
BLUESPAWN: An Open-Source, Active Defense & Endpoint Detection and Response

(EDR) Software for Windows-based Systems

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia – Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Jacob Smith

Spring, 2020

Technical Project Team Members:

James McDowell

Calvin Krist

William Mayes

Advisor: Prof. Yonghwi Kwon

On my honor as a University Student, I have neither given nor received unauthorized aid on

this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Signature: __ Date: __05/08/2020_

 Jacob Smith

Approved: __ Date: ___05 / 07 / 2020

 Yonghwi Kwon, Department of Computer Science

 Technical Report 6

Table of Contents

Table of Contents 6

Abstract 8

Authors’ Note 9

1 Introduction 10

2 Existing Technology & Available Defensive Tooling 12

2.1 Commercial Signature-based AVs 12

2.2 Commercial EDR/EPP Products 13

2.3 Commercial Malware Sandboxes 14

2.4 Sysinternals 15

2.4.1 Autoruns 15

2.4.2 ListDLLs 17

2.4.3 Process Explorer 18

2.4.4 Sysmon 19

2.4.5 Sigcheck 20

2.4.6 TCPView 20

2.5 Process Hacker 21

2.6 PESieve and Hollows Hunter 22

2.7 Detections Repositories 23

2.8 Security Configuration & Hardening Tools/Scripts 24

3 Motivations for building BLUESPAWN 25

3.1 Move Faster 25

3.2 Know our Coverage 25

3.3 Better Understanding of the Windows Attack Surface 26

3.4 More Open-Source Blue Team Software 26

3.5 Demonstrate Features of Windows API 27

4 What is BLUESPAWN 28

5 Threat Hunting and Mitigation Approach 31

5.1 Data Sources 31

5.2 Active Defense & EDR Capabilities 32

5.3 Integration with MITRE ATT&CK 33

5.4 Integration with Department of Defense STIGs 34

 Technical Report 7

5.5 Integration with YARA 34

6 Software Architecture 35

6.1 Architecture Diagrams of Key Components 35

6.2 Continuous Integration & Testing 37

6.2.1 Automated and Manual Testing of an EDR 38

7 BLUESPAWN in Action 39

7.1 Case Study: The Collegiate Cyber Defense Competition (CCDC) 39

7.1.1 Blue Team Perspective and Evaluation 40

7.1.2 Red Team Perspective and Evaluation 43

7.2 Controlled Environment Testing 44

7.2.1 Hunting for Process Injection (Cobalt Strike) 44

7.2.2 Hunting for Process Injection (Metasploit’s Meterpreter) 46

7.2.3 Hunting for Registry-based Autorun Persistence 47

7.2.4 Hunting for Web shells 48

7.2.5 Applying Mitigations to Improve the System’s Security Posture 49

7.3 Limitations and Gaps in Coverage 50

8 Future Work 51

8.1 Improvements to BLUESPAWN Client 51

8.1.1 Integration with the Anti-Malware Scan Interface (AMSI) 51

8.1.2 Modular, Configurable Detections 52

8.1.3 Heuristics, Behavioral Analysis, and Confidence Scores 52

8.2 Creation of BLUESPAWN Linux Client 53

8.3 Initial BLUESPAWN Server Development 53

8.4 Initial BLUESPAWN Cloud Development 54

9 Conclusion 55

10 References 56

 Technical Report 8

Abstract

In today’s world, computers running Microsoft’s Windows operating system remain a top

target for threat actors given its popularity. While there are a number of commercial defensive

cybersecurity tools and multi-purpose system analysis programs such as Sysinternals, this software

is often closed-source, operates in a black-box manner, or requires a payment to obtain. These

characteristics impose costs for both attackers and defenders. In particular, while the restrictions

prevent attackers from knowing exactly what these tools detect, defenders often end up not having

a good understanding of how their tools work or exactly what malicious activity they can identify.

Building on prior work and other open-source software, our team decided to create

BLUESPAWN. This open-source program is an active defense and endpoint detection & response

(EDR) tool designed to quickly prevent, detect, and eliminate malicious activity on a Windows

system. In addition, BLUESPAWN is centered around the MITRE ATT&CK Framework and the

Department of Defense’s published STIGs. We have also integrated popular malware analysis

libraries such as VirusTotal’s YARA to increase the tool’s effectiveness and accessibility [1].

Currently, our team is developing the alpha version of the client which can already detect real-

world malware. In the future, we will continue to build out the client and eventually integrate both

a server component for controlling clients and a cloud component to deliver enhanced detection

capabilities.

 Technical Report 9

Authors’ Note

The BLUESPAWN Project is released under the GNU General Public License v3.0 (GPL-3.0)

license. Note that the project integrates several other third-party code libraries to provide additional

features/detections which are themselves published under different licenses. These projects are not

necessarily affiliated with BLUESPAWN or its authors and their use does not indicate their

support or endorsement of the project. Please review each of the resources referenced at

https://github.com/ION28/BLUESPAWN/ for more information.

MITRE ATT&CK and ATT&CK are registered trademarks of © 2020 The MITRE Corporation.

This work is reproduced and distributed with the permission of The MITRE Corporation.

https://github.com/ION28/BLUESPAWN/

 Technical Report 10

1 Introduction

Advanced Persistent Threats (APTs), Criminal Organizations, and other threat actors have

been attacking Microsoft Windows systems ever since the operating system was first released.

Alongside these developments, cybersecurity companies have researched and implemented

increasingly sophisticated defenses. At first, anti-virus (AV) companies primarily used basic

signatures, like hashes, to detect the malware. As times progressed though, attacks evolved.

Defenses also advanced to include performing static and dynamic analysis, analyzing file contents,

and more. In addition, secure coding principles and other security protections have begun to be

built directly into the OS. For example, in Windows 8.1/10, Microsoft has implemented many new

improvements such as Protected Process Light (PPL) and Virtualization Based Security (VBS) [2,

3]. Most recently, attackers have shifted towards abusing built-in features and programs to

accomplish their objectives. These methods include leveraging techniques such as Process

Injection, PowerShell, Run Keys, .NET binaries, LSASS Memory Dumping, Accessibility

Features, Living Off the Land Binaries (LOLBAS), and Configuration/Permission weaknesses [4].

As these attacks have increased in complexity though, the tools used to defend systems

have grown more elaborate. The AV market has transitioned into developing so-called Endpoint

Detection & Response (EDR) and Endpoint Protection Platform (EPP) products. Some notable

examples of these commercial offerings include Carbon Black EDR, Crowdstrike Falcon,

CylancePROTECT, and Microsoft Defender Advanced Threat Protection (ATP) [5]. In addition,

groups like the MITRE Corporation have released frameworks to codify adversary tradecraft such

as MITRE ATT&CK [4]. Furthermore, the Department of Defense (DoD) has long published

Security Technical Implementation Guides, otherwise known as STIGs, which detail security-

oriented mitigations that can be applied to systems to enhance security [6]. Finally, alongside these

 Technical Report 11

innovations, the cybersecurity community has developed many other major advancements

including Security and Information Event Management (SIEM) and Security Orchestration,

Automation, and Response (SOAR) technologies over the past few decades.

Given today’s complex environment, it is more important than ever for defenders to

understand the various tactics, techniques, and procedures (TTPs) adversaries are employing.

Moreover, it is also crucial to know how the tools blue teams rely on function. By better

understanding these elements, defenders will be better equipped to deal with new threats, maintain

sufficient defense-in-depth coverage, balance risk in their environments, and generally, move

faster.

In keeping with this outlook, our team has developed BLUESPAWN, a fully open-source,

active defense and EDR tool for Windows. While there are ample offensive oriented tools publicly

available, there is very little on the defensive side. We aim to use this project to demonstrate how

modern-day security solutions work by building our own from the ground up. In addition to being

a learning tool for both students and practitioners, BLUESPAWN is designed more to be used in

an “active breach” scenario by security professionals. Our idea is that anyone should be able to

quickly detect, evaluate, and remediate malicious activity on a live system [1]. Finally, we show

below how our software is already able to accurately identify and react to real-world malware

through a case study in its use at the Collegiate Cyber Defense Competition (CCDC) and lab

testing.

 Technical Report 12

2 Existing Technology & Available Defensive Tooling

As mentioned above, hundreds of offensive and defensive tools exist today. Some of these

are highly advanced commercial programs, while others were built by the information security

(infosec) community and are generally less fully featured. Over the past decade with the advent of

services like GitHub and GitLab, the open-source development community has grown

tremendously. In particular, many security practitioners share the cybersecurity tools they create

on these platforms. While most are primarily offensive oriented, these releases have driven security

research forward and produced a number of capable solutions.

2.1 Commercial Signature-based AVs

Although less popular today, classic anti-virus software was among the first dedicated

malware defenses. These solutions excelled at detecting the unchanging, custom malware popular

at the time. Since defenses were weak or non-existent, malware authors did not need to be as

stealthy as they do today. Furthermore, the lack of strong preventative controls and advanced

security protections meant attackers had fairly wide latitude in their operations. On the other hand,

though, the number of attacks was orders of magnitude smaller than it was today - the industry

simply did not exist like it does today.

Given this environment, popular AVs such as AVG, Norton, and McAfee could effectively

rely on simple signatures [7]. Once a piece of malware was identified, they could obtain its MD5

or SHA1 hash. Then, by deploying this signature to all program installations through a “definition

update,” they would be able to detect and remove malware on any system running the AV. Since

the volume of malware was relatively small, this approach was largely successful. While it did not

proactively identify new threats well or handle polymorphic malware, it was good enough for what

it was up against.

 Technical Report 13

2.2 Commercial EDR/EPP Products

As the threats continued to evolve, so too did the defenses. In order to reflect this changing

landscape, Anton Chuvakin of Gartner coined the term “Endpoint Threat Detection & Response”

(ETDR) in 2013. A few years later this term was shortened to “Endpoint Detection & Response”

(EDR) which has carried through to today [8]. These “next-generation” solutions offer a suite of

new protections beyond simple signatures. For example, these solutions can perform real-time

analysis and behavior monitoring to detect novel pieces of malware and utilize more granular

signatures to alert on something like a suspicious process command line. These defenses also often

integrate technology like machine learning to augment and continuously improve their detection

capabilities. This dynamic nature has greatly increased costs for attackers who might have their

new, custom malware detected by tools in weeks, if not days or hours. Additionally, some

companies have also started to employ the phrasing “Endpoint Protection Platform” (EPP). While

this term is largely similar to EDR, most so-called EPP products integrate other components such

as data-loss prevention (DLP) technology to provide an even more comprehensive security suite

[9, 10].

Some of the most popular commercial offerings in the current market include Carbon Black

EDR, Crowdstrike Falcon, CylancePROTECT, and Microsoft Defender ATP [5]. While an

evaluation of each of these products is out of the scope of this paper, we’ll touch on some of their

key abilities - detection, hunting, and response.

First, they have the capacity to detect malware based on a variety of data sources. For

example, according to a publication from Kaspersky, they combine several detection engines

including standard signatures, threat intelligence, reputation scores, sandboxing, and YARA rules.

In addition, they typically feed all of these measures into machine learning models to make a final

 Technical Report 14

decision [11]. In another publication, Crowdstrike notes their agent utilizes a kernel-mode driver

to obtain raw events [12]. Unfortunately, though, for the most part, these public resources do not

delve into much detail on the specific data acquisition techniques and monitoring methodologies.

We can, however, assess that these products integrate closely with the operating system to obtain

real-time, high fidelity data. Some examples of this data include monitoring registry keys, event

logs, process execution, and other OS API calls. Additionally, many solutions are taking advantage

of features such as Microsoft’s Antimalware Scan Interface (AMSI) [13].

Next, another major feature of these products is the ability for analysts to perform “threat

hunting” across their environment. By building out strong, capable endpoint clients, vendors

enable security analysts to search for malware. As an example, one could conduct a search for a

specific Indicator of Attack (IOA) like a file or registry key across their systems to identify a

potential compromise. Finally, if preemptive protections fail, these solutions can take action in

response. Some options include killing processes, deleting files, and modifying registry key

contents.

One other note is that, for the most part, these systems are very much “black-boxes.”

Vendors limit distribution of their EDR solutions to paying customers - they cannot just be

downloaded from the internet. Next, they are obviously also closed-source which raises the

research barrier. Finally, there is also often a tendency to restrict the publication of certain

detection methods and for good reason. Since they do not publicize how they detect malware,

malicious actors must spend more time figuring how to circumvent these controls.

2.3 Commercial Malware Sandboxes

 While we will not focus heavily on malware sandboxes, they provide important insight into

a piece of potential malware through dynamic analysis. Solutions like Crowdstrike’s Hybrid

 Technical Report 15

Analysis, Any.run, and Joe’s Sandbox are able to extract a number of potentially interesting

execution information [14]. This data might include files created/modified/deleted, registry keys

changed, processes spawned, and network connections made. All of this information can help

contextualize a sample to enable either automated or manual analysis to make a decision.

2.4 Sysinternals

 Next, another incredibly popular and free software is the Microsoft Sysinternals Suite. This

collection of tools was initially developed by Mark Russinovich in 1996 and mainly designed to

“provide advanced system utilities and technical information [15].” These tools have a broad

audience including system administrators, developers, and security practitioners. In the below

sections we’ll examine how blue teamers often utilize select Sysinternals tools to both detect and

analyze malware and monitor their systems.

2.4.1 Autoruns

 On modern Windows systems, there are hundreds if not thousands of auto-start locations

to launch programs and scripts. While most autorun items can be configured in the registry, they

can also live in files or other OS locations (like the WMI database). It should be emphasized that

autoruns are an important OS feature - the average system has hundreds of active autorun objects.

While many are used to launch Microsoft-signed software, third party programs such as a web

browser like Chrome will establish “Run keys” to automatically re-open Chrome when a user

logins in. They are also often used by programs to check for updates.

Attackers, however, also frequently utilize this built-in feature in keeping with the trend towards

abusing legitimate operating system components. One such technique is covered in MITRE

ATT&CK T1060 - Registry Run Keys / Startup Folder [4]. As an example of this technique in the

wild, the notorious criminal group known as FIN7 was spotted configuring the following registry

 Technical Report 16

run key to maintain persistence: HKCU\Software\Microsoft\CurrentVersion\Run : CtMgk2y9v0_

- explorer.exe PATH\Foxconn.lnk [17]. As shown in the below figure, Autoruns shows an entry

for this, but only if “Hide Windows is entries” is unchecked. Additionally, it does not pick up on

the full command line that was present in the Registry key [16].

Figure 1: Autoruns and Regedit screenshot showing Run entry for “CtMgk2y9v0_”

As another example shown in Figure 2, Autoruns also has trouble displaying a standard PowerShell

encoded staging command that is configured as a run key. That said, while the tool has trouble

parsing command lines, it excels at detecting a regular binary and has the broadest coverage of

auto-start locations on Windows.

 Technical Report 17

Figure 2: PowerShell run key as shown in Autoruns

2.4.2 ListDLLs

 Next, security analysts can use Sysinternals’ ListDLLs program. This utility is able to list

all of the DLLs that a particular process has loaded [18]. From a malware hunting standpoint, we

might use this program to identify unsigned DLLs by running a command such as .\listdlls.exe -u

process.exe. In the below example shown in Figure 3, we demonstrate how ListDLLs flagged

items in scvhost.exe, a meterpreter beacon running directly as a standalone exe.

 Technical Report 18

Figure 3: ListDLLs in action identifying unsigned items in a meterpreter beacon

2.4.3 Process Explorer

 Another popular utility within this collection that is regularly used by all types of users

(sysadmins, developers, security, etc.) is Process Explorer. This program has a number of

capabilities and mainly focuses on showing all process related information including handles,

modules, threads, network connections, and more [19]. From a threat hunting perspective, we can

employ Process Explorer to go beyond what we would ordinarily see in Task Manager to identify

malware. Some examples of this would be identifying abnormal processes, looking for suspicious

command lines, execution of unsigned binaries, and unusual network activity by certain processes.

In Figure 4, a meterpreter session has migrated into explorer.exe which is generating network

activity linked to this process. On a normal system, explorer.exe should not be making network

connections.

Figure 4: Explorer.exe with network activity is highly unusual and, in this case, the result of a

Meterpreter beacon injected into it

 Technical Report 19

2.4.4 Sysmon

One of the other useful Sysinternals tools is System Monitor (Sysmon). This program

provides enhanced system monitoring capabilities that go beyond the standard Windows event

logs. Additionally, Sysmon is highly configurable which enables administrators to tailor logging

to target specific types of activity. When combined with technologies such as Windows Event

Collection or SIEM agents, teams can centrally collect these advanced logs for further analysis

[20]. These abilities also make Sysmon logs an excellent source for threat hunting and forensic

activity. As demonstrated below in Figure 5, the Sysmon process create function successfully

recorded the full process command line for our PowerShell staging command (the same one as

configured above as an autorun). From this command line, we can learn that the attacker attempted

to download a binary from a remote server and execute it.

Figure 5: PowerShell execution with full command line captured by Sysmon Event 1

 Technical Report 20

2.4.5 Sigcheck

Next, Sigcheck is another useful tool for security analysts and threat hunters [21]. Most

operating systems have tightly integrated certificates and trust into the system. As a result, the vast

majority of default binaries and libraries on the system will be signed and trusted with a chain

leading back to a trusted root Certificate Authority (CA). Additionally, third party programs can

be signed in a similar fashion as a form of proof the code originated with a reputable individual or

company. While there are mechanisms that attackers can use to blend in to evade signature checks

(for example leveraging MITRE ATT&CK T1130 - Install Root Certificate and ATT&CK T1116

- Code Signing), most standard malware will not be signed (or signed improperly) [4]. This fact

enables defenders to alert on suspicious software and investigate it. Microsoft’s Sigcheck provides

the ability to examine a file’s certificate. Additionally, it can examine the system certificate store

and audit it against the Trusted Microsoft Root Certificate List [21]. In Figure 6, we show Sigcheck

identifying an unsigned binary in the user’s download folder. While its lack of signature is not

necessarily indicative of malicious activity, the detection can be used as the basis for further

analysis.

Figure 6: Sigcheck identifies an unsigned executable in the Downloads folder.

2.4.6 TCPView

 Finally, another particularly useful tool for security analysts (among others) is

Sysinternals’ TCPView. This program provides a way to see “detailed listings of all TCP and UDP

 Technical Report 21

endpoints on [your] system [22].” From a threat hunting perspective, we can use it to identify

malware that may be calling back to a command and control (C2) server. While there will likely

be a lot of noise on any given system, you can sort by fields such as process name or port. In the

highlighted process shown in Figure 7, we see a suspicious connection over port 4444 to another

system on the network.

Figure 7: TCPView identifies a network connection over port 4444

2.5 Process Hacker

Aside from Sysinternals, another essential tool when threat hunting on a live system is

Process Hacker. This free and open-source software works similar to Process Explorer, but

integrates a number of other features such as file and network monitoring into a single tool [23].

Using this view, a security analyst can quickly get comprehensive insights into both benign and

malicious activity on the system. In particular in a malware context, this might include examining

the publisher and verification status of an app, correlating network and disk activity to a process,

and even analyzing the memory of a particular section or looking at a stack trace in a specific

thread. In the following screenshot shown in Figure 8, we show the call stack of a particular thread

running in explorer.exe due to a meterpreter beacon having injected into the process.

 Technical Report 22

Figure 8: Examining the call stack of a process’s thread using Process Hacker

2.6 PESieve and Hollows Hunter

Next, other essential programs in a threat hunter’s Windows toolkit are Hasherezade’s PE-

sieve and Hollows Hunter, both of which are free and open-source. According to PE-sieve’s

README, the tool is purposely designed to hunt for malware on a system by identifying “a variety

of implants including replaced/injected PEs, shellcodes, hooks, and other in-memory patches.”

These features make it perfect for detecting evidence of MITRE ATT&CK T1055 - Process

Injection, T1093 - Process Hollowing, and T1186 - Process Doppelgänging [4]. While PE-sieve is

designed to scan a single process, their Hollows Hunter project extends this functionality to be

able to scan an entire system [24]. In Figure 9, we show Hollows Hunter successfully detecting a

meterpreter beacon which migrated into explorer.exe.

 Technical Report 23

Figure 9: Hollows hunter detecting a meterpreter beacon living in explorer.exe (PID 1816)

2.7 Detections Repositories

In recent years, as the infosec community has continued to openly share lots of offensive

tools, defenders have also increasingly shared cyber threat intelligence (CTI) to counter attackers.

While much of this sharing is done through non-public channels such as Information Sharing and

Analysis Centers (ISACs), many in the community contribute to online malware signature

repositories. One such example of this is the Yara-Rules project where researchers can share

YARA rules. Another increasingly popular project is Sigma which is a Generic Signature Format

for SIEM Systems [25]. With these open centralized repositories, other companies, platforms,

tools, and individuals can then integrate these detections into their own workflows. While many

detections need to stay classified at TLP:Green, Amber, or Red to maximize their effectiveness,

even these public postings can be extremely useful. In particular, they can ensure much of the

“low-hanging” malware is effectively caught by defenses [26].

 Technical Report 24

2.8 Security Configuration & Hardening Tools/Scripts

Finally, the last category of tools we’ll touch on in this paper are the many security

hardening related scripts available. Some popular examples of these kinds of tools are the National

Security Agency’s Windows-Secure-Host-Baseline and the Department of Defense’s STIG

Templates and STIGViewer [27, 6]. Another notable set of scripts is Microsoft’s PowerSTIG

project which aims to efficiently automate the application of a variety of published Defense

Information Systems Agency’s (DISA) STIGs [28]. There is also a plethora of individual-produced

hardening scripts online; however, they can be difficult to independently verify without significant

work. For example, many scripts set dozens of registry keys with little context as to why or what

vulnerability they help to mitigate.

 Technical Report 25

3 Motivations for building BLUESPAWN

With all of this context in mind, our group set out to build another item for a defender’s

arsenal. Indeed, BLUESPAWN is not designed to replace other existing tools, but rather augment

existing capabilities. We aim to enable a blue team to move faster and better understand their

coverage as well as to promote and encourage the following: analysis of the Windows Attack

Surface, availability of blue team software, and methods to work with the Windows API.

3.1 Move Faster

The threats defenders face today are only growing more sophisticated as nation states and

criminal actors increasingly target organizations through digital means. Crowdstrike notes that

organizations must minimize attacker dwell time in their environments if they hope to prevent the

most serious breaches [29]. In order to reduce that dwell time metric, blue teams need highly

capable software. They need tools that can positively identify threats and respond in real-time.

Furthermore, they need to continue to move away from static signature-based detection towards

heuristically, behavior-based approaches. While there are a number of existing commercial or

system analysis tools, we focused on helping the security analyst move quicker. In an active

compromise scenario, every minute matters. To that end, we envision a world where any security

analyst can detect, evaluate, and respond to the majority of possible instances of malware on a

system within minutes. Additionally, they should also be able to secure the machine and apply

proper security protections in minutes as well.

3.2 Know our Coverage

At the end of the day, cybersecurity is all about risk modeling. In order to minimize the

risk to their environments, security teams continually assess, test, and implement new defenses

and detections. One approach they can use to do this is to take a threat centric approach to their

 Technical Report 26

efforts. The idea behind this methodology is that if you know the tactics and techniques adversaries

will use to target your networks, you can align your defenses properly. To help defenders

implement this strategy, the community has worked to develop frameworks like MITRE ATT&CK

[4]. And to assist with this shift in mindset, a number of security products have started to tightly

integrate ATT&CK, mapping detections to their respective techniques. One gap we noticed in

these solutions though, is they often provide little context as to why some action was classified the

way it was. This problem is especially acute with the “black-box” manner in which most

commercial EDRs operate. We wanted to develop something from the ground up that can properly

contextualize activity to ATT&CK, and more importantly, we wanted to know exactly what threats

we expected our software to catch. If we can have confidence in the status of certain lines of effort

(i.e. attacker techniques), we can direct our attention to other lines of effort (where we might have

less coverage).

3.3 Better Understanding of the Windows Attack Surface

A popular paradigm in the defensive community is that in order to find evil, one must know

normal. In order to defend something as complex as a Windows endpoint which has tens of

millions of lines of code in the operating system alone, one must spend time learning about its key

components. As we of the development team seek to learn about the Windows attack surface

ourselves, this project represents the results of that research.

3.4 More Open-Source Blue Team Software

As we have mentioned, there is a plethora of open-source offensive security tooling

available on sites like GitHub. Tools like these lower the barrier of entry for students and

practitioners alike, making it easy for these groups to learn how they work. Unfortunately, though,

there is not as much defensive tooling published this way. While there are many reasons for this,

 Technical Report 27

like the effort required to develop and maintain such software, we believe that it raises the bar of

entry to blue teaming. In making our program open-source, we hope to inspire other students of

the field to learn about defensive tooling and create their own tools. In addition, we hope to use

this project to shed light on how EDRs work conceptually.

3.5 Demonstrate Features of Windows API

Finally, developing an EDR program requires close integration with operating system

APIs. Because of this fact, we have spent hundreds of hours poring over Microsoft documentation

to learn how to interface with components such as Registry, Event Logs, and Permissions. We

hope our code will be useful to other developers who also need to work with core Windows APIs

or build similar programs.

 Technical Report 28

4 What is BLUESPAWN

In a nutshell, BLUESPAWN is an active defense and endpoint detection & response (EDR)

tool designed to quickly prevent, detect, and eliminate malicious activity on a Windows system.

The software has three primary modes of operation: hunt, monitor, and mitigate. Additionally, our

project has already worked to integrate many popular industry frameworks and tools such as

MITRE ATT&CK, DoD STIGs, and VirusTotal’s YARA [1, 4, 6, 30]. These provide the basis for

our endpoint defense strategy described in section 5 as well as improve the accessibility of

BLUESPAWN and its integration with other community projects.

In its first primary mode of operation, the program hunts for evidence of malicious

behavior. Generally, this process starts with a known attacker tactic (like Persistence) and

technique (like T1060 - Registry Run Keys / Startup Folder). Then, a detection is developed that

is designed to identify evidence of possible malicious behavior through this particular method.

When BLUESPAWN is then run in hunt mode, it queries for the relevant information then makes

a determination whether or not a particular item is okay. For example, with T1060, the program

obtains a list of all Registry values stored in Run Keys (such as

HKCU\Software\Microsoft\Windows\CurrentVersion\Run). For this hunt, it also needs to grab a

list of files located in User Startup directories

(%USERPROFILE%\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup).

Armed with these items that are potentially malicious, the program then uses a variety of methods

to determine whether or not they are likely benign. These checks include whether the file is signed,

whether it matches any YARA rules, or even whether it is a certain file type. For any suspicious

item found, BLUESPAWN will generate a detection, alerting the user.

 Technical Report 29

Hunt mode also works hand-in-hand with reactions. Reactions give the user flexibility in

how they want to respond to a particular detection. By default, the reaction is to log it. Other ways

an analyst might want to respond are also integrated though. For example, if the program generated

a REGISTRY_DETECTION, one could use remove-value to delete the identified registry value.

In the case of a PROCESS_DETECTION triggered by T1055 - Process Injection, an analyst may

instead use carve-memory. This reaction would temporarily suspend the target process, modify

any malicious threads to immediately return and exit, then resume the process, effectively

removing any implant.

The next major mode is monitor. While a point in time analysis performed by a hunt

works well, it is not continuous looking for malicious activity. As a result, monitor mode provides

the ability to continually monitor areas of interest. It accomplishes this by, for example, monitoring

for any changes to registry keys defined in Hunts. Then, when a change occurs, it will dynamically

launch the relevant hunt to see if there is anything new to alert on using the aforementioned

process.

Finally, just as it is important to hunt for malicious activity, it is also important to apply

strong defenses. Mitigate mode does just that. By mapping mitigations directly to published DoD

STIGs and MITRE Mitigations, administrators can either audit or enforce specific protections [1].

For example, to protect against T1177 - LSASS Driver, one could apply M1025 - Privileged

Process Integrity which configures LSASS to run as a Protected Process Light (PPL) and requires

drivers loaded into LSASS to be signed. Additionally, an analyst could apply V-3479 to enable

DLL Safe Search mode to limit an attacker’s ability to use T1038 - DLL Search Order Hijacking

to load a malicious DLL into the LSASS process [1, 4].

 Technical Report 30

Along these lines, we emphasize that currently BLUESPAWN only focuses on detecting

known threats really well. In the future, as we begin to integrate more advanced behavior

monitoring, our tool will provide more robust protection against new threats.

 Technical Report 31

5 Threat Hunting and Mitigation Approach

In the last section, we discussed the three major modes in BLUESPAWN. Here, we will

explore more about the defensive methodologies behind the tool and how we approach identifying

malicious activity, reacting to malware, and integrating with community tools. Overall, our

approach is best described at a high level in Figure 10. Each of these areas work together to raise

the overall security posture of a system, and by improving the speed, accuracy, and efficiency at

which these processes happen, we can make a meaningful impact on its security.

Figure 10: BLUESPAWN’s Defensive Methodology

5.1 Data Sources

The first challenge in countering threats is gathering the right data. A good array of data

sources will be diverse, trustworthy, and accurate. If any one of these characteristics is missing,

one’s ability to effectively detect threats will be hampered in some way. With that in mind,

BLUESPAWN attempts to integrate with the Windows API as closely as possible. As such, it is

 Technical Report 32

unacceptable to have to open a sub-process (i.e. spawning cmd.exe) to obtain, say, a list of users

on the system. Instead, the program should use the relevant APIs to query the users on the system.

This way, in order to really interfere with an operation, a program would need to hook the APIs

called by BLUESPAWN in some way. Given that our software currently runs solely in user mode

and does not contain a kernel driver, this is certainly possible. That said, at the end of the day, our

software cannot stop all threats. However, it can and does aim to raise the bar for attackers and

make it more difficult to breach and persist on a system.

In the current iteration, the program has modules to interface with a number of key system

components including Registry, Windows Event Logs, Files, Processes, and Permissions. In the

future, this will expand to have support for COM objects (like Scheduled Tasks), User Accounts,

the Windows Management Interface (WMI), the Antimalware Scan Interface (AMSI), and more

[31]. As evident in the MITRE ATT&CK matrices, threats can be detected through a variety of

means [4]. By having a diverse set of data sources, we increase the chances at effectively detecting

a threat. For example, T1050 - New Service or T1035 - Service Execution will leave traces across

all of these areas [4]. There will be event logs, entries in the Registry, files on disk, and a process

running. Then, assuming the data we receive back is trustworthy and accurate, BLUESPAWN can

properly evaluate a potential threat and make a decision.

5.2 Active Defense & EDR Capabilities

As we covered in the section on existing tooling, there are a number of dual-use system

analysis tools available (like Sysinternals) [15]. Additionally, there are several harder to obtain

commercial products that provide effective defensive capabilities primarily for the enterprise

customer. One particular area we noticed a gap in though was open-source tooling for security

analysts. We strongly believe that given an arbitrary system or network of systems, any security

 Technical Report 33

analyst should be able hunt for threats and triage any malware found. While a relatively cursory

investigation such as this will not catch every threat, it does not necessarily need to. There exists

significant value in the ability to quickly get a decent idea of the current security posture of your

network.

Furthermore, we were also particularly interested in the “active breach” scenario.

Assuming you now know that your network has been compromised, how can you quickly identify

the vast majority of an attacker’s persistence and begin to kick them out of your environment? We

refer to this concept as “active defense,” and it is one of our primary areas of focus when building

out BLUESPAWN capabilities. While there will always be more experts you can call for

assistance, we think it is important to equip the average network defender with the abilities to give

them a fighting chance against even the more advanced attackers. Finally, our software is an EDR.

This characteristic provides the capabilities to further our active defense mission and provide more

general, ongoing protection against threats.

5.3 Integration with MITRE ATT&CK

Throughout this paper, we have made a number of references to the MITRE ATT&CK

project and threat-centric defense [4]. One of the most important innovations beyond itemizing the

most popular attacker techniques though, is ATT&CK’s success in creating a common language.

In order for red and blue teams to collaborate more closely and provide the best protection for their

organization, they must work together. ATT&CK has provided a strong foundation for that

dialogue and cooperation to take place. By integrating heavily with this framework,

BLUESPAWN builds on this work and is easily accessible to many in the industry. Furthermore,

by centering our hunts around ATT&CK, as that project continues to grow, our software can grow

 Technical Report 34

with it. The cybersecurity landscape is incredibly dynamic; as the threats evolve, so too will the

community’s methods for countering them.

5.4 Integration with Department of Defense STIGs

Security compliance and testing are two other crucial areas of cybersecurity. To that end,

BLUESPAWN also integrates with the excellent resources published by the DoD. Through their

DoD Cyber Exchange, they regularly publish security baselines for a variety of products including

Windows [6]. These baselines are the result of significant time and effort. If applied correctly,

STIGs provide a solid starting point for securing a system, and by automating some of the audit

and enforce work, administrators can better protect their own systems. While STIGs are

occasionally referenced in other program modes, they are primarily featured in mitigate mode.

Our initial efforts have focused on auditing for the most critical settings (rated as High severity by

the DoD), but in the future, we plan to add even broader coverage.

5.5 Integration with YARA

Finally, as of release version v0.4.3-alpha on which this paper is based, our other major

integration is VirusTotal’s YARA. As described by their website, YARA is a “pattern matching

swiss knife for malware researchers” which helps “identify and classify malware samples [30].”

In addition, the infosec community has widely embraced YARA, and there are a number of FOSS

repositories of YARA signatures. Our tool integrates both YARA and a number of these detections

repositories. Then, whenever a file of interest is identified by BLUESPAWN, the software scans

it with the included rules as one of its checks. If a match to a “malicious” rule is found, then a

FILE_DETECTION event will be triggered. By building off the existing corpus of YARA rules,

we will be able to easily integrate new signatures. Furthermore, this approach enables others to

utilize their existing private rulesets with the tool for custom scanning.

 Technical Report 35

6 Software Architecture

While this paper primarily focuses on the applications of BLUESPAWN as opposed to

how the software works under the hood, we will touch on its architecture at a high level in a few

key areas.

6.1 Architecture Diagrams of Key Components

Figure 11: Major BLUESPAWN modules within overall defense strategy

Figure 12: Current and select future BLUESPAWN data sources

 Technical Report 36

Figure 13: BLUESPAWN’s combined Hunt and Mitigation coverage as of v0.4.3-alpha

 Technical Report 37

While development has primarily focused on the client, future additions of the Server and Cloud

components will replicate the “cloud-delivered protection, enterprise EDR” model present in

commercial products. In the below diagram in Figure 14, we show a reference architecture as to

what that may look like when developed.

Figure 14: Example future architecture diagram which illustrates how BLUESPAWN might

scale across a network

6.2 Continuous Integration & Testing

One of the unique challenges that we ran into when developing BLUESPAWN that we will

cover in this paper is testing. First, this project has grown to be one of the largest codebases that

any of us have significantly contributed to. Given the scope and complexity of the software, we

have turned to continuous integration and testing tools. Our team has, for example, utilized GitHub

 Technical Report 38

Actions to automatically test new builds of the tool [1]. All of this automation is orchestrated into

our git workflow which has helped to, at a minimum, ensure build consistency across our team.

We have also employed collaboration tools within Visual Studio to debug issues effectively.

6.2.1 Automated and Manual Testing of an EDR

Perhaps one of the biggest challenges outside of designing the software and writing

detections was/is functional testing. While the CI provides somewhat adequate “smoke testing,” it

alone does not ensure hunts work as expected. By making use of Red Canary's Atomic Red Team

project, we have begun to address this challenge [32]. Currently, anytime a build happens, the

associated Atomic Red Team tests for supported ATT&CK Techniques are run. While these tests

have been effective at catching some bugs, they do not compare to a real attack scenario. In order

to mitigate this gap, we have so far performed an array of ad hoc manual testing. This approach

has included running practice cyber defense simulations and testing BLUESPAWN against

specific tools. For example, to test T1055 - Process Injection, we have made extensive use of

Metasploit and Cobalt Strike. By more closely emulating the tools and scenarios of real attacks,

we can improve detection accuracy and reduce false positives. Our current research, though, has

generally found the available (public) methods to test the effectiveness of security solutions to be

somewhat lacking.

 Technical Report 39

7 BLUESPAWN in Action

Throughout BLUESPAWN’s development, we have deployed it to a number of

environments to evaluate its effectiveness. These tests include cyber defense competitions with

active Red Teams to manual laboratory testing against tools such as Cobalt Strike. We found that

while BLUESPAWN still generates a number of false positives and lacks the ability to identify

new or more advanced threats, it shines in quickly identifying most of the low hanging fruit. Within

about two minutes of downloading the tool, we were able to detect and respond to common attacker

techniques like Process Injection and Autorun methods. When comparing these results with the

aforementioned tools, BLUESPAWN was the only free tool that transparently identified these

common threats and successfully mapped them back to MITRE ATT&CK as part of its response.

7.1 Case Study: The Collegiate Cyber Defense Competition (CCDC)

Since its creation in 2005, the Collegiate Cyber Defense Competition (CCDC) has grown

to be the largest cyber defense event for students in the US. Run by the Center for Infrastructure

Assurance and Security (CIAS) at the University of Texas at San Antonio (UTSA), the competition

has grown to include more than 235 colleges each year [33]. In the competition, students inherit a

mock business environment and defend it against real-world offensive security professionals. The

event pushes teams to respond to attacks by some of the best hackers. In addition, they must keep

critical services online and complete business injects despite the onslaught of attacks [34].

In the 2020 season of CCDC, the UVA Cyber Defense Team deployed BLUESPAWN at

the Mid-Atlantic Qualifiers and Regionals. Our team also used the program at similar cyber

defense competitions during the last few months including RIT’s Information Security Talent

Search (ISTS) 2020 and University at Buffalo’s Lockdown v8. The rest of this section will provide

 Technical Report 40

perspectives from both the Blue and Red Teams. CCDC events strictly prevent taking material out

of the competition environment, so all screenshots below are from the Lockdown v8 event.

7.1.1 Blue Team Perspective and Evaluation

These cyber defense competitions are chaotic environments, and speed is of essence. At

the National event, Red Team regularly breaches systems less than one minute after it starts. As a

result, Blue Teams must move fast. Since they cannot expect to completely prevent Red Team

from getting into their systems, they must utilize their incident response skills to detect and remove

all traces of the attackers. Through our conversations with Red Team, they report generally

deploying malware at three different levels. At one end of the spectrum is the malware that is fairly

obvious and does not try to hide. On the other side, they deploy heavily custom malware that has

never been deployed against any other target before.

In past years, our team has utilized nearly all of the tools referenced in Section 2. While

we successfully have used them in combination with other software such as firewalls, we found

three things. First, these tools required extensive manual effort and significant background

knowledge to operate. An analyst would have to understand enough about normal system behavior

to efficiently identify a malicious process, for example. Second, as with all security tools, they

miss things. If the Red Team knows what tools defenders will utilize, they will spend time

identifying bypasses. Finally, most of these programs are not designed with incident reporting in

mind. While some can be configured to log information, it takes a lot of effort to extract all of the

useful information and make sense of it - time that defenders do not have in an active breach

scenario.

We cannot stress enough that BLUESPAWN was NOT found to be any sort of magic bullet

for defenders. Instead, we found that the software improved our team’s success with each of those

 Technical Report 41

three areas. First, it helped us to rapidly triage our systems. After running the program, we could

be reasonably confident in a number of “lines of effort.” This confidence enabled us to spend more

time hunting for bad in the rest of our boxes. Furthermore, we found that the tool synchronized

our response better, especially with our less experienced teammates. Typically, we deploy our

most experienced threat hunter to identify all traces of malware on a particular box. In a small

environment, this approach works well, but fails as the network grows. BLUESPAWN helped

reduce the number of cases we had to elevate to our senior threat hunter, giving everyone more

time to complete their other tasks.

Next, the program expanded our coverage against threats. In the below figure, we show

BLUESPAWN alerting on a malicious Windows Notification Package. This kind of malware is

an example of something that may have flown under the radar before. Instead, the implant was

detected and removed just minutes into the Lockdown v8 competition.

Figure 15: BLUESPAWN identifies a malicious Notification Package and automatically maps it

to MITRE ATT&CK T1131.

Another example of BLUESPAWN quickly detecting and removing malware is shown in the

following two figures. Here the tool enumerated all Windows Services and was able to raise several

 Technical Report 42

suspicious ones to the analyst’s attention for further investigation. It also enabled the defender to

remove the malware immediately without even leaving the current window.

Figure 16: BLUESPAWN identifies a number of malicious Windows Services designed to blend

in.

Figure 17: BLUESPAWN offers to remove the suspicious services it has identified.

While our team certainly continued to use other tools to spot and remove instances of the Red

Team, BLUESPAWN was instrumental in speeding up that process from our perspective. Even

though it missed plenty of later identified malware, it acted as a great starting point for incident

response efforts.

Finally, the software greatly improved the speed and accuracy of incident reporting. By

being able to efficiently document and map most of the identified threats to attacker techniques,

we could easily create high quality reports. We were also able to assess with high confidence when

various attacks happened. Even though attackers can use T1099 - Timestomp to hinder analysis,

BLUESPAWN could at least say exactly when an attack was identified and remediated. When

there are so many other things happening all at once, these logs proved useful for collecting the

evidence we needed to make a strong case [35].

 Technical Report 43

7.1.2 Red Team Perspective and Evaluation

For this section, we interviewed one of the Mid-Atlantic CCDC Red Teamers who

discussed his thoughts on BLUESPAWN. One thing he noted at the outset is that advanced

attackers seek to emulate their target environments as much as possible, to include security tools.

As a result, one of the first steps in testing their attacks is analyzing what a defender might see on

their console. This analysis also helps to determine when to utilize custom implants versus when

they can operate fine mainly using open-source tools. With respect to BLUESPAWN specifically,

they knew about the tool before seeing it in competition. This advance notice helped them to

evaluate their techniques against it. Furthermore, since the software was open-source, they had the

ability to understand exactly what aspects of their malware the tool alerted on. Overall, while it

did not change their preparation process in a significant way, they noted that it was able to identify

certain parts of their standard toolkit.

One area that BLUESPAWN differs significantly from other EDR programs is that it is

fully open-source. In that regard, it allowed the attackers to tailor their malware to ensure it

bypassed detections built into the tool. While he noted that it missed a fair amount of activity, he

said that it was good at detecting known malware. In addition, he explained that the program was

a great way to learn how a commercial EDR solution would work conceptually. Another thing

mentioned during the conversation was the need to be transparent in how & why something was

flagged as malware. He highlighted that oftentimes, for example in popular malware sandboxes or

some paid tools, that they do not do enough to publish how they categorized something the way

they did. While the reporting feature is still in its early stages, he saw a lot of value that

BLUESPAWN could provide in showing the context around detections.

 Technical Report 44

Overall, he said that though he did not notice an improvement in response time compared

with other EDRs, “BLUESPAWN has a lot packed into it.” He also described some challenges for

the project going forward that we would have to address. First, he encouraged us to work on

building an automated definition update process. This feature would enable better protection

against new threats, not requiring people to redownload the latest version each time. He also noted

a lot of opportunities to continue expanding the project to target other operating systems (like

Linux) and add enterprise-type features. These improvements would make BLUESPAWN a more

viable solution to be utilized in real-world environments. In particular, the software could be

further designed to work alongside existing solutions and provide a great way for under-resourced

organizations to perform a baseline assessment against their environments. Finally, he summarized

that when compared to other similar, longstanding open-source projects like ClamAV,

BLUESPAWN was perhaps already a bit ahead of them [36].

7.2 Controlled Environment Testing

When developing BLUESPAWN, our team performed regular analysis against many of

the most popular tools used by attackers. This testing enabled us to get a feel for how well it might

do in real-world situations. In the coming sections, we will describe some of the results of these

efforts.

7.2.1 Hunting for Process Injection (Cobalt Strike)

Our first set of tests to detect T1055 - Process Injection were with a licensed copy of Cobalt

Strike, a program made by Strategic Cyber LLC. This tool is frequently used in penetration testing

engagements, adversary emulation exercises, and real-world attacks [37]. For this setup, a

Windows 10 machine patched through KB4520010 (2019-10) acted as the victim. Additionally,

Windows Defender was disabled. In Figure 18, we start with three beacons running checking in at

 Technical Report 45

5 second intervals. The initial payload was launched via a Stageless Scripted Web Delivery with

PowerShell, calling back to an HTTP Listener. Once the initial beacon checked in, the operator

used the built-in “Inject” feature to inject another HTTP Beacon into the Microsoft Edge process

running on the host. Finally, an SMB Beacon that calls back through the first HTTP Beacon was

injected into Explorer.exe using the same method. All beacons were running in the context of a

non-administrative user account.

Figure 18: Graph view of Cobalt Strike beacons running on the victim.

In order to identify any evidence of the malicious activity, the analyst launched

BLUESPAWN from an Administrative Command Prompt as shown in Figure 19. They did a Hunt

specifically for T1055 - Process Injection. In this screenshot, one can see the tool identifying

several of the beacons. In addition, the software prompted the user to terminate the specific

malicious activity within each of the detected processes.

 Technical Report 46

Figure 19: BLUESPAWN performs a Hunt for evidence of Process Injection

In the screenshot shown below in Figure 20, BLUESPAWN summarized all of its findings.

It successfully detected each of the beacons the operator launched (the first two groups were part

of the initial launch of the beacons). Furthermore, from the operator’s Cobalt Strike console, each

of these beacons stopped calling out and died.

Figure 20: BLUESPAWN identifies each of the Cobalt Strike beacons on the system.

7.2.2 Hunting for Process Injection (Metasploit’s Meterpreter)

Next, we tested with Metasploit using the same base environment as above [38]. The

operator PSExec’d into the system using valid Administrative credentials. Once the meterpreter

session called back, the operator migrated to Microsoft Edge, then to explorer.exe. In Figure 21,

BLUESPAWN detected evidence of the malicious activity in both injected processes.

 Technical Report 47

Figure 21: BLUESPAWN identifies evidence of T1055 that was launched via Metasploit.

From the attacker’s perspective, commands worked perfectly initially. Once

BLUESPAWN killed the threads the beacons were running in though, commands began to time

out. Eventually this response led to the Meterpreter session dying as depicted in Figure 22.

Figure 22: The attacker’s Meterpreter session began timing out before dying completely.

7.2.3 Hunting for Registry-based Autorun Persistence

Attackers often leverage the Registry to automatically launch their malware as part of their

persistence kit. To test an example of this scenario, we added a Debugger of cmd.exe for sethc.exe

which is known as a “sticky keys backdoor [4].” The operator also used Metasploit’s

“registry_persistence” module to add a Run key [38]. The results illustrated in Figure 23 show

BLUESPAWN detecting and removing these two particular items.

 Technical Report 48

Figure 23: BLUESPAWN identifies a sticky keys backdoor (T1015) and a malicious run key

(T1060)

7.2.4 Hunting for Web shells

Another popular persistence mechanism used to target web servers is web shells. These

usually short snippets of code are placed in a web accessible directory and can be used by any

visitor to the page to execute commands. In order to detect instances of T1100 - Web Shells,

BLUESPAWN scans the web root directories for popular web server software. On Windows, this

includes Internet Information Services (IIS) in C:\inetpub\wwwroot. In Figure 24, the program

was able to detect a web shell using a combination of hand-crafted regexs and YARA rules.

 Technical Report 49

Figure 24: BLUESPAWN identifies a classic PHP web shell (T1100) [39].

7.2.5 Applying Mitigations to Improve the System’s Security Posture

Finally preventing threats in the first place is just as important as being able to detect them.

Mitigate mode helps an analyst do just that. By automating the auditing and application of critical

security settings, one can quickly enhance a system’s overall security.

Figure 25: BLUESPAWN’s Mitigate mode applies a variety of security settings.

 Technical Report 50

7.3 Limitations and Gaps in Coverage

As shown previously in Figure 13, BLUESPAWN currently has support for just a handful

of popular attacker techniques. Additionally, there are almost certainly many bypasses to the

current implemented detections. Over time detections will continue to improve though. Attackers

will also adapt. What we have done so far with this project is to build a strong foundation. As we

continue development, we will grow the tool’s abilities to detect increasingly sophisticated threats.

Mapping with the MITRE ATT&CK Framework and DoD’s STIGs will also help to keep the

program’s mission focused on the most critical areas [4, 6].

 Technical Report 51

8 Future Work

Overall, our work with this project is just getting started. We believe our efforts though

have demonstrated the potential to detect real world attacks. So far, we have only made significant

progress within the client portion; however, we are now starting on the server component. As we

continue development, we plan to use popular commercial EDR products as a reference guide. In

the future, as the threats continue to evolve, our tool will need to do so as well in order to stay

effective. Additionally, as people find bypasses to the implemented detections, changes will need

to be made.

8.1 Improvements to BLUESPAWN Client

As outlined in the above sections, development has primarily focused on this aspect of the

project. The endpoint is the closest to the threats and thus, the best place to begin implementing

our overall defensive strategy. In the coming months, we will continue to build out coverage of

key data sources. These will enable detections to be built across all of the major ATT&CK

techniques. Additionally, as we prepare to integrate the client with the server and cloud

components, we will focus on making the client more configurable. Instead of being a standalone

program, it will be a Windows Service and support custom detections.

8.1.1 Integration with the Anti-Malware Scan Interface (AMSI)

Looking beyond the most obvious upcoming features in the roadmap, the integration with

AMSI will be an important step. In order to better support third party antimalware applications,

Microsoft makes this set of APIs available. We can utilize these to provide real-time scanning [31].

For example, anytime an EXE requests elevation through UAC, BLUESPAWN would receive a

notification, prompting a scan. AMSI also goes beyond just executables and works with

PowerShell scripts, Windows Script Host, VBScript, and more [31]. While there have been a

 Technical Report 52

number of documented AMSI bypasses published, these APIs are a great starting point [40].

Furthermore, many of the top AV/EDR solutions rely on AMSI - and this feature will only be

improved upon in future builds [13].

8.1.2 Modular, Configurable Detections

Right now, detections are written directly in C++ and compiled into the client. YARA rules

are integrated in the same way, getting compiled in as a resource during build time. On one hand,

this approach works well for preventing tampering. Unfortunately, though, this kind of method

does not scale and raises the bar to adding new signatures. Furthermore, the integration of the

server and cloud components will require detections to be more customizable and configurable.

As we begin to turn BLUESPAWN into a Windows Service, we will need to make these changes

to keep the client lean, yet effective.

8.1.3 Heuristics, Behavioral Analysis, and Confidence Scores

Finally, another exciting space within the client development is behavioral analysis and

confidence scores. For example, if we observe an unknown sample making suspicious APIs calls,

should we generate a detection? What if it is launched by a process command line beginning with

“powershell.exe -windowstyle hidden -noninteractive -ExecutionPolicy bypass –

EncodedCommand”? While YARA rules focus on signaturing known quantities for the most part,

dynamic detections enable automated identification of new malware. In order to do this though,

one needs to be able to assign a “suspiciousness” or “malicious” score to it. A great illustration of

how this can be done is looking at how a malware sandbox rates samples. Hybrid Analysis, for

example, informs the user exactly what events generated the resulting threat score [41]. Another

avenue tangentially related to threat evaluation is graph-based detections. If we start with the idea

 Technical Report 53

that one item is known malicious, what else has it touched? We can use its actions as a starting

point to detect and identify other evidence of malicious activity on the system.

8.2 Creation of BLUESPAWN Linux Client

Since we initially launched the project, we have concentrated solely on Windows-based

systems. These are a popular target for attackers, and there is ample online research to guide our

efforts. In particular though, threat actors are also increasingly targeting other operating systems

such as Linux. These targets have historically been underserved by defensive security products,

primarily due to their market share (in use and attention by attackers). Now that this notion is

changing, creating a Linux-based client would be a great way to expand our research & coverage.

The general endpoint defense strategy would even stay largely the same, except the underlying

data sources & attacker techniques would vary. While this aspect will be an incredible undertaking,

there is lots of potential in this growing space.

8.3 Initial BLUESPAWN Server Development

Running BLUESPAWN on a single endpoint at a single point in time is a great way to

begin a hunt for malicious activity. However, when there are hundreds, thousands, or tens of

thousands of endpoints, that mentality just does not scale. In order to enable defenders to catch

threats across their network, our next major step is starting to build out the server component. As

we are only weeks into the initial designs for this piece, this area will rapidly evolve and likely

look completely different a few months from when this paper is published. That said, as we see it

now, there will be two primary components. First, the server will have a log collection,

aggregation, and management engine. Most likely, this will resemble an Elasticsearch-Logstash-

Kibana (ELK) setup, where clients will all ship logs to a centralized location. Elasticsearch will

then index the logs while Kibana visualizes this telemetry [42]. The second half will be the

 Technical Report 54

management dashboard. This part will enable administrators to manage their fleet of

BLUESPAWN clients across their network. It will include the ability to hunt across your

environment, task clients to perform operations, and provide real-time, centralized security

telemetry.

8.4 Initial BLUESPAWN Cloud Development

Finally, as we currently view the project, the third piece delivers the so-called “cloud-

powered security” many vendors promise. While there is undoubtedly some hype to this

component, there is strong merit to this concept. A single endpoint agent cannot be expected or

tasked with fully evaluating every threat. It cannot and should not contain every signature both for

operational security and performance reasons. To alleviate this problem, a cloud-based element

would help to offload workloads to the cloud. There, software could perform more advanced

analysis of a potential threat using static and dynamic techniques. Furthermore, a cloud-based

component would provide the ability to quickly update signatures for new threats. As new

detections are developed, they can be pushed out as definition updates to clients, shortening the

time from first sight to coverage. We stress that this feature is more on the long-term roadmap for

the project, but we see the possibility for this to be hosted in the actual cloud or on-prem. This

hybrid model would give organizations the flexibility to deploy BLUESPAWN reliably in a variety

of environments, especially on air-gapped systems.

 Technical Report 55

9 Conclusion

As the cybersecurity industry continues to evolve, the threats show no sign of stopping.

Increasingly advanced defenses will be needed to stop increasingly advanced attacks. Open-source

programs such as BLUESPAWN help to shed light on the historically “black-box” nature of

commercial products. In addition, they can be helpful in creating a tailored approach to respond to

threats, equipping any security professional or student with the capabilities they need to at least

begin investigating a breach. Over time, as the project grows to include components like a server

or cloud, the tool’s accuracy and effectiveness will increase.

 Technical Report 56

10 References

[1] Jake Smith, Jack McDowell, Calvin Krist, and Will Mayes. 2020. BLUESPAWN. Retrieved

from https://github.com/ION28/BLUESPAWN

[2] Kaspersky. 2018. About Protected Process Light (PPL) technology for Windows. Retrieved

from https://support.kaspersky.com/common/windows/13905

[3] Microsoft. 2017. Virtualization-based Security (VBS). Retrieved from

https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs

[4] MITRE Corporation. 2019. Matrix - Enterprise | MITRE ATT&CK®. MITRE ATT&CK.

Retrieved from https://attack.mitre.org/matrices/enterprise/windows/

[5] Paul Shread. 2020. Top Endpoint Detection and Response (EDR) Solutions. Retrieved from

https://www.esecurityplanet.com/products/top-endpoint-detection-response-solutions.html

[6] Defense Information Systems Agency. SRG / STIG Tools – DoD Cyber Exchange. DoD

Cyber Exchange. Retrieved from https://public.cyber.mil/stigs/srg-stig-tools/

[7] Anton Terekhov. 2017. History of the Antivirus. Hotspot Shield VPN. Retrieved from

https://www.hotspotshield.com/blog/history-of-the-antivirus/

[8] Anton Chuvakin. 2013. Named: Endpoint Threat Detection & Response. Anton Chuvakin.

Retrieved from https://blogs.gartner.com/anton-chuvakin/2013/07/26/named-endpoint-threat-

detection-response/

[9] VMWare. What is an Endpoint Protection Platform (EPP)? | Endpoint Protection Platform

Definition. VMware Carbon Black. Retrieved from

https://www.carbonblack.com/resources/definitions/what-is-an-endpoint-protection-platform-

epp/

[10] McAfee. What Is an Endpoint Protection Platform? | McAfee. Retrieved from

https://www.mcafee.com/enterprise/en-us/security-awareness/endpoint/what-is-an-endpoint-

protection-platform.html

[11] Kaspersky. 2017. A Buyer’s Guide to Investing in Endpoint Detection & Response.

Retrieved from https://media.kaspersky.com/en/business-security/enterprise/EDR-

whitepaper.pdf

[12] Crowdstrike. STREAMING THE THREAT DETECTION AND RESPONSE LIFECYCLE

WITH SPEED, AUTOMATION AND UNRIVALED VISIBILITY. Retrieved from

https://www.crowdstrike.com/wp-content/brochures/Falcon-Insight-DS-PW-edits.pdf

[13] Lee Holmes. 2019. Lee Holmes on Twitter: “I love it when I hear good news! AMSI State

of the Union - November 2019. @Sophos is now protecting you with its AMSI integration as

well! https://t.co/0rd9sjhFAW” / Twitter. Twitter. Retrieved from

https://twitter.com/lee_holmes/status/1189215159765667842

https://github.com/ION28/BLUESPAWN
https://support.kaspersky.com/common/windows/13905
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://attack.mitre.org/matrices/enterprise/windows/
https://www.esecurityplanet.com/products/top-endpoint-detection-response-solutions.html
https://public.cyber.mil/stigs/srg-stig-tools/
https://www.hotspotshield.com/blog/history-of-the-antivirus/
https://blogs.gartner.com/anton-chuvakin/2013/07/26/named-endpoint-threat-detection-response/
https://blogs.gartner.com/anton-chuvakin/2013/07/26/named-endpoint-threat-detection-response/
https://www.carbonblack.com/resources/definitions/what-is-an-endpoint-protection-platform-epp/
https://www.carbonblack.com/resources/definitions/what-is-an-endpoint-protection-platform-epp/
https://www.mcafee.com/enterprise/en-us/security-awareness/endpoint/what-is-an-endpoint-protection-platform.html
https://www.mcafee.com/enterprise/en-us/security-awareness/endpoint/what-is-an-endpoint-protection-platform.html
https://media.kaspersky.com/en/business-security/enterprise/EDR-whitepaper.pdf
https://media.kaspersky.com/en/business-security/enterprise/EDR-whitepaper.pdf
https://www.crowdstrike.com/wp-content/brochures/Falcon-Insight-DS-PW-edits.pdf
https://twitter.com/lee_holmes/status/1189215159765667842

 Technical Report 57

[14] Lenny Zeltser. 2019. Free Automated Malware Analysis Sandboxes and Services. Retrieved

from https://zeltser.com/automated-malware-analysis/

[15] Mark Russinovich. 2020. Windows Sysinternals - Windows Sysinternals. Retrieved from

https://docs.microsoft.com/en-us/sysinternals/

[16] Mark Russinovich. 2019. Autoruns for Windows - Windows Sysinternals. Retrieved from

https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns

[17] FIN7 Evolution and the Phishing LNK. FireEye. Retrieved from

https://www.fireeye.com/blog/threat-research/2017/04/fin7-phishing-lnk.html

[18] Mark Russinovich. 2016. ListDLLs - Windows Sysinternals. Retrieved from

https://docs.microsoft.com/en-us/sysinternals/downloads/listdlls

[19] Mark Russinovich. 2020. Process Explorer - Windows Sysinternals. Retrieved from

https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

[20] Mark Russinovich and Thomas Garnier. 2020. Sysmon - Windows Sysinternals. Retrieved

from https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon

[21] Mark Russinovich. 2017. Sigcheck - Windows Sysinternals. Retrieved from

https://docs.microsoft.com/en-us/sysinternals/downloads/sigcheck

[22] Mark Russinovich. 2011. TCPView for Windows - Windows Sysinternals. Retrieved from

https://docs.microsoft.com/en-us/sysinternals/downloads/tcpview

[23] Wen Jia Liu and Steven G. 2020. Process Hacker. Process Hacker. Retrieved from

https://github.com/processhacker/processhacker

[24] Hasherezade. 2020. hasherezade/pe-sieve. Retrieved from

https://github.com/hasherezade/pe-sieve

[25] Florian Roth and Thomas Patzke. 2020. Neo23x0/sigma. Retrieved from

https://github.com/Neo23x0/sigma

[26] Cybersecurity and Infrastructure Security Agency. Traffic Light Protocol (TLP) Definitions

and Usage | CISA. US Cert. Retrieved from https://www.us-cert.gov/tlp

[27] National Security Agency. 2020. nsacyber/Windows-Secure-Host-Baseline. NSA

Cybersecurity Directorate. Retrieved from https://github.com/nsacyber/Windows-Secure-Host-

Baseline

[28] Microsoft. 2020. microsoft/PowerStig. Microsoft. Retrieved from

https://github.com/microsoft/PowerStig

[29] Dan Larson. 2017. A Strategy to Find and Stop Attackers Before They Do Damage.

Retrieved from https://www.crowdstrike.com/blog/approaching-zero-dwell-time-strategy-

finding-stopping-attackers-damage/

https://zeltser.com/automated-malware-analysis/
https://docs.microsoft.com/en-us/sysinternals/
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://www.fireeye.com/blog/threat-research/2017/04/fin7-phishing-lnk.html
https://docs.microsoft.com/en-us/sysinternals/downloads/listdlls
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://docs.microsoft.com/en-us/sysinternals/downloads/sigcheck
https://docs.microsoft.com/en-us/sysinternals/downloads/tcpview
https://github.com/processhacker/processhacker
https://github.com/hasherezade/pe-sieve
https://github.com/Neo23x0/sigma
https://www.us-cert.gov/tlp
https://github.com/nsacyber/Windows-Secure-Host-Baseline
https://github.com/nsacyber/Windows-Secure-Host-Baseline
https://github.com/microsoft/PowerStig
https://www.crowdstrike.com/blog/approaching-zero-dwell-time-strategy-finding-stopping-attackers-damage/
https://www.crowdstrike.com/blog/approaching-zero-dwell-time-strategy-finding-stopping-attackers-damage/

 Technical Report 58

[30] VirusTotal. 2020. YARA - The pattern matching swiss knife for malware researchers.

Retrieved from https://virustotal.github.io/yara/

[31] Microsoft. Antimalware Scan Interface (AMSI) - Win32 apps. Retrieved from

https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal

[32] Red Canary Co. 2020. redcanaryco/atomic-red-team. Red Canary. Retrieved from

https://github.com/redcanaryco/atomic-red-team

[33] Center for Infrastructure Assurance and Security. 2006. History of NCCDC.

NationalCCDC. Retrieved from http://nationalccdc.org/index.php/competition/about-

ccdc/history

[34] Raytheon Corporate Communications. 2019. Raytheon: University of Virginia Defends

National Cyber Title. Raytheon News Release Archive. Retrieved from

http://raytheon.mediaroom.com/2019-04-26-University-of-Virginia-Defends-National-Cyber-

Title

[35] UVA Cyber Defense Team - Windows Group. 2020. BLUESPAWN Reflection Interview.

[36] TJ Null. 2020. BLUESPAWN Red Team Perspective Interview.

[37] Raphael Mudge and Strategic Cyber LLC. 2020. Adversary Simulation and Red Team

Operations Software - Cobalt Strike. Retrieved from https://cobaltstrike.com/

[38] Rapid7. 2020. Metasploit | Penetration Testing Software, Pen Testing Security. Metasploit.

Retrieved from https://www.metasploit.com/

[39] @joswr1ght. 2019. easy-simple-php-webshell.php. Gist. Retrieved from

https://gist.github.com/joswr1ght/22f40787de19d80d110b37fb79ac3985

[40] Andre Marques. 2018. How to bypass AMSI and execute ANY malicious Powershell code.

zc00l blog. Retrieved from https://0x00-0x00.github.io/research/2018/10/28/How-to-bypass-

AMSI-and-Execute-ANY-malicious-powershell-code.html

[41] Hybrid Analysis. 2020. Free Automated Malware Analysis Service - powered by Falcon

Sandbox - Viewing online file analysis results for “searchfiles.exe.” Retrieved from

https://www.hybrid-

analysis.com/sample/5ff7863b8969855e695d0bf255f60e24cec10efd36b2b5f05e4cdb7e2f7ac15a

?environmentId=120

[42] Elastic Co. 2020. ELK Stack: Elasticsearch, Logstash, Kibana | Elastic. Retrieved from

https://www.elastic.co/what-is/elk-stack

https://virustotal.github.io/yara/
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://github.com/redcanaryco/atomic-red-team
http://nationalccdc.org/index.php/competition/about-ccdc/history
http://nationalccdc.org/index.php/competition/about-ccdc/history
http://raytheon.mediaroom.com/2019-04-26-University-of-Virginia-Defends-National-Cyber-Title
http://raytheon.mediaroom.com/2019-04-26-University-of-Virginia-Defends-National-Cyber-Title
https://cobaltstrike.com/
https://www.metasploit.com/
https://gist.github.com/joswr1ght/22f40787de19d80d110b37fb79ac3985
https://0x00-0x00.github.io/research/2018/10/28/How-to-bypass-AMSI-and-Execute-ANY-malicious-powershell-code.html
https://0x00-0x00.github.io/research/2018/10/28/How-to-bypass-AMSI-and-Execute-ANY-malicious-powershell-code.html
https://www.hybrid-analysis.com/sample/5ff7863b8969855e695d0bf255f60e24cec10efd36b2b5f05e4cdb7e2f7ac15a?environmentId=120
https://www.hybrid-analysis.com/sample/5ff7863b8969855e695d0bf255f60e24cec10efd36b2b5f05e4cdb7e2f7ac15a?environmentId=120
https://www.hybrid-analysis.com/sample/5ff7863b8969855e695d0bf255f60e24cec10efd36b2b5f05e4cdb7e2f7ac15a?environmentId=120
https://www.elastic.co/what-is/elk-stack

