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ABSTRACT 

The route guidance system is one of the most effective ways of reducing traffic congestion. Existing 

route guidance systems are mostly reactive and self-interested, and simplify drivers’ route choice 

preferences by assuming drivers only pursue the shortest travel time/distance. These features keep the 

route guidance system from adequately accommodating drivers’ heterogeneous route choice 

preferences, and also from proactively avoiding congestion. Researchers designed more advanced route 

guidance systems that can optimize transportation efficiency or proactively avoid congestion, but 

drivers’ heterogeneous route choice preferences have not been fully incorporated. Because of the lack of 

considering drivers’ preferences and possible consequent reactions to the guidance, simplifying drivers’ 

preferences in route guidance systems may lead to the discrepancy between the expected and actually 

generated traffic conditions, and might also undermine the performance of traveler information related 

intelligent transportation system strategies. Meanwhile, emerging information technologies applied in 

the transportation domain make it possible to collect drivers’ behavior data even at the individual level, 

which provides great resources for analyzing drivers’ preference heterogeneity. Therefore, this research 

proposes a proactive user optimum-oriented route guidance system that incorporates individual users’ 

preferences in order to achieve users’ better satisfaction and transportation system performance 

improvement. Individual drivers’ route choice preferences can be captured from his/her historical 

preference data, then are adequately considered and coordinated by incorporating individual route 

choice models into the process of searching for user optimal conditions. Then, routes recommendations 

can be generated for each user based on the user optimal condition in which no user can improve his/her 

experience by changing to another route. 

 

In order to make the route guidance system accurately capture, predict thus fully consider each 

driver’s route choice preference, several approaches were firstly explored to establish individual route 

choice models, including traditional discrete choice model, mixed logit model, support vector machine 

and multi-task linear model adaptation (MT-LinAdapt). Three stated preference datasets collected from 

102 participants as well as three synthetic datasets were used to evaluate and compare the performance 

of different approaches. The evaluation showed that MT-LinAdapt has the highest prediction accuracy 

which is up to 8% and 18% higher than other approaches when there is adequate and inadequate 

historical preference data, respectively. Additionally, it has implementation feasibility advantages: (1) 

does not require segmentation criteria (e.g., sociodemographic information) to distinguish drivers’ 



heterogeneous preferences; (2) also works well with limited amount of individual preference data and 

very heterogeneous preference data; and (3) can be updated in real time as individuals’ preference data 

accumulates. Therefore, MT-LinAdapt is recommended to establish the individual-level route choice 

preference models in the application of route guidance systems.  

 

The framework of a proactive user optimum-oriented route guidance system was proposed which 

contains two components: (1) established individual route choice models and (2) incorporated 

individuals’ route choice preferences in searching for user optimum conditions. Such user optimum 

conditions are used as guidance information. With a commonly used Sioux Falls network and user 

population whose preferences were synthesized from surveyed participants, the proposed route guidance 

system at both perfect and imperfect market penetration rates was compared to existing route guidance 

strategies including travel time based real-time guidance and travel time based User Equilibrium (UE) 

guidance. An evaluation platform which is made of a traffic simulation module (DTAlite) and a route 

choice module (Matlab) was established and utilized to conduct the evaluation. The proposed route 

guidance system demonstrated advantageous performance in aspects of users’ satisfaction (up to 22% 

more satisfied users), system mobility and sustainability (up to 10% of travel time reduction and up to 

42% of delay reduction), and future traffic conditions estimation (up to 70% links having more accurate 

volume estimation). At imperfect market penetration rates, users of the proposed route guidance system 

interact with those drivers who use real-time guidance system and who take habitual routes. The 

generated performance improvement gradually increases as the market penetration rate increases. In 

addition, the proposed route guidance system has the potential to be extended for additional traffic 

control and management strategies so that further system performance improvement could be achieved, 

such as personalized incentive scheme. 

The proposed route guidance system framework and the evaluation results extend the existing literature 

and have broader impacts on the following aspects: (1) Established individual route choice models to 

capture individual drivers’ route choice preferences; (2) Proposed a proactive user optimum-oriented 

route guidance system for system performance and users’ satisfaction improvements; (3) Prepared the 

foundation for designing personalized traffic control and management strategies that have great potential 

to further improve transportation system performance. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

The route guidance system is an important part of the Advanced Traveler Information System (ATIS). 

Drivers use route guidance systems in daily life to find the routes leading them to their destinations or 

check real time traffic conditions so that congested areas can be avoided. With the information provided 

by route guidance systems, drivers can make informed route choice decisions and transportation 

network’s efficiency can be improved. It is recognized that the route guidance system is one of the most 

effective ways to reduce traffic congestion (Han et al. 2016).  

More and more drivers are using route guidance systems nowadays. As of 2017, Google Maps app ranks 

the fifth of the most popular smart phone apps in the United States and it was accessed by 56% of the 

mobile users which is 56% of 224.3 million smart phone users (“Mobile Apps U.S. Smartphone 

Audience Reach 2017 | Statistic”). Route guidance systems not only provide most recent traffic 

condition information but also provide users with some customized options, such as allowing drivers to 

select among options of showing the route with shortest travel time, shortest distance and without toll in 

Google Maps. The route guidance systems can also store users’ home, workplace and other favorite 

places. With more and more users participating in as well as more information that can be collected with 

route guidance systems, route guidance systems have large potential to influence drivers’ travel 

behaviors and consequently the transportation system performance.  

1.2 Research Motivation 

Route guidance systems bring much conveniences to drivers’ driving activities. As its user group is 

becoming larger and larger and it can collect more and more demand-side data, there are several 

motivations to make the route guidance systems to better serve users’ needs as well as improve 

transportation system performance. 

Simplified behavior component in existing route guidance systems could deteriorate users’ 

satisfaction. Existing route guidance systems simplify drivers’ route choice preferences in route 

guidance process by recommending routes to users based on single criterion, such as shortest travel time 

or distance. However, drivers’ route choice preferences can be very heterogeneous among the 

population. Different departure time, trip purposes, driving experiences, risk attitudes, and etc. can all 

bring different route choice preferences (Amirgholy et al. 2017; Liu, He, and Recker 2007). The limited 



options in existing route guidance systems cannot fully accommodate drivers’ preference heterogeneity, 

therefore recommending suboptimal routes to users may deteriorate users’ satisfaction.  

Existing route guidance systems are reactive and self-interested. Most of existing route guidance 

systems recommend routes to users based on either historical traffic conditions or the real-time traffic 

conditions. Though it can quickly react to the changing traffic conditions, it does not consider how the 

recommended routes are going to affect the future traffic conditions. It works more like an alert system 

which warns drivers’ about the congestion already happened instead of guiding drivers to proactively 

prevent the congestion from happening (Liang and Wakahara 2014). In addition, the route 

recommendations are usually self-interested. It neither considers if other users’ behaviors are going to 

affect the quality of the recommendations made to the subjective user nor considers if the 

recommendation is going to influence other users. The characteristics of reactive and self-interested can 

undermine the route guidance systems’ service reliability and consequently influence users’ satisfaction 

and transportation system performance. Therefore, a route guidance system that can consider users’ 

possible reactions and proactively prevent congestion is more ideal than reactive and self-interested 

ones. 

Emerging information technologies provide an opportunity to design and implement a route 

guidance system that can further improve system performance and users’ satisfaction. Route 

guidance systems nowadays not only have large user population but also can collect much users’ route 

choice preference data, even at the individual level. It provides an opportunity to capture individual 

driver’s route choice preference and predict their possible route choice decisions. It can help route 

guidance systems better capture the heterogeneous route choice preferences among user population and 

understand the needs of specific users when using route guidance. By knowing users’ possible reactions 

in different scenarios, a new route guidance system can be designed and implemented to overcome 

limitations of existing route guidance systems so that system performance and users’ satisfaction can be 

both improved. 

1.3 Research Objectives and Scope 

With the behavior related data that could be collected from route guidance systems, the main research 

goal is to propose a route guidance system that can further improve transportation system performance 

and users’ satisfaction by considering individual drivers’ route choice preferences in designing routing 

strategy. The route guidance system should be able to address the existing route guidance systems’ 



limitations in terms of inadequately considering users’ preference heterogeneity and the reactive and 

self-interested features. In other words, the desired route guidance system should consider individuals’ 

route choice preferences, be proactive and also consider the impacts of recommendations on traffic 

conditions. To achieve this goal, three objectives are identified as follows. 

Capture drivers’ route choice preferences at the individual level. Different modeling approaches can 

be explored to find the most suitable one for the application of a route guidance system that considers 

drivers’ preferences at the individual level. The capability of accurately predicting drivers’ route choice 

decisions is the major measurement. The modeling approach should be able to handle the characteristics 

of the data that can be collected from route guidance systems and also have certain implementation 

feasibility, such as the capability of being updated in real time and working well when there is limited 

amount of preference data. 

Design a proactive user optimum-oriented route guidance system. The route guidance system should 

consider all individual driver’s route choice preferences when generating route recommendations. It also 

should consider the impacts of possible recommendations on the traffic conditions and consequently the 

impacts on other users’ route choice decisions.  

Evaluate and quantify the performance of the proposed route guidance system in terms of 

transportation system performance and users’ satisfaction. Proper measurement should be selected 

to represent the system performance and users’ satisfaction. The proposed route guidance system should 

be evaluated against representative existing routing strategies. As it may take time to implement the 

proposed route guidance system in practice, the performance at different imperfect penetration rates 

need to be evaluated as well. 

It should be noted that this research only considers the route choice aspect of travelers’ behavior. 

Though departure time choice and mode choice are also important aspects of travelers’ behaviors, this 

research assumes drivers all have fixed preferred departure time with driving as the travel mode.  

1.4 Dissertation Organization 

In the following chapters of this dissertation, Chapter 2 first explores the capabilities of traditional 

mixed logit model combined with the Bayes rule in estimating individual drivers’ route choice 

preference. Chapter 3 explores the capability of an advanced sentiment analysis approach, MT-LinAdapt 

in route guidance system application from the perspectives of both prediction accuracy as well as 



implementation feasibilities. In Chapter 4, a proactive user optimum-oriented route guidance system is 

proposed by capturing individual user’s route choice preferences and integrating individual’s 

preferences in the process of searching for user optimum conditions. The proposed route guidance 

system was evaluated against existing routing strategies and the evaluation results were analyzed. In 

Chapter 5, some possible extended applications of the proposed route guidance system (e.g., 

personalized incentive scheme) that can further improve system performance are discussed as well as 

some possible practical issues in the implementation of the proposed route guidance system. At last, 

conclusions are made in Chapter 6 as well as possible future research. 

  



CHAPTER 2: Applying Mixed Logit Model and Bayes Rule for Drivers’ Route Choice 

Preferences Modeling at the Individual Level 
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ABSTRACT 

Personalized Advanced Traveler Information System (ATIS) services such as personalized route 

recommendation and trip planning require knowing drivers’ route choice preferences at the individual 

level. To distinguish drivers’ heterogeneous route choice preferences, existing modeling approaches 

typically build a model which includes segmentation criteria (e.g., sociodemographic characteristics) 

with an assumption that drivers belonging to the same group have similar route choice preference. 

Meanwhile, random parameter models such as mixed logit (ML) model are also widely used to capture 

drivers’ route choice preferences heterogeneity. However, segmentation criteria are not easy to obtain in 

practice and only using the preference distributions in the ML model cannot accurately tell the 

preference of a specific driver. Thus, this paper explores the capability of using ML models combined 

with Bayes rule to capture individual drivers’ route choice preferences. With a stated preference dataset 

in which each of 44 participants went through 81 route choice scenarios containing multiple route 

attributes, a ML model that considers coefficients’ correlation was established. Individual participant’s 

route choice preference was obtained with Bayes rule on the basis of the estimated coefficients’ 

distributions. The finally obtained individual drivers’ route choice models were evaluated against a 

multinomial logit model regarding the capability of correctly predicting each participant’s choices. The 

results showed that the ML model combined with Bayes rule has an average prediction accuracy of 89% 

which is nearly 20% higher than the multinomial logit model. The ML model combined with Bayes rule 

has the potential to be used for modeling individual-level drivers’ route choice preferences for 

personalized ATIS services. 

Keywords: Individual Route Choice Model; Mixed Logit Model; Bayes Rule; Personalized Route 

Recommendation 

 



INTRODUCTION 

Advanced Traveler Information System (ATIS) applications such as personalized route guidance and 

personal trip planning require the knowledge of individual driver’s route choice preference (Liu et al., 

2014; Nadi and Delavar, 2011; Pahlavani and Delavar, 2014). In these applications, a route is 

recommended to a particular driver based on his/her own route choice preference in order to improve 

driver’s satisfaction. In addition, drivers are more willing to comply with the routes that are 

recommended based on his/her preference. This can lead to increased drivers’ compliances and 

consequently has a great potential for traffic engineers to improve transportation network performance 

(Bifulco et al., 2007; Domenico et al., 2015; Paz and Peeta, 2009).  

However, drivers’ route choice preference varies person by person in many aspects. Drivers perceive 

route information differently (Tawfik et al., 2010; Parthasarathi et al., 2013; Peruch et al., 1989; 

Matthews, 1981). Drivers value the same attribute differently (Liu et al., 2007; Perk et al., 2011; Rogers 

et al., 1999; Rogers and Langley, 1998) and even have different preferences at different time of day 

(Amirgholy et al., 2017; Liu et al., 2007). As pointed by Lida et al., (1992) “route choice behavior varies 

depending on the individual.” Therefore, for better satisfaction of personalized ATIS users as well as the 

potential of utilizing ATIS to improve system performance, it is desirable to have a modeling approach 

that can capture drivers’ heterogeneous route choice preference and accurately predict drivers’ preferred 

routes at the individual level. 

To model drivers’ route choice different preferences, the most common approach is to use a logit-type 

model that incorporates segmentation criteria to differentiate drivers’ preferences. Sociodemographic 

characteristics are frequently used as the segmentation criteria (Abdel-Aty et al., 1994; Li et al., 2005; 

Shiftan et al., 2011). Assumptions are made that drivers with same sociodemographic characteristics 

(such as age, gender and income) have a similar preference (Ben-Aakiva and Lerman, 1985; Prato, 

2009). Other criteria such as driving pattern can also be used to categorize drivers into different groups 

(Tawfik and Rakha, 2013; Peeta and Yu, 2004). Therefore, drivers are basically divided into different 

groups based on certain segmentation criteria and drivers belonging to the same group behave similarly. 

However, in practice, the information regarding above mentioned segmentation criteria are difficult to 

obtain because of privacy issues. The information includes age, gender, income, driving experiences and 

other sociodemographic characteristics which are typically used as segmentation criteria (Abdel-Aty et 

al., 1994; Li et al., 2005; Shiftan et al., 2011). In some widely used route guidance services such as 



Google Maps service, it requires users’ age and gender information when users register Google account, 

but users have an option of “Rather not say.” Another popular route guidance service Waze also does 

not require socioeconomic information. Therefore, using sociodemographic information as segmentation 

criteria to distinguish drivers’ different route choice preferences is not easy in the application of 

providing personalized route planning or guidance. Given various characteristics in drivers’ population, 

it is also difficult to select proper criteria to segment drivers into groups (Hensher and Greene, 2003; 

Peeta and Yu, 2004). In addition, the preference heterogeneity within groups is not considered.  

In the family of discrete choice model, the mixed logit model is widely used to capture drivers’ 

preference heterogeneity (Train, 2009; Hess and Train, 2017; Sarrias and Daziano, 2017; Bansal et al., 

2017). The mixed logit model assumes people’s preferences following certain distributions among the 

population. Instead of using a single utility function for all individuals (i.e., a multinomial logit model), 

the mixed logit model allows the parameters associated with attributes in the utility function following 

certain distributions among population. Thus, it is considered to be more realistic than fixed parameter 

models (Greene and Hensher, 2003). Given this nature, mixed logit models have been applied to capture 

heterogeneous preferences in different areas, such as  predicting customers’ preferences and designing 

targeted policy to consumers (Revelt and Train, 1998; Train, 1998), estimating drivers’ route choice 

preference variation (Ben-Elia and Shiftan, 2010; Han et al., 2001; Liu et al., 2004; Tian et al., 2012), 

estimating pedestrian’s exists choice preferences (Haghani et al., 2015) and railway passengers’ 

preferences in purchasing tickets (Hetrakul and Cirillo, 2013).  

In the ATIS applications such as personalized route guidance or personal trip planning, using the mixed 

logit model to obtain the preference distribution is still not enough, because these applications require 

knowing the preference of a specific driver. When only the preference distribution is used for describing 

drivers’ route choice preferences, it describes drivers’ preference pattern as a whole. Taste parameters 

are randomly assigned to each individual driver from the distribution. The resulted preferences among 

drivers match the preference distribution pattern, but a specific driver’s preference may not be 

accurately captured when look at each individual driver. Fortunately, the mixed logit model is also 

capable of capturing preference at the individual level when combined with the Bayes rule, in a sense 

that each individual can have his/her own route choice model. Revelt and Train (1998) used a mixed 

logit model to analyze the tastes distribution as well as individual preferences of residential customers’ 

choice among energy suppliers, but to the best of authors’ knowledge, the mixed logit model explicitly 



considering individual preference has not been used in transportation domain. This is probably because 

traditional drivers’ route choice behavior study mainly focus on drivers’ general preference and behavior 

patterns in order to understand the behavior impacts of drivers as a group. With emerging information 

communication technologies in ATIS, new transportation services such as personalized route 

recommendation and trip planning bring the needs of utilizing each specific driver’s preference. 

Therefore, given the potential that mixed logit models have in capturing preferences at the individual 

level, this paper aims at evaluating the capability of the mixed logit model combined with Bayes rule in 

modeling and predicting individual drivers’ route choice preferences.  

In the rest of this paper, the mixed logit model together with Bayes rule are introduced in Methodology 

section, followed by the description of a stated preference dataset that was used for developing the 

mixed logit model in Survey and Data section. The mixed logit model combined with Bayes rule is 

applied to the dataset in Model Implementation section and the results are interpreted in Results 

Analysis section. Finally, conclusions and future research are discussed. 

METHODOLOGY 

With a mixed logit model, the utility of choosing alternative route i for driver n is (Train, 2009):   

𝑈𝑛𝑖 = 𝜷𝒏
′ 𝑿𝒏𝒊 + 𝜀𝑛𝑖   (1) 

Where βn is vector of parameters associated with each variable for user n. Xni is a vector containing the 

alternative i’s variables and drivers’ sociodemographic characteristics if available. In the application of 

this research, only alternative option’s attributes are included in order to represent the situation in 

practice that sociodemographic data is not easy to obtain because of privacy concerns. 𝜀𝑛𝑖 is the 

unobserved extreme random value for driver n choosing alternative i. It is typically assumed to follow 

an identically and independently distribution across drivers and alternatives in the multinomial logit 

model, but the mixed logit model allows for a relaxation of this assumption. Also, different from the 

multinomial logit model where drivers have the same form of utility function, drivers’ utility function 

parameters follow certain distribution among population in the mixed logit (ML) model.   

Then, the logit probability Lni for user n choosing alternative i can be written as follows (Hensher and 

Greene, 2003): 

𝐿𝑛𝑖 =
exp (𝜷𝒏

′ 𝑿𝒏𝒊)

∑ exp (𝜷𝒏′ 𝑿𝒏𝒋)𝑗
    (2) 



Since the mixed logit (ML) model considers heterogeneous preferences among the population, β here 

follows a distribution. Commonly used distributions include normal, lognormal, uniform and triangular 

distribution (Hensher and Greene, 2003). Assuming density function of β is noted as f (β|θ), θ represents 

the parameters of the distribution. For example, if β follows a normal distribution N(u,σ2),  θ represents 

the mean u and the standard deviation σ of the normal distribution. Assuming all parameters in 𝜷𝒏 

follow normal distributions, then 𝜷𝒏 can be written as (Train, 2009):  

𝜷𝒏 = 𝝁𝒏 + 𝑳𝜼    (3)  

η is a standard normal distribution. L is the Choleski factor of covariance matrix Ω and it can be defined 

as a lower-triangular matrix such that LL’= Ω. When the parameters in 𝜷𝒏 are independent from each 

other, the off-diagonal elements in L are all 0.  

Given the distribution density function f (β|θ), the choosing probability becomes (Train, 2009): 

𝑃𝑛𝑖 = ∫𝐿𝑛𝑖𝑓(𝛽|𝜃)𝑑𝛽  (4) 

The above equation is the form of a mixed Logit model, as it is a mixture of the logit function evaluated 

at different values of β with f (β) as mixing distribution. The underlying distribution θ can be estimated. 

One of the most common ways to estimate the parameters of underlying distribution is the simulation 

method (Train, 2009). Equation (4) can be approximated with simulation as: 

�̂�𝑛𝑖 =
1

𝑅
∑𝐿𝑛𝑖(𝛽

𝑟)

𝑅

𝑟=1

         (5) 

Given the distribution as f (β|θ), 𝛽𝑟 is the β value obtained by a random draw from the distribution for rth 

time. 𝛽𝑟 is plugged into Equation (5) to calculate the simulated likelihood. This process is conducted R 

times and the average likelihood is the simulated likelihood for driver n choosing alternative i. There are 

different ways to conduct the random draws so that the estimation can be efficient and accurate. 

Commonly used ways to perform random draws include pseudo-random draws (Sándor and Train, 

2004), quasi-random draws (Sándor and Train, 2004), Halton draws (Train, 2009) and scrambled Halton 

draws (Bhat, 2003). Therefore, the simulated log-likelihood of all drivers’ choices can be written as 

(Train, 2009): 



𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = ∑∑𝑑𝑛𝑗

𝐽

𝑗=1

𝑁

𝑛=1

�̂�𝑛𝑗                      (6) 

Where dnj equals to 1 when driver n chose alternative j. Otherwise, dnj equals 0. The estimated θ value 

gives the distribution that drivers’ preferences follow and it represents the heterogeneous preferences 

among drivers.  

Once parameters’ distributions are obtained, a specific individual’s preference can be estimated with 

Bayes rule. The choice probability for driver n’s series of choices is (Train, 2009): 

𝑃(𝑦𝑛|𝑥𝑛, 𝛽) =∏𝐿𝑛𝑡(𝑦𝑛𝑡|𝛽𝑛)

𝑇

𝑡

      (7) 

Since only the distribution of β is known, the equation above can be written as (Train, 2009): 

𝑃(𝑦𝑛|𝑥𝑛, 𝜃) = ∫𝑃(𝑦𝑛|𝑋𝑛, 𝛽)𝑓(𝛽|𝜃)𝑑𝛽                     (8) 

By Bayes’ rule, we can have β’s conditional distribution 

ℎ(𝛽|𝑦𝑛, 𝑥𝑛, 𝜃) =
𝑃(𝑦𝑛|𝑥𝑛, 𝛽)𝑓(𝛽|𝜃)

𝑃(𝑦𝑛|𝑥𝑛, 𝜃)
                  (9) 

Therefore, the expected individual taste �̅�𝑛 can be written as (Train, 2009): 

�̅�𝑛 = ∫𝛽 ∗ ℎ(𝛽|𝑦𝑛, 𝑥𝑛, 𝜃)𝑑𝛽 

  

=
∫𝛽 ∗ 𝑃(𝑦𝑛|𝑥𝑛, 𝛽)𝑓(𝛽|𝜃)𝑑𝛽

𝑃(𝑦𝑛|𝑥𝑛, 𝜃)
 

  

=
∫𝛽 ∗ 𝑃(𝑦𝑛|𝑥𝑛, 𝛽)𝑓(𝛽|𝜃)𝑑𝛽

∫𝑃(𝑦𝑛|𝑥𝑛, 𝛽)𝑓(𝛽|𝜃)𝑑𝛽
       (10) 

However, the equation above does not have a closed form. A simulation approach has to be used to 

obtain its value. Random draws can be made from the distribution 𝑓(𝛽|𝜃) and the simulated taste β can 

be the weighted sum of values obtained (Train, 2009), as shown in Equation (11). 



�̂�𝑛 =∑𝑤𝑟𝛽𝑟

𝑟

           (11) 

In which  

𝑤𝑟 =
𝑃(𝑦𝑛|𝑥𝑛, 𝛽

𝑟)

∑ 𝑃(𝑦𝑛|𝑥𝑛, 𝛽
𝑟)𝑟
               (12) 

  

Thus, individual driver n’s specific preference can be estimated with combining the mixed logit model 

and Bayes rule. 

 

SURVEY AND DATA 

In order to develop the mixed logit model and to test its performance in predicting individual driver’s 

route choice preference, a stated preference survey was designed and conducted. In order to generate 

realistic survey scenarios, the basic procedure used for the survey design is to check the traffic 

information on a popular navigation system (Google Maps) and include adequate variations for survey 

questions. Then, origin and destination (OD) pairs of three distance levels were chosen from the local 

area. For each OD pair, two alternative routes suggested by Google Maps were included in the survey to 

form binary route choice scenarios. Based on researchers’ findings (Jan et al., 2000), several route 

attributes that are considered as belonging to major influencing factors were included in the survey, 

including Distance, Travel Time, the Number of Controlled Intersections and Pedestrian Level. The 

information about these attributes was checked on Google Maps within a day and across days of week to 

have realistic values as well as adequate variations, except Pedestrian Level which was checked 

manually through field visit. Eventually, all route attributes have three levels of values except that 

Pedestrian Level that was set to have two levels of “High” and “Low.” Taguchi design in Minitab 

(Simpson et al., 2001) was used to develop the experiment design. In total, 81 questions were generated. 

All the questions were shuffled before showing to participants. The trip purpose of the scenarios was 

casual trip. A total of 44 participants who are mostly undergraduate students at the University of 

Virginia took part in the survey. The linkage of the online questionnaire was sent to all participants who 

volunteered for the surveys. The participants were informed with the time the survey would take and 

were asked only to participate in if they would take their time to answer the questions to the best of their 



ability. To ensure the quality of participants’ answers, the survey includes dominant questions in which 

one route is better than the other in all aspects. All participants passed the answer quality screening.   

MODEL IMPLEMENTATION 

To test the performance of the mixed logit model, especially its capability of capturing individual 

driver’s route choice preference, 80% of every participant’s data was randomly selected to build the 

model and the rest of the data was reserved for testing. The dataset was standardized by each route 

attribute. To be more specific, each column contains the values of a route attribute. Each value in a 

column was subtracted from the column mean and divided by the column standard deviation. The 

dataset after standardization was used for model training and testing later. Before estimating the mixed 

logit model, distribution types of coefficients and the number of random draws need to be determined. 

Each of them was discussed below. 

Select Distribution Types  

As explained in the Methodology section, coefficients of utility function are assumed to follow certain 

distributions. The types of distribution need to be defined before the model estimation. Common 

distributions that were used in transportation include normal distribution, lognormal, uniform and 

triangular (Hensher and Greene, 2003). Instead of assuming distribution types arbitrarily, Hensher and 

Greence (2003) suggested to use empirical distributions that were observed from the data. The process is 

possibly to obtain the coefficient estimate for each sampled individual and then plot all individuals’ 

coefficient estimates so that a distribution shape can be observed. However, it is very likely that some 

individuals may not have significant coefficient estimates because there might not be enough amount of 

or enough variations in individual’s data. Therefore, this research adopted the Q+1 model method 

suggested by Hensher and Greene (2003) to determine the distribution types. Q is the number of 

surveyed individuals. Here, Q equals 44. A multinomial logit model M was built firstly based on all 

individuals’ data. Then the data of each individual was removed respectively and the rest Q-1 

individuals’ data was used to build a multinomial logit model, called Mi. Therefore, there were one 

model developed from all individuals’ data and Q models developed from partial individuals’ data. For a 

participant i’s particular coefficient, the difference between its numerical values in model M and in 

model Mi is considered as the impact of this participant i’s preference on the whole group’s preference. 

The distribution of these differences across individuals shows the distribution of individuals’ 

heterogeneous preferences. Kernel density estimator was used to plot the distribution of the difference 



(Hensher and Greene, 2003). The bandwidth of the density estimation is determined by h=1.06 σN-1/5 

(Scott and Sain, 2005). The shape was observed to obtain the underlying distribution for each coefficient 

in the mixed logit model. The shapes of each coefficient’s density plot are shown in Figure 1. 

  

  

Figure 1 Density plots of each coefficent’s distribution among participants 

As shown in Figure 1, the coefficient distributions of “Distance” and “Pedestrian” are very close to the 

shape of normal distribution. The distribution shapes of “Travel Time” and “Number of Intersections” 

are between normal distribution and log-normal distribution. Both of the normal and log-normal 

distributions are commonly used in mixed logit model estimations. The normal distribution has flexiable 

properties and is widely understood, but the estimated parameters could have either positive or negative 

signs (Department for Transport UK, 2014). The log-normal distribution can restrict the parameter signs 

to be either positive or negative when modelors have a sense about the signs of parameters (Hensher and 

Greene, 2003), but it also has several disadvantages, including difficult to find the starting values in the 

estimation (Train, 2009; Han et al., 2001), considerably difficult to converge (Li et al., 2010) and having 

very long tails on one end which represents unreasonable values (Nahuelhual et al., 2004). As mentioned 

in (Hensher and Greene, 2003), all types of distribution have their own advantages and limitations. On 

the other hand, the application of personalized route guidance system requires accurate predictions 

regarding which route the driver would like to take. The model performance in terms of fitness and 

prediction accuracy are the measurements personalized route guidance system care more about. With the 



dataset in this research, the staring value is very difficult to find when using log-normal distribution. 

Therefore, the coefficients of “Travel time” and “Number of Intersections” were also assumed to follow 

normal distribution in the estimation process.  

Select the Numbers of Random Draws 

Halton intelligent draw was used to conduct random draws in the simulation process of estimating 

coefficients’ distributions (Train, 2009). The number of random draws, namely R value in equation (5), 

can have impacts on model estimations. A small number of random draws may not be enough to 

accurately estimate the model. A large number of random draws can decrease the estimation errors but 

make the model estimation process inefficient. There is no standard number of random draws that works 

for every situation (Hensher and Greene, 2003). Therefore, a range of different numbers of draws were 

tested until the estimated model is stable. In this paper, numbers of draws were tested including 50, 100 

and 1000. With the dataset in this research, standard errors of estimated parameters did not decrease 

much when increasing the numbers of draws. Therefore, the number of draws in equation (5) was set to 

be 100.  

Model Establishment 

After determining the distribution types and the number of random draws, gmnl package in software R 

(Sarrias and Daziano, 2017) was used to conduct the estimation. The utility function has four route 

attributes including “Distance”, “Travel Time”, “Number of Controlled Intersections” and “Pedestrian 

Level.” The utility function coefficients of all route attributes are assumed to follow normal distribution. 

Therefore, βn in Equation (1) contains four elements and each of the elements follows a normal 

distribution N(u,σ2) with u as the mean and σ as the standard deviation. In addition, it is very likely that 

participants’ preferences regarding different route attributes are correlated. The correlation among route 

attributes is also considered. Therefore, the expected estimation results should include the mean and 

standard deviation of each coefficient and the Choleski factor of coefficients’ covariance matrix Ω as 

shown in Equation (3). 

RESULT ANALYSIS 

This section first evaluates the estimated mixed logit model at the aggregate level. Then selected 

participants’ estimated preferences are discussed at the individual level.  



Model Performance at the Aggregate Level 

The estimated mixed logit (ML) model is shown in Table 1, as well as a multinomial logit (MNL) model 

which was included for comparison. The MNL model is also known as a fixed parameter model. 

Therefore, the MNL model only has estimated coefficient for each variable. On the other hand, the 

mixed logit model estimates the distribution of preference regarding each route attribute. Therefore, the 

estimation includes the estimated means and Choleski factors of coefficients’ variance-covariance 

matrix.  

As shown in Table 1, the estimated coefficients in MNL and coefficients’ means in the mixed logit (ML) 

model all have negative signs, which are as expected. It is easy to understand that the route with higher 

values of these attributes (e.g., longer travel time) is usually less favored by drivers, thus drivers’ utility 

of choosing certain route is reduced when the values of these route attributes increase.  

Among the variables considered, “Distance” is not significant in both MNL and ML models with p-

values of 0.163 and 0.139, but the standard deviation of “Distance” is significant in the estimation of 

ML model. That means participants have various preferences regarding “Distance” and their preferences 

balanced out when they are seen as a group. Therefore, the overall preference regarding “Distance” is 

not significantly different from zero in the MNL model. This is not reflected in the MNL as it does not 

consider preference heterogeneity.  

The magnitude of “Travel Time” coefficient is the largest among all coefficients in both the ML model 

and the MNL model. That means “Travel Time” has the largest impact on participants’ decisions among 

all route attributes. It is noted that the stated preference data was normalized before the model 

estimation. Following the same logic, the second and third most influential factors are “Number of 

Intersections” and “Pedestrian Level.”  

 

 

 

 

 



Table 1 Model Estimation Results of the Mixed Logit Model and the Multinomial Logit Model 

Coefficients 

MNL Mixed Logit 

Estimates Std.error p-value Estimates Std.error p-value 

Distance.mean -0.308 0.221 0.163 -0.555 0.375 0.139 

Travel Time.mean -5.156 0.270 0.000 -10.437 1.091 0.000 

Number of 

Intersections.mean 
-1.225 0.052 

0.000 -2.561 0.233 0.000 

Pedestrian Level -0.746 0.036 0.000 -1.510 0.179 0.000 

 
  

    

sd.dis.dis - - - -1.554 0.261 0.000 

sd.dis.tt - - - 4.401 0.951 0.000 

sd.dis.ped - - - 1.376 0.161 0.000 

sd.dis.inter - - - 0.502 0.105 0.000 

sd.tt.tt - - - -6.504 1.040 0.000 

sd.tt.ped - - - 0.321 0.182 0.077 

sd.tt.inter - - - 0.608 0.137 0.000 

sd.ped.ped - - - 1.336 0.216 0.000 

sd.ped.inter - - - 0.114 0.216 0.599 

sd.inter.inter - - - 0.903 0.132 0.000 

Log likelihood -1131.5 -728.79 

Pseudo-R2 0.4180 0.6252 

 

Table 2 shows the variance-covariance matrix of coefficients estimates. The diagonal entries are the 

variances of coefficients. Based on the magnitude of variance, “Travel Time” has the largest variance. It 

indicates that participants’ preference regarding “Travel Time” varies most among four route attributes. 

Then, participants’ preferences regarding “Pedestrian Level” is the second most heterogeneous and has 

larger variance than those of “Distance” and “Number of Intersections.” The significant values of 

parameters’ variance show that participants do have various preferences regarding the same route 

attributes. 

Table 2 also shows the covariance between each pair of coefficients. The coefficients of “Distance” and 

“Travel Time” have negative covariance of -6.841. That means participants who have large magnitude 

of “Distance” coefficient tend to have a small magnitude of “Travel Time” coefficient. That is saying a 

participant who strongly prefers a route with shorter distance tend not to be motivated by shorter travel 

time. Similar negative covariance also exists between the coefficients of “Distance” and “Number of 

Intersections”, “Distance” and “Pedestrian Level.” The coefficient of “Travel Time” is negatively 

correlated with the coefficient of “Number of Intersection” and is positively correlated with the 



coefficient of “Pedestrian Level.” This means participants who strongly prefer shorter travel time tend to 

have larger weight on “Pedestrian Level” and tend not to be easily motivated by fewer number of 

intersections. At last, the coefficient of “Number of Intersections” is positively correlated with the 

coefficient of “Pedestrian Level.” This indicates participants who like the route with fewer number of 

intersections also is more easily motivated by lower pedestrian level. 

Table 2 The Variance and Covariance Matrix of Estimated Coefficients in the Mixed Logit Model 

 

 

By considering participants’ various preferences regarding different route attributes and the correlation 

among attributes’ coefficients, the ML model has better overall fitness to the survey data than the MNL 

model. As shown in Table 1, the log likelihood of the ML model (-728.79) is much higher than that of 

the MNL model (-1131.5). The Pseudo-R2 of the ML model is also higher than that of the MNL model 

by around 20%.  

Model’s Performance at the Individual Level 

The Mixed logit model can estimate individual’s specific preference by following equations (7) to (12). 

Estimated preferences of four selected participants were shown in Table 3 to demonstrate how 

participants’ preferences vary. As shown in Table 3, Participant 1 cares about travel time most and the 

coefficient of “Travel Time” has the largest magnitude among four coefficients in his/her utility 

function. The “Number of Intersection” is the second important factor that affects Participant 1’s route 

choice decision. The most important factor for both Participant 2 and Participant 3 is also “Travel 

Time”, but the second most important factor is “Pedestrian Level” for Participant 2 and “Distance” for 

Participant 3. As to Participant 4, the most important factor affecting his/her route choice decision 

becomes the number of intersections and his/her preference regarding other three route attributes are 

very similar. Since the distribution type of all parameters are assumed to be positive, certain percentage 

of participants got positive signs in the estimation results, though the signs for attributes such as 

“Distance” and “Travel Time” are usually negative. The percentages of positive signs for four route 

  Distance 

Travel 

Time 

Number of 

Intersections 

Pedestrian 

Level 

Distance 2.416       

Travel Time -6.841 61.669   

Number of Intersections -0.781 -1.741 1.450  

Pedestrian Level -2.138 3.968 1.038 3.779 



attributes are: 34% for “Distance”, 8% for “Travel Time”, 1% for “Number of Controlled Intersections” 

and 21% for “Pedestrian Level”. For all parameters, majority of participants’ estimated preferences has 

negative signs. 

Table 3 Utility Function Coefficients of Selected Participants’ Individual Models 

 Coefficient 
Distance Travel Time 

Number of 

Intersections Pedestrian Level 

Participant 1 -0.224 -14.974 -2.018 -0.218 

Participant 2 -0.382 -4.758 -2.883 -3.602 

Participant 3 -3.405 -5.279 -0.344 -0.972 

Participant 4 -1.516 -1.475 -2.025 -1.353 

 

When looking at the individual level, it can be found that participants’ preferences could be very 

different from one another. Furthermore, the survey data was collected from a group of participants who 

have relatively homogeneous sociodemographic characteristics (i.e., undergraduate students have similar 

age, education level and driving experiences). Using a MNL model that includes common 

sociodemographic characteristics as segmentation criteria may categorize them into the same group and 

assumes they have similar preferences. Thus, using the MNL model may not be able to capture the 

heterogeneous preference among drivers. One the other hand, the individual route choice models 

obtained with the mixed logit model can capture the preference heterogeneity. Therefore, it is necessary 

to build individual’s route choice model in the applications such as personalized route recommendation 

and trip planning which requires the knowledge of drivers’ route choice preferences at the individual 

level. 

Prediction Accuracy at the Individual Level  

The applications of personalized route recommendation or trip planning aims at providing better 

personalized services that he/she would like. Therefore, models’ capabilities of correctly predicting 

individual driver’s decision or preference are worthy of investigation. Coefficients at the individual level 

were obtained with the mixed logit model from last section. Each participant has his/her own utility 

function. This section evaluates these individual route choice models’ capability in correctly predicting 

individual participant’s route choice decisions. As noted, 80% of each individual participant’s data was 

used to establish models and the rest 20% was reserved to test models’ performances on each 

participant. A MNL model was included for comparison. The prediction accuracy in terms of the 



percentage of models’ predictions that match participant’s actual choices is used as the measurement for 

evaluation.  

Table 4 summarizes the prediction accuracies of individual route choice models and MNL models on 

each participant. As shown in Table 4, the prediction accuracy of the individual model is much higher 

than that of MNL model on most of participants. The average prediction accuracy of the individual 

models is 89.8%, compared to the prediction accuracy of MNL model which is 73.4%. The individual 

route choice model and MNL model’s prediction accuracies on each participant were compared with a 

paired t test. The prediction accuracy of the individual route choice model is significantly higher than 

that of the MNL model (p value: 3*10-8). 

Table 4 Prediction Accuracy of Mixed Logit Model and Multinomial Logit Model on Each Participant 

Participant MNL 

Mixed 

Logit   Participant MNL 

Mixed 

Logit 

1 64.7% 76.5%  23 64.7% 88.2% 

2 76.5% 82.4%  24 76.5% 82.4% 

3 58.8% 82.4%  25 88.2% 94.1% 

4 88.2% 82.4%  26 47.1% 94.1% 

5 100.0% 100.0%  27 82.4% 88.2% 

6 82.4% 94.1%  28 58.8% 100.0% 

7 94.1% 82.4%  29 52.9% 100.0% 

8 70.6% 82.4%  30 52.9% 100.0% 

9 76.5% 100.0%  31 82.4% 94.1% 

10 76.5% 94.1%  32 88.2% 88.2% 

11 58.8% 76.5%  33 100.0% 100.0% 

12 88.2% 94.1%  34 58.8% 70.6% 

13 88.2% 88.2%  35 82.4% 100.0% 

14 70.6% 82.4%  36 70.6% 82.4% 

15 94.1% 94.1%  37 100.0% 94.1% 

16 52.9% 76.5%  38 82.4% 88.2% 

17 64.7% 82.4%  39 82.4% 82.4% 

18 82.4% 100.0%  40 70.6% 94.1% 

19 47.1% 100.0%  41 70.6% 94.1% 

20 76.5% 94.1%  42 64.7% 100.0% 

21 58.8% 94.1%  43 76.5% 82.4% 

22 64.7% 76.5%   44 41.2% 100.0% 

Average 

Prediction 

Accuracy MNL: 73.4%   ML: 89.8% 

 



Given the natures of two types of model, the individual route choice models obtained with ML model 

are expected to have better performances. As analyzed in Table 3, participants’ route choice preferences 

do vary. Facing the same route choice scenario, participants could have different route choice decisions. 

The individual models obtained with ML model considers the heterogeneous preferences thus has 

advantageous performance.  

CONCLUSIONS 

Emerging technologies in the intelligent transportation systems bring up the need to understand driver’s 

preference at the individual level, such as personalized route recommendations or trip planning. This 

paper applied the mixed logit model together with Bayes rule in capturing and predicting drivers’ route 

choice preferences at the individual level. In addition to estimate the distribution of the heterogeneous 

route choice preferences, this paper obtained the specific participant’s route choice preference at the 

individual level. 

A stated preference dataset was used to demonstrate how to estimate the individual route choice 

preference parameters under the mixed logit model and the Bayes rule. The estimation results show that 

participants do have heterogeneous preferences under the same route attribute, even though participants 

have very similar sociodemographic characteristics (i.e. age, education level and driving experiences). 

Their preference regarding “Travel Time” varies most among four route attributes. The results also show 

that participants’ preferences regarding different route attributes have either positive or negative 

correlations as shown in Table 2. At the aggregate level, the mixed logit model has better overall fitness 

(Pseudo-R2: 0.6252) than a regular multinomial logit model (Pseudo-R2: 0.4180). At the individual 

level, the individual route choice model can help researchers and engineers better understand and predict 

the route choice preference of a specific individual driver. The evaluation results show that the 

individual route choice models have 20% higher prediction accuracy than that of a regular multinomial 

logit model.  

With the results of this paper, we demonstrated the mixed logit model’s capabilities in capturing and 

predicting individual’s route choice preferences, and provides a new perspective of modeling individual 

drivers’ route choice behaviors. Recent papers also utilized the mixed logit model to capture intra-

consumer heterogeneous preferences (Ben-Akiva et al., 2015; Hess and Rose, 2009) and proposed a 

mixed heuristic model to capture individual-level preferences (Gonzalez-Valdes and Raveau, 2018). 

These can be explored in the future research for personalized ATIS services. In addition, as the 



applications of personalized route recommendation and trip planning still have other challenges in 

practice, such as the need to update the preference model in real time and some users having limited 

preference data for building model, more modeling approaches will be explored to better serve the 

purposes of personalized route recommendation and trip planning. 
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ABSTRACT 

Current route guidance systems have simplified assumptions about drivers’ route choice preferences and 

cannot adequately accommodate drivers’ heterogeneous route choice preferences. Main challenges that 

route guidance systems do not consider drivers’ heterogeneous preferences include: (i) difficulty in 

acquiring exogenous criteria (e.g., sociodemographic information) that can be used to differentiate 

drivers’ preferences; (ii) difficulty in capturing preference of individuals with limited preference data; 

and (iii) difficulty in updating route choice models in real time as data accumulates. To address these, 

this paper introduces a Multi-Task Linear Classification Model Adaption (MT-LinAdapt) model that 

captures drivers’ common aspects of route choice preferences and yet adapts to each driver’s own 

preference. In MT-LinAdapt, an aggregate level model is updated to capture the common aspects of 

drivers’ route choice preference, while individual drivers’ models are simultaneously adapted from the 

aggregate model to capture each driver’s own preference. MT-LinAdapt was evaluated against three 

existing route choice models including an aggregate model, an individual model and a mixed logit 

model. With three stated preference datasets and three synthetic datasets, MT-LinAdapt’s performance 

was compared to three existing models in two representative scenarios of route guidance applications: (i) 

when users have adequate historical preference data, and (ii) when users have limited historical 

preference data. The evaluation results showed that, with survey datasets, MT-LinAdapt achieved up to 

8% higher prediction accuracy in the adequate data scenario and up to 18% higher prediction accuracy 

in the limited data scenario than the existing models. The advantages of MT-LinAdapt are even greater 

when users’ route choice preferences become more heterogeneous.  



Keywords: Individuals’ Route Choice Preferences; Route Recommendation; Multi-Task Linear 

Classification Model Adaptation; Mixed Logit; Support Vector Machine; Route Guidance System. 

 

INTRODUCTION 

The route guidance system is an important part of Advanced Traveler Information System (ATIS) (Ben-

Elia et al., 2013). A user can obtain information about possible routes connecting his/her origin and 

destination by using a route guidance system and makes an informed decision regarding which route to 

take. Routes are usually recommended based on a single criterion such as the shortest travel time or the 

shortest distance without fully considering the driver’s own preference. Existing route guidance systems, 

such as Google Maps and Waze, typically offer limited options for users to customize his/her own 

preferences. For example, options of avoiding highways, tolls, ferry or dirt roads are available. 

However, many studies have shown that drivers do not make route choices solely based on a single 

criterion such as travel time or distance (Ben-Akiva et al., 1984; Lima et al., 2016), and drivers also 

have heterogeneous route choice preferences (Li et al., 2016). For example, drivers perceive information 

differently (Tawfik et al., 2010; Parthasarathi et al., 2013; Peruch et al., 1989; Matthews, 1981), value 

route attributes differently (Feng et al., August 11, 2; Liu et al., 2007; Perk et al., 2011; Rogers et al., 

1999; Rogers and Langley, 1998) or have various preferences at different time (Amirgholy et al., 2017; 

Liu et al., 2007). In other words, drivers’ heterogeneous route choice preferences were not adequately 

considered in current route guidance systems. The reason that route guidance systems do not consider 

individual driver’s route choice preference is due to some challenges in practice. For example, it is 

difficult for route guidance systems to obtain sociodemographic information or other exogenous criteria 

that existing modeling approaches typically require to differentiate drivers’ preferences. Also, it is 

difficult to capture the preferences of users who have a limited amount of preference data, and it is 

difficult for route guidance systems to update captured preference efficiently when more preference data 

accumulates, and so on. Therefore, this paper focuses on the problem of how to tackle these challenges 

and consider each individual driver’s route choice preference for route recommendations in route 

guidance systems.  

It is important to consider each individual user’s route choice preference in a route guidance system. The 

first reason is to improve users’ satisfactions by providing route recommendations that users would like 

to take. Amirgholy et al. (Amirgholy et al., 2017) found that, in around 60% of trips that drivers use 



route guidance service, drivers either do not like the suggested routes before the trips were started or 

change to other routes during their trips. Some drivers also mentioned the experience of ignoring 

suggested turns until the route guidance system re-calculated a route that avoids a certain area in the city 

(The user’s preference was to avoid that area) (“How does the navigation system choose a route?,” n.d.). 

If each individual’s specific route choice preference can be properly considered in the route guidance 

system, these phenomena could be largely mitigated. The other even more important reason is to 

improve the transportation system performance. Considering individual driver’s route choice preference 

can increase driver’s compliance with route guidance and thus improve network performance, especially 

when recommendations are made for improving the system performance. Several studies have shown 

that driver’s compliance rate to recommendations has significant impacts on network modeling accuracy 

(Wang et al., 2017) and a high compliance rate is a requirement for improving road network 

performance (Bifulco et al., 2007; Domenico et al., 2015; Paz and Peeta, 2009). A higher compliance 

rate means drivers should be more likely to take the suggested routes. In other words, the route guidance 

system has to consider users’ route choice preferences in order to achieve a higher compliance rate and 

better system performance, especially when the guidance was made for improving the network 

performance, such as giving guidance for avoiding traffic congestion (Bazzan and Klügl, 2005), 

achieving a system optimum goal (Klein et al., 2018), reducing system-wide delay (Ma et al., 2016), 

efficiently reallocating system capacity (Adler and Blue, 2002) and even providing personalized 

sustainable travel incentives (Azevedo et al., 2018).  

Many researchers have studied drivers’ route choice preferences. To capture and describe drivers’ route 

choice preferences, researchers developed various route choice models. Given the focus of this paper is 

how to consider individual driver’s route choice preference and provide better route guidance service 

that every individual user may like, existing route choice models are divided into three types in this 

paper according to the data used for establishing models. The three types of models are aggregate route 

choice models which are based on preference data at the aggregate level, individual route choice models 

which are based on individual user’s own preference data, and mixed logit models that combine both 

aggregate and individual levels data. Each of them is described in this section. 

Aggregate Route Choice Models 

Aggregate models are established based on route choice preference data from a group of representative 

drivers. Data collected from all drivers are put together to build a model that can be applied to everyone. 



It usually comes with an assumption that drivers who have the same sociodemographic characteristics 

would share the same route choice preference (Ben-Akiva and Lerman, 1985). Therefore, 

sociodemographic characteristics such as age, gender, income, etc. are also included in the model as 

criteria to differentiate drivers’ route choice preferences. Following this concept, aggregate models are 

established with different modeling approaches, including discrete choice models and machine learning 

methods. Discrete choice model family calibrates drivers’ utility functions and calculate an individual 

driver’s probability of choosing alternative routes, such as multinomial logit models (Ben-Akiva and 

Lerman, 1985; Prato, 2009). Machine learning methods treat a route choice decision as a classification 

problem in the sense of classifying a route into the category of choosing or not choosing. Different 

machine learning methods that have been investigated by researchers for route choice modeling include 

neural network (Yang et al., 1993), hybrid route choice model (Peeta and Yu, 2005), support vector 

machine (Lee and Li, 2016; Sun and Park, 2017), decision tree (Park et al., 2007) etc. Some of these 

machine learning techniques were compared with traditional discrete choice models in traveler behavior 

study and sometimes showed better performances (Yamamoto et al., 2002; Zhang and Xie, 2008). 

Another variation of aggregate route choice models is the multi-class route choice model. It usually first 

divides drivers into different groups based on certain criteria (for example learning and choice evolution 

pattern) and then build a model for each group (Peeta and Yu, 2004; Tawfik and Rakha, 2013). Drivers 

within the same group share the same route choice preference. Therefore, with aggregate route choice 

models, drivers with same sociodemographic characteristics or belonging to the same class have the 

same possibilities of choosing alternative routes. 

The application of route guidance provides route recommendations to individual drivers. Using 

sociodemographic information to differentiate drivers’ preferences make aggregate models lack  

sufficient preference heterogeneity to accurately predict each user’s route choice preference, as drivers 

who have the same sociodemographic characteristics can still have different route choice preferences. In 

addition, users’ sociodemographic information is required when applying aggregate models to predict 

users’ route choice decisions. However, it is not easy to obtain some sociodemographic information in 

route guidance process due to privacy concerns, for example, age, income level, education, household 

structure, profession, number of cars in family, etc., which are usually included in aggregate route 

choice models (Jan et al., 2000). Aggregate models divide drivers into different classes with different 

preferences based on any other exogenous criteria such as learning patterns. However, it is difficult to 



pick proper criteria for making segmentations (Hensher and Greene, 2003; Peeta and Yu, 2004) and the 

heterogeneity existing within a class is still difficult to determine. 

Individual Route Choice Models  

Individual models are established based on individual driver’s own route choice preference data. With 

emerging information and communication technologies, it is possible for route guidance systems to 

collect route choice preference data at an individual driver’s level. The data is usually collected from 

each single driver by observing his/her route choice behaviors from multiple either stated or realistic 

route choice scenarios (Mahmassani et al., 2013). Route choice models can be established for each user 

based on his/her own preference data. Therefore, it does not require segmenting drivers into different 

groups based on either sociodemographic characteristics or other exogenous criteria.  

The individual route choice models are most commonly used in the personalized route guidance  (Nadi 

and Delavar, 2011; Pahlavani et al., 2012; Pahlavani and Delavar, 2014; Liu et al., 2014). Rogers et al. 

(1999; 1998) collected stated preference route choice data from 24 participants and used the method of 

differential perceptron to capture individual participant’s preference. Park et al. (2007) generated route 

choice data from simulation and used decision tree to model individual “driver’s” adaptive route choice 

preference. Nadi and Delavar (2011) conducted a survey among 32 tourists and used a pairwise 

comparison method and an ordered weighted averaging method to incorporate their different route 

choice preferences. In Pahlavani and Delavar’ research ( 2014), a participant selected the criteria, rating 

scale and then rated a sample route set to get the initial training data. The data was used to train a linear 

neuro-fuzzy model to learn the driver’s route selection decisions.  

Individual route choice models can capture heterogeneous route choice preference to the maximum 

extent. However, in order to build a valid or meaningful individual route choice model, it requires a 

certain amount of data. The data amounts that were used by researchers for building individual models 

have values of 675 accumulated trips (Park et al., 2007) and 232 driver-rated virtual routes (Pahlavani 

and Delavar, 2014). In real life, it might take a certain length of time to get this amount of data. In 

practice, drivers may give up using a new route guidance system after several times of unsatisfied 

experiences, so the prediction accuracy of the route guidance system should be good when only several 

trips’ (for example, 5 to 6 trips) preference data is available. In addition, an individual route choice 

model is built based on subject driver’s historical preference data. When new trip scenarios are not 

covered by historical data, it is very likely that the model does not work well in the new scenarios. In 



reality, drivers’ preference could vary with different trip purposes, different departure time, and different 

distances, etc. It is impossible to collect the data that cover all possible trip characteristics of any 

particular driver may face.  

Mixed Logit Models  

Mixed logit models belong to discrete choice model family. Mixed logit models treat each utility 

function coefficient as a random parameter following certain distribution and thus account for the 

heterogeneous preferences in population. They utilize the data from all sampled drivers to estimate 

distribution parameters at the aggregate level and also utilize a particular driver’s own data to adapt to 

his/her taste. Mixed logit models have been used in modeling drivers’ route choice behaviors and are 

considered more realistic because of their capabilities of considering heterogeneous preferences (Ben-

Elia and Shiftan, 2010; Greene and Hensher, 2003; Han et al., 2001; Liu et al., 2004; Razo and Gao, 

2013; Tian et al., 2012). Recently, Amirgholy et al., (2017) proposed an advanced travelers navigation 

system with a dynamic mixed logit model which can adapt to individual driver’s preference, but the 

performance of their proposed model was not demonstrated yet. Also, existing literature using mixed 

logit models for route choice modeling did not explore their performance at individual driver’s level, 

which is essential to the application of route guidance. Meanwhile, mixed logit models were used in 

other domains to analyze preferences at the individual level (Revelt and Train, 1998; Train, 1998). 

Therefore, mixed logit models have potential to be used for capturing route choice preference at the 

individual level. However, mixed logit models also have some unideal features for solving the research 

question of this paper, such as they are usually solved with simulation methods (Han et al., 2001; Revelt 

and Train, 2001). Simulation method has the vulnerabilities such as the sacrifice of model accuracy and 

being inefficient to calculate. The estimated results could be affected by the number of random draws 

used in the simulation and the way to conduct random draws (Train, 2009).  

As discussed above, to capture individual drivers’ route choice preferences in route guidance systems, 

three types of existing modeling approaches have their own limitations in tackling the challenges of 

existing route guidance systems. Aggregate route choice models have assumptions that drivers’ 

preferences can be distinguished with sociodemographic characteristics or other criteria and require 

those data when applying the models. The assumption and requirement limit aggregate models’ 

capabilities of incorporating user’s heterogeneous preferences. Individual route choice models require a 

certain amount of and enough coverage of a user’s historical preference data.  A model established 



based on personal historical data may not work well in new scenarios. As to mixed logit models, using 

the simulation method for model estimation could be inefficient or damage models’ accuracies.   

Research Objective 

When looking at drivers’ route choice preferences in the real world, drivers share some homogeneous 

aspects of route choice preferences (e.g., all drivers like the route with shorter travel time) and 

meanwhile each driver has his/her own emphasis (e.g., some drivers prefer routes with less cost while 

others like more expensive but more reliable routes). For applications of route guidance which need to 

provide recommendations to each individual user, a possible approach is to capture the homogenous part 

of drivers’ route choice preferences and adapt to individual’s route choice preference at the same time. 

Meanwhile, any changes or new contributions from individual’s preference should be updated to 

aggregate homogeneous part of preferences. Following this concept, this paper introduces Multi-Task 

Linear Classification Model Adaptation (MT-LinAdapt), a route choice modeling approach that was 

designed to identify the homogeneous route choice preference for all drivers and also capture the 

heterogeneous route choice preference existing among individuals. Thus, the model is expected to 

overcome the limitations of existing route choice models in the application of route guidance and 

provide better route recommendations to each individual user based on his/her own preference.  

MT-LinAdapt is expected to have following featured capabilities: 

 Does not need exogenous criteria such as sociodemographic characteristics to differentiate 

drivers’ heterogeneous preferences; 

 Works well when an individual driver has a limited amount of preference data; 

 Capable of being updated in real time as additional data accumulates; 

 Allowing drivers have own unique preference in route guidance systems; 

 Compatible with any linear classification models. 

The rest of the paper is organized as follows. The MT-LinAdapt model is firstly introduced in the 

Methodology section. Then, three groups of data collected from stated preference surveys are discussed 

in the Survey and Data section. In the Model Comparison section, two comparison scenarios are set up 

and three commonly used existing route choice models are selected for comparison. The implementation 

of MT-LinAdapt and selected existing models are discussed. Then, the performance of the MT-



LinAdapt model against selected existing models is evaluated in the Results Analysis section. At last, 

some discussion and conclusions are made. 

METHODOLOGY 

This paper introduces the MT-LinAdapt model which is expected to tackle the challenges of considering 

individual driver’s preference in route guidance systems. MT-LinAdapt roots in social psychology 

theories and treats the formation of sentiment as a social norm (Gong et al., 2016). With the social norm 

theory, individual’s opinion or decision usually is largely affected by other society members’ opinions. 

Thus, members of the society have common criteria used to make decisions or form opinions. 

Meanwhile, each member has his/her own preference that is different from other member’s. Members 

influence each other and the social norm of the whole society tends to shift or evolve. Based on how 

social norm forms and evolves, MT-LinAdapt tries to minimize the error rates of sentiment 

classification at the individual level and the aggregate level together by defining it as a joint 

optimization problem. 

It is generally understood that drivers’ route choice preferences follow a kind of social norm. Drivers 

tend to have some common criteria to choose one route over the others, while each individual driver has 

his/her own emphasis that is different from other drivers. Given a group of drivers, MT-LinAdapt can 

identify the homogeneous route choice preference across all drivers (for example, all drivers like the 

route with shorter travel time), then capture the heterogeneous route choice preference existing among 

individuals (for example, some drivers prefer routes with less cost while others like more expensive but 

more reliable routes). Instead of requiring drivers’ sociodemographic characteristics or other criteria to 

differentiate their route choice preferences, the MT-LinAdapt model adapts the aggregate route choice 

preference to an individual level so that individuals’ preference can be captured. Meanwhile, the change 

of individual drivers’ preference could lead to drivers’ aggregate preferences shifting and evolving. 

These shifting and evolving can also be captured by MT-LinAdapt. 

Therefore, there are two adaptation processes: the adaptation from the aggregate preference to individual 

preference, and the adaptation of the aggregate preference. A linear classification model typically has a 

form of 𝑦 = 𝑠𝑖𝑔𝑛(𝒘𝑿 + 𝑐) in which 𝒘 is a weight vector, 𝑿 is the feature vector, c is the intercept and 

y is the predicted classification label. 𝑿 contains the attributes of alternative routes in route choice 

scenario. 𝒘 indicates how important each route attribute is. At the aggregate level of MT-LinAdapt, all 



drivers share the same weight vector, 𝒘𝒔, which is a k dimensional vector. k is the number of route 

attributes that affects drivers’ route choice decisions.  

When adapting the aggregate preference into the individual level, all individuals’ weight vectors can be 

obtained by: 

𝑾 = [𝒘𝟏, 𝒘𝟐, … , 𝒘𝒊, … ,𝒘𝒏] = [

𝑤11 𝑤21 …
𝑤12 𝑤22 …

𝑤𝑖1 … 𝑤𝑛1
𝑤𝑖2 … 𝑤𝑛2

⋮ ⋮ ⋱
𝑤1𝑘 𝑤2𝑘 …

⋮ ⋱ ⋮
𝑤𝑖𝑘 … 𝑤𝑛𝑘

] = [𝒘𝒔, 𝒘𝒔, … , 𝒘𝒔] ∘ 𝑨𝒖 + 𝑩𝒖 

 

= [

𝑤𝑠1 𝑤𝑠1
𝑤𝑠2 𝑤𝑠2

⋯ 𝑤𝑠1
⋯ 𝑤𝑠2

⋮ ⋮
𝑤𝑠𝑘 𝑤𝑠𝑘

⋱ ⋮
⋯ 𝑤𝑠𝑘

] ∘ [

𝑎11 𝑎21
𝑎12 𝑎22

⋯ 𝑎𝑛1
⋯ 𝑎𝑛2

⋮ ⋮
𝑎1𝑘 𝑎2𝑘

⋱ ⋮
⋯ 𝑎𝑛𝑘

] + [

𝑏11 𝑏21
𝑏12 𝑏22

⋯ 𝑏𝑛1
⋯ 𝑏𝑛2

⋮ ⋮
𝑏1𝑘 𝑏2𝑘

⋱ ⋮
⋯ 𝑏𝑛𝑘

]   (1) 

W is the matrix in which column i represents Driver i’s weight vector. Each weight vector contains k 

elements corresponding to the weights for k route attributes. Each driver’s weight vector is obtained by 

scaling and shifting the aggregate preference, 𝒘𝒔.  Based on individual driver’s preference data, the 

scaling and shifting operations for different drivers are different. ai and bi in Matrix Au and Bu represent 

the specific adaptation operations based on driver i’s preference data. ∘ represents the operation to 

calculate the entry-wise product of two matrices.  

Since the aggregate preference evolves when individual drivers’ preference changes, 𝒘𝒔 also adapts to 

capture the preferences changing in preference data. Therefore, the similar adaptation process can be 

conducted to 𝒘𝒔 as well.  

𝒘𝒔 = 𝒘𝟎 ∘ 𝑨𝒔 + 𝑩𝒔 = [

𝑤01
𝑤02
⋮
𝑤0𝑘

] ∘ [

𝑎𝑠1
𝑎𝑠2
⋮
𝑎𝑠𝑘

] + [

𝑏𝑠1
𝑏𝑠2
⋮
𝑏𝑠𝑘

] (2) 

𝒘𝟎 is a k dimensional vector representing a prior weight vector which can be obtained by building a 

model based on a dataset consists of a small portion from every individual's data. Any linear 

classification model can be incorporated into Equation (1) and Equation (2). Depending on the specific 

classification model, the problem becomes to find the Au, Bu, As and Bs that can minimize the prediction 

errors at both aggregate and individual levels. 



To demonstrate how MT-LinAdapt works, this paper adopts logistic regression as the linear 

classification model with a binary route choice scenario to show how Au, Bu, As and Bs can be obtained. 

It is noted that MT-LinAdapt can incorporate other linear classification models and can be extended to 

scenarios with multiple alternatives. When using individual drivers’ weights in Logistic Regression, the 

probability of choosing alternative 1 for driver i (i=1,2,…,n) in scenario j is: 

𝑃𝑖𝑗(𝑦 = 1|𝒙𝒋) =
exp(𝒘𝒊𝒙𝒋𝟏)

exp(𝒘𝒊𝒙𝒋𝟏) + exp(𝒘𝒊𝒙𝒋𝟎)
 

=
exp ((𝒂𝒊 ∘ 𝒘𝒔 + 𝒃𝒊)𝒙𝒋𝟏)

exp ((𝒂𝒊 ∘ 𝒘𝒔 + 𝒃𝒊)𝒙𝒋𝟏) + exp ((𝒂𝒊 ∘ 𝒘𝒔 + 𝒃𝒊)𝒙𝒋𝟎)
 

=
exp ((𝒂𝒊(𝒘𝟎 ∘ 𝑨𝒔 + 𝑩𝒔) + 𝒃𝒊)𝒙𝒋𝟏)

exp ((𝒂𝒊(𝒘𝟎 ∘ 𝑨𝒔 + 𝑩𝒔) + 𝒃𝒊)𝒙𝒋𝟏) + exp ((𝒂𝒊(𝒘𝟎 ∘ 𝑨𝒔 + 𝑩𝒔) + 𝒃𝒊)𝒙𝒋𝟎)
                     (3) 

Xj includes route attributes that driver i experienced in route choice scenario j. 𝒙𝒋𝒎 is the route attributes 

of alternative m (m=0 or 1). Therefore, Au, Bu, As and Bs can be retrieved by maximizing log-likelihood. 

The log-Likelihood function for driver i with all scenarios that he/she experienced is:  

𝐿𝑖(𝒂𝒊, 𝑨𝒔, 𝒃𝒊, 𝑩𝒔) = ∑ [𝑦𝑗𝑙𝑜𝑔𝑃𝑖𝑗
𝐽
𝑗=1 (𝑦𝑗 = 1|𝑥𝑗) + (1 − 𝑦𝑗)𝑙𝑜𝑔𝑃𝑖𝑗(𝑦𝑗 = 0|𝑥𝑗)] (4) 

in which 𝑦𝑗 is the user’s choice in scenario j. As the MT-LinAdapt model tries to fit each individual 

driver’s preference, it can be very sensitive to individual’s historical data. This could lead to overfitting 

when a particular driver has very limited data (for example, 1 or 2 observations). In other words, the 

model can fit very limited data well but fails to capture this driver’s general preference. To avoid this 

overfitting issue, regularization terms are added to both the individual level (5a) and the aggregate level 

(5b), as shown below. 

𝑅(𝒂𝒊, 𝒃𝒊) =
1

2
𝜂1(𝒂𝒊 − 𝑰)

𝑇(𝒂𝒊 − 𝑰) +
1

2
𝜂2𝒃𝒊

𝑇𝒃𝒊  (5a) 

𝑅(𝑨𝒔, 𝑩𝒔) =
1

2
𝜂3(𝒂𝒔 − 𝑰)

𝑇(𝒂𝒔 − 𝑰) +
1

2
𝜂4𝒃𝒔

𝑇𝒃𝒔  (5b) 

The regularization terms are added to the log-likelihood function as penalties. They penalize the log-

likelihood function when Au, Bu, As and Bs deviate too much from keeping weights unchanged, in other 

words, scaling weight vectors by 1 and shifting weight vectors by 0. Therefore, taking N drivers’ 

preference data together, the objective function is: 



max 𝐿(𝑨𝒏, 𝑩𝒏, 𝑨𝒔, 𝑩𝒔) = ∑ [𝐿𝑖(𝒂𝒊, 𝒃𝒊)
𝑁
𝑖=1 − 𝑅(𝒂𝒊, 𝒃𝒊)] − 𝑅(𝑨𝒔, 𝑩𝒔) (6) 

Which can be efficiently solved by a gradient-based optimizer. The parameters η1, η2, η3 and η4 need to 

be tuned to make the model work the best. This problem can be viewed as a joint maximization problem. 

The problem is converted to find the Au, Bu, As and Bs that maximize the log-likelihood function. 

Equation (6) can be used to estimate MT-LinAdapt with all users’ data together. In practice, as more 

preference data accumulates, route guidance systems need to update MT-LinAdapt in real time so that 

users’ preference could be accurately captured. Considering the tremendous data that might be handled 

by route guidance systems, retraining the whole model may not be an efficient option. MT-LinAdapt can 

be updated in real time when more data accumulates. Equations (7) to (10) demonstrate how to update 

feature k’s weight at both individual and aggregate level. For example, a driver i has a new data 

observation (xj,yj). His/her weight for feature k can be updated with Equations (7) and (8). The impacts 

of this individual’s new observation on aggregate weight can be obtained with Equations (9) and (10). 

𝜕𝐿(𝑨𝒖, 𝑨𝒔, 𝑩𝒖, 𝑩𝒔)

𝜕𝑎𝑖𝑘
= ∆𝑖𝑗(𝑎𝑠𝑘𝑤0𝑘 + 𝑏𝑠𝑘)𝑥𝑗𝑘           (7) 

𝜕𝐿(𝑨𝒖, 𝑨𝒔, 𝑩𝒖, 𝑩𝒔)

𝜕𝑏𝑖𝑘
= ∆𝑖𝑗𝑥𝑗𝑘           (8) 

𝜕𝐿(𝑨𝒖, 𝑨𝒔, 𝑩𝒖, 𝑩𝒔)

𝜕𝑎𝑠𝑘
= ∆𝑖𝑗𝑎𝑖𝑘𝑤0𝑘𝑥𝑗𝑘          (9) 

 

𝜕𝐿(𝑨𝒖, 𝑨𝒔, 𝑩𝒖, 𝑩𝒔)

𝜕𝑏𝑠𝑘
= ∆𝑖𝑗𝑎𝑖𝑘𝑥𝑗𝑘           (10) 

 

in which ∆𝑖𝑗= 𝑦𝑗 − 𝑃𝑖(𝑦𝑗 = 1|𝒙𝒋). With Equations (7) to (10), MT-LinAdapt can efficiently capture 

drivers’ evolving route choice preferences.  

 

 

 



SURVEY AND DATA 

Ideally, for route choice behavior study, drivers’ historical preferences data should be collected from 

real route guidance systems including recommended route sets, route attributes and drivers’ final route 

choice decisions. A driver’s final route choice decision could be obtained by checking his/her travel 

profile which is available in some route guidance service providers, such as Google Maps or Waze. The 

driver’s final choice can be captured by analyzing his/her GPS trajectory, as proven by several 

researchers (Derevitskiy et al., 2016; Herring, 2010). However, the recommended route sets and 

associated route attributes of each alternative are practically impossible to be accessed by researchers. It 

imposes difficulties of using revealed preference data for the analysis at the current stage. To obtain the 

route choice preference data that can represent drivers’ historical preference data when using route 

guidance systems, stated preference surveys were designed to collect data. Once there are promising 

results, more efforts can be put later into collecting revealed preference data while using real world route 

guidance systems. 

Stated Preference Datasets 

We have collected the route choice preference data through three stated preference surveys. By showing 

participants recommended routes with associated information and recording their choices in the 

questionnaires, basic data components that can be accumulated in route guidance systems were obtained. 

Three surveys were designed and conducted by following the same design procedure. In order to 

generate realistic survey scenarios, the basic procedure used for survey design was to check the traffic 

information on a current popular navigation system (Google Maps) and include adequate variations for 

survey questions. Then, origin and destination (OD) pairs at three distance levels were chosen from local 

areas. Each OD pair has two to three recommended alternative routes in Google Maps. The questions in 

all surveys were binary route choice scenarios. The details are discussed as follows. 

In the survey Dataset 1, route attributes considered include Distance, Travel Time, Possible Longest 

Travel Time, Number of Controlled Intersections and Fuel Cost. The information about these attributes 

was checked on Google Maps within a day and across days of the week to have realistic values as well 

as adequate variations, except Fuel Cost was calculated based on Equation (11). The fuel efficiency of 

Ford vehicles ranging between 22 and 32 miles per gallon was used. Based on this, three levels of fuel 

efficiencies, 22, 27 and 32 miles per gallon, were used to calculate fuel costs. 



𝐹𝑢𝑒𝑙 𝑐𝑜𝑠𝑡 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐹𝑢𝑒𝑙 𝑒𝑓𝑓𝑐𝑖𝑒𝑛𝑐𝑦
∗ 𝐹𝑢𝑒𝑙 𝑝𝑟𝑖𝑐𝑒        (11) 

 

Taguchi design in Minitab (14) was used to make an experiment design including eight variables with 

each having three levels. The survey contained three scenarios like this. In total, there were 81 questions 

for three scenarios. Scrutinizing efforts were made to eliminate dominated questions in which one route 

was absolutely superior to the other in every aspect. Finally, 74 questions were left to form the final 

questionnaire. All the questions were shuffled before showing to participants. The trip purpose of this 

survey was for a casual trip. 

Dataset 2 and Dataset 3 were collected from another two stated preference surveys which were designed 

following the same procedure, except that they had different route attributes in survey questions. Route 

attributes considered in Dataset 2 include Distance, Travel Time, Number of Controlled Intersections 

and Pedestrian Level. Information about the first three attributes was obtained in the same way as the 

first survey. Pedestrian Level had two levels: high and low. Taguchi design generated 81 survey 

questions. The trip purpose of this survey was assumed to be a casual trip. In Dataset 3, route attributes 

included Distance, Travel Time, Possible Longest Travel Time and Number of Controlled Intersections. 

Following the same procedure, information of these attributes was obtained. After applied the 

experiment design, 81 survey questions were generated and scrutinized in order to remove the dominant 

questions. Eventually, 63 survey questions were kept in the final survey questionnaire. The trip purpose 

was assumed to be commute trips. 

Three datasets in total were collected from 102 participants. As noted, three datasets were collected from 

three different groups of participants with different trip purposes. Therefore, preference reflected from 

each dataset could be different. Dataset 1 was collected from 28 participants who were mostly 

undergraduate students at the University of Virginia. The participants were invited to sit in a driving 

simulator and were shown with the information about two routes. They were asked to choose the routes 

that they prefer and their choices were recorded.  Each subject went through all 74 survey questions 

(except one participant only finished 60 questions). The stated preference surveys of Dataset 2 and 

Dataset 3 were conducted as online surveys. The linkages of online questionnaires were sent to 

participants who volunteered for the surveys. The participants were informed with the time the survey 

would take and were asked only to participate if they would take their time and answer the questions to 



the best of their ability. 44 and 30 participants took part in each survey, respectively. Most of the 

participants were students of the University of Virginia. In the surveys, efforts were made to ensure 

answers quality such as including repeated questions or dominant questions. 

Synthetic Datasets 

In reality, heterogeneity of drivers’ route choice preferences varies. The most homogeneous situation is 

that every driver has the same preference, namely, they care about the same route attributes with the 

same importance when making route choice decisions. The most heterogeneous situation is that 

everyone values different route attributes with different importance when making route choice decisions. 

Drivers’ preferences in the real world would be in between of these two extreme cases. The most 

homogeneous case, however, is not likely to happen and would be easy to model. On the other hand, the 

most heterogeneous case is not likely but could happen. Given most survey participants are college 

students in this research, the route choice preferences contained in the survey data could be less 

heterogeneous than real world with general drivers. Thus, synthetic datasets were made based on the 

survey questions to generate datasets with more heterogeneous preferences. 

To generate a group of synthetic drivers with more heterogeneous preferences than stated preference 

datasets, each synthetic driver was assumed to only care one or a combination of route attributes (the 

number of route attributes considered could be 1, 2, 3… k, where k is the maximum number of attributes 

that a survey contains). For example, a synthetic driver was assumed to only care the attribute of Travel 

Time, then his/her responses to the survey questions would be the routes with shorter travel time. 

Another synthetic driver who cares the attribute combination of Travel Time and Fuel Cost would 

choose the route with shorter travel time and cheaper fuel cost. When criteria have conflicts, namely one 

route has shorter travel time but the other has lower cost, this synthetic driver would take one of the 

routes randomly.  

Synthetic drivers with synthetic preferences went through three survey questionnaires and generated 

three sets of data. Given the number of attributes considered in each dataset and the possible 

combinations of attributes that synthetic drivers care about, synthetic Dataset 1 has 30 synthetic drivers. 

Synthetic Dataset 2 and Synthetic Dataset 3 have 14 synthetic drivers. Their responses were also used in 

later analysis to represent more heterogeneous cases than stated preference datasets based on college 

students. 



MODEL COMPARISONS 

Comparison Scenarios 

Two representative application scenarios of route guidance systems were set up to evaluate the MT-

LinAdapt model. To consider individual drivers’ route choice preferences in route guidance systems, 

these two scenarios represent the possible challenges that route guidance systems facing. 

Scenario 1: Users have adequate historical preference data  

This scenario represents a challenge that route guidance systems are facing in practice, namely long term 

users have adequate historical data but their sociodemographic information is not available possibly due 

to privacy concerns. In this scenario, the historical data covers a particular user’s preference regarding 

most of possible trips with different levels of route attributes (such as distance, travel time, and etc.), 

different time of day, different trip purposes, and so on.  

Scenario 2: Users have limited historical preference data  

This scenario represents a challenge that there is a very limited amount of historical data for an 

individual user, for example, a new user or a tourist just starts using the route guidance system or the 

route guidance system just starts operation. It is difficult for the route guidance system to learn this 

particular driver’s preference with a limited amount of data, for instance, just using the route guidance 

system for 5 to 6 trips. How to generate good route recommendations with the limited amount of data at 

this point is very important, because it is essential to guarantee users’ satisfaction so that the system 

could keep its users. 

Select Commonly Used Existing Models for Comparison 

To have a better understanding regarding MT-LinAdapt model’s performance, three representative 

existing models were selected to compare with it. Based on existing types of route choice models as 

reviewed in the Introduction section, an aggregate model, an individual model and a mixed logit model 

were selected for comparison. One of commonly used machine learning methods, Support Vector 

Machine (SVM), was chosen here to build the aggregate and the individual route choice models, as 

researchers have used it for many traveler behavior analysis such as route choice and mode choice 

modeling (Lee and Li, 2016; Sun and Park, 2017; Zhang and Xie, 2008). SVM demonstrated good 

performance in these applications. The concept of SVM is to map the data points into high dimensional 



space and find a hyperplane which can separate the points belonging to different categories. The 

estimation of SVM model is to maximize the distance of all data points to the separation plane. Readers 

could refer to several literatures (Steinwart and Christmann, 2008; Zhang and Xie, 2008) for detailed 

objective functions and constraints. A mixed logit model was also selected for comparison. It allows 

users’ preferences regarding a route attribute following a certain distribution. With all users’ data, 

parameters of the preference distribution can be estimated (e.g., with an assumption of normal 

distribution, the mean and the standard deviation are parameters to be estimated). Based on the 

estimated distributions, individual’s expected preference regarding certain route attribute can be 

obtained with Bayes’ rule. For a detailed explanation, readers can refer to Chapter 6 and Chapter 11 of 

Discrete Choice Method with Simulation (Train, 2009). 

Data Preparation 

Each dataset was divided into training data and testing data. The training data was used for establishing 

models and the testing data was used for evaluating the performance of the established models. Training 

data and testing data were developed from each of the six datasets. 20% of each individual participant’s 

data was randomly selected as testing data. All established models are to be tested on each participant’s 

testing data to see models’ performance on each individual user. The rest 80% data of each individual 

was used to form the training data for different types of route choice models.  

For aggregate models, all participant’s training data in each dataset was put together as the training 

dataset. Each route choice observation was considered as an independent data point. Neither 

sociodemographic data nor participant’s identification was included. This training dataset was used for 

building aggregated SVM models.  

For individual models, each participant’s training data was used alone to build a route choice model for 

him/herself. This training dataset was used to build individual SVM models. 

As to MT-LinAdapt and mixed logit models, their training data was formed with aggregate models’ 

training data with an additional column indicating participants’ identity number.  

All datasets were standardized by each route attribute. To be more specific, in each dataset, each column 

contains the values of a route attribute. Each value in a column was subtracted from the column mean 

and divided by the column standard deviation. The datasets after standardization were used for later 

model training and testing. 



The random divisions between training and testing data were conducted fifty times to avoid data 

divisions’ impacts on model performance. For each time of data division, models established based on 

training data were tested on each individual’s testing data. The performance measurement used here is 

prediction accuracy which is defined as the percentage that model’s predicted choices match a 

participant’s actual choices. With fifty times of data division, each model has fifty prediction accuracies 

for each individual. The average prediction accuracy for each individual was used for final model 

comparisons. 

For Scenario 1 comparison, all training data which represents adequate amount data was used for 

building models. For Scenario 2 comparison, each individual participant’s testing data was still kept for 

testing models’ performance, but the training data was randomly divided into ten groups with each 

group having only 10% of training data. Then, the MT-LinAdapt model, as well as other commonly 

used existing models, were established with gradually increased percentages of data, namely 10%, 20%, 

30%...100% of training data. Therefore, the minimum amount of data that was used for the model 

development was 10% of the training dataset. That is equivalent to around 5 to 6 data points per 

participant in our datasets. In practice, route guidance systems could either obtain users’ preferences by 

analyzing user’s first 5 to 6 trips or asking each user 5 to 6 stated preferences questions when users sign 

up for the service. 

Model Implementation  

The application details of MT-LinAdapt and three commonly used existing models were elaborated in 

this section.  

Support Vector Machine (SVM) 

The Sklearn package with Python was used for training SVM. Since SVM models with linear kernel 

function have decent performance in travelers’ behavior study (Zhang and Xie, 2008; Lee and Li, 2016; 

Sun and Park, 2017), the linear kernel function was adopted for the SVM model in this research.  

SVM has a penalty parameter that needs to be determined with cross validation. The range explored in 

the cross validation is a geometric sequence from 10-5 to 105 by a factor of 10, which is a commonly 

used range for penalty parameter in SVM (Ben-Hur and Weston, 2010). The training data was further 

split into five groups. Each group was used as validation data once on all possible values. This random 



split was conducted five times. The value with highest average performance on validation data was 

selected to be the penalty parameter value. 

SVM was used to establish both aggregate models and individual models, therefore it was applied to 

training datasets prepared for aggregate models and individual models, respectively. Two types of 

models were tested on each individual user’s testing data to obtain the prediction accuracies of the 

aggregate models and the individual models. 

Mixed Logit Model 

Software R with the gmnl package (Sarrias and Daziano, 2017) was used to estimate the mixed logit 

model. The package was chosen because it can output random parameters’ distributions in terms of 

means and standard deviations among sampled data, as well as model coefficients at the individual level. 

The utility model’s coefficients for each individual participant were used to predict this participant’s 

choices in his/her testing data.  

Two settings for the mixed logit model should be determined before model estimation, including the 

parameters’ distributions and the number of draws used in the simulation. Each of them was discussed in 

detail as follows. 

Each random parameter follows an underlying distribution among the population. The type of the 

distribution should be defined before estimating mixed logit models. Common distributions that were 

used in transportation include normal distribution, lognormal, uniform and triangular (Hensher and 

Greene, 2003). Hensher and Greence (2003) suggested using empirical distributions that were observed 

from data. The process is to possibly obtain the parameter estimate for each sampled individual and then 

plot everyone’s parameter estimates so that a distribution shape could be observed. Kernel density 

estimator was used to plot each parameter’s distribution in the dataset. The shape was observed to obtain 

the underlying distribution for each parameter among participants. Following the same procedure 

(Hensher and Greene, 2003), final settings for most parameters were normal distributions, except 

“Pedestrian Level” in Dataset 2 and “Fuel Cost” in Dataset 1 using uniform distributions. One thing 

should be noted is that the shape of “Numbers of Controlled Intersections” in Dataset 1 looks more like 

a lognormal distribution. However, the starting values in the estimation process were difficult to find, 

which appears to be a common issue for lognormal distribution in mixed logit models (Train, 2009; Han 



et al., 2001), so the parameter of “Number of Controlled Intersections” was also assumed to follow a 

normal distribution. 

The number of random draws used for calculating simulation probabilities could influence model 

accuracies. As discussed by many researchers (Hensher and Greene, 2003; Revelt and Train, 2001; Han 

et al., 2001), random draws were made to calculate the simulated likelihood. A large number of random 

draws can take a long time and make the estimation not efficient. A small number of random draws may 

not be enough to estimate accurate preference. Therefore, a sufficient number of random draws of 1000 

was made. Halton draw was used in the estimation (Train, 2009).  

With the observed coefficients’ distributions and the number of random draws, the mixed logit models 

were established for each dataset and associated individual route choice preferences were generated as 

well. With estimated individual’s utility function, his/her route choices in the testing dataset were 

predicted and compared with their actual choices.  

MT-LinAdapt Model  

The MT-LinAdapt model described in the Methodology section was coded with Java. In the training 

process, four parameters η1, η2, η3 and η4 in Equation (5) need to be determined with cross validation. 

The ranges of these parameters are the same, namely from 0.1 to 1 with the step of 0.1. To reduce the 

efforts of cross validation process, four parameters were divided into two groups and parameters in the 

same group were adjusted together. The combination with the best performance was used for final 

model building. With the parameters selected, the MT-LinAdapt models were established based on 

training data and tested on each individual user’s testing data. 

RESULTS ANALYSIS  

Two possible challenging scenarios of route guidance applications were set up in the Comparison 

Scenario section. The performances of MT-LinAdapt and the selected three commonly used existing 

models are discussed in this section. 

Scenario 1: Users Have Adequate Historical Data  

In reality, when drivers have been using route guidance systems for certain length of time, each of them 

could have adequate historical data accumulated, but sociodemographic information which is used for 

differentiating drivers’ preferences is difficult to obtain. In this situation, the performance of MT-



LinAdapt was compared with the performance of three selected existing models, including aggregate 

models, individual models and mixed logit models. Prediction accuracies of MT-LinAdapt and other 

models on testing data were compared using paired T test. Table 1 summarizes all models’ mean 

prediction accuracies as well as hypothesis test results between MT-LinAdapt and each selected existing 

model. 

Table 1 Models’ Prediction Accuracies and Paired T Test Results between MT-LinAdapt and Other Models 

Dataset MT-LinAdapt 
Aggregate 

Model 

Individual 

Model 

Mixed Logit 

Model 

Dataset 1 78.8% 70.9% *** 76.0% *** 78.1% 
 

Dataset 2 90.6% 82.0% *** 89.5% *** 
90.3% . 

Dataset 3 87.7% 83.8% *** 86.6% *** 
87.1% ** 

Synthetic Dataset 1 81.3% 65.2% *** 80.1% *** 
79.3% ** 

Synthetic Dataset 2 90.3% 73.7% *** 88.8% *** 
85.1% ** 

Synthetic Dataset 3 83.3% 64.2% *** 83.2%  80.8% * 

Note: significance level code, 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

The model performance of MT-LinAdapt models was first compared with aggregate models, as shown 

in the second and third columns of Table 1. MT-LinAdapt has significantly better performance than 

aggregate models in all datasets. The prediction accuracy of MT-LinAdapt is 4% to 19% higher than 

aggregate models. MT-LinAdapt models’ advantage of higher prediction accuracy is greater in synthetic 

datasets than surveyed datasets. That is because synthetic datasets contain more heterogeneous 

preferences. When preferences become more heterogeneous, drivers share little common aspect of route 

choice preference. It becomes more difficult for aggregate models to find drivers’ preference 

commonality, therefore, aggregate models fail to fit anyone’s preference very well. On the contrary, 

MT-LinAdapt adapts aggregate preference to the individual level, thus shows even higher prediction 

accuracies than aggregate models when users have more heterogeneous preferences.  

As shown in the second and forth columns of Table 1, when compared to individual route choice 

models, MT-LinAdapt has significantly better performance than individual models in most of the 

datasets except for Synthetic Dataset 3. Actually, the advantage of MT-LinAdapt is not that big in all 

datasets. MT-LinAdapt mostly has only 1% higher prediction accuracy than individual models. In 

Synthetic Dataset 3, MT-LinAdapt basically has similar performance to the individual route choice 

model. Because both models consider drivers’ route choice preferences at the individual level, when a 

driver has enough historical data reflecting his/her preference, both of two models can capture the 



preference very well. At this point, individual route choice models also work better than aggregate 

models. In practice, making personalized route recommendation service can make users more likely to 

be satisfied than making route recommendations based on a simple unified rule. 

MT-LinAdapt has significantly better performance than mixed logit models in most cases except for 

Dataset 1, as shown in the second and fifth columns of Table 1. The advantages are minor in surveyed 

datasets (less than 1% higher than mixed logit models) and statistically significant in synthetic datasets 

(2% to 5% higher than mixed logit models). Mixed logit models first estimate parameters’ distributions 

at the aggregate level then generate the individual level with Bayes rule. The estimated distribution has 

impacts on the quality of individual user’s model. When users’ preferences are as heterogeneous as 

synthetic datasets, it becomes more difficult to accurately estimate user’s preference into a pre-defined 

distribution type. The parameters (i.e. means and standard deviations) of distribution have higher 

standard errors in synthetic datasets than in surveyed datasets in the estimation. Thus, the advantages of 

MT-LinAdapt are greater in synthetic datasets than in surveyed datasets.  

Scenario 2: Users Have Limited Historical Data 

In applications of route guidance systems, there is a situation where a user does not have adequate 

historical data (e.g., a user or tourist just starts using the route guidance system). To test the performance 

of MT-LinAdapt in this scenario, this section tested models’ prediction accuracies at different levels of 

data availability. The route choice models built at various data availabilities were tested on each 

individual’s testing data. Thus, for each of six datasets, each model has a set of prediction accuracies at 

different levels of data availability. To avoid the influences of data divisions on models’ performance, 

the described process was conducted fifty times and the average prediction accuracy on each participant 

was calculated. Then, the average prediction accuracy across users was used for model comparison, as 

shown in Figure 1. 

In Figure 1, the horizontal axis gives levels of data availability and the vertical axis shows the average 

prediction accuracy across users/synthetic users. Some observations can be obtained from the plots. 

 



  

(a) Dataset 1 (b) Synthetic Dataset 1 

  

(c) Dataset 2 (d) Synthetic Dataset 2 

  

(e) Dataset 3 (f) Synthetic Dataset 3 

Figure 1 Models Performances at Different Levels of Data Availability 

 

MT-LinAdapt has the highest prediction accuracies at all levels of data availability in all datasets. Its 

performance advantage is especially greater at low levels of data availability. Table 2 shows how much 



better MT-LinAdapt’s performance is at low data availabilities by calculating the prediction accuracy 

difference between MT-LinAdapt and other models. In Table 2, the numbers are the specific differences 

of prediction accuracies between MT-LinAdapt has and other models. The relative magnitude of better 

performance is indicated with shaded areas for better visualization. Take data availability of 10% (5 to 6 

observations) as an example, the prediction accuracy of MT-LinAdapt can be 1.6% to 15.3% higher than 

aggregate models, 4.2% to 18.5% higher than individual models, and 2.3% to 12.7% higher than mixed 

logit models. MT-LinAdapt’s advantage is especially greater at low data availabilities is due to its nature 

that drivers’ preferences are adapted at both aggregate and individual levels. For a particular user, when 

testing data contains new scenarios that the user never experienced before, MT-LinAdapt can predict the 

user’s preference by combining the common preference (in other words, social norm) which was formed 

with other users who experienced this scenario before. Therefore, when a user has only limited data 

either because he/she is a new user or the system just starts operation, MT-LinAdapt can still perform 

well. 

Table 2 The Prediction Accuracy Differences between MT-LinAdapt and Selected Existing Models at Low Data 

Availability Levels 

10% 20% 30%

Dataset 1 4.19% 5.08% 5.58%

Dataset 2 4.55% 6.08% 6.98%

Dataset 3 1.60% 2.29% 2.70%

Synthetic Dataset 1 11.17% 13.20% 14.15%

Synthetic Dataset 2 11.92% 14.61% 15.21%

Synthetic Dataset 3 15.27% 17.06% 18.37%

Dataset 1 11.07% 6.82% 5.56%

Dataset 2 12.50% 6.99% 4.55%

Dataset 3 18.46% 9.70% 6.48%

Synthetic Dataset 1 6.26% 4.03% 3.06%

Synthetic Dataset 2 6.27% 4.20% 2.83%

Synthetic Dataset 3 4.20% 4.01% 3.00%

Dataset 1 2.34% 0.83% 0.33%

Dataset 2 2.39% 0.66% 0.35%

Dataset 3 2.97% 1.92% 1.38%

Synthetic Dataset 1 5.59% 2.03% 1.97%

Synthetic Dataset 2 12.67% 9.96% 5.71%

Synthetic Dataset 3 8.70% 5.31% 4.12%

Existing 

Models
Dataset

Prediction Accuracy Difference at Low Data 

Availibity Levels

Aggregate 

model

Individual 

model

Mixed 

Logit 

model

 



 

Individual models do not perform well at low data availabilities, but their prediction accuracies 

gradually increase as more data is available. When all training data was used for model establishment, 

individual models have similar performance as MT-LinAdapt, as shown in Table 1. Individual route 

choice models only use a driver’s own data for building models. The advantage of this nature is that 

obtained models can avoid the impacts of other users’ preference so that the model can precisely capture 

this particular user’s preference. However, the disadvantage of this characteristic is requiring an 

adequate amount of data. As each user may only experience limited scenarios in terms of amount as well 

as the variety, the individual model established based on his/her own historical data may not work well 

in some new scenarios. Thus, it is easy to understand that individual route choice models have relatively 

low prediction accuracies at low data availabilities (such as 10%, 20% and 30%), but has better 

performance when more data is available.   

Aggregate models’ performance does not improve much as more data is available. As shown in Figures 

1, the increases of prediction accuracy mostly are within 2% for aggregate models, while the increase of 

individual models’ performance can reach as high as 20% when gradually increasing data availability. 

That is because aggregate models can cover most of the possible scenarios at low data availabilities 

(such as 10%, 20% and 30%) by combining all users’ experienced scenarios together. Therefore, when a 

particular user faces an entirely new scenario, aggregate models can still work well. However, aggregate 

models were built under the impacts of all users. This nature makes aggregate models shifted by groups 

of users as a whole but may not capture an individual user’s preference precisely. Therefore, as more 

data is available, aggregate models’ prediction accuracies do not increase much. 

The general trend of mixed logit models’ performance can be discussed by datasets. In surveyed 

datasets, the performance of mixed logit models is similar to that of MT-LinAdapt, better than both 

individual models and aggregate models. In synthetic datasets, the performance of mixed logit models is 

generally worse than both MT-LinAdapt and individual models, and better than aggregate models. 

When compared to aggregate models, mixed logit models can further adapt to individual tastes on the 

basis of preference distribution at the aggregate level. Thus, mixed logit models can have higher 

prediction accuracies than aggregate models in most cases and at least similar performance at low levels 

of data availability (such as 10%). When mixed logit models are compared to individual models, 

individual preference obtained with mixed logit models were generated from estimated parameter 



distributions. When it is difficult to accurately estimate coefficients’ distributions with limited data (5 to 

6 trip observations) or with very heterogeneous preference data in which preference data cannot fit into 

pre-defined distribution types, mixed logit models may not work as well as individual models, as 

individual models can specifically capture a particular user’s preference. At last, the concepts of mixed 

logit models and the MT-LinAdapt model are very similar. Both of them adapt the aggregate preference 

into each individual’s taste, but mixed logit models generate individual tastes based on estimated 

coefficient distributions while MT-LinAdapt considers preference at the aggregate and individual levels 

together. In addition, it is difficult for mixed logit models to establish a meaningful model out of data 

when everyone has only a limited amount of data. Among 50 times of data divisions at 10%, 20% and 

30% of data availabilities, there are many cases in which all parameters are not significant. When it is 

difficult to fit users’ preference into the pre-assumed type of parameter distributions because of low data 

availability or large preference heterogeneity, mixed logit models’ capability of generating precise 

individual tastes is undermined. Therefore, MT-LinAdapt has 2.3% to 12.8% higher prediction 

accuracies than mixed logit models at data availability of 10%. The general trend of mixed logit models 

is much lower than that of MT-LinAdapt model in synthetic datasets.   

The comparisons between the MT-LinAdapt model and three selected existing models showed that MT-

LinAdapt has significantly better performance than aggregate models, individual models and mixed logit 

models at different levels of data availability. With datasets collected in this research, when a user has 

adequate historical data, the prediction accuracy of MT-LinAdapt can be 4% to 8% higher than that of 

aggregate models, 1% to 3% higher than that of individual models, and 1% to 5% higher than that of 

mixed logit models. When a user only has limited amount of data (5 to 6 observations), the prediction 

accuracy of MT-LinAdapt can be 1.6% to 4.5% higher than that of aggregate models, 11% to 18% 

higher than that of individual models, and 2.3% to 2.9% higher than that of mixed logit models. When 

users’ preferences are more heterogeneous than the collected datasets, for example, as heterogeneous as 

synthetic datasets, the benefits in terms of more accurate predictions can be even larger. Given the 

observed preference collected in this paper were mostly from college students, the real-world 

preferences are expected to be more heterogeneous with general driver population and different trip 

purposes, attributes, etc. Therefore, in the application of route guidance systems, MT-LinAdapt is 

expected to predict users’ route choice decisions more accurately than the selected commonly used 

existing models. 



DISCUSSIONS 

Drivers not only have some shared common aspects of route choice preferences but also have their own 

tastes. The MT-LinAdapt model is able to capture common preferences at the aggregate level and adapt 

to each individual user’s specific preference. With the purpose of considering each individual driver’s 

preference in route guidance systems, the MT-LinAdapt model can overcome the difficulties that route 

guidance systems are facing. For example, MT-LinAdapt does not require sociodemographic 

information or other exogenous criteria for distinguishing drivers’ preferences. Also, MT-LinAdapt does 

not require a large amount of data for accurately capturing a user’s preference, can be easily solved with 

a gradient based optimizer and can be updated efficiently in real time as data accumulates. 

MT-LinAdapt was compared against aggregated SVM models, individual SVM models and mixed logit 

models with three stated preference datasets and three synthetic datasets. MT-LinAdapt demonstrates up 

to 8% and 18% higher prediction accuracies than commonly used existing models in two representative 

route guidance scenarios: (1) users have adequate historical preference data (as shown in Table 1) and 

(2) users have a limited amount of  historical preference data (as shown in Figure 1). Therefore, MT-

LinAdapt can work well for long-term users who have adequate historical data and also a new user who 

has a limited amount of data (for example, 5 to 6 trips in this paper).  

Among selected commonly used existing route choice models, aggregate models work well when each 

user have very limited data and all users share similar route choice preferences, but aggregate models’ 

performances are compromised when users have very heterogeneous preferences. Individual models 

work well when every user has adequate data and users’ preferences are very heterogeneous, but they do 

not work well in the situation that users have a limited amount of data. Mixed logit models have similar 

performances with MT-LinAdapt in some of the comparisons except the cases with a limited amount of 

data and very heterogeneous user preferences. Furthermore, mixed logit models do not have closed form 

solutions and are usually solved with simulation method. That means the estimation accuracy could be 

influenced by how the simulation is conducted and the model can be inefficient to implement the model 

in practice.  

In addition to the two scenarios of route guidance tested in this paper, MT-LinAdapt also has another 

advantage which would work well with route guidance applications. MT-LinAdapt has the potential to 

allow users to select different route attributes for their own interests. It is likely that drivers select 

different attributes they care for in the real world and this leads to the observations in the format of 



sparse matrices. By grouping route attributes, MT-LinAdapt can be adjusted to update preferences at 

both the aggregate level and the individual level for all attributes simultaneously (Gong et al., 2016). At 

last, the whole route guidance system with the MT-LinAdapt model can also be used as Automated 

Vehicles’ (AVs) routing systems, as AV’s passengers do not need to operate vehicles and it is important 

for AVs to understand its passengers’ preferences.  

 

CONCLUSIONS 

In order to consider each individual driver’s route choice preference when making route 

recommendations in route guidance systems, we introduced the Multi-Task Linear Classification Model 

Adaptation (MT-LinAdapt) and demonstrated its capability of accommodating drivers’ heterogeneous 

preferences. The MT-LinAdapt model captures the common aspects of drivers’ route choice preferences 

at the aggregate level and adapts to individual’s specific preference simultaneously. The model does not 

require personal sociodemographic information (e.g., age, gender, income, etc.) or other criteria to 

differentiate drivers’ different route choice preferences. In addition, it can be easily solved with a 

gradient-based optimizer. With three surveyed datasets and three synthetic datasets, the evaluation of the 

MT-LinAdapt model shows that it outperforms representative existing models by 0.1% to 19% in 

different datasets with various data availabilities. A detailed investigation of the evaluation results 

reveals the following key findings: 

 When each user has a limited amount of historical preference data (5 to 6 trips), the prediction 

accuracy of MT-LinAdapt is 1.6% to 15.7% higher than aggregate models, 4.2% to 12.5% higher 

than individual models, and 2.3% to 12.7% higher than mixed logit models. It demonstrates that 

MT-LinAdapt can better learn drivers’ preference when they have a limited amount of data than 

commonly used existing models; 

 When each user has adequate historical preference data (50 to 64 trips), the prediction accuracy 

of MT-LinAdapt is 3.9% to 19.2% higher than aggregate models, 0.1% to 2.8% higher than 

individual models, and 0.3% to 5.2% higher than mixed logit models. It means MT-LinAdapt 

also has advantages over commonly used existing models when drivers have an adequate amount 

of data. 



 The advantages of MT-LinAdapt compared to three commonly used existing models are much 

greater in datasets with more heterogeneous preferences. 

 MT-LinAdapt has the capability of updating models in real time as behavior data accumulates 

and the flexibility of allowing each driver to select his/her own route attributes based on his/her 

interests. 

These advantages of MT-LinAdapt could help route guidance system consider each individual driver’s 

specific preference when making route recommendations in practice, and consequently improve users’ 

satisfaction, increase users’ compliances with the guidance system and potentially achieve better road 

network performance. The higher compliance rate is expected to benefit road network performance 

especially when routes were recommended for achieving a system performance goal. A better 

compliance rate also means knowing which route drivers are more likely to take in advance. That can 

also provide a perspective of utilizing disaggregate route choice decisions to calibrate network 

assignment models and help predict and estimate future traffic conditions (Ben-Akiva et al., 2007, 

2015). These network level impacts of considering individual route choice preferences in route guidance 

systems would be evaluated in a future research. 
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 ABSTRACT 

The route guidance system has been an effective way of mitigating traffic congestion. Existing route 

guidance systems in practice and literature tend to simplify drivers’ heterogeneous route choice 

preferences when designing route guidance strategies. This could undermine the performance of the 

designed route guidance strategies and also deteriorate users’ satisfaction. The emerging information 

technologies provide an opportunity of analyzing drivers' route choice preferences heterogeneity by 

collecting drivers' preference data at the individual level. Therefore, this paper proposes a proactive user 

optimum-oriented route guidance system which (1) establishes individual route choice models with each 

user’s historical preference data and (2) incorporates individuals’ route choice preferences in searching 

for user optimum conditions. Such user optimum conditions are provided to users as guidance 

information. An evaluation platform which contains a Traffic Simulation module (DTALite) and 

Decision Module (Matlab) was set up for evaluation. With the Sioux Falls network and user population 

whose preferences were synthesized from surveyed participants, the proposed route guidance system at 

both perfect and imperfect market penetration rates was compared to existing route guidance strategies 

including travel time based real time guidance and User Equilibrium conditions based guidance. The 

proposed route guidance system demonstrated advantageous performance in aspects of users’ 

satisfaction (e.g., up to 22% more satisfied users), system mobility and sustainability (e.g., up to 10% of 

travel time reduction and up to 42% of delay reduction), and future traffic conditions estimation (e.g., up 

to 70% links having more accurate volume estimation). At imperfect market penetration rates, the 

performance improvement gradually increases as the market penetration rate increases.    

Keywords: Route Guidance System; Proactive Guidance; User Optimum; Individual’ Route Choice 

Preference 

 



I. INTRODUCTION 

Route guidance systems have been an important part of Advanced Traveler Information System (ATIS). 

Drivers can use route guidance systems to find the route leading them to their destinations or check real 

time traffic conditions so that congested areas can be avoided. With the information provided by route 

guidance systems, drivers can make informed route choice decisions thus transportation network’s 

efficiency can be improved. Route guidance systems in practice such as Google Maps and Waze usually 

find the route with shortest distance or travel time and recommend them to drivers. In addition to these, 

researchers proposed different route guidance strategies to further utilize route guidance systems in 

order to improve transportation system efficiency (Angelelli et al. 2016; Paz and Peeta 2009a; Liang and 

Wakahara 2014; Du, Han, and Chen 2015). Most of routing strategies in the literature can be 

characterized as either reactive or proactive, centralized or decentralized, and simple criterion based or 

multiple criteria (behavior consistent) based.  

A. Reactive versus Proactive Route Guidance  

Route guidance systems generate route recommendations usually based on certain traffic conditions. 

Depending on the type of traffic conditions used to generate route recommendations, route guidance 

systems can be divided into reactive route guidance and proactive route guidance.  

The reactive route guidance systems generate route recommendations based on historical or real-time 

traffic conditions. Such historical and real-time traffic conditions could be link travel time that is 

updated every certain periods such as 3 seconds in (Deflorio 2003), 30 seconds in (Khaled, Ardeshir, 

and Raman 2003), the combination of historical travel time and the updated travel time information 

(Khaled, Ardeshir, and Raman 2003), inflow and outflow on each link in previous 300 seconds (He, 

Guan, and Ma 2013), or the histogram of number of vehicles on each lane in previous 15 seconds (El-

Sayed, Thandavarayan, and Hawas 2017). These traffic condition indictors can be obtained by loop 

detectors, roadside sensors, probe vehicles and other traffic monitoring methods. The route guidance 

systems react to the general traffic conditions in the past or what is happening in the network. In other 

words, the reactive route guidance system only responses to the traffic conditions that already happened. 

Reactive route guidance systems using real-time traffic conditions are probably very close to the current 

commonly used route guidance services. It can quickly react to the traffic conditions so that congested 

areas can be avoided when users request for route guidance services. Though it can quickly react to the 

changing traffic conditions, it does not consider how the recommended routes are going to affect the 



future traffic conditions. One extreme case is when a large amount of route guidance requests get the 

recommended routes that share certain portion of routes. The shared road links would become heavily 

congested and the traffic conditions when trips are actually made will be different from what was shown 

in the route guidance systems. As pointed out by Liang and Wakahara (2014), reactive route guidance 

system is more like an alert system which warns drivers about the congestion already happened instead 

of guiding drivers to proactively prevent the congestion from happening.   

Proactive route guidance systems generate route recommendations based on predicted traffic conditions. 

Some literatures also refers them as iterative, predictive or anticipatory route guidance systems (He, 

Guan, and Ma 2013; Dong, Mahmassani, and Lu 2006; Liang and Wakahara 2014). This type of route 

guidance system can be further divided into two categories: user optimum oriented and system optimum 

oriented. Both of them aim at improving the performance of route guidance system but target on 

different objectives. 

The User Optimum oriented route guidance system focuses on drivers’ benefits and is implemented 

following the Wardrop’s first principle. The Wardrop’s first principle defines that in a stable 

equilibrium, all drivers cannot further reduce his/her travel cost by switching to another route (Wardrop 

1952). These user optimum (also treated interchangeably with user equilibrium) conditions are obtained 

and then used to generate route recommendations. If all drivers comply with the recommended routes, 

user optimum conditions can be reached. Travel time is frequently used to represent drivers’ cost 

because it is recognized as one of the most important explanatory variable for understanding people’s 

travel decisions (A. Small 2012). Iterative process is often used to solve for the user optimum 

conditions. Researchers have demonstrated that user optimum oriented route guidance can have good 

system efficiency (Deflorio 2003; Giglio and Sacco 2014; He, Guan, and Ma 2013), but it is also widely 

recognized system optimum-oriented route guidance system has better system efficiency than user 

optimum oriented route guidance system (Roughgarden and Tardos 2000; Han et al. 2016). Also, 

existing user equilibrium based route guidance systems mostly simplify drivers' route choice preference 

such as assuming travel time is the only route attribute that drivers care when making route choice 

decisions. Drivers may not follow the route recommendations made with a simplified preference 

assumption by the route guidance system. 

When system performance is of concern especially to transportation authorities, system optimum-

oriented route guidance system is also widely discussed. At system optimum conditions, drivers make 



route choice decisions so that system performance indicators such as total travel time or total delay are 

minimized (Ferris and Ruszczyński 2000; Lafortune et al. 1993). However, it is widely recognized that 

routing drivers based on system optimum conditions brings unfairness to drivers (Jahn et al. 2005; Du, 

Han, and Chen 2015). Some users have to take longer detours than the route they preferred so that the 

system can achieve its optimum goal. It is unfair and also not practical because drivers are not likely to 

comply with the recommendations thus eventually the network cannot reach the system optimum 

conditions. That is why researchers have recognized that system optimum is not suitable for the 

application of route guidance (He, Guan, and Ma 2013). In order to address the unfairness, researchers 

included some user inconveniences constraints in the settings of system optimum problem. To measure 

the inconveniences of a route, Angelelli et al. (2016) used the ratio of the distance difference between 

the route and the shortest route to the distance of the shortest route. The ratio has to be less than certain 

threshold for drivers to accept a particular route. Han et al. (2016) formulated a bi-level problem to 

consider the users’ preferences at the lower level and the network efficiency at the upper level. Paz and 

Peeta (2009b) proposed behavior consistent route guidance system which finds the overlap of system 

desired and users preferred routes. When including users’ constraints in the searching for system 

optimum, the unfairness can be reduced meanwhile system efficiency can be improved. Still, similar as 

both system optimum and user optimum oriented route guidance systems, simplified behavior 

representations were adopted in these research, such as only assuming travel time  is the only 

influencing factor (Angelelli et al. 2016; Han et al. 2016) or using an aggregate model to represent 

drivers’ behaviors (Paz and Peeta 2009a). This could also undermine the performance of these route 

guidance systems that target on system optimum with users’ inconveniences constraints. 

B. Centralized versus Decentralized Route Guidance 

Depending on the operation scheme, route guidance systems can be divided into centralized and 

decentralized systems. Centralized route guidance system comprises a control center and its system 

users. The requests for route guidance services and the route recommendation information are all 

communicated directly between the center and each single user (Hawas and El-Sayed 2015). The 

centralized route guidance system can coordinate all system users and utilize all possible information to 

process and generate route guidance information. That also means it requires efficient communication 

devices. On the other hand, decentralized route guidance systems can handle the traffic conditions and 

route guidance information locally, either through communication with surrounding users or the 



roadside facilities (Du, Han, and Chen 2015; Hawas and El-Sayed 2015). It avoids the necessity of large 

amount of data communication, but it may not be able to find the system wide optimum conditions 

(Hawas and El-Sayed 2015). In addition, as pointed by Hawas and El-Sayed (2015), the decentralized 

system may suffer vehicle cycling issues, namely algorithms do not result in a fixed point solution. The 

vehicle cycling issues can be mitigated by allowing local controllers to share information, but that also 

involves certain information communication and processing.  

C. Single Criterion versus Multiple Criteria (Behavior Consistent) 

Depending on the criteria used to generate route recommendations, route guidance systems can be 

divided into single criterion based guidance and multiple route attributes/behavior consistent route 

guidance. Multiple criteria based guidance systems are equivalent to behavior consistent route guidance, 

because a behavior consistent route guidance usually considers multiple criteria. For the single criterion 

guidance system, the most frequently used criterion is travel time as it is one of the most important 

explanatory variable for understanding people’s travel decisions (A. Small 2012). Routes with the 

shortest travel time are recommended to the users. Other commonly used criteria including distance 

(Jahn et al. 2005) and input and output flow (He, Guan, and Ma 2013). The single criterion represents 

simplified drivers’ route choice behaviors that are considered in route guidance systems. On the other 

hand, some route guidance systems include multiple route attributes that drivers may care when making 

route choice decisions. Wahle et al. (2001) included dynamic arc costs (i.e., travel time and traffic 

density) and static arc cost (i.e., road type and route length) for generating route recommendations. 

Khaled et al. (2003) designed a route guidance system that considers route length, capacity, free flow 

travel time, current travel time information, previous travel time experienced, etc. Paz and Peeta (2009b) 

included several if-then rules concerning different aspects of drivers’ route choice decisions. Alder et al. 

(2005) included 9 objectives as decision evaluation criteria. Multiple route attributes are usually 

included in the form of linear weighted utility function (Adler et al. 2005) or fuzzy logic (Paz and Peeta 

2009a; Wahle et al. 2001). Given the fact that drivers usually make route choice decisions based on 

more than one route attribute, it is natural to think that route guidance systems including multiple 

criterion is better, from the perspective of realistically representing drivers' behaviors. 

Most of the route guidance systems in practice or in literature combines one or multiple features 

described above. Having different features can bring route guidance systems different performances in 

terms of improving transportation system efficiency and users’ satisfaction. Shared by all different types 



of route guidance systems discussed above, one common issue that they are suffering is the simplified 

drivers’ preferences in the process of generating route recommendations. Most researchers agreed that 

the proactive route guidance system can bring more benefits as long as the prediction is accurate and 

reliable (Liang and Wakahara 2014; Dong, Mahmassani, and Lu 2006). One of the factors that causes 

any inconsistency between predicted and actual traffic condition is the incorrect driver behavior 

modeling (Paz and Peeta 2009a). Regardless of user optimum or system optimum based route 

recommendations, if drivers’ behaviors are not properly modeled and consequently drivers do not follow 

the recommended routes, the resulted traffic conditions could far deviated from the predicted traffic 

conditions which targeted on any optimum conditions. As Paz and Peeta (2009a) pointed out, “an 

incorrect prediction of the drivers’ likely reactions to the information strategies can results in the 

generation of erroneous information strategies, negatively impacting network performance.” Many other 

researchers (Schofer, Koppelman, and Charlton 1997; Giglio and Sacco 2014; Khaled, Ardeshir, and 

Raman 2003) also pointed out the necessity of considering drivers’ behavior representation in route 

guidance. From users’ perspective, Schofer et al. (1997) conducted a survey among 100 drivers and 

asked for their experiences of using route guidance systems. In the survey, participants thought that 

route guidance systems should learn drivers' preferences and drivers were even willing to let the 

computer have learning mode and teach the computer to learn their preferences. Participants also liked 

to have their own route choice preference and criteria that can change at different time. 

Researchers have tried to include more realistic route choice models in designing route guidance 

systems, such as Khaled et al. (2003) used a neural network model to represent drivers’ route choice 

preferences in route guidance, Paz and Peeta (2009a) used a fuzzy multinomial logit model which 

incorporates several if-then rules for representing drivers’ behaviors, Wahle et al. (2001) adopted fuzzy 

decision model to describe drivers’ route choice decisions. These route choice models are mostly 

developed from the aggregate data collected from a group of drivers, such as 150 samples from 15 

drivers (Khaled, Ardeshir, and Raman 2003) or assumed preference distributions (Paz and Peeta 2009a). 

However, drivers’ preferences are very heterogeneous in terms of information perception, decision rules 

and cared route attributes (A. M. Tawfik, Rakha, and Miller 2010; Parthasarathi, Levinson, and 

Hochmair 2013; Feng, Arentze, and Timmermans 2013; Liu, He, and Recker 2007; Amirgholy et al. 

2017). Fortunately, with the emerging information technologies applied in transportation domain such as 

GPS, it is possible to collect route choice preferences even at the individual level. Establishing drivers’ 

route choice models at the individual level can capture drivers' heterogeneous preference to the 



maximum extent. Paz and Peeta (2009a) also mentioned that the capability of tracking individual drivers 

in route guidance system can provide robust models to describe individual drivers’ route choice 

preferences. Therefore, this research discusses the framework of incorporating individuals' route choice 

preferences when designing route guidance systems.  

D. Research Scope 

The route guidance system framework in this research adopted the scheme of the centralized, proactive 

user optimum-oriented with considering multiple route attributes. Since the focus of this research is to 

represent drivers’ route choice preferences realistically in route guidance systems, the scheme of 

multiple route attributes allow drivers to include different route attributes in their own models. Also, a 

centralized scheme allows the route guidance system to consider all aspects of the system details 

together. Though centralized system requires large communication bandwidth, with the emerging 

information technologies such as 5G, it is promising that future communication devices and 

infrastructure can handle a city wide route inquiry at the same time. Proactive user optimum-oriented 

scheme is chosen instead of system optimum oriented. Though some researchers concluded that the 

system efficiency at the user optimum conditions is not as good as that of system optimum conditions, 

this research aims at increasing drivers’ compliance behavior by incorporating individual route choice 

preferences in generating route recommendations. Guaranteeing all drivers would like to comply with 

the recommendations means the traffic conditions at user optimum. Therefore, if drivers’ compliances 

are guaranteed, traffic control and management strategies can be implemented and are more likely to be 

effective so that system performances can be improved. Instead of implementing system optimum 

oriented guidance with user constraints, improving system performance on the basis of users’ 

satisfaction is the approach this research adopts.  

Thus, this paper proposes a user optimum-oriented proactive route guidance system that incorporates 

individual drivers’ route choice preferences. In the proposed route guidance system, drivers’ route 

choice preferences can be learned from his/her historical trips and stored in the system in the form of 

individual route choice models. When a driver requests route guidance service for a trip, his/her request 

and preference are considered with other drivers’ requests in the same time interval. Then, user optimum 

conditions that incorporate every individual driver’s particular route choice preference can be obtained 

and used as the guidance information. The rest of this paper discusses the proposed route guidance 

system in details. Section II introduces the framework and major components of the proposed route 



guidance system. Section III evaluates the proposed routing system with an example network and 

compares the proposed route guidance system with several existing route guidance strategies. At last, 

some conclusions and future research are described in Section IV.  

 

II. ROUTE GUIDANCE SYSTEM FRAMEWORK 

The proposed proactive user optimum-oriented route guidance system has two major components, 

namely how to capture drivers’ route choices at the individual level and how to incorporate the 

individuals' route choice preferences into the process of searching for user optimum conditions. Each of 

the major components is discussed in this section. 

A. Individual Route Choice Model 

Capturing individual driver’s route choice preference is very critical to the proposed route guidance 

system, because it determines if the recommended routes are users' preferred ones thus comply with the 

recommendations or not. Traditionally, probably because limited individual driver’s preference data is 

available, researchers typically establish a model for a group of drivers and differentiate drivers’ 

preference by incorporating segmenting variables, such as sociodemographic information (e.g., age, 

gender, income, etc.) and driving patterns (A. Tawfik and Rakha 2013). This approach has an 

assumption that drivers who belong to the same segmented group have similar route choice preference. 

As more information communication technologies such as GPS are applied in transportation 

applications, more drivers’ preference data even at the individual level becomes available. Researchers 

have explored different methods to model individual driver’s route choice preference, such as the 

method of differential perceptron (Rogers and Langley 1998), decision tree (Park et al. 2007), ordered 

weighted averaging method (Nadi and Delavar 2011) and neuro-fuzzy model (Pahlavani and Delavar 

2014).  

A general form of an individual driver i’s route choice model in the proposed route guidance system can 

be written in Equation (1). 

𝑌 = 𝑓(𝑿, 𝑻, 𝑺)      (1) 

In which 



Y: the selected route among given route set. When there are n alternative routes which are labeled as 

1,2,…,n, then the value of Y could be set to represent each route.  

Table 1 Inputs of Individual Route Choice Model 

Types Variables Brief Description Examples 

I X Routes attributes  
Travel Time, Reliability, Number of Controlled 

Intersections, Distance, etc. 

II T Trip related 
Departure Time, Trip Purpose, Weather, People 

Who Travel with, etc. 

III S Driver's states Driver's Physical States and Emotional States 

 

X: information of route attributes on alternative routes. In a particular trip scenario, there are several 

alternative routes in the route set for the driver to choose. The information of these route attributes on 

different routes is included in X and is shown to the drivers. Drivers see the information and make route 

choice decisions based on his/her perceptions, knowledge and experiences. Different drivers can include 

different route attributes in his/her own model. The attributes that are included in the model can be either 

determined by drivers based on what they care or can be learned by the route choice model from the 

driver’s historical trips.  

T: the trip related other information that can influence route choice decisions. Though these information 

is not directly related to alternative routes, drivers make route choice decisions under the influence of 

them. For example, drivers who make trips at different times of day may choose different routes. 

Therefore, it is necessary to include the impacts of these influencing factors in the individual route 

choice models. The information of these variables can be inferred by the route guidance system from the 

historical trips. For example, the variable of trip purpose can be inferred from the destination or the land 

use of the destinations. Also, when drivers connected their digital calendar with the route guidance 

system (for example, Waze allows users to connect Google Calendar and Facebook events), the route 

guidance system can also tell the trip purposes from driver’s digital calendar.  

S: the drivers’ states including drivers’ physical states and emotional states, for example, tired, angry, 

etc. Dia (2002) mentioned that individual route choice model should involve some emotional elements 

so that drivers’ beliefs, motives and impulsive actions can be modeled. Some researchers (Abdić et al. 

2016; Fridman et al. 2018) have studied using in-vehicle camera to analyze drivers’ facial expression so 

that the drivers’ emotional states (e.g., frustration) can be detected. Therefore, when drivers are in 



different emotional states, different routes can be recommended to drivers. These functions of route 

guidance system probably require certain levels of vehicle automation, but S is included in the 

individual route choice models to incorporate future extended functions. 

Depending on the specific modeling approaches used for building individual route choice models, the 

data of decision variables can be organized in different formats. In the proposed route guidance system, 

machine learning methods are used to capture each individual driver’s route choice preference, given 

they were widely used to handle large amount data efficiently (Gong, Al Boni, and Wang 2016) and 

have more general assumptions (Xiong et al. 2016) such as without assuming random utility 

maximization.  

B. User Optimum Conditions Generation with Individuals’ Preferences 

As described in Wardrop’s first principle, user optimum (also treated interchangeably with User 

Equilibrium) conditions are defined as the flow pattern in which no user can unilaterally reduce their 

travel cost (Wardrop 1952). When user equilibrium conditions exist at all time intervals, the flow pattern 

is called dynamic user equilibrium (DUE) (Carey and Ge 2012). The goal of the proposed route 

guidance system is to find the user optimum conditions that incorporate individuals’ route choice 

preferences and provide guidance based on user optimum conditions. 

In order to consider individual drivers’ route choice preferences in the process of searching for user 

optimum conditions, agent based traffic assignment is used (Nagel and Flötteröd 2009).  Agent based 

modeling has been used in transportation research for route guidance system study (Adler and Blue 

2002; Adler et al. 2005; Arokhlo et al. 2011; Dia 2002). It has the flexibility of allowing agents have 

different behavior rules so that the behaviors of different transportation system stakeholders can be 

represented. As discussed in Nagel and Flötteröd (2009), flow can be discreted into “appropriate number 

of travelers for every OD pair and every time slot, and distribute them across the time slot.” Therefore, 

assuming a time-dependent OD matrix is available, the number of agents traveling between different OD 

pairs in all time slots can be generated. Each of the agent has his/her route choice decision rules which 

represent a driver’s route choice preference in the route guidance system. Then, dynamic user optimum 

(also treated interchangeably with dynamic user equilibrium) conditions can be solved by using agent 

based traffic assignment. Following iterative procedure is used to obtain user optimum conditions. It 

should be noted that in this research, the travel demand which is in the format of time dependent origin-

destination matrix is assumed to be known. Drivers are assumed to be willing to share their preference 



data with the route guidance system. These assumption will be discussed in the Discussion section about 

its reasonableness in implementation. 

Iterative Process 

Assume the road network is made of a set of nodes, N and a sets of arcs A. Each node represents an 

intersection and each arc represents a road section in the real road network. The nodes are numbered 

1,…, N. A route can be denoted as a sequence of nodes (i1, i2, i3…, ik). The set {𝑿𝒂
𝒏} represent the traffic 

conditions on all arcs ∈A in iteration n. The set {𝑪𝒏} represent users’ route choice decisions in iteration 

n.  

Step 0: Initialization. Perform a network loading based on historical traffic pattern {𝑿𝒂
𝟎}. Check each 

agent’s route choice decision based on the traffic condition at its departure time, t. This generates all 

agents’ route choice decisions {𝑪𝟎}. 

Step 1: Iterations: 

(1) Network loading: Load agents on the network based on their departure time and selected routes. 

Updated traffic conditions {𝑿𝒂
𝒏} can be obtained. 

(2) Update choices: Check agents’ route choice decisions based on traffic conditions {𝑿𝒂
𝒏} at its 

departure time, t, using their individual route choice models. This generates all agents’ route choice 

{𝑪𝒏}. 

Step 4: Convergence criterion: Compare agents’ choices {𝑪𝒏} and {𝑪𝒏−𝟏} to see how many agents’ 

choices are different in consecutive iterations. If the difference is less than m, stop. Otherwise, go to 

Step 1. m is a predefined threshold and can be defined as, for example, m=1%*demand. 

Some details of the procedures above are discussed in the rest part of this section, including route set 

generation, traffic information processing, and the application of individual route choice models.  

Route set generation 

A route set consists of several alternative routes that drivers can select a route from. The route set can be 

different by OD pairs, by departure time and even by drivers. Researchers have explored different 

methods of generating route sets. There are mainly four types of three generation methods (C. G. Prato 



2009): deterministic shortest path-based method, stochastic shortest path-based methods, and 

constrained enumeration methods.  

Deterministic shortest path method treats the network conditions as deterministic values and find the 

best K paths based on selected criteria (e.g., travel time, distance) by repeatedly searching the network. 

The widely used K-shortest path algorithm, link elimination approach, link penalty approaches and 

labeling approach all belong to this category (C. G. Prato 2009). Instead of assuming the network 

conditions are deterministic, stochastic shortest path-based methods assume drivers perceive traffic 

conditions with errors thus drivers’ perceived link conditions following certain probability distributions 

(C. G. Prato 2009). The path cost is calculated from the summation of link costs which are obtained by 

making random draws from the probability distributions. The probability distributions could be different 

on different links and also vary by drivers due to the fact that drivers may perceive traffic conditions 

differently. Constrained enumeration methods assume that driver generate the route set based on 

behavioral rules instead of the minimum cost. One representative algorithm in this category is the branch 

and bound algorithm (C. Prato and Bekhor 2006). By setting up thresholds for different decision criteria, 

a certain link is considered to be included or excluded to form a route when searching for routes in the 

network. Since this research aims at realistically representing drivers’ route choice behaviors and 

branch-and-bound algorithm is considered to be able to reflect behavior assumptions (C. G. Prato 2009), 

the branch-and-bound algorithm (C. Prato and Bekhor 2006) is selected to generate route set in the 

traffic assignment process in this research. The details of the branch and bound algorithm is discussed 

below.  

The branch and bound algorithm (C. Prato and Bekhor 2006) constructs a connection tree between the 

origin and the destination by processing a sequence of road links. While going through each link, certain 

bounded criteria are set up to avoid unrealistic routes as well as include as many heterogeneous 

alternative routes as possible. 

For a given OD pair, a connection tree is constructed to connect the origin node, o, and the destination 

node, d. Starting from the node o, all the nodes that locate at the downstream of the node o are 

considered as the candidate nodes that the current tree would connect to. Only the nodes that satisfy the 

pre-defined criteria are included in the connection tree. To be more general, when the connection tree 

reaches an intermediate node, x and the downstream node of x is y, following criteria (C. Prato and 

Bekhor 2006) are considered to determine if the connection tree will reach node y or not.  



(1) Directional constraint 

𝛿𝐷𝐷
∗(𝑥, 𝑑) > 𝐷∗(𝑦, 𝑑)  (2) 

𝛿𝐷 is the adjusting factor which defines the tolerance level of the directional criterion. D*(a, b) 

represents the shortest distance between nodes a and b in the network. This constraint makes sure that 

the next node of the route should be able to bring the route towards the destination. It can deviate a little 

from the direction towards the destination but the deviation magnitude is limited by 𝛿𝐷.  

(2) Travel time constraint 

𝛿𝑇𝑇
∗(𝑜, 𝑦) > 𝑇(𝑜, 𝑦)    (3) 

𝛿𝑇 is the adjusting factor which defines the tolerance level of the travel time criterion. T*(a,b) represents 

the shortest travel time between nodes a and b in the network. T(a, b) represents the travel time between 

nodes a and b if following the route that is under consideration. This constraint makes sure that the 

travel time would not increase too much if the connection tree includes node y.  

(3) Distance constraint 

𝛿𝐷𝐷𝐷
∗(𝑎, 𝑏) > 𝐷(𝑎, 𝑏),      ∀ 𝑛𝑜𝑑𝑒 ⊆ {𝑜, 𝑎, … , 𝑥, 𝑦}    (4) 

𝛿𝐷𝐷 is the adjusting factor which defines the tolerance level of the distance criterion. D(a, b) represents 

the distance between node a and node b if following the route that is under consideration. {o,a,…,x,y} is 

the node set that contains all the nodes in existing route and the node under consideration. This constrain 

requires the distance between any two nodes on this route should not be larger than 𝛿𝐷𝐷 times of the 

shortest distance between them. The constraint rejects the route that have unrealistic detour.  

(4) Loop constraints 

y ∉ {o, a, …, x}    (5) 

The nodes in the bracket are all the existing nodes which are already included in the route. The node 

under consideration should not be the same as any of these existing nodes. This constraint avoids the 

route that contains loop which is not very likely to be taken by drivers in real life. 

(5) Intersection constraints 

nInter (o, y) < NC    (6) 



nInter(o, y) represents the number of controlled intersections if following the route that is under 

consideration. If it excesses certain predefined amount, NC, the route is rejected. 

When a node satisfying all five constraints described above, the node can be included in the connection 

tree and its downstream nodes will be evaluated in the next step until the destination is reached. The 

tolerant factors in Equation (2) to (6) should be calibrated with the observed data. 

After the initial route sets are generated, similarity check needs to be conducted to avoid the situations 

that routes with too much overlaps are included in the route set at the same time. For the initial route set 

of an OD pair, a route was randomly selected to be the first route included in the final route set. Then, all 

other routes in the initial route set was compared to every route in the final route set based on equation 

(7).  The overlapping ratio was calculated as (C. Prato and Bekhor 2006): 

𝐿𝑆𝑖,𝑗

𝐿𝑗
< 𝑟    (7) 

Where: LSi,j represents the number of shared links between route i and route j. Route i is the candidate 

route in the initial route set and Route j is the route in the final route set. Lj is the number links 

containing in the Route j. r is the defined overlapping ratio threshold. It can also be calibrated with 

observed field data. 

Traffic Information Processing 

In the traffic assignment, traffic conditions {𝑿𝒂
𝒏} in iteration n should be processed in order to obtain the 

route conditions for the assignment in the next iteration. This process is the traffic information 

processing in the route guidance system. Depending on the route attributes that route guidance users care 

or select in the route guidance system settings, the route information can be categorized into two types: 

fixed route attributes and time-dependent attributes.  

Fixed route attributes refer to the route attributes that do not change with time, such as route distance, 

the number of controlled intersections, etc. The information regarding the fixed route attributes can be 

simply calculated as the summation of the link attributes’ values. To be more specific, assume the traffic 

conditions {𝑿𝒂
𝒏} on acr (i, j) ∈A are available from the assignment results of the last iteration. A route 

can be denoted as a sequence of nodes (i1, i2, i3…, ik). Then, the fixed route attribute can be collocated 

with Equation (8): 



 𝑥𝑟 = ∑ 𝑥𝑖𝑛,𝑖𝑛+1
𝑘−1
𝑛=1     (8) 

In which xr is the fixed attribute of Route r and 𝑥𝑖𝑛,𝑖𝑛+1 represents the attribute related link condition on 

the link connecting node in and node in+1 which are the nth and n+1th nodes along driver i’s Route r. 

The time-dependent attributes refer the route attributes that their values vary at different time. Route 

attributes such as travel time, possible longest travel time, fuel cost and etc. belong to this category 

because their values vary by time. With the time-dependent link conditions, the value of time-dependent 

route attribute at time t can be calculated as: 

𝑥𝑟(𝑡) = ∑ 𝑥𝑖𝑛,𝑖𝑛+1(𝑡𝑖𝑛
∗ )𝑘−1

𝑛=1   (9) 

in which 𝑡𝑖𝑛
∗  is the time that the agent enters the link staring with node in. 𝑡𝑖𝑛

∗ = ∑ 𝑡𝑡𝑖𝑚,𝑖𝑚+1
𝑛−1
𝑚=1  and 𝑡𝑖1

∗ =

𝑡. Basically, the route attribute of route r at time t equals the summation of the time dependent link 

conditions. As the link conditions keep changing, the link conditions could be different at different 

entering time. Therefore, travel time on previous links is needed to calculate the entering time on link n.  

With Equation (8) and (9), information of the two types of route attributes can be obtained by processing 

the assignment results from the previous iteration. The information is fed into individual drivers’ route 

choice model to predict their updated route choices {𝑪𝒊
𝒏}. 

Utilization of the Individual Route Choice Model 

In traffic assignment process, individual route choice models are used in each iteration to predict 

drivers’ preferred routes. As discussed in the II A section Equation (1), three types of model input can be 

obtained and fed into individual route choice models to obtain agents’ predicted route choices.  

One thing that needs to be noted is the size discrepancy between the route set and the number of 

alternatives considered in the individual route choice models. It is possible that a user’s individual route 

choice model is estimated based on preference data of scenarios with m alternative routes, but the 

application scenario contains m’ alternative routes in which m≠m’. In behavior study, when the number 

of choices increases, the decision task becomes more difficult and takes longer time to do reasoning 

(Churchland, Kiani, and Shadlen 2008), so the number of alternative routes shown to drivers should not 

be too many. The number of alternative routes that are showed to users in Google Maps is typically 2 or 

3. Also, a route choice model is typically built when there are alternative routes, so m is more than 1. 



Therefore, the value of m could be either 2 or 3 and the value of m’ varies depending on different route 

set generation methods. Some situations in which m≠m’ are discussed below in terms of how to apply 

individual route choices in these situations.  

 When m=2, m’<2 

m’<2 means that there is only one alternative in the application of individual route choice models, 

namely m’=1. Therefore, there is no need to apply route choice model because there is only one 

available route connecting the origin and destination of the trip. 

 When m=2, m’>2 

In this situation, the pairwise comparison is used to select the final choice. In behavior study, one of the 

decision strategies that researchers used to describe people’s decision-making behavior is pairwise 

comparison (Pfeiffer 2012). As described by Pfeiffer (2012), “…compare alternatives sequentially in 

pair. They eliminate the weaker alternative of that pair and keep the stronger alternative for forming a 

new pair.” Therefore, the pairwise comparison was adopted to in this situation. Two routes can be 

randomly drawn from m’ alternative routes in the route set. Individual route choice model which was 

established with the data collected from binary route choice scenarios can be applied to tell which route 

the user is likely to prefer and marks it as r*. Then, another route is randomly drawn from m’-2 routes 

left in the route set and is evaluated against the r* with individual route choice model. The winning 

route is updated as r*. The process can be repeated until there is no route left in the route set. The final 

r* is the route decision that predicted by the individual route choice model. 

 When m=3, m’>3 

In this situation, the individual route choice model can be re-estimated to handle two alternative routes 

at a time, namely re-estimate a route choice model in which m=2. Then, the rules in situations of m=2 

can be applied. In order to estimate a route choice model in which m=2 from the preference data that 

contains 3 alternatives, 3 routes in preference data can be break down into two pairs of route scenarios. 

Assume three routes are labeled as [a, b, c] in preference data and the user selected Route a. Then, a 

training sample containing three alternatives can be break into two training samples containing two 

alternatives, namely [a, b] and [a, c] with Route a as the chosen route. A binary individual route choice 

model can be established from the preference data that was generated from further breaking down the 



original preference data. Then, the rule in situation m=2 can be applied to handle the situations in which 

m’>3. 

 When m=3, m’<3 

Based on the previous discussion, m’=1 or m’=2 in this situation. When m’=1, that means there is only 

one available route in the application scenario. Therefore, individual route choice model is not needed 

and the only available route is the selected one. When m’=2, the similar process in situation “m=3, 

m’>3” can be applied, namely re-estimate a binary individual route choice model with newly structured 

preference data. 

C. Applying Route Guidance System in Rolling Scheme along Time Horizon 

In the framework of the proposed route guidance system, only pre-trip route guidance is considered. 

That means the user receives the recommended route before the trip starts and stays on the routes until 

the trip finishes. In reality, it is possible for the route guidance systems regenerate routes for users based 

on the changing traffic conditions. The proposed route guidance system does not directly consider the 

en-route guidance and assumes it can be handled as a new route guidance request of which the origin is 

the user’s current location and the destination is the same with the pre-trip guidance request.  

D. Framework 

Two major components of the proposed proactive user optimum-oriented guidance system were 

discussed in previous sections. To have a whole idea of the proposed route guidance system, the 

framework in Figure 1 shows how the proposed route guidance system works. As shown in Figure 1, the 

widely used route guidance systems can collect individual users’ route choice preference data. The 

collected individual-level preference data is used to establish individual route choice models with 

machine learning methods for every participated driver. Then, the route guidance system can search for 

the user optimum conditions with the knowledge of users’ possible route choices. Finally, the obtained 

user optimum conditions are used to generate route guidance information and route recommendations.  



 

Figure 1 The Framework of the Proactive User Optimum-Oriented Route Guidance System 

To have a clear view of how the user optimum conditions as well as the traffic information are obtained, 

the framework in Figure 2 shows the calculation for one evaluation time interval, t. All the notations in 

Figure 2 are summarized in Table 2. When evaluation time interval t starts, some of the drivers who 

departured in previous time intervals may still be in the network. These demand will be considered 

together with the new demand departing within current time interval t. The initial data input for interval t 

includes two parts: users’ actual route choices in time interval t-j and the historical traffic conditions 

{𝑿r,t
0 } for time interval t. The iterative process starts with the first iteration n=1. Every user’s route 

choice when seeing the historical traffic conditions {𝑿r,t
0 } is predicted with his/her individual route 

choice model. When n≠1 in the iterative process, the traffic conditions {𝑿r,t
n } is used to predict every 

user’s possible route choices. If user i belongs to 𝑫𝒕 whose departure time is within current time interval 

t, or if user i belongs to 𝑫𝒕−𝒋 who departured within previous time intervals and have not finished his/her 

trip yet, then user i’s estimated route choice preference is used to predict the route he/she would prefer, 

𝐶𝑖,𝑡
𝑛 . For users who belong to 𝑫𝒕−𝒋, there are two different situations. For users who belong to 𝑫𝒕−𝒋 as 

well as 𝑫𝑹 who would like to have regenerated routes during their trips, their requests of regenerating 

recommended route update their origins and destinations. The new origins are their locations at the 

beginning of time interval t. Their destinations are still their original destinations. On the other hand, if 

user i departure within a previous time interval but belongs to the group of drivers 𝑫𝑵𝑹 who do not like 

to have re-generated recommended routes, then his/her original route choices 𝐶𝑖,𝑡−𝑗
∗  is kept for this time 



interval. Once all users’ choices {𝑪}t
n are obtained for any iteration n, they are compared with users’ 

choices in previous iteration, {𝑪}t
n−1. If there are more than s*, the pre-defined number of users having 

different route choices in two consecutive iterations, the converging criterion is not met and the system 

conducts another time of network loading with route choices {𝑪}t
n. The generated traffic conditions go 

back to the input block and another iteration starts. If there are less than s* users having different route 

choices in two consecutive iterations, the generated traffic conditions {𝑿r}t
n is recognized as user 

optimum conditions and the choice set {𝑪}t
n is considered as user optimum route choices. Therefore, 

{𝑿r}t
n and {𝑪}t

n are determined to be the predicted traffic conditions {X’r}t and route recommendations 

{C’}t. Both of them are broadcasted to users. Since there might be discrepancy between the predicted 

drivers’ route choice preference and drivers’ true preferences. When users see the information, they 

make decisions based on their own true preferences. Their actual decisions {C*}t generate the actual 

traffic conditions {𝑿𝒓
∗}t. The process showed in Figure 2 can be applied to each time interval in a rolling 

scheme. 

Table 2 Notations in Figure 2 

Notations Meaning 

{C*}t-j 
A set of routes that were chosen by users who departure in previous interval and have not 

finished trips yet. 

Xn
r,t The traffic conditions of alternative routes in iteration n for evaluation interval t. 

X0
r,t The traffic conditions of alternative routes in historical traffic conditions. 

Dt The users whose departure time is within current time interval t. 

Dt-j 
The users whose departure time is within previous evaluation intervals but whose trips 

have not been finished yet. 

DR The users who choose to update their recommended routes in trips. 

DNR The users who choose not to update their recommended routes in trips. 

C*i,t The route that user i finally took in evaluation interval t. 

Cn
i,t 

The route that the route guidance system predicted for user i based on his/her individual 

route choice model in iteration n. 

{𝑪}t
n

 All users' routes that were estimated by the route guidance system in iteration n. 

{C’}t 
All users' routes that were estimated by the route guidance system after the iterative 

process stops. 

{Xr’}t The traffic conditions of alternative routes after the iterative process stops. 

{C*}t The routes that were finally chosen by users who departure in evaluation time interval t. 

{Xr*}t The traffic conditions of alternative routes generated by the {C*}t 

s* The converge criterion defined in the route guidance system. 

 



 

Figure 2 The Flow Chart of the Proposed Route Guidance System in Interval t 
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From a user's perspective, he/she can choose to either update recommended route or not in user settings 

of the route guidance system. When the user requests a route guidance service, his/her OD information 

together with all other drivers' OD information are gathered and processed by the route guidance system. 

A recommended route is returned to the user and the user starts the trip by following the recommended 

route. If the trip ends before the current evaluation interval ends, there are not additional steps to do. If 

the trip has not been finished when the current evaluation interval ends, a new route would be 

recommended to the user in the next evaluation interval depending on whether the user chooses to 

update his/her recommended route in trips or not. If the user belongs to the group of drivers who choose 

to update the route, the user's trip is considered as another new request with his/her current location as 

the origin and original destination as the destination. Otherwise, the user can keep using the same 

recommended route as in the previous evaluation interval. The process can be repeated until the user 

reaches the destination.  

 

III. EVALUATION AND COMPARISON 

In order to evaluate the performance of the proposed route guidance system, this section sets up a 

scenario to compare the proposed route guidance system with several existing route guidance strategies. 

The details in the comparison including scenario set up, an evaluation platform establishment, individual 

route choice models’ application, selected existing route guidance strategies and performance 

evaluation, are discussed in this section.  

A. Test-bed Set Up 

A test-bed was set up to demonstrate how the proposed proactive user-optimum oriented route guidance 

system works and how its performance compared to other routing strategies. Sioux Falls network is 

widely used in traffic analysis and is also adopted in this research. 

The Sioux Fall network has 24 traffic analysis zones and 76 road links. Initially, Sioux Falls network 

was used by LeBlanc (1975) for static traffic assignment. The traffic demand which was given in an 

origin-destination matrix and road links features was also used for static traffic assignment. In order to 

test the proposed route guidance system in dynamic traffic assignment manner, some adjustments were 

made. The link setting including capacity, speed limit and number of lanes were adjusted based on 

Chakirov’s work (Chakirov 2014). The author selected the network characteristics in terms of capacity, 



road type, speed limit, etc. by matching the real-world network characteristics to the network structure 

used in previous static analysis. The initial OD matrix of Sioux Falls network gives the daily traffic 

demand among all 24 traffic analysis zones and used 10% to represent hourly traffic demand. It is 

equivalent to 10% peak hour volume. Since traffic control and management strategies focus more on 

congested traffic conditions in urban transportation system, therefore, the 15% peak hour volume index 

is set here and 15% of daily demand is the hourly demand used in this evaluation. The total demand of 

54045 drivers were distributed in one hour evaluation interval which was further break into four 15-

minute intervals having the demand share of 20%, 30%, 30% and 20%. Agents depart from their origins 

in a constant rate within each 15-minute interval, but the departure rate within different intervals varies. 

Given most of the trips in morning peak are commute trips which typically have fixed desired arriving 

time, every agent is assumed to have fixed departure time in this research. When departure time choice 

preference data is available, departure time choice behavior can also be considered. The network 

structure and the hourly OD matrix are included in the Appendix. 

B. Individual Route Choice Model Development 

Generating synthetic preferences 

Assuming each agent represents a unique driver who is using route guidance system in the road network, 

each agent has his/her own route choice preference. In reality, when drivers participate in the proposed 

route guidance system, each driver’s route choice preference can be estimated by the route guidance 

system. In this evaluation, agents’ route choice preferences were synthetized from a group of 

participants’ preferences which were observed from a stated preference survey.  

A stated preference survey was conducted among 28 participants who are mostly students at the 

University of Virginia. The participants were invited to sit in the driving simulator and were shown 76 

binary route choice scenarios. Based on the information of five attributes including Distance, Travel 

Time, Possible Longest Travel Time, Fuel Cost and Number of Controlled Intersections, participants 

were asked to choose a route to go based on the information. Their answers were recorded and analyzed 

to obtain individual route choice preference. The details of experiment design and survey 

implementation was discussed in Chapter 3 of this dissertation.  

Participant i’s preference is denoted as a weight vector, 𝒘𝒊=[𝑤1
𝑖 , 𝑤2

𝑖 , …, 𝑤𝑛
𝑖 ]T, in which 𝑤𝑛

𝑖  represents 

participant i’s weight regarding route attribute n. Assume the weight of all drivers’ route choice 



preference regarding a certain route attribute, 𝒘𝒏, follows a normal distribution as shown in Equation 

(10). The parameters of the distribution, 𝑢𝑛 and 𝑠𝑛 are the mean and standard deviation calculated from 

observed participants’ preferences following Equation (11) and Equation (12). Then, agent i’s 

preference in terms of the weight regarding the route attribute n can be randomly drawn from the normal 

distribution, 𝑁(𝑢𝑛, 𝑠𝑛). The synthetic preference of an agent can be written as 𝒘𝒊′as given in Equation 

(13). These randomly generated weights are considered as the “true” preference for the evaluation 

purpose in this research. It is noted that driver’s true preference is by no means available to the route 

guidance system. That is to say, route guidance systems provide services and information based on their 

estimated drivers’ preferences, but drivers react to the services and information based on their true 

preferences. To have an idea about the performance of route guidance systems, the assumed “true” 

preference is not involved in designing routing strategies but used in the final evaluation to simulate 

drivers’ actual responses to the information in practice. Synthetic drivers with synthetic preferences 

went through a questionnaire that was used in the stated preference survey and indicated their preferred 

routes in answers. As given in Equation (14), when synthetic agent i sees the route choice scenario xj in 

the questionnaire, its answer is yj. 𝜀𝑗 is added in the generation of synthetic agents’ decisions to represent 

the unobserved influencing factors and such error was added by drawing from a pre-defined normal 

distribution. These questionnaires can be seen as the observations that route guidance systems can learn 

drivers’ preferences from. In reality, these observations can be either made by observing drivers’ 

historical trips or asking driver’s stated preference with survey questions. With these observations, 

individual route choice models can be established. Driver i’s estimated preference is in noted as in 

Equation (15). 

𝒘𝒏~𝑁(𝑢𝑛, 𝑠𝑛)   (10) 

𝑢𝑛 =
1

𝐼
∑ 𝑤𝑛

𝑖𝐼
𝑖=1   (11) 

𝑠𝑛 = √
∑ (𝑤𝑛

𝑖 −𝑢𝑛)
𝐼
𝑖=1

𝐼−1
  (12) 

𝒘𝒊′ = (

𝑤1
𝑖′

𝑤2
𝑖′

⋮

𝑤𝑛
𝑖′

)   (13) 

𝑦𝑗
𝑖′ = 𝒘𝒊′𝒙𝒋 + 𝜀𝑗  (14) 



�̂�𝒊′ = (

�̂�1
𝑖′

�̂�2
𝑖′

⋮

�̂�𝑛
𝑖′

)   (15) 

 

Building Individual Route Choice Models 

With the preference data collected from synthetic agents, individual driver’s route choice model can be 

established, namely building each agent a route choice model. Following the structure of the individual 

route choice model described in Section II A, a machine learning technique of support vector machine 

(SVM) with a linear kernel function was adopted to demonstrate how individual route choice models 

can be established. In reality, there are situations where individual driver does not have adequate 

historical preference data, for example, he/she is a new user and just starts using the system or the route 

guidance system just starts operation. To handle these situations, modeling approaches with more 

advanced features such as Multi-task linear model adaptation, can be used to establish individual route 

choice models. In the scenario of this research, each agent went through all 76 questions in the survey 

questionnaire. It is considered as having enough amount as well as variation of historical preference 

data. Therefore, a simple machine learning method is used here for demonstration. 

The concept of SVM is to map the data points into high dimensional space and find a hyperplane which 

can separate the points belonging to different categories. The hyperplane can be represented as follows: 

𝝎𝑿+ 𝑏 = 0  (16) 

In which 𝝎 is the vector of hyperplane’s slopes, 𝑿 is the vector of alternative’s features and b is the 

intercept. To find this hyperplane, 𝝎 and b can be obtained by solving the following optimization 

problem (Steinwart and Christmann 2008). 

Min 
1

2
𝝎𝝎𝑻 + C∑ ϵi

n
i=1  (17) 

𝑠. 𝑡. 𝑦𝑖(𝝎𝑿 + 𝑏) ≥ 1 − 𝜖𝑖, 𝑖 = 1,2… , 𝑛 

𝜖𝑖 ≥ 0, 𝑖 = 1,2… , 𝑛 

Solving the optimization problem in Equation (17) results in maximizing the distances between data 

points to the hyperplane. 𝜖𝑖 is the slack variable which adjusts the margin between data points and 



hyperplane. It gives some tolerance for the data points that cannot be linearly separated. C is a hyper 

parameter which puts penalty on these data points. The optimization problem can be converted to a dual 

problem and solved with Lagrange method. 

Therefore, the problem of choosing which route is converted to classifying the scenarios into the 

category of choosing route j (j=1, 2, …, J). We can find each driver a hyper plane which is represented 

with �̂�𝒊′𝑿 + b = 0 in which �̂�𝒊′ is the estimated weight vector of driver i, as noted in Equation (15). X 

contains all the information in Equation (1), namely including route attributes information, trip related 

information, and driver’s characteristics. In this demonstration, only route attribute information was 

include. b is the intercept of the hyper plane, which can be estimated with SVM. In this research, since 

the route choice scenarios in the survey are all binary route choice scenarios, a SVM for binary 

classification was used. When there are multiple alternative routes, multi-class classification SVM can 

be adopted (Hsu and Lin 2002).  

For all agents, the data of each agent was used to establish his/her own route choice model following 

Equation (16) to (17). In order to apply SVM models, the penalty parameter needs to be determined with 

cross validation. The range explored in the cross validation is a geometric sequence from 10-5 to 105 by a 

factor of 10, which is a commonly used range for penalty parameter in SVM (Ben-Hur and Weston 

2010). A particular agent’s data was split into five groups. Each group was used as validation data once 

on all possible values of penalty parameter. This random split was conducted five times. The value with 

highest average performance on validation data was selected to be the penalty parameter value. With a 

penalty parameter, the agent’s weight �̂�𝒊′ can be obtained with SVM models given in Equation (16) to 

(17). This process was conducted for all agents. Each agent has its “true” preference 𝒘𝒊′and the 

estimated preference �̂�𝒊′based on its stated preference survey answers that were generated with “true” 

preference. In reality, only �̂�𝒊′  is available to route guidance systems which is learned from driver’s 

historical preference data.  

C. Evaluation Platform 

To evaluate the performance of the proposed route guidance system in the test-bed, an evaluation 

platform which is made of a Decision module and a Traffic Simulation module was set up, as shown in 

Figure 3. The decision module was mainly coded in Matlab and the Traffic Simulation module was 

made based on DTAlite. DTAlite is a lightweight simulation based Dynamic Traffic Assignment agent-



based mesoscopic simulation tool (Zhou and Taylor 2014). It utilizes parallel computing thus can 

efficiently finish network loading process.  

The Decision module designs different route guidance strategies, generates route sets for drivers, 

realistically mimics drivers’ route choice behavior, and processes and generates route guidance 

information. The input of this module is mainly traffic conditions either historical traffic conditions or 

the traffic conditions from the previous iteration. The output of the Decision module is the route choice 

of each agent.  

In the Traffic Simulation module, the network configuration including information of road network 

structure, capacity, number of lanes, etc. is set up. The network loading process is conducted in DTAlite. 

The traffic flow model used in traffic assignment is Newell’s simplified kinematic wave model. It 

simulates the demand in terms of agents’ movements from origins to destinations. The input of the 

traffic simulation module is the route choice decisions of every single agent and the output is the time-

dependent traffic conditions in terms of time dependent link performance such as volume, speed, 

density, queue length, etc. These time-dependent traffic conditions are utilized by the decision module 

again to conduct the calculation for the next iteration. 

 

Figure 3 The Framework of the Evaluation Platform Comprise a Dynamic Traffic Simulation Module and 

a Decision Choice Module 
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Route set generation 

In the traffic assignment process, the route set is pre-defined. As described in II B section, the branch 

and bound algorithm is used to generate the route set. Branch and bound algorithm constructs a 

connection tree between the origin and destination by processing a sequence of road links. While going 

through each link, certain bounded criteria are set up to avoid the unrealistic routes as well as include as 

many heterogeneous alternative routes as possible. As explained in the Section II A, the branch and 

bound algorithm needs to determine the values of adjusting factors and threshold values for some 

criteria. These values should be calibrated with observed data on specific road network in practice. In 

this research, starting with the values used in (C. Prato and Bekhor 2006), adjustments were made to 

generate a fairly reasonable route set. Then, some OD pairs were randomly selected and compared with 

the suggested route shown on Google Maps. The tolerance values that generated a route set with similar 

routes recommended by Google Maps were eventually used. The tolerance values used for generating 

the final route set are as: 𝛿𝐷 = 1.2, δT = 1.25, δD = 1.2, 𝑁 = 10. With the tolerance values set up, 

route sets were generated for each OD pair. 

After the initial route sets were generated, similarity check was conducted to avoid the situations that 

overlapping routes are included in the route set at the same time. In this research, different levels of 

similarity threshold were set for routes with different amounts of links. For the route having less than 6 

links, r  in Equation (7) was set to be 0.8. That means a route containing 5 links is accepted if it has less 

than 3 overlapping links with all existing routes in the final route set. For routes having equal to or more 

than 6 links, r was set to be 0.5. Therefore, the initial route set was narrowed down by eliminating 

overlapping routes. 

For the 24 traffic analysis zones in Sioux Falls network, there are 552 OD pairs. Route set was generated 

for each OD pair using the branch and bound algorithm described above. After the similarity check, the 

number of alternative routes in the final route sets for each OD pair ranges from one to ten. The 

composition of different numbers of alternative routes were shown in Figure 4.  



 

Figure 4 The Frequency of OD Pairs Having Certain Choice Set Size 

Traffic information processing 

Drivers make decisions based on the route information provided to them. The information of all routes 

in the route sets was obtained by processing traffic conditions. As explained in Section II B, in the 

process of searching for user optimum conditions, drivers’ decisions in iteration n are made based on the 

traffic conditions in iteration n-1. The information of route attributes that are considered in the drivers’ 

personalized route choice model is gathered from the traffic conditions generated in the last iteration. 

When the traffic assignment is in the first iteration, there are no traffic conditions from the previous 

iteration that can be used to process traffic information. Therefore, the historical traffic conditions are 

used to process the traffic information in the first iteration. 

Historical traffic condition generation 

In order to more realistically represent the traffic conditions, the starting point of the iteration process is 

not from the status of free flow conditions. Instead, historical traffic conditions are used. Historical 

traffic conditions represents the typical traffic conditions in the past. Drivers adjust their route choices 

based on their experiences with the network and finally have their typical route choices which lead to 

typical traffic conditions. The weighted average of traffic conditions in several iterations before reaching 

equilibrium is usually used to represent typical historical traffic conditions (Yang, Koutsopoulos, and 

Ben-Akiva 2000). Therefore, travel time based traffic assignment was conducted and average conditions 

(time dependent link travel time) of 10 iterations before reaching equilibrium was used as historical 

traffic conditions.  
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Calculating route attributes from traffic assignment results 

The network is made of a set of nodes, N and a sets of arcs A. The nodes are numbered 1,…, N. The acr 

(i,j) ∈A has time dependent conditions associated with it, as shown below. 

Length of the link: 𝑑𝑖,𝑗; 

Travel time on the link at time t: 𝑡𝑡𝑖,𝑗(𝑡); 

Possible longest travel time on the link at time t: 𝑝𝑙𝑡𝑡𝑖,𝑗(𝑡); 

Fuel cost on the link at time t: 𝑓𝑐𝑖,𝑗(𝑡). 

Most the above information can be obtained from the output of the traffic simulation module which 

outputs the traffic conditions very one minute. In order to calculate the fuel cost, following equation is 

used. The gas price was assumed to be $3 per gallon. 

𝑓𝑐𝑖,𝑗(𝑡) =
𝑑𝑖,𝑗

𝑓𝑒𝑖,𝑗(𝑡)
∗ 3   (18) 

in which the fuel efficiency (mile/gallon) was assumed to be three levels based on the speed (mile/hour): 

𝑓𝑒𝑖,𝑗(𝑡) =

{
 
 

 
 22

𝑑𝑖,𝑗

𝑡𝑡𝑖,𝑗(𝑡)
≤ 25

27 25 <
𝑑𝑖,𝑗

𝑡𝑡𝑖,𝑗(𝑡)
< 40

32
𝑑𝑖,𝑗

𝑡𝑡𝑖,𝑗(𝑡)
> 40

    (19) 

With the link attributes, route attributes can be calculated accordingly. A route can be denoted as a 

sequence of nodes (i1, i2, i3…, ik). The information of all route attributes including distance, travel time, 

possible longest travel time, fuel cost and number of intersections that are included in the users’ route 

choice models can be calculated as follows. 

 Distance of route r 

 𝑑𝑟 = ∑ 𝑑𝑖𝑛,𝑖𝑛+1
𝑘−1
𝑛=1   (20) 

 Travel time of route r at departure time t 

𝑡𝑡𝑟(𝑡) = {
∑ 𝑡𝑡𝑖𝑛,𝑖𝑛+1(𝑡𝑖𝑛

∗ )ℎ−1
𝑛=1

1

ℎ
∑ 𝑡𝑡𝑖

𝑟ℎ
𝑖=1

       
𝑤ℎ𝑒𝑛 ℎ = 0 𝑜𝑟 𝑖𝑛 1𝑠𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑤ℎ𝑒𝑛 ℎ > 0
  (21) 



in which 𝑡𝑖𝑛
∗  is the time that enters the link staring with node in. 𝑡𝑖𝑛

∗ = ∑ 𝑡𝑡𝑖𝑚,𝑖𝑚+1
𝑛−1
𝑚=1  and 𝑡𝑖1

∗ = 𝑡. h is the 

total number of agents who traveled on route r in the previous iteration. 𝑡𝑡𝑖
𝑟 is the travel time that 

experienced by the agent i in the previous iteration on route r.  

 Possible longest travel time of route r 

𝑝𝑙𝑡𝑡𝑟(𝑡) = {
𝑡𝑡𝑟(𝑡)

𝑚𝑎𝑥 (𝑡𝑡1
𝑟 , 𝑡𝑡2

𝑟 , … , 𝑡𝑡ℎ
𝑟)
       

𝑤ℎ𝑒𝑛 ℎ = 0 𝑜𝑟 𝑖𝑛 1𝑠𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
𝑤ℎ𝑒𝑛 ℎ > 0

  (22)  

 Fuel cost of route r at time t  

 𝑓𝑐𝑟(𝑡) = ∑ 𝑓𝑐𝑖𝑛,𝑖𝑛+1(𝑡𝑖𝑛
∗ )𝑘−1

𝑛=1    (23) 

 Number of controlled intersection of route r 

 𝑖𝑛𝑡𝑒𝑟𝑟 = 𝑘 − 1    (24) 

With the process described above, the information of all five route attributes for any alternative route 

can be obtained. Then, these information can be used as the input of individual route choice models for 

predicting drivers’ route choice decisions.  

Applying Individual Route Choice Models 

In the traffic assignment, after the route information was obtained from the traffic information 

processing, the traffic conditions on alternative routes in route set are available to agents. Route 

conditions can be plugged into each drivers’ estimated route choice preference �̂�𝒊′to know the route that 

they are likely to take. In the route sets, there are more than two alternative routes for some origin and 

destination pairs. On the other hand, the route choice models developed in this research is for binary 

route choice scenario. In reality, when there are more than two or three alternatives, one decision 

strategy that people usually use is to conduct pairwise comparison to determine the final selection 

(Pfeiffer 2012). Therefore, when there are more than two routes, agents use pair comparison to select the 

route to go, as discussion in Section II B. 

D. Comparison Route Guidance System with Different Routing Strategies 

The proposed route guidance system was evaluated against three existing route guidance strategies, 

including travel time based real-time route guidance with different information updated intervals, and 

using travel time based user equilibrium condition as guiding information. Each of them is discussed 

below. 



Travel time based real-time route guidance 

Real-time route guidance strategy is very similar to the route guidance systems in the practice nowadays. 

Users can get the real-time traffic conditions as the information when they departure. Route guidance 

system operators (such as Google Maps) keep monitoring and collecting the traffic conditions on the 

network and provide the real-time traffic conditions to their users. This can help the drivers avoid the 

congested area and save travel time. 

To represent the travel time based real-time route guidance system, the evaluation time period of [0, T] 

can be discretized in to M intervals with length of σ. The time intervals can be indexed as 1, 2, …, M. 

When agent i departure at time t and t falls into time interval m, its decisions can be calculated with its 

individual route choice model as follows: 

𝑌𝑖,𝑚 = 𝑓(𝑿𝒎−𝟏)       𝑚 = 1,2, … ,𝑀   (25) 

in which 𝑿𝒎−𝟏 = [𝑑
𝑟 , 𝑡𝑡𝑚−1

𝑟 , 𝑝𝑙𝑡𝑡𝑚−1
𝑟 , 𝑓𝑐𝑚−1

𝑟 , 𝑖𝑛𝑡𝑒𝑟𝑟]. When m=1, the traffic conditions in interval m in 

the historical traffic conditions were used as information and provided to drivers. 𝑿𝟎 =

[𝑑ℎ𝑖𝑠
𝑟 , 𝑡𝑡𝑚,ℎ𝑖𝑠

𝑟 , 𝑝𝑙𝑡𝑡𝑚,ℎ𝑖𝑠
𝑟 , 𝑓𝑐𝑚,ℎ𝑖𝑠

𝑟 , 𝑖𝑛𝑡𝑒𝑟ℎ𝑖𝑠
𝑟 ].  

The Equation (25) describes how agent i uses the traffic conditions that happened recently and are 

collected by the route guidance system operators to make a route choice decision. Depending on how 

often the information is updated, users who departure in a time interval get the information about traffic 

conditions in the previous iteration. When the length of time interval σ is small enough, the information 

is nearly real-time. It is easy to understand that the smaller the value of σ is, the faster users can react to 

the congestion in the network. As implemented in the practice, based on the collected traffic conditions, 

route with shortest travel time is recommended to the users. Because of data collection and processing 

efforts, route guidance system operators may adopt different levels of information update frequency. In 

this evaluation, real-time route guidance system with σ=1 minute and σ=10 minutes are tested.  

Travel time based user equilibrium condition as information 

Using user equilibrium condition as information to provide route guidance service is one of the 

commonly used route guidance strategies proposed in the literature and have been proved to have good 

performance (Deflorio 2003; Giglio and Sacco 2014; He, Guan, and Ma 2013). The concept of dynamic 

user equilibrium (DUE) is defined as the flow pattern in which the actual route travel time is the same 



on all used routes and is less than or equal to the travel time on non-used route, at any time (Carey and 

Ge 2012). Therefore, at any time interval m, following conditions should be met. 

𝑡𝑡𝑚
𝑟 = {

= 𝑡𝑡𝑚
𝑟 ∗ 𝑖𝑓 𝑓𝑚

𝑟 > 0

≥ 𝑡𝑡𝑚
𝑟 ∗ 𝑖𝑓 𝑓𝑚

𝑟 = 0
    𝑤ℎ𝑒𝑟𝑒 𝑡𝑡𝑚

𝑟 ∗ = 𝑚𝑖𝑛 (𝑡𝑡𝑚
𝑟 |𝑟 ∈ 𝐽)  (26) 

In which 𝑡𝑡𝑚
𝑟  is the travel time on route r in time interval m. 𝑡𝑡𝑚

𝑟 ∗ is the shortest travel time among all 

alternative routes in time interval m. 𝑓𝑚
𝑟  is the traffic flow or the number of agents choosing route r in 

time interval m.  

In the algorithms of finding the DUE conditions, method of successive average (MSA) is one of the 

widely used algorithms (Sheffi 1985). With MSA, the route flow is adjusted within iterations with 

following procedures (Sheffi 1985). 

Step 0: Initialization. Perform a network loading based on the historical travel times {𝒕𝒕𝒎
𝒓,𝟎

}. A traffic 

pattern {𝒇𝒎
𝒓,𝟏

} is generated. Set iteration number, n=1. 

Step 1: Update. Based on the traffic pattern {𝒇𝒎
𝒓,𝒏

}, the travel time information on all routes {𝒕𝒕𝒎
𝒓,𝒏

} can 

be obtained. 

Step 2: Direction finding. Perform a network loading based on the current travel time conditions {𝒕𝒕𝒎
𝒓,𝒏

}. 

This yields an auxiliary traffic pattern {𝒚𝒎
𝒓,𝒏

}. 

Step 3: Move. Find the new flow pattern using 𝑓𝑚
𝑟,𝑛+1 = 𝑓𝑚

𝑟,𝑛 + 𝛼𝑛(𝑦𝑚
𝑟,𝑛 − 𝑓𝑚

𝑟,𝑛) in which αn (0<αn <1) 

is a fraction determines how much flow is moved. 𝛼𝑛 =
1

𝑛
 is used here.  

Step 4: Convergence criterion. If convergence criterion is reached, stop. If not, set n=n+1 and repeat 

Step 1 to Step 4. 

Relative gap which is widely used as the convergence criterion is selected to determine whether the 

iterative process should stop (Chiu et al. 2011). The relative gap function is defined as in Equation (27).  

𝑟𝑒𝑙𝑔𝑎𝑝 =
∑ ∑ (∑ 𝑓𝑚

𝑟 𝑡𝑡𝑚
𝑟

𝑟∈𝑅𝑠 )−∑ ∑ 𝐷𝑠,𝑚𝑡𝑡𝑠,𝑚
∗

𝑠∈𝑆𝑚𝑠∈𝑆𝑚

∑ ∑ 𝐷𝑠,𝑚𝑡𝑡𝑠,𝑚
∗

𝑠∈𝑆𝑚
  (27) 

The relative gap is basically measuring how far the current flow pattern deviates from the flow pattern in 

which everyone is using the shortest travel time route. m represent any time interval. s is a specific OD 

pair. r represents one of all R alternative routes between this OD pair s. 𝑓𝑚
𝑟  represents the number of 



drivers who choose route r in time interval m and 𝑡𝑡𝑚
𝑟  is the associated travel time on route r in time 

interval m. 𝑫𝒔,𝒎 is the total demand traveling between OD pair s in time interval m and 𝑡𝑡𝑠,𝑚
∗  is the 

shortest travel time between OD pair s in time interval m. In this evaluation, the relative gap criterion is 

set to be 0.01%. When the relative gap is less than 0.01%, the iterative process is terminated. 

In traditional UE assignment, traffic demand is treated as aggregate traffic flow. The flow pattern is 

adjusted also in an aggregate manner in the process of MSA. However, traffic demand is made of many 

single individual drivers and each of them is represented by a single agent in the evaluation platform. 

Since travel time based UE assignment assumes drivers have simplified preference in terms of preferring 

route with shorter travel time, drivers are not considered as being different from each other. Therefore, 

in MSA process, when certain fraction of traffic flow should be switched among alternative routes, 

associated amount of agents were randomly selected and switched accordingly.  

E. Performance Evaluation at Perfect Market Penetration Rate 

Evaluation flow chart 

The proposed route guidance system was evaluated against travel time based real-time route guidance 

system and travel time based UE condition as information for guidance. The performance is evaluated in 

three aspects including users’ satisfaction, system performance, and the capability of estimating future 

traffic conditions.  

From the users’ perspective, users’ satisfaction is evaluated by checking if the route recommended by 

the route guidance system match the users’ own choices (represented by the “true preference”). In the 

proposed route guidance system, routes are recommended based on estimated route choice preferences. 

While in other route guidance systems, users’ route choice preferences are simplified to be preferring the 

route with shortest travel time. The routes are recommended based on this simplified preference. In the 

evaluation, the number of agents whose truly preferred route match the recommended routes is used as 

measurement of users’ satisfaction.  

For transportation authorities, the ultimate goal is to improve the transportation system performance. 

The performance can be measured in aspects of mobility and sustainability. Therefore, the system total 

travel time, total delay, energy consumption and greenhouse gas emission are used to measure the 

system performance of different route guidance systems.  



By knowing the possible routes that each driver may take, it is likely to estimate the future traffic 

conditions even before the trips are made. This is one of the major advantages of the proposed proactive 

user-optimum oriented route guidance system. Accurately estimating future traffic conditions can not 

only provide the drivers with more reliable traffic information but also allow traffic engineers to 

implement traffic control and management strategies to avoid the possible congestion. The accuracy of 

future traffic condition prediction is measure as the discrepancy between the predicted link volumes 

estimated by the route guidance systems and the actual link volumes generated with users’ “true 

preferences”.  

With the purpose of evaluating the route guidance systems in three aspects mentioned above, the 

evaluation flow chart for each type of route guidance system is discussed below. 

Figure 5 shows the evaluation flow chart of the proposed proactive user-optimum oriented route 

guidance system. The system learns drivers’ route choice preference from the historical preference data 

and has every individual’s estimated preference. Then, based on the estimated preferences, user 

optimum conditions can be found and used as the route guidance information. The predicted traffic 

conditions are also generated in the process of searching for the user-optimum conditions. The generated 

route guidance information is fed into agents’ true preferences which are unknown to the system to 

obtain the actual traffic conditions. This represents the situation that traffic information is broadcasted to 

the public and drivers react to the traffic information based on their own preferences in reality. The 

consequences of drivers’ reaction are the actual performance of the proposed route guidance system. 

Therefore, users’ actual route choices are compared to the recommended routes in the generated 

guidance information to evaluate users’ satisfaction. The network conditions in actual traffic conditions 

are used to evaluate the system performance. The discrepancy between actual traffic conditions and 

predicted traffic conditions can show how well the route guidance system estimates future traffic 

conditions. 

 
Figure 5 The Evaluation Flow Chart of the Proposed Proactive Route Guidance System 
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Figure 6 shows the evaluation flow chart of travel time based real-time-guidance system. As explain in 

Section III D, the real time route guidance system keep monitoring the traffic conditions and send the 

real-time traffic information to users. The system assumes all users prefer the route with shortest travel 

time. The assumed preference of demand D in time interval m is represented by 𝐹𝐷,𝑚
′ . Therefore, 

𝐹𝐷,𝑚
′ (𝑿𝒎−𝟏) represents the predicted route choice of demand D in time interval m when they obtain the 

traffic conditions Xm-1 that is collected from most recent short time interval m-1 by the route guidance 

system. Accordingly, 𝐹𝐷,𝑚(𝑿𝒎−𝟏) represents users’ actual choices based on their true preferences when 

they see information Xm-1. The discrepancy between 𝐹𝐷,𝑚
′ (𝑿𝒎−𝟏) and 𝐹𝐷,𝑚(𝑿𝒎−𝟏) is used to evaluate 

users’ satisfaction. The generated actual traffic condition X is the consequences of drivers’ actual 

reactions and therefore is used for evaluate the system performance. Meanwhile, when the real-time 

route guidance system is used for estimating future traffic conditions, only assumed route choice 

preferences are used in the simulation process and it is assumed that all drivers follow the recommended 

routes with shortest travel time. The generated predicted traffic conditions X’ are compare to the actual 

traffic conditions X to evaluate the route guidance system’s capability in future traffic condition 

estimation.  

 

Figure 6 The Evaluation Flow Chart of the Real-time Route Gudiance System 

At last, Figure 7 shows the evaluation flow chart of the route guidance system using travel time based 

UE conditions as information. The travel time based UE conditions are found firstly and then used as 

information. In reality, the information is broadcasted to the users and the users react to the information 

based on their own preferences. This generates the actual traffic conditions as the effects of sending 

travel time based UE conditions as information. The system performance of the route guidance system is 

evaluated based on actual traffic conditions. Travel time based UE also assumes users prefer the route 

with shortest travel time. Based on this preference assumption, the system recommends the route with 



shortest travel time to users and assume they all follow the recommendations. This generates the 

predicted traffic conditions. The recommended routes are compared to drivers’ actual choices to reflect 

the users’ satisfactions, and the discrepancy between the predicted and actual traffic conditions shows 

how well the route guidance system can estimate future traffic conditions.  

 

Figure 7 The Evaluation Flow Chart of Travel Time based UE Conditions as Information 

With the evaluation flow charts described above, three types of route guidance systems were evaluated 

in three important aspects, including users’ satisfaction, system performances and capability in future 

traffic condition estimation. Each of these three aspects is discussed below in details. 

User’ satisfaction  

Since the ultimate purpose of route guidance systems is to better serve drivers, users’ satisfaction is one 

of the most important performance indicators. Users’ satisfaction is measured as the number of drivers 

whose preferred routes match with the routes recommended by the route guidance systems. Table 3 

summarizes the number of satisfied drivers whose preferred routes match with the recommended routes 

in each route guidance system. As shown in Table 3, the proposed system has the most satisfied drivers 

which is around 88.64% of all users. It is because that the proposed route guidance system considers all 

the factors that drivers care for making route choice decisions therefore it has better prediction of which 

route a driver would like to take. On the other hand, the real-time-guidance system and the route 

guidance system using UE condition as information both assume drivers only care travel time when 

making route choice decisions. Therefore, the recommendations made based on the simplified 

preference assumptions lead to lower percentage of satisfied users. Among these two types of route 

guidance systems, the real-time-guidance system has better performance than the route guidance system 

using UE condition as information. It is because the real-time-guidance system can capture the changing 

traffic conditions and help the drivers know the current traffic conditions before the trips are made. Even 

though it simplifies the route choice preference to be only caring travel time, travel time is still the most 
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important attribute for many drivers. Therefore, it performs better than the guidance system using UE 

conditions as information which does not adjust their recommendations based on the real-time traffic 

conditions.  

Table 3 The Amount of Users Who Are Satisfied with Route Recommendations 

Route Guidance System 

Number of 

satisfied users 

Percentage of 

satisfied users  

Real-time 1min 38,096 70.49% 

Real-time 10 min 37,935 70.19% 

UE as information 35,963 66.54% 

Proposed  47,908 88.64% 

  

System mobility and sustainability 

The mobility and sustainability impacts of the proposed route guidance system are evaluated against 

other three route guidance systems in this section. System total travel time and total delay are used to 

measure the system mobility impacts. The system total travel time is defined as the summation of all 

agents’ experienced travel time. The system total delay is measured as number of vehicles times the 

delayed travel time. It is calculated by summing the multiplication of link delay and the link volume on 

all links. The sustainability impacts of route guidance systems include energy consumption and 

emission. 

As shown in Table 4, the proposed route guidance system has the minimum system total travel time and 

total delay among all routing strategies. The sustainability impacts show a similar trend. Though the 

proposed route guidance system targets on the user-optimum conditions which is not necessarily 

associates with better system performance, the total travel time and total delay was reduced because 

travel time is still one of the most important attributes that many drivers considered. Therefore, the 

target of user-optimum has some overlap with the goal of minimizing system total travel time. In 

addition, because drivers’ route choice decisions can be more accurately predicted with the proposed 

route guidance system, it is easier to know the possible congested routes in traffic assignment process 

and drivers can avoid those areas in the process of searching for user-optimum conditions. Therefore, it 

avoids the situation that drivers are navigated to the congested routes and consequently reduces the 

delay and travel time.   



Among other route guidance systems, the results show similar trend as in the analysis of users’ 

satisfaction. The real-time-guidance system has better system performance than the guidance system 

using UE conditions as information in the aspect of both mobility and sustainability. It is because the 

latter does not adjust its recommendations based on the changing traffic conditions. On the other hand, 

the real-time-guidance system captures the real-time traffic conditions and makes recommendation 

accordingly. It is easy to understand that real-time-guidance system with 1 minute information update 

interval has better performance than the one with 10 minutes information update interval, because 

drivers can react to the changing traffic conditions faster when the information is updated more 

frequently.  

Table 4 The Mobility and Sustainability Impacts of Different Routing Strategies 

Route Guidance 

System 

Total Travel 

Time (hours) 

Total Delay 

(veh*hours) 

Total Energy 

(10^9KJ) 

CO2 

(ton) 

NOX 

(kg) 

CO 

(kg) 

HC 

(kg) 

Real-time 1min 26,983.1 9,831.9 2.81 201.9 146.2 1594.8 51.0 

Real-time 10 min 28,039.6 10,809.5 2.87 206.0 146.6 1611.3 52.1 

UE as information 30,760.5 13,857.4 2.97 213.5 148.0 1628.2 55.4 

Proposed 24,719.3 7,860.4 2.65 190.8 141.3 1525.3 47.8 

 

Future traffic conditions estimation 

Volume is one of the most important factors used in designing and implementing traffic control and 

management strategies, such as traffic signal control. Therefore, the link volume difference between 

predicted and actual traffic conditions (namely the {Xr*}t as shown in Figure 2) is used to evaluate the 

capability of each route guidance system in estimating future traffic conditions.  

Figure 8 shows the number of links having different levels of volume discrepancy in each route 

guidance system. There are 76 links in the Sioux Falls network. For the proposed route guidance system, 

as shown in the Figure 8, 74 links have link volume discrepancy less than 10% and only 2 links have 

discrepancy within the range of [10%, 20%]. Other route guidance systems have nearly 20 out of 76 

links having volume discrepancy between [10%, 20%], around 15 to 30 links having discrepancy 

between [20%, 50%] and 3 to 6 links having discrepancy between [50%, 100%]. More links in the 

ranges with lower discrepancy means more accurate estimation of future traffic conditions. Therefore, 

the proposed route guidance system has more accurate volume estimation than other route guidance 



systems. This advantage of the proposed route guidance system is the result of better knowing drivers’ 

route choice preferences. Thus, it is easier to predict the routes that drivers are likely to take and 

consequently predict traffic conditions. As traffic volume plays an important role in designing and 

implementing traffic control and management strategies, an accurate estimation can help the traffic 

engineers implement a design that is suitable for the traffic conditions and avoid delays caused by an 

impropriate design. Therefore, the proposed route guidance system in which most of the links have less 

than 10% volume discrepancy can help traffic engineers better estimate future traffic conditions thus 

better design traffic control and management strategies. This is also consistent with Paz and Peeta’s 

results (Paz and Peeta 2009a), namely considering drivers’ possible reaction in route guidance can 

reduce the traffic condition estimation error. 

 

Figure 8 The Number of Links Having Different Volume Estimation Accuracy in Different Route Guidance 

Strategies 

F. Performance Evaluation at Imperfect Market Penetration Rates (MPRs) 

Evaluation flow chart 

In reality, it takes time for a certain route guidance systems to reach a full MPR. When a full MPR is not 

reached, drivers who do not participate in the proposed route guidance either use current route guidance 

system or do not use route guidance services at all. Therefore, the interaction among drivers who use 

different routing strategies could generate certain traffic patterns. Whether the proposed route guidance 

system is going to bring benefits to both users and transportation system at imperfect market penetration 

rates is worthy of investigation. 
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To evaluate the performance of the proposed route guidance system at imperfect MPRs, it is assumed 

that there are three types of drivers on the road network, namely members, real-time-guidance users and 

habitual drivers.  

 Members: the users of the proposed route guidance system. They receive route guidance 

information based on the predicted user optimum conditions. 

 Real-time-guidance users: the drivers who use real-time-guidance systems. The operators of the 

real-time-guidance systems keep collecting traffic conditions on the network in real time and 

send the traffic information to drivers as well as the recommended route with shortest travel 

time. 

 Habitual drivers: the drivers who do not use any route guidance services. They choose the route 

to go based on the historical traffic conditions according to their own preferences. 

Therefore, there are two types of route guidance system in addition to three types of drivers with 

different routing strategies.  

 User optimum-oriented guidance: its operators need to generate the route recommendations for 

the members. The operators know its members’ estimated preference but do not know other 

drivers’ in the network who use real time information and who habitually use one route. 

Therefore, the operators assume real-time users always follow the shortest travel time routes 

based on their estimate real-time traffic conditions and the habitual users always choose the 

shortest distance routes. Then, operators can generate the user optimum conditions with 

assuming that different groups of drivers have different behavior rules and send the user 

optimum conditions as information for guidance.  

 Real time information guidance: its operators keep monitoring the traffic conditions on the road 

network and send the real time information to drivers.  

The interaction among three types of drivers and two types of route guidance systems can be shown with 

the framework in Figure 9. 



 

Figure 9 The Interaction among Three Types of Drivers and Two Types of Route Guidance System 

Based on a survey conducted by Amirgholy et al. (2017), drivers use route guidance system in 36% of 

their trips. Therefore, among the drivers who are not members, the ratio between real-time-guidance 

users and habitual drivers is 40% versus 60%. When the market penetration rate of the proactive user-

optimum oriented route guidance system is p, the market share of the real-time-guidance users is (1-

p)*0.4 and the market share of the habitual drivers is (1-p)*0.6. The market penetration rate of the 

proposed route guidance system is gradually increased with 10% of incremental adjustment from 0% to 

100%. Agents belonging to different types of users follow different behavior rules. Their route choice 

decisions interact with each other and generate different traffic patterns under different market 

penetration rates.  

In order to better evaluate the performance of the proposed route guidance system, a route guidance 

strategies using travel time based user equilibrium is implemented at different market penetration rates 

as well. Using travel time based user equilibrium conditions as route guidance information is commonly 

used in the literature and has been proved to have good system performance (Deflorio 2003; Giglio and 

Sacco 2014). Its performance was compared with the proposed route guidance. In the UE condition 

route guidance system, the operator of the route guidance system assumes all drivers in the system only 
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consider travel time as the only component of travel cost. Then, travel time based user equilibrium 

conditions can be found and provided to the participated drivers. 

The performance of different route guidance strategies are again evaluated in three aspects including 

users’ satisfaction, system performance and the capability to accurately estimate traffic conditions. The 

performance of two types of route guidance strategies are discussed in each of three aspects below. 

Users’ satisfaction 

Users’ satisfaction is measured as the number of drivers whose preferred route match the recommended 

routes. The evaluation here uses the amount of unsatisfied drivers as measurement here. Table 5 

summarizes the number and the percentage of unsatisfied drivers when different route guidance system 

is under investigation. As explained in the evaluation follow chart Figure 9, travel time based real-time 

guidance system coexists in the system in addition to the route guidance system under investigation 

(either the proposed one or the one using UE conditions as information). The number of unsatisfied 

drivers is calculated as the summation of all unsatisfied drivers from both route guidance systems, 

namely the real-time guidance and system under investigation. As shown in Table 4, when the MPR of 

the route guidance system under investigation increases, the number of drivers using guidance systems 

also changes. When the proposed proactive user-optimum oriented system is under investigation, the 

actual number of unsatisfied users increases because the total number of guided users increases, but the 

actual percentage of unsatisfied drivers deceases from 19.4% to 11.4%. That means the proposed route 

guidance system can increase users’ satisfaction when its MPR gradually increases. On the other hand, 

when the route guidance system using UE condition as information is under investigation, the 

percentage of unsatisfied driver increases as its MPR increases. That means the route guidance system 

actually deteriorate users’ satisfaction. Therefore, the proposed route guidance system is expected to 

bring benefits to users even at imperfect market penetration rates.  

 

 

 

 

 



Table 5 Users’ Satisfaction when different routing strategies are at imperfect market penetration rates 

Market share of 

system under 

investigation 

Number of 

guidance 

users 

Proactive user-optimum 

oriented  

System using UE 

conditions as information 

Unsatisfied users % Unsatisfied Users % 

10% 24,861 4,829 19.4% 5,994 24.1% 

20% 28,103 4,982 17.7% 7,421 26.4% 

30% 31,346 5,158 16.5% 8,777 28.0% 

40% 34,589 5,227 15.1% 10,068 29.1% 

50% 37,832 5,347 14.1% 11,369 30.1% 

60% 41,074 5,543 13.5% 12,754 31.1% 

70% 44,317 5,683 12.8% 14,070 31.7% 

80% 47,560 5,960 12.5% 15,459 32.5% 

90% 50,802 6,020 11.8% 16,774 33.0% 

100% 54,045 6,137 11.4% 18,082 33.5% 

 

System mobility and sustainability 

The system total travel time is calculated as the summation of all agents’ travel time. The system total 

delay is measured as number of vehicles times the delayed travel time. It is calculated by summing the 

multiplication of link delay and the link volume on all links. The total travel time and total system delay 

under different route guidance routing strategies at various MPRs are shown in Figure 10. 

As shown in Figure 10 (a) and (b), compare to the zero MPR case, gradually increasing the MPR of 

proactive user optimum route guidance system can decrease the system total travel time and total delay. 

On the contrary, increasing MPR of the route guidance system using UE conditions as information 

generates more system total travel time and total delay. To have a better understanding of the magnitude 

of total travel time and delay changes, Figure 10 (c) and (d) show the percentage reduction of using the 

proposed route guidance system when compared to the zero MPR scenario and scenarios of using UE 

conditions as information at various MPRs. As shown in Figure 10 (c), when the MPR of the proposed 

route guidance system increases from 10% to 100%, the total travel time can be reduced from 0.65% to 

3.82% compared to the zero MPR case. The reduction of total delay can reach 2.12% to 10.29% when 

the MPR increases from 10% of 100%. When compared to the scenario of using UE conditions as 

information, the reduction percentages are even larger. As shown in Figure 10 (c) and (d), the proposed 

route guidance system has 1.96% less total travel time and 5.96% less total delay than the route 

guidance system using UE conditions as information at the MPR of 10%. As the MPR increases, the 

total travel time and total delay can be 19.64% and 43.28% less. Therefore, the proposed proactive user-



optimum oriented route guidance system can reduce the total travel time and total delay even at 

imperfect MPRs. The reduction amount increases as the MPR increases.  

  

(a) Total travel time at various MPRs (hours) (b) Total delay at various MPRs (vehicle*hours) 

  

(c) Total travel time reduction (%) (d) Total delay reduction (%) 

Figure 10 The Mobility Impacts of the Proposed Route Guidance and UE as Information Route Guidance 

at Different MPRs 

In addition to the mobility benefits, the sustainability benefits are also evaluated in terms of the energy 

consumption and the emission. DTALite combines the MOVES Lite and generates the vehicles’ energy 

consumption and by converting mesoscopic vehicles’ movement into vehicle trajectory second by 

second (Zhou et al. 2015). The emission rates adopted in this research were the default rates came with 

DTAlite and can also be found here (https://github.com/xzhou99/dtalite_software_release). Table 6 

summarizes the energy consumption and the emissions of CO2, NOx, CO and HC. From Table 6, the 

sustainability impacts of two different routing strategies show similar trend as their mobility impacts. 

Compared to the zero MPR case, the proposed route guidance system gradually decreases the energy 

consumption and all kinds of emissions as MPR increases. As to the route guidance system using UE 

conditions as information, the system performance in terms of energy consumption and emission amount 

get worse as its MPR increases. Therefore, the results show that the proposed proactive user-optimum 
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oriented route guidance can also have suitability improvement to the transportation system even at 

imperfect MPRs and the benefits increases as the MPR increases. 

Table 6 The Sustainability Impact Comparison between the Proposed Route Guidance and Using UE as 

Information-route Guidance   

Member Energy (KJ) 10^9  CO2 (ton)  NOX (kg)  CO (kg)  HC (kg) 

0% 2.72 195 143 1550 49 

  Proposed 

UE as 

info Proposed 

UE as 

infor Proposed 

UE as 

infor Proposed 

UE as 

infor Proposed 

UE as 

infor 

10% 2.71 2.74 194.5 196.7 142.5 143.4 1543.8 1556.5 48.9 49.6 

20% 2.69 2.75 193.6 197.4 142.4 143.7 1539.6 1560.4 48.6 49.8 

30% 2.69 2.76 193.3 198.2 142.3 143.9 1537.9 1564.1 48.4 50.0 

40% 2.68 2.78 192.5 199.7 142.1 144.3 1535.5 1570.5 48.2 50.5 

50% 2.68 2.81 192.5 201.7 141.9 145.0 1535.8 1581.8 48.1 51.1 

60% 2.68 2.84 192.5 204.0 142.0 145.7 1534.8 1592.2 48.1 51.8 

70% 2.67 2.86 192.0 205.5 141.8 146.3 1531.9 1600.9 48.1 52.4 

80% 2.66 2.91 191.3 209.1 141.6 147.2 1528.1 1613.3 47.9 53.8 

90% 2.66 2.94 190.9 211.5 141.4 147.7 1525.7 1623.1 47.7 54.7 

100% 2.65 2.97 190.8 213.5 141.3 148.0 1525.3 1628.2 47.8 55.4 

 

Future traffic conditions estimation 

To measure the capability of estimating future traffic conditions, the link volume discrepancy between 

predicted traffic conditions and actual traffic conditions is used.  

The numbers of links having different levels of volume discrepancy are summarized in Figure 11. Zero 

MPR case represents the scenario that there are only real-time-guidance users and habitual drivers in the 

road network. The other cases include either certain MPR of the proposed route guidance system or the 

route guidance system using UE conditions as information. In the Sioux Falls network, there are 76 links 

in total. In the zero MPR case, there are 19 links on which the volume discrepancy is within [10%, 

20%], 18 links on which the discrepancy is within [20%, 50%], 2 links between [50%, 100%] and 1 link 

between [100%, 200%]. When the MPR of the proposed route guidance system increases from 10% to 

100%, the number of links having different levels of discrepancy is largely reduced. As shown in Figure 

11, the number of links having volume discrepancy between [100%, 200%] becomes zero at MPR of 

40% (as shown in (d)), the number of links having discrepancy between [50%, 100%] becomes zero at 

MPR of 50% (as shown in (c)). When the MPR increases to 80%, the number of links having 



discrepancy [20%, 50%] becomes zero. When the MPR reaches 100%, there are only less than 5 links 

having volume discrepancy between [10%, 20%]. Therefore, as the MPR increases, the proposed route 

guidance system has more accurate prediction of link volume. With 100% of MPRs, 74 out of 76 links 

having link volume discrepancy less than 10%. On the other hand, the route guidance system using UE 

conditions as information generally makes the estimation less accurate as its MPR increases. As shown 

in Figure 11, the number of links having volume discrepancy in [100%, 200%] becomes zero when the 

MPR reaches 80%. In other discrepancy levels, the numbers of links having discrepancy in ranges of 

[20%, 50%] and [50%, 100%] are higher than those of zero MPR cases and actually increases as the 

MPR increases. In the discrepancy range of [10%, 20%], the number of links having this level of 

discrepancy increases first and then decreases. Generally, the route guidance system using UE 

conditions as information does not help with the traffic condition estimation. 

 
 

(a) Number of links having volume differences within 10% 

to 20% at various MPRs 

(b) Number of links having volume differences within 20% to 

50% at various MPRs 

 
 

(c) Number of links having volume differences within 50% 

to 100% at various MPRs 

(d) Number of links having volume differences within 100% 

to 200% at various MPRs 

Figure 11 The Number of Links Having Different Levels of Volume Estimation Error at Different MPRs 

When Using Different Routing Strategies 
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The evaluation results in this section showed that the proposed proactive user optimum-oriented route 

guidance system have good performance in aspects of users’ satisfaction, system performance in terms 

of mobility and sustainability, and the capabilities of accurately predict future traffic conditions. When 

not all drivers participate in the proposed route guidance system, it still has performance improvement at 

imperfect MPRs.  

IV. CONCLUSIONS 

The route guidance system has been an important component of ATIS and has been recognized as one of 

the most effective ways to mitigate congestion. This paper proposed a proactive user optimum-oriented 

route guidance system which contains two major components: the machine learning method based 

individual route choice models and the traffic assignment process that incorporates individuals’ 

preferences in the process of searching for user optimum. The user optimum conditions are then used to 

generate route recommendations. The proposed route guidance system was evaluated against existing 

routing strategies at both perfect and imperfect market penetration rates with a Sioux Falls network 

example. Their performances were compared with each other in users’ satisfaction, system mobility and 

sustainability, and future traffic condition estimation.   

The evaluation results show that the proposed route guidance system has superiors performance in all 

three evaluated aspects (as shown in Table 3, Table 4 and Figure 8), when compared with travel time 

based real-time route guidance with different information updated intervals, and using travel time based 

user equilibrium condition as guiding information. When the proposed route guidance system was 

evaluated at imperfect market penetrates, the performance gradually increases as the market penetrate 

increase (as shown in Table 5 & 6, and Figure 10 &11). The advantageous performance is especially 

significant when compared to implementing the routing strategy using UE conditions as information.  

By incorporating individual drivers’ route choice preference when designing route guidance strategy, 

users’ satisfaction can be improved. System mobility and sustainability can also be improved as long as 

drivers cares efficiency indicators when they make route choice decisions. In addition, by knowing the 

possible route selections of drivers, future traffic conditions can be estimated with a decent prediction 

accuracy so that traffic control and management strategies can be implemented in advanced. Therefore, 

the proposed route guidance system demonstrate its capability in system performance and users’ 

satisfaction improvement. In future research, the factors that are going to influence the performance of 



the proposed route guidance system are going to be investigated, such as prediction accuracy of the 

individual route choice models and preference distribution among demand.  
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CHAPTER 5. DISCUSSION 

5.1 Further Extension of the Proposed Route Guidance System 

The proposed proactive user optimum-oriented route guidance system demonstrated its capabilities in 

improving system performance, users’ satisfaction and traffic conditions estimations. As already 

discussed in Chapter 4 Section I A, some researchers (Han et al. 2016; Roughgarden and Tardos 2000) 

found that the route guidance based on user optimum conditions do not have as good system 

performance as the route guidance system based on system optimum conditions. However, the natures of 

the proposed route guidance system make it possible to be extended so that the system performance can 

be further improved on the basis of user optimum conditions. This section discusses how these natures 

can help further extend the proposed route guidance system and demonstrates the potential of the 

proposed route guidance system in system performance improvement. 

Personalized incentives scheme 

One of the important characteristics that the proposed route guidance system has is the knowledge of the 

individual drivers’ route choice preferences. Knowing a single driver’s preference means that the route 

guidance system operators are able to motivate the driver to make certain decisions that operators would 

like him/her to choose. The motivation can be made towards different goals such as improving system 

performance goal, avoiding certain areas of the network for special events, and etc.  

Using economic methods to motivate drivers’ behaviors has been used in both theoretical discussion and 

practice, such as congestion pricing and public transit benefits (Luten 2004). Different amounts of 

financial penalty or benefits are provided to the drivers to push drivers away from or pull drivers back to 

the behavior decisions that the system desires them to make. London implemented cordon congestion 

charging since 2003 (Bhatt, Higgins, and Berg 2008). All the vehicles entering the center area of 

London metropolitan need to pay a fixed amount charge. The amount of charge is typically the same for 

all drivers except some various price for certain types of vehicles or drivers (for example, vehicles with 

renewable energy and residents who live inside of the charging area can pay less) (Luten 2004). Cities of 

Stockholm and Singapore implemented similar kinds of pricing schemes (Bhatt, Higgins, and Berg 

2008). The pricing amount is determined by the possible responses of the driver population. For 

example, estimate drivers' responses based on demand elasticity in order to achieve desired level of 

services, or analyze delays and drivers' value of time to find a cut-off charging level that can make 



certain amount of drivers change to other travel options (Bank 2015). However, asking for the same 

amount of charge from all drivers is recognized as not efficient from the perspective of microeconomic 

theory (Button 2004). As explained in (Button 2004), the effects of congestion and pricing can vary by 

person. Take the value of time as an example, when the price is determined as a cut-off value from the 

value of time distribution, drivers with higher value of time are not going to change their travel 

behaviors because the price is not high enough to make them change. On the other hand, drivers with 

lower value of travel time make changes but the price is actually much higher than the price that can 

make drivers change travel behavior. The pricing scheme with unified price is called second-best pricing 

and is recognized as inefficient (Button 2004; Bank 2015). On the other hand, it is more ideal to charge 

each drivers with the exact required amount that can change his/her behavior decisions. Such pricing 

scheme with individual-based price is called first-best pricing (Button 2004). It is recognized that first-

best pricing is more efficient than second-best pricing from the perspective of microeconomic. However, 

because of the incapability to know individual driver’s preference, only second-best pricing is widely 

implemented in practice, as in London and Stockholm.  

With the proposed route guidance system, individual drivers’ route choice preferences are available. 

Therefore, the exact required amount of either pricing or incentives for changing a driver’s route choice 

decisions can be calculated. An example of providing personalized incentives for improving system 

performance is used here to demonstrate the potential of the proposed route guidance system. Providing 

incentives to make drivers change to system desired routes works in a similar way as congestion pricing. 

Assuming the funding used to provide the incentives is either from the system operators or 

transportation authorities, the required funding amount is the less the better. In other words, we do not 

want to give more incentives than it is necessary to make a driver change travel behavior decisions, and 

also still want to make sure the provided incentives are enough to make a driver change behavior 

decisions.  

Depending on different goals, system-desired individuals’ decisions can be different. Paz and Peeta 

(2009) explained that the ideal states of the system could be the system optimum conditions or user 

equilibrium conditions. In the evaluation process in Chapter 4 Section III E, the travel time based user 

equilibrium conditions have more efficient system performance in terms of total travel time. The reason 

that it cannot be reached in reality is because drivers do not comply with the route recommendations that 

are generated with simplified drivers’ preference (i.e. only caring the route attribute of travel time). In 



this section, the travel time based user equilibrium conditions are set to be system-desired conditions. 

Drivers’ route choices under the travel time based user equilibrium conditions are the system-desired 

individuals’ choices. Each driver will be provided with a personalized incentive and motivated towards 

the system-desired choices.   

Assuming Xip and Xis represent the route attributes information of Driver i’s preferred route, p, and the 

system-desired route, s, when travel time based user equilibrium conditions are used to generate route 

recommendations. Route p is known because system operators can predict Driver i’s route choices with 

his/her route choice model f(X)=βX. Therefore, the amount of the incentives can be determined with: 

𝑠𝑖 =
𝛽𝑖(𝑋𝑖𝑝−𝑋𝑖𝑠)

𝛽𝑚
  (1) 

 In which βm is the weight of the route attribute that contains monetary value, for example, toll. 

Therefore, the difference in other aspects between two routes can be converted to monetary value 

through the monetary term in the route choice model. The calculated personalized incentive is added to 

or reduced from the monetary term in Xis. With the updated Xis
’, iterative process is conducted again to 

find the new user optimum conditions. In the iterative process, si can be adjusted according to the 

difference between Route s and Route p. When the user optimum conditions are found, the amount of si 

is determined and provided to drivers. Driver i’s route choice decision would change to Route s. 

However, drivers may not change route choice decisions even they are provided with incentives because 

of the prediction accuracy of individual route choice models. Therefore, in the evaluation process, the 

travel time based user equilibrium conditions together with personalized incentives are fed into drivers’ 

true preferences. The generated traffic conditions are used to evaluate the performance of the 

personalized incentive scheme.  

The same Sioux Falls network and demand settings were used to evaluate the personalized incentive 

scheme. The weight of “Fuel Cost” is used as βm term in Equation (1). It should be noted that fuel cost is 

typically very small for a trip in urban areas. The impacts of fuel cost on drivers’ decisions are not as 

huge as the monetary term such as high way tolls. Because of the limitation of data availability, the fuel 

cost is used here, but more effective monetary term can be obtained in practice. The total travel time and 

total system delay are summarized in Table 1. Figure 1 (a) and (b) show the total travel time and total 

delay at different market penetration rates with and without personalized incentives. With the 

personalized incentive scheme based on the proposed route guidance system, both of total system travel 



time and system delay are further reduced when compared to only implementing the proactive route 

guidance system. There is a clear trend that the reduction amount increases as the market penetration 

rate increases. Figure 2 shows the reduction percentages of both system total travel time and delay. 

When market penetration rate increases from 10% to 100%, the total travel time reduction can be 

ranging from 1.3% to 9.0% and the total delay reduction can be ranging from 3.3% to 25.7%. Therefore, 

the potential of system performance improvement brought by the personalized incentive scheme is quite 

promising.  

  
 (a) System total travel time (unit: hours) at different MPRs with 

and without personalized incentives  
 (b) System total delay (unit: vehicle*hour) at different MPRs 

with and without personalized incentives 

Figure 1 System Total Travel Time and Delay at Different MPRs with and without Personalize Incentives 

 

  

(a) The total travel time reductions with personalized 

incentives at different MPRs 

(b) The total delay reductions with personalized 

incentives at different MPRs 

Figure 2 System Total Travel Time and Delay Reduction at Different MPRs with and without Personalize 

Incentives 

This example demonstrated the system performance improvement of the personalized incentive scheme 

that is designed on the basis of the proposed route guidance system. However, a careful incentive 

scheme design should be made to be practical and cost-effective for implementation. In this 

demonstration, the required amount of total incentives increases from 1 million to 10 million when the 
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number of participated drivers increases from 10% to 100%. For an hour of evaluation interval, the 

required amount of incentives may not be practical even though the system performance improvement is 

significant. The required amount of the total incentives could be determined by different factors, such as 

the accuracy of individual route choice models, drivers’ preference characteristics, network conditions 

and etc. The impacts of these influencing factors should be carefully evaluated before implementation. 

On the other hand, how to find the most critical drivers who can bring largest system performance 

improvement so that minimum amount of incentive is required is also a question worthy of future 

investigation.  

Volume based traffic control and management 

The proposed proactive user-optimum oriented route guidance system has another advantage in terms of 

accurate traffic condition estimation, as demonstrated in Chapter 4 Section E and F. An accurate future 

volume prediction can help design volume based traffic control and management strategies. For 

example, designing traffic signal timing plans. Because of the consideration of drivers’ possible 

reactions, system performance can benefit from the traffic signal timing plan that is designed based on 

the volume predicted by the proposed route guidance system. 

Traffic volume is an important input for designing a signal timing plan. Proactive route guidance system 

can help estimate future traffic volumes, therefore, the signal timing plan can be designed to proactively 

accommodate the possible traffic arrival patterns. Though current actuated signal timing can detect the 

coming traffic patterns by installing loop detectors at the upstream of intersection approaches, it can 

only detect the immediate coming traffic. The installation and maintenance of loop detectors not only 

require monetary cost and labor efforts, but also could influence ongoing traffic and cause more delay. 

The proposed route guidance system estimate future volumes by predicting drivers’ possible behavior 

choices and does not require additional efforts. Therefore, with relatively accurate volume estimations, 

signal timing plans can be better designed to accommodate the traffic patterns. In addition, signal timing 

plans can influence the traffic conditions which in turn influence the route attributes that drivers use for 

making route choice decisions. Similar as the personalized incentive scheme, signal timing plans can be 

made and adjusted in the iterative process to reach the system optimum conditions or any other system 

desired goals. In this way, the signal timing plan is considered as an influencing factor that can shape 

drivers’ route choice decisions in addition to just better accommodate coming traffic patterns locally.  

 



Automated vehicles (AVs) 

The proposed route guidance system has the potential to be used as a routing system for automated 

vehicles. Automated vehicles have been believed to be the next generation of the transportation system. 

National Highway Traffic Safety Administration defined the vehicle automation to be 5 levels (NHTSA 

2017). With automation level above 3, AVs passengers can set the destinations of their trips and the 

AVs can bring them to the destinations without passengers operating the vehicle or defining which route 

or turn should be taken.  

In order to determine the route AVs take, AVs need routing algorithms. There are mainly two kinds of 

routing algorithms in existing literature for routing AVs. The first one is very similar to traditional 

vehicle routing, namely reactive and self-interested. One example is the work of Fiosins et al., (2011). 

They considered AVs’ route planning and the trajectory optimization within road section together. At 

the route planning level, each individual vehicle uses stochastic shortest path algorithm to find their 

shortest path individually, without cooperation. The other kind of AV routing algorithm is, instead of 

finding best route for each AV independently, the routing for AVs can be optimized for achieving 

certain performance goal, such as minimizing passengers' travel time, mitigating the congestion caused 

by the rebalancing AVs when they are realigned with new passengers (Zhang, Rossi, and Pavone 2016), 

maximizing the number of vehicles reaching their destinations (Vitello et al. 2016), finding the shortest 

route for every vehicle by sharing all AVs' intended taking-route (Claes, Holvoet, and Weyns 2011). 

Similar with existing route guidance systems, existing routing algorithms for AVs also did not 

incorporate drivers' route choice preference heterogeneity. Therefore, for the purpose of improving both 

users’ satisfaction and transportation system efficiency, AVs should have a routing system that can 

consider both users’ preference and system performance. The proposed proactive user-optimum oriented 

route guidance system can be transferred to AVs routing system to learn users’ route choice preferences 

and coordinate passengers to achieve better system performance.   

5.2 Consideration for Practical Applications 

The implementation of the proposed proactive user optimum-oriented route guidance system in practice 

may have some prerequisites. Assumptions were made about these prerequisites in the Chapter 4 Section 

II. For example, drivers are assumed to be willing to share their preference data and the time dependent 

OD demand is assumed to be available. These two assumptions represent the privacy and OD data issues 

in the practical applications and are discussed in this section.  



Users’ privacy 

The proposed route guidance system needs to maintain the individual route choice model for each 

driver. The individual route choice model is developed from the driver’s historical route choice 

preference data. The key route attributes, time of day, destination and other information need to be 

extracted when drivers are making trips. Sharing this information to the route guidance system may be a 

concern to some drivers. The privacy issue is not only a problem in transportation domain but also draws 

lot of attention in other industries especially in this big data era. Sharing personal data with the service 

providers for service quality improvement is not new at all. Google Maps collects users’ trajectory data 

or speed data to estimate the traffic conditions for real-time travel information. Many online shopping 

websites such as Amazon tracks customers’ purchasing history and recommends products to customers. 

There is always a trade-off between the privacy and the customized service.   

For the specific application of the route guidance system here, drivers’ privacy concerns can be possibly 

mitigated. For example, the route guidance system control center only needs all drivers’ individual 

models while all the model estimation and updates can be done locally on user’s end. In this way, there 

is no need to share drivers’ personal historical trip information with the route guidance system. But, 

depending on the specific modeling approach adopted, certain level of model performance may be 

sacrificed. For example, the MT-LinAdapt approach may require all drivers’ preference data to estimate 

both aggregate-level model and individual-level model. Even though, more advanced modeling 

approaches can be developed and explored to solve the privacy concern. 

Obtain OD data 

Dynamic OD matrix estimation is still an important research problem in the transportation network 

analysis (Chang and Wu 1994; Ashok and Ben-Akiva 1993; Toledo and Kolechkina 2013). Most 

researchers assume that OD demand is known in their analysis. Time-dependent OD data is the key 

input of the proposed route guidance system. The proposed route guidance system provides an 

additional approach to estimate the time-dependent OD demand. On the basis of the traditional methods 

of estimating OD data (such as traffic census data), the proposed route guidance system can infer 

drivers’ OD demand in advance by combining drivers’ other information. For example, users can 

connect the route guidance system with personal calendar such as Google Calenders or Facebook 

Events. The departure time and OD of the drivers’ trips in next planning period can be obtained from the 

calendar. Also, some travel demand can be analyzed from drivers’ trip history to see if there is any 



general patterns. When the proposed route guidance system is further extend to be used as an AVs' 

routing system, more data can be obtained because passengers need to input OD for all trips that they 

make with AVs and that means AVs passengers need to share more information with the AVs. 

  



CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 

6.1 Major Content 

This research proposed a proactive user optimum-oriented route guidance system that incorporates 

individual drivers’ route choice preferences. In order to establish and evaluate the proposed route 

guidance system, this research was divided into three major parts and a discussion section. 

 The first part explored the possibility of using the traditional mixed logit model together with the 

Bayes rule to estimate drivers’ route choice at the individual level. A stated preference survey 

with binary route choice scenarios was conducted among 44 participants. The collected data was 

used to estimate a mixed logit model that considers the correlation among utility function 

coefficients. The established mixed logit model was evaluated against a regular multinomial logit 

model in aspects of both overall model fitness and individual’s route choice decision prediction.  

 The second part explored the performance of an advanced sentiment analysis approach, Multi-

task Linear Model Adaptation in the application of the route guidance system that incorporates 

individual drivers’ preferences. Additional two stated preference surveys were conducted among 

58 participants. Therefore, three observed stated preference data as well as associated synthetic 

datasets that have more heterogeneous preferences were used to establish and evaluate the MT-

LinAdapt model. The aggregate SVM model, the individual SVM model and the mixed logit 

model were included for comparison. The MT-LinAdapt was evaluated against three other 

models in two scenarios (a) drivers have adequate amount of historical preference data, and (b) 

drivers have limited amount of historical preference data.  

 The third part established the framework of the proposed proactive user-optimum oriented route 

guidance system. An evaluation platform was set up with a decision module (Matlab) and a = 

traffic simulation module (DTAlite). The classical Sioux Falls network with time-dependent OD 

as well as individual drivers’ preferences were used to demonstrate and evaluate the performance 

of the proposed route guidance system. The proposed route guidance system was firstly 

evaluated against two existing routing strategies, namely generating route recommendations 

according to travel time based UE conditions and real-time route guidance with update intervals 

of 1 and 10 minutes. Then, the performance of the proposed route guidance system was 

evaluated when its market penetration rate increases from 0% to 100%. Drivers who do not 

participate in the proposed route guidance system either follow the route recommendations 



generated with travel time based real time guidance or use historical traffic conditions to make 

route choice decisions. The performance of the proposed route guidance system as well as other 

routing strategies were evaluated in the aspects of system mobility, system sustainability, users’ 

satisfaction and capabilities in accurately estimating future link volumes. 

 The Discussion section firstly discussed several further extended applications of the proposed 

route guidance system including a personalized incentive scheme, volume based traffic control 

and management strategies and automated vehicle routing systems. Then two practical issues 

that the proposed route guidance system may encounter in the implementation were also 

discussed.  

6.2 Key Results 

With the exploration and evaluation in this research, some key findings are summarized below. 

 Because of considering preference heterogeneity, the mixed logit model can provide better 

overall model fitness (20% higher Pseudo-R2) and more accurately predict individual drivers’ 

route choice decisions (20% higher average prediction accuracy) than a regular multinomial logit 

model. It proved the necessity of considering drivers' heterogeneous route choice preference and 

also demonstrated that the mixed logit model can be used to estimate individual driver's route 

choice preference.  

 MT-LinAdapt model estimates and updates users’ preferences at both the aggregate and 

individual levels. Therefore, it not only captures the preference heterogeneity but also have a 

good estimation of individual drivers’ preference with limited amount of preference data. When 

compared to the aggregate model, the individual model and the random parameter model (i.e., 

the mixed logit model), MT-LinAdapt achieved up to 8% higher prediction accuracy in the 

adequate data scenario and up to 18% higher prediction accuracy in the limited data scenario 

than the existing models. 

 From the perspective of implementation, MT-LinAdapt also has the advantages in following 

aspects: (a) it works well not only on users with adequate amount of data but also new users who 

have limited amount of preference data; (b) it does not require sociodemographic (difficult to 

obtain because of privacy issue) or any other segmentation criteria to differentia drivers’ 

heterogeneous preferences; (c) it can update individual drivers’ route choice model in real time 



as preference data accumulates; and (d) it allows drivers to include different route attributes that 

they care in the route choice models.  

 The evaluation results showed that the proposed proactive user optimum-oriented route guidance 

system can bring much lower total travel time (up to 10% reduction), delay (up to 42% 

reduction), energy consumption and emissions (CO2, NOX, CO and HC) when compared to the 

routing strategies of using travel time based UE condition to generate route recommendations 

and the real-time route guidance system with updating intervals of 1 and 10 minutes. 

 The evaluation results showed that the proposed route guidance system can increase the number 

of drivers who are satisfied with the route recommendations. When compared to other routing 

strategies of using travel time based UE conditions to generate route recommendations and the 

real-time route guidance systems, the proposed route guidance system can reach up to 18% to 

22% more satisfied users. 

 The evaluation results also showed that the proposed route guidance system can more accurately 

estimate future traffic conditions in terms of link volume. The volume estimation of 74 out of 76 

links in the Sioux Falls network have estimation errors less than 10%, while this number for 

travel time based UE conditions as guidance and real-time route guidance system are only 20 to 

40, and there are more links having estimation errors higher than 10% in these two routing 

strategies.  

 In addition, the evaluation results showed that the proposed route guidance system can still 

improve the system mobility, system sustainability, users’ satisfaction and future traffic volume 

estimation accuracy even at imperfect market penetration rates. These benefits of the proposed 

route guidance system gradually increases as its market penetrate increases.  

 The results of the personalized incentive scheme in the Chapter 5.1 demonstrated that the 

proposed system has the potential to be extended in more applications so that system 

performance can be further improved (e.g., 9% more reduction of total travel time and 25.7% 

more reduction of delay than the route guidance system without the incentive scheme). It also 

demonstrated that such personalized incentive scheme should be carefully designed so that it can 

be practical to implement. 

 

 



6.3 Contributions 

With the key findings summarized above, this research mainly made three contributions to existing 

literature as well as transportation research and applications community. Each of the three contributions 

is discussed below. 

 Established individual route choice models to capture individual drivers’ route choice 

preferences 

In this big data era, the information technologies applied in transportation domain have the ability to 

collect tremendous amount of behavior related data. Meanwhile, drivers’ heterogeneous route choice 

preferences as well as the needs of providing personalized route guidance services require capturing 

and predicting drivers' route choice preferences at the individual level. With the possible data that 

can be collected from route guidance systems, this research not only explored the traditional mixed 

logit model together with the Bayes rules to estimate individual drivers’ route choice preferences, 

but also explored a sentiment analysis approach, MT-LinAdapt which suits the application of route 

guidance system well. Both of these two models can estimate drivers’ preferences at the individual 

level with decent performance, and do not require segmentation criteria which are not easy to obtain 

in practice but used by most existing modeling approaches to differentiate drivers’ preferences. In 

addition, MT-LinAdapt is more suitable for the route guidance application from the perspective of 

practical implementation. Therefore, the MT-LinAdapt model introduced by this research can be 

adopted by route guidance systems to estimate drivers’ route choice preferences at the individual 

level and help with providing personalized route recommendation services. 

 Proposed a proactive user optimum-oriented route guidance system for transportation system 

performance and users’ satisfaction improvements  

In existing route guidance systems with features of either proactive or reactive scheme, centralized 

or decentralized scheme, single criterion or multiple route attributes as criteria, drivers’ behaviors 

play an important role in determining the performance of the route guidance system. This research 

proposed a proactive user optimum-oriented route guidance system that can learn drivers' route 

choice preferences and consider these preferences in designing routing strategies By knowing each 

individual driver’s route choice preference and coordinating drivers’ possible route choices in 

advance, the route guidance system can improve both the system performance, users’ satisfaction 

and even reduce the errors of future traffic volume estimation. This research offers the transportation 



community and route guidance service providers a new route guidance scheme that has great 

potential to improve both system performance and users’ satisfaction. The proposed route guidance 

system also provides some implications to automated vehicles routing systems which could have 

even larger impacts on transportation system.  

 Prepared the foundation for designing personalized traffic control and management strategies 

that have great potential to further improve transportation system performance  

Most of the existing traffic control and management strategies target on general traffic as a whole. 

From the perspective of drivers’ behavior, because of the heterogeneous behaviors existing among 

population, a plan that targets on general traffic population could be ineffective to individual drivers. 

This is recognized as inefficient from the perspective of microeconomic, such as the inefficiency of 

the second-best pricing compared to the first-best pricing. By knowing each individual driver’s route 

choice preference, the proposed route guidance system in this research prepared the foundation for 

transportation researchers and engineers to design and implement personalized traffic control and 

management strategies, such as the personalized incentive scheme presented in the Discussion 

section. With the control and management strategies that are designed for each individual, the 

strategies are expected to be more effective than a general strategy. Therefore, a carefully designed 

personalized control and management strategy has great potential to bring better transportation 

system performance and users’ satisfaction improvement.  

6.4 Future Research 

Based on the findings of this research, several topics were identified as future research areas. Each of the 

topics is discussed in this section. 

 Further analyze drivers' route choice preferences with real data 

The route choice preference study in this research was conducted based on stated preference data. In 

order to validate and further analyze drivers' route choice preferences in real life, revealed preference 

data can be collected for route choice preferences analysis. Such data can be collected by designing a 

smart phone application or a web-based route guidance system, so that the traffic conditions that drivers 

are making route choice decisions in route guidance systems as well as the drivers' final decisions can be 

collected. Meanwhile, trip related information such as trip purpose and time of data can also be 

collected. Then, with more resources of data, all three types of individual route choice model's inputs 



can be collected and used for modeling individual driver's route choice preference. Therefore, the 

proposed individual route choice model can be validated and further analyzed. 

 Personalized traffic control and management strategies 

One of the most important characteristics of the proposed route guidance system is the knowledge of 

individual drivers' route choice preferences. Based on this, more personalized traffic control and 

management strategies can be explored in the future. One important extension is the personalized 

incentive scheme that was presented in the Discussion chapter. Personalized traffic control and 

management strategies provide a way to effectively motivate drivers' behavior decisions towards the 

system-desired goal while still maintaining drivers' satisfaction. Therefore, transportation problems such 

as traffic congestion can be mitigated from the demand-side of the transportation system. As analyzed in 

the Discussion chapter, the performance of personalized traffic control and management strategies is 

influenced by many factors, such as drivers' preference characteristics and network topology. These 

factors can be analyzed in future research for designing a practical and cost-effective personalized traffic 

control and management strategies. 

 Incorporating other aspects of traveler behaviors and non-recurrent congestion situation 

As mentioned in Chapter 4 Section II, this research only investigated travelers' route choice preferences. 

Other aspects of travelers' behaviors including mode choice and departure time choice also have 

important impacts. In future research, behavior data related to these two aspects can be collected and 

analyzed. The impacts of mode choice and departure time choice on transportation network performance 

and how these two aspects can be incorporated into the proposed proactive user optimum-oriented route 

guidance systems are research questions worthy of investigation. In addition, the framework of this 

research only considered the recurrent congestion in the demonstration. Non-recurrent congestion 

especially caused by incidents will be considered in future research.  
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APPENDIX 

Sioux Falls Network Structure 
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Note: The numbers in the figure are Node IDs and Link IDs. 

  



Sampled Survey Questions 

 

 



Hourly Origin and Destination Matrix (Vehicles) 

TOT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 0 15 15 75 30 45 75 120 75 195 75 30 75 45 75 75 60 15 45 45 15 60 45 15 

2 15 0 15 30 15 60 30 60 30 90 30 15 45 15 15 60 30 0 15 15 0 15 0 0 

3 15 15 0 30 15 45 15 30 15 45 45 30 15 15 15 30 15 0 0 0 0 15 15 0 

4 75 30 30 0 75 60 60 105 105 180 210 90 90 75 75 120 75 15 30 45 30 60 75 30 

5 30 15 15 75 0 30 30 75 120 150 75 30 30 15 30 75 30 0 15 15 15 30 15 0 

6 45 60 45 60 30 0 60 120 60 120 60 30 30 15 30 135 75 15 30 45 15 30 15 15 

7 75 30 15 60 30 60 0 150 90 285 75 105 60 30 75 210 150 30 60 75 30 75 30 15 

8 120 60 30 105 75 120 150 0 120 240 120 90 90 60 90 330 210 45 105 135 60 75 45 30 

9 75 30 15 105 120 60 90 120 0 420 210 90 90 90 135 210 135 30 60 90 45 105 75 30 

10 195 90 45 180 150 120 285 240 420 0 600 300 285 315 600 660 585 105 270 375 180 390 270 120 

11 75 30 45 225 75 60 75 120 210 585 0 210 150 240 210 210 150 15 60 90 60 165 195 90 

12 30 15 30 90 30 30 105 90 90 300 210 0 195 105 105 105 90 30 45 60 45 105 105 75 

13 75 45 15 90 30 30 60 90 90 285 150 195 0 90 105 90 75 15 45 90 90 195 120 120 

14 45 15 15 75 15 15 30 60 90 315 240 105 90 0 195 105 105 15 45 75 60 180 165 60 

15 75 15 15 75 30 30 75 90 150 600 210 105 105 195 0 180 225 30 120 165 120 390 150 60 

16 75 60 30 120 75 135 210 330 210 660 210 105 90 105 180 0 420 75 195 240 90 180 75 45 

17 60 30 15 75 30 75 150 210 135 585 150 90 75 105 225 420 0 90 255 255 90 255 90 45 

18 15 0 0 15 0 15 30 45 30 105 30 30 15 15 30 75 90 0 45 60 15 45 15 0 

19 45 15 0 30 15 30 60 105 60 270 60 45 45 45 120 195 255 45 0 180 60 180 45 15 

20 45 15 0 45 15 45 75 135 45 375 90 75 90 75 165 240 255 60 180 0 180 360 105 60 

21 15 0 0 30 15 15 30 60 45 180 60 45 90 60 120 90 90 15 60 180 0 270 105 75 

22 60 15 15 60 30 30 75 75 105 390 165 105 195 180 390 180 255 45 180 360 270 0 315 165 

23 45 0 15 75 15 15 30 45 75 270 195 105 120 165 150 75 90 15 45 105 105 315 0 105 

24 15 0 0 30 0 15 15 30 30 120 90 75 105 60 60 45 45 0 15 60 75 165 105 0 

 

 


