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Abstract

Biomedical images play an important role in biomedical research and diagnostics. However, the

raw data acquired by imaging equipment sometimes are not suitable for direct observation and

analysis. For example, the confocal microscope enables the observation of tissue in detail and

reflects structures on the scale of a single cell or even finer. However, the raw data acquired

by a confocal microscope usually contain multiple artifacts. These distortions include low

SNR, irrelevant tissue clutter and geometric distortions. Image restoration and reconstruction

algorithms, such as denoising, stitching and registration, are necessary before further analysis

on these data. Another kind of widely used biomedical image is Magnetic resonance imaging

(MRI). As an important non-invasive imaging technique, MRI facilitates the diagnosis of and

research in diseases like brain cancer, Alzheimer’s and Parkinson’s. Reconstruction algorithms

that turn the data in the frequency domain into the spatial domain are necessary after MRI

scanning. Selecting proper parameters for these reconstruction algorithms is crucial to get high

quality MRI.

In this thesis, we focus on the image processing requirements on mouse brains for status

epilepticus (SE) research. Epilepsy is a group of neurological disorders characterized by epileptic

seizures. The rate of adverse outcomes of SE correlates with the duration of seizures, and thus

early termination of SE is important. High-resolution 3D mouse brains provide details about SE

development at multiple scales from cells, circuits, systems, to the whole brain level. Figuring

out the pathways of SE development helps neuroscientists better understand the mechanism of

SE and develop new drugs to terminate SE at an early stage.
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Currently, the main way to investigate brain activity during SE at single neuron resolution

is microscopy imaging. However, the penetration depth of some immunohistochemical neuron

stains is limited to about 200 microns, and this requires mouse brains to be sliced before

imaging. To better visualize and understand brain activity during SE, this thesis comprises

three parts: 3D mouse brain reconstruction with microscopy data, auxiliary modality imaging

to aid multi-brain analysis, and analysis of microscopy data. First, to recover the high resolution

3D mouse brain volumes, we propose tissue flattening and structure-based intensity propagation

for 3D mouse brain reconstruction. Experiments are conducted on 367 multilayer sections from

20 mouse brains. The average reconstruction quality measured by the structure consistency

index increases by 29% with the proposed structure-based intensity propagation. In order

to better conduct multi-brain comparison and registration, an auxiliary imaging technique,

MRI, is investigated in the second part. MRI is able to provide a complete 3D mouse brain

volume before slicing. With the proposed parameter selection method, high quality synthetic

MRI are reconstructed from measured data in the frequency domain. Finally, automatic cell

detection enables neuroscientists to obtain cell activation information on the whole brain scale.

To improve the detection accuracy in regions with densely-packed granule cells, we design a

new center coding scheme for convolutional neural networks (CNN). With 3D mouse brain

reconstruction and automatic cell detection, the 3D topology of cell activation is acquired, and

this facilitates neuroscientists’ investigations of the mechanism of SE at multiple scales.
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Chapter 1

Introduction

1.1 Background of the thesis

This thesis mainly documents the imaging processing techniques developed for a cross-disciplinary

study on status epilepticus (SE) with mouse brains. In collaboration with researchers with

different backgrounds, we study a series of intriguing brain activities, such as the spreading

process of epilepsy, and how epilepsy interferes with memory formation in the brain. The next

two paragraphs provide an overview of the biology and imaging techniques used in this work.

Status epilepticus SE is a significant neurological emergency that afflicts 120,000-160,000

Americans each year with a high overall mortality (17%). The neuronal synaptic plasticity

during SE and the underlying molecular mechanisms have been explored extensively. However,

neuronal circuits that sustain prolonged seizures have only been explored with low spatial

resolution and sparse sampling of brains. Previous studies [10, 11] on neuronal circuits that

sustain seizures were carried out using Carbon-14 deoxy-glucose autoradiography. Restricted

by the point spread function of the radiation, the resolution limit of the previous methods is

200 microns. A high-resolution activation map that reflects seizure circuits at multiple scales

from cells to the whole brain level will help to define pathways of seizure spread during SE.

Now with tissue clearing techniques and advanced microscopy, whole mouse brains in SE are

1
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imaged with an in-plane resolution of 2.5 microns in this work. With this unprecedented high

resolution of whole brain imaging, we provide neuroscientists with new tools to visualize and

understand better the pathways of seizure spreading with SE. These findings help understand

the neurobiological basis for the use of drugs for terminating SE.

Imaging techniques As a comprehensive study of brain activity, different imaging tech-

niques and image processing topics are involved in brain reconstruction and analysis. First,

confocal microscopy can acquire high resolution images of brain tissues, where single cells

are distinguishable. Another great advantage of confocal microscopy is the flexible choice of

fluorophores. In our experiments, three fluorophores, tdTomato, Dapi, and NeuN, are used for

different purposes. Because some of these fluorophores can only penetrate about 200 microns

into the tissue, mouse brains are sliced before imaging. This motivates the image processing

task of whole brain reconstruction. Although with the methods proposed in this thesis, 3D

mouse brains reconstructed from microscopy data largely preserve the original brain shape, the

ground truth information is not available after slicing the brains. As a widely-used non-invasive

imaging technique, magnetic resonance imaging (MRI) is able to provide the contours of major

structures in these brains before slicing. The complete 3D brain data before slicing also would

benefit cross brain registration. In order to acquire higher quality MRI, choosing proper

parameters for MRI reconstruction algorithms is important. In this thesis, we discuss a new

parameter tuning technique to acquire high quality MRI images.

1.2 Objectives and contribution

The goal of this thesis is designing image processing algorithms to recover the cell activation

topology in the mouse brain for studying epilepsy. To achieve this, multiple contributions are

made, and these novel works can be applied to other image processing tasks as well. Next,

three main contributions of this thesis are summarized.
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Contribution 1: Structure-based intensity propagation for 3D mouse brain recon-

struction With the high resolution microscopy images of brain tissues, the most straightfor-

ward approach to recover complete brain volumes is registering each section of the brain to its

previous one. This thesis describes a new 3D registration algorithm for non-overlapping sections

that significantly improves structural consistence of the resulting volume. According to the

number of layers in each section, the brain reconstruction can be classified into the reconstruc-

tion with single-layer sections and the reconstruction with multi-layer sections. In this work,

multi-layer sections are imaged with confocal microscopy. How to select the 2D representative

of a multi-layer section for registration is a key step in the multi-layer reconstruction. Existing

choices of the 2D representatives include surface layers, maximum intensity projections and

best selected references [1]. However, these methods either lead to unstable registration results

or structure inconsistence in the reconstructed brain. In this thesis, a structure-based intensity

propagation method is designed for the robust representation of multilayer sections. Different

from existing methods, the proposed structure-based intensity propagation preserves the struc-

ture trend in each multi-layer section during the whole brain reconstruction. Experiments are

conducted on 367 multilayer sections from 20 mouse brains. Since our work aims at registering

multilayer sections to each other, the edge-based tensor voting [12] is used as the structure

consistence measurement for evaluation. The average reconstruction quality measured by the

structure consistence index increases by 45% with the tissue flattening method, and 29% further

with the structure-based intensity propagation.

Contribution 2: Comparison-Based image quality assessment for selecting MRI

reconstruction parameters MRI is able to image the complete mouse brain volumes

without slicing, but at a much lower resolution compared with microscopy. High quality MRI is

helpful to guide the reconstruction with the microscopy data and align different mouse brains

into the same 3D coordinate [13]. To reconstruct high quality MRI in the spatial domain

from the frequency domain signals, MRI reconstruction algorithms rely on the proper choice

of parameter sets. To achieve this, we propose a comparison-based image quality assessment
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(IQA) method. This method is a new way to assess image quality that enables optimal tuning

of denoising and reconstruction algorithms. The new comparison-based framework parallels full

reference image quality assessment (FR-IQA) by requiring two input images and resembles no

reference IQA (NR-IQA) by not using the original image. As a result, the new comparison-based

approach has more application scenarios than FR-IQA does, and takes greater advantage of

the accessible information than the traditional single-input NR-IQA does. Experimental results

show that the proposed method outperforms other NR-IQA methods for parameter selection

by comparing with a widely-used FR-IQA method, structural similarity index method [14].

Contribution 3: Automatic cell counting in the dentate gyrus in the mouse brain

With genetically engineered mice, the activated granule cells in the dentate gryus are highlighted

in the near-red channel under confocal microscopy. We propose a new coding scheme of

raw center labels to accurately and automatically detect all the activated cells using deep

convolutional neural networks (CNNs). We demonstrate that trained with the proposed coding

scheme, the CNN prediction is more accurate. The most compelling advantage of the proposed

coding scheme is the ability to distinguish neighboring cells in crowded regions. Cell counting

and detection experiments are conducted for five coding schemes on four types of cells and two

network architectures. The proposed coding scheme improves the counting accuracy with the

widely-used Gaussian and rectangle kernels up to 12%, and also improves the F1 score of [15]

detection with the common proximity coding up to 14%.

1.3 Dissertation outline

Chapter 2 first reviews the reconstruction pipeline and then introduces the proposed tissue flat-

tening and structure-based intensity propagation for mouse brain reconstruction. Experiments

on both section-to-section registration and whole brain reconstruction are conducted to test

the performance of the proposed methods. The auxiliary imaging modality, MRI, is discussed

in Chapter 3. The parameter selection approach is proposed to reconstruct high quality MRI.
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With the reconstructed 3D mouse brains, Chapter 4 documents the cell detection framework

and introduces the proposed coding scheme for cell detection. At last, Chapter 5 reviews the

work in this thesis and discusses the future works can be extended from this thesis.



Chapter 2

3D Mouse Brain Reconstruction 1

As one of the most sophisticated organs, brains consist of intricate structures and diversified

cells. Although other imaging techniques, such as magnetic resonance imaging (MRI) and

computed tomography (CT), are valuable noninvasive imaging approaches, microscopy remains

irreplaceable for the SE study because of its high resolution [13,16–19] and the flexible choice

of stains [20–23]. However, a whole brain usually is sectioned into slices for high resolution

microscopy imaging. Reconstructed 3D virtual brains benefit brain-related research in three

aspects: visualization, anatomical labeling, and 3D measurement.

One of the main goals of the Allen Brain Atlas (ABA) project is allowing researchers

to make comprehensive queries about gene expression patterns in 3D with reconstructed

brains [20]. Visualizing the neuron morphology in reconstructed brains relaxes the view angle

limit caused by physical sectioning, and is crucial to understand the communication of neural

signals [24,25]. Atlas-matching provides critical anatomical information of the imaged brain

activities. However, the deviation between the actual cutting plane and the standard cutting

planes would compromise the registration accuracy. With 3D reconstruction of brain volumes,

a 2D cross-section view from any angle is possible and thus leads to more accurate anatomy

labeling [13,26,27]. Because of the importance of 3D brain volumes, many brain atlases provide

1 c©2018 IEEE. Reprinted with permission from Haoyi Liang, Natalia Dabrowska, Jaideep Kapur and Daniel
Weller, “Structure-based Intensity Propagation for 3D Brain Reconstruction with Multilayer Section Microscopy”,
IEEE transactions on medical imaging, October, 2018

6
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Input
Sections

Section 
flattening

Structure 
propagation Alignment

Alignment

Figure 2.1: The top row is the reconstruction pipeline adopted in this work. Section flattening
and structure propagation are the two techniques proposed to improve the reconstruction quality.
The three figures at the bottom row are the stacked raw sections, the reconstructed brain
without the proposed techniques, and the reconstructed brain with the proposed techniques.
The arrows in the three bottom figures indicate the ventral-dorsal direction.

3D brain reference and gene expression patterns, such as Allen brain atlas [20], Hof’s brain

atlas [28] and Paxinos & Franklin’s brain atlas [29]. Accurate 3D measurements for diagnosis

and pathology study are also facilitated by the reconstructed brain volumes [24,30,31]. The

activation pattern of grid cells in the hippocampus plays an important role in memory formation

and environment recognition [32–34]. Extending this pattern analysis from 2D to 3D with

reconstructed brain volumes is helpful to further understand the underlying mechanism [32].

For this work, brain tissues collected from mice expressing fluorescent tdTomato and co-labeled

with the neuronal marker NeuN, are imaged. The reconstructed brain volumes provide details

about seizure spreading at multiple scales: from circuits, systems, to the whole brain. The

seizure spreading pathways are helpful for neuroscientists to find the neurobiological basis for

the use of drugs to terminate status epilepticus at an early stage.

Existing brain reconstruction works can be classified into two approaches by the way

that specimens are sliced and imaged [23]: reconstruction with single-layer sections [1,35–38]
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and reconstruction with multilayer sections [23,24,39–42]. Imaging and reconstruction with

multilayer sections are getting more attention recently because of the less labor required for

the tissue preparation [23,39] and the greater robustness to distortions such as warping and

tearing.

For this work, multilayer sections are the raw data for whole brain reconstruction. Our

previous work in [43] describes an automatic tissue flattening method to remove the warping

artifacts along the cutting axis in multilayer sections. The reconstructed brains are more

compact with flattened sections, but the structure inconsistence and the cylindrical artifact [39]

still exist as shown in Fig. 2.1.

Numerous methods are proposed to improve the structure consistence and to eliminate

the cylindrical artifact for brain reconstruction. Extra equipment, such as high-resolution

MRI scanners [35, 36], and algorithms imposing smoothness constraints [1, 37, 38], are two

common approaches. Among these methods, the best reference selection (BRS) [1] proposes

an interesting idea: registering a section to its nearest key section, rather than directly to the

previous one. The key sections are selected by criteria such as contrast, entropy and intensity [1].

A similar idea is also explored in [36].

Inspired by the previous works [1, 36], structure-based intensity propagation (SIP) is

proposed to improve the structure consistence of brain reconstruction. Different from BRS [1],

the references used for registration are created by propagation, rather than selected as in BRS.

Fig. 2.1 illustrates the overall work flow. This work obtains robust representatives of multilayer

sections with modules of tissue flattening and structure propagation. By feeding the alignment

module with better representatives of multilayer sections, SIP improves the reconstruction

quality in two aspects. First, the structure transition among sections is smoother because the

structural trend within each 3D section is accurately reflected in propagated surfaces. Secondly,

the flip detection is more reliable. Since brain structures are highly symmetric on coronal

and horizontal planes, automatic flip detection is challenging. The proposed structure-based

intensity propagation facilitates flip detection by enhancing the signal intensity and structure

contrast.
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The rest of this chapter is organized as follows. Section 2.1 summarizes existing brain

reconstruction works, and then introduces the brain registration pipeline adopted in this

work. Section 2.2 reviews the tissue flattening method in [43], and then elaborates on the

proposed structure-based intensity propagation. In Section 2.3, experiments demonstrate how

the proposed methods improve the quality of the brain reconstruction. At last, Section 4.4

reviews the novelty and experimental verification of the proposed methods, and discusses the

further work of brain reconstruction.

2.1 Reconstruction backgrounds

2.1.1 Existing brain reconstruction works

As mentioned in Section 4, brain reconstruction can be classified into two approaches according

to the number of layers in each section. Although the specimen preparation procedures are

different for single-layer sections and multilayer sections, the following reconstruction shares

similar frameworks and faces some common challenges.

Compared with multilayer sections, each single-layer section is easier to prepare and image.

The typical thickness of single-layer sections is between 10 to 100 microns [1, 35–38], and

each physical section is imaged with a single 2D image. However, the preparation of a

high-quality single-layer section is challenging and time-consuming [1, 36, 38, 39, 42]. In [36],

exhaustive pre-processing, such as visual quality inspection and mask detection, is required before

registration. After imaging these sections, the major challenge is maintaining the smoothness of

the reconstructed brains. Accurate section-to-section registrations cannot avoid the cylindrical

artifacts due to the aperture problem [39,44]: minor registration errors accumulate along the

z-direction and compromise the overall shape of the reconstructed volume. In [13,35,36], MRI

scanners image the overall shapes of brains before slicing. Some algorithms are designed by

optimizing the registration order [1, 36] or applying smoothness constraints [37,38].
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The brain reconstruction with multilayer sections [23,24,38,40] is getting additional attention

because of two techniques: tissue clearing and high resolution confocal microscopy. Lipids

are removed with tissue clearing [19, 24, 45–48], and thus the light emitted by fluorescent

markers undergoes less scattering. Advanced confocal microscopy enables specimens to be

imaged at different depth without the compromise of resolution. However, reconstruction

with multilayer sections has its own unique challenges. As one of the important steps during

specimen preparation, the tissue clearing turns specimens both transparent and warped. How

to select proper 2D representatives of multilayer sections for registration is difficult. For

single-layer sections, one physical section is directly used for registration, while the surface

layers in a raw multilayer section are not good choices for registration. Due to the distortions

during tissue preparation and the partial volume effect during imaging, the surface layers

do not precisely reflect the intra-section structural trends. To solve this challenge, existing

reconstruction methods with multilayer sections either rely on manually labeled information

or highly customized equipment. Manually selected key points on tissue surfaces are used

as 2D representatives of multilayer sections for registration [23,24,41,42,49]. Traced neuron

features in an interactive GUI are used for 3D volume reconstruction in [24,41,49]. However,

this laborious approach is not scalable. Alternatively, customized equipment is assembled to

facilitate the reconstruction process [24, 39]. For example, staining is done before slicing in [24],

and thus many organic immunohistochemical stains cannot be used due to the limits of the

penetration depth.

At last, although light-sheet microscopy together with tissue clearing techniques is technically

possible to image the whole brain without any slicing, such whole brain imaging is constrained

by the choice of stains and the resolution [31]. Many antibodies and stains do not penetrate

through the whole intact brain. Also, the resolution of a typical light-sheet microscope is not

enough to resolve individual cells, while in-plane resolution under 1 µm is common for point

scanning microscopes such as two-photon or confocal microscopy.
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2.1.2 Alignment pipeline in this work

As stated in Section 4, the brain reconstruction pipelines for single-layer and multilayer sections

are all based on section-to-section registration. In this work, a three-step registration pipeline

is implemented with rough alignment, affine transformation and non-rigid registration. Our

proposed structure correction methods do not rely on particular registration methods. The

works [50–52] are selected because of their robust performance and public implementations.

The first step, rough alignment, only takes translation and rotation into consideration, and both

non-flipped and flipped versions of the section to be registered are evaluated. The parameter

sets that achieve highest correlation scores [50] in the non-flipped and flipped versions are saved.

The second step, affine registration, maximizes the mutual information [51] of the outputs

from rough alignment. The flip status is decided after affine registration: the status that

achieves higher mutual information index is selected. Unlike single-layer sections, only one

combination of the four flip statuses of two adjacent multilayer sections achieves the highest

mutual information. For single-layer sections, if two adjacent sections both are incorrectly

flipped, the registration cost is the same as the correct flip situation. However, for multilayer

sections, because the top surface and the bottom surface are different, four different flip

combinations of two adjacent sections lead to four different registration costs. The last step is

non-rigid registration that minimizes the residual complexity [52] between two input images.

The resolutions also gradually increase from rough alignment, affine registration to non-rigid

registration. Such hierarchical registration approaches are common in brain reconstruction

works for the purpose of computation time and registration accuracy [30, 36]. Readers are

referred to [43] for details about the implementation.

To apply the registration pipeline for brain reconstruction with multilayer sections, a

representative has to be selected. In the next section, the proposed tissue flattening and

structure-based intensity propagation provide accurate representatives for the multilayer section

registration.
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(a) MIP

(b) Original side view

(c) Surfaces w/o hole fixing

(d) Surfaces w/ hole fixing

(e) Flattened w/o hole fixing

(f) Flattened w/ wrong direction

(g) Flattened w/ correct direction

Figure 2.2: Intermediate results of tissue flattening. (a) is the maximum intensity projection of
one section sliced on the horizontal plane. The dashed line in (a) indicates the positions of side
views. (b) is the side view of the raw section. (c) shows the detected surfaces before hole fixing.
If the tissue is projected onto the bottom surfaces in (c), the structure around the ventricle
is changed as shown in (e). (d) shows the detected surface after hole fixing. However, with
incorrect projection direction, structures at the boundaries are altered as shown in (f). With
correctly detected surfaces and the projection direction, (g) shows the flattened tissue from (b).

2.2 Proposed structure correction methods

The proposed structure correction for brain reconstruction contains two parts: tissue flattening

[43] and structure-based intensity propagation. Before tissue flattening, the structures in most

layers of a multilayer section are distorted by the unevenness on z-direction. After tissue

flattening, the warping artifacts on the z-direction are removed, and the surface layers show

the general contours and major structures. However, the structures presented on the surface

layers after flattening are not in accord with the intra-section structural trend, and the signal

intensity is usually weak. Structure-based intensity propagation is designed to overcome these

limitations in surface layers for accurate registration and flip detection.

2.2.1 Flattening

The tissue clearing process not only removes the lipids from the specimens, but also slightly

warps the specimens. In order to process large numbers of tissues, an automatic tissue flattening

method [43] is proposed. Fig. 2.2 illustrates the key intermediate results of tissue flattening.

The warping distortion exists in the raw section as shown in Fig.2.2 (b). Fig. 2.2 (c) shows the
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(b)(a)

Figure 2.3: First and second rows are the cross-section views of a section before and after
flattening. In (a), tissue boundaries are not accurately reflected on the bottom layer because of
the upward tilt. In (b), the size of the hippocampus grows from the top to the bottom, but
this structural trend is not correctly reflected on the bottom layer.

detected surface layers with adaptive thresholds. By assuming that the distance between the

top and the bottom layers is constant, the hump on the bottom surface is removed in Fig. 2.2

(d) after hole fixing. At last, the projection direction is decided by the total variation along the

surface layer rims. The surface with flatter rim is selected as the layer onto which we project

the rest of the section. Details about the tissue flattening can be found in [43].

Tissue flattening improves the quality of reconstructed brains in two aspects. First, surface

layers, rather than maximum intensity propagation (MIP), of the flattened tissues can be used

for registration. The overall shape of reconstructed brains is more natural [43]. Secondly, the

wide gaps among sections are removed. However, minor structure inconsistence, such as the

zig-zag contour on the brain outline, still exists [43]. Another limitation of tissue flattening is

that structure contrast and signal intensity are weak on the surface layers. To overcome these

drawbacks, structure-based intensity propagation (SIP) is proposed in the next section.
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2.2.2 Structure-based intensity propagation

Once obtaining the flattened sections, a straightforward reconstruction scheme registers the

surfaces from neighboring sections to each other [23, 24, 39–42]. Fig. 2.3 illustrates why this

approach is not suitable for automatic reconstruction. In Fig. 2.3 (a), the flattened patch on

the bottom preserves the upwards tilt at the end. Surfaces with such tilts cannot accurately

delineate the boundaries, and are the source of the zig-zag artifacts in the reconstructed

brains [43]. In Fig. 2.3 (b), the signal strength on the surface layer is weak. One reason for

this phenomenon is partial volume imaging on the surfaces. As representatives of a multilayer

section, these surfaces with weak signal strength and contrast lead to unstable registration

or even flip errors due to mirror symmetry [43]. In order to improve the signal intensity and

contrast with intra-section information, one straightforward idea is applying the median or

mean filter along the z-direction. The defect of this scheme is that the structure changing along

the z-axis is neglected. However, if these filters are applied along the structure directions in the

sections, both the aims of signal enhancement and structure preservation are achieved. The

proposed structure-based intensity propagation implements the idea of the structure-oriented

median filter.

Alg. 1 summarizes the structure-based intensity propagation. The inputs of Alg. 1 are a

3D stack of size M ×M ×D with isotropic resolution and a patch size, N . The width and the

height (the first two dimensions) of the input 3D image stack I do not have to be equal. A

square 3D stack is used for the simplicity of notation in Alg. 1. If the raw data acquired by

confocal microscopy is of anisotropic resolution, the raw data should be scaled so that the 3D

stack is of isotropic resolution before fed to Alg. 1. In our implementation, the scaling is done

with cubic interpolation [53]. The outputs of Alg. 1 are two 2D images of size M ×M , Ltop

and Lbottom. These two 2D images are the propagated surfaces to align two adjacent multilayer

sections. The steps in Alg. 1 are classified into two parts. The first part, steps 1-6, is structure

estimation. The second part, steps 7-10, is surface layer estimation. Fig. 2.4 illustrates key

intermediate results in Alg. 1. Fig. 2.4 (a) is a rendered multilayer section in 3D. The thickness
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Algorithm 1 Structure-based Intensity Propagation

Inputs:
I: 3D image stack of size M ×M ×D
N : patch size

Outputs:
Ltop: Propagated top surface of size M ×M
Lbottom: Propagated bottom surface of size M ×M

Structure Estimation:
for every p on the imaging plane of size M ×M do

1. G(p) = [gx(p) gy(p) gz(p)] . gradient matrix
2. U(p)S(p)V (p)T = SV D(G(p)) . SVD
3. [v1(p) v2(p) v3(p)] = V (p)
4. h(p) = argmin

h(p)⊥v1(p),‖h(p)‖22=1

hz(p) . structure vector

5. Fx(p) = hx(p)
hz(p)

6. Fy(p) =
hy(p)
hz(p)

end for
Surface Layer Estimation:

for i = 1 : D do
7. Itopi = Ii(px + Fx · (i− 1), py + Fy · (i− 1))
8. Ibottomi = Ii(px − Fx · (D − i), py − Fy · (D − i))

end for
9. Ltop = medianz(I

top)
10. Lbottom = medianz(I

bottom)

of all the multilayer sections in our experiments is 200 µm, which is also the typical penetration

depth of many immunohistochemical stains. The in-plane range of the multilayer section in

Fig. 2.4 (a) is 9569 × 9669 µm2. Fig. 2.4 (b) and (c) are the outputs of the first module

in Alg. 1, Fx and Fy. The estimated structure maps, Fx and Fy, are two 2D maps of size

M ×M . The expansion direction and magnitude for each in-plane position are characterized in

Fig. 2.4 (b) and (c). The MIP of the raw section in Fig. 2.4 (d) cannot differentiate the top

and the bottom surfaces, and thus leads to the cylindrical artifact in the reconstructed brain.

The bottom surface of the flattened section in Fig. 2.4 (e) has weak signal contrast and loses

some asymmetric information that is key to flip detection. The propagated bottom surface

in Fig. 2.4 (f) retains both the signal strength and structures. The detailed computational
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Figure 2.4: (a) A rendered multilayer section of size 9569× 9569× 200 µm3 in 3D. This section
is sliced on the horizontal plane. From the top to the bottom (on z-direction), the brain and
the hippocampus expand. (b) Estimated structure map on the direction of top-bottom in the
imaging-plane. (c) Estimated structure map the direction of left-right in the imaging-plane.
MIP, the bottom surface of flattened section and the propagated bottom surface are (d), (e)
and (f) respectively.

complexity analysis and an optimized implementation of Alg. 1 are provided in the next section.

The structure-based intensity propagation is introduced with the implementation in Alg. 1

for its clarity, and the computational complexity of Alg. 1 is O(M6D2). The computational

complexity of the optimized implementation in the supplementary material is O(M2Dlog(MD)).

The following two paragraphs explain the two modules, structure estimation and surface layer

estimation, in detail.

The outputs of structure estimation are two 2D maps showing the structure changes on two

in-plane directions. One assumption of the structure estimation is that the main structures in

cross-section views are linear because each multilayer section is thin, as shown in Fig. 2.4 (a).
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The typical dimension of a multilayer section in our experiment is 10000× 10000× 200 µm3,

and thus the depth-to-length ratio is about 1/50. The first step in Alg. 1 is constructing the

gradient matrix, G(p), for each position, p, on the imaging plane. The gradient matrix, G(p), of

size N2D × 3 is composed of three vectors that correspond to gradients along three directions.

In our implementation, the gradients at each pixel are computed by a central difference on a

3× 3× 3 neighborhood. The singular value decomposition (SVD) of the gradient matrix, G(p),

is defined as

G = USV T = U


s1 0 0

0 s2 0

0 0 s3


[
v1 v2 v3

]T
, (2.1)

where U and V are both orthonormal matrices. Vector v1 is of size 3× 1 and corresponds to the

dominant direction of the local gradient; v2 and v3 are orthogonal to v1. The three singular

values, s1, s2 and s3, represent the amount of gradient variation on the three corresponding

singular vectors v1, v2 and v3, and s1 > s2 > s3. With the definition of SVD, the dominant

intensity changing direction, v1, is always perpendicular to the main structure direction [54].

Next, the structure direction, h, is estimated by selecting the unit vector that is perpendicular

to v1 and has the largest z-direction descent. This process is reflected in Step 4 in Alg. 1. The

property of being perpendicular to v1 guarantees h lies on the structure surface. Among these

vectors, the one that has the largest downward z-direction component is selected as h. The three

components in h are hx, hy and hz. The minimization operation in Step 4 of Alg.1 specifies the

downward direction of the unit vectors have negative signs. The property of having the largest

z-direction component can be interpreted as having the smallest in-plane component because of

the first property of being a unit vector. Therefore, when propagating an intra-section voxel to

the positions of surface layers, the propagation path with direction h stays on the structure, and

has the smallest in-plane displacement. After obtaining the structure direction h, the structure

change on xy-planes is calculated in Step 5 and 6 in Alg. 1. The values in Fx(p) and Fy(p)

indicate the displacement of a pixel at p traveling to its next layer. In other words, the units of

Fx(p) and Fy(p) are pixel/layer. Fig. 2.4 (b) and (c) show the structure change maps.
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The second part of Alg. 1 estimates the propagated surfaces with the structure change

maps. In Step 7 and Step 8 in Alg. 1, every layer is transformed to positions of the top

layer and the bottom layer. The deformation fields, (px + Fx · (i − 1), py + Fy · (i − 1)) and

(px − Fx · (D − i), py − Fy · (D − i)), are calculated with structure changes and the distances

to surface layers. Two 3D stacks, Itop and Ibottom, are created with reference to the top and

bottom layers respectively. Ideally, only vertical structures should be presented in the side

views of Itop and Ibottom. At last, median values in the z-direction are taken from Itop and

Ibottom as the propagated surface layers. Fig. 2.4 (f) shows the propagated bottom surface of

one multilayer section.

To better interpret how the proposed structure-based intensity propagation works, a 2D

example is shown in Fig. 2.5. The method described in Alg. 1 can be easily applied to 2D

cases. The difference is that the surface layers in Alg. 1 are 1D lines in 2D cases. Fig. 2.5 (a) is

a 2D patch from the cross-section view of the raw data. The most significant structure in Fig.

2.5 (a) is the boundary of a mouse brain. Two defects in the raw data are presented. First, the

position of the boundary on the top line is not accurate. Second, the intensity of the bottom

line is weak. Fig. 2.5 (d) plots the gradients in Fig. 2.5 (a) and the fitted ellipse with SVD.

The orientation in Fig. 2.5 (d) reflects the direction of the significant structure. The dashed

arrow in Fig. 2.5 (a) is equivalent to the normal vector, v1, in Alg. 1, and the solid arrow is

equivalent to the unit structure vector, h, in Alg. 1. Computing the solid arrow in Fig. 2.5

(a) fulfills the structure estimation in Alg. 1, and the next step is the surface layer estimation.

Applying the displacement fields to each layer in Alg. 1 is simply shifting each line in the 2D

cases. Fig. 2.5 (b) and (c) are the propagated stacks whose counterparts in Alg. 1 are Itop

and Ibottom. At last, applying a median filter to Fig. 2.5 (b) and (c), the propagated top line

and the propagated bottom line are obtained. Fig. 2.5 (e) compares the original surface lines

and the propagated surface lines. The boundary position is more precisely reflected in the

propagated top line, and is more distinct in the propagated bottom line.
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Figure 2.5: An illustration of the structure-based intensity propagation on the 2D case. (a) is a
cross-section view of the raw data. The solid arrow indicates the structure direction, and the
dashed arrow corresponds to the normal direction. (b) and (c) are the stacks after transforming
each lines to the surface positions, equivalent to Itop and Ibottom in Alg. 1. (d) plots the
gradients in (a) and illustrates the SVD operation. The propagated surface lines reflect the
positions of boundaries more accurately.
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Table 2.1: Run time comparison of two SIP implementations

Image stack size (M ×M ×D) Computational complexity 256× 256× 5 512× 512× 10 1024× 1024× 20
Patch-based implementation (s) O(M6D2) 7.64 167.71 128813.72
Optimized implementation (s) O(M2Dlog(MD)) 0.21 1.05 10.90

Speed up ratio − 36.38 159.72 11817.77

2.2.3 Implementations of structure-based intensity propagation

Structure-based intensity propagation (SIP) is the major contribution of our work. In the main

draft, SIP is introduced with a patch-based implementation for the purpose of clarity. However,

the patch-based implementation of SIP is slow in practice because considerable computation is

redundant when patches overlap. An optimized implementation of SIP is necessary for brain

reconstruction with high resolution.

In this section, we first review the patch-based implementation of the proposed SIP in

Section 2.2.3. The optimized implementation is introduced in Section 2.2.3. At last, an

experiment is conducted to compare run times in Section 2.3.

Structure-based Intensity Propagation: Patch-based implementation

Alg. 1 summarizes steps in SIP with the patch-based implementation. The inputs of Alg. 1

are two: a multilayer stack of M ×M ×D voxels with isotropic resolution, and a patch size,

N . The multilayer stack has D layers, and each layer contains M ×M pixels. If the raw data

acquired by confocal microscopy is of anisotropic resolution, the raw data should be scaled

so that the in-plane resolution and the cross-plane resolution are the same. The outputs of

Alg. 1 are two 2D images both of size M ×M pixels, the propagated top surface Ltop and the

propagated bottom surface Lbottom. The steps in Alg. 1 can be generally classified into two

parts. The first part, steps 1 − 6, is structure estimation. The second part, steps 7 − 10, is

surface layer estimation.

Steps 1−6 are executed M2 times to acquire the structure map Fx and Fy for all the positions

on the imaging plane. Both Fx and Fy are of size M ×M . Step 1 constructs the gradient

matrix G(p) of size N2D × 3. The vectors gx(p), gy(p) and gz(p) are the gradients of voxels in
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the cubic patch centered at p. The computational complexity of Step 1 is therefore O(N2D).

Step 2 calculates the singular vectors of the gradient matrix, G(p). With the definition of SVD,

the dominant intensity changing direction, v1, is always perpendicular to the main structure

direction [55]. The computational complexity of Step 2 is decided by the first dimension size of

G(p), and is O(N4D2). Step 3 simply extracts the three single vectors from V (p). Next, Step

4 determines the structure direction, h, by selecting a unit vector that is perpendicular to v1

and has the largest z-direction descent. After obtaining the structure direction h, the structure

change is calculated in Step 5 and Step 6. The computational complexities of steps 3− 6 are

O(1). Considering the M2 loops for steps 1− 6, the computational complexity for the structure

estimation is O(M2N4D2).

Steps 7− 10 estimate the propagated surfaces, Ltop and Lbottom, with the structure change

maps. In Step 7 and Step 8, every layer is transformed to positions of the top layer and the

bottom layer. If nearest interpolation is adopted, the computational complexity is O(M2) for

Step 7 and Step 8. Considering the D loops, the overall computational complexity of Step

7 and Step 8 is O(M2D). At last, median values on the z-direction are taken from Itop and

Ibottom. The computational complexity of a median-finding algorithm is linear, and the median-

finding operation has to be performed for each position on the image plane. Therefore, the

computational complexities of Step 9 and Step 10 are both O(M2D). The overall computational

complexity for surface layer estimation, steps 7− 10, is O(M2D). Considering the filter size N

is proportional to the image size M , the overall computational complexity of Alg. 1 is

O(M6D2).

During the computational complexity analysis of Alg. 1, we can see that the computation

cost is dominated by Step 2 in the loop of structure estimation. In the next section, an optimized

implementation is introduced to avoid this loop in the part of structure estimation.
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Structure-based Intensity Propagation: Optimized implementation

In Alg. 1, the structure changes Fx(p) and Fy(p) are estimated with the SVD in a loop of M2

times. In order to bypass the SVD, a matrix Q(p) is constructed as

Q(p) = GT (p)G(p)

= V (p)ST (p)UT (p)U(p)S(p)V T (p)

= V (p)ST (p)S(p)V T (p) (2.2)

The matrix Q(p) is of sized 3 ∗ 3, and the eigenvector of Q(p) with the largest eigenvalue is the

same as v1(p) in Alg. 1. The matrix Q(p) can be also written as

Q(p) = GT (p)G(p)

=


gTx (p)

gTy (p)

gTz (p)

 [gx(p)gy(p)gz(p)]

=


gTx (p)gx(p) gTx (p)gy(p) gTx (p)gz(p)

gTy (p)gx(p) gTy (p)gy(p) gTy (p)gz(p)

gTz (p)gx(p) gTz (p)gy(p) gTz (p)gz(p)



=


Exx(p) Exy(p) Exz(p)

Exy(p) Eyy(p) Eyz(p)

Exz(p) Eyz(p) Ezz(p)

 (2.3)

The symmetric matrix Q(p) is of size 3×3, and defined by six distinct numbers: Exx(p), Eyy(p),

Ezz(p), Exy(p), Exz(p), Eyz(p). It should be noticed that matrices, Exx, Eyy, Ezz, Exy, Exz

and Eyz, are all of size M ×M , and Q is a tensor of size M ×M × 3× 3. The QR algorithm

with Householder reduction [56] is adopted to solve v1(p) from the Q(p).

The optimized implementation of SIP, Alg. 2, also contains two parts: structure estimation

and surface layer estimation. The changes in Alg. 2 are reflected in steps 1-4.
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In Alg. 2, Step 1 calculates the gradient matrices, Gx, Gy and Gz, of the whole input image

stack I. These three gradient matrices are of size M ×M ×D. Step 2 and Step 3 calculate the

six matrices that define Q. Again, it should be noticed that Exx, Eyy, Ezz, Exy, Exz and Eyz

are 2D matrices of size M ×M . Step 2 creates a 3D average filter of size N ×N ×D. The · in

Step 3 stands for the element-wise production, and ∗ stands for the convolution. In practice,

the convolution is done in the Fourier domain with the fast Fourier transformation. Step 2 and

Step 3 are the implementation of Eqn. 2.3. Step 4 corresponds to the decomposition in Eqn.

2.2. The overall computational complexity of Alg. 2 is O(M2D logMD) determined by Step 3.

The overall computational complexity of Alg. 2 is O(M2Dlog(MD)).

2.3 Experiments

In this section, the data acquisition procedure and the evaluation criteria are first reviewed.

Three experiments, section-to-section registration, flip detection and whole brain reconstruction,

are conducted to illustrate how the proposed methods improve upon conventional reconstruction

methods.

Four reconstruction approaches with different representatives of multilayer sections are

evaluated. The registration pipeline introduced in Section 2.1.2 is adopted. Without tissue

flattening and SIP, the registration pipeline with the MIP of each section serves as the

baseline method (MIP). After tissue flattening, the top and the bottom layers are used as

the representatives for registration in the second version (Surface). As the motivation of the

proposed SIP, BRS [1] is evaluated by selecting the best representatives from flattened multilayer

sections (BRS [1]). At last, the fourth version includes both tissue flattening and SIP. The

propagated top and bottom surfaces are used for registration in the fourth version (SIP). The

patch size, N , in Alg. 1 is set as 51 for all the experiments. The raw data is acquired with the

resolution of 2.77×2.77×10 µm3, and is scaled to 10×10×10 µm3 with cubic interpolation [53]

before reconstruction.
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Algorithm 2 Optimized Implementation

Inputs:
I: 3D image stack of size M ×M ×D
N : patch size

Outputs:
Ltop: Propagated top surface of size M ×M
Lbottom: Propagated bottom surface of size M ×M

Structure Estimation:
1. acquire Gx, Gy and Gz . O(M2D)
2. create average filter: Filt . O(N2D)
3. calculate Exx, Eyy, Ezz, Exy, Exz, Eyz as,

Exx = (Gx ·Gx) ∗ Filt,
Exy = (Gx ·Gy) ∗ Filt,
... . O(M2D logMD)

for every p on the imaging plane of size M ×M do
4. v1(p) = QR(Exx(p), Eyy(p), . . . ) . O(1)
5. h(p) = argmin

h(p)⊥v1(p),‖h(p)‖22=1

hz(p) . O(1)

6. Fx(p) = hx(p)
hz(p) . O(1)

7. Fy(p) =
hy(p)
hz(p) . O(1)

end for
Surface Layer Estimation:

for i = 1 : D do
8. Itopi = Ii(px + Fx · (i− 1), py + Fy · (i− 1)) . O(M2)
9. Ibottomi = Ii(px − Fx · (D − i), py − Fy · (D − i)) . O(M2)

end for
10. Ltop = medianz(I

top) . O(M2D)
11. Lbottom = medianz(I

bottom) . O(M2D)

Comparison between two implementations

In this section, the run times of two implementations are evaluated with three image stacks of

different sizes. The computer configuration has a Intel Core i7-4770 quad core CPU of 3.40GHz

and 32 GB RAM. Both implementations are written in MATLAB. From Table 2.1, it is clear

that the optimized implementation is much faster on all scales, and the speed advantage is

more obvious when the images size is larger.
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Figure 2.6: Data collection procedure. The red fluorescent markers are expressed during seizure
spread while the mice are alive. After sacrificing animals, immunofluorescence staining for
NeuN is performed.

(a) (b) (c)

Figure 2.7: (a) NeuN. (b) tdTomato. (c)Aligned two channels. All three images, (a), (b) and
(c), are sections on the coronal plane.

2.3.1 Data acquisition

In these experiments, a total of 367 sections from 20 TRAP mice [57] are collected according

to the institutional animal care and use committee (IACUC) approved protocol. The data

collection procedure is illustrated in Fig. 2.6. The geometric distortions mainly occur at the

brain sectioning and tissue clearing steps. The vibratome used for tissue sectioning is the Leica

vibratome VT1200, and the vertical deflection of the VT1200 is less than 1 µm [58]. When

slicing tissues with the thickness of 200 µm, the vertical deflection is less than 1%. After brain

sectioning, lipids are extracted from the tissue to increase the depth of light penetration by

tissue clearing [45]. During tissue clearing, slices are incubated in 1% acrylamide, 0.25% VA044

solution with nitrogen under vacuum for 20 minutes, and then transferred to incubator with

37◦C. This procedure builds the hydrogel-matrix needed for further clearing step. Slices are

then cleared by incubation in 8% SDS buffer at 37◦C. The cleared tissue is placed in refractive
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index matching solution (RIMS) for imaging. Two channels of fluorescent signal are collected.

The red fluorescent protein, tdTomato, is expressed in the mouse brain during seizure spreading.

After brain sectioning and clearing, tissues are stained for neuronal marker NeuN (green).

Images are obtained using a Zeiss 780 confocal microscope with C-Apochromat objective under

10X magnification. Excitations for the green and the near-red are provided by Argon 488 and

DPSS 561 laser lines, and the emission windows are 500-562 nm for the green and 571-624 nm

for the near-red. All images are acquired with an optical section separation (z-interval) of 10

µm. Fig. 2.7 shows one section sample. Since the tdTomato channel has higher signal intensity

and contrast, the following reconstructions are based on the information from the tdTomato

channel.

2.3.2 Evaluation criteria

Evaluating the quality of reconstructed brains is challenging because the lack of ground

truth [1, 23, 38]. Visual inspection, manually selected landmarks, and structure smoothness

are three commonly used evaluation approaches. Visual inspection of 3D volumes requires

extensive human intervention [23,36]. Similarly, evaluation with manually selected landmarks is

not scalable [39]. The third evaluation metric based on the structure smoothness can be further

classified into texture-based [59–61] and feature-based [37,62,63]. Texture-based metrics are

not suitable for reconstruction evaluation with multilayer sections. The quality of reconstructed

brains with multilayer sections is reflected at the interfaces between two physical sections, while

texture-based metrics equally weight patches and tend to be influenced by the false texture

at section joints. Since our work aims at registering multilayer sections to each other, the

edge-based tensor voting evaluation [12] is most suitable to reflect the structure consistence

among multilayer sections. In addition, this metric differs from the cost functions adopted by

our registration methods, and thus is more objective.

Fig. 2.8 illustrates the three steps of the evaluation scheme [62]: token extraction, tensor

voting and correlation. Tokens are the points that lie on edges [62]. Edges are extracted

on imaging planes, and Fig. 2.8 (b) is the cross-section view of the 3D edge stack. In the
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Figure 2.8: (a) is a cross-section view of two aligned sections. (b) is the cross-section view of
extracted edges. (c) is the edge prominence map voted by edge points in (b). The structures in
the top section extend one layer downward, and the structures in the bottom section extend
one layer upward. Therefore, the edge prominence in the top section and the bottom section
has two layers overlapped in (c). (d) plots the edge prominence in overlapped layers in (c).
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Figure 2.9: Structure consistence index of registered section pairs. (a) Sections imaged on the
horizontal plane. (b) Sections imaged on the coronal plane.

Table 2.2: Structure consistence index of section-to-section alignment

MIP Surface BRS SIP

Horizontal
Median 0.1536 0.2669 0.2167 0.3172
Mean 0.1622 0.2681 0.2059 0.3185

Coronal
Median 0.1837 0.2562 0.2922 0.3298
Mean 0.1829 0.2482 0.2870 0.3355

second step of tensor voting, tokens communicate with each other and agree on a significant

structure [62]. The output of token communication is referred as edge prominence as shown

in Fig. 2.8 (c). At last, the zero-normalized cross-correlation of the edge prominence at the

overlapped regions is used as the structure consistence index for one cross-section view. Since

the quality of the reconstructed brain is reflected by the cross-section views [30, 36, 37], the

overall reconstruction quality is the average of the structure consistence indexes of all the

cross-section views. Two key parameters for this evaluation metric are the tensor voting scale

and the overlap range [62]. The larger the tensor voting scale, the blurrier the edge prominence

map (Fig. 2.8 (c)) will be. The tensor voting scale is set as 10, and the overlap range is set as

2 for the example in Fig. 2.8 and for all the following experiments.
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(a)

(c)

(b)

(d)

Figure 2.10: Examples of section-to-section registration with four different representatives. (a)
MIP. (b) Surface. (c) BRS [1]. (d) Proposed SIP.

2.3.3 Section-to-section alignment

In this experiment, all the sections are flipped according to the manually labeled ground truth

before registration. The adjacent section pairs are aligned to each other with the four different

representatives of the multilayer sections: MIP, Surface, BRS and SIP. The sections are classified

by their imaging planes: horizontal plane and coronal plane. There are 134 pairs of adjacent

sections in the group of horizontal plane, and 213 pairs in the group of coronal plane.

Fig. 2.9 shows the quality of registered section pairs, and Table 2.2 summarizes the

quantitative results. Single factor ANOVA is conducted to compare the performance of the

four different multilayer representatives. The mean structure consistence indexes of these four

methods are significantly different with p < 10−36 for horizontal sections, and p < 10−46 for

coronal sections. Since sections are flipped according to the ground truth, this experiment mainly

compares the accuracy of structure position reflected by different representatives. Maximum

intensity projection of a multilayer section blends structures from different layers, and thus

provides the lowest structure consistence index. After tissue flattening, structures in surface

layers often show minor offsets compared with the structural trend exhibited by intra-section

regions. Propagated surfaces correct such structure offsets in the surface layers and achieve the

best alignment result. One interesting result is that the performances of Surface and BRS [1]

are different on coronal and horizontal sections. This is because surface layers reflect the shape

changing better than selected middle layers, and the shape growing trend is more significant

among horizontal sections. However, the drawback of Surface is that the signal intensity and
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contrast are weak. The following auto-flip experiment demonstrates how this drawback affects

the reconstruction.

Fig. 2.10 shows one example to illustrate how the proposed tissue flattening and SIP

improve the performance of adjacent section alignment. Registered with MIP, two sections

in Fig. 2.10 (a) pose a noticeable offset. Minor offsets still exist in the aligned sections with

surface layers, but is corrected by the structure-based intensity propagation. The best reference

layers selected by BRS [1] are the 10th and the 8th layers for the first and the second multilayer

sections, and therefore the registration does not capture the growing trend.

2.3.4 Flip detection

Although experimenters carefully track and label orientations of sections, inconsistencies can

happen during large data collection, especially when tissue clearing is involved. Among the 367

raw sections in our experiment, 169 sections (46%) are flipped according to the ground truth.

Incorrectly flipped sections are a major source of artifacts in brain reconstruction, especially

for whole brain reconstruction with a series of sections: one incorrectly flipped section may

influence flip decisions of all the following sections.

In this part, automatic flip detections with different representatives of multilayer sections

are compared. Adjacent sections are registered, but only the first section is flipped according

to the ground truth. The flip status of the second section is automatically decided according

to affine registration results. In this experiment, flip detection is evaluated for each section

pair, and one incorrect flip decision does not influence the following flip decisions. Table 2.3

reports the flip detection results of the four versions in terms of Type I error (falsely flipped

sections) and Type II error (falsely unflipped sections). Flip detection based on the propagated

surfaces achieves highest accuracy. An interesting phenomenon is that Surface achieves much

worse flip detection accuracy than others. This is because although surface layers reflect the

shape changing more accurately, they do not preserve the intensity information well. For flip

detection, the asymmetric intensity information is crucial.
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Table 2.3: Incorrect flip detection number

MIP Surface BRS SIP

Horizontal
(134)

Falsely flipped 2 26 2 1
Falsely unflipped 1 16 3 1

Coronal
(213)

Falsely flipped 8 42 4 2
Falsely unflipped 7 25 7 2

(a) (b) (c) (d)

Figure 2.11: The surface layer after tissue flattening in (a) shows less signal intensity and
structure contrast compared with the propagated surface in (b). Compared with the maximum
intensity projection in (c), the propagated surface in (d) removes the structures that only stay
in certain layers and preserves the major structures. (a) and (b) are sections on the horizontal
plane. (c) and (d) are sections on the coronal plane.

Fig. 2.11 shows different multilayer section representatives for flip detection. Compared

with the propagated surface in Fig. 2.11 (b), the surface layer in Fig. 2.11 (a) lessens structure

contrast. On the contrary, the maximum intensity projection in Fig. 2.11 (c) contains many

structures that could mislead flip detection, such as the neurons. Only propagated surface

layers preserve the consistent information among sections that is helpful to flip detection, and

also get rid of the distracting information that only shows in certain layers.

2.3.5 Whole brain reconstruction

In this part, 20 mouse brains are reconstructed with and without the ground truth of flip

status. Table 2.4 summarizes the reconstruction quality by different approaches. The same

structure consistence index introduced in Section 2.3.2 is adopted to measure the whole brain

reconstruction quality. As stated before, for the whole brain reconstruction, one wrong flip

can influence the following flips. Therefore, a wrong flip at the beginning tends to cause

more incorrect flip detections in the following sections, such as the sixth brain reconstructed
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(a)

(c)

(b)

(d)
Figure 2.12: Reconstructed Brain 1, sectioned on the horizontal plane. The arrows indicate
the ventral-dorsal direction. The frames indicate the positions of the cross-section views. The
cross-section views are on the coronal plane. (a) MIP: 0.2746. (b) Surface: 0.2820. (c) BRS:
0.2560. (d) SIP: 0.4419.

with the propagated surface. Single factor ANOVA confirms that the difference between the

four reconstruction approaches is significant with p < 10−7 for the 20 brains. Fig. 2.12 and

Fig. 2.13 show two examples of the reconstructed brains with automatic flip detection. Brain
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(a)

(c)

(b)

(d)
Figure 2.13: Reconstructed Brain 11, sectioned on the coronal plane. The arrows indicate the
posterior-anterior direction. The frames indicate the positions of the cross-section views. The
cross-section views are on the horizontal plane. (a) MIP: 0.3991. (b) Surface: 0.3419. (c) BRS:
0.4079. (d) SIP: 0.5240.

reconstruction with propagated surfaces improves the reconstruction quality in two aspects:

more natural outer contour shape from the 3D overview and more consistent structure changing

from the cross-section views.

2.4 Discussion

In this work, two structure correction methods are proposed for brain reconstruction with

multilayer tissue sections: tissue flattening and structure-based intensity propagation. Tissue
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Table 2.4: Structure consistence index of whole brain reconstruction

# Brain
Quality with flip groundtruth Quality with auto-flip # incorrect flip with auto-flip

MIP Surface BRS SIP MIP Surface BRS SIP MIP Surface BRS SIP
1 0.2660 0.3184 0.2678 0.4464 0.2746 0.2820 0.2560 0.4419 2 12 6 1
2 0.2246 0.2922 0.2608 0.3325 0.2246 0.2760 0.2113 0.3325 0 9 13 0
3 0.1663 0.3145 0.2650 0.3760 0.1888 0.2574 0.2401 0.3760 9 10 10 0
4 0.2199 0.2308 0.2185 0.3042 0.2199 0.2213 0.1796 0.3042 0 4 12 0
5 0.1449 0.2419 0.1648 0.2762 0.1422 0.2250 0.2009 0.2762 4 6 7 0
6 0.2265 0.3064 0.2892 0.3426 0.2179 0.3291 0.2752 0.3064 18 4 10 16
7 0.2458 0.2812 0.2841 0.3374 0.1941 0.2675 0.2641 0.3374 18 10 5 0
8 0.1968 0.2468 0.2617 0.2798 0.1696 0.2262 0.2467 0.2798 10 11 6 0
9 0.2053 0.2729 0.2262 0.2935 0.1748 0.2596 0.1749 0.2935 13 8 7 0
10 0.3016 0.3016 0.3667 0.4215 0.2348 0.2763 0.3478 0.4215 5 12 9 0
11 0.3991 0.3723 0.4079 0.5240 0.3991 0.3419 0.4079 0.5240 0 2 0 0
12 0.2647 0.3250 0.3441 0.3996 0.2952 0.3179 0.3426 0.3996 25 9 1 0
13 0.1953 0.2413 0.3312 0.2746 0.1762 0.2678 0.3073 0.3097 19 9 15 10
14 0.2257 0.2775 0.3371 0.3636 0.1987 0.2762 0.3043 0.3636 20 11 21 0
15 0.2021 0.3236 0.3215 0.3668 0.2049 0.3332 0.3322 0.3571 18 10 9 3
16 0.3000 0.2607 0.2480 0.3406 0.3124 0.2979 0.2619 0.3406 2 8 5 0
17 0.2841 0.2770 0.3031 0.3205 0.2841 0.2538 0.2720 0.3205 0 13 21 0
18 0.1868 0.3177 0.3367 0.3564 0.1690 0.3321 0.3022 0.3520 12 11 18 3
19 0.2341 0.3130 0.3410 0.3541 0.2510 0.2750 0.3098 0.3541 21 12 12 0
20 0.2291 0.2262 0.3207 0.2640 0.2298 0.2409 0.2649 0.2640 19 6 12 0

mean 0.2359 0.2871 0.2948 0.3487 0.2281 0.2779 0.2751 0.3477 10.75 8.85 9.95 1.65

flattening projects the warped multilayer sections onto the bottom surfaces. Structure-based

intensity propagation extends the intensity information within 3D section to surface layers.

After tissue flattening and structure-based intensity propagation, the propagated surfaces serve

as robust representatives of multilayer tissue sections, and facilitate the following registration

and flip detection. The proposed methods can be incorporated into existing registration-

based reconstruction frameworks as a preprocessing step. Experiments on 367 brain sections

from 20 mouse brains verify the effectiveness of the proposed methods. Section-to-section

experiments evaluate the performance improvement on registration and flip detection by the

proposed methods. The whole brain reconstruction is evaluated in the last experiment. With

reconstructed 3D mouse brains, observation and analysis of each single section can be done

in an unified 3D coordinates for the whole mouse brain. For example, activated cell centers

during SE from different sections can be aligned to form a graph with an unique 3D topology

with the reconstructed brain.
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Auxiliary Imaging Modality1

Besides high resolution microscopy, other imaging modalities provide valuable data for brain

research as well. With MRI, brains are imaged without slicing. The intact brain data are helpful

for cross brain registration and the evaluation of brain reconstruction. However, the resolution

of MRI is less than microscopy data, and acquiring high quality MRI data is important. In this

work, we mainly focus on improving the quality of MRI images with parameter selection. The

proposed methods can be used for the quality assessment of other auxiliary imaging modality

as well. For example, image enhancement on brain images acquired by the low resolution

microscopy [39], such as denoising and deblurring, could benefit from the proposed parameter

selection pipeline. Measuring the perceptual image quality by subjective experimentation is

time-consuming and expensive, so designing an image quality assessment (IQA) algorithm

that agrees with the human visual system (HVS) [64–66] is a foundational image processing

objective.

IQA algorithms are classified based on the amount of information from the reference image

(the distortion-free image) that is required: full-reference (FR), reduced-reference (RR) and

no-reference (NR). FR-IQA [3,14,67–69] is a relatively well-studied area. Traditional methods

like mean squared error (MSE) and signal-to-noise ratio (SNR) are used as the standard signal

1 c©2016 IEEE. Reprinted with permission from Haoyi Liang and Daniel Weller, “Comparison-based image
quality assessment for selecting image restoration parameters”, IEEE Transactions on Image Processing, November,
2016
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fidelity indexes [70]. A more sophisticated FR-IQA algorithm, Structural Similarity Index

Method (SSIM) [14], considers the structure information in images and performs well in different

applications [70–73]. RR-IQA algorithms [5, 74–76] require some statistical features of the

reference image, such as the power spectrum, and measure the similarity of these features from

the reference image and the distorted image. NR-IQA algorithms usually adopt two different

approaches. The first kind of NR-IQA [77–81] algorithms have an approach similar to that of

RR-IQA. The difference is that rather than extracting the features from the reference image,

this kind of NR-IQA algorithm extracts statistical features from a training set. The second

kind of NR-IQA algorithm [73, 82, 83] adopts a local approach to quantifying structure as a

surrogate for quality. A common implementation of the second approach is calculating local

scores by analyzing the coherence of image gradients. The overall score is synthesized by taking

the average of the local scores.

Among these three kinds of IQA algorithms, speed and accuracy generally decrease from

FR-IQA, RR-IQA to NR-IQA progressively. However, reference images do not exist in many

cases. In applications like parameter selection for image restoration algorithms, a set of distorted

images with the same image content are available. A novel comparison-based IQA (C-IQA)

framework is proposed in this thesis to make full use of these differently distorted images. A

parallel two-step framework is adopted in C-IQA. First, a residual image is calculated by taking

the difference between two input images, and the quality of the residual image is evaluated.

Next, the contribution from two input images to the residual image is calculated. Finally,

a simple procedure combines the first two parts: the input image that mainly contributes

to high quality residual patches receives positive scores, while the input image that is more

responsible for the distorted residual patches receives negative scores. Depending on the type

of the distortion, different quality indexes, such as the blockiness index [84], can be used in the

first part and a multi-metric fusion scheme [85–87] can further improve the versatility of the

proposed framework.

It is worth differentiating RR-IQA and C-IQA since they both use extra data beyond a

single distorted image. The most significant distinction between RR-IQA and C-IQA is that
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the extra data required by most RR-IQA algorithms is distortion-free, while the extra data that

C-IQA has is usually distorted. Therefore, RR-IQA algorithms specifically treat one image as

the distorted image to be evaluated and the other information as truth or a reference. However,

C-IQA treats the two input images equally without any prior knowledge of the quality of input

images. In [5], Wu et al. take RR-IQA as a measurement of the fidelity of the distorted image to

the original image. The RR-IQA method proposed in [74] depends on a distortion-free ancillary

channel to transmit the features extracted from the original image. In [75], Soundararajan et

al. point out that the output of their RR-IQA method is a single positive value that does not

indicate if the input is better or worse than the reference image. On the contrary, the final

output of our proposed C-IQA is a single real value that indicates which one of the input image

is better and by how much. In brief, RR-IQA methods rely on the integrity of the extra data,

while C-IQA is able to decide the relative quality only with two input images of the same scene.

The rest of the chapter is organized as follows. Section 3.1 introduces and compares different

NR-IQA methods. Section 3.2 elaborates on the details of C-IQA. The algorithm used for

image reconstruction and the framework of parameter trimming are introduced in Section 3.3.

In Section 3.4 experiments are conducted on two widely used IQA databases, LIVE [2] and

CSIQ [3], to verify the performance of C-IQA on parameter selection. Section 3.5 reviews

the novelty and experimental results of the proposed C-IQA, and discusses further work on

comparison-based IQA framework.

3.1 Existing NR-IQA methods

In [73], Shnayderman et al. classify NR-IQA algorithms into two types: global approaches

and local approaches. The underlying difference between these two methods are the features

used by different NR-IQA algorithms. Statistical features, such as the distribution of wavelet

coefficients [77,78], are extracted for global approaches. Local approaches usually rely on the

structure information, such as the edge prominence [73, 82]. Usually, a regression model is

adopted to synthesize the statistical features into an overall image quality, while the structure
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features are able to reflect the image quality directly. The assumption of the statistical feature

distribution is changed when considering the difference of two images, while the structure

indexes that reflect the coherence of local gradients still work for the difference of two images.

Therefore, the proposed C-IQA methods make use of a structure index, MetricQ. In the following

part, we briefly review different NR-IQA methods and introduce one particular local structure

index MetricQ [82].

3.1.1 Approaches with statistical features

The rationale of statistical feature-based NR-IQA methods [77–81] is that the distributions

of natural scene statistics (NSS) share certain common characteristics among distortion-free

images, and distortions will change these characteristics. For example, it is widely accepted

that the wavelet coefficients of a natural image can be modeled by a generalized Gaussian

distribution (GGD) [88,89].

The main advantage of statistical features is that most of them are not dedicated to a

specific distortion since the NSS features are a high-dimensional vector designed to be sensitive

to various distortions. However, because of the high dimensionality of the statistical feature

space, it is difficult to individually interpret and analyze these features quantitatively, and thus

feature selection is largely an empirical work.

3.1.2 Approaches with structure indexes

Because human eyes are highly sensitive to the gradient in images, and the information in

images can be well represented by their gradient [14,82,90], structure indexes usually reflect the

spatial gradient information. Unlike the statistical indexes, most structure indexes represent

the local quality directly without involving the learning process. However, the amount of

the gradient, or total variation, itself is not a stable indicator of the quality [73]. Previous

works [73,82,91] have shown that assessing the concentration of the gradient direction in an

image is a promising way to evaluate the image quality. Among these works, MetricQ [82]

shows encouraging results choosing denoising parameters. The underlying rationale of MetricQ
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is that the more concentrated the gradient direction is, the better the quality of the patch is. It

is a reasonable assumption since both of the two most common distortions, noise and blurring,

disperse the distributions of the gradient direction.

3.1.3 MetricQ

The local quality index used by MetricQ is based on singular values of the local gradient matrix,

which have been widely used as low level features in different image processing problems, such

as tracking feature selection [92], recognition [93] and image quality assessment [73]. For each

n× n local patch (w), the gradient matrix is

G =


...

...

px(k) py(k)

...
...

 , (3.1)

in which px(k) and py(k) are the gradients of the kth pixel in the patch w on x and y directions.

The singular value decomposition (SVD) of the gradient matrix, G, is defined as

G = USV T = U

 s1 0

0 s2

[ V1 V2

]T
, (3.2)

where U and V are both orthonormal matrices. Vector V1 is of size 2× 1 and corresponds to

the dominant direction of the local gradient; V2 is orthogonal to V1 and thus represents the

edge direction. Singular values, s1 and s2, represent the luminance variances on V1 and V2

respectively. Intuitively, a large s1 and a small s2 indicate a prominent edge in the local patch.

The gradient matrix, G, used in Eq. 3.1 and Eq. 3.2 is the 2D version of the gradient matrix

used in Eq. 2.1

In MetricQ [82], two indices reflect the quality of a local patch: Image Content Index and

Coherence Index. Image Content Index is defined as

Q = s1
s1 − s2

s1 + s2
, (3.3)
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and Coherence Index is defined as

R =
s1 − s2

s1 + s2
. (3.4)

Q reflects the structure prominence in a local patch and R is used to determine whether a

local patch is dominated by noise. The overall score of an image is calculated by

AQ =
1

MN

∑
i,j:R(i,j)>τ

Q(i, j), (3.5)

where M ×N is the size of the image and τ is the threshold to decide whether a local patch is

dominated by noise. Q(i, j) and R(i, j) are the Image Content Index and Coherence Index of

the local patch centered at (i, j) in the image. A simplified interpretation of (3.5) is that AQ is

the average structure index of local patches that have meaningful image content.

3.2 Comparison-based image quality assessment

Previous works on IQA [14, 65, 66, 79, 94] show that IQA performance can be significantly

improved by taking advantage of the characteristics of HVS. For example, the structural

information that human eyes are highly sensitive to is used by SSIM [14]. Traditional NR-IQA

algorithms also try to exploit HVS features and make reasonable assumptions about natural

scene images. However, one important aspect of HVS is ignored: comparison. In subjective

IQA experiments [3], volunteers are required to evaluate the quality of an image by comparing

it with a reference image, rather than giving an absolute score for the image. Although in most

image processing applications, the reference image does not exist, a set of differently degraded

images are available. In these cases, extending existing state-of-the-art FR-IQA and RR-IQA

algorithms to comparison-based IQA algorithms is a natural thought. However, different from

FR-IQA and RR-IQA algorithms, neither of the two input image qualities is known in the

comparison-based IQA framework. As a result, in a comparison-based IQA algorithm, we

not only measure the difference between two input images, but also assess the quality of the

difference.
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3.2.1 Framework of C-IQA

P1 from	I1

P2 from	I2

Signal	
difference

Contribution

Contribution	from	P1

Contribution	from	P2

	𝜎

	𝜎

Content	Detection
content	
detection

×

𝜎:	covariance

SVD
analysis

Comparison-
based index

Figure 3.1: Flow Chart of the Comparison-based IQA: P1 and P2 are local patches from input
images, I1 and I2, at the same location respectively. The Content Detection module determines
whether there is a meaningful structure in the difference patch; the Contribution module
calculates which patch mainly contributes to the difference patch; the Distortion Sensitivity
Weighting module compensates the distortion sensitivity difference of patches with various
texture complexities. The output, comparison-based index, indicates the relative quality of P1

based on P2.

As shown in Fig. 3.1, C-IQA has two input images, I1 and I2, and the output indicates the

relative quality of I1 based on I2. No prior knowledge about the quality of two input images

is known to C-IQA, and the relative quality can be either positive or negative depending on

whether I1 is better than I2. We refer to the second image in C-IQA as the base image to

distinguish it from the reference image in FR-IQA and RR-IQA. The implemented C-IQA

method consists of two basic modules: Content Detection and Contribution. The third module,

Distortion Sensitivity Weighting, is optional and its description is deferred to Section 3.2.3.

In the rest of the chapter, we refer to the comparison-based IQA variation composed by the

two basic modules as CQ and the variation with three modules as CDQ. Content Detection

determines whether the difference between two input images contains any meaningful structure,

and Contribution decides which image mainly contributes to the difference. CQ composes these

two modules by the criterion that the input image that contributes to a structured difference is

better and the input image that contributes to a random difference is worse. The Distortion

Sensitivity Weighting module added in CDQ adjusts the distortion sensitivity difference among
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patches with different texture complexity [14,95].

Content Detection

The Content Detection module is based on the Coherence Index put forward in MetricQ [82].

Different from MetricQ, this index is calculated with the difference image between two input

images in C-IQA. In MetricQ, limited by the information provided by a single input image, the

algorithm does not know the texture complexity in the original image. Therefore, it is hard for

an algorithm to estimate how concentrated the gradient should be. However, by mimicking the

comparative way HVS works, C-IQA removes the main image content in the images by taking

the difference, and thus it is easy for the Content Detection module to differentiate the patches

with noisy and structured content.

Algorithm 3 Content Detection

Dp = P1 − P2

G = [dx(Dp) dy(Dp)]
USV T = SV D(G)
Cind = s1−s2

s1+s2
. s1 > s2

if Cind > Cthresh then
is stru = 1 . structure

else
is stru = −1 . noise

end if

In Alg. 3, P1 and P2 are two patches of size n×n from I1 and I2 respectively, G is the same

2-column gradient matrix defined in (3.1), SV D(G) represents taking the SVD operation on

G, and s1 and s2 are the singular values of G. Cthresh is a constant threshold to binarize Cind.

The binary output is stru indicates whether there is a meaningful structure in the difference of

local patches.

Contribution from patches

Once the difference is classified into noise or structure, the Contribution module is designed

to find out which of the two input images mainly contributes to the difference image. In
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our implementation, the luminance-normalized covariance between the input image and the

difference image is used to measure the contribution.

Algorithm 4 Contribution

Dp = P1 − P2

Mp = max(mean(P1)+mean(P2)
2 , 1

n×n)
ctri1 = cov(P1, Dp)
ctri2 = cov(P2,−Dp)
ctri = ctri1−ctri2

Mp

In Alg. 4, mean(Pi) calculates the average of the local patch, and cov(x1, x2) calculates the

covariance between two input patches,

cov(x1, x2) =
(x1 −mean(x1))T (x2 −mean(x2))

n2 − 1
,

x1 and x2 are vectorized patches of size n2 × 1. The output ctri represents that P1 contribute

to Dp more than P2 does by how much. A negative ctri means that P2 mainly contribute to

Dp.

The comparative quality index for each local patch is calculated by

CQ = is stru · ctri.

The overall comparative quality of I1 based on I2 is

CQ(I1, I2) =
1

M ×N
∑

i,j=(n/2):(M−n/2)

CQ(i, j),

where CQ(i, j) is the local comparative quality index centered at (i, j) in the image, n×n is the

size of the local patch and M×N is the size of the image. Patches that are outside the boundary

of the image are not included in the calculation. A positive CQ(I1, I2) means I1 is better than

I2, and the absolute value quantifies the quality difference. Due to the anti-symmetric design
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of the algorithm, CQ(I1, I2) = −CQ(I2, I1).

3.2.2 Justification of CQ

Inspired by Li’s work [96] which claims that an IQA model should be based on three quantities:

edge sharpness, random noise level and structure noise, we classify the distortions by residual

images, the difference between a distorted image and the original image. In our classification,

distortions can be categorized into two types: introducing a random residual image, or introduc-

ing a structured residual image. In most cases, random residual images correspond to noise-like

distortions and structured residual images correspond to blurring-like distortions. In this part,

we prove how C-IQA works under these two distortions.

Assume Itrue is the original image, and I1, I2 are two distorted images. The residual images

are calculated by,

ei = Ii − Itrue, i = 1, 2.

Similarly, for each patch we have

ePi = Pi − Ptrue, i = 1, 2.

Random residual image Residual images behave like noise in this case. If we assume I1 is

more severely distorted than I2, then we have E[‖eP1‖22] > E[‖eP2‖22]. The expectation of the
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local comparative quality index is

E[CQ] = E[ctri · is stru]

= E[(ctri1− ctri2) · is stru]

= E[cov(P1, P1 − P2)− cov(P2, P2 − P1)]

· E[is stru]

= −E[cov(Ptrue + eP1, eP1 − eP2)

− cov(Ptrue + eP2, eP2 − eP1)]

= −E[2 · cov(Ptrue, eP1 − eP2)

+ cov(eP1, eP1)− cov(eP2, eP2)]

= −E[cov(eP1, eP1)] + E[cov(eP2, eP2)]

< 0.

The three most important properties in the derivation are the irrelevance between Ptrue and

ePi, the randomness of ePi, and independence of is stru and ctri1, ctri2. The result E[CQ] < 0

agrees with our assumption that I1 is more severely distorted than I2. When I2 is more severely

distorted, the same proof shows E[CQ] > 0.

Structured residual image If the residual images show structured information, the most

probable reason is that the image is distorted by a blurring-like distortion. Because the blurring

filter acts as a low-pass filter, the residual images show a structure that is inversely related to

the original image [97] to smoothen the high contrast on the edges.
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Without loss of generality, we assume more blurring happens in I1 than I2, which means

E[|eP1|] > E[|eP2|]. The expectation of the local comparative quality index is

E[CQ] = E[ctri · is stru]

= E[(ctri1− ctri2) · is stru]

= E[cov(P1, P1 − P2)− cov(P2, P2 − P1)]

= E[cov(Ptrue + eP1, eP1 − eP2)

− cov(Ptrue + eP2, eP2 − eP1)]

= E[cov(2 · Ptrue, eP1 − eP2)

+ cov(eP1 + eP2, eP1 − eP2)]

= E[cov(2 · Ptrue + eP1 + eP2, eP1 − eP2)]

< 0.

The most important step in this derivation is the last step. Since E[|eP1|] > E[|eP2|], eP1− eP2

also demonstrates a structure that is inversely related to the original image as ePi. As

long as the distortion is not severe enough to remove the structure in the original image,

2 · Ptrue + eP1 + eP2 = P1 + P2 is positively related to the original image. As a result,

E[cov(2 · Ptrue + eP1 + eP2, eP1 − eP2)] < 0, which agrees with our assumption that I1 is more

severely distorted than I2. Following the same steps, we can show E[CQ] > 0 if I2 is more

severe distorted than I1.

3.2.3 Distortion sensitivity weighting

We have proven that only with Content Detection and Contribution, the CQ can give correct

results if both of the two input images are distorted by one distortion, either noise-like distortion

or blurring-like distortion. However, another important property of HVS is missed in CQ:

the response of HVS to the same distortion is texture-dependent. One example of this HVS

property is that after being distorted by the same amount of Gaussian noise, the distortion
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in the image with simpler texture is more obvious. In this part, we first investigate such

texture-based response of CQ and then design a weighting module to adjust the distortion

sensitivity of CQ to different textures. We refer to the improved C-IQA method with Distortion

Sensitivity Weighting module as CDQ.

In CQ, Content Detection is a qualitative module that detects the meaningful structure and

the Contribution module quantifies the relative quality. Therefore, the Contribution module

may implicitly include distortion sensitivity weighting. We design an experiment to explore the

relation between the texture complexity and the output of Contribution. In this experiment,

140 patches of size 101×101 with homogeneous texture are selected from LIVE [2] and CSIQ [3],

and eight samples of these patches are shown in Fig. 3.2. As the representatives of blurring-like

and noise-like distortions, a bilateral filter and Gaussian noise with the same parameters are

applied to each patch. According to the Weber-Fechner law [98], we use luminance-normalized

total variation as the perceived texture complexity, T ind = TV (P )
mean(P ) , where TV (P ) is the total

variation in the original patch and mean(P ) is the average of the original patch. The relation

between texture complexity, T ind, and the output of Contribution module, ctri, are plotted in

Fig. 3.3. Each circle in Fig. 3.3 represents a patch sample. It is clear that ctri is almost linear

related to texture complexity, T ind, when blurring happens. On the contrary, T ind shows no

relation with ctri when the distortion is noise. The reason for this is that blurring is a highly

image-dependent distortion, and the residual image is more prominent at areas where total

variation is high. After figuring out the blurring sensitivity compensation mechanism in CQ,

we need to design an algorithm to compensate the sensitivity difference to noise.

Because noise-like distortion tends to increase the total variation while blurring-like distortion

tends to decrease the total variation, Alg. 5 uses the output of Content Detection to synthesize

T1 ind and T2 ind into T ind. After texture complexity estimation, we transfer T ind to the

smoothness index, Sind, and compensate the sensitivity to noise.

In CDQ, the comparative quality index for each local patch is

CDQ = is stru · ctri · weight.



Chapter 3 Auxiliary Imaging Modality 48

Figure 3.2: Patch samples with various texture complexity are selected from LIVE [2] and
CSIQ [3] to verify the difference of distortion sensitivity in CQ. The assumption is that patches
with complex texture are more robust to noise, while patches with flat texture are more robust
to blurring.

The overall comparative quality of I1 based on I2 is calculated by taking the average of local

comparative quality index as CQ does.

3.2.4 Comparison between CDQ and SSIM

SSIM consists of three components: structure (loss of correlation), luminance (mean distortion)

and contrast (variance distortion). In CDQ, the outputs of Content Detection and Distortion

Sensitivity Weighting provide the quality of the difference image. The luminance and the

contrast of an input image together determine the contribution of the input image to the

difference image. Therefore, Content Detection and Distortion Sensitivity Weighting of CDQ

together play the role of the structure part in SSIM. The difference is that without knowing which

image has the better quality, CDQ has to analyze the quality of the structure in the difference

image, rather than only measuring the structure distance as SSIM does. The Contribution

module in CDQ is similar to the functions of luminance and contrast parts together in SSIM.
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Figure 3.3: Relations between the output of Contribution module, ctri, and texture complexity,
T ind. Each circle in the figure represents a sample patch. All the sample patches are degraded
by the same amount of distortion for blurring and noise.

Algorithm 5 Distortion Sensitivity Weighting

T1 ind = TV (P1)
mean(P1)

T2 ind = TV (P2)
mean(P2)

if is stru = 1 then
T ind = max{T1 ind, T2 ind};

else
T ind = min{T1 ind, T2 ind};

end if
S ind = log(1 + 1

C1×T ind)
if is stru = 1 then

weight = 1
else

weight = −S ind
end if

3.3 Parameter selection

As the motivation of C-IQA mentioned in the introduction, most image processing algorithms

contain user-defined parameters (these image processing algorithms are referred as “target

algorithms” in the following to differ from IQA algorithms). Parameter selection [82,99–106]

is of importance to these target algorithms. By parameter selection, some of these target

algorithms [103,104] achieve a faster convergence rate; some [101,102] obtain a better restored

image.

In this section, we first introduce an image reconstruction algorithm and illustrate the

importance of parameter selection with this reconstruction algorithm. Next, a boosted parameter
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selection framework for iterative image processing algorithm, parameter trimming [106], is

introduced. In the following experimental section, we show target algorithms with the parameter

trimming framework benefit from the parameters selected by CDQ.

3.3.1 Image reconstruction

Total variation (TV) reconstruction [107] is aimed at minimizing the cost function,

Eβ(x) = β‖Dx‖1 +
1

2
‖Sx− y‖22 , (3.6)

where x is the reconstructed image, y is the observed incomplete data set, S is the system matrix,

D represents the difference matrix, and the TV regularizer ‖Dx‖1 combines gradients on two

directions isotropically. In our implementation, S = RF, where R represents the subsampling

matrix and F represents the Fourier transform matrix. The regularization parameter β controls

the sharpness of the reconstructed result. Large β oversmooths the reconstructed image, while

small β leaves residual noise. A proper β is crucial to the performance of TV reconstruction.

Split Bregman iteration [108] is used to solve (3.6). By making the replacement d← Dx and

introducing the dual variable b, the split formulation of (3.6) becomes:

min
x,d

β‖d‖1 +
1

2
‖Sy − y‖22 +

µ

2
‖d−Dx− b‖22 ,

s.t. d = Dx.

(3.7)

The Split Bregman iteration solution to (3.7) is Alg. 6. In Alg. 6 we use the notation

K = (RTR − µFDTDF−1), Lk = (FTRT y + µDT (dk − bk)) and sk =

√
|Dxk + bk|2. µ is set

as 0.01β to ensure a fast convergence rate.

To illustrate the necessity of parameter selection of TV reconstruction, the Brain image [4]

is reconstructed with 30 values of β. These candidate values of β are uniformly sampled from

1.22× 10−6 to 10 in logarithmic scale and three of the reconstructed results are shown in Fig.

3.4. The image quality indexes during the convergence process are plotted in Fig. 3.5(a) where
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Algorithm 6 Split Bregman

Initialize: x0 = 0, d0 = b0 = 0
while stop criterion is not satisfied do

xk+1 = F−1K−1Lk

dk+1 = max(sk − 1

µ
, 0)

Dxk + bk

sk

bk+1 = bk + (Dxk − dk+1)

end while

(a) (b) (c) (d)

Figure 3.4: (a): original Brain image [4]; (b): reconstructed result with β = 1.22× 10−6; (c):
reconstruction result with β = 4.46× 10−1; (d): reconstructed result with β = 10.

each line corresponds to one parameter candidate. The final reconstructed image qualities

are plotted in Fig. 3.5(b). From Fig. 3.5, it is clear that if parameters that do not have the

potential to achieve good results are terminated before convergence, considerable computation

will be saved. This is the intuition of the parameter trimming in the next section.

3.3.2 Parameter trimming

A traditional approach to parameter selection [99–102] is selecting the parameters after the

convergence of all the target algorithm instances. However, since either the target algorithms

converge quickly [82, 102] or the NR-IQA algorithm is time-consuming [101], computational

efficiency is not considered in previous works. In situations where target algorithms converge

slowly or the set of parameter candidates is large, assessing image qualities and selecting the

best parameter after all the algorithm instances converge would be too time-consuming to
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Figure 3.5: (a): Each line corresponds to an algorithm instance with a different regularization
parameter. (b): Qualities of reconstructed results with different regularization parameters after
160 iterations.

be practical. Instead of placing the quality monitor at the output end, we first proposed

a parameter trimming framework [106] that integrates the quality monitor into the target

algorithms. In this section, we use image reconstruction as the application to illustrate the

parameter trimming framework.

Assume Iim is the reconstructed result of the mth parameter candidate at the ith itera-

tion. The trimming decision is made based on three indexes, qim, gim and pim, which are the

reconstructed quality, the quality increasing gradient and the prediction of the quality of Iim

respectively. Because the image quality index we use here is a comparison-based index, the

definitions of the these three indexes are modified to fit CDQ into the parameter trimming

framework in [106]. Denoting the best reconstructed result at the ith iteration is besti, it

satisfies CDQ(Iibesti , I
i
besti−1) ≥ 0 and CDQ(Iibesti , I

i
besti+1) ≥ 0. The three indexes used for

parameter trimming, qim, gim and pim, are defined as,

qim = CDQ(Iim, I
i
besti

),

gim = CDQ(Iim, I
i−1
besti−1

)− CDQ(Ii−1
m , Ii−1

besti−1
),

pim = qim + prelen · gim.
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(a) “caps” (b) “coinsinfountain”

Figure 3.6: Images in the gray scale [2] for the illustration of minimum resolution.
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Figure 3.7: Minimum resolution of Comparison-based IQA algorithm: (a) CDQ scores of
denoised images compared with their previous images (series1) and the one before previous
images (series2); (b) SSIM scores and cumulated CDQ scores of “caps” in (a); (c) SSIM scores
and cumulated CDQ scores of “coinsinfountain” in (a).

We set prelen = 4 in all the experiments. More examples of the reconstruction and trimming

process are shown in Section 3.4.3.

3.4 Experiments

We first introduce a key property, minimum resolution, that is unique to C-IQA in Section

3.4.1. In the next two parts, more comprehensive experiments are conducted to verify the

effectiveness of C-IQA for parameter selection. The other NR-IQA algorithms that we use to

compare CQ/CDQ with are DIIVINE (DII) [77], BRISQUE (BRI) [78], MetricQ (MQ) [82]

and Anisotropy (Ani) [79]. Although RR-IQA methods are not suitable for parameter selection

where the original image is not available, we include one RR-IQA [5] method to compare with

C-IQA. The reason is that for some applications, such as delivering and decompressing visual
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data sent to networked devices [78], both C-IQA and RR-IQA are practical. In [5], Wu. et al

proposed a RR-IQA method that uses two numbers containing the information of the order

and disorder parts of a reference image to help evaluate the quality of the distorted image. A

widely accepted FR-IQA algorithm, SSIM [14], is used as the ground truth to evaluate the

performance of other IQA algorithms. Two IQA databases used in the experiments are LIVE [2]

and CISQ [3]. Parameters in CQ/CDQ are set as Cthresh = 0.12, C1 = 4.6 and the size of a

local patch is 9× 9 pixels.

3.4.1 Minimum resolution of C-IQA

Since the comparison-based IQA is a brand-new approach, new properties arise. In this section,

we illustrate the minimum resolution of C-IQA and corresponding solutions based on two

images from LIVE [2] as shown in Fig. 3.6.

Similar to HVS, IQA algorithms are not able to make a convincing quality comparison

between images whose difference is sufficiently small. In this part, we define the minimum

mean squared difference (MSD) between two images required to make a convincing quality

comparison as the minimum resolution. It is worth noticing that minimum resolutions vary

over different distortions and different IQA algorithms.

For the traditional single-image-input NR-IQA algorithms, minimum resolutions can be

regarded as the minimum MSD required to ensure consistency on a series of increasingly

distorted images. However, under the comparison-based framework, a distorted image has

different scores compared with different base images. We cannot refer to the consistency to

define the minimum resolution for a comparison-based IQA algorithm. The minimum resolution

for comparison-based IQA is defined as the minimum MSD required to preserve transitivity

among a series of increasingly distorted images. We conduct an experiment on the images in

Fig. 3.6 to demonstrate the transitivity.

Assume Iorg is the original image, and I1 is created by adding Gaussian noise to Iorg. A

series of gradually filtered images, (I1, I2, · · · , IN ), are denoised by bilateral filters [109], BF(r,d),

where r and d are the variances of Gaussian range kernel for smoothing differences in intensities
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and Gaussian spatial kernel for smoothing differences in coordinates. For simplicity, we reduce

the parameters of bilateral filters to one by fixing the ratio between r and d, BFk = BF(0.1k,3k).

In Fig. 3.7(a), we show the CDQ scores of each image compared with its previous one in the

denoised sequence (series1) and the CDQ scores compared with the one before its previous one

(series2). We can see that CDQ scores in series1 are always positive, but pass 0 in series2.

Therefore, the denoised image qualities monotonically increases in series1, but reach a peak

in series2. In Fig. 3.7(b) and Fig. 3.7(c), we plot the cumulated CDQ scores in series1 and

series2. It is clear that the cumulated CDQ scores fail to characterize the trend of image quality

in series1, but successfully reflect the peak in series2. In this example, the MSD between

adjacent images in series1 is below the minimum resolution of the bilateral filter, but the MSD

between adjacent images in series2 is above the minimum resolution of the bilateral filter.

There are two ways to avoid the unwanted result of operating below minimum resolution.

First, increase the MSD between adjacent images by increasing the parameter steps. Second,

avoid comparing the adjacent images in a series of increasingly distorted images. The Key

Image algorithm introduced in the Section 3.4.2 is an implementation of the second approach.

3.4.2 Experiment verification for parameter selection

Because the main motivation of Comparison-based IQA is parameter selection for image

processing algorithms, two common image processing problems, image reconstruction and

image denoising are used to demonstrate the parameter selection ability of the proposed C-IQA.

The algorithm used for image reconstruction is the Split Bregman approach to total variation

reconstruction [108]; the algorithm used for image denoising is the bilateral filter [109]. The

optimal parameters of these two algorithms on different images are selected by SSIM, different

NR-IQA algorithms, RR-IQA and C-IQA. The parameters selected by SSIM are compared with

the ones selected by other IQA algorithms to evaluate the performance of other IQA algorithms.
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(a) Original “log seaside” for CSIQ (b) Reconstructed “log seaside” with β∗

Figure 3.8: One example of image reconstruction parameter selection. The best regularization
parameter for this image, β∗ = 2.81× 10−2. The area highlighted by the red box is enlarged in
Fig. 3.9.

Parameter selection for TV reconstruction

The algorithm used for image reconstruction is introduced in Section 3.3.1. In this experiment,

70% Fourier transform data are used to reconstruct the image and in order to be more realistic,

Fourier transform data are distorted by Gaussian noise. The SNR is kept at 20 dB in all

reconstruction experiments. All 30 regularization parameter candidates are uniformly selected

between [10−5, 10−1] in logarithmic scale.

One reconstruction example, “log seaside”, from CSIQ is shown in Fig. 3.8. The highlighted

area in Fig. 3.8 is shown in details in Fig. 3.9 for the original image and reconstructed results

with different regularization parameters, β. The RR-IQA method [5] selects β1 = 8.53× 10−4

as the optimal parameters; DIIVINE and BRISQUE select β2 = 1.49× 10−2; Anisotropy selects

β3 = 2.04×10−2; SSIM, CQ and CDQ select β∗ = 2.81×10−2; MetricQ selects β4 = 3.86×10−2.

It is clear from Fig. 3.9 that as β increases, noisy component disappears and blurring occurs.

Fig. 3.10 and Fig. 3.11 show how CQ works by comparing different reconstructed results. In

Fig. 3.10, the reconstructed result of β1, Fig. 3.9 (b), is compared with the result with optimal
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(a) Patches
from the

original image

(b)
Reconstructed

result with
β1 =

8.53× 10−4

(c)
Reconstructed

result with
β2 =

1.49× 10−2

(d)
Reconstructed

result with
β3 =

2.04× 10−2

(e)
Reconstructed

result with
β∗ =

2.81× 10−2

(f)
Reconstructed

result with
β4 =

3.86× 10−2

Figure 3.9: Patches from the highlighted areas in Fig.3.8. The regularization parameter of the
total variation term is β. RR-IQA [5] selects β1, DIIVINE and BRISQUE select β2, Anisotropy
selects β3, CQ and CDQ select β∗, and MetricQ select β4. As β increases, noise is suppressed
as shown in blue rectangles, while subtle structures is blurred as shown in red rectangles.

parameter, β∗, Fig. 3.9 (e). From Fig. 3.10 (a), it is clear that the difference patch shows a

noise pattern. The black areas in Fig. 3.10 (b) indicate the areas that are likely to be taken as

noise. Fig. 3.10 (c) shows the contribution difference from reconstructed results with β1 and

β∗ to Fig. 3.10 (a). It should be noticed that the contribution difference in white areas in Fig.

3.10 (b) tends to be assigned a much smaller absolute value. Therefore, the CQ index of Fig.

3.9 (b) based on Fig. 3.9 (e) is a negative number that indicates Fig. 3.9 (b) is worse. Similarly,

the comparison between reconstructed results with β4 and β∗ are shown in Fig. 3.11. A clear

structured difference in Fig. 3.11 (a) is supported by the majority white area in Fig. 3.11 (b).

The negative value in Fig. 3.11 (c) means that the contribution to the structured difference

comes from β∗. It is worth to notice that although both the comparisons between results of

β1 and β∗, and β4 and β∗ lead to negative values that show β∗ is better, the decision-making

processes are different. When comparing β1 and β∗, the difference is noisy and mainly comes

from β1; while when comparing β4 and β∗, the difference is structured and mainly comes from

β∗.

In the datasets of LIVE and CSIQ, there are 59 original images and each original image

corresponds to 30 reconstructed results with different regularization parameters. The SSIM

index difference between the best images chosen by SSIM and the one chosen by other IQA
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Figure 3.10: CQ index of Fig. 3.9 (b) (β1) based on Fig. 3.9 (e) (β∗). (a) is the difference
between the image with β1 and β∗. The white in (b) stands for structured areas in (a) and the
black stands for noisy area. (c) shows the contribution difference between β1 and β∗. On this
local patch, CQ(Pβ1 , Pβ∗) = −1.83× 10−3.

Table 3.1: Accuracy of parameter selection for image reconstruction

DIIVINE BRISQUE MetricQ Anisotropy RR-IQA CQ CDQ

LIVE
median of all SSIM differences 1.59× 10−2 2.03× 10−2 2.42× 10−2 8.88× 10−2 4.28× 10−2 2.97× 10−3 0

average of all SSIM difference 3.45× 10−2 3.57× 10−2 5.07× 10−2 1.09× 10−1 5.45× 10−2 9.91× 10−3 7.76× 10−3

average of non-outliers 2.59× 10−2 2.42× 10−2 5.07× 10−2 1.09× 10−1 5.45× 10−2 7.02× 10−3 2.07× 10−3

CSIQ
median of all SSIM difference 3.63× 10−2 3.43× 10−2 2.44× 10−2 3.66× 10−2 4.30× 10−2 1.73× 10−3 1.73× 10−3

average of all SSIM difference 5.19× 10−2 4.97× 10−2 4.25× 10−2 4.30× 10−2 4.77× 10−2 1.11× 10−2 1.12× 10−2

average of non-outliers 4.72× 10−2 3.49× 10−2 2.19× 10−2 3.81× 10−2 4.77× 10−2 6.02× 10−3 5.38× 10−3

algorithms is used to evaluate other IQA methods in this experiment. The SSIM difference

of each IQA algorithm is plotted in Fig. 3.12. More quantitative evaluation of different IQA

algorithms are provided in Table 3.1. Both the results in Fig. 3.12 and Table 3.1 show that the

comparison-based methods, CQ and CDQ, have the best accuracy of selecting reconstruction

parameters.

Parameter selection for bilateral filter

A series of increasingly denoised images, I1, I2, · · · , I30, are created for each image the same as

Section 3.4.1. The SSIM index of the most oversmoothed image I30 is between 0.85± 0.01.

Because the MSD between the adjacent images are below minimum resolution of bilateral

filtering, Alg. 7 is adopted to select the best result. Key images are a set of images among which

the MSD is greater than the minimum resolution. Alg. 7 first separates the 30 increasingly

denoised images into a few segments by key images and selected the best key image with
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Figure 3.11: CQ index of Fig. 3.9 (f) (β4) based on Fig. 3.9 (e) (β∗). (a) is the patch difference
between the image with β4 and β∗. The white areas in (b) corresponds to structured area.
In (c), the negative values means that the contribution comes from β∗. On this local patch,
CQ(Pβ4 , Pβ∗) = −2.50× 10−4.

Table 3.2: Accuracy of parameter selection for bilateral filter

DIIVINE BRISQUE MetricQ Anisotropy RR-IQA CQ CDQ

LIVE
median of all SSIM differences 1.65× 10−2 2.89× 10−2 2.36× 10−3 6.95× 10−2 7.98× 10−3 7.67× 10−3 3.80× 10−3

average of all SSIM differences 2.53× 10−2 3.31× 10−2 6.73× 10−3 8.23× 10−2 1.07× 10−2 1.43× 10−2 6.05× 10−3

average of non-outliers 2.53× 10−2 3.31× 10−2 4.63× 10−3 8.23× 10−2 1.07× 10−2 1.12× 10−2 3.93× 10−3

CSIQ
median of all SSIM differences 1.59× 10−2 3.84× 10−2 2.83× 10−3 2.18× 10−2 7.22× 10−3 5.28× 10−3 4.05× 10−3

average of all SSIM differences 3.40× 10−2 3.86× 10−2 7.65× 10−3 4.30× 10−2 2.41× 10−2 1.09× 10−2 6.24× 10−3

average of non-outliers 3.40× 10−2 3.86× 10−2 6.34× 10−3 3.17× 10−2 9.75× 10−3 6.36× 10−3 5.32× 10−3

CQ/CDQ. The MSD difference between key images are lower bounded by Kthresh. Next, images

in the two segments that are adjacent to the best key image are evaluated based on the two

key images on the ends. By doing so, we avoid comparing the adjacent images directly. Kthresh

is set as 3.0 in this experiment.

The SSIM difference between the best denoised image chosen by SSIM and the one chosen

by other IQA methods is plotted in Fig. 3.13. Table 3.2 shows more quantitative results of

different IQA algorithms. Both CDQ and MetricQ give satisfying results for bilateral denoising

parameter selection.

In order to better analyze the performance of comparison-based methods, two of the outliers

of denoising parameter selection by C-IQA are shown in Fig. 3.14. Comparison-based methods

tend to choose the parameters that lead to over-smoothed denoised results. This is a common

challenge for all the NR-IQA algorithms in our experiments. For the lack of texture complexity

information from the original image, NR-IQA algorithms are easy to confuse the fine texture
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Algorithm 7 Key Image

Key Images Selection;
key img = {1}
keynum = 1
for i = 1 : N do

if MSD(Ii, Iprekey(keynum)) > Kthresh then
key img = {key img, i}
keynum = keynum + 1

end if
end for

Key Images Comparision;
for i = 2 : (keynum − 1) do

if C − IQA(Ikey img(i), Ikey img(i−1)) > 0 and
C − IQA(Ikey img(i), Ikey img(i+1)) > 0 then
bestkey = i
break;

end if
end for

Best Image Selection;
startnum = key img(bestkey − 1)
endnum = key img(bestkey + 1)
for i = startnum : endnum do

scorestart(i) = C − IQA(I(i), I(startnum))
scoreend(i) = C − IQA(I(i), I(endnum))

end for
bestimg = max(scorestart + scoreend)
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Figure 3.12: The SSIM differences of the best images chosen by different NR, RR, and
Comparison-based IQA methods for image reconstruction parameter selection.

with noise component. On the contrary, the RR-IQA in [5] is good at handling images with

different global texture complexity because an index that indicates the energy in the disorder

part in the original image is available for the image quality assessment.

Parameter selection for BM3D

Similar to the settings of parameter selection for bilateral filter, a series of increasingly denoised

images, I1, I2, · · · , I30, are created with BM3D [110]. The SSIM index of the most oversmoothed

image I30 is between 0.85± 0.01. Alg. 7 is adopted to select the best result.

The SSIM difference between the best denoised image chosen by SSIM and the one chosen

by other IQA methods is plotted in Fig. 3.15. Table 3.3 shows more quantitative results of

different IQA algorithms. It should be noticed that the performance of MetricQ decreases

significantly compared with the results of bilateral filters. The reason is that BM3D mainly

removes the subtle details as the parameter increases, while MetricQ takes these details as noise.

On the contrary, bilateral filters blur major structures as well when the parameter increases.

The results of MetricQ and C-IQA on BM3D also reveal that although the implemented C-IQA
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Figure 3.13: The SSIM differences of the best images chosen by different NR, RR, and
Comparison-based IQA methods for the bilateral filter parameter selection.

Table 3.3: Accuracy of parameter selection for BM3D

DIIVINE BRISQUE MetricQ Anisotropy RR-IQA CQ CDQ

LIVE
median of all SSIM differences 1.25× 10−2 5.45× 10−3 7.15× 10−2 7.43× 10−3 7.43× 10−3 1.67× 10−2 6.23× 10−3

average of all SSIM differences 1.94× 10−2 9.50× 10−3 6.43× 10−2 1.74× 10−2 1.02× 10−2 2.24× 10−2 7.52× 10−3

average of non-outliers 1.11× 10−2 7.25× 10−3 6.08× 10−2 1.23× 10−2 9.45× 10−3 1.70× 10−2 6.16× 10−3

CSIQ
median of all SSIM differences 2.33× 10−2 7.25× 10−3 6.05× 10−2 4.34× 10−3 4.57× 10−3 8.00× 10−3 8.41× 10−4

average of all SSIM differences 2.79× 10−2 1.72× 10−2 5.49× 10−2 9.16× 10−3 5.78× 10−3 2.05× 10−2 3.05× 10−3

average of non-outliers 2.43× 10−2 9.48× 10−3 5.49× 10−2 6.67× 10−3 4.88× 10−3 1.62× 10−2 1.94× 10−3

makes use of MetricQ, the performance of C-IQA is significantly improved based on MetricQ

due to the comparison framework.

3.4.3 Application in parameter trimming

In this section, we combine CDQ with the parameter trimming framework and show that

considerable computation can be saved while preserving the accuracy of parameter selection.

In this part, all the parameter settings for image reconstruction are the same as the settings

in Section 3.4.2. Fig. 3.16(a) shows one example image in parameter trimming. The SSIM

indexes in Fig. 3.16(b) and (c) are only used to demonstrated the convergence process. Fig.

3.16(b) shows the parameter selection after all the algorithm instances with different parameters
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(a) “stream” (LIVE) (b) “geckos” (CSIQ)

Figure 3.14: Outliers of parameter selection

Table 3.4: Computation saved by parameter trimming

Ave # of iteration with-
out parameter trimming

Ave # of iteration with
parameter trimming

saved computation (%)

LIVE 4651.9 847.7 81.78

CSIQ 4565.6 941.1 79.39

converge. Fig. 3.16(c) illustrates the parameter trimming process with CDQ. From Fig. 3.16,

we can see that the trimming decision based on CDQ achieves the goal of terminating the

iteration of parameters that are far from the best choice. On LIVE [2], all the parameters

selected with parameter trimming are the same as the parameters selected after convergence;

on CSIQ [3], only one of the best parameters selected by parameter trimming is different from

the one selected after convergence. From Table 3.4, it is clear that considerable computation is

saved with parameter trimming.

3.5 Discussion

Motivated by the parameter selection for image restoration algorithms, for the first time we

proposed a comparison-based IQA framework. The comparison-based method implemented

in this work includes three primary modules, Content Detection, Contribution and Distortion
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Figure 3.15: The SSIM differences of the best images chosen by different NR, RR, and
Comparison-based IQA methods for the BM3D parameter selection.
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Figure 3.16: Comparison between convergence with and without parameter trimming on
“buildings”

Sensitivity Compensation. One important property that is unique to comparison-based IQA,

minimum resolution, is analyzed. At last, the comparison-based IQA compares favorably with

other NR-IQA and RR-IQA algorithms on two widely used databases for image reconstruction

and bilateral filter parameter selection.

With the proposed parameter selection method by comparison-based image quality assess-

ment, both enhancement of the microscopy data and reconstruction of the MRI data result in

high quality images, and further benefit visualization and analysis of these image data.
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Cell Detection for Reconstructed

Brains

With high resolution microscopy data, cell analysis for brain tissues are discussed in this chapter.

The cell number and distribution pattern reflect many underlying biomedical mechanisms.

In SE, the activation topology of granule cells in the dentate gyrus is an important topic.

Recently, data-driven methods receive more attention [8,111,112] for two reasons. First, the

success of deep learning in the area of object classification and detection [113] provides practical

experience on the architecture design and training of convolutional neural networks (CNN) that

can be adapted to other domains. Packages such as Pytorch [114], and regularization techniques

such as dropout [115] and residual convolution [116] make building customized CNNs easier.

Secondly, huge amounts of imaging data are generated with advanced microscopy technology.

Models trained with more imaging data are more robust and accurate.

Because microscopy data differ from natural scene images in many ways, transferring

solutions for natural scene images to cell analysis should be performed carefully. For cell

analysis, the objects of interest, cells, usually are of a smaller size compared with the objects in

natural scene images. Very deep network architectures are not necessary for cell detection [112],

since the typical size of a single cell is within 50× 50 pixels in microscopy images. The benefit

65
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Figure 4.1: Cell detection with the proposed repel coding for the granule cells in mouse brain
tissues. (a) Input image. (b) Output of the network. (c) Zoomed-in patches. Green dots are
the labeled cell centers, and red dots are the detected cell centers.

of designing a deeper network is marginal if the receptive field is large enough to cover a

single cell. Deeper networks also have more trainable parameters, and this could even hurt

the performance by over-fitting. In biomedical research, cell analysis is a highly customized

task. The morphology could change dramatically among different types of cells. Even for the

same type of cell, the appearance changes with different tissue preparation protocols, imaging

equipment and imaging protocols. Instead of training an omnipotent cell analysis framework,

the ability to adapt the analysis model to a specific cell type and imaging modality is desirable

in practice.

The success of deep learning on numerous computer vision tasks is widely perceived as
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a result of improved learning architectures and big data. CNNs and many regularization

techniques, such as max out [117], drop out [115] and residual convolution [116], are practical

components for building neural networks. The other factor, data enhancement, is discussed

less especially for the output data. In this paper, instead of focusing on the data enhancement

at the input side of a learning network, the coding scheme at the output side is discussed.

Compared with the input data, the output data has more freedom to be designed to suit our

applications. For cell analysis, one type of the raw labels is a sparse 2D picture where non-zero

pixels indicate centers of cells. The widely used cell density function for cell counting can

be taken as an augmentation of the output data [6]. The cell density usually is a smoothed

version of the raw dot labels. Similarly, cropping the whole images into patches can be taken

as filtering the raw dot labels with a rectangle filter.

To better understand the effect of output data enhancement, two criteria of raw label coding

are discussed in this paper: entropy and reversibility. The entropy measures how suitable the

coding scheme is for training, and the reversibility measures how robust inverting the coding

to raw labels is when predicting. Different raw label coding methods are trading-off between

these two criteria. For applications with different variations of shape, size and crowdedness

of the cells, the coding scheme should be designed accordingly. The coding scheme with both

high entropy and high reversibility is always preferred. However, a trade-off between these two

indexes has to be made in most cases depending on the training loss and the overall performance.

For example, if the training loss with a coding scheme converges fast, but the accuracy is not

ideal after inversing the outputs to the raw data, then a coding scheme with lower entropy but

higher reversibility should be considered. We also propose a new coding scheme that balances

these two criteria well in most cases. Fig. 4.1 shows one example of granule cell detection in

the mouse brain with the proposed coding scheme. However, it should be emphasized that we

are not proposing an optimal coding scheme for all types of cells. The coding scheme should be

carefully designed based on each application.

The rest of this paper is organized as follows. Section 4.1 reviews recent cell counting and

detection works with CNNs, and highlights one common step in these works: raw dot label
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enhancement. Section 4.2 details the proposed coding evaluation criteria, and provides a cell

center coding scheme based on the design criteria. Section 4.3.2 verifies the proposed coding

method with four cell datasets and two network architectures. At last, Section 4.4 reviews the

proposed method, and discusses future work in cell analysis.

4.1 Related works

4.1.1 Object Detection in Natural Scenes and Cell Analysis

Object detection for natural scene images usually outputs a group of bounding boxes to represent

the location and the size of detected objects. Both R-CNN [118], YOLO [119] and their variants

adopt this box representation. Some widely used detection benchmarks also use the box labeling,

such OTB [120] and COCO [121]. By representing an object with a bounding box by four

numbers, the number of output nodes in a detection network is significantly reduced. For cell

analysis, the center dots and contours of cells are more common labeling formats rather the

bounding box. Since labeling contours for training costs more time, dot labeling is used more

often if the cell morphology is not of particular importance. In this paper, we focus on the dot

labeling for cell counting and detection.

Among the learning-based cell detection works, the raw dot labels usually are pre-processed

before being set as the output data for training. Cropping whole images into small patches [9,112],

and transforming the dot labels into a density representation [6,7] are two common approaches.

Designed for cell counting [112], the inputs of the CNN are patches of size 60× 60 pixels,

and the output is the total number of cells in this patch. The CNN treats number estimation

as a regression problem rather than a classification one. The reason is that the appearance

difference between patches with similar number of cells should be smaller than that between

patches with great disparity in cell numbers [112]. By cropping a whole image into multiple

patches, the quantity of training examples is greatly enhanced. With the implementation of

fully convolutional networks [122,123], another way to understand the pipeline of cropping and

counting is that the raw dot labels are filtered with a moving average filter of size 60× 60. In
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Walach’s work [7], raw dot labels convolved with a Gaussian kernel are used for cell detection,

and raw dot labels convolved with a human-shape kernel are used for pedestrian detection.

Cell counting and detection are implemented by a CNN followed by a compressive sensing

module [124]. The input to the CNN is a patch of size 200× 200 containing multiple cells, and

the output is a vector y that contains compressed center location information. The compressed

location information is computed by a learned sensing matrix S with y = Sx, where x is a

vector of raw dot labels. The length of y is much less than the length of x. As a result, decoding

with a sparse prior is used to recover the exact position at prediction. The concept of coding

the raw dot labels is emphasized [124], but the coding with compressive sensing is used less

than simple spatial filter codings for two reasons. First, the sensing matrix, S, is an extra

mapping relation learned by the neural network. Because of the size of S, a large amount of

training data is required to avoid over-fitting and maintain good accuracy. Second, recovering

the location information from the compressed vector can be time-consuming.

Unlike coding the raw dot labels by convolving with a filter [6, 112], proximity coding [9] is

defined as,

Cij =


1

1+αDij
, if Dij < r,

0, otherwise,

(4.1)

where Dij is the Euclidean distance from the pixel (i, j) to the closest cell center. Because

proximity coding preserves local maxima at cell centers, such coding can be used for cell

detection as well [8].

From recent works on cell analysis, there are two observations. First, transformation of the

raw dot labels is necessary before training the network. As a result, a corresponding inverse

transformation is required at the prediction phase. For cell counting, integration over the

outputs serves this purpose, and for cell detection, local maximum detection is used. Second,

cell counting and cell detection share many common components. The tasks of cell counting

and detection share the same pipeline [8]. A more detailed comparison between cell counting

and detection is provided in the next part.
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4.1.2 Counting vs. Detection

Object counting usually is preferred over detection in applications where objects are crowded and

single objects are not distinguishable. In this case, detection will not provide accurate location

information, and texture information is a crucial clue to estimate the object density [125,126].

However, if each single object can be identified, the detection approach has more advantages.

First, detection provides the location information lost in counting. Second, more complexity is

involved in counting than detection for training. For the applications of cell analysis, usually

the size of cells is much smaller than the whole image. This indicates that a single cell can be

recognized with a smaller receptive field than the whole image required by counting. Larger

receptive fields of CNNs usually mean more trainable parameters and deeper networks. As

mentioned before, cell analysis is a highly customized application, and retraining a model to

fit a specific imaging modality and cell morphology is more effective than an overly general

model. For this reason, cell detection enables a smaller network design that is easier to train

with limited labeled data. In general, detection is a more appropriate approach if objects are

not heavily occluded and each single object is recognizable. The major challenge of detection is

when objects are densely packed or partially occluded. In the next section, two criteria are

proposed for the raw dot label coding for cell detection, and a new raw dot coding method,

repel coding, is proposed to better tackle this challenges.

4.2 Proposed coding scheme

Table 4.1: Entropy and Reversibility of Different Coding Schemes

Dot labels Gaussian kernel Avg. kernel Proximity coding Repel coding

E 0.0000 6.761 2.052× 10−1 4.901 6.472

R 1.000 4.583× 10−3 4.434× 10−3 1.198× 10−2 8.199× 10−3

R5 1.000 1.089× 10−1 1.111× 10−1 1.286× 10−1 1.306× 10−1
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Figure 4.2: Illustrations of different coding schemes. (a) An example image with cell centers
labeled with red dots. The rectangle in (a) indicates the zoomed-in patches in (b)-(e). (b) shows
the coding with the rectangle kernel [6]. (c) shows the coding with the Gaussian kernel [6,7]. (d)
shows the coding with proximity coding [8, 9]. (e) is the proposed repel coding. The proposed
center coding scheme is superior to proximity coding in two ways. First, the repel coding
provides a slower response decay away from the cell center, which is helpful to the stability
during training. Secondly, the repel coding suppresses the responses between two cell centers.
This is important to recover the raw dot labels during prediction. Coding values in (b) to (e)
are normalized to 0-1 for comparison.

4.2.1 Criteria

The two proposed criteria for the center coding are entropy and reversibility. At the training

phase, entropy characterizes if the coding scheme is easy for the neural network to learn. At

the prediction phase, reversibility measures if the coding scheme can recover the raw dot labels

robustly.
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Entropy The entropy of a coding scheme, C, is defined as

EC = entropy(Cij if Cij 6= 0), (4.2)

where Cij represents the coded value at position (i, j). Zero values in the transformed coding

are excluded here, since these regions usually are far from any cell. Entropy measures how

evenly the non-zero values are distributed. An ideal coding scheme should distribute the coding

values uniformly over a range. By doing so, the gradient backpropagation during the training

phase is more robust. A similar concept is mentioned by modeling the counting problem as

regression rather than classification [112]. The extreme case of low entropy coding is the raw

dot labels, where the entropy is always zero.

Reversibility The reversibility of a coding C is defined as,

RC =

∑
i,jMij · Cij∑

i,j Cij
, (4.3)

where M is the mask defining the proximity region of cell centers. The binarized raw dot labels,

or the dilated version of raw dot labels can be used for M . In the prediction phase, the output

response is not identical to the ideal coding scheme. A robust coding scheme should be able to

recover the original coding, raw dot labels, in challenging cases. Reversibility is a similarity

measurement between the raw dot labels and the coded response. Because local maximum

detection is used to recover the raw dot labels at the prediction phase, reversibility here is

defined as the degree of energy concentration around the raw dot labels.

For cell detection, a coding scheme with large entropy and reversibility indexes is preferred.

As an extreme case, the dot label itself has the maximum reversibility index. However, the

raw dot label has the smallest entropy index. This means it is hard for the neural network to

learn raw dot labels. On the other hand, coding by the Gaussian kernel has a larger entropy

but a lower reversibility index. The result is that networks trained with coding by a Gaussian

kernel converge fast and robustly in terms of loss value, but center recovery is obscured in the
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prediction phase. More analysis on the entropy and reversibility trade-off is illustrated with

experimental results in Section 4.3.2.

4.2.2 Repel Coding

The proposed coding scheme of raw dot labels is based on proximity coding defined in Eqn.

4.1. When proximity coding was first proposed [9], it was designed for cell counting. Because

proximity coding produces local maxima at cell centers, it was also used for cell detection

later [8]. However, one common challenge for cell detection is to distinguish two neighboring

cells. For cell counting, only a global counting number is required. In other words, only the

entropy is considered when coding raw dot labels for cell counting, but not the reversibility. In

practice, we notice that proximity coding does not perform well for detection when cells are

crowded. The response valley between two cells is not significant enough, and local maxima

do not align with cell centers accurately during the prediction. Aiming at increasing the

reversibility of proximity coding, the proposed repel coding is defined as,

D′ij = dist1ij × (1 + dist1ij/dist
2
ij)

2
,

Cij =


1

1+αD′ij
, if D′ij < r,

0, otherwise,

(4.4)

where dist1ij is the distance of the pixel (i, j) to its nearest cell center, and dist2ij is the distance

of the pixel (i, j) to its second nearest cell center. The intermediate variable D′ij can be taken

as dist1ij suppressed by dist2ij .

In Fig. 4.2, examples of different coding schemes are illustrated. Comparing Fig. 4.2 (d)

and Fig. 4.2 (e), it is obvious that the proposed repel coding forms a more significant valley

between two neighboring cells than proximity coding. Table 4.1 provides the entropy and the

reversibility of different coding schemes shown in Fig. 4.2. The entropy, E in Table 4.1, is

calculated by separating the coded non-zero values into eight bins. The reversibility, R in

Table 4.1, is calculated by using the raw dot labels as M in Eqn. 4.3. Because it is rare in
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practice that the centers of two cells are 1 pixel away, the dilated reversibility, R5 in Table 4.1,

is calculated by dilating the raw dot labels with a disk of diameter of 5 pixels. The meaning

of the entropy and the reversibility in Table 4.1 can be interpreted by comparing with the

illustrations in Fig. 4.2. The coding scheme with the highest entropy is the Gaussian kernel,

and the entropy of the proposed repel coding is slightly less than that of the Gaussian kernel.

With visual inspection, the intensity variations of the Gaussian kernel and the repel coding are

larger than the other codings. Measured by R5, the proposed repel coding achieves the highest

reversibility index except for raw dot labels. This also aligns with the visual inspection where

cell centers with the repel coding are more prominent than those with proximity coding.

4.2.3 Relation to existing works

Besides different coding schemes for cell analysis, coding of the raw labeled data is also

widely adopted for computer vision tasks with natural scenes. The anchor box introduced

in YOLO v2 [127] resembles convolution kernels with different shapes [7]. The watershed

transformation [128] for semantic segmentation is similar to the proposed repel coding. The

difference is that in watershed transformation, boundary information is of interest, while for

cell detection, center information is the final output. A two-step coding scheme [128] inspired

by the watershed algorithm is effective in many semantic segmentation applications. The first

step involves coding object boundaries. In this step, the coded response at each pixel is a two

dimensional unit vector that points to the closest boundary pixel. The coding in the first step

aims at maximizing the reversibility of the raw labels. In the second step, the coded response

at each pixel is the distance from a pixel to its closest boundary pixel. The second step focuses

more on entropy maximization. These two steps are cascaded in the watershed transformation

pipeline.

In general, different coding schemes are different ways to transfer an end-to-end training

framework to a stepwise implementation. Another way to understand coding the raw dot labels

is taking the neural network as a signal processing system. As in the analog domain, designing

filters with shape responses such as the unit impulse response is challenging. By coding the
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raw dot labels, we impair the ideal response by smoothing it, but such smoothing is preferred

sometimes because of its easier implementation.

4.3 Experiments

In this part, different coding schemes are tested for four types of cells and with two CNN

architectures. Experimental results show that the proposed repel coding outperforms existing

coding schemes both for cell counting and detection tasks. Discussion of the examples from the

four types of cells provides some insights into different coding schemes.

4.3.1 Datasets

(a) (b) (c)

(d)

Figure 4.3: Sample images from the four datasets. (a) Synthetic Vgg cells. (b) Adipocyte cells.
(c) Human bone marrow cells. (d) Granule cells in the mouse dentate gyrus.
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Four datasets are evaluated in the experiments: granule cells in the mouse dentate gyrus

(DG), human adipocyte cells (Adip), human bone marrow cells (HBM) and Vgg-generated

synthetic cells (Vgg). Fig. 4.3 shows examples from these four datasets.

DG dataset

The DG dataset comprises mouse brain tissues stained by tdTomato after seizure. These brain

tissues include the dentate gyrus in the V-shape, and the highlighted cells are granule cells. A

Zeiss 780 confocal microscope with a C-Apochromat objective under 10X magnification is used

to image the brain tissues. The DG dataset contains 26 high resolution dentate gyrute images,

and the image size is from 452× 942 to 732× 1336. More details about the DG dataset can be

found in our previous work [129].

Adip dataset

The Adip dataset [6] contains human subcutaneous adipose tissues obtained from the genotype

tissue expression consortium. The available images of Adip dataset are 150× 150, and the size

of each single cell is within 32× 32. These adipocyte cells are densely-packed as shown in Fig.

4.3 (b). The Adip dataset contains 200 images.

HBM dataset

The HBM dataset [130] includes images of healthy human bone marrow from eight different

patients. The HBM dataset contains 44 images of size 600× 600, and the objects of interest are

the stained nuclei shown in Fig. 4.3 (c). Tissues in HBM dataset are stained with Hematoxylin

and Eosin.

Vgg dataset

The Vgg dataset [131] is a group of synthetic cells. With a cell simulation method [132], cell

detection algorithms can be easily evaluated with different imaging settings, such as cell overlap,

out-of-focus blurring, and size variation. The Vgg dataset contains 200 images of size 256× 256.
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4.3.2 Experimental settings

Two network architectures are tested in these experiments. The training settings, including

the cost function, the learning rate, and the optimization algorithm are kept the same through

different experiments. The learning rate is set to 10−5, the optimizer is Adam with default

parameters [133], and the training batch size is set as eight for HBM, Adip and Vgg datasets,

and two for the DG dataset, to fit in the 12GB memory of the NVIDA TITAN Xp used in the

experiments.

Cost function

To be consistent with the previous works on cell counting and detection [7, 112,124], the L2

norm is used as the cost function for training,

cost = ‖y − y′‖22,

where y is the ground truth output coding generated from the raw dot labels, and y′ is the

output of the CNN. Fig. 4.2 illustrates the four coding schemes.

Network architectures

Two CNNs based on the Unet [111] architecture are evaluated in the experiments. One CNN

is the same as the FCNN-A [8], and the other one replaces the convolutional layers in the

FCNN-A with residual convolution blocks. The overall architecture of the FCNN-A is shown in

Fig. 4.4. The activation function used in all layers is rectified linear unit (ReLU). The receptive

fields of these two CNNs are both 38× 38.

Evaluation

Since coding schemes for both counting and detection are compared in the experiments, two

measures are adopted here. For codings with the Gaussian kernel and the rectangle kernel,

the integration over the outputs is taken as the total number of cells. For raw dot coding,
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Figure 4.4: The architecture of the CNN in this experiment is based on a U-net with eight
layers. If all layers are implemented with plane convolutional blocks, the network is the same
as the FCNN-A [8].

proximity coding, and repel coding, cell centers are extracted by local maximum detection.

The F1 score [15] is used as a comprehensive index to evaluate the detection accuracy. Alg. 8

summarizes the F1 score calculation. In Alg. 8, each non-paired detected cell center is matched

to the closest non-paired ground truth cell center. Cell centers in the detected list, Dlist, and

the ground truth list, Glist, can be paired only once. A match with the distance less than the

average radius of the cell is considered to be a successful match since the cell size variant within

a dataset is not much. The average radius is 8 pixels for the DG dataset, 11 pixels for the Adip

dataset, 15 pixels for the HBM dataset, and 11 pixels for the Vgg dataset.
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Algorithm 8 F1 Score for Evaluation

Inputs:
Dlist: List of detected centers
Glist: List of ground truth centers

Outputs:
F1: F1 score

Initialization:
1. Dmatched = [inf, ..., inf ]
2. Gmatched = [inf, ..., inf ]

Pair Match:
while Dlist is not empty and Glist is not empty do

3. Didx, Gidx, dist = get closest pair(Dlist, Glist)
4. Dmatched(Didx) = dist
5. Gmatched(Gidx) = dist

end while

6. Acc = #(Dmatched≤thresh)
#Dlist

7. Rec = #(Gmatched≤thresh)
#Glist

8. F1 = 1
1

Acc
+ 1

Rec

4.3.3 Results and analysis

With the four datasets, five coding methods, and two CNN implementations, 40 sub-experiments

are evaluated. Each sub-experiment tests one coding method with one CNN implementation on

one dataset. For each dataset, 80% percent of the data are used for training, and 20% are used

for testing. Each sub-experiment is run five times with random training/test splitting, and the

average performance is reported in Table 4.2 and Table 4.3. The proposed repel coding achieves

the best performance in most sub-experiments. The only exception is the sub-experiment on

the Vgg dataset with the FCNN-A implementation, where the performance of raw dot labels is

slightly better than the proposed method. The reason may be that the cell variance in the Vgg

dataset is less than in the other datasets, and thus is a less challenging dataset. Comparing

the results in Table 4.2 and Table 4.3, another observation is that the performance of all the

coding methods benefits from the residual convolution blocks. This result is expected since

the increased effectiveness of the residual convolution block is demonstrated in previous cell
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analysis works [7, 112].

To clarify why the proposed repel coding outperforms others, examples from four datasets

are shown in Figs. 4.5-4.7. Fig. 4.5 shows an example from the DG dataset with the FCNN-A

network. When two cells are close, proximity coding tends to merge the two centers. By

comparing the prediction results with the illustrations in Fig. 4.2, we can find the reason.

The proposed repel coding suppresses the responses of pixels that lie in the middle of two cell

centers, and boosts the responses that are close to cell centers. The outputs from the Gaussian

kernel coding and the rectangle kernel coding are as expected in Fig. 4.5, and do not have the

ability to recover cell centers. Fig. 4.6 shows an example from the Vgg dataset trained by the

CNN with residual convolutaion blocks. The advantage of the repel coding is obvious in the

partially occluded regions. The outputs of the raw dot labels in Fig. 4.6 (a) are unstable, and

tend to output duplicated cell centers. In addition, we find that training with raw dot labels

can easily diverge if the training batch size is less than eight on Adip and Vgg datasets, and

this does not happen with the other coding schemes. Image sizes of Adip and Vgg datasets

are smaller than those of DG and HBM datasets. This may be due to the sparsity in the raw

dot labels that leads to insufficient positive training examples. At last, Fig. 4.7 compares the

performance of proximity coding and repel coding on Adip and HBM datasets. In these two

datasets, occlusion is less common, but cell appearance varies more. Because the proposed repel

coding has a larger reversibility index, the repel coding generally provides stronger responses

around cell centers, resulting in more robust center detection.

Table 4.2: F1 score of the FCNN-A

Dot label Gaus. kernel Rec. kernel Proximity Repel

DG 0.8526 0.8431 0.8431 0.9199 0.92267

Apip 0.8495 0.7918 0.7645 0.8437 0.8784

HBM 0.7752 0.8685 0.8110 0.7333 0.8773

Vgg 0.9585 0.9169 0.8728 0.9545 0.9583
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Table 4.3: F1 score of the FCNN-A with res. blocks

Dot label Gaus. kernel Rec. kernel Proximity Repel

DG 0.8887 0.8772 0.8940 0.9282 0.9337

Apip 0.8764 0.8177 0.7799 0.9028 0.9038

HBM 0.8370 0.8628 0.8121 0.8933 0.9011

Vgg 0.9520 0.9247 0.8992 0.9676 0.9695

Table 4.4: Detection results with FCNN with plane network

Recall Precision

Dot label Proximity Repel Dot label Proximity Repel

DG 0.9167 0.9110 0.9347 0.8056 0.9373 0.9163

Apip 0.9127 0.7832 0.8926 0.8096 0.9338 0.8804

HBM 0.8345 0.6052 0.8507 0.7329 0.9479 0.9124

Vgg 0.9488 0.9184 0.9233 0.9692 0.9947 0.9970

4.4 Conclusion

In this chapter, after reviewing recent learning-based works on cell counting and detection, the

common step of coding raw dot labels is extracted and discussed. Two center coding criteria

are proposed: entropy and reversibility. These two criteria help predict the performance of a

coding scheme at the training and prediction steps. A new coding scheme, repel coding, is

proposed for a better balance with these two center coding criteria. Experimental results verify

the effectiveness of repel coding for cell detection on four types of cells. In the future, we would

like to explore more about the cell activation topology with the detected cell centers.
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Table 4.5: Detection results with FCNN with res-block

Recall Precision

Dot label Proximity Repel Dot label Proximity Repel

DG 0.9411 0.9249 0.9363 0.8483 0.9458 0.9356

Apip 0.9053 0.9165 0.9195 0.8650 0.9018 0.9005

HBM 0.8482 0.8793 0.9125 0.8377 0.9147 0.8963

Vgg 0.9398 0.9396 0.9438 0.9683 0.9979 0.9973

(c) (d)

(a) (b)

(e) (f)
Figure 4.5: (a) Detection results with proximity coding on an example from the DG dataset.
(b) Detection results with the proposed repel coding. (c) The proximity coding output. (d) The
repel coding output. (e) The Gaussian kernel coding output. (f) The rectangle kernel coding
output. The green dots indicate labeled cell centers, and the red dots represent detected cell
centers.
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(a) (b) (c)

(d)

(e)

Figure 4.6: Different coding schemes on an example from the Vgg dataset. The green dots
indicate labeled cell centers, and the red dots represent detected cell centers. The proposed
method distinguishes adjacent cells in most cases. (a) Dot labels. (b) The proximity coding.
(c) The repel coding. (d) The Gaussian kernel coding for counting. (e) The rectangle kernel for
counting.

(b) (c)(a) (d)

Figure 4.7: (a) and (b) are proximity and repel codings of an example from the Adip dataset.
(c) and (d) are proximity and repel codings of an example from the HBM dataset. The green
dots indicate labeled cell centers, and the red dots represent detected cell centers.
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Conclusions and Future work

5.1 Discussions and summary of the proposed works

3D mouse brain reconstruction with microscopy data In this work, two techniques

are developed to reconstruct 3D mouse brains from series of brain tissues: tissue flattening and

structure-based intensity propagation. During tissue preparation, brain tissues are warped by

the tissue clearing process. Tissue flattening is designed to correct curved surfaces by projecting

voxels onto flat surfaces. After solving the geometric distortion that is perpendicular to the

cutting plane, 2D representatives are extracted from each single section for the following section

registration. To obtain representatives that have strong signal-to-noise ratio and preserve

prominent structure information for registration, we proposed the structure-based intensity

propagation method. With this method, a median filter is applied to thick specimens along the

directions of major structures in the brain tissues. Comprehensive experiments show that the

proposed methods improve the flip detection accuracy and the structure consistence of brain

reconstruction.

Recent developments in microscopy and tissue preparation technologies make the imaging

of larger specimens with high resolution easier. For example, multiphoton microscopy [134]

increases the penetration depth, and decreases the power of excitation laser beams. Therefore,

imaging live specimens is much easier. With specimen expansion techniques [135], small

84
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specimens are expanded to four times larger or even more. The whole specimens in these

applications usually are imaged piece by piece, and how to align different pieces together is

important. Our structure-based intensity propagation method is a potential technique for image

stitching in these applications. With the proposed structure-based intensity propagation, the

overlapping volumes among neighboring imaging areas increase, and thus image stitching will

be more robust.

The 3D data is not unique to the microscopy. Other imaging modalities also provide more

and more 3D data for biomedical research and applications. The light field cameras [136] are

used for the spine reconstruction during surgeries [137]. In this work, MRI is done before

surgery, and comprehensive surgery planes are made with the MRI data. During the surgery, 3D

surfaces of the spine are acquired in real time with light field cameras. The proposed methods

are also promising techniques for the 3D reconstruction with the light field camera.

Image quality assessment Most image restoration algorithms require one or more parame-

ters to regulate the restoration process. For instance, the regularization parameter of image

reconstruction [106] is selected by a no-reference image quality index [82]. However, most

existing no-reference IQA algorithms output the estimated image quality based on a single

distorted image, ignoring that different degraded images can provide more information together.

The proposed comparison-based IQA method fills the gap between the increasing need of

parameter selection for image processing algorithms and the lack of such an IQA algorithm

that makes full use of the available information.

Besides the demonstrated applications of parameter selection for denoising and MRI recon-

struction, the proposed comparison-based image quality assessment can be used in many other

scenarios. As one of the important features of many cameras, auto-focus ensures the objects in

pictures sharp. The proposed comparison-based image quality assessment method is able to

evaluate images captured with different focal lengths and select the best imaging settings.
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Cell center coding Deep convolutional neural networks (CNNs) demonstrate promising

results on many object detection tasks. For the cell detection in this work, a CNN with the

Unet [111] structure is used. However, as we test granule cell detection for the brain tissues

in our project, existing pipelines do not provide accurate detection results when two cells are

close to each other. To solve this, we focus on the ground truth output data for training.

By suppressing the response values in the middle of two cell centers and deceasing the decay

rate of response values away from the cell centers, the proposed repel coding improves the

overall detection accuracy, especially in the densely packed regions. In biomedical research, cell

analysis is a highly customized task. The morphology could change dramatically among different

types of cells. Even for the same type of cell, the appearance changes with tissue preparation

protocols, imaging equipment and imaging protocols. Instead of training an omnipotent cell

analysis framework, the ability to adapt the analysis model to a specific cell type and imaging

modality is desirable in practice. Because of the effective coding scheme, it is easy to retrain

cell detection models for new types of cells. Besides the application on granule cell detection,

experimental results show that the proposed repel coding scheme achieves promising results on

three other cell datasets.

5.2 Future works

The future works will focus on incorporating more imaging techniques for the brain reconstruc-

tion and analysis. The current work mainly relies on the microscopy data. MRI and other

non-invasive imaging techniques are promising data sources to guide registration and recon-

struction of the microscopy data. With extracted cell centers, the topology formed activated

cells is another topic we will investigate.

Auxiliary imaging modalities for brain registration Because of the high resolution and

flexible choice of stains, microscopy data are the main imaging data in this work. However, the

requirement of brain slicing before imaging introduces many challenges. More comprehensive
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information can be acquired to facilitate the analysis if auxiliary imaging modalities are used

in the future. For example, the brain reconstruction could be more robust if unwarped brain

tissues are imaged before slicing [39]. A customized low resolution microscope is integrated with

a vibrating microtome, and the 2D overviews are acquired before the slicing and the following

tissue preparation steps [39]. With the low resolution microscopy data, brain reconstruction of

the high resolution microscopy data has a reference image stack. Another common auxiliary

data for brain analysis is MRI. The mouse brain atlas of the Allen Brain Institute [36] first

reconstructs the 3D mouse brain with high resolution microscopy data, and then registers

the cross-section views of the microscopy data to MRI brain templates. Since a general MRI

template is used, the pipeline of mouse brain reconstruction [36] involves human visual inspection

and many empirically set parameters. If all high resolution microscopy data have 3D MRI of

the same brain as the reference, the reconstruction will be more accurate and robust in the

future.

Topology Analysis With the reconstructed 3D mouse brains and the positions of activated

cells, the next question to ask is whether the activation topology is related to memory formation

in the mouse brain. To answer this, experiments on spatial working memory are conducted

with the genetically engineered mice. It is known that the spatial recognition ability is largely

related to the dentate gyrus in the brain. By studying the relations between the activation

topology in the dentate gyrus and the environments where mice are raised, this question could

be better understood in the future.

5.3 Publication list of this work

5.3.1 Journals

• H. Liang and D. S. Weller. “Comparison-based Image Quality Assessment for Selecting

Image Restoration Parameters.” IEEE Trans. on Image Processing, vol. 25, no. 11, pp.

5118-5130, Nov. 2016.
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• H. Liang, Natalia Dabrowska, Jaideep Kapur, and Daniel S. Weller, “Structure-based

Intensity Propagation for 3D Brain Reconstruction with Multilayer Section Microscopy.”

IEEE Trans. on Medical Imaging, October 2018, accepted.

• H. Jeelani, H. Liang, S. T. Acton and D. S. Weller. “Content-Aware Enhancement of

Images with Filamentous Structures.” IEEE Trans. on Image Processing, January 2019,

accepted.
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• H. Liang and D. S. Weller. “Regularization Parameter Trimming for Iterative Image

Reconstruction.” IEEE Asilomar Conf. on Signals, Systems, and Computers, 2015, pp.
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Conf. on Image Process, 2016, pp. 3563-3567.
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Quality Assessment.” IEEE Int. Conf. on Image Process, 2016, pp. 3106-3110.

• H. Liang, S. T. Acton and D. S. Weller. “Content-Aware Neuron Image Enhancement.”

2017 IEEE Int. Conf. on Image Processing, 2017, 3510-3514.
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