj),u(tj),Θ)

∣∣∣∣∣∣∣∣2 .
Note that this method minimizes the “wrong” sum of squares, and this is precisely

the reason why it can avoid solving ODEs. This method can only provide reasonable

solutions and the results depend heavily on the curve fitting step. When profiling

the raw observation into functional data object, the trade-off between function being

overly smooth and overly fluctuating plays an important role in the accuracy of

fitting. The former (too smooth) fails to capture the actual dynamics of state

functions while the latter induces extra dynamics that are mainly caused by the

noise in the original data. Varah tuned this trade-off by adaptively adjusting the

number and position of the knots of cubic splines, and the user (himself) served as a

judge to determine if the interactive graphics achieved a satisfiable smoothing level.

Ramsay and Silverman (2005) introduced the principal differential analysis (PDA)

method which was also a two-step algorithm but improved Varah’s spline least square

method in two ways. Firstly, a more generalized process was designed to address

the curve fitting trade-off. In particular, they introduced a second-order derivative



6

penalty (curvature penalty) besides the SSE:

n∑
j=1

||yj − x̂(tj)||2 + λ ·
d∑
i=1

∫ (
d2x̂i(t)

dt2

)2

dt,

where λ is the smoothness parameter that controls the size of the influence of curva-

ture penalty. The basis coefficient matrix Γ is obtained by minimizing the objective

function above. The second order derivative controls the smoothness of the fitted

curve hence prevents the profiling being either too smooth or too fluctuating. It’s

a more data-driven process than a human judge so future methods mostly adopt

Ramsay and Silverman’s idea. Secondly, instead of minimizing the sum of squares

of the discrepancy between derivatives of fitted functional data object and ODE

equations, PDA minimizes the integral:

d∑
i=1

∫ [
dx̂i(t)

dt
− Fi(x̂(t),u(t),Θ)

]2

dt. (1.1)

Although this method improved Varah’s two-step method, it also suffered from poor

accuracy due to the heavy dependence on curve fitting procedure.

Poyton et al. (2006) stepped further and proposed the iterative principal dif-

ferential analysis (iPDA). The iPDA iterates between data profiling and parameter

estimation in PDA. It incorporates the object function of parameter estimation

Equation (1.1) into the object function of curve fitting, then updates both spline

basis coefficients and model parameter set Θ until convergence. We will discuss

iPDA in detail in Chapter 3.

Ramsay et al. (2007) combined both the idea of NLS and PDA, and proposed the

generalized smoothing approach. The iPDA treats the structural parameter Θ and

the nuisance parameter Γ equally and selects the best combination of Θ and Γ while
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Ramsay’s generalized smoothing approach expresses Γ as a function of Θ and aims

at Θ directly. This approach smooths the raw data using basis splines with a more

generalized penalty, hence avoids solving ODEs numerically. The spline coefficient

Γ is estimated by minimizing

J(Γ|Θ, λ) = −
n∑
j=1

ln g(ej|Θ, λ) +
d∑
i=1

λi

∫ [
dx̂i(t)

dt
− Fi(x̂(t),u(t),Θ)

]2

dt,

where

eij = yij − Γ̂·i(Θ;λ)′φ(tj)

is the residual of ith state function at tj, g is the likelihood function, and the penalty

term assesses the fidelity to the ordinary differential equations. In the least square

and linear ODE case it is possible to express Γ̂ analytically as a function of Θ. To

estimate model parameter Θ Ramsay took a negative log likelihood criterion:

H(Θ|λ) = −
n∑
j=1

ln g(ej|Θ, λ).

If normal assumption is made for the distribution of errors, this criterion is simply

the sum of squares of the discrepancies as in NLS method. Then the gradient of

H with respect to Θ is computed to be set up for an optimization scheme. When

Γ̂ cannot be expressed explicitly as a function of Θ, the implicit function theorem

can be applied to ∂J/∂Γ to obtain the gradient. In the description above, λ is

assumed to be fixed, while in real applications all the parameters can be viewed as

a function of λ, and it can be selected by some measure of model complexity such

as generalized cross-validation.
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All the methods above suffered from a common drawback that they failed to

work in high dimensional ODEs. The performance of two-step methods depends

heavily on the accuracy of data profiling, because a small turbulence in data fitting

would cause a huge bias in the estimation of its derivative. Two-step methods can

only provide reasonable-but-not-accurate solution in low-dimension case, it’s difficult

to obtain even close to appropriate estimates in high dimension. The iterative

methods cannot improve much on the accuracy of data profiling and they suffer

another problem - the computational burden. In this dissertation we aim to build a

tractable model as well as efficient algorithms to tackle high dimensional dynamic

systems. No one has proposed any reliable method to deal with high dimensional

ODEs because of the difficulty of the problem.

1.2 ECoG Time Series: the Motivation

The second part of the introduction focuses on a real problem of estimating parame-

ters of ODEs. We will briefly introduce the history of connectivity study and mainly

discuss the characteristics of ECoG data set. It’s the uniqueness and advantage of

ECoG time series that drives us to propose a simplified dynamic causal model for

which our algorithms are designed.

The human brain does not function like isolated islands. It’s quite the opposite,

neurons interact with each other through afferent and efferent connections within

an elaborately collaborative system to ensure neurons and neural networks process

information, perform simple and complicated tasks. A useful nominal taxonomy of

brain connectivity relies on three broad categories: anatomical, functional and effec-

tive. Anatomical refers to the network architecture, whereas functional and effective

connectivity refer to network engagement. By Friston, functional connectivity is
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defined as the “temporal correlations between spatially remote neurophysiological

events” (Friston et al., 1993a). Integration within a distributed system is better

understood through effective connectivity. Effective connectivity is defined as “the

influence that one neural system exerts over another either directly or indirectly”

(Friston et al., 1993b). Functional connectivity does not explain how neuronal events

correlates with each other (for example, Gerstein, 1969), it’s simply description of

correlations. While it is effective connectivity that examines the interactions and

we are trying to study at through ECoG data.

1.2.1 Overview of Neuroimaging Data

In this dissertation we will use the Electrocorticography (ECoG) time series data to

study effective connectivity. But before introducing ECoG let’s review other data

sets first. The data sets (or more precisely, the techniques) neuroscientists have

worked the most with are electroencephalography (EEG), magnetoencephalography

(MEG), functional magnetic resonance imaging (fMRI) and positron emission to-

mography (PET). Those data (techniques) all measure the activity of a large group

of neurons, rather than the behavior of a single neuron. The difference between

those data sets lays in the temporal and spatial resolution they can achieve, as well

as what subject they attempt to measure. In general, fMRI and PET measures brain

activity by detecting changes in blood flow with corresponding technology, yielding

relatively high spatial resolution, but limited temporal resolution due to the slower

rate of brain hemodynamics. In contrast, EEG and MEG measure electrical and

magnetic activity in the brain, hence they provide high temporal resolution in the

order of milliseconds but might not be able to obtain a high spatial resolution. To

understand better the difference between different types of data, we briefly intro-
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duce how they are collected. By Friston (1994), “the fMRI data were a time-series

of 64 gradient-echo EPI coronal slices (5 mm thick, with 64× 64 voxels 2.5× 2.5× 5

mm) through the calcarine sulcus and extrastriate areas. Images were obtained ev-

ery 3 seconds from a normal male subject using a 4.0T whole body system, fitted

with a small (27 cm diameter) z-gradient coil (TE 25 ms, acquisition time 41 ms).

Photic stimulation (at 16 Hz) was provided by goggles fitted with 16 light emitting

diodes.” Then some correction and interpolation will be applied to generate the

final product. Functional MRI is most commonly applied using blood oxygenation

level-dependent (BOLD) contrast (Ogawa, et al., 1992). Similarly EEG is obtained

by placing electrodes on the scalp with a conductive gel or paste.

1.2.2 The ECoG Time Series

ECoG involves intracranial electrophysiology recordings from subdural electrodes

implanted directly on the cortical surface for clinical purposes in neurosurgical pa-

tients with medically intractable seizures or tumors. The combined high spatial

(diameter 2.3 mm) resolution and temporal resolution (data collected every 1 ms)

of ECoG data make it an ideal candidate for building effective connectivity models

(Korzeniewska et al., 2011). Of course, it is not without its limitations, notably

including the very restricted population available for study, necessarily low subject

sample sizes and subject-dependent and varying electrode placement lo- cations, all

impacting the generalizability of ECoG results. Nonetheless, for studying effective

connectivity, ECoG offers a unique complement to traditional scalp EEG recordings

methods (see Bressler and Ding, 2002; Boatman-Reich et al., 2010, for a detailed

comparison between EEG and ECoG).

Effective connectivity is usually characterized by a model on the dynamic inter-
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actions between brain components (Aertsen and Preissl, 1991; Friston et al., 2004),

and the most commonly used models include Structural Equation Models (SEM,

McIntosh and Gonzalez-Lima, 1994) and the closely related Dynamic Causal Mod-

els (DCM, Friston et al., 2003). Here we use a model that can be thought of as

a special case of DCM, as it attempts to describe the biophysical mechanism of

the brain system building from the neuronal level. In contrast, most standard ap-

plications of SEM evaluate connection strength based on the variance-covariance

structure of the observed data.

A DCM requires two parts: (1) neuronal state equations consisting of a set of

ordinary differential equations (ODE), which describe how instantaneous changes of

the neuronal activities of system components are modulated jointly by the immediate

states of the components and experimental inputs; and (2) observation equations

linking the underlying neuronal states of brain components to the observed data. A

DCM can be viewed as a continuous time state-space model, parameterizing effective

connectivity as coupling between the neuronal states of the brain system under the

influence of experimental inputs.

Although DCM has been widely used in brain connectivity research, existing im-

plementations, primarily within the setting of fMRI, EEG and MEG data (Friston et

al., 2003; David and Friston, 2003; David et al., 2006; Kiebel et al., 2006; Daunizeau

et al., 2009), have two major complications. First, parameter estimation of the DCM

is computationally difficult, due to the complicated model formulation. Thus the

number of brain regions included in the model is usually limited. Second, identi-

fiability issues can arise, even with only a moderate number of brain components.

The current practice in addressing this problem is to conduct Bayesian inference,

using a highly informative prior, introducing subjective knowledge of the existence

and strength of connections, and thus imposing regularization on the coupled dy-
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namic system. However, a strong prior increases the risk of bias, raising concerns

on the reliability of the results. These drawbacks are alleviated in ECoG, which has

high temporal and spatial resolution, and a strong signal-to-noise ratio (SNR), to

evaluate the effective connectivity among many brain regions. We propose a new

ODE-based model, hinging on the unique properties of ECoG data, and develop

efficient methods to estimate the model. We refer to this model as a dynamic direc-

tional model (DDM) to delineate from the general DCM and to avoid confusion with

the widely used Rubin Causal Model (Rubin, 1974, 1978; Holland, 1986). Though

we use ECoG as an application of the proposed methods, we note that they have

potential applicability in many other network studies where multivariate time series

data measuring temporal changes of system components are collected, and the focus

is on investigating directional interactions among them.

Anatomical and functional connections between brain regions are commonly

believed to be biologically expensive, as they take up space and consume energy

(Foldiak and Young, 1995; Olshausen and Field, 2004; Anderson, 2005). Therefore,

it is reasonable to assume that connections between the components of a com-

plex brain system are sparse (Bullmore and Sporns, 2009; Micheloyannis, 2012).

Sparsely-connected brain networks can arise in different forms, and we here focus

on the one that is decomposable into several functionally-segregated subnetwork-

s/modules, a network structure called modularity and most relevant to brain orga-

nization (Tononi et al., 1994; Newman, 2004). A main thrust of this dissertation

is to propose a modified DDM by using the Potts model (Potts, 1952; Graner and

Glazier, 1992) - called Potts-based DDM (PDDM) - for the ODE parameters in the

state equations for characterizing modularity.

To solve for the proposed PDDM, the log-likelihood-based criterion proposed by

Varah (1982) and Ramsay et al. (2007) is adopted, in which neuronal state and
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observation equations are combined into one formula. The time-varying neuronal

states of brain components are represented by spline bases. The parameters for the

state and observation equations are estimated simultaneously by optimizing the log-

likelihood criterion. To achieve sparsity, we employ a popular penalized likelihood

approach in regression analysis (for a review, see Shao, 1998; Fan and Lv, 2010).

This is intuitive, since the ODEs can be viewed as a set of special regression models,

where temporal functions of neuronal states are predictors and their derivatives are

the responses. In particular, we convert the Potts model to a Potts penalty - a new

penalty in the literature - to penalize large modules, and identify small functionally

segregated subnetworks by minimizing the penalized criterion.

The proposed PDDM for the ECoG data is a special ODE model. There is an

extensive statistical literature on solving ODEs as discussed in Section 1.1. However,

these methods are mostly effective for low-dimensional cases, and are not directly

applicable to the ECoG data because either the model is highly case-specific or

the associated computation is too expensive. By decomposing high-dimensional dif-

ferential equations into several independent low-dimensional ones using the Potts

penalty, we greatly reduce the computational demand and increase estimation effi-

ciency. As such, besides advancing the scientific research in effective brain connec-

tivity, this dissertation also contributes to statistical methodology for inference of

high-dimensional ODEs.

1.3 Outline of Dissertation

The dissertation will address the intractability of high dimensional ODE problems

by proposing a new dynamic model specifically designed for the ECoG time series,

and also building an efficient algorithm to estimate the model. The rest of the
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dissertation is organized as follows.

In Chapter 2 we introduce the Potts-based DDM based on which the following

chapters rest upon. In this chapter we will start with discussing general dynamic

causal model, its formal definition as well as scientific explanation. Then we define

DDM which encounters huge computational unwieldiness. To tackle the computa-

tional issue and also deliver neuroscientific explanation for simple brain function,

we propose the Potts-based DDM.

Even with a sparse model Potts-based DDM, estimation remains a difficult task

because the Potts penalty is essentially an L0 penalty, which makes optimal solution

searching an NP hard problem. In Chapter 3 we demonstrate our strategy to tackle

the estimation of Potts-based DDM. Although commonly used method like iterative

principal differential analysis (iPDA) fails to produce meaningful estimates for high-

dimensional ODEs, it is the cornerstone of our algorithm and we will introduce

iPDA in detail in this chapter. Two new algorithms, lasso-based iPDA (L-PDA)

and Potts-based iPDA (P-iPDA) improve iPDA by adding penalty terms to original

log-likelihood, while different penalty structures favor different network structures.

The main algorithm we want to present in this dissertation is the P-iPDA which

searches for local optimum within neighborhood of current network structure in each

iteration.

Chapter 4 focuses on computational issues of iPDA, L-iPDA, and P-iPDA. The

computation procedures are similar for the three algorithms, all of them consist two

step iterations: (1) data profiling, and (2) ODE parameter estimation. They share

the data profiling step but differ in ODE parameter estimation step. The parameter

estimation step boils down to regression analysis. So the ODE parameter estimation

for iPDA is simply OLS, and the one for L-iPDA is equivalent to lasso regression.

Parameter estimation for P-iPDA is a little more complicated (conceptually, but
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not computationally) since it has to search for the best cluster among all possible

network structures that are defined as “neighbors” of current network structure.

Chapter 5 applies P-iPDA to ECoG time series. Because of the size (d = 45) of

ECoG data set, it’s extremely time-consuming to apply iPDA or L-iPDA, so only

P-iPDA is reported in this dissertation. The P-iPDA is able to detect auditory

related channels and cluster them in the same module.

Chapter 6 applies all three algorithms to three simulation examples. The first

example is a 4-dimensional example demonstrating how the algorithms work, it’s

also used to discussed some common issues across all examples. Other examples

are: a network with 32 nodes and 2 clusters (Example 2), a network with 20 nodes

and 4 clusters (Example 3 and 4).
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Chapter 2

Directional Dynamic Model

In this section we will first review dynamic causal models for hemodynamic and

electromagnetic time series. The high quality of the ECoG time series enables us to

introduce the dynamic directional model which can be viewed as a special case of

DCM - a bilinear approximation of neuronal equations and direct simplification on

observation equations. The Potts-based DDM will then be proposed by taking into

account subnetwork structure, upon which the rest of the dissertation lays.

2.1 General Dynamic Causal Model

The basic idea of DCM is to construct a reasonably realistic neuronal model of

coupling cortical regions. A forward model then transforms the underlying neu-

ronal or synaptic activity to observable response. These supplement models may

be hemodynamic models of fMRI time series or forward models of electromagnetic

measurements. In this section we will mainly use fMRI as an example to illus-

trate DCM. The essence of DCM is to model brain as a deterministic nonlinear

dynamic system which takes both stimulus-free and stimulus-bound inputs and pro-
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duces outputs. Because human brain is a continuous-time physicochemical system

changing rapidly over time, it is intuitive to model the dynamics by characteriz-

ing its instantaneous changes, or, mathematically speaking, first order derivatives.

Among all the ODE-based dynamic models, the one with the Markovian property

that the instantaneous change only depends on the current neuronal state and ex-

perimental/stimulus inputs has the least model complexity without sacrificing much

scientific meaning in our problem, because when performing a simple task such as

visual, auditory and motor functions in a short period of time, it is reasonable to

assume Markovian property. However for a complicated function like memory, it

might not be appropriate to use such a simple model.

In DCM effective connectivity is parameterized in terms of coupling/interaction

among unobserved neuronal activity in different regions based on the ODE model,

which distinguishes from established approaches using multivariate autoregressive

processes. Another critical difference is that in conventional methods there is no

designed perturbation and inputs are treated as unknown and stochastic, while

in DCM the experimentally designed inputs are deterministic and controlled by

researchers. In DCM experimental designed inputs can affect the dynamics in two

ways: they can produce responses directly in the neuronal state functions, or they

can change the effective connectivities. We borrow a simple example (Figure 2.1)

from Friston (Friston et al., 2003) to illustrate the mechanism of underlying dynamic

causal modeling. We have introduced DCM briefly in Chapter 1, but let’s now

express DCM more rigorously (Daunizeau et al., 2009). It usually contains two

parts:

- a set of ordinary differential equations describing hidden neuronal states (so-
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BA39

V4

BA37

STG

V1y
y

y
y

y

Stimulus-bound 
perturbations (e.g. 

visual words)

Stimulus-free 
contextual inputs (e.g. 
cognitive set or time)

Figure 2.1: This is a schematic borrowed from Friston (2003) to illustrate the scheme
of DCM through a simple example. Inputs can impact responses both directly and
through changing coupling dynamics. In this example there are five neuronal states,
including visual areas V1 and V4 in the fusiform gyrus, areas 39 and 37, and the
superior temporal gyrus STG. Stimulus-bound perturbations act as extrinsic inputs
to the primary visual area V1. Stimulus-free or contextual inputs mediate their
effects by modulating the coupling between V4 and BA39 and between BA37 and
V4. The blue square boxes represent the components of the DCM that transform
the neuronal state functions in each region into measured (hemodynamic) response
yi’s.
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called evolution equations or neuronal state equations):

dx(t)

dt
= F1(x(t),u(t),θ1),

where x(t) = (x1(t), ..., xd(t)) is the unobserved time-dependent neuronal state

vector of d brain regions, dx(t)/dt is the instantaneous rate of change of the

system’s state with respect to time, u(t) is the known experimental input

function vector, θ1 is a set of unknown evolution parameters, and F1 is a

vector of functions that specifies the biophysical mechanism based on which

the underlying neuronal states behave.

- an observation equation (in fMRI case this is the hemodynamic state equation)

describing how experimental measures are determined by underlying hidden

neuronal states x(t):

y(t) = F2(x(t), ε(t),θ2),

where y(t) = (y1(t), ...yl(t)) is the observed response function vector (usually

only available at a fixed number of time points t1, . . . , tn), ε(t) is the error

term, θ2 is another set of observation parameters, and F2 is another vector

of functions that link unobserved neuronal states with experimental measure-

ments.

The formulation of F1 and F2 depends on the targeted imaging modality. For

fMRI data, the neuronal states equations in F1 are usually approximated by the

first and part of the second order Taylor expansions, with a bilinear form that will

be specified later (Equation 2.1). Strong restrictions are imposed on the parameter

space to ensure that the underlying system is stable over time (hundreds of seconds).
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The observation equations F2 include several differential equations translating neu-

ronal activity into hemodynamic responses. Hemodynamic states are a function of

the underlying neuronal states and are irrelevant to other variables. Some specific

examples of hemodynamic state equations can be found elsewhere (Friston et al.,

2000). The estimation of parameters θ1 and θ2 is done by a Bayesian approach with

highly informative priors. This approach only works if the number of brain regions

involved is low.

2.2 The DDM for ECoG Time Series

ECoG signals are recorded from electrodes implanted directly over the cortical sur-

face of the brain. Electrodes are 2-3 mm in diameter and evenly spaced at 10 mm,

center-to-center, in 6 or 8 × 8 arrays. The ECoG time series are recorded from

all electrodes simultaneously. ECoG recordings are characterized by high signal-to-

noise ratios and excellent temporal (1-2 ms) and spatial (10 mm) resolution. ECoG

recordings from human auditory cortex have been shown recently to be highly reli-

able and reproducible (Cervenka et al., 2013). Resting on the unique properties of

the ECoG time series, we propose a new dynamic directional model (DDM) with a

simple formulation to evaluate the effective connectivity among many brain regions.

The ECoG data has millisecond temporal resolution which allows one to approx-

imate the nonlinear neuronal dynamic F1 by its first order and part of second order

Taylor expansions:

dx(t)

dt
= Ax(t) +

J∑
j=1

Bjuj(t)x(t) + Cu(t) +D, (2.1)

where A = (Aij)d×d and Bj = (Bj
i1i2

)d×d are d by d matrices whose scientific meaning
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will be explained later, note that the superscript j in B is not an exponent, it simply

means the matrix interacting with the jth stimulus function, C = (Cij)d×J and

D = (D1, ..., Dd)
′ are d by 1 matrices; J is the number of experimental inputs. The

matrices A, Bj’s, C, and D remain constant over time.

The bilinear approximation is also natural and useful in terms of interpretability

of effective connectivity. The Jacobian or connectivity matrix A represents the

first-order connectivity among the regions in the absence of input u. While as

the jth input is introduced by the experimenter, the coupling among brain regions

is perturbed by the amount of Bjuj. When all the inputs are presented we can

represent the connectivity matrix as A+
∑
ujB

j. The matrix C gauges the extrinsic

influence that is completely induced by inputs not through changing the coupling of

neuronal states. Finally the matrix D serves as a constant effect just like intercept

terms in regression models. In this dissertation, we will name A the connectivity

matrix, Bj the coupling matrix, and C the extrinsic matrix. The parameter set

Θ = (A,B1, . . . , BJ , C,D) defines the dynamic architecture of neuronal activity and

we wish to identify them. Model (2.1) is referred to as a “directional” or “causal”

model, because it specifies two separate parameters Aij and Aji for the effect from

variable i to j and the other way around.

We use an example (Friston, 2003) to recapitulate the specific architecture in

Figure 2.1 and demonstrate how matrix form of the bilinear model describes the

coupling relationship among neuronal states. We label V1, V4, BA37, BA39, and

STG as x1 to x5, and the stimulus-bound perturbation and stimulus-free input as

u1 and u2. The following differential equation is one possible scenario of Figure 2.1:
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

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5


=





A11 0 0 0 0

A21 A22 A23 0 0

0 0 A33 0 A35

0 A42 0 A44 A45

0 0 A53 A54 A55


+ u2



0 0 0 0 0

0 0 B2
23 0 0

0 0 0 0 0

0 B2
42 0 0 0

0 0 0 0 0







x1

x2

x3

x4

x5


+



C11

0

0

0

0


u1

Here Aij and B2
ij are the intrinsic and induced effect exerted by neuronal state

function xj upon xi separately. Hence the connectivity matrix A (and the coupling

matrix B2) can be divided into three parts. The lower part below diagonal represents

the forward effects - the effect elicited by previous neuronal state functions on later

ones, the diagonal part represents the self effects - reflecting how neuronal states

influence themselves, the upper part above diagonal represents the backward effects

- the effect exerted by later neuronal state functions upon previous ones. B1 is a

zero matrix because the stimulus-bound input does not perturb the interaction.

Let’s now turn to the second part of DCM and introduce how DDM simplifies the

observation equation of DCM. Because of the high temporal resolution and highly-

localized property of the ECoG data, and the fact that electrodes are placed directly

over the exposed cortical surface to measure the ECoG signals, the measurements

are direct observations of underlying neuronal state with random noises, i.e., F2 is

simply an identity function of neuronal activity x(t) plus error:

y(t) = x(t) + ε(t), (2.2)

where ε(t) = (ε1(t), ..., εd(t))
′ is a d-dimensional vector of errors. In summary, DDM

approximates the nonlinear dynamic of neuronal state equation by a bilinear form,
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and assumes direct observations on underlying neuronal activity with error mea-

surements. We need to highlight that this simplification only makes sense because

of the high temporal and spatial resolution of ECoG time series, and the fact that

biophysical process only refers to a simple auditory task.

2.3 Potts-based DDM for Functional-Segregated

System

Even with a great simplification from DCM to DDM, it is still unreliable with very

large mean square error when the number of components, d , is large for two reasons.

First, though the observed data y(t) have a large signal-to-noise ratio, the estimated

derivative dx(t)/dt still generates considerable amount of estimation error. This

is a prevalent problem in ODE parameter estimation, since noise in observation

will be amplified in derivatives. Second, to ensure the bilinear form an appropriate

approximation, only very short periods of ECoG time series with only a few hundred

time points were used to fit the model, which leads to a lack of data problem. The

number of model parameters, (J + 1)d2 + (J + 1)d, is in quadratic order of d, and

consequently large d leads to large number of parameters, which makes variance

uncontrollable given the limited data. This problem can be addressed by imposing

sparsity assumptions on the parameters. Such sparsity-inducing regularization has

been widely used in regression problems with a large number of candidate predictors

(for a review, see Shao, 1998; Fan and Lv 2010). Since given the observation x(t),

the parameter estimation for the DDM model (2.1) is equivalent to solving d linear

regression models (this will be explained in detail in Chapter 3), hence the sparsity

assumption would likewise help to increase the efficiency of the DDM.
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Apart from statistical and computational points of view, more importantly, the

sparsity assumption also has a scientific motivation. The connections among brain

regions are energy consuming (Foldiak and Young, 1995; Olshausen and Field, 2004;

Andersen, 2005), and biological units tend to minimize energy-consuming activities

unless necessary in order to survive and propagate (Bullmore and Sporns, 2009;

Micheloyannis, 2012). As such, it is scientifically reasonable to believe that con-

nections among many brain components should be sparse, especially when brain is

performing a simple function within a short period of time. Among all the possible

sparse network structures, we focus on the one that is decomposable into several

functionally-segregated subnetworks, a structure known as modularity, for two rea-

sons. First, modularity has been widely reported in the literature on brain networks

(Girvan and Newman, 2002; Milo et al., 2002; Newman, 2003; Milo et al., 2004;

Newman, 2006). The modules form “building blocks” for large network systems

and the “the modularity of the brain’s architecture” “effectively insulates function-

ally bound subsystems form spreading perturbations due to small fluctuations in

structure or dynamics” (Sporns, 2011). Second, the modularity structure provides

intuitive interpretation of independent functions of brain regions in different mod-

ules, and support functional segregation and specialization, an important principle

of brain functional organization (Friston et al., 2004; Sporns, 2013). Note that in

this dissertation, we use subnetworks, modules and clusters interchangeably.

Towards this goal, we propose a new model for neuronal states. We assume that

under a perfect functional-segregated system, all neuronal states can be separated

into modules. Figure 2.2 shows a very simple 3 module example. Let mi be the

module indicator of the ith system component, which can take integer value from 1

to G. G < d is the number of modules in total. And let δ(mi,mj) be the Kronecker

delta which equals 1 when mi = mj and 0 otherwise. For system component i we
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Module 1

Module 2

Module 3

Figure 2.2: A three-module example: In this 15-dimensional network, three modules
are independent with each other while neuronal states collaborates closely within
each module.

assume the following model, a generalization of Model (2.1):

dxi1(t)

dt
=

d∑
i2=1

δ(mi1 ,mi2) · Ai1i2 · xi2(t)

+
J∑
j=1

uj(t)
d∑

i2=1

δ(mi1 ,mi2) ·B
j
i1i2
· xi2(t) +

J∑
j=1

Ci1j · uj(t) +Di1 . (2.3)

We further assume the Potts model on the module label mi:

P(m1, ...,md) ∝ exp{−µ ·
d∑

i1,i2=1

δ(mi1 ,mi2)}, (2.4)

where P denotes a probability measure, and µ is a positive constant. Equation (2.3)

and (2.4) are referred to as the Potts-based DDM (PDDM). From Model (2.3) it is

clear that the larger a module is, the more parameters are required to characterize

the dynamic system, and the increase is quadratic of the size of the cluster. Specifi-
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cally, the most energy-intensive system is the one with all the components grouped

in the same cluster, as in Model (2.1), and the most parsimonious model is the one

with d clusters in each of which there is only one component. This is opposite to

the clustering scenario, where elements in the same cluster are assumed to have the

same distribution, hence larger cluster contains fewer model parameter, and is con-

sidered to be more parsimonious. The Potts model (2.4) assumes large probability

for systems with many small functionally-independent systems, and small probabil-

ity for systems with large cluster. Hence when estimating the system structure, we

favor small clusters unless we can improve the performance significantly.
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Chapter 3

Algorithms to Estimate DDM

In this chapter we first introduce a widely used log-likelihood based method iterative

principal component analysis (iPDA) to estimate the parameters Θ = (A,B1, . . . ,

BJ , C,D) in the DDM (Equation 2.1). This algorithm will also be the basic com-

ponent of other algorithms designed for sparsely-connected systems. However iPDA

fails to work even for a moderate number of neuronal state functions with or with-

out the sparsity assumption. We then propose two new algorithms designed to learn

two different sparse systems - a functional segregated system for Potts model and a

sparsely connected but inseparable system for comparison. The strategy of selecting

the roughness penalty and sparsity penalty will also be discussed in this section.

To clarify the notations, we list all the symbols that will appear in this Chapter

in the following table, and we want to explicitly mention that we use prime ’ to

denote the transpose of a matrix, d/dt to denote the derivative of a function, and

hatˆto denote the estimated value. And when we speak of the underlying neuronal

states, we use system component, node, neuronal state functional interchangeably.
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Table 3.1: List of symbols

J Number of exogenous inputs (experimental stimulus)

d Number of neuronal state functions

p Number of bases used to smooth the data

n Number of observations

x(t) Actual and unobserved neuronal states

y(t) Observed neuronal states

u(t) Exogenous inputs

φ(t) Basis functions

Γ Basis coefficient matrix

Θ ODE model parameter (A,B,C,D)

Θi The ith row of Θ

λ Roughness penalty coefficient

µ Sparsity penalty coefficient

H,HP,HL Optimization criterion of iPDA, P-iPDA and L-iPDA

Fid ODE model penalty, the fidelity to the ODE equations

L,LP Linear operator

HP SSE + Fid in P-iPDA

RP Fid + Potts penalty

RL Fid + L1 penalty

mi Module label of neuronal state function i

M Module labels of all variables

Ii Indices of nodes that are in the same module as variable i

G Number of modules

N Neighborhood of a network structure
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3.1 Log-likelihood Based Criteria

Given system state vector x(t), we will later show that estimating model parame-

ters Θ can be converted to a linear regression problem which can be easily solved.

So fitting system states x(t) becomes especially important to parameter estimation.

However, fitting x(t) especially dx(t)/dt requires carefully designed methods. There

are two popular approaches in the literature for ODE fitting: discretization methods

using numerical approximations and basis function expansion as discussed in Chap-

ter 1. Here we adopt the latter and approximate x(t) by a set of cubic B-spline

bases:

x(t) ≈ Γ′φ(t), (3.1)

where φ(t) = (φ1(t), ..., φp(t))
′ represents the p-dimensional spline bases, and Γ is a

p by d matrix. The ith column of Γ, denoted by Γ·i, represents the coefficients of

spline basis expansion of xi(t). The estimation function

x̂i(t) = Γ̂′·iφ(t)

is determined by selecting spline-weighting coefficients Γ̂ to minimize the SSE at the

observation times tj:

Γ̂ = argmin
Γ

d∑
i=1

n∑
j=1

(yi(tj)− Γ′·iφ(tj))
2,

which can also be thought as minimizing negative log-likelihood.

In order to prevent the fitting from being too smooth (so that it does not cap-

ture the detailed dynamics) or being not smooth enough (overfitting), a roughness
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penalty term and a smoothness coefficient used to control the amount of roughness

penalty are used to balance this tradeoff. Varah (1982) tuned the number and posi-

tion of knots by hand until he was satisfied with the smoothing. This method does

not work well when dimension of data is high. To let the data tell, another way

of controlling the amount of smoothing is to add a penalty on higher-order deriva-

tives of the splines (Ramsay, 2005). A second-order derivative (curvature) penalty

is widely used in general situations. Under this scenario Γ̂ will be determined by:

Γ̂ = argmin
Γ

[
d∑
i=1

n∑
j=1

(yi(tj)− Γ′·iφ(tj))
2 + λ

d∑
i=1

∫ (
d2xi(t)

dt2

)2

dt

]
,

where

d2xi(t)

dt2
≈ Γ′·i

d2φ(t)

dt2

and λ is the smoothness coefficient: small λ puts large weight on data fitting so it

will tend to fit the error by fluctuating as closely as possible towards the observations

y(t), while big λ overly smooths data so actual dynamics may be lost.

Ramsay (1996) proposed principal differential analysis (PDA) to replace curva-

ture penalty by ODE model-based penalty: so that not only the variance of the

estimator is controlled but also deviation from underlying ODE model is penalized.

This deviation is captured by the fidelity to ODE models

Fid(Γ,Θ) =
d∑
i=1

∫ (
Γ′·i
dφ(t)

dt
− Li(Γ

′φ(t),u(t),Θi)

)2

dt, (3.2)

where Li is a linear operator on x(t) = Γ′φ(t) and u(t) which describes the dynamics
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on xj(t) exerted by x(t):

Li(Γ
′φ(t),u(t),Θi) = Ai·x(t) +

∑
j

uj(t)B
j
i·x(t) + Ci·u(t) +Di,

in which Ai·, B
j
i·, Ci·, and Di denote the ith row of A, Bj, C and D respectively

and Θi = (Ai·, B
1
i·, ..., B

J
i· , Ci·, Di)

′ is a (d+Jd+J + 1)× 1 vector of unknown model

parameters. Formally PDA estimates Γ by minimizing the following criterion:

H(Γ,Θ) =
d∑
i=1

n∑
j=1

(yi(tj)− Γ′·iφ(tj))
2 + λ · Fid(Γ,Θ). (3.3)

Note that although we write H as a function of both Γ and Θ in Equation (3.3),

Θ is treated as known in PDA, i.e., PDA assumes a known underlying dynamic and

the problem is just to fit x(t) by estimating Γ.

But our problem is different from what PDA targets. Our main concern is to

estimate the ODE parameter Θ which is treated known in PDA. By representing

x(t) as basis expansions, we create an extra set of unknown parameters Γ (nuisance

parameter) besides our target parameter Θ (structural parameter). Estimating Γ

and Θ simultaneously in Equation (3.3) will be unrealistic, Poyton et al. (2006)

proposed an iteratively PDA (iPDA) strategy which refines the PDA by iterating

between two steps, estimating basis coefficients Γ (holding Θ fixed) and ODE model

parameters Θ (holding Γ fixed). This algorithm is the cornerstone of our algorithm

and can be summarized in Figure 3.1.

We make three notes for the algorithm above:

1. The initial value Θ0 is estimated by a naive method: smoothing y(t) by penal-

izing the second order derivative of dx(t)/dt, then estimating Θ using dx̂(t)/dt

and x̂(t). When smoothing y(t) the amount of smoothing is selected by gen-
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The iterative principal differential analysis (iPDA) algorithm:

0. Initialize Θ = Θ0.

At the (s+ 1)th step:

1. Data profiling. Fix Θ̂s estimated from the sth step, find Γ̂s+1 that mini-
mizes H(Γ, Θ̂s) in Equation (3.3).

2. Model parameter estimation. Fix Γ̂s+1 estimated from Step 1, find Θ̂s+1

that minimizes Fid(Γ̂s+1,Θ). Then update the value of H(Γ,Θ).

3. Iterate (1) and (2) until the relative change of H(Γ,Θ) is less than a pre-
specified threshold.

Figure 3.1: The iterative principal differential analysis (iPDA) algorithm.

eralized cross-validation (GCV).

2. In the algorithm above and later, we assume that the parameter that controls

the penalty λ (and later µ) are fixed. How to select λ (and µ) in step 1 will

be discussed in Section 3.4.

3. We will see in Chapter 4 that Fid(Γ,Θ) can be written as a quadratic function

of Θ hence Θ can be estimated by multiple linear regressions with response

dx̂i/dt and regressor (x(t),u(t)x(t),u(t),1).

The above algorithm works well for a simple dynamic system (d < 5), but its per-

formance for a system with even a moderate size (e.g., d = 10) can be questionable.

As discussed in Tibshirani (1996), variability of parameter estimates of regression

models can be reduced by shrinking some parameter, which can be achieved via

penalized likelihood approaches. Below we introduce two penalty terms upon which

two algorithms are based.
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3.2 Estimation with the Potts Penalty

Taking into account the Potts model (2.4), we propose a Potts penalty (PP)

PP (M) =
d∑

i,i2=1

δ(mi,mi2) (3.4)

and include it in the log-likelihood criterion (3.3) we define

HP(Γ,Θ) =SSE(Γ) + λ · FidP(Γ,Θ) + λ · µ · PP(M)

=
d∑
i=1

n∑
j=1

(yi(tj)− Γ′·iφ(tj))
2

+ λ ·
d∑
i=1

∫ (
Γ′·i
dφ(t)

dt
− LPi(Γ

′φ(t),u(t),Θi)

)2

dt (3.5)

+ λ · µ ·
d∑

i,i2=1

δ(mi,mi2).

We want to emphasize the difference between Equation (3.3) and (3.5) so we add a

subscript “P” which stands for Potts model. Define HP(Γ,Θ) as a modified H(Γ,Θ)

with the second term changed according to (2.3):

HP(Γ,Θ) =
d∑
i=1

[
n∑
j=1

(yi(tj)− Γ′·iφ(tj))
2

+ λ ·
∫ (

Γ′·i
dφ(t)

dt
− LPi(Γ

′φ(t),u(t),Θi)

)2

dt

]
, (3.6)
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where

LPi(Γ
′φ(t),u(t),Θi) =

d∑
i2=1

δ(mi,mi2) · Aii2 · xi2(t)

+
J∑
j=1

uj(t)
d∑

i2=1

δ(mi,mi2) ·B
j
ii2
· xi(t) +

J∑
j=1

Cij · uj(t) +Di.

There is a little notation inconsistency here with equation (2.3). We drop the

subscription for i1 for simplicity. We define a few module-related notations to further

simplify the Potts model penalty. Let Ii denote the set of variable indices (from

smallest to largest) whose corresponding variables are in the same module as xi(t).

For example, if neuronal states x1, x3, x7 and x8 are in the same module, then

I1 = I3 = I7 = I8 = (1, 3, 7, 8). Let AiIi , B
j
iIi

denote the submatrices of A and Bj

with corresponding row index i and column indices Ii, similar as xIi(t) Adopting

this notation, we can rewrite LPi(Γ
′φ(t),u(t),Θi) in a more compact form:

LPi(Γ
′φ(t),u(t),Θi) = AiIixIi(t) +

∑
j

uj(t)B
j
iIi
xIi(t) + Ci·u(t) +Di.

The Potts penalty (3.4) is essentially an L0 penalty, i.e., it penalizes on the number

of predictors.

Our goal is to select spline coefficient Γ, module structure M and model param-

eter Θ to minimize HP(Γ,Θ). Our algorithm is based on Poyton’s iPDA: we also

iterate between data profiling and parameter estimation. The Potts penalty and

subnetwork structure of the system enable us to propose a novel iterative scheme to

detect the subnetwork hence estimate the model parameters very efficiently. Here

is how it works.

In data profiling step at sth iteration, given the subnetwork structure Θ es-
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timated from previous parameter estimation step (we will explain later that the

parameter estimation step not only estimates Θ but also searches for an optimal

network structure M), since modules are completely isolated with each other, we

are able to perform data profiling like we did in iPDA within each module instead

of minimizing HP(Γ,Θ) globally. Let M s = (ms
1, ...,m

s
d) be the collection of module

indicators of all d system components at step s, and suppose there are Gs modules

at current step (without loss of generality, we always index modules from 1 to Gs,

hence Gs = max(M s)). We can rewrite HP as:

HP(Γ,Θ) =
Gs∑
g=1

 ∑
i∈{Ms=g}

n∑
j=1

(yi(tj)− Γ′·iφ(tj))
2

+ λ
∑

i∈{Ms=g}

∫ (
Γ′·i
dφ(t)

dt
− LPi(Γ

′φ(t),u(t),Θi)

)2

dt


,

Gs∑
g=1

HP,g(Γ,Θ), (3.7)

where {M s = g} = {i : mi = g, 1 ≤ i ≤ d} is the set of variable indices whose

corresponding neuronal state functions are in Module g. The term in the brackets

does not contain variables that are not in Module g, hence HP can be minimized

separately within each module, which tremendously lowers the computational cost

especially when d is large and the size of each module is relatively small compare to

d. We will discuss computational issues in Chapter 4.

In parameter estimation step, we are given estimated Γ from data profiling step

and try to select Θ to minimize

RP(Γ,Θ) = Fid(Γ,Θ) + µ ·
d∑

i,i2=1

δ(mi,mi2),



36

which sums the last two terms in Equation (3.5). This is a combinatorial prob-

lem because an exhaustive search for all possible assignments of mi and mi2 is a

combinatorial problem. We borrow the idea from Metropolis-Hastings algorithm,

instead of searching for the global minimum, alternatively, we search for a local min-

imum. To be more specific, at this step we only search for the minimum among the

“neighborhood” of current subnetwork structure M s. Suppose the neighborhood

only contains a few possible subnetwork structures, then we are able perform an

exhaustive search without triggering too much computation burden. As long as we

decrease HP(Γ,Θ) at each iteration - it might not be the deepest descent direction

- we are able to converge. The neighborhood of M s, N (M s), is defined as all the

sets of module indicators that can be obtained by flipping the indicator of M s at at

most one position:

N (M s) =
d⋃
i=1

{
(ms

1, ...,m
s
i−1, z,m

s
i+1, ...,m

s
d) : z = 1, ..., Gs, Gs + 1

}
We use the following toy example to illustrate the neighborhood we just defined.

Suppose at the sth step the system network structure is displayed as in Figure 2.2.

At the (s + 1)th step, to search in the neighborhood of M s we can flip the module

label of any single variable. Suppose ms
i , the module label of variable i, is flipped.

Figure 3.2 shows all possible neighbors by only flipping ms
i : at the sth step, neuronal

state function xi is in module 2, at the (i+ 1)th step, it could be in module 1, 2, 3,

or create a new module by itself.

Similarly as we rewrite HP based on subnetwork structure, we can also rewrite



37

i

Module 1

Module 2

Module 3

i

Module 1

Module 2

Module 3

i

Module 1

Module 2

Module 3

i

Module 1

Module 2

Module 3

Module 4

Figure 3.2: The neighbors of current subnetwork structure obtained by flipping
model label of xi. The neighborhood of the current network structure (top left
panel) is defined as all structures that can be obtained by flipping the module label
of a single variable. In this figure we show all neighbors by flipping variable i.
Currently node xi is in module 2, so it could be allocated to module 1 (top right
panel), module 2 (itself, top left panel), module 3 (bottom left panel), or create a
new module 4 by itself (bottom right panel). We will need to flip the module labels
of all the other nodes to obtain the full neighborhood.



38

RP as

RP(Γ,Θ) =
Gs∑
g=1

 ∑
i∈{Ms=g}

∫ (
Γ′·i
dφ(t)

dt
− LPi(Γ

′φ(t),u(t),Θi)

)2

dt


+ µ ·

d∑
i,i2=1

δ(mi,mi2). (3.8)

So in the parameter estimation step, we loop through all the network structures

in the neighborhood of current structure M s. For each structure, the term in the

bracket does not contain neuronal state functions that are not in the module g,

hence to minimize RP we only need to run regressions within each module. Because

the size of N is O(d2) and linear regressions can be computed very fast, searching

among the neighborhood of M s is very efficient. We summarize our Potts-based

iterative principal differential analysis algorithm in Figure 3.3.

Note that in step 0 we initialize M as d independent modules, just to be conser-

vative and convenient. One can certainly pick any other structure if she has prior

information. We will discuss starting point selection in Section 3.5 in detail.

3.3 Estimation with the L1 Penalty

While P-iPDA utilizes the Potts penalty and the subnetwork structure, there are

different types of sparsity structures. In this section we propose another modi-

fied iPDA algorithm by adding an L1 penalty, the most popular sparsity-inducing

penalty in the literature, on A and B to the criterion H(Γ,Θ):

HL(Γ,Θ) = H(Γ,Θ) + λ · µ ·

(
d∑

i1,i2=1

|Ai1i2|+
J∑
j=1

d∑
i1,i2=1

|Bj,i1i2|

)
, (3.9)
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The Potts-based iterative principal differential analysis (P-iPDA) algorithm:

0. Initialization. Set M0 = (1, ..., d) and Θ = 0.

At the (s+ 1)th step:

1. Data profiling. Fix Θ̂s and current subnetwork structure M̂ s.
For g in 1, ..., Gs,

Fit x̂i, i.e. Γ̂s+1
i· , by minimizing HP,g (Equation 3.7) for all i ∈ {M s =

g} at the same time within cluster g.

2. Model parameter estimation. Fix Γ̂s+1.
For M s+1 in N (M s),

Estimate Θ by minimizing RP(Γ̂s+1,Θ) (Equation 3.8) under subnet-
work structure M s+1.
Select the M̂ s+1 and Θ̂s+1 that minimize RP.

3. Iterate (1) and (2) until the subnetwork structure M stabilizes and the rel-
ative change of log-likelihood HP(Γ,Θ) is less than a pre-specified thresh-
old.

Figure 3.3: The Potts-based iterative principal differential analysis (P-iPDA) algo-
rithm.

where the “L” stands for Lasso. The L1 penalty shrinks many model parameters to

be zero. In fact, this is equivalent to assuming a sparsely connected brain system in

the sense that the effective connectivity between many regions are zero, distinct from

a functionally segregated system in which effective connectivities are distributed

densely within each module. The former might not be able to identify independent

clusters, the latter can separate independent clusters but within each cluster, it

fails to achieve further sparsely, i.e., all components within the same module are

connected with each other. Figure 3.4 shows the difference between the two networks

structures.
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Module 1

Module 2

Module 3

(a) A modularizable network
(b) A sparsely connected but inseparable
network

Figure 3.4: Comparison of two sparse network structures: subnetwork structure vs
sparsely connected network. The left panel shows a typical subnetwork structure in
which there are 3 modules, within each module all nodes are completely connected
(so we do not show the arrows) and between modules no one influence the other;
the right panel shows sparsely connected network in which you cannot separate
nodes into isolated sub-systems, but the connections are sparse. Arrows indicate
directional connectivities.

Similarly we define

RL(Γ,Θ) =
d∑
i=1

∫ (
(Γ·i)

′dφ(t)

dt
− Li(Γ

′φ(t),u(t),Θi)

)2

dt

+ µ ·

(
d∑

i1,i2=1

|Ai1i2|+
J∑
j=1

d∑
i1,i2=1

|Bj,i1i2|

)
. (3.10)

The scheme we propose to minimize HL(Γ,Θ) is similar as iPDA and is summarized

in Figure 3.5.

The first two steps (step 0 and step 1) are identical to the first two steps in

iPDA. Step 2 is essentially an L1-penalized regression (Lasso) problem which has

been well developed and all the quadratic programming techniques can be applied.

Among them two methods specifically designed for lasso regression - least angle re-

gression (LARS, Efron et al., 2004) and pathwise coordinate optimization (Friedman
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The Lasso-based iterative principal differential analysis (L-iPDA) algorithm:

0. Initialize Θ = Θ0;

At the (s+ 1)th step:

1. Data profiling. Fix Θ̂s estimated from the sth step, find Γ̂s+1 that mini-
mizes H(Γ, Θ̂s) in Equation (3.3).

2. Model parameter estimation. Fix Γ̂s+1 estimated from Step 1, find Θ̂s+1

that minimizes RL(Γ̂s+1,Θ)

3. Iterate (1) and (2) until the relative change of HL(Γ,Θ) (Equation 3.9) is
less than a pre-specified threshold.

Figure 3.5: The Lasso-based iterative principal differential analysis (L-iPDA) algo-
rithm

et al, 2007) - are especially fast when dealing with our problem. In this dissertation

we use the pathwise coordinate optimization algorithm to solve it. This algorithm

breaks down a d-dimensional lasso regression to d one-dimensional lasso regressions

which has analytical solution hence can be solved easily and quickly. Not to be

confused here, we have to run d d-dimensional lasso regressions in parameter es-

timation step, and pathwise coordinate optimization algorithm can break each of

the d-dimensional lasso regressions into d one-dimensional lasso problems. Besides

the fact that pathwise coordinate optimization algorithm is among the fastest al-

gorithms to solve lasso problem in the literature, another reason why we choose it

is that the form of the optimization problem it handles is consistent with the form

our problem is formulated. We know that one can represent a optimization prob-

lem in two forms equivalently (dual problems), i.e., either list the L1 penalty as a

constraint or incorporate it in the optimization function like in Equation (3.10). In

this situation because we have d lasso regressions, and they share the same penalty
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coefficient µ, it would be unrealistic to use the dual form which lists L1 penalty as

a constraint, hence other efficient algorithms like LARS is not applicable here.

For the same data, generally L-iPDA is much more computationally intensive

than P-iPDA, mainly for two reasons. First, the calculation of Γ, a matrix of

much larger dimension than that of the model parameters, involves expensive matrix

inversion and dominates the computation. Through decomposing the whole dynamic

network into smaller subnetworks and computing Γ for each subnetwork separately,

P-iPDA replaces the computation of the large matrix Γ by the computation of several

smaller matrices, and thus significantly reduce the computation load. Second, even

though efficient algorithms like LARS or pathwise coordinate optimization algorithm

might be able to achieve the same time complexity as OLS, computation of Lasso

estimates generally takes longer time than that of the regular OLS estimates.

3.4 Selection of Penalty Parameters

3.4.1 A Modified Cross-validation Approach

The criteria HP(Γ,Θ) depends on two penalty parameter, λ and µ, where the former

is used to reduce variability of the estimated x̂(t), and the latter is to regularize

the ODE parameter estimates. Algorithms in previous sections all assume that λ

and µ are held constant, but when dealing with real problems, how to select penalty

coefficient is always a tricky question. Existing approaches for penalty selection

include ordinary cross-validation (OCV), generalized cross-validation (GCV, Wahba,

1990), GCV for functional data (Reiss & Ogden, 2007, 2009), restricted maximum

likelihood (Wood, 2011), etc. Because of the complex formulation of the optimizing

functions in our setting, we propose a modified twenty-fold cross validation (TFCV)
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to select the penalty parameters. For time series data, one cannot leave out all

the data points in one continuous time period, because the resulting discontinuity

will cause difficulty in predicting the left-out data. Therefore we use a different

strategy to divide data into folds. For our ECoG real data analysis and simulations

examples n is 251, so we select the number of folds to be 20 - neither too large to

make estimation unstable, nor too small to make prediction unpersuasive.

We first divide the time series at T time points into b(n− 1)/20c time intervals,

each containing 20 consecutive points, where btc denotes the maximum integer no

larger than t. Let each fold be a collection of one time point in each interval.

For example, the first fold consists of data at time points F1 = (2, 2 + 20, ..., 2 +

20b(n − 1)/20 − 1c), and the twentieth fold consists of data at time points F20 =

(21, 21 + 20, ..., 21 + 20b(n − 1)/20 − 1c). Then given a candidate combination of

(λ, µ), we leave out one fold of data each time, and use the rest of data to fit x(t) at

the rest n− b(n− 1)/20c time points, and estimate Θ using the proposed iterative

procedures. Prediction of the left-out data is conducted as follows. Suppose the data

at time tv+1 are left out, then based on the estimated x̂(tv) and Θ̂, the predicted x

at tv+1 is given by

x̃(tv+1) = x̂(tv) +

(
Âx̂(tv) +

J∑
j=1

uj(tv)B̂jx̂(tv) + Ĉu(tv) + D̂

)
· ~.

where ~ = tv+1 − tv. Then we use the sum of prediction error (SPE)

SPE =
20∑
i=1

∑
t∈Fh

d∑
i=1

(yi(t)− x̃i(t))2 (3.11)

as the criterion to select the best combination of (λ, µ).

One can also use a modified leave-one-out cross-validation (LOOCV) to select
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the penalty parameters. The regular LOOCV leaves one point out each time, fits the

model, then records the difference between predicted value and the actual value that

was left out. But the regular LOOCV is very time consuming, because we have to

repeat our estimation process 251 times. Given the continuity of the dynamic system

under study, one may conduct the LOOCV only on a subset of the original time

observations. For example, we can select 50 points randomly, and when applying

LOOCV, we only leave those 50 points out such that computational time is reduced

to 1/5 of original computational time. We call this algorithm the random leave-one-

out cross-validation (RLOOCV). In real data and simulation examples, we find that

TFCV and RLOOCV with different number of left-out points (as long as it’s not

too small) will produce similar results, so it’s completely up to the researcher which

cross-validation method to use.

Note that the discussion above mainly serves for parameter selection of P-iPDA.

For iPDA only λ is needed and we can simply select the same λ as P-iPDA, because

the same level of roughness is preferred. Same λ is also applied to L-iPDA. However

we tune µ in L-iPDA by adjusting the percentage of zeros we want to achieve.

We also need to select other parameters like the number of bases p in data

profiling step. We use equally-spaced cubic spline bases to represent x(t) since the

time series data under study are equally spaced. Through simulations we found that

choice of the number of spline bases did not affect the results much, as long as p

was not too far from the number of observations n.

3.4.2 A Prescreen Process

Even the TFCV/RLOOCV is extremely time-consuming if a scan of a large pool

of candidates of λ and µ is desired. Because at the selection step, in order not to
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miss possible candidates, it’s inevitable to select very small µ’s, which will incur

expensive computational cost in two ways. First, small µ clusters many components

into the same module, resulting P-iPDA many iterations to converge. Second, when

many components fall into the same module, the computation for the associated Γ,

the coefficients of B-spline bases representing xi(t)’s in the same cluster, involves

inverting a large matrix, which is computationally extensive. Actually small µ will

degenerate the P-iPDA to iPDA in data profiling step after enough iterations which

holds the larger proportion of computation in P-iPDA.

So we propose a method that can prescreen hence reduce the large candidate pool

purely based on the curve fitting error SSE and the fidelity to ODE model Fid. For

each combination of λ and µ in the original large candidate pool, we apply P-iPDA

to the entire data, and keep records of SSE(λ, µ) and Fid(λ, µ) outputted from the

final step. We know that λ controls the fidelity and also the roughness of the curves.

So for the same µ (we will fix µ at a very small value at the beginning), the larger

the λ is, the larger the SSE is, and the smaller the Fid is (the smoother the curves

are). So we abandon those λ’s that cannot balance SSE and Fid. And we define

this balance as the ratio of the relative percentage changes of them. For example,

suppose when we increase λ, the SSE increases 10 times but Fid only decreases by

half, then we will abandon this λ and all the larger ones. Since we absolutely do

not want to discard any λ that might possibly be a good selection, so we will choose

a very conservative ratio cutoff. But even a conservative ratio cutoff can lessen the

candidate pool size tremendously. For the same λ, we gradually increase the value of

µ so that the cluster size decreases. There will be d clusters when µ is large enough.

If a larger µ and smaller cluster size jeopardize neither SSE nor Fid, then we discard

the larger µ and only keep the smaller one because we prefer a simple model than a

complex one. Then among the rest of a few parameters with both small SSE(λ, µ)
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and Fid(λ, µ), we use RLOOCV/TFCV to select the (λ, µ) for final data analysis.

We demonstrate how this process works in Section 6.2 through simulation examples.

3.5 Possible Improvements of P-iPDA

Previously in this chapter we have presented the scheme of P-iPDA, especially how

to search for the local optimum in the neighborhood of current network structure.

While laying out the steps of P-iPDA, we were focusing on delivering the main idea

of P-iPDA so that the algorithm was stated as succinct as possible. As readers can

sense that this iterating scheme has a strong Metroplis-Hastings flavor, hence some

improvements designed for Metroplis-Hastings can also be applied for P-iPDA. Its

uniqueness also allows other directions of improvements. In this section we point

out some possible directions of improvements.

Starting point

In our P-iPDA we always start from Θ = 0 which specifies the network struc-

ture as the most parsimonious one, the one every node forms a module by itself. We

recommend this starting point not only because it’s parsimonious, but also because

it’s most computationally economic. With every module only having one node, it’s

equivalent to fitting d one-dimensional ODEs at the first iteration. And it will keep

the computation fast at least for the first a few iterations. As the size of the module

increases the network structure will stabilize. This selection of starting point makes

sense especially when we know nothing about the system. But we also want to try

different starting points for two reasons: (1) Prior knowledge on the network struc-

ture. For example, under some circumstances researchers might have known roughly

how the neuronal states are segregated so they can incorporate this idea into the
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model by tuning the starting point. (2) Preventing P-iPDA from getting stuck at

local minimum. The updating scheme of P-iPDA guarantees that it will converge

but does not guarantee it will converge to the global optimum. The P-iPDA faces

the same problem as Metroplis-Hastings algorithm. The estimator is approximately

optimal, especially when the optimization function has high dimension and the sur-

face is hilly, the estimator may never get anywhere near the global optimum. Hence

when we deal with high dimensional problem, trying different starting point is an

intuitive way to prevent us from misleading by a single path. For example, one can

select five different starting points with different network structures ranging from

d modules to a single big module, then choose the estimator that minimizes the

optimization function.

Network updating scheme

Besides starting point, another reason that our Potts-based strategy might get

stuck in local minimum is that the neighborhood we search in every iteration is too

small to explore a significant amount of the whole sample space. So if we can improve

how we update the module structure such that more area can be investigated, we

are able to increase the probability of “jumping out” from a local minimum. We

propose the following ideas:

1. Currently we define neighborhood of a network structure as structures that can

be obtained by flipping module label of at most one node. This produces only

O(dG) elements in the neighborhood including the current structure itself,

where G is the number of modules in current network structure. Compared

to the number of total possible module labels O(Gd) the neighborhood is too

small. Hence we can enlarge the neighborhood by allowing two or more labels
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to flip their labels. By allowing two nodes to change their module labels

we increase the number of elements in the neighborhood to O(d2G2), hence

increase the chance to achieve global optimum.

2. When searching in the neighborhood of current network structure, we require

that the estimate of Θ that minimizes the function RP is selected for next

iteration. This criterion ensures us in the steepest descent direction within

the neighborhood of current network structure. But this also binds us in that

direction and sometimes leads us to a local minimum after a few iterations.

One possible improvement is to give the estimation of Θ and the corresponding

module labels M more freedom. For example, we can keep the best two

estimates for the next iteration, and run the next iteration using each of the

two estimates respectively, then combine the results and keep the best two

estimates, and so on. Of course one can select the best three, four or more

estimates to keep for future iterations.

Essentially either starting from more than one points or updating the network

shakier tries to expand the space each iteration can explore. By expanding the

search space, both methods sacrifice computational speed. So there is a trade-off

between accuracy and complexity (both time and space). For example, if you try 10

staring points, then the computation time is approximately 10 times of the original

time.

Although both methods targets the same goal, that is, to expand the search

space, they stand in different point of view. This enables us to combine both meth-

ods to increase the accuracy even further. For example, one can try multiple starting

points, and for each starting points, one can allow multiple nodes to flip their labels.

All those improvements can be made and adjusted based on real problems.
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Channel-specific penalization parameter

The first two methods both try to expand the space that each iteration can

explore. Here we start from a different standing point. When penalizing the ODE

model penalty and Potts penalty (or L1 penalty for L-iPDA) in Equation (3.5), we

control the amount by parameter λ and µ respectively. Here we focus on λ. We

know that the ODE model penalty

∫ (
dxi(t)

dt
− LPi(Γ

′φ(t),u(t),Θi)

)2

dt

controls the variance of the fitted time series x̂i(t). The ideal value of λ is determined

by the signal-to-noise ratio. For example, if the time series are observed without

error, the perfect λ will be zero, i.e., we want to fit the data completely by minimizing

SSE. On the other hand, if the signal-to-noise ratio is small, we will prefer a large

λ to control the variance. However, in real problems we don’t know the signal-to-

noise ratios of xi(t)’s so in our algorithms we simply set a single λ. It also has

computational concerns because if we use channel-specific λ’s at data profiling step

to minimize

d∑
i=1

[
n∑
j=1

(yi(tj)− Γ′φ(tj))
2 + λi

∫ (
Γ′·i
φ(t)

dt
− Li(Γ

′φ(t),u(t),Θi)

)2

dt

]
,

we have to select all the λi’s by cross-validation. Even the selection of a single λ and

µ is already computational heavy, and we have to run them in a parallel way. So it’s

impossible for us to select 50 λi’s by cross-validation. Here we propose a method to

estimate the ratios of ideal λi’s, then λi can be represented as a common factor λ
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multiplied by this ratio:

λi = λ · ci,

where ci is the estimated ratio, and λ is the only parameter that needs to be selected

by cross-validation. So this is equivalent as the previous penalty term computation-

ally. And ci’s are estimated by the following non-iterative method. First we fit

a naive nonparametric on y(t) (use second order derivative as penalty), then we

regress dx̂(t)/dt on x̂. The MSE’s in the regression analysis are considered as good

candidates of ci’s.

3.6 Proof of Convergence

In iPDA, P-iPDA and L-iPDA there is a common stop criterion - the optimization

function H to converge. In this section we prove that this will always happen hence

the algorithms will always stop within a certain amount of time. Here we prove this

result for iPDA but everything can be extended similarly to P-iPDA and L-iPDA.

Let Γi and Θi be parameters estimated from the ith iteration, we have

Hi = H(Γi|Θi)

=

p∑
i=1

‖Y·i − ΦΓi·i‖2 + J(Θi|Γi)

≤
p∑
i=1

‖Y·i − ΦΓi·i‖2 + J(Θi−1|Γi)

≤
p∑
i=1

‖Y·i − ΦΓi−1
·i ‖2 + J(Θi−1|Γi−1)

= H(Γi−1|Θi−1),
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where H(Γi|Θi) indicates that we are in the data profiling step, because we are given

the model parameters and are minimizing H by selecting Γi, while

J(Θ|Γ) = λ
d∑
i=1

∫ (
dx̂i(t)

dt
− Li(Γ

′φ(t),u(t),Θi)

)2

dt

indicates that we are in the model parameter estimation step, because we are given

the fitted x̂(t) and are minimizing J by selecting Θ. The first inequality is because

Θi minimizes Hi, and the second inequality is because Γi minimizes Hi. We have

shown {Hi} is a decreasing sequence and it’s greater than 0, hence the sequence

{Hi} must converge.
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Chapter 4

Computational Issues

The previous chapter lays out a big picture of how we approach the high dimensional

dynamic system, but there are still too many computation details remains to be

resolved. In this chapter we focus on tackling computation issues that suffice us to

package the algorithms to usable software.

Essentially the computation of iPDA, P-iPDA and L-iPDA are similar. P-iPDA

is basically running iPDA in subnetworks (plus some network structure updating

scheme), and L-iPDA differs from iPDA only at the parameter estimation step, in

which L-iPDA fits d lasso regressions while regular iPDA fits d OLS regressions. So

in this chapter, we mainly work on how to run iPDA in a computationally economic

way. We consider the case when the system only inputs a single stimulus, i.e.,

J = 1, because of three reasons: (1) both our real data analysis and simulation

examples only contain one exogenous input source; (2) Notation compactedness; (3)

All the computation derived in the case when J = 1 can be easily extended to more

general case when J > 1. So we simply use B to denote B1, Ci to denote Ci· and

u(t) to denote u(t). One thing worth mentioning is that in our real data analysis

and simulation examples, we use a single λ to account for all the neuronal state
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functions, while in the future we might want to improve our model by considering

channel specific penalty coefficients. So we generalize our model to allow different

model penalty coefficient for different system variable:

H(Γ,Θ) =
d∑
i=1

n∑
j=1

(yi(tj)− Γ′·iφ(tj))
2

+
d∑
i=1

λi ·
∫ (

Γ′·i
dφ(t)

dt
− Li(Γ

′φ(t),u(t),Θi)

)2

dt.

This chapter is organized as follows. We first address how to fit neuronal state

functions, which is the same across all three algorithms and is usually much more

computationally intensive than model parameter estimation. Then we will introduce

how to estimate model parameter algorithm by algorithm.

4.1 Data Profiling

Our main concern is the first step, that is, given model parameter Θ, to estimate Γ.

In Equation (3.3) we denote the first term SSE and the second term J:

H(Γ,Θ) = SSE + J(Γ,Θ),

where J is Fid multiplied by the smoothness coefficient λ. Let

Φ = (Φij)n×p = (φj(ti)), 1 ≤ i ≤ n, 1 ≤ j ≤ p,
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where n is the number of time observations and p is the number of basis splines.

The SSE can be written as

SSE =
d∑
i=1

‖Y·i − ΦΓ·i‖2

=
d∑
i=1

(Y·i − ΦΓ·i)
′(Y·i − ΦΓ·i)

=
d∑
i=1

(Γ′·iΦ
′ΦΓ·i − 2Γ′·iΦ

′Y·i + Y ′·iY·i)

= γ ′Pγ − 2γ ′Q′y + y′y,

where

γpd×1 =


Γ·1
...

Γ·d

 , ynd×1 =


Y·1
...

Y·d

 ,

Ppd×pd =


Φ′Φ

.. .

Φ′Φ

 , Qnd×pd =


Φ

.. .

Φ

 .

When computing J(Γ,Θ), we use Riemann sum to approximate the integral. The

points we used for Riemann sum are (t1 = 0, t2, . . . , tN = T ) ∈ [0, T ]. Note that

these points are not necessarily the same as the points where the original data are

measured at, we use the same symbol t just for convenience and it’s not difficult to

tell when we are using which. For computational convenience we choose them to

be equally spaced, the length of each interval is l = T
N−1

. Formally J(Γ,Θ) can be
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represented as

J =
d∑
i=1

λi

∫ T

0

[ẋi(t)− Ai·x(t)− u(t)Bi·x(t)− u(t)Ci −Di]
2 dt

=
d∑
i=1

λi

∫ T

0

[(
− Ai1φ(t)′ − u(t)Bi1φ(t)′, . . . , φ̇(t)′ − Aiiφ(t)′ − u(t)Biiφ(t)′,

. . . ,−Aidφ(t)′ − u(t)Bidφ(t)′
)
γ − u(t)Ci −Di

]2

dt

≈
d∑
i=1

λil · (Riγ − Si)′(Riγ − Si)

=

[
γ ′

(
d∑
i=1

λiR
′
iRi

)
γ − 2γ ′

(
d∑
i=1

λiR
′
iSi

)
+

d∑
i=1

λiS
′
iSi

]
· l, (4.1)

where in the third line we approximate the integral by Riemann sum, and Ri and

Si are defined as

(Ri)N×dp =


−fi1(t1) ... φ̇(t1)′ − fii(t1) ... −fid(t1)

...
...

...

−fi1(tN) ... φ̇(tN)′ − fii(tN) ... −fid(tN)

 ,

(Si)N×1 =


Ciu(t1) +Di

...

Ciu(tN) +Di

 ,

where

fij(t) = Aijφ(t)′ + u(t)Bijφ(t)′.
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Let

(Ai)N×dp =


Ai1 · · · Ai1 · · · Aid · · · Aid

...
. . .

...

Ai1 · · · Ai1 · · · Aid · · · Aid

 ,

(Bi)N×dp =


Bi1 · · · Bi1 · · · Bid · · · Bid

...
. . .

...

Bi1 · · · Bi1 · · · Bid · · · Bid

 ,

(am)N×dp =


u(t1) · · · u(t1)

...
...

u(tN) · · · u(tN)

 , (av)N×1 =


u(t1)

...

u(tN)

 ,

and

ΨN×dp =


φ(t1)′ · · · φ(t1)′

...
. . .

...

φ(tN)′ · · · φ(tN)′

 , (Ψ̇i)N×pd =


0 φ̇(t1)′ 0

...

0 φ̇(tN)′ 0

 ,

then we can write Ri as

Ri = −(Ai + am �Bi)�Ψ + Ψ̇i,
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where �means element-wise multiplication which is much faster than regular matrix

multiplication. Further if we let

R =
d∑
i=1

λiR
′
iRi,

S =
d∑
i=1

λiR
′
iSi,

we can write J as

J =

(
γ ′Rγ − 2γ ′S +

d∑
i=1

λiS
′
iSi

)
· l.

Hence we have the data fitting criterion

H = SSE + J

= γ ′(P +Rl)γ − 2γ ′(Q′y + Sl) +
d∑
i=1

(Y ′·iY·i + λiS
′
iSil).

We now represent H in a typical quadratic form, the optimal solution can be ob-

tained as

γ̂ = (P +Rl)−1(Q′y + Sl). (4.2)

When d and N are large, it will be really inefficient to compute those matrix mul-

tiplications and inversions repeatedly. If we can save some common intermediate

results in the memory and read them in each iteration instead of computing them

every time, we are able to save tremendous computation time. In Equation (4.2),

P and Q are fixed, most of the computation comes from R and S, more specifically,
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from
∑d

i=1 λiR
′
iRi and

∑d
i=1 λiR

′
iSi. In detail,

R′iRi =
[
−(Ai + am �Bi)�Ψ + Ψ̇i

]′ [
−(Ai + am �Bi)�Ψ + Ψ̇i

]
= Ai,R � A′i,R � (Ψ′Ψ) + Ai,R �B′i,R � (am �Ψ)′Ψ

+Bi,R � A′i,R �Ψ′(am �Ψ) +Bi,R �B′i,R � (am �Ψ)′(am �Ψ)

− Ai,R �Ψ
′T
i Ψ−Bi,R �Ψ

′T
i (am �Ψ)− A′i,R �Ψ′Ψ̇i

−B′i,R � (am �Ψ)′Ψ̇i + Ψ
′T
i Ψ̇i (4.3)

R′iSi =
[
−(Ai + am �Bi)�Ψ + Ψ̇i

]′
[Ciav +Di1]

= −CiA′i,R �Ψ′av − CiB′i,R � (am �Ψ)′av + CiΨ
′T
i av

−DiA
′
i,R �Ψ′1−DiB

′
i,R � (am �Ψ)′1 +DiΨ

′T
i 1,

where Bi,R is the same as Bi but resized to make the dimension appropriate for

multiplication, its a dp by dp matrix while Bi is a N by dp matrix,

(Ψ′Ψ̇i)pd×pd =


0
∑N

i=1φ(ti)
′φ̇(ti) 0

...
...

...

0
∑N

i=1φ(ti)
′φ̇(ti) 0


and

(Ψ
′T
i Ψ̇i)pd×pd =


0 . . . 0

...
∑N

i=1 φ̇(ti)
′φ(ti)

...

0 . . . 0

 .

Three notes for the previous computation:

- We use the result which can be easily shown that if each column of Bi is
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constant, then A · (B �C) = B � (A ·C), and, on the other hand, if each row

of Bi is constant then (B � A) · C = B � (A · C), but B may be resized to

match the dimension.

- In Equation (4.3), only Ai, Bi, Ci, Di need to be updated during iteration,

all the other terms are fixed, and the only operation is matrix addition and

element-wise multiplication which can be computed in O(p2d2) time in each

iteration. This time complexity doesn’t take into account computing Equation

(4.2). We don’t take it into account because matrix inversion and multipli-

cation have time complexity approximately O(p3d3) and cannot be improved,

and we only compute it once in each iteration, while computing R and S can

be improved and they need to be updated d times which is time-consuming if

d is large.

- This section only introduces computational issues for iPDA. For iPDA-lasso

and iPDA-cluster, we need to estimate Θ within each cluster and combine the

estimates. So we need to extract corresponding submatrices from Equation

(4.3) for each cluster. If we only have nc clusters and the biggest cluster

contains dc variables, then the time complexity for this iteration is O(ncp
2d2
c).

When d is large, we improve the complexity dramatically as long as we have

large number of clusters. An extreme example is, if we have a complete cluster,

that is, all the variables are in different clusters, then nc = p and dc = 1, we

reduce the complexity from O(p2d2) to O(p2d) - linear time in d.



60

4.2 ODE Parameter Estimation

The second step of iPDA, P-iPDA and L-iPDA is ODE parameter estimation, which

has been assumed that can be solved by linear regression. In this section we will

show details of transforming ODE parameter estimation to a regression problem

and other computational details.

4.2.1 Parameter Estimation of iPDA and P-iPDA

In parameter estimation step of iPDA our goal is to find Θ to minimize J in Equation

(4.1) given Γ. Since the ith term in the summation only contains Θi·, the ith row

of Θ, and Θi· only appears in the ith term, hence minimizing H is equivalent to

minimizing

∫ T

0

[ẋi(t)− Ai·x(t)− u(t)Bi·x(t)− u(t)Ci −Di]
2 dt

for each i separately. We can approximate the integral above again by Riemann

Sum which can be represented by a quadratic form:

Ji =

∫ T

0

[ẋi(t)− Ai·x(t)− u(t)Bi·x(t)− u(t)Ci −Di]
2 dt

≈ l ·
[
x̂(ν)A′i· + am · x̂(ν)B′i· + Ciu(ν) +Di1− ˆ̇xi(ν)

]′
·
[
x̂(ν)A′i· + am · x̂(ν)B′i· + Ciu(ν) +Di1− ˆ̇xi(ν)

]
= l ·

[
(x̂(ν), am · x̂(ν), u(ν),1) Θ′i· − ˆ̇xi(ν)

]′
·
[
(x̂(ν), am · x̂(ν), u(ν),1) Θ′i· − ˆ̇xi(ν)

]
,
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where ν = (t1, . . . , tN),

x̂(ν)N×p =


x̂1(t1) · · · x̂p(t1)

...
...

x̂1(tN) · · · x̂p(tN)

 , ˆ̇xi(ν)N×1 =


ˆ̇xi(t1)

...

ˆ̇xi(tN)

 .

and don’t be confused with am in previous section, here am is slightly different from

the previous am, here it’s a N by d matrix:

(am)N×d =


u(t1) · · · u(t1)

...
...

u(tN) · · · u(tN)

 .

This quadratic optimization problem is equivalent to a least square regression,

in which ˆ̇x(ν) serves as the responses and [x̂(ν), am · x̂(ν), u(ν),1] serves as the

design matrix.

For P-iPDA, it’s similar that we also minimize Ji to obtain the estimate Θ̂. The

difference lies in the fact that in iPDA every node xi(t) (precisely it’s the derivative

of xi) is regressed by all other nodes while in P-iPDA it is only regressed by the

nodes that are in the same module as xi.

4.2.2 Parameter Estimation of L-iPDA

In L-iPDA algorithm we try to minimize the model-based roughness penalty J plus

an L1 penalty, use numerical approximation for the integral we have

L =
d∑
i=1

λi

∫ T

0

[ẋi(t)− Ai·x(t)− u(t)Bi·x(t)− u(t)Ci −Di]
2 dt+ µ|Θ|,



62

where |Θ| means the summation of the absolute value of all the elements in Θ.

Similarly it’s equivalent to minimize each

Li =
[
(x̂(ν), am · x̂(ν), u(ν),1) Θ′i· − ˆ̇xi(ν)

]′ [
(x̂(ν), am · x̂(ν), u(ν),1) Θ′i· − ˆ̇xi(ν)

]
+
µ

l
|Θi·|.

This resembles doing lasso regression, as discussed in Chapter 3 we will use pathwise

coordinate optimization algorithm to solve it.

4.3 Speeding up the Computation

So far this chapter has addressed the details we need for converting algorithms into

codes. And our software package is indeed completely based on the topics we dis-

cussed in this chapter. However, there are still rooms for improvement. This section

points out two possible strategies that we can make our program run faster, one

tries to speed up the data profiling process by segmenting time interval, and the

other relies on parallel computing techniques.

Speeding up basis smoothing

At the data profiling step, which is the same across all three algorithms, we

select the Γ that minimize Equation (3.3). In most situations without requirement

for high order differential continuity people tend to use the cubic B-spline which is

shown in Figure 4.1. As you can see one basis only spans four subintervals, which

is a relatively small number compared to total number of subintervals if we place

hundreds of knots in the interval and can “take care” of boundary bases. Our

idea is to segment the interval into a few subintervals and minimize Equation (3.3)



63

separately.

Figure 4.1: Cubic B-spline bases at [0,1]. Knots are placed uniformly between 0 and
1 with length 0.1.

Assume the original time span [t1, tn] is divided into two parts with equal length.

So t1, . . . , tn/2 belong to the first subinterval and tn/2+1, . . . , tn belong to the second

subinterval. For simplicity we assume n/2 is an integer, it’s not difficult to deal

with the case when it’s not an integer. Let’s further assume that the knots of B-

spline are placed at observation points (this is indeed what Ramsay and Silverman,

2005 suggests). Putting aside the boundary situation (i.e., tn/2, tn/2+1 and their

connecting dots) for now, we can rewrite H in Equation (3.3) as

d∑
i=1

n/2∑
j=1

(yi(tj)− Γ′·iφ(tj))
2 + λ

d∑
i=1

∫ t1+tn
2

t1

(
Γ′·i
dφ(t)

dt
− Li(Γ

′φ(t),u(t),Θi)

)2

dt

(4.4)

+
d∑
i=1

n∑
j=n

2
+1

(yi(tj)− Γ′·iφ(tj))
2 + λ

d∑
i=1

∫ tn

t1+tn
2

(
Γ′·i
dφ(t)

dt
− Li(Γ

′φ(t),u(t),Θi)

)2

dt.

(4.5)

For simplicity we use Γ in Equation (4.4) and Equation (4.5) but they are not the

same Γ in Equation (3.3). In (4.4) Γ stands for the first n/2 rows of original Γ, and

in (4.5) it stands for the last n/2 rows of original Γ. By segmenting the interval,

we split the original problem of size p into two problems of size p/2. Remember
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that the time complexity of computing Equation (4.3) is O(p2) in terms of p. So

the segmentation can make significant improvement computationally if p is large.

Now the only problem left is how to handle boundary issue. When we segment

the intervals, we have to truncate the bases that span two connected subintervals.

For example, in Figure 4.1 suppose we segment the interval at 0.5, there are 3 bases

spanning both [0, 0.5] and [0.5, 1] so we cannot obtain exact estimate of coefficients

of those 3 bases. Since normally there are hundreds of bases in total so 3 or 6 (3

segmentations) inaccurate but not ridiculous estimates of basis coefficients will not

make a noticeable impact on the whole estimation. One reasonable approximation

can be achieved by truncating the bases and averaging estimates on shared bases.

Parallelizing the algorithms

Another way to expedite computation task is to leverage parallel computing

techniques. If we apply the segmentation method in data profiling step, we can

further speed up the process by parallelizing estimation on each subinterval. The

parameter estimation step is also parallelizable since this step can be decomposed

to d independent linear regressions. The main application of parallel computing is

in the cross-validation which consumes intensive computation burden and can be

easily parallelized.



65

Chapter 5

Application to a Real ECoG Study

In the Chapter 2 we built the Potts-based DDM model to characterize the functionally-

segregated brain system. This modularizable effective connectivity structure has

particular neuroscientific meaning for the ECoG data set because of its unique prop-

erty. In this chapter we apply our model and algorithm to analyze the ECoG time

series.

5.1 Data Acquisition

The ECoG data are collected from a right-handed adult female epilepsy patient, who

had subdural electrodes implanted for clinical purposes of seizure localization and

functional mapping prior to surgery for treatment of medically intractable seizures.

The data were recorded from a 6× 8 electrode array implanted over the left hemi-

sphere, including the posterior temporal lobe (auditory cortex), of a right-handed

adult female epilepsy patient (see Figure 5.11). The patient had subdural electrodes

implanted for clinical purposes of seizure localization and functional mapping prior

1The author thanks Dr. Deepti Ramadoss for assistance with this figure.
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to surgery for treatment of medically intractable seizures. Electrodes were 2.3 mm

diameter and spaced 9 mm center-to-center. Recordings were performed four days

after electrode implantation while the patient was awake and fully responsive. The

patient participated in several research studies and provided informed written con-

sent for all research testing in compliance with the Johns Hopkins Institutional

Review Board.

Figure 5.1: Two dimension schematic of left hemisphere with 8× 6 electrode array
superimposed. Electrode locations are estimated from intra-operative photographs
and post-implantation CT scans. Filled electrodes (nodes 14, 15, and 16) represent
sites where auditory responses were elicited. Electrodes 1-4, 9-10, and 18 corre-
sponding to circles with vertical lines inside are epileptic areas.

Event-related ECoG recordings were acquired simultaneously from all electrodes

using an established 300-trial passive auditory oddball paradigm (Sinai et al., 2009;

Cervenka et al., 2013). Two 50 ms duration single-frequency tones were presented: a

frequently repeated 1000 Hz tone (N = 246 trials) and an infrequently and pseudo-

randomly presented (no consecutive repetitions) 1200 Hz tone (N = 54 trials).

Tone stimuli were presented binaurally at a comfortable listening level through ear-

phones at inter-stimulus intervals of 1450 ms. To reduce attention effects, the patient
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watched an animated movie with no sound. The continuous ECoG signal was am-

plified (5× 1000) and recorded digitally using a referential montage, 1000 Hz A/D

sampling and a bandwidth of 0.1-300 Hz, as previously described (Cervenka et al.,

2013). Two electrodes (channels 47 and 48) in the top corner of the array, outside

perisylvian cortex, were assigned as the reference and ground electrodes. Stimulus

onset markers were recorded simultaneously to separate EEG channels.

ECoG recordings from the 46 active electrode channels were reviewed visually

to identify any with excessive artifact for exclusion from analysis. One channel

was identified as noisy and excluded (channel 32). The remaining d = 45 channels

of ECoG time series data were analyzed. For each channel, the ECoG signal was

segmented into 300 trials of 250 ms duration: 100 ms pre-stimulus (0 − 100 ms),

50 ms in-stimulus (100 − 150 ms), and 100 ms post-stimulus (150 − 250 ms). We

use relatively short segments because recent studies have postulated non-stationary

dynamics in brain activity, i.e. connectivity relationships vary rapidly over time.

Since 1000 Hz is far more frequently presented than 1200 Hz, we focus on the analysis

of 246 trials under 1000 Hz. For each 250-ms trial, let u(t) = 1 for 100 ≤ t ≤ 150 and

0 otherwise. We omit the subscript for matrix B, as only one stimulus is considered

in the model.

The presence of cortical auditory evoked and spectral power responses was used

to identify electrode sites responsive to auditory stimulation. Evoked responses

were derived by trial averaging of the phase-locked signal components in the time

domain, where the phase lock refers to neuron firing at or near a particular phase

angle of the sinusoidal stimulus sound wave; event- related changes in spectral power

were determined by using time-frequency analysis. We focused on the evoked N1

response that occurs around 100 ms post-stimulus and is a large, obligatory cortical

response to sound stimulation that is prominent in ECoG recordings from auditory
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cortex (Edwards et al., 2005; Sinai et al., 2009). For the spectral power analysis,

we used a time-frequency matching pursuit algorithm (Mallat and Zhang, 1993;

Franaszczuk and Bergey, 1998; Durka et al., 2001; Boatman-Reich et al., 2010).

A total of 3 electrode sites were identified as auditory responsive based on the

presence of measurable auditory evoked N1 responses and in- creased spectral power

(> 30 Hz). The three electrode sites were located in the posterior superior temporal

gyrus, consistent with the location of auditory cortex (Figure 5.1). Based on clinical

intracranial EEG recordings, seven electrode channels located in the inferior-anterior

portion of the temporal lobe were associated with epileptiform activity and identified

as the primary seizure focus (Figure 5.1).

5.2 Data Analysis

5.2.1 Problem Formulation and Parameter Selection

We use the same parameter set to analyze 246 trials of time series. For each trial,

the parameters are summarized in Table 5.1. A snapshot of three channels in one

trial is shown in Figure 5.2.

Table 5.1: Parameter setting for real data analysis

# of observations n 251

# of neuronal state functions d 45

# of knots p− 2 101

# of points used for Riemann Sum 251

Initial guess Θ0 0

Stimulus function u(t) 1100≤t≤150

Standardize Yes
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Figure 5.2: ECoG time series collected at Channel 1, 15, 33 in a single trial.

Given one trial of data, we first standardized each time series to unit variance,

applied P-iPDA to the standardized data and evaluated SSE(λ, µ) and Fid(λ, µ) for

all combinations of λ = (0.1, 0.25, 0.5, 1, 2.5, 5, 10, 25, 50, 100, 250, 500, 1000) and λ ·

µ = (0.0001, 0.001, 0.01, 0.1, 1, 10, 50, 100), which cover a wide range of values. Based

on the outputted SSE(λ, µ) and Fid(λ, µ) for each combination, we screened out

parameters with either too large SSE(λ, µ) or Fid(λ, µ) and those resulting in either

too many, say d, clusters or only 1 cluster. Then we conducted RLOOCV on the

rest pairs of parameters to select final (λ, λ ·µ). We applied this selection procedure

to five randomly chosen trials, collected at five different periods, respectively, of the

ECoG recording process, ranging from the beginning to the end. We found that

the same parameters λ = 0.25 and λ · µ = 0.01 were selected. As such, we used

the same pair of penalty parameters for analyzing data across different trials. We

want to stress that though brain activities may vary across trials, this does not

necessarily mean that the corresponding penalty parameters selected would vary

significantly. In fact, the selection of penalty parameters does not directly depend
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on the temporal values of the state functions, but rather the SNR of the data and

the most significant causal interactions among different components, which may be

stable across trials. In this application, there are two potential reasons for identical

penalty parameters being selected by RLOOCV. First, the parameter λ - used to

control the roughness of the fitted curves - depends most on the SNR of the data.

Since the SNR of ECoG data is consistently high, smaller values of λ are consistently

chosen, inducing a weak regularization effect. Second, the Potts penalty parameter

is used to balance the ODE model size and fitting errors, and its value depends on the

significance of the directional effects between components and/or the strength of the

association between the instantaneous changes of components state functions and

the functions themselves. Even if the state functional curves vary across trials, the

most significant connections between components can still be stable. An analogy

is a Markov chain with a constant transition probability but temporally varying

states. Since here we study connectivity within a small brain area involved in a

basic brain auditory function, it is very likely that the most significant interactions

among brain components are stable (Flinker et al., 2010). Consequently, very similar

(or identical) values of penalty parameters are selected.

5.2.2 Application of P-iPDA

We applied P-iPDA to each trial independently with (λ, λ·µ) = (0.25, 0.01), allowing

the cluster structure and model parameters to vary across trials. The colored matrix

in Figure 5.3 summarizes the percentage of pairs of channels being clustered together

across 246 clustering results, each obtained with one trial of data. The color scale

is arbitrary, with dark red indicating high percentage and dark blue indicating low

percentage. Based on this matrix, we constructed networks of closely-connected
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regions, and presented them in Figure 5.4 with different thresholds on clustering

frequencies. In the figure each node represents one recording channel and each edge

between two channels respectively indicates that they were clustered into the same

module by P-iPDA more than 90% and between 70% and 90% of trials. We found

that channels 33-46 and 17 are most closely connected, with clustering percentage

higher than 90% (corresponding to the darkest red areas in Figure 5.3). This is

possibly because these channels all reside in the same brain local area, inferior

frontal lobe. Then the connections among them are “local” and thus strongest.

As shown in right panel of Figure 5.4, the auditory responsive regions, especially

channels 15 and 16, which are located at adjacent sites along the posterior superior

temporal gyrus and inferior parietal lobe, proximal to auditory cortex, are closely

connected to the inferior frontal lobe. This result is in keeping with the findings that

the inferior frontal lobe is involved in auditory processing, specifically phonological

and syntactic processing (Burton, 2001), and music perception (Steven et al., 2006).

In addition, the small clustering frequencies between channels 1-6, 9-10 and 18 in

the epileptic area and channels 14-16 in auditory cortex (the dark blue areas in

Figure 5.3) indicate that there is no or very weak interaction between them. This

is possibly because the brain sub-network involved in the auditory function was

unaffected by the activity in brain epileptic areas during the data collection.

Figure 5.5(a) and 5.5(b) show the average of Â and B̂ estimated by P-iPDA

across all trials. Row i (1 ≤ i ≤ d) of B̂ and Â respectively represents interac-

tive effects exerted by other channels on channel i with and without tone stimuli,

and column i of matrices B̂ and Â respectively represents interactive effects ex-

erted by channel i on other channels with and without tone stimuli. The columns

corresponding to channels 14-16, the auditory-responsive regions, had values close

to zero in the averaged Â, indicating that no notable effects of the three channels
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Figure 5.3: The cluster matrix for all channel pairs by 1000 Hz tone stimulus. Each
element in the symmetric matrix is the percentage of two regions clustered together
by P-iPDA across 246 1000 Hz trials.

Figure 5.4: Networks constructed based on the clustering matrix in Figure 5.3.
Each node represents one recording channel, the red ones are epileptic areas, and
the black are auditory responsive areas. Each edge between two channels in left and
right panel indicates that they are clustered into the same module by P-iPDA in
more than 90%, and between 70% and 90% of trials, respectively.
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(a) Average Â estimated by P-iPDA (b) Average B̂ estimated by P-iPDA

Figure 5.5: The averaged estimates of A and B across 246 trials by P-iPDA in the
real data analysis.

were observed over other channels when tone stimulus was not evoked. The effect of

channel 17 over other channels stood out in Â, revealing that channel 17, located in

the inferior frontal lobe, strongly affected all three auditory-responsive electrodes in

the first module. Moreover, estimates of A from each of the 246 trials show that the

effect of channel 17 was stable over time. This suggests that although channel 17

showed no identifiable auditory response itself, it may serve to monitor activity in

those auditory responsive sites located more posteriorly. The top-down monitoring

role of the frontal lobe has previously been reported by Stuss and Levine (2002).
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Chapter 6

Simulation Studies

In real data analysis we only applied P-iPDA to the ECoG data because both iPDA

and L-iPDA were too slow and inaccurate. In this chapter we will present all three

algorithms and compare their strength and weakness in different scenarios. The first

example shows how each algorithm works in detail and answers many computation

detail questions. Each of the other examples focuses on one special module structure

or one particular issue.

6.1 The First Example

The first example is a toy example which consists of only four neuronal state func-

tions. Since the dimension is computationally manageable for each algorithm, so

each algorithm is able to produce good estimates with low MSE. We demonstrate

such a toy example at the beginning for two reasons: (1) It’s more readable and

understandable for readers to show in detail how each algorithm works and how we

select parameters in a low dimensional case, and future examples will only provide

results without detail; (2) For some issues a low dimensional example is already
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fully capable to show the disadvantages and advantages of each algorithm. We also

did corresponding experiments for high dimensional cases but obtain similar con-

clusions, so we present the discussions here in a low dimensional case, not because

they only work for low dimensional case, but because it’s easier to present. So

many discussions in this example are actually a synthesis of many other simulation

examples.

This example is set up as follows. The observations y(ti)’s are measured from

0 to 250. The stimulus function u(t) is set to be the same as in real data analysis,

i.e.,

u(t) =


0, if 0 ≤ t < 100

1, if 100 ≤ t ≤ 150

0, if 150 < t ≤ 250

The actual Θ and initial point are

A =



−0.478 −0.601 0 0

0.428 0.478 0 0

0 0 −0.119 −0.021

0 0 0.986 0.119


, B = 2 · A,

C =



0.06

0

−0.06

0.03


, D =



0

0.08

0

0.03


, x0 =



−0.4

0.7

−0.4

0.2


.

As we can see from the definition of A and B, there are two clusters each of which

has two neuronal state functions. You can also tell the modules from the actual
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observations that are shown in Figure 6.1, y1(t) and y2(t) have a relatively low

frequency while y3(t) and y4(t) have a relatively high frequency. The signal-to-

noise ratio is chosen as 10. More specifically, the error εi(t) is generated by N(0, σ2
εi

)

where σ2
εi

is Var(xi)/10. We set the signal-to-noise ratio to 10 because the estimated

signal-to-noise ratio of real data, Var(x̂i(t))/Var(ε̂i(t)), is above 10 across all trials

and channels.

Figure 6.1: Observations y(t) of Example 1. Data are observed at each millisecond
from 0 to 250. In this toy example x1(t) and x2(t) are in one module and the other
two are in the other module.

Because of the low dimensional we are able to perform cross-validation across a

large pool of candidates without the prescreening process. Figure 6.2 (a) and (b)

show the cross-validation SPE (defined in Equation 3.11) for P-iPDA and L-iPDA

respectively. Dark color represents small value and light color represents large value.

Since λ controls the roughness of curves, it should only be influenced by the signal-

to-noise ratio but not the extra penalty like Potts or lasso, so we can use the λ

selected by cross-validation of P-iPDA and do not need to run cross-validation for

iPDA. The cross-validation results also verify that both P-iPDA and L-iPDA select

the same λ. For P-iPDA, the optimal µ could be any value between 10−4 and 0.1,
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since these µ’s produce the same module structure. For L-iPDA, the optimal µ is

selected to be the smallest µ.

(a) Cross-validation SPE by P-iPDA (b) Cross-validation SPE by L-iPDA

Figure 6.2: Cross-validation results for P-iPDA and L-iPDA. In this example λ
ranges from 10−2 to 103, and µ ranges from 10−4 to 102. Each mosaic represents
the SPE value by using the corresponding λ and µ. Darker color means small SPE
and light color means large SPE. We find that when λ = 100 and µ ≤ 0.1 SPE
of P-iPDA achieves minimum, and when λ = 100 and µ = 10−4 SPE of L-iPDA
achieves minimum.

Comparison of sparsity, bias and variance

Now we set (λ, µ) = (100, 0.1), (100, 10−4) and λ = 100 for P-iPDA, L-iPDA,

and iPDA respectively, and generate y(t) with signal-to-noise ratio 10 100 times. In

this example, P-iPDA is the only algorithm that can produce sparse estimate, and

it reaches the module structure M = (1, 1, 2, 2) only after two iterations. So if we

only cares about the module structure not the detailed estimates of Θ P-iPDA is

extremely fast. By its nature iPDA fails to sparsify the network. The L-iPDA also

fails to sparsify the network in this example because of the tradeoff between sparsity
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and accuracy. We face this similar dilemma in other examples for L-iPDA. In this

example if λ = 100 and µ = 0.1 L-iPDA can obtain the same module structure as

P-iPDA. By shrinking off-block diagonal elements to zero, L-iPDA also penalizes

block diagonal elements hence introduces bias, which makes estimates inaccurate.

That’s why cross-validation favors small µ’s. So if our ultimate goal is clustering

instead of prediction, µ cannot be selected from cross-validation for L-iPDA. One

way is to select the optimal λ (from P-iPDA), and tune the µ to achieve a certain

level of sparsity (for example, on par with P-iPDA).

The mean and variance for B (results for A, C and D are similar) are shown

in Figure 6.3 and Figure 6.4. From Figure 6.3 the bias of P-iPDA is slightly less

than L-iPDA and iPDA. But by imposing a module structure P-PDA controls its

variance better than L-iPDA and iPDA as shown in Figure 6.4.

(a) P-iPDA bias (b) L-iPDA bias (c) iPDA bias

Figure 6.3: Absolute value of bias of B using three algorithms.

Smoothness parameters: number of basis p and λ

It’s straightforward that the number of spline bases controls the variance of

fitted curve. The parameter λ, as well as number of spline bases, also controls the

smoothness of fitted data. Figure 6.5 demonstrates how λ could affect the fitting.

In the figure, the black dashed line is the true x1(t). The red line is the fitted x1(t)

under λ = 10−3. As we can see unnecessary turbulence is incurred. The blue line is
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(a) P-iPDA variance (b) L-iPDA variance (c) iPDA variance

Figure 6.4: Variance of B using three algorithms.

the fitted x1(t) under λ = 103. Here λ is too large to capture the dynamics during

stimulus period. Another two extreme cases would be when λ goes to infinity, no

nonzero derivative can be tolerated so the fitted value forms a horizontal line, and

when λ goes to zero, SSE dominates the minimizing function so the fitted data will

be an interpolation of observed points.

Figure 6.5: Compare fitted x1(t) by different λ’s. Large λ overly smoothes the data,
for example, in this example the dynamics during stimulus period are “punished”
off by large λ. Small λ overly fitted fitted the data.

The inevitable problem: the trap of local minimum

The P-iPDA algorithm is a greedy algorithm, it makes the local optimal choice

at every stage. Although we can guarantee the algorithm will converge after enough
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iterations, we cannot guarantee the solution is the global optimal solution. It is

similar as doing stepwise selection in linear regression setting, in which we can-

not escape from the local minimum trap. We have proposed a few methods to

deal with the issue in Section 3.5. Here we use this 4 dimension example to show

how this problem arises. If we set µ = 0, which put no penalty for clustering

multiple nodes. So theoretically it’s equivalent as iPDA since a module struc-

ture that merges two smaller clusters to one cluster will always have a less H

value. But let’s see how P-iPDA updates the module structure M . At the be-

ginning, every system component is in its whole module with just itself in it, so

M0 = (1, 2, 3, 4). At the first iteration, it will cluster either node (1, 2) or (3, 4),

depending on whichever gives a better H. Suppose M1 = (1, 1, 2, 3) has been se-

lected. At the second iteration clustering node 2 and node 3 together will im-

prove the current dynamics significantly so M2 = (1, 1, 2, 2). This is a local opti-

mum because all the other neighbors cannot perform better than M2. Specifically,

N (M2) = (3, 1, 2, 2), (2, 1, 2, 2), (1, 2, 2, 2), (1, 1, 3, 2), (1, 1, 1, 2), (1, 1, 2, 1). The only

module structure under µ = 0 that is better than M2 = (1, 1, 2, 2) is M opt =

(1, 1, 1, 1). However M opt is not in the neighborhood of M2 hence is not reachable

by the model updating scheme. Hence P-iPDA will stop updating module labels

after step 2. The converged module label M2 is a local minimum but not the global

optimal solution.

6.2 Example 2: Two Clusters with Medium Size

In the second example we extend our algorithm to high dimension. Example 2 uses

data generated from a dynamic system of 32 channels. To mimic the real data, the

stimulus function u(t) is identical to the one in the real data and Example 1, and



81

there are two functionally-segregated sub-networks, each containing 16 channels.

For simplicity, we use identical A and B. The parameters are chosen such that

x(t) have periodic temporal variations, and do not monotone increase or decrease

over time, as shown in Figure 6.6. Also, channels in the two modules have different

frequencies of temporal variation, such that x(t) in two clusters are not linearly

dependent. All the channels in each module are pair-wisely connected, that is, none

of the elements of A and B within each module is zero. The values of A/B are

shown in Figure 6.6(c). The signal-to-noise ratio is also set to be 10. The parameter

setting is summarized in Table 6.1.

Table 6.1: Parameter setting for simulation example 2

# of observations n 251

# of neuronal state functions d 32

# of knots p− 2 101

# of points used for Riemann Sum 251

Network structure Two clusters with equal size

Initial guess Θ0 0

Stimulus function u(t) 1100≤t≤150

Standardize Yes

We will use this example to show how we prescreen λ and µ from a large pool of

candidates. The prescreen process was introduced in Section 3.4.2, and the result

table was presented in Appendix Table A.4. The pool of (λ, µ) is summarized in the

first two columns, where λ ranges from 0.1 to 500 and µ ranges from 0.001 to 100.

We compare the SSE and Fid (Equation 3.2) for each combination of λ and µ. The

criterion is as follows. If one combination of λ and µ can improve both SSE and

Fid, or can improve either the SSE or Fid tremendously without sacrificing the other
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(a) First module (b) Second module (c) The matrix A/B

Figure 6.6: Panel (a) and (b) show temporal changes of the simulated state x(t) at
three channels in the first and second module separately for Example 2. Panel (c)
shows the value of A/B.

too much, then we adopt the combination. If two µ’s produce comparable SSE and

Fid for the same λ, then we choose the larger µ because we prefer a simpler model.

Then after the prescreen process we apply RLOOCV to select the best combination

based on SPE. From Table A.4, we first detect that large λ is more appropriate

because large λ sacrifices SSE a little but reduce Fid considerably. For example,

if you look at (0.1, 0.001) versus (50, 0.25), the latter only increase SSE less than

twice, but reduce Fid approximately 100 times. In this case we don’t even need to

run cross-validation, because use the same argument, λ = 50 betters all the smaller

λ’s. λ = 100 dominates λ = 50 since it improves both SSE and Fid, λ = 250

outperforms λ = 100 again because it increase SSE only 20% but reduce Fid by

1/3. For λ = 250, µ = 0.0625, 0.125 and 0.25 don’t make a difference so we pick the

largest one. Hence we select the combination (250, 0.25).

After we select the optimal combination of parameters, we generate 100 trials

and analyze the cluster accuracy and stability. Figure 6.7(a) and (b) summarize the

percentage of each pair of channels clustered into the same module by P-iPDA and

L-iPDA respectively. Figure 6.8(b) and (c) respectively present the corresponding

networks using different thresholds on frequencies: higher than 90% and between
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70% and 90%. The true positive rate of P-iPDA (the frequency of correctly de-

tecting nonzero values of A and B) is 81.5%, and false positive rate (the frequency

of estimating zero values of A and B incorrectly nonzero) is 0. Overall, P-iPDA

successfully detected two clusters, though it occasionally missed clustering one or

two channels, which is possibly due to the multicollinearity among x(t) in the same

cluster. We also plot the clustering result by L-iPDA, as we can imagine for this

type of network, L-iPDA completely fails to detect network structures.

(a) Clustering matrix by P-iPDA (b) Clustering matrix by L-iPDA

Figure 6.7: The (i, j)th (same as the (j, i)th) element of the 32 × 32 symmetric
matrix in Panel (a) represents the percentage of channels i and j in Example 2
clustered into the same module by P-iPDA and L-iPDA among 100 simulations.

We evaluated and compared the biases and variances of Â and B̂ estimated by

P-iPDA and iPDA, which are summarized in Table 6.2. For easy comparison, we

used the same λ in the two methods. In Example 2, P-iPDA produced estimates

with slightly smaller biases and much smaller variances than those by iPDA. The

reasons are two folds. First, if x(t) is known and P-iPDA correctly identifies all

interactive channels, the regression models outputted from P-iPDA, where dxi(t)/dt

of each channel i is the response, and x(t) in the same cluster as i are the predictors,

are equivalent to those in iPDA. In addition, since estimated x̂(t) by P-iPDA and

iPDA based on identical λ take similar values, the estimates of the above mentioned
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Figure 6.8: Networks constructed based on the clustering matrix in Figure 6.7(a)
with different thresholds: Each node represents one recording channel and each
edge respectively indicates that the effect, exerted by one region on another, is
estimated non-zero by P-iPDA in more than 90% and between 70% and 90% of the
100 simulations.

regression coefficients, i.e., A and B, by the two methods have similar means and

biases. Second, with the sparsity constraint, P-iPDA uses much fewer predictors in

the regression models than iPDA, and thus the ensuing estimates have much smaller

variances. Other than achieving better estimation efficiency than iPDA, P-iPDA,

by partitioning a large network into several independent smaller ones, also takes

much less computational time.

Table 6.2: The bias and standard deviation of estimated A and B by P-iPDA and
iPDA in Example 2 and Example 3

Average Bias Average Std
Example Parameter P-iPDA iPDA P-iPDA iPDA

2 A 0.08 0.10 0.26 0.36
B 0.14 0.15 1.18 1.02

3 A 2.00 2.03 0.20 0.61
B 2.03 2.33 0.44 4.71
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6.3 Example 3: Multiple Small Clusters

In this simulation study we set up a network with 20 nodes and 4 clusters, of size

6, 6, 4, 4 respectively. The settings are the same as Example 2 but the model

parameter Θ. The parameter A/B and a few observed curves are shown in Figure

6.9. All the other parameters used the same values as in Table 6.1.

(a) First module (b) Second module (c) The matrix A/B

Figure 6.9: Panel (a) and (b) show temporal changes of the simulated state x(t) at
three channels in the first and second module separately for Example 3. Panel (c)
shows the value of A/B.

The parameters λ and µ were selected by a prescreen process and cross-validation.

By the prescreen process only 12 candidates are selected for a further cross-validation

process. Those combinations of λ and µ and the corresponding SPE are summarized

in Table A.2. Without the prescreen process it will take us forever to run cross-

validation across the original pool of candidates. After selecting the parameter we

ran 100 trials like in Example 2. Figure 6.10(a) and (b) summarize the frequencies of

each pair of components being clustered together by P-iPDA and L-iPDA across 100

simulations respectively. Figure 6.11 presents the associated networks constructed

by using different thresholds on the clustering frequencies. Overall, the true positive

rate of the P-iPDA in Example 2 is 97.5% and the false positive rate is 10.9%.

Comparing estimated Â and B̂ outputted from P-iPDA and iPDA, the former

again achieved slightly smaller biases and much smaller variances than the latter,
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(a) Clustering matrix by P-iPDA (b) Clustering matrix by L-iPDA

Figure 6.10: The (i, j)th (same as the (j, i)th) element of the 20 × 20 symmetric
matrix in Panel (a) represents the percentage of channels i and j in Example 3
clustered into the same module by P-iPDA and L-iPDA among 100 simulations.

as shown in Table 6.2. We note that since Example 3 has a higher percentage of

zero values in matrices A and B than that in Example 1, the reduction of estimation

variability by P-iPDA, in comparison to iPDA, is more pronounced.

Figure 6.11: Networks constructed based on the clustering matrix in Figure 6.10(a)
with different thresholds: Each node represents one recording channel and each
edge respectively indicates that the effect, exerted by one region on another, is
estimated non-zero by P-iPDA in more than 90% and between 70% and 90% of the
100 simulations.
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6.4 Example 4: Time Series with Different Lengths

We have also investigated how the clustering results by P-iPDA vary with different

lengths of time series. Using the same A, B, C, D in Example 3, two additional

sets of x(t) were generated, one with T = 100 and the other with T = 500. We

let u(t) = 1 for 25 ≤ t ≤ 75 in the former, and u(t) = 1 for 100 ≤ t ≤ 150 and

400 ≤ t ≤ 450 in the latter. For each set of x(t), we conducted 100 simulations

in the same manner as in Example 2, summarized the clustering frequencies by P-

iPDA and L-iPDA for each of two sets of x(t) respectively in Figures 6.12. When the

length of time series is reduced by half, the true positive rate of P-iPDA is decreased

to 91.8% and false positive rate is increased to 20.8%. On the other hand, when the

length is doubled, the true positive rate is increased to 99.7% and the false positive

rate is significantly reduced to 2.4%. Overall, the length of the data affects the

false positive rate more than the true positive rate. This is possibly due to the fact

that the model fitting errors are more affected by missing truly interactive channels,

but less affected by including non-interactive channels, and thus P-iPDA tends to

cluster more channels together when the data information is limited.

In summary, P-iPDA achieved a higher true positive rate in Examples 3 and 4

than that in Example 2. In general, P-iPDA is most effective for cluster structures

consisting of small clusters: the smaller the clusters, the fewer iterations that P-

iPDA takes to identify the clusters, and less computation needed for estimating the

spline-basis coefficients and model parameters.
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(a) P-iPDA: 100 ms (b) P-iPDA: 250 ms (c) P-iPDA: 500 ms

(d) L-iPDA: 100 ms (e) L-iPDA: 250 ms (f) L-iPDA: 500 ms

Figure 6.12: Clustering frequency by P-iPDA and L-iPDA among 100 simulations.
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Chapter 7

Conclusion and Discussions

We propose a differential-equation-based dynamic model for ECoG data to study

directional effects between brain regions. A new Potts model for the state equations

in the DDM is introduced to automatically identify functionally segregated brain

networks. The high spatial and temporal resolution of the ECoG data allows the

dynamic model to have a simple structure that can accommodate a large number

of brain components, unlike related DCMs in other modalities. We represent the

neuronal states of brain components by B-spline bases and estimate the model by

minimizing a log-likelihood-based criterion, for which we have developed an iterative

optimizing algorithm. The Potts model is converted to the new Potts penalty in the

penalized likelihood approach. An L1 penalty is also considered for comparison.

Penalty parameter selection is a data-dependent process. As the ECoG record-

ings analyzed in this dissertation cover only a small brain area under one experimen-

tal paradigm with a simple auditory stimulus, brain auditory responses measured

by ECoG tend to be stable across trials (Flinker et al., 2010), and consequently very

similar penalty parameters were selected. However, in more common modalities such

as fMRI and EEG, significant heterogeneitydue to the longer length or larger brain
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area coveredin the underlying effective connectivity across trials is widely reported

(e.g. Duann et al., 2002; Truccolo et al., 2002; Turetsky et al., 1988). In such cases,

penalty parameter selection should be conducted separately for each trial, which

will likely lead to different values being selected for different trials. Since parameter

screening and cross validation are performed independently for each combination of

parameter and each data point, this process can be parallelized.

While the proposed method is motivated from and applied to the ECoG data,

the statistical methodology, particularly the PDDM, can be applied to a broad range

of applications using multivariate time series. First, the Potts penalty, in fact, does

not rely on the linearity of the ODE model assumed in this analysis, and can be

used in any dynamic models. Second, the Potts penalty is also applicable to settings

where the observation time n is smaller than (J+1)×d2, the number of parameters

characterizing pairwise interactions between components, analogous to the “small

n large p” paradigm. Indeed, when the number of parameters in each module is

believed to be much smaller than n , one can start with the most economic PDDM

in which each component forms an independent module, and thus requires the least

number of parameters. Through similar optimizing procedures as that in Section 3.2,

at each step one node is selected to be clustered with one existing module according

to the ensuing criterion. Then the size of modules will increase and the ensuing

number of modules will decrease until the criterion cannot be optimized anymore.

Such a procedure is comparable to a stepwise linear regression that adds one variable

at a time, and can be used in the “small n large p” paradigm as long as the number

of selected variables is much smaller than n. Third, the Potts penalty can be used

for time series that are observed in segments. Even when the parameters are allowed

to differ between segments, the penalty can still be used to identify modules as long

as they are assumed to remain the same over the time.
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We fit our PDDM to the ECoG time series observed over a very short (less than

1s) period of time, different from the common practice of fitting DCMs to long time

series (often in hundreds of seconds) in fMRI. Thanks to its high temporal resolu-

tion, such ECoG time series, with a large number of total observations still, offers

a unique opportunity for studying effective connectivity, for the following reasons.

First, a brain system may change dramatically over a short period of time, inducing

non-ignorable temporal changes in parameter values, or even modules. Second, even

if there is no dramatic change in the brain system over a long period of time, the

underlying brain activity is likely to deviate significantly from the assumed linear

system. As such, model assumptions based on first or second order Taylor approx-

imation are relevant in the context of dynamic systems evolving over a short time.

Third, analyzing short time series allows us to avoid making strong assumptions

on the parameters of the PDDM, such as a negative definite parameter matrixcom-

monly assumed in fMRI-based connectivity studiesin order to ensure a stable system

over an extended period. Nevertheless, it is still feasible to investigate brain effective

connectivity using data measured over a long time. One possible approach is to first

divide the data into several much shorter periods, within each of which a separate

linear model is assumed. Then, identify functionally independent modules using

the PDDM. Finally, within each identified module, apply nonparametric regression

methods to approximate the nonlinear and unknown relationship between instanta-

neous changes of neuronal states with themselves and the experimental input.

The PDDM specifies two separate parameters for the connection in each of two

directions between any two components within the same cluster, and the associated

estimation algorithm P-iPDA clusters two components together if the connection in

any one direction is strong. It is possible that the connection between some com-

ponents within the same cluster is void in one direction, but strong in the other di-
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rection. Our current method, however, does not evaluate the statistical significance

of the directional effects and thus cannot distinguish which underlying directional

effect within a cluster is void or nonzero. One potential approach to address this

issue is to conduct hypothesis testing on the estimates of the directional effects from

P-iPDA. This procedure must take into account of the uncertainty in identifying the

clusters by P-iPDA, which is non-trivial in practice. Another potential approach

is to impose both Potts penalty and L1 penalty (Tibshirani, 1996) on the parame-

ters within clusters in the log-likelihood criterion. Though achieving simultaneous

clustering and sparsity within clusters, this approach is computationally demanding

with three penalty parameters to be selected, and thus may require more iterations

to converge. These will be the focus of our future directions in high-dimensional

ODE model estimation.

We also discussed how to improve P-iPDA in Section 3.5 and 4.3. Apart from

that, there are several other directions for improving the PDDM and the P-iPDA

algorithm. First, the spatial information of brain regions can be incorporated into

the Potts model, so that spatially-close regions are more favored to be clustered

into one module. Second, our current practice of using identical penalty parameters

for all the regions may not be suitable for brain networks comprising modules with

distinct interactive patterns. One potential solution is to use adjustable and region-

dependent penalty parameters as mentioned in Section 3.5. Another possibility is

to modify P-iPDA such that the already-identified clusters can be removed from the

optimizing function, and thus do not affect the estimation of other clusters. Third,

the PDDM estimation is formulated as an optimization problem in the dissertation;

statistical inference such as confidence interval construction and hypothesis testing

on the model parameters is not straightforward. As elucidated before, the Potts

model defines a prior distribution for the DDM parameters, and thus inference of
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the PDDM can be naturally carried out within a Bayesian framework. Finally, the

PDDM can be modified to allow for very few channels that have interactive activity

with several clusters and act as the“hub” of the brain network.
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Appendix A

Tables of Parameter Prescreen

Table A.1: Real data: cross-validation

λ µ SPE

0.1 0.01 31.794
0.25 0.01 24.225
0.5 0.1 42.354
1 0.1 39.288
2.5 0.1 41.158
5 0.1 47.941
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Table A.2: Example 3: cross-validation

λ µ SPE

50 0.001 116.1
50 0.01 115.85
50 0.1 115.75
50 1 116.21
100 0.001 122.6
100 0.01 122.54
100 0.1 122.24
100 1 122.32
250 0.001 149.11
250 0.01 149.3
250 0.1 148.67
250 1 151.5
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Table A.3: Real Data: parameter prescreen process

λ µ SSE Fid Potts λ µ SSE Fid Potts

0.1 0.001 3.6383 9.9764 396 10 0.001 270.85 92.169 361.6
0.1 0.01 22.154 104.88 613.6 10 0.01 270.85 92.169 361.6
0.1 0.1 22.072 323.92 1.6 10 0.1 190.12 34.108 820.4
0.1 1 22.071 325.99 0 10 1 296.81 18.721 211.2
0.1 10 22.071 325.99 0 10 10 564.55 79.803 0
0.25 0.001 22.397 271.1 396 25 0.001 487.98 63.07 361.6
0.25 0.01 24.046 141.45 782.4 25 0.01 487.98 63.07 361.6
0.25 0.1 29.871 236.05 71.2 25 0.1 396.04 39.318 628.8
0.25 1 28.232 289.65 0 25 1 408.13 5.792 262.4
0.25 10 28.232 289.65 0 25 10 1095.5 40.102 5.6
0.25 50 28.232 289.65 0 25 50 1123.4 44.528 0
0.5 0.001 28.387 238.99 396 50 0.001 952.29 35.266 328.8
0.5 0.01 29.261 166.53 814.4 50 0.01 952.29 35.266 328.8
0.5 0.1 38.405 97.818 315.6 50 0.1 728.87 21.009 582.4
0.5 1 41.846 252.26 0 50 1 616.01 3.3617 234
0.5 10 41.846 252.26 0 50 10 1553.8 18.414 18.4
0.5 50 41.846 252.26 0 50 50 1746.9 26.854 0
1 0.01 41.535 206 396 100 0.01 1327.7 17.18 452.8
1 0.1 51.422 53.349 482.4 100 0.1 805.37 7.1569 668.8
1 1 72.628 204.3 3.2 100 1 858.79 1.8512 225.6
1 10 71.514 211.2 0 100 10 1967.8 7.7657 28.4
1 50 71.514 211.2 0 100 50 2588.2 14.907 0
2.5 0.0001 69.855 170.16 396 250 0.0001 1993.2 9.2735 463.2
2.5 0.001 69.855 170.16 396 250 0.001 1993.2 9.2735 463.2
2.5 0.01 69.855 170.16 396 250 0.01 1988.1 9.2771 439.2
2.5 0.1 78.194 75.698 549.2 250 0.1 770.76 0.31011 736.4
2.5 1 145.99 103.72 59.6 250 1 1244.3 0.76338 214.4
2.5 10 161.1 156.46 0 250 10 2940.9 2.961 25.6
2.5 50 161.1 156.46 0 250 50 4033.1 5.5781 0
2.5 100 161.1 156.46 0 250 100 4033.1 5.5781 0
5 0.0001 146.48 124.86 396 500 0.0001 3008.8 3.339 516.8
5 0.001 146.48 124.86 396 500 0.001 2353.3 2.4517 731.6
5 0.01 146.48 124.86 396 500 0.01 2351.1 2.4526 715.6
5 0.1 122.34 49.656 748.4 500 0.1 1915 0.12418 716.8
5 1 215.16 44.053 140.4 500 1 1772 0.38699 182.4
5 10 306.88 115.92 0 500 10 3891.9 1.3199 19.6
5 50 306.88 115.92 0 500 50 5193.6 2.1959 0
5 100 306.88 115.92 0 500 100 5193.6 2.1959 0
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Table A.4: Example 2: Parameter screen process.

λ µ SSE Fid Potts λ µ SSE Fid Potts

0.1 2.5E-05 430.41 166.24 219.2 5 0.00125 584.68 15.622 74.8
0.1 5.0E-05 430.41 166.24 219.2 5 0.0025 584.68 15.622 74.8
0.1 0.0001 430.41 166.24 219.2 5 0.005 584.68 15.626 74.8
0.1 2.5E-4 430.41 166.24 219.2 5 0.0125 584.68 15.626 74.8
0.1 0.0005 430.41 166.24 219.2 5 0.025 585.25 16.127 65.6
0.1 0.001 430.41 166.24 219.2 5 0.05 585.54 16.297 61.6
0.1 0.0025 430.44 168.66 181.2 5 0.125 585.56 16.318 60.4
0.1 0.005 430.49 175.92 84.4 5 0.25 585.99 16.604 56
0.25 6.25E-05 437.38 131.56 180.4 10 0.0025 639.19 7.3994 84
0.25 1.25E-4 437.38 131.56 180.4 10 0.005 639.19 7.3994 84
0.25 2.5E-4 437.38 131.56 180.4 10 0.01 639.19 7.3994 84
0.25 6.25E-4 437.38 131.56 180.4 10 0.025 639.19 7.3994 84
0.25 0.00125 437.38 131.56 180.4 10 0.05 639.16 7.4221 81.2
0.25 0.0025 437.37 131.17 193.2 10 0.1 641.28 7.7012 69.6
0.25 0.00625 437.58 137.92 84 10 0.25 642.81 8.0363 60.4
0.25 0.0125 437.6 139.54 66.8 10 0.5 642.72 8.3042 54
0.5 1.25E-4 450.89 95.007 165.6 50 0.0125 772.13 1.4354 124.4
0.5 2.5E-4 450.89 95.007 165.6 50 0.025 774.31 1.4094 122.8
0.5 0.0005 450.89 95.007 165.6 50 0.05 774.32 1.4094 122.8
0.5 0.00125 450.99 96.176 151.2 50 0.125 775.92 1.4343 108.4
0.5 0.0025 450.99 96.176 151.2 50 0.25 775.58 1.4337 105.6
0.5 0.005 451.24 99.302 94.8 50 0.5 790.38 1.5963 88.4
0.5 0.0125 451.35 100.75 76.8 50 1.25 809.4 1.8776 58
0.5 0.025 451.46 101.62 64 50 2.5 829.2 2.0091 51.2
1 2.5E-4 477.03 63.029 98.4 100 0.025 729.5 0.34615 259.6
1 0.0005 477.03 63.029 98.4 100 0.05 728.07 0.34763 259.6
1 0.001 477.28 63.764 90 100 0.1 728.04 0.36838 252
1 0.0025 477.29 63.896 87.6 100 0.25 724.69 0.35623 226
1 0.005 477.36 64.224 82 100 0.5 722.34 0.39222 180
1 0.01 477.38 64.311 78.8 100 1 781.13 0.56157 105.6
1 0.025 477.44 65.185 64.8 100 2.5 904.41 0.97978 68
1 0.05 477.48 65.318 62.4 100 5 937.81 1.2105 48.4
2.5 6.25E-4 531.89 30.274 78.4 250 0.0625 895.86 0.11359 395.5
2.5 0.00125 531.89 30.274 78.4 250 0.125 857.81 0.12649 304
2.5 0.0025 532.09 30.513 74 250 0.25 866.25 0.1139 330.4
2.5 0.00625 532.02 30.515 73.6 250 0.625 859.16 0.14013 228.8
2.5 0.0125 532.02 30.515 73.6 250 1.25 1061.6 0.20077 128.4
2.5 0.025 532.19 30.825 66.8 250 2.5 1600.4 0.40505 73.2
2.5 0.0625 532.32 31.067 62.4 250 6.25 3672.4 1.0623 28.4
2.5 0.125 532.35 31.383 58.4 250 12.5 4322.8 2.1402 8.4
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Table A.5: Example 3: parameter prescreen process when n = 250.

λ µ SSE Fid Potts λ µ SSE Fid Potts

0.1 2.50E-05 269.81 134.41 94.4 5 0.00125 372.87 8.5943 85.2
0.1 5.00E-05 269.81 134.41 94.4 5 0.0025 372.87 8.5943 85.2
0.1 0.0001 269.81 134.41 94.4 5 0.005 372.87 8.5943 85.2
0.1 2.5E-4 269.81 134.41 94.4 5 0.0125 372.87 8.5943 85.2
0.1 0.0005 269.81 134.41 94.4 5 0.025 372.87 8.5943 85.2
0.1 0.001 269.81 134.41 94.4 5 0.05 373.03 9.2058 80.4
0.1 0.0025 269.81 134.41 94.4 5 0.125 374.31 9.8929 70.4
0.1 0.005 269.8 136.12 82 5 0.25 374.47 10.506 65.6
0.25 6.25E-05 275.36 103.89 88 10 0.0025 394.46 3.5042 110.8
0.25 1.25E-4 275.36 103.89 88 10 0.005 396.16 3.8001 110.4
0.25 2.5E-4 275.36 103.89 88 10 0.01 396.16 3.8001 110.4
0.25 6.25E-4 275.36 103.89 88 10 0.025 396.16 3.8001 110.4
0.25 0.00125 275.36 103.89 88 10 0.05 396.16 3.8001 110.4
0.25 0.0025 275.36 103.89 88 10 0.1 397.66 4.0272 100.4
0.25 0.00625 275.36 103.89 88 10 0.25 399.47 4.0332 81.2
0.25 0.0125 275.28 104.95 80.4 10 0.5 400.2 4.0416 71.6
0.5 1.25E-4 286.93 70.587 97.6 50 0.0125 446.06 0.22601 108
0.5 2.5E-4 286.93 70.587 97.6 50 0.025 446.06 0.22601 108
0.5 0.0005 286.93 70.587 97.6 50 0.05 446.78 0.22737 93.6
0.5 0.00125 286.93 70.587 97.6 50 0.125 445.11 0.23416 84
0.5 0.0025 286.93 70.587 97.6 50 0.25 446.47 0.23232 84
0.5 0.005 286.92 70.608 97.6 50 0.5 445.41 0.231 84
0.5 0.0125 287.05 71.219 88 50 1.25 491.62 0.51839 68.8
0.5 0.025 287.03 73.103 76.8 50 2.5 579.6 2.0589 52.8
1 2.5E-4 306.78 44.994 84.8 100 0.025 529.99 0.13102 158
1 0.0005 306.78 44.994 84.8 100 0.05 529.99 0.13102 158
1 0.001 306.8 45.331 80 100 0.1 529.99 0.13102 158
1 0.0025 306.8 45.331 80 100 0.25 531.71 0.13969 122
1 0.005 306.8 45.331 80 100 0.5 527.81 0.13839 96.4
1 0.01 306.8 45.331 80 100 1 529.08 0.13828 86.4
1 0.025 306.71 45.203 80 100 2.5 827.42 1.4466 55.2
1 0.05 307.38 46.81 56 100 5 1191.3 2.8669 27.6
2.5 6.25E-4 343.19 18.946 83.2 250 0.0625 732.93 0.047557 268.4
2.5 0.00125 343.19 18.946 83.2 250 0.125 737.87 0.047999 251.6
2.5 0.0025 343.19 18.946 83.2 250 0.25 723.71 0.055587 184.4
2.5 0.00625 343.19 18.946 83.2 250 0.625 731.06 0.077015 109.6
2.5 0.0125 343.19 18.946 83.2 250 1.25 914.69 0.15745 79.6
2.5 0.025 342.86 19.689 78.4 250 2.5 1523.6 0.37636 54
2.5 0.0625 342.86 19.689 78.4 250 6.25 2378.4 1.1664 16.8
2.5 0.125 343.39 19.817 68.8 250 12.5 3048.2 1.7862 1.2
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Table A.6: Example 3: parameter prescreen process when n = 100.

λ µ SSE Fid Potts λ µ SSE Fid Potts

0.1 0.01 4.6704 138.44 203.4 10 0.01 104.35 1.4306 115.6
0.1 0.1 3.8163 219.89 14.6 10 0.1 105.25 1.4763 111.6
0.1 1 3.6456 263.62 0 10 1 118.38 2.3632 56.2
0.1 10 3.6456 263.62 0 10 10 319.01 24.349 1.8
0.1 50 3.6456 263.62 0 10 50 340.55 26.857 0
0.1 100 3.6456 263.62 0 10 100 340.55 26.857 0
0.25 0.0001 15.674 70.374 209.8 25 0.0001 133.95 0.33812 160.4
0.25 0.001 15.738 71.462 204.6 25 0.001 133.95 0.33812 160.4
0.25 0.01 16.004 74.079 187.2 25 0.01 134.81 0.33707 155
0.25 0.1 16.412 119.49 42.8 25 0.1 136.44 0.34488 128.2
0.25 1 14.05 179.6 3.6 25 1 194.6 0.76961 55.8
0.25 10 14.137 200.56 0 25 10 590.08 9.5181 0.6
0.25 50 14.137 200.56 0 25 50 603.69 9.8998 0
0.25 100 14.137 200.56 0 25 100 603.69 9.8998 0
0.5 0.0001 29.612 36.999 184.6 50 0.0001 179.09 0.10603 234.6
0.5 0.001 29.713 37.456 182.4 50 0.001 179.09 0.10603 234.6
0.5 0.01 30.113 38.049 175.4 50 0.01 179.14 0.10464 232.8
0.5 0.1 35.633 52.99 64.6 50 0.1 183.63 0.12017 152.2
0.5 1 31.693 123.96 5.6 50 1 266.8 0.36372 52.4
0.5 10 32.02 150.69 0 50 10 813.78 3.7626 0
0.5 50 32.02 150.69 0 50 50 813.78 3.7626 0
1 0.0001 46.342 17.561 159.4 100 0.0001 243.14 0.042796 199.6
1 0.001 46.342 17.561 159.4 100 0.001 243.14 0.042796 199.6
1 0.01 48.956 18.547 128.6 100 0.01 242.55 0.043045 199.6
1 0.1 54.352 19.786 80.6 100 0.1 250.03 0.054466 109.2
1 1 59.524 64.838 12 100 1 434.86 0.20395 39.8
1 10 61.493 109.22 0 100 10 988.17 1.2027 0
1 50 61.493 109.22 0 100 50 988.17 1.2027 0
2.5 0.0001 68.991 6.4967 127.2 250 0.0001 366 0.013949 179.4
2.5 0.001 68.991 6.4967 127.2 250 0.001 366 0.013949 179.4
2.5 0.01 72.08 6.6597 100.2 250 0.01 349.7 0.013818 159.8
2.5 0.1 73.859 6.5182 92 250 0.1 356.88 0.022146 94
2.5 1 88.922 17.426 32.2 250 1 611.44 0.06657 32.4
2.5 10 126.08 68.767 0 250 10 1142.8 0.20832 0.2
2.5 50 126.08 68.767 0 250 50 1149 0.20925 0
2.5 100 126.08 68.767 0 250 100 1149 0.20925 0
5 0.0001 86.735 3.1616 113 500 0.0001 484.97 0.004986 177
5 0.001 86.735 3.1616 113 500 0.001 484.97 0.004986 177
5 0.01 86.735 3.1616 113 500 0.01 491.47 0.005361 169
5 0.1 86.725 3.0029 103.8 500 0.1 490.84 0.012077 80.4
5 1 100.35 6.603 46.4 500 1 791.1 0.029797 22.8
5 10 201.2 42.761 1 500 10 1256.7 0.062708 0
5 50 209.51 45.335 0 500 50 1256.7 0.062708 0
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