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ABSTRACT 

 

Tissue-like 3-dimensional (3D) microbial communities called biofilms colonize a 

wide variety of biotic and abiotic surfaces and, in aggregate, constitute a major component 

of bacterial biomass on earth. As such, biofilms have a tremendous impact on the 

biogeochemistry of our planet and the biochemistry of higher living organisms. However, 

how macroscopic biofilm properties, such as its tolerance up to 1000 times higher 

concentrations of antibiotic drugs, its mechanical adhesion/cohesion and its biochemical 

metabolism, emerge from the collective actions of individual bacteria remains unclear.  

There are two critical barriers to study single cell behaviors within thick 3D 

biofilms in a non-invasive manner. First, conventional imaging modalities are not able to 

non-invasively resolve individual cells within thick 3D biofilms. Second, accurate cell 

detection and cellular shape measurements in densely packed biofilms are challenging 

because of the limited resolution and low signal to background ratios (SBRs) in 

fluorescence microscopy images. The focus of the research described in this dissertation is 

to solve these problems. 

To image bacterial biofilms with cellular/subcellular resolution, we used lattice 

light-sheet microscopy (LLSM), a new imaging technology that effectively combines low 

photo-toxicity and high spatiotemporal resolution. To enable growing and imaging 

biofilms, especially pathogenic species, at high resolution, we designed a flow chamber 

system that is compatible with LLSM. To accurately segment and classify single bacterial 

cells in 3D fluorescence images, we developed Bacterial Cell Morphometry 3D (BCM3D), 

an image analysis workflow that combines deep learning with mathematical image analysis. 
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Compared to state-of-the-art bacterial cell segmentation approaches, BCM3D consistently 

achieves higher segmentation accuracy and further enables automated morphometric cell 

classifications in multi-population biofilms. The accurate segmentation results from 

BCM3D provide precise single-cell observables, including cell positions, orientation, 

morphologies, volumes and fluorescent intensities. We developed a multi-cell tracking 

method by utilizing these cell observables to associate the same cells imaged at different 

time points.  

The integrated workflow, namely non-invasive imaging biofilms with subcellular 

resolution, accurate segmentation and classification of single bacterial cells in 3D 

fluorescence images and tracking multi-cell in the segmentation results are applied to study 

the diffusive behavior of individual cells in Shigella flexneri biofilms. 
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Glossary 
 

AOGM  Acyclic oriented graph matching 

AOTF   Acousto-optic tunable filter  
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CSLM   Confocal scanning laser microscopy 
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ECM   Extracellular matrix 

EET   Extracellular electron transfer 

EGFP   Enhanced green fluorescent protein 

EPS   Extracellular polymeric substances 

FEP   Fluorinated ethylene propylene 

FWHM  Full width at half maximum 

FOV   Field of view 

GFP   Green fluorescent protein 
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GT   Ground truth 

IoU   Intersection-over-Union 

LCuts   Linear cuts 

LED   Light-emitting diode 

LLSM   Lattice light sheet microscopy 

MRD   Modified Robbins device 

MSD   Mean squared displacement 

MTP   Microtiter plate 

NA   Numerical aperture 

OD   Optical density 

PI   Propidium iodide 

PSF   Point spread function 

RFP   Red fluorescent protein 

SBRs   Signal to background ratios 

sCMOS  scientific Complimentary metal-oxide semiconductor 

SLM   Spatial light modulator 

TRA   Tracking accuracy 

YFP   Yellow fluorescent protein 
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1.1 Overview 

Tissue-like 3-dimensional (3D) microbial communities called biofilms colonize 

and grow on a wide variety of biotic and abiotic surfaces and constitute a major component 

of bacterial biomass on earth (1-3). As such, biofilms have been widely recognized for their 

impact on the biogeochemistry of our planet and the biochemistry of higher living 

organisms, including humans (4, 5). Electrochemically active biofilms (EABs), such as 

Shewanella and Geobacter species are capable of extracellular electron transfer (EET) to 

insoluble minerals or electrode, which are used as electron acceptors for their anaerobic 

respiration (6-18). The EET process plays critical role in mineral cycling, including not 

only carbon and iron but also trace metals, metalloids and phosphates (6, 10, 11, 13). To 

harness this capability, microbial fuel cells (MFCs) that convert the energy stored in 

organic compound to electrical energy by the catalytic reaction of microorganism have 

been invented (12, 17, 19-26). In medical settings, pathogenic biofilms are responsible for 

both acute and chronic infections. For example, Pseudomonas aeruginosa biofilms were 

found in the respiratory tract of cystic fibrosis patients (27-30). Shigella flexneri is an 

intracellular bacterial pathogen that leads to bloody diarrhea by invading epithelial cells in 

the colonic mucosa (31-37). Previous studies found that S. flexneri forms biofilms under 

the presence of the bile salts, deoxycholate (DOC) and cholate acid (CA) (33, 36, 38). It 

has been reported that about 1 million hospital-acquired infections each year are biofilm-

mediated and these infections result in an estimated 100’000 deaths per year (39-42).  

To enable either the efficient removal of pathogenic biofilms in medical settings or 

the rational design of microbial ecosystems with desirable biomedical and bioengineering 
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capabilities (19, 43-45), it is necessary to understand how macroscopic biofilm properties, 

such as its size and shape, its mechanical cohesion/adhesion, and its biochemical 

metabolism, emerge from the collective actions of individual bacteria. Specifically, we 

need to understand the biochemical and mechanical mechanisms employed by bacteria to 

cooperate or antagonize each other in spatially and temporally heterogeneous biofilm 

microenvironments (46-53). However, due to the complexity of biofilms, the lack of non-

invasive imaging methods, and the scarcity of reliable single cell segmentation methods 

for thick 3D biofilm images, it is still challenging to study single cell behaviors in dense 

3D biofilms.  

 

1.2 Biofilm Formation 

Biofilm formation can be categorized into four main stages: (1) reversible bacterial 

adhesion to a surface (Figure 1a); (2) irreversible attachment (microcolony formation, 

Figure 1b); (3) biofilm maturation (Figure 1c); and (4) bacterial dispersion (Figure 1d). 

Each stage is represented by unique phenotype. The first stage, initial reversible adhesion, 

is partially stochastic, driven by Brownian motion and influenced by environmental factors 

such as shear forces, pH, ionic strength, temperature, and van der Waals and electrostatic 

interactions between bacterial and host surfaces (3, 54-58). Previous studies also found that 

flagellar motility is important for initial attachment of several pathogenic species, including 

P. aeruginosa, Vibrio cholerae, and E. coli (59-63). 

The second stage, irreversible attachment (microcolony formation), is achieved by 

bacterial cells that can tolerate surrounding hydrodynamic forces and stay on the surface. 
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Different types of pili and bacterial surface anchor proteins are involved in this stage (59, 

62, 64-66). For example, in addition to flagella, P. aeruginosa uses type IV pili-mediated 

twitching motility to maintain adherence, and move across the attachment surface (59, 62). 

The third stage, biofilm maturation, is initiated with the production of extracellular 

polymeric substances (EPS), a matrix typically composed of extracellular DNA, proteins 

and polysaccharides (58, 67, 68). The matrix supports the three-dimensional structure of 

the biofilm. During or after biofilm maturation, cell dispersal becomes an option for 

maintaining biofilm architecture and creating a beneficial environment for the resident 

bacterial cells to live (56). Biofilm dispersal can be induced by several different 

environmental factors, such as shear stresses, nutrient concentration, oxygen concentration 

and accumulation of toxic products (69-72). Bacteria have developed to gauge whether it 

is beneficial to reside within the biofilm or resume a planktonic lifestyle in response to 

environmental changes (56, 69-72). The released cells could then colonize other regions to 

form new biofilms.  
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Figure 1.1 Biofilm formation steps. Biofilm formation are generally categorized into four 

main stages: (a) reversible bacterial adhesion to a surface, (b) irreversible attachment 

(microcolony formation), (c) biofilm maturation, and (d) bacterial dispersion. 

 

1.3 Biofilm Complexity  

The complexity of biofilms is due to the fact that biofilms are inherently 

heterogeneous (73, 74). In multi-species biofilms, the biofilm structure is optimized for 

different organisms to have the best opportunity to access oxygen and nutrients (74-77). In 

single-species biofilms, subpopulations in the community can also show heterogeneous 

features. The reason for the generation of biofilm heterogeneity can be generalized into the 

following three aspects (73, 74). First, physiological heterogeneity, caused by bacterial 
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cells’ adaptation to their local microenvironments. When metabolic substrates, such as 

oxygen and nutrients diffuse into biofilms and are consumed by bacterial cells, chemical 

concentration gradients are created. The gradients of waste products or secreted bacterial-

signaling compounds will also develop within biofilms. The chemical gradients result in 

forming locally different microenvironments within biofilms. The physiology of individual 

cells will vary depending on the responses of the bacteria to their local environmental 

conditions (74, 78-80). Second, genetic variation, where mutations may occur during the 

growth of bacterial cells in biofilms. Cells within the community may develop variant 

subpopulations with colony morphologies that are different from the parent strain (81, 82). 

This phenomenon has been found in a wide range of bacterial species. For example, the 

formation of colonies with rough and wrinkly appearance in P. aeruginosa biofilms 

(Figure 1.2 a, b) (83, 84). Another example is the formation of rugose colonies in Vibrio 

cholerae biofilms (Figure 1.2 c, d) (85). Third, stochastic gene expression, where bacterial 

cells express the same genes at different levels independent of the prevailing environmental 

conditions (74, 86-91). Bacteria evolved ‘division of labor’ strategy by expressing the same 

genes at different levels to increase the functional complexity of biofilms (74, 92). This 

cooperative behavior can increase the overall fitness of the microbial population (93, 94). 

Stochastic gene expression events contribute to the formation of the persister cells in 

biofilms (74, 95-98). The persister cells are a subpopulation of the community, which 

might be in dormant state and less susceptible to antibiotics. Under the treatment of 

antibiotics, the susceptible cells are killed, but the persister cells can regenerate the biofilms 

after antibiotic drugs are removed.  
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Figure 1.2 Variant subpopulations with different colony morphologies. Reprinted from (83, 

85) with permission. (a) Appearance of wild type P. aeruginosa colony morphology on 

solid medium. (b) Variant colonies of P. aeruginosa with small, wrinkled appearance. (c) 

Colonies of V. choleare with the smooth appearance grown on LB agar. (d) Colonies of V. 

choleare with the smooth rugose appearance. c, d ©Copyright (1999) National Academy 

of Sciences. 

 

Due to the complex structure of biofilms, phenotype diversity and coordination of 

cellular behaviors within biofilms, bacterial populations obtain emergent capabilities 

beyond those of individual planktonic cells (1, 3, 57, 99). For example, biofilms are orders 
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of magnitude more tolerant towards physical, chemical, and biological stressors, most 

notably high resistance to antibiotic drugs (99, 100). The biofilm matrix, EPS makes 

important contribution for bacterial cells within biofilms obtaining the high tolerance to 

the environmental stressors (101). For example, the complex nature of the EPS do not only 

limit the depth that antibiotics could penetrate into biofilms (102, 103), but could also 

interact with antimicrobial agents, and finally leading to a decrease of their activities (68, 

104).  

The above-mentioned heterogeneous features of biofilms make it challenging to 

inspect live biofilms from cellular/subcellular level. Divergent local microenvironments in 

biofilms can vary the signal for inspection. For example, bacterial cells under different 

local microenvironments in biofilms express fluorescent proteins at different level. This 

will result in non-uniform fluorescence signal across the biofilm. Imaging biofilms with 

non-uniform fluorescence will cause extra challenges in imaging processing. The dense 3D 

structure and the complicated EPS components of biofilms add more barriers for signal 

detection. Taking microscopic imaging as an example, both of them will impact light 

penetration and increase the background noise, which will finally produce low quality 

images. To conduct desired studies on single cell behaviors in heterogeneous biofilms, the 

first requisite is the ability to image biofilms with cellular/subcellular resolution, in other 

words, advanced microscopy techniques. 
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1.4 Biofilm Imaging 

1.4.1 Imaging Techniques 

Among different types of tools for biofilm studies, microscopy techniques provide 

the direct way to inspect biofilms in vivo (74, 105-131). Among different kinds of 

microscopy techniques, confocal scanning laser microscopy (CSLM) has been the most 

widely used one (Figure 3a) (111, 113, 117, 118, 122, 127, 132). CSLM is the powerful 

microscopic technique to unravel the spatial structure and associated functions of biofilms. 

Even though powerful, CSLM is disadvantaged by its intrinsic limitations including 

insufficient resolution, slow data acquisition speed and photodamage. The diffraction-

limited axial z-resolution (~570 nm) is comparable to the diameter of a single bacterial cell, 

so that densely-packed cells quickly become unresolvable in the axial z-dimension. In 

CSLM, information is collected from a single point, the confocal volume. The point must 

be scanned through all three spatial dimensions, in order to build up 3D images. The 

scanning process will cause two problems. First, the scanning driven by mechanical 

devices, such as galvanometer mirror, limits the image acquisition speed of CSLM. Second, 

in confocal microscopy, the undesired out-of-focus fluorescence emission is filtered out by 

confocal pinholes to yield high signal-to-background ratios (SBRs), but the repeated 

illumination of out-of-focus regions during laser scanning and the high light intensities at 

the focal volume induce undesired photodamage to the specimen (phototoxicity) and 

photobleaching to the fluorophores used for labeling (133-135), especially in long-term 

imaging experiments. These limitations make confocal-based microscope not able to 
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resolve single bacterial cells in dense and thick (>10 micrometers) biofilms in a non-

invasive manner.  

Light sheet microscopy has been developed to overcome the drawbacks of 

confocal-based microscopy (108, 136). Herein, the excitation beam is engineered into a 

thin sheet and the emission fluorescence is imaged onto a camera by a perpendicular lens 

(Figure 1.3b). To improve the axial resolution that is determined by the thickness of the 

excitation light sheet, several optical configurations have been developed to create thinner 

light sheets. Among these, lattice light sheet microscopy (LLSM) (137, 138) and field 

synthesis variants thereof (139), axially-swept light sheet microscopy (ASLM) (140, 141), 

and single-objective oblique plane light sheet microscopes (142-145) now combine 

excellent 3D spatial resolution (200-400 nm) with fast temporal resolution (up to the scale 

of ms) and low phototoxicity which is two or three orders of magnitude smaller than that 

of the confocal microscopy modalities (137, 146-148). Long-term imaging is necessary to 

study biofilm development which occurs in the time scale from hours to days. Imaging 

over a long period of time will have higher chance to cause photodamage and 

photobleaching to the biofilm sample. Thus, light sheet-based microscopy which combines 

subcellular resolution with fast temporal resolution and low phototoxicity, is a more 

suitable imaging technique to study biofilms than confocal-based microscopies. LLSM can 

cover length scales differing by 4 orders of magnitude (~200 nm to 2000 µm) and time 

scales differing by 7 orders of magnitude (ms to days). The ability to acquire 3D movies 

of living cells that contain information spanning orders of magnitude in length- and time-

scales enables the measurement of the spatial, phenotypic, and developmental trajectories 
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of individual cells in 3D biofilms over multiple hours and days. The work described in this 

dissertation utilizes a home-built LLSM, described in detail in Chapter 2. 

 

 

Figure 1.3 Confocal microscopy and light sheet microscopy. (a) Confocal microscopy, 3D 

images is constructed by scanning the sample with a single point, the confocal volume. (b) 

Light sheet microscopy, the excitation and detection objectives are orthogonally installed. 

3D images is constructed by scanning the sample with a thin light sheet. 

 

1.4.2 Labeling Methods 

To be imaged with a fluorescent microscope, biofilms need to be labeled with 

fluorescent probes. In general, the fluorescence labeling methods can be categorized into 

two types, fluorescent proteins labeling and fluorescent dyes labeling. Labelling cells with 

fluorescent proteins can be achieved by either introduction of a plasmid that contains the 

fluorescent protein gene or incorporation of the fluorescent protein gene into the 

chromosomal DNA. Green fluorescent protein (GFP) and variants of GFP, such as 

enhanced green fluorescent protein (EGFP), are the most commonly used ones. Cyan 
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fluorescent protein (CFP), yellow fluorescent protein (YFP) and red fluorescent protein 

(RFP) allow for multicolor labeling of different cells in biofilms of multiple species or 

different components in biofilms of single species (86, 88, 149). The two most attractive 

features of fluorescent proteins labelling are the high specificity due to genetic encoding 

and enabling visualization of the 3D architecture of the biofilm cells during biofilm 

development. Fluorescent proteins are also particularly useful for tracking gene expression 

within biofilms (86, 88, 149). However, a disadvantage of fluorescent proteins is that their 

fluorescence brightness are ~10 times lower than organic dyes. 

The other option to label biofilms is to stain biofilms with fluorescent dyes. Many 

fluorescent dyes are commercially available for designing experiments with different goals. 

For example, DAPI (4’, 6-Diamidino-2-phenylindole dilactate) is highly selective for 

nucleic acids (150), while FM 4-64 stains the cell membrane (151). Propidium Iodide (PI) 

will not stain live cells because it is not cell membrane permeable (152-154), while SYTO-

9 can freely enter live cells and stain nucleic acids (152, 154, 155). Therefore, PI and 

SYTO-9 can provide information about cell viability. Fluorescent dyes can often provide 

brighter fluorescence than fluorescent proteins. However, one issue of using fluorescent 

dyes is that dense and thick biofilms may limit the penetration depth of dyes. It may result 

in incomplete and non-uniform labeling of the biofilm. Both the fluorescent protein and 

dye labeling methods are used in this dissertation. Specifically, S. flexneri and Shewanella 

oneidensis MR-1 strains are labeled with GFP. Myxococcus xanthus strains are labeled 

with PAmCherry or FM 4-64 depending on the requirements of different experiments, as 

described in Chapters 2 and 4. 
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1.4.3 Biofilm Formation Device for Imaging 

Polystyrene microtiter plates are the most commonly used device for biofilm 

formation. The classical procedure is to grow bacterial cells in the wells of a microtiter 

plate (59, 156, 157). In these assays, the biofilm can be quantified by measuring all biomass 

attached to the surface of the wells. The Calgary biofilm device was derived from the 

microtiter plates (158). Biofilms grow on the coverlid instead of the surface of the wells. 

The coverlid is composed of pegs that fit into the wells of the microtiter plate (Figure 1.4a).  

Microtiter plate devices can only grow biofilm under static conditions, which 

means hydrodynamic conditions cannot be changed. To overcome this problem, the 

Robbins device (Figure 1.4b), drip flow biofilm reactors (Figure 1.4c) and rotary biofilm 

reactors were developed (159-162). The basic design of these devices are coupons, such as 

a standard microscope slide, inserted into the liquid stream. The coupons can be removed 

separately for examination. Those coupon-based devices have been applied to study 

biofilm formation under controlled conditions, such as different hydrodynamic conditions 

and different surface materials. However, in order to inspect biofilms in these assays, 

coupons must be taken out, therefore these devices are not available for direct observation 

of the biofilm development.  

To study biofilm development in real time, flow chamber (Figure 1.4d) systems 

have been developed for direct inspection of live biofilms (163-169). Those devices can be 

categorized into two types, the open type and the closed type (106). In the open type, the 

detection devices, like an objective lens of a microscope, can be directly placed in the 
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media in which biofilms are growing. In the other type, the flow chamber is a closed system 

but has a detection glass or plastic window on which the biofilm can grow. Then, the 

biofilm can be imaged from its substratum side through the detection window with 

microscopes. Flow chamber systems allow real-time monitoring of the growth dynamics 

of biofilms. Many researches to study the combined effects of several influencing factors 

on biofilm formation and the in situ gene expression in live biofilms have been carried out 

by the combination of these devices with microscopy techniques (163-165). 

Those flow chamber systems have two obvious limitations. First, the open type 

cannot be used to image for long-term, like several days, since biofilms can develop on the 

objective lens. This issue will not only disable the microscope for imaging but also raise 

danger of spreading pathogenic bacteria, such as P. aeruginosa and S. flexneri. Second, the 

closed type cannot be applied to study biofilms growing on materials that are not 

transparent. For example, Shewanella and Geobacter species form on minerals or electrode 

that might not be transparent. Considering these limitations, we designed a novel flow 

chamber system that is compatible with LLSM. This flow chamber system, described in 

Chapter 3, allows growing biofilm on any materials of interest for long-term imaging under 

precisely controlled growth conditions. This work has not been published yet 
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Figure 1.4 Biofilm formation devices. Adapted from (106), reprinted with permission. (a) 

The microtiter plate (MTP) system and the calgary biofilm device (CBD). (b) The Modified 

Robbins Device (MRD). In MRD, coupons are inserted into the liquid stream. The coupons 

are mounted on small pistons that can be removed for inspection (see the inserted figure). 

(c) The drip flow biofilm reactor. The commercial version of the drip flow biofilm reactor 

contains four chambers each accommodating a microscope slide. Biosurface Technologies 

Corporation © Bryan Warwood. Reuse not permitted. (d) Flow chamber system. It consists 

of a bubble trap to capture small air bubbles in the medium. (a) (b) and (d) © Claus 

Sternberg. 

 

1.4.4 Data Quantification 

Even though biofilms can be imaged with subcellular resolution, data quantification, 

in specific, single bacterial cell segmentation is still challenging. The heterogeneity of 
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biofilms not only makes it difficult to image with microscopes but also impact the quality 

of the acquired images. For example, different local environmental conditions within 

biofilms can affect the expression of the fluorescence proteins and lead to non-uniform 

fluorescence signals across the biofilm. When the excitation and emission light penetrate 

through thick and dense biofilms, both of them can be refracted and/or scattered by the 

biomass. This issue will attenuate the fluorescence signal and also increase the background 

noise. Those abovementioned problems will result in low image quality, such as non-

uniform fluorescence intensity and low SBRs. Image segmentation, specifically, single-

cell segmentation from dense biofilm images thus becomes a critical challenge.  

Image processing approaches based on the watershed technique and intensity 

thresholding have been developed over the years for single-cell segmentation in bacterial 

biofilms (131, 133, 134, 170). However, these algorithms often require manual 

optimization of many user-selected parameters, their applicability are thus limited. 

Moreover, when cell densities are high, when SBRs are low, and when cellular 

fluorescence intensities are not uniform across the cytosol or the cell surface, watershed- 

and thresholding-based image processing methods can’t produce ideal segmentation results 

even with optimized parameters.  

Deep learning, a machine-learning technique, specifically neural networks, have 

been widely applied to the quantitative analysis of biological images, including image 

identification, image segmentation and object tracking (171-175). Several methods, such 

as DeepCell (174), CDeep3M (176), U-Net (177, 178), CellProfiler (179, 180) and Mask 

R-CNN (181) software libraries, have been developed and successfully applied to a variety 
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of data types. Among these methods, U-Net is the milestone in the field of single-cell 

segmentation (177, 178). Many promising results were obtained with the application of U-

Net for cell segmentation. For example, accurate identification of cell contours with U-Net 

was applied to explore mechanisms of cell size control in fission yeast (182).  

Combining deep learning with mathematical post-processing algorithms, we 

developed an automatic workflow named Bacterial Cell Morphometry 3D (BCM3D) (183) 

to accurately segment and classify single bacterial cells in 3D dense biofilm images. The 

BCM3D workflow outperforms state-of-the-art bacterial cell segmentation approaches 

This work has been published (183). Details of BCM3D are described in Chapter 4. 

 

1.5 Bacterial Cells Tracking 

In addition to image biofilms with cellular/subcellular resolution and precise single 

cell segmentation, simultaneous multiplexed tracking of individual cells is also required to 

understand how biofilm growth and its functional capabilities arise from the collective 

actions and interactions among individual cells. However, multi-cell tracking in dense 

biofilms is challenging due to the following factors. First, bacterial cells of the same species 

have almost identical morphometry. Second, bacterial cells are closely packed within dense 

biofilm. Third, individual cells possess dynamic features, such as wiggling and moving, 

which can make cells disappear from the imaging window among frames of images 

collected at different time points. To minimize the impact of these issues on the tracking 

accuracy, conventional tracking approaches often requires high frame rate imaging (134, 
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184) or multicolor labeling (185) imaging. High frame rate imaging makes the sample 

exposure to light with high frequency. Multicolor imaging causes additional light exposure 

to the sample. They can both result in increased photodamage, especially for long-term 

time-lapse imaging. Due to the large size (e.g. 50 by 50 µm) of the field of view (FOV) 

that is required to image biofilms, high frame rate might be not experimentally achievable. 

An additional challenge following cell tracking is to determine the cell lineage.  

To address the challenges associated with multi-cell tracking in crowded biofilms, 

we developed a bacterial cell tracking algorithm that leverages correlations among single-

cell observables, i.e. cell positions, orientations, shapes, volumes and fluorescent 

intensities. The cell lineage is also determined by using single-cell observables, i.e. cell 

positions and cell volumes. This work is described in Chapter 5 and has not been published 

yet. 

1.6 Single Cell Dynamics of Shigella flexneri Biofilms 

Shigella flexneri is an intracellular bacterial pathogen that invades epithelial cells 

in the colonic mucosa and leads to bloody diarrhea (36, 186-188). The surviving and 

spreading of S. flexneri is challenged by several environmental conditions within the 

epithelial lining of the gut, such as host production of antimicrobial peptides, proteases, 

and bile salts (189). The amphipathic structure of bile salts provides detergent-like 

properties and results in antimicrobial activity (190, 191). Previous studies revealed that 

the interaction between Shigella species and its environment is regulated by bile salts (33). 
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Pope et al. first found that the adhesion of S. flexneri and S. dysenteriae to HeLa cells are 

enhanced by the presence of the secondary bile salt deoxycholate (DOC) (192). Recently, 

it is reported that Shigella spp. form the biofilms when exposure to a mixture of DOC and 

cholic acid (CA) (38).  

The intra- and inter- cell spread of S. flexneri to host cells is a hot topic. The spread 

of S. flexneri is driven by actin-based motility (31, 37). IcsA, an outer membrane protein, 

is the major determinant of the actin-based motility (31, 32, 37). In addition to its role in 

actin-based motility, IcsA also acts as a host cell adhesion (31, 193). Very recently, 

Koseoglu et al. reported that IcsA promotes biofilm formation of S. flexneri in the presence 

of bile salts (36). Little is known about how IcsA contributes to the spread S. flexneri while 

also facilitates its biofilm formation. A better understanding of single cell behaviors in S. 

flexneri will help answer this question.  

None of the above-mentioned studies on S. flexneri biofilms were performed in vivo 

with single cell resolution. Those studies only provide information of S. flexneri biofilms 

at an ensemble level, such as the total biomass and the thickness. The single cell behaviors 

in S. flexneri biofilms are still unclear. Understanding the individual cell behavior in S. 

flexneri biofilms could help develop strategies for eliminating this pathogenic strain and 

thus prevent its spread. In this dissertation, the workflow that enables non-invasive study 

of live biofilms from the single cell level is applied to investigate the dynamics events in 

S. flexneri biofilms. This work is described in Chapter 5 and has not been published yet. 
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1.7 Outline 

The majority of this dissertation focuses on addressing the challenges in biofilm 

study by developing integrated experimental and computational technologies that enable 

non-invasive imaging of bacterial biofilms with subcellular resolution, accurate automatic 

single-cell segmentation for the experimentally acquired images, and simultaneous 

tracking of thousands of cells inside 3D biofilms. Chapter 2 describes how the imaging 

platform, LLSM is built. For the purpose of long-term imaging of live biofilms with LLSM 

and precise control of the growth condition for biofilms, a flow chamber, in which biofilm 

can grow while imaging, is required. Chapter 3 describes how the flow chamber system 

which is compatible with the LLSM is designed. Chapter 4 presents the automatic 

workflow BCM3D we developed for single bacterial cell segmentation from the 3D images 

acquired with LLSM. Based on the accurate segmentation results provided by BCM3D, we 

developed a multi-cell tracking algorithm by utilizing correlations among single-cell 

observables, including cell positions, orientations, shapes, volumes and fluorescent 

intensities. The tracking algorithm is presented in Chapter 5. The non-invasive imaging 

method, LLSM, the single-cell segmentation workflow, BCM3D and the tracking 

approaches were applied to study the single cell dynamics in S. flexneri biofilms. The 

results are presented in Chapter 5. Finally, the overall significance and future directions of 

the work are summarized in Chapter 6. 

The work presented in this dissertation enables the real-time measurements of 

single cell behaviors in 3D dense bacterial biofilms. Then, the correlation between the 

spatial trajectory of each cell and the cell’s gene expression and behavioral phenotype can 
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be established. Such information provides an integrated understanding of how bacteria 

coordinate gene expression and social behaviors spatially and temporally. A fundamental 

understanding of biofilm biology will help develop new strategies for harnessing the 

emergent functional capabilities of microbial populations and for removing pathogenic 

biofilms. 
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2.1 Introduction  

According to the scales of interest in characterizing biofilms, different technologies 

that can provide different scales of information should be selected to design the experiment. 

For example, mass spectrometry (MS) can help us to understand biofilm proteomics at the 

molecular level (74, 194, 195). Transcriptomics approaches, including RNAseq, 

microarrays, and reverse transcription quantitative PCR (RT-qPCR), are useful to explore 

global and localized gene expression within biofilms from the gene/enzyme level (74, 196-

203). Imaging techniques, such as phase contrast and confocal microscopy, combined with 

flow chamber systems, provide the way to understand the structure and dynamics of 

biofilm at the cellular level (74, 105-131). 

Phase contrast imaging systems use refraction and interference caused by structures 

in the specimen to create high-contrast, high-resolution images without staining (105, 110, 

204). Phase contrast microscopy is useful for viewing live specimens and structures such 

as endospores and organelles (105, 110). Phase contrast microscopy can provide a clear 

differentiation of semi-transparent microorganisms with transmitted light, but the depth of 

view is limited to a few microns. This caveat makes it not suitable to image thick 3D 

biofilms. Therefore, phase contrast microscopy, the oldest and simplest type of microscope, 

is often used for preliminary test or as an auxiliary equipment for other advanced imaging 

systems.  

Advances in imaging technology enables obtaining 3D images of biofilms in real 

time. The most widely used approach for 3D biofilm imaging is confocal scanning laser 

microscopy (CSLM). The first 3D images of biofilms were obtained by CSLM 
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approximately 25 years ago (107). CSLM is not suitable to image live biofilm for long 

periods of time due to the high phototoxicity to the specimen and the high photobleaching 

rate of fluorophores used for labeling.  

In recent years, light sheet-based fluorescence excitation and imaging approaches 

have been developed to overcome the drawbacks of confocal-based microscopy. Here, 

fluorescence excitation is engineered into a thin sheet. The emission from the sample is 

imaged onto a camera by a lens perpendicular to the excitation light sheet (Figure 1.2). It 

is basically simple widefield imaging, but optical sectioning is accomplished with the thin 

light sheet to illuminate a single plane. Constructing three-dimensional images only need 

scanning the sample in the perpendicular dimension. Since the illuminated volume is 

roughly equal to the detected volume, photodamage is minimized (205, 206). The most 

classical approach to generate a light sheet is compressing a Gaussian beam profile by a 

cylindrical lens. In this case, the lateral resolution 𝑅𝑙  of the technique (i.e. parallel to the 

light sheet) is simply diffraction limited, which is known as Abbe’s diffraction limit (207): 

                                                      𝑅𝑙 =
𝜆

2∗𝑁𝐴
                                                       (2.1) 

where λ is the wavelength of the light, NA is the numerical aperture and equals to 𝑛∙sin𝜃, 

n is the refractive index of the medium the lens is in, and 𝜃 is the maximum half-angle of 

the cone of light entering the lens. 

The axial resolution is determined by the thickness of the light sheet and the 

numerical aperture of the detecting lens (207): 
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𝑅𝑎_𝑒𝑥 = 2 ∗ 𝜔0                                                (2.2) 

where 𝑅𝑎_𝑒𝑥 is the axial resolution of the excitation path, 𝜔0 is the beam waist. 

𝑅𝑎_𝑑𝑒𝑡 = 1.78 ∗
𝑛∗𝜆𝑒𝑚

𝑁𝐴𝑑𝑒𝑡
2                                          (2.3) 

where 𝑅𝑎_𝑑𝑒𝑡 is the axial resolution of the detection path (207), n is the refractive index of 

the media, 𝜆𝑒𝑚 is the emission wavelength, and 𝑁𝐴𝑑𝑒𝑡 is the numerical aperture of the of 

the detection objective. 

To improve the resolution of light sheet-based microscopes to the subcellular scale, 

many optical configurations have been developed to create thinner light sheet. Among 

these, lattice light sheet microscopy (LLSM) (137, 138) and field synthesis variants thereof 

(139), axially-swept light sheet microscopy (ASLM) (140, 141), and single-objective 

oblique plane light sheet microscopes (142-145) now combine subcellular resolution with 

fast temporal resolution and lower phototoxicity than confocal microscopy modalities. 

Specifically, these advanced light sheet-based microscopy approaches can operate at 

illumination intensities that are below the levels of cellular phototoxicity, even for 

notoriously light sensitive specimens, and reduce fluorophore photobleaching by 20-50 

times compared to confocal microscopy, while maintaining comparable spatial and 

temporal resolution and SBRs (137, 138). The work described in this dissertation utilizes 

a home-built LLSM.  
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2.2 Phase contrast microscopy 

Phase contrast microscopy has been widely used for decades, with Fritz Zernike 

first describing the method in 1934 (208). A major advantage of phase contrast microscopy 

is that it permits imaging of structural properties of live cells and does not require 

fluorescent labeling. Phase contrast microscopy has a major disadvantage, the inability to 

capture 3D images. Despite being limited by this caveat, phase contrast microscopy 

combined with flow chamber systems is still a direct, fast and easily-setup method to 

observe biofilm development from a macroscopic perspective. Therefore, before imaging 

bacterial biofilms with LLMS, biofilms are first cultured in a home-made flow channel and 

imaged on a phase contrast microscope. The purpose for these experiments includes 

checking the effect of the laser intensity, the components of the flow media and the flow 

rate of the media on the growth of biofilms, and obtaining preliminary data to estimate the 

growth rate of biofilms. This information is then used to optimize the experimental 

condition for imaging biofilms in 3D with cellular/subcellular resolution on LLMS. 

 

2.2.1 Optical Path of the Phase Contrast Microscope 

The phase contrast microscope used in this dissertation is part of a home-designed 

single-molecular microscope (Figure 2.1). For the phase contrast optical path, a red light-

emitting diode (LED) is used as the illumination light source. The LED is installed on the 

illumination tower above the inverted microscope stage of the single-molecular microscope. 

The illumination red light is first collimated by a set of lenses. Then the illumination l ight 
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passes through an annulus ring, and result in a ring of light. It is then focused by a condenser 

lens onto the sample plane. The light passing through the sample will be scattered by the 

biological material and phase shifted by -90°. The light passing through the area 

surrounding the biological material will not be affected. The light then travels down 

through the objective lens and the tube lens. A flip mirror is installed at the focal plane of 

the tube lens. It allows switching the light travelling between the fluorescence emission 

pathway and the phase contrast pathway. The flip mirror is electronically controlled, which 

enables automation during imaging acquisition when switching between optical paths is 

required. When the mirror is flipped up, the light will travel through the phase contrast 

optical pathway. After the flip mirror, the light then passes through a 4f system. A phase 

ring is installed in the Fourier plane between the two 4f lenses (Figure 2.1). The light that 

has not been scattered by the sample will pass through the ring, and be phase shifted by 

+90°, while most of the scattered light will not pass through the ring and will not be affected. 

Finally, the camera detector (Aptina MT9P031) is positioned at the image plane. The 

destructive interference between the background and scattered light caused by the total 

phase shift of 180° will result in the sample appearing darker than the light background, 

when viewed on the camera.  

The fluorescent channels will be only used to check the effect of laser intensity on 

the growth of biofilms and the intensity of the fluorescence signal for the fluorescently 

labelled biofilm sample, but not to image biofilms. The configuration of our microscope 

enables us to shine 405, 488, 514 and 561 nm lasers on the biofilm sample. The details of 

the fluorescent optical paths are omitted here.  



Chapter 2: Instruments 38 
 

 

 

Figure 2.1 Optical path of single-molecule microscope containing a phase contrast channel. 

Adapted from (209). Reprinted with permission. The red LED is used as the illumination 

light source for the phase contrast optical path. A motorized ‘flip-mirror’ is used to switch 

between the fluorescence (red) and phase contrast (grey) optical pathways. A dichroic 

mirror splits the fluorescence pathway into a ‘red’ and ‘green’ fluorescence channels. The 

excitation lasers, LED, ‘flip-mirror’ and camera detectors are controlled remotely with a 

program written in Matlab. 
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2.2.2 Synchronization of the Phase Contrast Microscope 

LED and camera: 

When the LED receives a high-level digital signal, it turns on. Then, the API 

controlling the camera is called to allow the camera to begin collecting images. After 

finishing saving images, a low-level digital signal is sent to the LED to turn it off. Iteration 

of these two steps allows one to acquire time-lapse data. Time gap between iterations can 

be set as required.  

Translational stages, LED and camera: 

Desired position information is sent to the translational stages by calling their APIs. 

After the translational stages move to the desired position, the LED is turned on by a high-

level digital signal. Then, the API controlling the camera is called to let the camera begin 

collecting images. After finishing saving images, a low-level digital signal is sent to the 

LED to turn it off. Iteration of these three steps allows to acquire time-lapse data. Time gap 

can be set as required.  

Laser, LED and camera: 

Laser illumination is controlled by the mechanical shutter in the optical path. The 

shutter is open by a high-level digital signal, which means the laser illuminates on the 

sample. After illuminating the laser for the time the user defined, the laser will be blocked 

by turning off the shutter with a low-level digital signal. Then, the LED is turned on by a 

high-level digital signal. Following that, the API controlling the camera is called to let the 
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camera begins collecting images. After finishing saving images, a low-level digital signal 

is sent to LED to turn it off. Iteration of these three steps allows to acquire time-lapse data. 

Time gap can be set as required.  

 

2.2.3 Data Acquisition of the Phase Contrast Microscope 

A home-made microscope has several benefits compared to commercial ones. For 

example, there is no requirement for external maintenance, therefore a custom microscope 

can save the cost in long term. The most attractive advantage is the full flexibility in terms 

of its design and use. For example, the home-written data acquisition program provides the 

ability to adjust the procedure for data collection to satisfy specific experimental 

requirements. We wrote the program to control the phase contrast microscope by ourselves. 

The data acquisition program is developed with Matlab and a NI DAQ card (NI 

PCIe-6351, X Series). The functionalities of the data acquisition program includes 

collecting time-lapse data at a fixed field of view (Sequence), collecting time-lapse data at 

multiple regions of the sample at different z position (Z Scan plus Grid Scan), collecting 

time-lapse data for sample exposure to laser (scan with laser on) (Figure 2.2). Each 

functionality is designed for specific experiments. Collecting time-lapse data in a fixed 

field of view is for general experiments to observe the growth of a bacterial biofilm. 

Collecting time-lapse data at multiple regions of the sample at different z positions can 

provide spatial information of biofilm growth. Collecting time-lapse data for sample 
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exposure to laser are especially useful for designing experiments to check the impact of 

light on the growth of biofilms.  

 

Figure 2.2 The graphical user interface (GUI) of the data acquisition program for the phase 

contrast microscope. Imaging Source Camera: set the size of the image. Live: online 

monitor the sample. Z scan: collecting images by scanning the sample in the z direction. 

Frames/z is used to set the number of frames collected at each z position. T_scan is used 

to set the time between z scans. Grid scan: collecting images by scanning the sample in 

the x and y direction. Horizontal and Vertical determines how many field of views will be 

imaged in x and y direction, respectively. Sequence: collecting time-lapse data at a fixed 

field of view. Exposure time sets the exposure time for all data acquisition mode. Frames 

sets how many frames of image will be collected at one time point. Num_seq sets how 

many time points data will be collected. T_lapse is used to set the time between time points.  
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2.3 Lattice Light Sheet Microscopy (LLSM) 

Betzig lab developed LLSM in 2014 (137). Chen et al. in Betzig lab reported the 

detailed design of LLSM (137). In this section, I will briefly introduce several basic 

concepts in LLSM, such as Bessel beam (non-diffracting beam), 2D optical lattice, the 

generation of lattice light sheet, device basics and synchronization. 

2.3.1 Bessel Beam 

Assuming a beam propagates in the y direction with an unchanged profile in the xz 

plane, it is defined as a non-diffracting beam. A Bessel beam is a non-diffracting beam 

whose intensity profile in its cross-section can be described by the circularly symmetric 

Bessel function (Figure 2.3) (137, 210-214). Bessel beams are good candidates to create 

non-diffracting light sheet. 

 

Figure 2.3 The intensity profile of the cross-section (xz plane) of a simulated Bessel beam 

propagating in y direction. 
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2.3.2 Two-dimensional (2D) Optical Lattice 

A 2D optical lattice is a non-diffracting beam whose intensity profile in the cross 

section has the symmetry of a 2D Bravias lattice (137, 215, 216). 2D optical lattices are 

also good candidates to create non-diffracting light sheet. But, they cannot be directly used, 

because they propagate in the whole 3D space (137).  

2.3.3 Generating the Desired Lattice Light Sheet 

Ideal Bessel beams and 2D optical lattices are good candidates to create thin, non-

diffracting light sheets, however, there are obstacles to use them in light sheet microscopy. 

For example, the way to generate ideal Bessel beams and 2D optical lattices is by confining 

the incident light beam to an infinitesimally thin ring at the rear pupil of a lens (137). 

Obviously, it is not possible to make an infinitesimally thin ring in reality. In practice, the 

infinitesimally thin ring is replaced with an annulus that has a particular width. In this case, 

the output beam is not an ideal Bessel beam or 2D optical lattice, but it still keeps the 

diffracting feature over a distance determined by the width of the annulus (137).  

In LLSM, the lattice light sheet pattern is generated by using a binary ferroelectric 

spatial light modulator (SLM). The SLM pattern is finally imaged at the sample to create 

the thin light sheet because it is positioned in a conjugated plane to the front focal plane of 

the excitation objective lens. An annular mask with appropriate width is positioned 

conjugate to the rear pupil plane of the excitation objective lens. The annular mask is to 

confine the beam and filter out undesired diffracted light. Chen et al. reported three 

different ways to derive desired lattice light sheets and provided the procedure to generate 
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the corresponding SLM patterns (137). They simulated the optical path from the SLM to 

the imaging plane is in Matlab (137). By simulation, the wavelength of the beam, the size 

of the annulus and the SLM pattern can be easily adjusted. The combination of the annulus 

and the binary SLM patterns can generate the light sheet with desired properties, such as 

the length and thickness of the light sheet, and the overall resolution in z (137). Here are 

two examples of generating lattice light sheet by following their procedure. Figure 2.4 

shows the procedure to simulate a hexagonal lattice pattern by starting with an ideal 2D 

optical lattice. Figure 2.5 shows the procedure to simulate a square lattice pattern by 

positioning a linear array of Bessel-Gauss Beams.  
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Figure 2.4 Steps in the simulation for the generation of the SLM pattern for a desired lattice 

light sheet. Adapted from (137), reprinted with permission from AAAS. (a) Intensity 

profile of the ideal 2D optical lattice which will be used to generate the desired lattice light 

sheet. (b) Bounded ideal 2D optical lattice shown in panel a. (c) SLM pattern obtained by 

binarizing the bounded ideal 2D optical lattice shown in panel b. (d) Illumination pattern 

before shooting on the annulus mask. It is obtained by the Fourier transform of the 

diffraction pattern produced by the SLM. (e) Simulated annulus mask. The inner and outer 
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NA of the annulus mask is 0.44 and 0.55, respectively. (f) Beam pattern immediately after 

or on the annulus mask. (g) Intensity profile of the cross-section of the lattice light sheet 

without dithering. (h) Intensity profile of the cross-section of the lattice light sheet dithered 

in the x direction. (i) Overall PSF of LLSM under dithering running mode. 
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Figure 2.5 Steps in the simulation for the generation of the SLM pattern for a desired lattice 

light sheet. Adapted from (137), reprinted with permission from AAAS. (a) The 

intensity of the ideal coherent Bessel light sheet. (b) SLM pattern obtained by binarizing 

the ideal coherent Bessel light sheet shown in panel a. (c) Illumination pattern before 

shooting on the annulus mask. It is obtained by the Fourier transform of the diffraction 

pattern produced by the SLM. (d) Simulated annulus mask. The inner and outer NA of the 

annulus mask is 0.44 and 0.55, respectively. (e) Beam pattern immediately after or on the 

annulus mask. (f) Intensity profile of the cross-section of the lattice light sheet without 
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dithering. (g) Intensity profile of the cross-section of the lattice light sheet dithered in the 

x direction. (h) Overall PSF of LLSM under dithering running mode. 

 

2.3.4 Detailed Designs of LLMS 

Lattice light sheet illumination path:  

LLSM is designed by Betzig lab (137). We adapted the original design by utilizing 

a new type SLM, different types of translation stages for the sample platform, different 

way to hold the sample platform and different way to position the main camera. The optical 

system of LLMS is shown in Figure 2.6. The microscope contains four lasers with different 

wavelengths in the excitation pathway. A 488 nm laser (1000 mW, Genesis, MX488-1000 

STM), a 560 nm laser (1000 mW, MPB Communications, 2RU-VFL-P-1000-560-B1R), 

and a 641 nm laser (1000 mW, MPB Communications, 2RU-VFL-P-1000-647-B1R) is 

used for excitation of fluorescent emitters, while a 405 nm laser (250mW, Coherent OBIS, 

OBIS 405nm LX) is used to activate photo-activatable fluorescent emitters, such as 

PAmCherry1 (activation with 405 nm laser and subsequent excitation with 561 nm laser). 

The configuration described above provides the capability for multi-color imaging.  

The beam is first expanded to by two lenses (50 mm FL/25.4 mm diameter, 

Thorlabs, 200 mm FL/25.4 mm diameter Thorlabs). The diameter of the resulting beam is 

about 4.0 mm. All excitation laser lines are then combined into the same excitation pathway 

using a set of dichroic mirrors. The beam then passes through an acousto-optic tunable 

filter (AA Quanta Tech, Optoelectronic AOTF AOTFnC-400.650-TN). A flip mirror is 
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installed behind the AOTF, which could switch the beam from lattice light sheet channel 

(flip up) to epi fluorescence channel (flip down). Following the flip mirror in the lattice 

light sheet channel, a pair of cylindrical lens (25 mm FL/12.5 mm diameter, Edmund 

NT68-160 and 250 mm FL/25.4 mm diameter, Thorlabs, ACY254-250-A) are positioned 

to expand the beam to expand the beam in x dimension. The expanded beam then shoots 

on the lattice light sheet pattern on the SLM. The SLM contains 2048 x 1536 ferroelectric-

liquid-crystal pixels (Forth Dimension, QXGA-3DM). In front of the SLM, there is a 

polarizing beam splitter cube (Newport, 10FC16PB.3) and a half-wave-plate (Bolder 

Vision Optik, BVO AHWP3) to change the phase of the beam (217). The diffracted light 

from the SLM is then focused by a 500 mm focal length lens (500 mm FL/40 mm diameter, 

Edmund 49-283) onto an annular mask (Photo Sciences Inc.). The beam is then shrunk by 

0.75 times with relay lenses (80 mm FL/12.5 mm diameter, Edmund NT47-670, 60 mm 

FL/12.5 mm diameter, Edmund NT47-668). After demagnification, the beam is conjugated 

to a fast scanning system contains two 3 mm galvos (Cambridge Technology, 6215H) and 

two achromatic relay lenses (25 mm FL/12.5 mm diameter, Edmund NT47-662) in a 4f 

arrangement. The fast scanning system enables scanning along the x and z directions on 

the sample. Following this, the beam pattern is then magnified by 3.2 times with relay 

lenses (125 mm FL/25 mm diameter, Edmund NT49-361, 400 mm FL/25 mm diameter, 

Edmund 47-650). The beam pattern finally illuminates the back focal plane of the 

excitation objective (Special Optics, 0.65 NA, 3.74 mm WD). The SLM conjugates to the 

focal plane of the excitation objective lens. The annular mask conjugates to galvo mirrors, 

and the back pupil of the excitation objective.  
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The lattice light sheet is finally generated after the beam pattern travels through the 

excitation objective lens. The detection objective lens (Nikon, CFI Apo LWD 25XW, 1.1 

NA, 2 mm WD) is mounted orthogonal to the excitation objective. The focal plane of the 

detection objective overlaps with the excitation plane. The detection objective is positioned 

on a piezo stage (Physik Instrumente, P-621.1CD). Keeping the focal plane of the detection 

objective coincident with the lattice light sheet illumination in the z-galvo scanning image 

acquisition mode is achieved with this piezo stage. The fluorescence signal then passes 

through a 500 mm tube lens (500 mm FL/25 mm diameter, Edmund 47-651). It is then 

expanded by a 4f system. After travelling through an emission filter (FF01-

446/523/600/677-25, Semrock). It is finally collected by a scientific Complimentary Metal-

Oxide Semiconductor (sCMOS) camera (Hamamatsu, Orca Flash 4.0 v2 sCMOS). To help 

the alignment of the optical path, inspection cameras (Imaging Source, DMK 33UP1300), 

are also installed at suitable positions.  

 

Epi illumination path:  

When the flip mirror behind the AOTF is flipped down, the beam will pass through 

the epi illumination path. The beam is expanded by a factor of 3.75 with two lenses (20 

mm FL/12.24 mm diameter, Thorlabs C240TME-A, 75 mm FL/12.5 mm diameter Edmund 

47-661). Then, it passes through a 150 FL/12.5 mm diameter lens. Following this lens, a 

90/10 beam splitter is installed. 90% of the beam passes through the beam splitter and then 

an oil immersion objective (Olympus LUMPLFLN 40XW). The focal plane of this 
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objective is coincident with lattice light sheet illumination objective and the detection 

objective. The excitation objective of the epi illumination path is installed on a xyz 

translation stage (Newport, 462-XZ-M), which provides both the convenience for 

alignment and the flexibility for scanning large fields of view. A long pass filter (FF01-

496/LP-25, Semrock) and a lens (100mm FL 25mm diameter Edmund NT47-641) are 

installed in the reflected path of the 90/10 beam splitter. Following this lens, an inspection 

camera (Imaging Source, DMK 33UP1300) is installed in planes conjugate to the sample 

plane, which will help the alignment for the epi illumination path. 

The sample platform comprises a piezo stage (Mad City Labs, NanoOP100HS) 

which is mounted on a xyz micro-stage (Mad City Labs, MCL-MMP3). The piezo stage 

can position the sample with nanometer precision in the sample scanning image acquisition 

mode. The micro-stage has two functionalities. First, it is used as a coarse stage to find 

good field of views for imaging. Second, it is used to acquire tiles of datasets for objects 

that are larger than one field of view.  
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Figure 2.6 (a) Optical path of LLSM. Adapted from (137) , reprinted with permission 

from AAAS. FL represents focal length. PBS indicates polarization beam splitter. (b) 3D 

model (SolidWorks 2018, Dassault Systèmes) of LLSM. A 24 x 48 inch breadboard is 

vertically mounted on an optical table. The sample platform, including the piezo stage and 

a 3D translational stage are installed on a home designed tower mounted on the optical 

table. (c) Model showing the orthogonally mounted excitation and detection objectives. 
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They are dipped in a basin filled with media or water. The light sheet propagates in the y 

dimension and is dithered in the x dimension. The s direction represents the sample 

scanning direction.  

 

2.3.5 Synchronization of LLMS 

To acquire images with LLMS, the actions of following devices must be 

synchronized: SLM, AOTF, x-galvo, z-galvo, sample piezo stage, detection objective 

piezo stage and camera.  

2.3.5.1 Devices Basics 

SLM 

The SLM is conjugate to the sample plane, so that the lattice pattern on the SLM is 

imaged within the sample plane. The lattice patterns are saved as binary images (Figure 

2.7, inserted picture) and displayed on SLM. A user-defined “Running Order” stored in 

SLM controls how to display images of lattice patterns. The “Running Order” is made by 

utilizing the software MetroCon (V3.3, Forth Dimension). The running order is composed 

by binary images and time sequences. The binary images are what to display and the time 

sequences determine how long an image should be displayed. When an image is displayed 

on SLM, the incident light will be reflected with its polarization state changed by the pixel 

arrays of the image (Forth Dimension, manual for QXGA-3DM). And finally, the light can 

leave the system (Figure 2.7, green path). Indeed, the ferroelectric SLM device displays 

an image as both positive and negative images to make each pixel stay in each state with 
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the same time (137). Comparing to the exposure time for image acquisition with the 

magnitude of ms, the invert time with the magnitude of μs is ignorable. Due to these facts 

and in order to simplify the discussion about the synchronization of the microscope, only 

the term ‘image’ will be used to represent the positive and negative images displayed on 

the SLM in the following context.  

 

Figure 2.7 The working mechanism of SLM. Adapted from the manual of SLM (Forth 

Dimension, QXGA-3DM). PBS, polarization beam splitter. The inserted picture is the 

binary picture displayed on the SLM display. When the pixel on the SLM is on, the 

polarization of the light (green path) reflected by these pixels will be changed. And then 

the reflected light will leave the system and pass through the optical path of the LLSM. 

However, when the pixel is off, the polarization of the reflected light (red path) will not 

change and then the light will stay in the system, but not pass through the optical path of 

the LLSM.  
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When different patterns need to be displayed on the SLM during imaging, the SLM 

requires the time to reload images. For example, in the experiment of dual color imaging, 

different lattice light sheet patterns for different channels, such as 488 and 560 nm, might 

be required to be displayed in sequence on the SLM. When reloading images, SLM cannot 

be used for imaging. Since the reloading time is relatively long, it must be taken into 

account when imaging. However, there is no way to directly know the state of the SLM 

after it starts running. The single digital output hardware line (LED Enable) from the SLM 

is the only information that can be used to externally infer its state (137). The LED Enable 

is set to high when the SLM is in the state of displaying an image (Figure 2.8). The LED 

Enable is set to low when the SLM is reloading images to display.  

 

Figure 2.8 The SLM running order and the LED Enable line. Adapted from (137) , 

reprinted with permission from AAAS. When the SLM is displaying an image, the 

LED Enable line will set high, otherwise low.  
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AOTF 

AOTF is the device that can modulate a laser beam by using the acousto-optic 

interaction (218-221). In the design of LLSM, AOTF is used to switch among different 

laser channels and set required illumination powers. AOTF runs in external trigger mode. 

It is synchronized to the LED Enable signal of the SLM. When the SLM is displaying 

images, AOTF will turn on to let the light pass through. When the SLM is in other states, 

such as reloading images, AOTF will turn off to block the light.  

x-galvo and z-galvo 

The galvo system consists of a galvanometer-based scanning motor with an optical 

mirror mounted on the shaft. The incident light shoots on the optical mirror. The high-

speed scanning of the reflected light is accomplished by quickly flipping the shaft. The x-

galvo is responsible for generating a uniform light sheet by dithering the Bessel beam 

arrays in the x direction (Figure 2.9). Usually, scanning the sample is achieved by moving 

the sample across this uniform light sheet. But, the position of the sample must be fixed 

for some experiments. In this case, the scanning is achieved by moving the uniform light 

sheet across the sample with the z-galvo.  
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Figure 2.9 Generation of the uniform light sheet by dithering the Bessel-Gauss beam arrays 

in the x direction with the x-galvo. 

 

Sample piezo stage and objective piezo stage 

The piezo stages have the range of motion as 100 µm. The resolution of the piezo 

stage is 0.2 nm. The piezo stage is controlled with the analog voltage signal, which is 

configured as 0-10 V corresponding to 0-100 µm. The sample piezo stage is in charge of 

shifting the sample along the sample scanning direction. The objective piezo stage is 

responsible for moving the detection objective along its optical axis.  
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2.3.5.2 Synchronization 

SLM - the time source for LLSM 

Once the SLM starts running, it should not be stopped during the experiment. 

Stopping the SLM running and then restarting it will require reloading the running order, 

which will take several seconds to finish. This is not acceptable for high speed image 

acquisition. That also means external controlling SLM is not available for high speed 

applications. That is why SLM runs by itself and all other devices are synchronized to it  

(137).  

 

Figure 2.10 SLM synchronization during the image acquisition in two colors with the 

dithered mode. Adapted from (137), reprinted with permission from AAAS. 
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Controlling signals for all devices are synchronized to the SLM LED Enable line. After 

acquiring images from each channel, scanning the sample can be achieved by either 

moving the sample with the sample piezo or moving the excitation illumination plane with 

z-galvo and detection objective piezo (as shown in the dash rectangular). 

 

To use the SLM as the time source, the first step is to obtain the state of the SLM 

by reading the LED Enable line. However, this approach can only tell when SLM starts 

and ends displaying images, but not which image is currently being displayed. Since 

images stored in the user-defined running order are known before SLM starts running, the 

currently displayed image can be inferred by counting the number of LED Enable pulses 

from a particular starting time point (137) (Figure 2.10). And then, the SLM pattern, the 

AOTF frequency, power and blanking, the camera exposure, the x-galvo, the z-galvo, the 

sample piezo and the objective piezo can be all synchronized according to the SLM state.  

Signals to control all devices are generated and sent by a Field Programmable Gate 

Arrays (FPGA) card (PCIe-7852R, National Instruments). Based on preloaded timing 

information, the FPGA card triggers the camera to make sure that the camera only collects 

image when the SLM is displaying the lattice light sheet pattern (137). According to this 

timing information, the FPGA card also generates signals to synchronize the x-galvo, z-

galvo, objective-piezo, sample-piezo, AOTF frequency and AOTF power (Figure 2.10). 

All devices in LLSM are synchronized to the internal running clock of the SLM. 
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2.3.6 Calibration and Data Acquisition 

2.3.6.1 Data acquisition Setups and Running Modes 

The data acquisition program was developed with Laboratory Virtual Instrument 

Engineering Workbench (LabVIEW, National Instruments). The LLMS has several 

different running modes with different setups. Running modes used to image bacterial 

biofilms in this thesis include Continuous Scan, Z-stack, X-Z PSF, Autofocus bead and 

Script Running.  

Continuous Scan:  

Continuously imaging the selected field of view. This mode is often used for 

calibration and searching for a region of interest.  

Z-stack: 

Scanning the sample to acquire 3D image stacks. There are two scanning types, 

Sample piezo scan and Z-galvo piezo scan. Sample piezo scan means the excitation light 

sheet is fixed and scanning is achieved by translating the specimen with a piezo stage. Z-

galvo piezo scan means the sample is fixed and scanning is achieved by translating the 

excitation light sheet with the z-galvo. Moving the illumination plane will make it out of 

the focal plane of the detection objective. To compensate for the out-of-focus, the detection 

objective is shifted with a piezo stage along its optical axis.  
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Autofocus bead: 

This running mode is used to precisely set the focal plane of the detection objective 

to be coincident with lattice light sheet illumination pattern with a fluorescence bead as the 

probe. It is a combination of Z-galvo scan and piezo (for the detection objective) scan.  

X-Z PSF: 

This running mode obtains a mapping of the xz Point Spread Function (PSF). It is 

accomplished by putting a single fluorescent bead in focus, locking the Z piezo for the 

detection objective and then moving the laser beam around using the X and Z galvos. The 

beam profile is finally mapped out. This running mode is used to check the quality of the 

selected lattice pattern on the sample plane.  

Script Running: 

Automatically collect multiple datasets at different time points and different regions 

of the specimen with a LabVIEW script. This running mode is particularly useful for the 

following two scenarios. First, collecting long term time-lapse data of biofilms. Second, 

imaging objects that are larger than the max field of view of the microscope by small tiles. 
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2.3.6.2 Calibration of LLMS 

The microscope needs to be calibrated before image acquisition for each 

experiment. The calibration includes three steps: optimizing the lattice light sheet 

illumination pattern, autofocusing and correcting the spherical aberration induced by 

refractive index mismatch between the media in the sample basin and the objective lens.  

Optimize the lattice light sheet illumination pattern: 

The purpose of this calibration step is to put the illumination pattern to the center 

of the camera chip and make the pattern as thin as possible. In order to observe the 

illumination pattern, the sample basin is filled with fluorescein (0.02 mg/mL). The single 

Bessel beam is selected and the microscope runs in the ‘continuous mode’ with an imaging 

field of view of 128 by 128 pixels. The cross section of the illumination pattern in the xy 

plane is imaged on the camera (Figure 2.11a). Two regions are selected on each end of the 

pattern and the intensity profile along the x dimension is calculated (Figure 2.11b). Sharp 

and narrow intensity profiles are obtained by gently adjusting the position of the detection 

objective (Figure 2.11a), which means the thinnest illumination pattern. Adjusting the 

position of the excitation objective can move the entire pattern along the y direction. 

Adjusting the angle of a mirror at the back pupil of the excitation objective can move the 

pattern along the y direction and also change the pattern’s orientation. Based on these 

operations, we can finally make two peaks overlapping at x = 64 (Figure 2.11b), which 

means the illumination pattern is even and locates at the center of the camera chip. 
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Figure 2.11 (a) An image of 128 by 128 pixels for calibration the light sheet pattern. (b) 

The intensity profile of the light sheet pattern in the two selected regions along the x 

dimension. When two peaks of each curve are sharp and overlaps at pixel 64 (indicated by 

the red dash line), the light sheet is in the best condition. 

 

Autofocus: 

To precisely set the focal plane of the detection objective to be coincident with the 

lattice light sheet illumination pattern, autofocus calibration is run. 200 nm fluorescence 

beads coated on round glass coverslip (diameter: 5 mm, Warner Instruments) are used as 

the sample. The autofocus-bead running mode is selected for the microscope. The 

autofocus includes two steps. First, the sample, fluorescent bead, is fixed and scanned by 

moving the light sheet illumination along the optical axis of the detection objective for a 

range of 8 um in 100 steps. This is accomplished by scanning with the z-galvo. Then, the 

peak intensity of the bead’s image is calculated and plotted along the scanning dimension 

(Figure 2.12). The precise position of the center of the fluorescent bead is read from the 
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curve of the intensity profile. And the light sheet illumination is positioned to the central 

plane of the fluorescent bead. Second, the sample is fixed and scanned by moving the 

detection objective along its optical axis with the light sheet illumination also fixed. The 

range of the scanning is 10 um in 100 steps. Then, the peak intensity of the bead’s image 

is calculated and plotted along the scanning dimension (Figure 2.12). The precise position 

of the focal plane of the detection objective is read out from this figure. Finally, the offset 

between the position of the illumination plane and the focal plane of the detection objective 

can be calculated. The offset is added to the position of light sheet illumination plane to 

make it precisely coincident with the focal plane of the detection objective.  
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Figure 2.12 (a) The peak intensity profile of a fluorescent bead under z-galvo scanning. 

The displacement between adjacent slices is 0.08 µm. The maximum value appears at slice 

0 which the original position of the light sheet. (b) The peak intensity profile of a 

fluorescent bead under piezo scanning. The maximum value appears at slice 1. Therefore, 

an offset of 0.08 µm will be added to the position of the light sheet illumination plane.  

 

Correct the spherical aberration: 

To keep biofilms alive when directly imaging them with LLSM, the sample basin 

must be filled with different growth media, such as LB, TSB, M9 and etc., for different 

bacterial strains. The refractive index of the growth media are different from water, while 

that of the objective lens matches with water. Spherical aberrations are induced by the 

mismatch of refractive index between the growth media and the objective lens. The 

detection PSF is substantially deformed by the refractive index mismatch (Figure 2.13 b). 

To achieve maximum image quality, this aberration must be corrected. The collar on the 
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detection objective allows for adjustment of the positioning of the central lens group within 

the objective and provides a way to correct the refractive index mismatch aberration. By 

adjusting the position of the collar and observing the change of the detection PSF, the 

aberration can be corrected (Figure 2.13c). Herein, it is worth to notice that when the 

refractive mismatch is too large, even setting the collar to its limit position cannot 

completely eliminate the aberration. In this case, the collar will be set at the position that 

gives the best detection PSF.  

 

Figure 2.13 (a) Ideal xz PSF acquired with a fluorescent bead in water. (b) xz PSF with 

aberration caused by the mismatch of refractive index between the growth media and the 

objective lens. (c) xz PSF after correction. The xz PSF is chosen as the example, because 

the aberration affects the axial PSF more substantially than the lateral PSF.  

 

In this step, since the positioning of the central lens group within the detection 

objective is adjusted, the position of the focal plane might change. Therefore, autofocus is 

required, again. By iterating autofocus and spherical aberration correction several times, 

the LLSM achieves its best imaging condition and can be applied to acquire images.  
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2.3.7 Sample Preparation and Imaging 

Bacterial strains imaged in this thesis include, Escherichia coli K12, Myxococcus 

xanthus LS3908, Shewanella oneidensis MR-1 and Shigella flexneri.  

2.3.7.1 Imaging with Phase Contrast Microscope 

As the preliminary experiment, all bacterial strains imaged with the phase contrast 

microscope follows the similar procedure. Herein, I will use S. flexneri as an example to 

introduce the procedure. Wild type S. flexneri was cultured at 37 degrees overnight in TSB 

medium. Overnight cultures were diluted 100 times into the same culture medium and 

grown to an optical density at 600 nm (OD600) of 0.6 – 1.0 and then diluted by an 

additional factor of 10. The diluted cell culture was then inoculated into the flow channel 

(Figure 2.14). Cells were allowed to settle to the bottom of the flow channel and adhere to 

the coverslip for 1 hour. Then, the flow channel was connected to a syringe filled with TSB 

medium. A syringe pump (Harvard 22 55-2222 Syringe Pump) is used to control the flow 

rate of the medium. The flow rate could be set in the range from µL/hour to L/hour 

according to experimental requirements. Setting the appropriate flow rate is required for 

biofilm growth in the channel. We found the flow rate in the range from 0.4 to 1.0 ml/hour 

is suitable for S. flexneri biofilm growth in our flow channel. Finally, the flow channel is 

fixed on the sample holder and then imaged with the phase contrast microscope at room 

temperature. The exposure time is 30 ms. Images are acquired every 5 minutes for several 

days.  



Chapter 2: Instruments 68 
 

 

 

Figure 2.14 Flow chamber system for phase contrast microscope. The main body of the 

flow chamber is 3D printed and then glued on a 25 by 25 mm glass coverslip (VWR Inc.). 

The top of the flow channel is sealed with a piece of cropped glass coverslip. The 

dimension of the flow channel is length: 10 mm, width: 5 mm and height:  0.5 mm. The 

media flow is driven into the channel with a stainless-steel tubing (McMaster). The inner 

diameter of the inlet and outlet tubing is about 0.4 mm. Biofilms will develop in the flow 

channel on the bottom coverslip and be imaged from the bottom.  
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2.3.7.2 Imaging with LLSM 

Herein, I will use Shewanella oneidensis MR-1 strain as an example to introduce 

the main procedure for imaging with LLSM. Procedure for imaging other strains will be 

introduced in detail in corresponding chapters.  

S. oneidensis MR-1 GFP strain was cultured in LB media with 50 μg/ml kanamycin 

at 30 degrees Celsius. Overnight cell cultures were diluted by 100 times and then grown to 

an OD 600 of about 0.6. The overnight-grown cultures were then diluted by an additional 

factor of 10. Round glass coverslips with the diameter of 5 mm were put into a 24-well 

plate (Falcon) and 400 μL of the diluted cell culture were added to the well. Cells were 

allowed to settle and adhere to the coverslip for 1 hour. Then, the sample was set onto the 

sample arm and put into the sample-basin on LLSM, which was filled with 10% LB 

medium. The sample was imaged at room temperature with 488 nm light sheet produced 

by a time-averaged (dithered), square lattice pattern (137). 3D image stacks of 400 planes 

were acquired with an exposure time of 50ms and a step size of 200 nm.  

 

2.3.8 Raw Data Processing 

The imaging plane has an angle of 31.5 degrees in respect to the horizontal plane 

of the sample coverslip, and therefore an offset exists between frames when collecting 

images by scanning the sample horizontally (Figure 2.15). The first step for data 

processing is to remove that offset by de-skewing each frame (Figure 2.15). The following 



Chapter 2: Instruments 70 
 

 

step is to subtract the background, which is estimated by averaging intensity values of dark 

areas (devoid of cells) in the field of view. The de-skewed and background subtracted data 

are then deconvolved using the Richardson-Lucy algorithm (137, 138) with experimentally 

measured PSFs as the deconvolution kernel. The numbers of iteration for this 

deconvolution algorithm need to be optimized. Larger numbers of iterations could 

introduce artifacts to the final results, while insufficient iterations will not output the 

resulting image with the highest contrast. Finally, the reconstructed 3D images are rendered 

using the 3D Viewer plugin in Fiji (222). The deconvovled results can give a sense of the 

biomass of the biofilm and will be used as input data for the single cell segmentation 

algorithms.  

 

Figure 2.15 Deskew the raw data. Offsets are added into each frame of images to 

compensate the skewed image stack caused by the tilted detection objective lens. 
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3.1 Abstract 

Lattice light sheet microscopy (LLSM) enables spatial and temporal measurements 

of live bacterial biofilms with subcellular resolution. However, this potential has not yet 

been implemented due to the lack of a compatible sample platform for culturing as well as 

imaging biofilms. The perpendicular angle between the excitation and detection objective 

lens of LLSM and the limited space at the imaging plane disable the application of 

conventional flow channels. In this work, we designed a novel flow channel system that 

allows imaging biofilms in vivo with LLSM. The performance of the flow channel is 

evaluated by comparing the lattice pattern and point spread function (PSF) inside and 

outside the channel. Negligible influence on the imaging performance of LLSM was 

demonstrated.  
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3.2 Introduction 

Biofilms are microbial communities of microorganisms aggregated on a surface. 

Cells in biofilms are embedded in an extracellular polymeric substance (EPS), which 

provides a protective and stable growth environment. Biofilm formation is harmful in many 

scenarios. For example, the formation of biofilms in industrial equipment can cause 

damage and loss of productivity. Further, biofilms growth on medical devices can result in 

infection. On the other hand, biofilms also have great potential for creating economic 

benefits, such as bioremediating hazardous wastes and biofiltering wastewater (12, 17, 19-

26). They are also potential renewable energy sources when building microbial fuel cells 

(MFCs) (12, 17, 19-26).  

The potential threats and benefits of biofilms have encouraged researchers to study 

them with the goal to manipulate their growth to enhance prevention methods as well as 

their beneficial applications. To conduct these studies, various types of approaches for 

growing and inspecting biofilms have been developed. The devices for biofilm formation 

can be categorized into two types, static and dynamic with continuous flow. Polystyrene 

microtiter plates and Calgary biofilm devices are examples of static assays (156, 157) in 

which the biofilm can be quantified by measuring all biomass formed either on the surfaces 

of the wells or the pegs of the coverlid (156-158). Robbins device, drip flow biofilm 

reactors and rotary biofilm reactors allow biofilms to grow under different hydrodynamic 

conditions (159-162). Biofilms grow on coupons inserted into the liquid stream within 

these devices. The coupons are mounted on small pistons and can be any material the 
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researchers want to test. To inspect the biofilms, the coupons must be taken off from the 

piston and moved out from the devices.  

None of the above-mentioned biofilm formation devices are ideal to study biofilms 

in situ. To solve this problem, flow chamber systems have been developed for real-time 

monitoring of live biofilms (163-169). In the design of these devices, the substratum for 

biofilm growth is set at the bottom of the chamber. The growth media flows from one side 

of the chamber, across the substratum, and then out of the chamber. There are two different 

types of flow chamber systems, open type and closed type (106). With the open type, 

biofilms can be observed either from the open top by immerging the detection device, such 

as the objective lens of a microscope, into the growth media or from the bottom when the 

substratum is transparent. With the close type, biofilms can be only observed from the 

bottom through a detection window where the substratum is positioned. Thus, it requires 

the substratum to be transparent. Each type of the flow chamber system has its own pros 

and cons. The open type allows direct and easy access to the biofilm. But, when detecting 

from the open top, it cannot be used for long-term imaging, such as several days, since 

biofilms can develop on the objective lens. This issue will not only disable the microscope 

for imaging but also raise the danger of spreading pathogenic bacteria, such as P. 

aeruginosa and S. flexneri. Another more critical issue is that the open type is vulnerable 

to contaminations (106, 166). While the close type provides a sterilized environment for 

biofilm development, its application is limited by the requirement that the substratum must 

be transparent.  
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To accomplish real-time monitoring of the dynamics of biofilms, in addition to the 

flow chamber systems, advanced imaging approaches are also required. The two most 

widely used imaging methods to study biofilms are phase contrast microscopy and confocal 

scanning laser microscopy (CSLM) (74, 105, 107, 110, 111, 113, 117, 118, 122, 127, 132). 

Studies on effects of different influencing factors, such as hydrodynamic conditions, 

chemical reagents and proteins of interest, on biofilm formation and the in situ gene 

expression in live biofilms have been carried out by the combination of flow chamber 

systems with these microscopic techniques (163-165).  

The most attractive advantage of phase contrast microscope is the convenience for 

sample preparation i.e. no labeling is required. However, it is disadvantaged by the non-

availability for 3D imaging. CSLM, as a fluorescence-based microscope, requires the 

sample to be fluorescently labelled. It allows 3D imaging of biofilms. However, due to its 

working principle that the reconstruction of a 3D structure is accomplished by scanning 

the sample with a single point (the confocal volume), the out-of-focus regions will be 

repeatedly illuminated. Thus, CLSM can easily induce photodamage to the specimen 

(phototoxicity) and fast photobleaching to the fluorophores used for labeling (133-135). 

Light sheet microscopy (LSM) solves this problem by sectioning the sample with the 

illumination of a single plane. Among different types of LSM (4, 137-142, 144, 145, 148), 

lattice light sheet microscopy (LLSM) provides the desirable optical sectioning. Under the 

dithering mode, the lateral resolution of LLSM is 230 nm and the axial resolution is ∼370 

nm, assuming green fluorescent protein (GFP) excitation and emission (137, 138). The 

excellent spatial resolution and low phototoxicity make LLSM a promising imaging 
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approach to unravel single cell behaviors in dense 3D biofilms in situ. However, due to the 

lack of a compatible flow chamber system, LLSM has not been applied to on-line 

monitoring of biofilms yet.  

It is challenging to design a flow chamber that can match the imaging platform of 

LLSM due to the following facts. First, to isolate the environment for biofilm growth from 

the water-filled basin where two objective lenses are immerged (Figure 3.1), the flow 

chamber must be a closed system. Otherwise, biofilms could develop on the objective lens 

during long term experiments and thus block both the excitation and emission light. Second, 

considering the geometry of the excitation and detection optical path, the closed flow 

chamber must allow imaging biofilms from the top. Conventional close type flow chamber 

systems don’t have this availability, since they only allow imaging from the detection 

window at the bottom. When imaging from the top, both excitation and emission light will 

pass through the ceiling of the chamber, thus the refractive index of the material of the 

ceiling must match that of the solution in the basin. Conventional flow chamber systems 

made with plastic or glass can’t satisfy this requirement. Third, the distance between the 

excitation and detection objectives at the imaging plane is less than 10 mm (Figure 3.1). 

The confined space limits the flexibility to adjust the design of the flow chamber.  
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Figure 3.1 Excitation and detection objectives, and the sample basin of LLSM. The basin 

is filled with water and also has a heating system to control the temperature.  

 

In this work, we designed a novel flow chamber system that is compatible with the 

imaging platform of LLSM. In addition to overcoming all above-mentioned barriers, the 

flow chamber also enables growing biofilms on any materials of interest and allows precise 

control of the growth conditions. We evaluated the performance of the flow channel by 

comparing the lattice pattern and the point spread function (PSF) inside and outside the 

chamber. Negligible influence on the lattice pattern and the PSF was observed, which 

indicates that the flow chamber would not impact the imaging quality of LLSM. This flow 

chamber system allows real-time monitoring of biofilms with LLSM, one state-of-the-art 

microscopy that can image bacterial cells with subcellular resolution. As the general 

sample holder for LLSM, its application is not limited to studying biofilms. In fact, it 
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expands the application of LLSM to perform studies when precise in situ control of the 

environmental conditions for the sample is desired.  

3.3 Methods 

The flow chamber is composed of five parts, the main body of the flow chamber without a 

ceiling, the inlet and outlet tubing, the substrate for biofilm formation, and the thin film to 

seal the flow chamber. Each part is separately made and then assembled. 

 

3.3.1 Design of the Main Body of the Flow Chamber 

The model of the flow chamber is designed with SolidWorks 2018 (Dassault 

Systèmes) (Figure 3.2). The width of the flow chamber is 4.70 mm, which can fit the space 

between the excitation and detection objectives of LLSM. A detection window with a 

length of 5.00 mm is made on the ceiling of the chamber. The substrate platform is set 

between the inlet and the outlet (Figure 3.2b). It divides the chamber into two parts. The 

substrate for biofilm formation is positioned on this platform. This design allows the 

growth media to flow though the inlet, across the substrate for biofilm growth, to the 

bottom half of the chamber and then to the outlet. There are several reasons why we put 

the outlet at the same side as the inlet. First, after calibrating the microscope, it’s not 

recommended to move the two objectives, therefore, the flow chamber must be carefully 

inserted into the narrow space between the two objective lenses and the basin. However,  

in order to collect waste media from the chamber, a long tube needs to be connected to the 

outlet. If the outlet tubing is at the end of the chamber, it will be very inconvenient to set 
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the chamber to the imaging position, because the long tubing must pass through the narrow 

space between the two objective lenses and the basin first prior to placing the chamber. 

Second, if the outlet tubing is installed at the end of the chamber, a small hole that can fit 

its size must be drilled at the end. Then, the metal part of the outlet tubing will be inserted 

into this small hole. Since the diameter of the hole is only about 0.5 mm, the length of the 

end of the chamber is about 3 mm while the length of the outlet tubing is about 200 mm, it 

is almost impossible to firmly fix the outlet tubing with this construction. The long flexible 

outlet tubing can easily make the chamber leaky. When the outlet tubing is at the same side 

as the inlet tubing, it can be tightly fixed by being bounded to the lifted arm of the flow 

chamber with parafilm (Figure 3.2b). And there will be no potential problem of leaking. 

The main body of the flow chamber is first 3D-printed with plastic material for 

testing. The final design is 3D-printed with stainless steel (Xometry Inc.). The flow 

chamber made with stainless steel can be autoclaved, thus easy for cleaning and reusing.  

 

Figure 3.2 Top and side view of the main body of the flow chamber. (a) The top view. (b) 

Crop the flow chamber along the dash line and view from the side. 
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3.3.2 Making the Ceiling for the Flow Chamber 

The first material we used to make the ceiling for the flow chamber was Teflon 

fluorinated ethylene propylene (FEP) films (DuPont). However, the large difference 

between its refractive index and water (FEP: 1.344, water: 1.333) causes large aberration 

to the lattice light sheet pattern. Then, we decided to make the film by ourselves with the 

polymer (MY-133-V-2000-BP30, MY Polymers Ltd.) which has the same refractive index 

as water. The glue (LOCA-133-BP30) to adherent the ceiling to the main body of the flow 

chamber comes from the same vendor.  

The thickness of the polymer film we made was about 50 µm. We first cropped a 

6-by-6 cm square window on a piece of Teflon film with the thickness of 50 µm (Figure 

3.3a). The volume of polymer to make a 50 µm film with this area is about 180 µL. The 

square Teflon film window was put onto a piece of glass and then 180 µL polymer solution 

is dropped at the center of the window (Figure 3.3a). Then, another piece of glass was put 

on the top of the Teflon film and the polymer. We pressed the two pieces of glasses to 

make the polymer expand and evenly fill the square Teflon film window (Figure 3.3b). 

The whole setup was then firmly fixed by two clamps. Finally, we put the setup under UV 

and waited two hours for polymerization (Figure 3.3b).  

In real experiments, the growth media to fill the flow chamber might have a 

different refractive index from water. In this scenario, to achieve the best imaging quality, 

it is recommended to make the film with a polymer that has the same or similar refractive 

index as the growth media. 
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Figure 3.3 (a) A 6-by-6 cm square window made by cropping a piece of Teflon film with 

the thickness of 50 µm is put on to a piece of 12-by-12 cm glass. Then, 180 µL polymer 

(MY-133-V-2000-BP30, MY POLYMERS) is dropped at the center of the window. (b) 

Another piece of glass is put on the top of the Teflon film and the polymer. Then, the two 

pieces of glass are tightened by two clamps and exposed to UV for 2 hours to cure the 

polymer. After that, the polymer will polymerize to form a film with the thickness of about 

50 µm. 
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3.3.3 Making the Inlet and Outlet Tubing 

The inlet and outlet tubing (Figure 3.4a) are made by connecting stainless-steel 

tubing (diameter: ~0.40 mm, length: 4 cm, 316 Stainless Steel Tubing, McMaster) to Tygon 

Microbore tubing (inner diameter: 0.51 mm, outer diameter: 1.52 mm, Cole-Parmer). The 

connection is sealed with heat-shrink tubing. The head of the stainless-steel tubing was 

bent to match the angle between the lifted arm and the flow channel. The bent head is 

inserted into the inlet or the outlet of the channel. The other end of the inlet tubing was 

connected to a 21-gauge syringe needle and then to a syringe, the pool of growth media. 

The flow rate is controlled by a syringe pump (Harvard 22 55-2222 Syringe Pump) and 

can be adjusted from the magnitude of µL/hour to L/hour. 

3.3.3 Assembling the Flow Chamber 

Step 1. Autoclave the inlet and outlet tubing. Sterilize the main body of the flow 

chamber by autoclaving if it is made with stainless steel or by immerging into 70% ethanol 

for 15 mins if it is made with plastic materials. 

Step 2. Cut a piece of the polymer film with the length of 7.00 mm and the width 

of 12.00 mm. The width closely matches the perimeter of the flow chamber. Sterilize it by 

immerging into 70% ethanol for 15 mins. 

Step 3. Smear a little silicone outside the bent head of the stainless-steel tubing of 

the inlet and outlet tubing, then insert them into the inlet and outlet of the flow chamber, 

respectively (Figure 3.4b). The added silicone is helpful for sealing. Add silicone between 
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the lifted arm and the stainless-steel tubing for both the inlet and outlet tubing, then band 

them together with parafilm (Bemis) (Figure 3.4c).  

Step 4. Smear the glue outside the flow channel and on the substrate platform inside 

the channel (Figure 3.4d). Wait for 1 hour to let the glue polymerize.  

Step 5. Crop the substrate, such as glass coverslip, for biofilm formation to fit the 

size of the detection window. Then, carefully put it onto the substrate platform (Figure 

3.4e). 

Step 6. Carefully seal the flow channel with the sterilized polymer film. Band each 

end of the channel with parafilm to help sealing (Figure 3.4f).  

Step 7. Leave the whole setup overnight, then the flow channel is ready for use. 
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Figure 3.4 Assembly of the flow chamber system. (a) The inlet and outlet tubing. The heads 

of the inlet and outlet are made with stainless steel tubing (diameter: ~0.40 mm, length: ~4 

cm). They are bent to match the angle between the lifted arm and the flow channel. The 

metal tubing is then connected to the plastic tubing (inner diameter: 0.51 mm, outer 

diameter: 1.52 mm). A syringe needle is connected to the other end of the inlet tubing. All 

connections are sealed with heat-shrink tubing. (b) Insert the inlet and outlet tubing into 

the inlet and outlet of the flow channel, respectively. Add silicon to fix them. (c) Band the 

inlet tubing, outlet tubing and the lifted arm together with parafilm. (d) Smear the glue 

outside the flow channel and on the substrate platform inside the channel. (e) Put the 

cropped glass coverslip onto the substrate platform inside the channel. (f) Seal the flow 

channel with the sterilized polymer film. Band each end of the channel with parafilm to 
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help sealing. (g) An assembled flow chamber system.  

 

3.3.4 Samples to Check the Performance of the Flow Chamber 

488 nm laser excitable fluorescent beads (diameter: 200 nm, FluoSpheres®, 

Thermo Fisher) were used as the sample to check the influence of the flow chamber on the 

lattice light sheet pattern. The beads were coated on glass coverslip (VWR VistaVision) 

cropped to fit the size of the detection window. The coverslip was positioned on the 

substrate platform of the flow chamber. The sample basin of LLMS and the whole flow 

system were filled with DI water.  

 

3.4 Results 

We first tested how fast the flow rate the flow chamber can tolerate. The flow 

chamber system is filled with DI water. We set the flow rate to be 200 µL/hour, 1 ml/hour, 

5 mL/hour, 10 mL/hour, 15 mL/hour and 20 mL/hour, and let the flow system run 1 hour 

for each flow rate. Under these tested flow rate, the flow chamber worked well and no 

leaking was observed. To test the extreme condition, we ran the flow chamber with the 

flow rate of 20 mL/hour for 5 hours; no leaking was observed.  

Considering that the excitation and emission light will both pass through the ceiling 

of the flow chamber, we then checked the influence of the ceiling on the lattice light sheet 

pattern. The square lattice pattern in the xz plane at the sample plane were measured 

(Figure 3.5 b, c and d). The pattern within the flow chamber sealed with the polymer film 
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(Figure 3.5c) is about the same as that without the chamber (Figure 3.5b). However, the 

flow chamber sealed with Teflon film (Figure 3.5d) causes obvious aberration to the lattice 

pattern. 

 

 

Figure 3.5 The lattice light sheet pattern in the xz plane. (a) Geometry of the excitation 

objective, detection objective and the sample basin. (b) Without the flow chamber. (c) 

Inside the flow chamber. (d) Inside the flow chamber sealed with Teflon. The red lines 

indicate where the intensity profile will be plotted.  
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Figure 3.6 The intensity profile plotted along the red lines shown in Figure 3.5 b, c and d. 

The intensities are normalized to their maximum values. 

 

We then plotted the intensity profile (Figure 3.6) along the red lines shown in 

Figure 3.5 b, c and d. The width of the peak in each curve indicates the thickness of the 

illumination light sheet. The width of the peaks (Figure 3.6 red curve) of the lattice pattern 

inside the flow chamber sealed with polymer film is about the same as that without the 

chamber (Figure 3.6 black curve). However, the width of the peaks (Figure 3.6 blue curve) 

of the lattice pattern inside the flow chamber sealed with Teflon film is about 4 pixels wider 

than that without the chamber. Since the pixel size in the LLSM is about 100 nm, the 

thickness of the light sheet inside the Teflon film chamber is about 400 nm thicker than 

without the chamber. In addition, there is one strong side peak at each side of the main 

peak in the curve of the Teflon film chamber. The side peaks represent the side lobe of the 
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light sheet illumination. The side lobe excitation will lower the signal to noise ratio, thus 

resulting in low quality images. 

 

We finally evaluated the influence of the flow chamber on the PSF of the 

microscope (Figure 3.7). The full width at half maximum (FWHM) of the PSF outside the 

chamber in x and z directions are 326 and 670 nm, respectively. The FWHM of the PSF 

inside the chamber in x and z directions are 333 and 660 nm, respectively. The PSF of the 

microscope inside and outside the flow chamber are almost the same (Figure 3.7). 

Therefore, we conclude that the flow chamber sealed with the customized polymer film 

will not impact the image quality of our LLSM.  

 

Figure 3.7 xz PSF of the microscope. (a) Outside the flow chamber. (b) Inside the flow 

chamber. (c) and (d) are the 2D Gaussian fitting for (a) and (b), respectively.  
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3.5 Conclusions 

LLSM has potential for real-time monitoring of 3D biofilms due to its excellent 

spatial resolution with fast temporal resolution and low phototoxicity. However, its 

application in the study of biofilms has not been fully exploited, due to the lack of a flow 

chamber system that is compatible with the imaging platform of LLSM. In this work, we 

designed a flow chamber system to fill this gap. Besides matching the imaging platform of 

LLSM, the flow chamber allows the study of biofilm on any desired materials. The flow 

chamber is sealed with a customized polymer film that matches the refractive index of 

water. We evaluated the influence of the flow chamber on the performance of the 

microscope, e.g. the image quality, by comparing the lattice pattern and PSF measured with 

and without the chamber. The influences are demonstrated to be negligible.  

The flow chamber system provides an isolated environment for the sample with 

controllable conditions, including flow rate, nutrients and temperature. This is particularly 

important for imaging pathogenic bacterial strains, such as S. flexneri, with LLSM. As the 

general sample holder for LLSM, its application is not limited to monitoring the 

development of biofilms. Indeed, it paves the way for real-time monitoring of the dynamic 

process of any biological systems of interest when imaging with LLSM is desirable. In 

addition, the flow chamber system enables researchers to alternate the growth condition 

for the sample in situ during imaging. Thus, it expands the application of LLSM to perform 

studies that require this capability. 
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4.1 Abstract 

Fluorescence microscopy enables spatial and temporal measurements of live cells 

and cellular communities. However, this potential has not yet been fully realized for 

investigations of individual cell behaviors and phenotypic changes in dense, three-

dimensional (3D) bacterial biofilms. Accurate cell detection and cellular shape 

measurement in densely packed biofilms are challenging because of the limited resolution 

and low signal to background ratios (SBRs) in fluorescence microscopy images. In this 

work, we present Bacterial Cell Morphometry 3D (BCM3D), an image analysis workflow 

that combines deep learning with mathematical image analysis to accurately segment and 

classify single bacterial cells in 3D fluorescence images. In BCM3D, deep convolutional 

neural networks (CNNs) are trained using simulated biofilm images with experimentally 

realistic SBRs, cell densities, labeling methods, and cell shapes. We systematically 

evaluate the segmentation accuracy of BCM3D using both simulated and experimental 

images. Compared to state-of-the-art bacterial cell segmentation approaches, BCM3D 

consistently achieves higher segmentation accuracy and further enables automated 

morphometric cell classifications in multi-population biofilms. 
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4.2 Introduction 

Biofilms are multicellular communities of microorganisms that grow on biotic or 

abiotic surfaces (3, 223-225). In addition to cellular biomass, biofilms also contain an 

extracellular matrix (ECM) which is composed of polysaccharides, DNA, and proteins. 

Individual cells in biofilms interact with other cells, the ECM, or with the substrate surface, 

and the sum total of these interactions provide bacterial biofilms with emergent functional 

capabilities beyond those of individual cells. For example, biofilms are orders of magnitude 

more tolerant towards physical, chemical, and biological stressors, including antibiotic 

treatments and immune system clearance (3, 223, 226-229). Understanding how such 

capabilities emerge from the coordination of individual cell behaviors requires imaging 

technologies capable of resolving and simultaneous tracking of individual bacterial cells in 

3D biofilms.  

Live cell-compatible imaging technologies, such as optical microscopy, can reveal 

the spatial and temporal context that affects cellular behaviors. However, conventional 

imaging modalities are not able to resolve individual cells within thick 3D biofilms over 

extended periods of time. For example, the diffraction-limited lateral x,y-resolution 

(~230 nm) of a confocal fluorescence microscope is barely sufficient to resolve bacterial 

cells positioned next to each other on flat glass coverslips. Even worse, the diffraction-

limited axial z-resolution (570 nm) is comparable to the size of a single bacterial cell, so 

that densely-packed cells become unresolvable in the axial z-dimension (230, 231). Notable 

exceptions include loose biofilms (low cell density), spherical cell shapes (232, 233), and 

mutant Vibrio cholera biofilms, in which cell-cell spacing is increased through the 
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overproduction of ECM materials (234-236). While single-cell resolved images have been 

obtained in such special situations, conventional optical microscopy modalities are not 

generally capable to accurately resolve and quantitatively track individual cells in dense 

3D biofilms.  

While super-resolution derivatives of confocal microscopy, known as Image 

Scanning Microscopy (237), can improve spatial resolution, a perhaps more important 

limitation for long-term live-cell imaging is photodamage to the specimen (phototoxicity) 

and to the fluorophores used for labeling (photobleaching) (137, 138, 238). In confocal 

microscopy-based approaches, undesired out-of-focus fluorescence emission is filtered out 

by confocal pinholes to yield optically-sectioned images with high contrast, i.e. high signal-

to-background ratios (SBRs). However, repeated illumination of out-of-focus regions 

during laser scanning and high light intensities at the focal volume result in rapid 

photobleaching of fluorophores and unacceptable phototoxicity for light sensitive 

specimens (137, 138, 238). In fact, confocal fluorescence microscopy (as well as its super-

resolution derivatives) uses illumination light intensities that are two to three orders of 

magnitude higher than the light intensities under which life has evolved (137). The high 

rates of phototoxicity and photobleaching make confocal-based microscopy unsuitable for 

high frame-rate time-lapse imaging of living specimens over many hours and days (235, 

236, 238-240). 

In recent years, light sheet-based fluorescence excitation and imaging approaches 

have been developed to overcome the drawbacks of confocal microscopy. Among these, 

lattice light sheet microscopy (LLSM) (137, 138) and field synthesis variants thereof (139), 

axially-swept light sheet microscopy (ASLM) (140, 141), dual-view light sheet microscopy 
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(241, 242), and single-objective oblique plane light sheet microscopy (142-145, 148, 243) 

now combine excellent 3D spatial resolution with fast temporal resolution and low 

phototoxicity at levels that cannot be matched by confocal microscopy. Specifically, light 

sheet-based microscopy approaches can operate at illumination intensities that are below 

the levels of cellular phototoxicity, even for notoriously light sensitive specimens, and 

reduce fluorophore photobleaching by 20-50 times compared to confocal microscopy, 

while maintaining comparable spatial resolution and contrast/SBR (137, 148).  

An additional challenge in high-resolution biofilm imaging is data quantification. 

Even if sufficient resolution and high SBRs can be achieved to visually discern, i.e. 

qualitatively resolve individual cells, robust computational algorithms are still needed for 

automated cell segmentation and quantitative cell tracking. Towards this goal, image 

processing approaches based on the watershed technique and intensity thresholding have 

been developed over the years for single-cell segmentation in bacterial biofilms (234-236, 

240). The broad applicability of watershed- and threshold-based image processing 

algorithms is however limited, because these algorithms require manual optimization of 

many user-selected parameters. Even with optimal parameters, watershed- and threshold-

based image processing methods often produce sub-optimal segmentation results, 

especially when cell densities are high, when SBRs are low, and when cellular fluorescence 

intensities are not uniform across the cytosol or the cell surface. To overcome the 

drawbacks of traditional mathematical image processing approaches, automated solutions 

based on supervised training of deep convolutional neural networks (CNNs) have been 

used in recent years with great success for a wide range of problems in biomedical image 

analysis (244).  
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Here, we present Bacterial Cell Morphometry 3D (BCM3D) (245), a generally 

applicable workflow for single-cell segmentation and shape determination in high-

resolution 3D images of bacterial biofilms. BCM3D uses CNNs, in silico-trained with 

computationally simulated biofilm images, in combination with mathematical image 

analysis to achieve accurate single cell segmentation in 3D. The CNNs employed in 

BCM3D are based on the 3D U-Net architecture and training strategy, which has achieved 

excellent performance in biomedical data analysis benchmark tests (244). The 

mathematical image analysis modules of BCM3D enable post-processing of the CNN 

results to further improve the segmentation accuracy. We establish that experimental 

bacterial biofilms images, acquired by lattice light sheet microscopy, can be successfully 

segmented using CNNs trained with computationally simulated biofilm images, for which 

the ground-truth voxel-level annotation maps are known accurately and precisely. By 

systematically evaluating the performance of BCM3D for a range of SBRs, cell densities, 

and cell shapes, we find that voxel-level segmentation accuracies of >80%, as well as cell 

counting accuracies of >90%, can be robustly achieved. BCM3D consistently outperforms 

previously reported image segmentation approaches that rely exclusively on conventional 

image processing approaches. BCM3D also achieves higher segmentation accuracy on 

experimental 3D biofilm data than Cellpose (246), a state-of-the-art, CNN-based, 

generalist algorithm for cell segmentation and the algorithm used by Hartmann et al.(236), 

a specialized algorithm designed for bacterial cell segmentation based on traditional 

mathematical image processing. We expect that BCM3D, and CNN-based single-cell 

segmentation approaches in general, combined with non-invasive light sheet-based 

fluorescence microscopy will enable accurate cell tracking over time in dense 3D biofilms. 
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This capability will launch a new era for bacterial biofilm research, in which the emergent 

properties of microbial populations can be studied in terms of the fully-resolved behavioral 

phenotypes of individual cells. 

 

4.3 Materials and Methods 

4.3.1 Imaging of Bacterial Biofilms with LLSM 

Fluorescence images of bacterial biofilms were acquired on a home-built lattice 

light sheet microscope (LLSM). LLSM enables specimen illumination with a thin light 

sheet derived from 2D optical lattice (247, 248). Here, a continuous illumination light sheet 

was produced by a time-averaged (dithered), square lattice pattern (137), and the 

illumination intensity at the sample was <1 W/cm2. The submicrometer thickness of the 

excitation light sheet is maintained over long propagation distances (~30 µm), which 

enables optical sectioning, and thus high resolution, high contrast imaging of 3D specimens 

comparable to confocal microscopy. However, fluorophore excitation by a 2D light sheet 

reduces phototoxicity, because each excitation photon has multiple opportunities to be 

absorbed by fluorophores in the excitation plane and produce in-focus fluorescence. 

Widefield fluorescence images corresponding to each illuminated specimen plane are 

recorded on a sCMOS detector (Hamamatsu ORCA Flash v2). In this work, 3D biofilm 

images were acquired by translating the specimen through the light sheet in 200 nm steps 

using a piezo nanopositioning stage (Physik Instrumente, P-621.1CD). The data acquisition 

program is written in LabVIEW 2013 (National Instruments) 
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E.coli K12 Biofilm Imaging: Ampicillin resistant E.coli K12, constitutively 

expressing GFP (249), were cultured at 37 degrees overnight in LB medium with 100 μg/ml 

ampicillin. Overnight cultures were diluted 100 times into the same culture medium, grown 

to an optical density at 600 nm (OD600) of 0.6 – 1.0, and then diluted by an additional 

factor of 10. Round glass coverslips with the diameter of 5 mm were put into a 24-well 

plate (Falcon) and 400 μL of cell culture was added to the well. Cells were allowed to settle 

to the bottom of the well and adhere to the coverslip for 1 hour. The round coverslips were 

then mounted onto a sample holder and placed into the LLSM sample-basin filled with M9 

medium. GFP fluorescence was excited using 488 nm light sheet excitation. Biofilm 

growth was imaged at room temperature every 30 min for a total of 20 time points. At each 

time point, a single 3D image stack contained 400 images, each acquired with a 15 ms 

exposure time to avoid motion blur. 

M. xanthus Biofilm Imaging: Strain LS3908 expressing tdTomato under the control 

of the IPTG-inducible promoter (250) and DK1622 (WT) were cultured in the nutrient rich 

CYE media at 30 degrees Celsius until it reached an OD600 of 0.6 - 1.0.  Media was 

supplemented with 1 mM IPTG for tdTomato expressing cells. Chitosan (Thermo Fisher)-

coated 5 mm round glass coverslips were prepared by incubating coverslips with 1% (w/v) 

chitosan (1.5 % glacial acetic acid (v/v)) at room temperature for 1 hour. Coverslips were 

then rinsed with water and placed into a 24-well plate (Falcon) with 350-400 μL of 

undiluted cell culture. WT cells were stained directly in the 24 well plate with 5 ng/ml 

FM4-64 (Thermo Fisher) dye. Cells were allowed to settle and adhere to the coverslip for 

2 hours. After the settling period, the coverslip was gently rinsed with CYE media to flush 

away unattached cells. The rinsed coverslip was then mounted onto a sample holder and 
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placed into the LLSM sample-basin filled with MC7 starvation buffer. tdTomato and FM 

4-64 fluorescence was excited using 561 nm light sheet excitation. The 3D image stack 

contained 400 2D images. Each 2D slice was acquired with an exposure time of 30 ms. 

Mixed Strain Biofilm Imaging: Ampicillin resistant E.coli K12, constitutively 

expressing GFP (249), and ampicillin resistant E.coli K12, expressing mScarlet (pBAD 

vector, arabinose induce) were cultured separately at 37 degrees overnight in LB medium 

with 100 μg/ml ampicillin. Overnight cultures were diluted 100 times into the same culture 

medium, grown to an optical density at 600 nm (OD600) of 0.6 – 1.0, and then diluted to 

an OD of 0.1. After dilution, the two strains were mixed together. Round glass coverslips 

with the diameter of 5 mm were put into a 24-well plate (Falcon) and 500 μL of cell culture 

was added to the well. Cells were allowed to settle to the bottom of the well and adhere to 

the coverslip for 1 hour. The cell culture medium was then removed and replaced by 500 

uL M9 medium containing 0.2% (w/v) arabinose. The co-culture was incubated at 30 

degrees overnight. 10 mins before imaging, the co-culture was stained with 5 ng/ml FM4-

64 (Thermo Fisher) dye. 3D image stacks of 20 planes with 5 ms exposure time per frame 

were acquired using 488 nm excitation. 

 

4.3.2 Raw Data Processing 

Raw 3D images were background subtracted and then deskewed and deconvolved 

as described previously (137, 138). The background was estimated by averaging intensity 

values of dark areas (devoid of cells) in the field of view. Deconvolution was performed 

using the Richardson-Lucy algorithm with 10 iterations using experimentally measured 



Chapter 4: Non-Invasive Single-Cell Morphometry in Living Bacterial Biofilms 99 
 

 

point spread functions (PSFs) as the deconvolution kernel. The experimentally measured 

PSFs were obtained separately for each color channel using fluorescent beads (200 nm 

FluoSpheres®, Thermo Fisher) coated on a coverslip (251). 3D images were rendered 

using the 3D Viewer plugin in Fiji (222) or ChimeraX (252). 

 

4.3.3 Generation of Simulated Biofilm Images 

To generate data for training of CNNs, we computationally simulated fluorescence 

images of 3D biofilms, for which spatial arrangements among individual cells are known 

precisely and accurately. Growth and division of individual rod-shaped cells in a 

population were simulated using CellModeller, an individual-based computational model 

of biofilm growth (Figure 4.1a) (253). In individual-based biofilm growth models, cells 

are the basic modeling units. Each cell is characterized by a set of parameters, including its 

3D position, volume, and spatial orientation. All the cells in the simulated biofilm are then 

allowed to evolve in time according to predefined biological, chemical, and mechanical 

rules. For example, cells grow at a defined rate and then divide after reaching a certain 

volume threshold. Cellular collisions that are due to cell growth are alleviated by imposing 

a minimum distance criterion between cells at each time point. For our simulations, we 

chose cell diameter and cell length (d, l) parameters consistent with a given bacterial 

species, namely (1 μm, 3 μm) for E. coli (254), (0.7 μm, 6 μm) for M. xanthus (255), and 

(1 μm, 1 μm) for spherically symmetric S.aureus (256). While the cell volume can be 

readily adjusted in CellModeller, the cellular volume density, which is determined by the 

intercellular spacing, is not directly adjustable. We therefore adjusted the cellular volume 
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density after each simulation by scaling the cellular positions (cell centroids) and thus the 

intercellular distances by a constant factor, while leaving cell sizes, shapes, and orientations 

unchanged. This post-processing procedure enabled simulation of the exact same 3D cell 

arrangements at adjustable cell volume densities.  

 

 

Figure 4.1 Simulation of fluorescent biofilms images and annotation maps. (a) Cell 

arrangements obtained by CellModeller.  (b) Simulated 3D fluorescence image based on 

the cell arrangements in a.  (c) XY slice through the 3D simulated fluorescence image in b 

(upper panel shows cells expressing cytosolic fluorescent proteins, lower panel shows cells 

stained with membrane-intercalating dyes).  (d) Ground truth cell arrangements giving rise 

to the image shown in c. Voxels are displayed as black (background), or in different colors 

(indicating different cells). 

 

We fluorescently labeled simulated cell volumes and surfaces according to two 

commonly used labeling strategies in fluorescence microscopy. To simulate expression of 
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intracellular fluorescent proteins, the fluorescence emitters were placed at random 

positions within the cell volume. To simulate membrane staining, the fluorescence emitters 

were placed at random positions on the cell surface. Each cell contained between 500 - 

1000 fluorophores to simulate expression level variations between cells, which is often 

observed in experimental images. Once the fluorophore spatial distributions were 

determined, a 3D fluorescence image (Figure 4.1b) was computationally generated. Each 

fluorophore was treated as an isotropic point emitter, so that it would produce a diffraction-

limited point-spread-function (PSF) on the detector. Experimentally measured 3D PSF 

shapes (see Raw Data Processing) were used as the convolution kernel. Next, the 

fluorescence signal intensity was scaled by multiplying the image by a constant factor and 

then a constant background intensity was added to the image at ~200 photons per pixel, as 

measured in experimental data. This procedure enabled independent adjustments of the 

fluorescence signal and background to obtain signal-to-background ratios (SBRs) 

consistent with experimental data. In a final step, we introduced Poisson-distributed 

counting noise, based on the summed background and signal intensities, as well as 

Gaussian-distributed camera read-out noise (experimentally calibrated for our detector at 

3.04 photons per pixel on average) (257). This resulting image data (Figure 4.1c) was then 

processed in the same manner as experimental data (see Raw Data Processing). In contrast 

to experimental data, generation of the corresponding voxel-level annotation maps is fast 

and error free, because the underlying ground truth cell arrangements are known a priori 

(Figure 4.1d). 

Differential labeling: To mimic imaging of reporter gene expression in a subset of 

cells, we simulated biofilm images, in which all cells were stained at the cell surface (e.g. 
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with a membrane intercalating fluorescent dye) and a subset of cells additionally contained 

intracellular fluorophores (e.g. through the expression of an intracellular fluorescent 

protein) (Figure 4.2a and b). The mixing ratios between membrane-labelled, and 

membrane and interior labelled cells were 10:90, 30:70, 50:50, 70:30 and 90:10. Ten 

different cell arrangements containing ~300 cells were simulated for each ratio. To train 

the CNNs (see next section), six datasets were used, all with a 50:50 mixing ratio.  

Mixed cell shapes: To mimic imaging of cells with different morphologies, we 

simulated biofilms containing spherical and rod-shaped cells (Figure 4.2c and d). Cell 

arrangements were first simulated using rod shaped cells and then a fraction of rod-shaped 

cells is replaced with spherical cells. The size of the rod-shaped cells is that of E. coli (~3 

× 1 μm, length by diameter). The size of the spherical cells is that of S. aureus (~1 μm in 

diameter) (258). Both cell types were labelled by intracellular fluorophores, as described 

above. The mixing ratios between rod-shaped and spherical cells were 10:90, 30:70, 50:50, 

70:30 and 90:10. Ten different cell arrangements containing ~300 cells were simulated for 

each ratio. To train the CNNs (see next section), we picked one image from each mixing 

ratio for a total of five images. 
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Figure 4.2 Simulation of mixed labeling and mixed cell shape biofilms. (a) Cell 

arrangements (green indicates membrane labeled cells, magenta indicates membrane 

labeled cells that simultaneously express interior fluorescence protein). (b) Fluorescence 

image based on the cell arrangements in (a) as displayed by the volume viewer plugin of 

Fiji (259). (c) Cell arrangements (green indicates rod-shaped cells, magenta indicates 

spherical shaped cells). (d) Fluorescence image based on the cell arrangements in (c) as 

displayed by the volume viewer plugin of Fiji (259). 

 

4.3.4 Training the Convolutional Neural Networks 

We trained 3D U-Net CNNs for voxel-level classification tasks (260) within the 

NiftyNet platform (261) (network architecture depth 4, convolution kernel size 3, ReLU 

activation function, 32 initial feature maps, and random dropout of 0.5 during training). To 
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achieve robust performance, we trained these networks using five to ten simulated biofilm 

images with randomly selected cell densities and signal-to-background ratios (see 

Generation of simulated biofilm images). The same raw data processing steps used for 

experimental data (see Raw Data Processing) were also applied to simulated data. 3D 

deconvolved simulated data and their corresponding voxel-level annotations were used to 

train the CNNs. Each image used for training contained ~9 million voxels. We trained 

CNNs by classifying each voxel as ‘background’, ‘cell interior’ or as ‘cell boundary’ based 

on the underlying cell arrangements. For mixed-species biofilms, two additional classes, 

‘cell interior’ and ‘cell boundary’ of the second species, were used. This type of annotation 

scheme has been shown to increase separation of bacterial cells in 2D (174). For data 

augmentation, we applied NiftyNet’s built-in scaling, rotation, and elastic deformation 

functions. Instead of the original cross-entropy loss function combined with uniform 

sampling, we used the Dice loss function and ‘balanced sampler’, so that every label has 

the same probability of occurrence in training. All networks were trained for 2000 to 3600 

iterations with a learning rate of 0.0001. Using these parameters, it took approximately 24 

hours to train the CNNs on a NVIDIA Tesla V100 GPU with 16 GB memory. 

 

4.3.5 Thresholding of CNN-produced Confidence Maps 

Voxel-level classification by CNNs generates different confidence maps (one 

confidence map for each annotation class). The confidence values range between 0 and 1 

and represent the confidence of assigning individual voxels to a given class. After 

thresholding the ‘cell interior’ confidence map to obtain a binary image (Figure 4.3 a-c), 
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connected voxel clusters can be isolated and identified as single cell objects using 3D 

connected component labeling (262). A conservative size-exclusion filter was applied: 

small objects with a volume ~10 times less than the expected cell size were considered 

background noise and filtered out using an area open operator (262). Since the cell-interior 

volumes do not contain the cell boundaries, we dilated each object by 1-2 voxels to increase 

the cell volumes using standard morphological dilation (262). The threshold value to 

segment individual cell objects based on the ‘cell interior’ confidence map was determined 

by plotting the overall voxel-level segmentation accuracy , quantified as the Intersection-

over-Union value (IoU value, aka Jaccard index (263)) versus the confidence value 

thresholds (Figure 4.3). Optimal voxel-level segmentation accuracies were consistently 

obtained using confidence thresholds between 0.88 and 0.94. Throughout this work, we 

used 0.94 for cells labeled with intracellular fluorophores and 0.88 for cells labeled with 

membrane-localized fluorophores. 
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Figure 4.3 Binary segmentation result produced by thresholding the ‘cell interior’ 

confidence map at a high value (0.88-0.94). (a) Deconvolved fluorescence image. (b) ‘Cell 

interior’ confidence map. (c) Binary segmentation result (confidence threshold = 0.94). (d 

and e) Voxel-level segmentation accuracy (y axis) versus the confidence value thresholds 

(x axis) for cells labeled with cytosolic fluorophores (d) and cells labeled with membrane-
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localized fluorophores (e). Each curve is plotted by averaging 500 different datasets. Error 

bars represent ± one standard deviation. 

 

4.3.6 Post-processing of U-Net Result using a Refined LCuts Algorithm 

Thresholding of the ‘cell interior’ confidence map produces a binary segmentation 

result (background = 0, cell interior =1), where groups of connected, non-zero voxels 

identify individual cells in most cases (Figure 4.3). However, when cells are touching, they 

are often not segmented as individuals, but remain part of the same voxel cluster 

(undersegmentation). On the other hand, a single cell may be erroneously split into smaller 

subcellular objects (oversegmentation). Finally, in datasets with low SBR, connected voxel 

clusters may be detected that do not correspond to cells and thus produce false positive 

objects (Figure 4.4a). To address these errors and improve the segmentation accuracy 

further, we included additional mathematical image analysis steps to post-process the CNN 

results and reduce undersegmentation and oversegmentation errors. 

 



Chapter 4: Non-Invasive Single-Cell Morphometry in Living Bacterial Biofilms 108 
 

 

 

Figure 4.4 Post-processing of CNN-produced confidence maps using a refined LCuts 

processing pipeline.  (a) False positive objects are detected and removed by CV- and size- 

filtering.  Under-segmented clusters that are larger than single cells are selected for further 

splitting. (b) Illustration of modified medial axis (red dashed lines) extraction to generate 

point cloud data from fused clusters of rod-shaped cells using the method of inscribed 

spheres. When cells are touching, the traditional medial axis extraction process fails to 

align with the actual cell central axis (left). To overcome this drawback, we limited the size 

of the inscribed spheres based on prior knowledge of bacterial cell diameters (right). (c) 

The set of inscribed sphere centers are then treated as a fully-connected, undirected graph 

in 3D with two node features: location and direction (see text and Figure 4.5 for details). 

The graph (blue nodes) is then iteratively cut into smaller graphs (red nodes) until the 

stopping criteria are reached (see text for details). (d) Post-processed graphs represented in 

different color denoting different cells. The 3D surface of individual cells can be 
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determined using a geometrical cell shape model (e.g. a spherocylinder for rod shaped 

bacteria) or by calculating the convex hull around the inscribed spheres found in step 2. 

 

Step 1. Filtering:  False positive objects are identified by evaluating the coefficient 

of variation (264, 265) for each connected voxel cluster i: 

𝐶𝑉𝑖 =  
𝜎𝑖

𝜇𝑖
 

where 𝜎𝑖  and 𝜇𝑖  denote the standard deviation and the mean of the intensity taken 

over all voxels contained in connected voxel cluster i. If the coefficient of variation is larger 

than ρ, then the current object will be classified as a false positive object and removed from 

the confidence map by setting all its voxels to zero. The removed objects will then no 

longer be counted when evaluating the cell counting accuracy. The value of ρ is selected 

based on the coefficient of variation of the background. For the datasets analyzed here, this 

sample coefficient of variation was determined to be ρ = 1.1. After CV-filtering, objects 

smaller than 25% of the expected bacterial cell size are also removed by setting its voxels 

to zero. The remaining connected voxel clusters are then considered for further processing 

(Figure 4.4a).  

Step 2. Identification of point coordinates along central bacterial cell axes:  To 

identify and delineate individual cells in the connected voxel clusters identified in the 

previous step, we implemented medial axis extraction using the method of inscribed 

spheres(266), with the constraint that the sphere radii do not exceed the expected diameter 

of a single bacterial cell (e.g. d = 0.8 µm) (Figure 4.4b left). The set of N inscribed spheres 

are tangent to the object’s surface and parameterized by (xi, yi, zi; ri<d/2) for i = 1, …, N.  

Determination of the (xi, yi, zi; ri) coordinates is achieved using the Euclidean distance 
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transform of the objects’ boundary(267), so that the points with coordinates (xi, yi, zi) 

reliably trace out the central cell axes of individual bacterial cells (Figure 4.4b right).  

Step 3. Identification of individual cell axes:  To separate different linear segments 

after cell axis extraction (Figure 4.4c), we used a refined version of the linear cuts (LCuts) 

algorithm(268, 269). LCuts is a graph-based data clustering method designed to detect 

linearly oriented groups of points with certain properties. The fundamental elements of a  

weighted mathematical graph are nodes, edges, and edge weights. Here, the points with 

coordinates (xi, yi, zi) represent the graph nodes. Edges are the connections among nodes. 

Edges are assigned weights, for example, to reflect the confidence that two nodes belong 

to the same group. LCuts achieves grouping by assigning weights to edges in the fully 

connected graph to reflect the similarity between two nodes. The features of each node 

include its location and direction, where the location of each node is simply its Cartesian 

coordinates. The direction of each node is found by first determining its 5-hop 

neighborhood, removing nodes at large relative angles, and evaluating the major direction 

of the outlier removed neighborhood (Figure 4.5).     

 

Figure 4.5 Determination of node direction in an outlier-removed neighborhood (268). (a) 

A neighborhood of the target node (in red) is a sub-graph, where all adjacent nodes (in 

yellow) are connected via edges to the target node. Here, if the distance of two nodes is 
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less than a chosen value (indicated by the dashed circle), these nodes are adjacent to each 

other. The blue dots are not part of the neighborhood.  (b) A hop is defined as the number 

of edges that one has to traverse from one node to the other node in the graph. Here, the 5-

hop neighborhood of the target node is shown. (c) The directional vectors are found from 

the target node to all the other nodes within in the 5-hop neighborhood (dashed lines). The 

nodes are classified as outliers if they have large relative angles compared to all the other 

directional vectors (red dashed lines). (d) Finally, the direction feature of the current node 

is evaluated as the major direction of the outlier removed neighborhood using principle 

component analysis. 

 

The algorithm to separate the nodes into different groups is a recursive graph 

cutting method (268). Graph cuts (e.g. nCut (270)) disconnect the edges between two 

groups of nodes when the combined weights of these edges are minimized. The weights, 

between node i and node j, are calculated as follows: 

                                                          𝑤𝑖𝑗 = 𝑤𝐷 ∙ 𝑤𝑇                                                      (4.1) 

where  

                                                𝑤𝐷 = {
𝑒−𝐷𝑖𝑗

2 /𝜎𝐷
2

    if 𝐷𝑖𝑗
2 ≤ 𝑟

0                 if 𝐷𝑖𝑗
2 > 𝑟

                                           (4.2) 

 

                                               𝑤𝑇 = 𝑒−(cos(𝜃𝑖𝑗)−1)
2

/𝜎𝑇
2
                                               (4.3) 

 

𝑤𝐷  weighs the distance between two nodes and 𝑤𝑇  weighs difference between 

node directions. Dij is the Euclidean distance between node i and node j, and r is set to 

eliminate edges between two far away nodes. θij is the relative angle between the directions 

of nodes i and j. σD and σT are adjustable parameters that control the rate of exponential 
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decay. LCuts continues to separate groups of nodes until each group satisfies a stopping 

criterion. The stopping criterion is biologically inspired based on the expected length L of 

a single bacterial cell and a group’s linearity after each recursion. LCuts yields linearly 

oriented groups of points that trace out the central axes of individual cells (Figure 4.4c). 

Importantly, cell separation is achieved without having to specify the number of cells in 

the biofilm in advance. Furthermore, to limit the need for optimization of postprocessing 

routines, the four adjustable parameters used in LCuts, namely cell diameter d, the cell 

length L, and the decay parameters σD and σT are chosen based on a priori knowledge about 

the bacterial cells under investigation. We found that the performance of LCuts is not 

sensitive to the particular values of d, L, σD and σT as long as they are consistent with the 

imaged bacterial cell sizes and shapes (Figure 4.6). Identification of single cells provided 

by LCuts alleviates under-segmentation errors of the CNN-based segmentation.  

Step 4. Cell reconstruction: The final output of linear clustering can provide length, 

location and orientation of each cell. Based on these linear clusters, the cellular architecture 

of the biofilms can be reconstructed by placing geometrical models of cells in space as 

shown in Figure 4.4d. For fast computation, spherocylinders are used as the geometrical 

model using a radius consistent with the known sizes of bacterial cells. To further refine 

the cell surfaces to better align with the CNN-segmented volumes, we enclosed the 

inscribed spheres found in Step 2 in a convex hull (Figure 4.4d). 
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Figure 4.6   Validation of parameter selection for LCuts postprocessing by grid search. 

Shown is the cell counting accuracy averaged over 20 randomly chosen, simulated datasets 

of low SBR and/or high cell density, for which post-processing is required. (a) Average 

cell counting accuracy as a function of cell diameter d ∈ [0.4, 1.2] µm and cell length L 

∈ [2, 9] µm at a fixed σD = 0.5 µm and σT = 0.2. (b) Average cell counting accuracy as a 

function of σD ∈ [0.1, 0.8] µm, and σT ∈ [0.05, 0.6] with fixed (d, L)=(0.8, 4.5) µm. The 

cell counting accuracy is largely unaffected by variations in d, L, σD and σT  and robustly 

remains above 70% for biologically reasonable parameter values, such as d ~ 0.8 µm, cell 

length L ~ 6 µm, for E.coli-like cell shapes. We also choose σD = d/2 and σT  = 0.2, so that 

edges between nodes separated by more than a cells radius or with relative angles >30° are 

weighted down. 

 

4.3.7 Performance Evaluation 

We quantified segmentation accuracy both at the cell-level (object counting) and at 

the voxel-level (cell shape estimation). To quantify the cell-level segmentation accuracy, 

we designated segmented objects as true positive (TP) if their voxel overlap with the 

ground truth or the manual annotation resulted in an IoU value larger than a particular IoU 

matching threshold. This criterion ensures one-to-one matching. A threshold of 0.5 is 
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typically chosen when reporting single cell counting accuracy values (246, 271). We follow 

this convention here. If the segmented cell object could not be matched to a ground 

truth/manually annotated cell volume, then it was counted as a false positive (FP) and the 

IoU value of that segmented object was set to zero. If a ground truth/manually annotated 

cell volume was not identified in the image, then it was counted as false negative (FN). 

The cell (object) counting accuracy was then defined as TP/(TP+FP+FN). The average 

IoU value over all segmented objects in the image quantifies the voxel-level segmentation 

accuracy, i.e. the accuracy of cell shape estimation.  

To evaluate the accuracy of cell segmentation on experimental data, three 

researchers separately traced the cell contours on experimental 2D slices by using freehand 

selections in Fiji ROI Manger (259). Because human annotation is very time consuming 

(about 50 hours for a complete 3D dataset containing ~300 cells in a 22 x 32 x 12 um3 

volume), one to three single 2D slices were selected for each dataset. One exception is the 

3D M. xanthus, for which the cell outlines in all available x, y and z slices were traced 

manually (Figure 4.7a). For straight, rod-shaped cells, the centroids of the resulting 2D 

cell contours all fall within the cell interior volume. To group together the contours 

belonging to the same cells, the centroid of each contour was projected along the x, y and 

z dimension. If the projected centroid was enclosed by any other contour in a different slice, 

then the centroid of that contour was projected onto the plane of the initial contour. Two 

contours were labeled as related if they contained each other’s projected centroids (Figure 

4.7b). This process is repeated for all possible contour pairs and their relationship is 

recorded in an adjacency matrix. Next, related contours were assigned to individual cells 

(Figure 4.7c). To separate incorrectly grouped contours, we additionally identified clusters 
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of centroids using the DBSCAN point clustering algorithm (272) (Figure 4.7d). In a final 

step, we manually removed incorrectly traced contours (Figure 4.7e). Cells are 

reconstructed by creating convex hulls with the grouped contours (Figure 4.7f and g). This 

procedure determined the approximate positions, shapes, and orientations of individual 

cells in the 3D biofilm.  

 

 

Figure 4.7 Manually trace cell outline. (a) Cell outlines in all available x, y and z slices 

were traced manually. (b) Find the contours belonging to the same cell. The centroid of 

each contour was projected along the x, y and z dimension. If the projected centroid was 

enclosed by any other contour in a different slice, then the centroid of that contour was 
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projected onto the plane of the initial contour. Two contours were labeled as related if they 

contained each other’s projected centroids. This process is repeated for all possible contour 

pairs and their relationship is recorded in an adjacency matrix. (c) The related contours are 

grouped as cells. Different colors represent different cells. (d) Segment big clusters that 

contain more than one cell by grouping the centroids of the contours. This step will run 

manually and iteratively to segment all single cells from the big cluster. (e) Manually check 

all contours for each cell. (f) Remove the bad contours, such as unreasonably large ones. 

(g) A convex hull is built based on the contours for each cell. The convex hull is then used 

as the mask to extract cell volume from the raw data.  

 

To estimate the SBRs of both simulated and experimental images, we manually 

selected and determined the intensities of approximately ten ‘signal’ and ten ‘background’ 

regions in the images. We computed the SBR as the mean signal intensity divided by the 

mean background intensity. To estimate the local density of a biofilm, we partitioned the 

image into several 3D tiles of size 64 by 64 by 8 voxels. We then estimated the local density 

as the total cell volume contained in each tile divided by the tile volume. We calculated the 

mean density of the 10 densest tiles to define the ‘local density’ metric reported for each 

dataset in the paper. To estimate the cell density in an experimentally acquired biofilm 

image, the same calculations were performed on either 3D manual annotations (if available) 

or binary masks obtained by CNN-processing. 
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4.4 Results and Discussion 

4.4.1 Cell Segmentation by Thresholding CNN Confidence Maps 

CNNs have been shown to perform well on pixel-level classification tasks for both 

2D and 3D data (273, 274). Bacterial biofilms, however, present a unique challenge in this 

context. The cell shapes to be segmented are densely packed and barely resolvable even 

with the highest resolution optical microscopes. Additionally, living biofilms in 

fluorescence microscopes can only be imaged with low laser intensities to ameliorate 

phototoxicity and photobleaching concerns. Unfortunately, low intensity fluorescence 

excitation also reduces the SBR in the acquired images. So far, it remains unclear to what 

extent single-cell segmentation approaches can accurately identify and delineate cell 

shapes in bacterial biofilm images obtained under low intensity illumination conditions. 

To address this question, we implemented an in silico CNN training strategy (Chapter 4.3 

Materials and Methods) and systematically evaluated its voxel-level classification (cell 

morphometry) and cell counting accuracies using simulated biofilm images with varying 

cell densities and SBRs similar to those encountered in experimental data.  

We compared two commonly used cell labeling approaches, namely genetic 

labeling through the expression of cell-internal fluorescent proteins (Figure 4.8a-c) and 

staining of the cell membranes using fluorescent dyes (Figure 4.8d-f). For both labeling 

approaches, voxel-level segmentation and cell counting accuracies, obtained by 

thresholding CNN confidence maps (Chapter 4.3 Materials and Methods), depend mostly 

on cell density, whereas the SBR plays a less important role. For cell-internal labeling, 

SBRs of >1.7 and cell densities of <60% consistently produce voxel-level classification 
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accuracies of >80% and cell counting accuracies of >95%. On the other hand, SBRs of 

<1.7 and cell densities of >60% lead to lower segmentation accuracies. While lower 

segmentation accuracies are expected for higher cell densities and lower SBRs, the sharp 

drop-offs observed here may indicate a fundamental performance limitation of the CNNs 

employed. Still, the voxel-level classification and cell counting accuracies consistently 

surpass previous approaches for bacterial cell segmentation for commonly encountered cell 

densities and SBRs. Specifically, the cell counting accuracies obtained by Hartmann et al. 

(236), Seg3D (275), and Yan et al. (234) quickly drop to zero as a function of increasing 

IoU matching threshold (a quantitative measure of cell shape similarity relative to the 

ground truth, Chapter 4.3 Materials and Methods), indicating that cell shapes are not 

accurately estimated by conventional image processing approaches (Figure 4.8g-i). We 

also evaluated the segmentation accuracy of Cellpose, a recently developed, CNN-based 

cellular segmentation algorithm (246). The segmentation accuracy of Cellpose is 

comparable or superior to the best-performing conventional image processing approaches 

– a considerable achievement given that Cellpose was trained primarily on images of 

eukaryotic cells. However, being a pre-trained generalist model, the segmentation accuracy 

of Cellpose is lower than the accuracy achieved by the specialist in silico-trained CNNs of 

BCM3D, which were trained specifically for 3D bacterial biofilm segmentation. Overall, 

the cell counting accuracies obtained by BCM3D are higher than other methods and remain 

higher even for IoU matching thresholds larger than 0.5, indicating that cell shapes are 

more accurately estimated by the in silico-trained CNNs. 
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Figure 4.8 Performance of BCM3D using in silico-trained CNNs only on previously 

unseen simulated biofilm images. (a) The voxel-level segmentation accuracy quantifies 

whether each voxel has been assigned to the correct class (‘cell interior’, cell boundary’, 

or ‘background’). Solid circles represent the maximum local density and average SBRs 

encountered in experimental datasets (red, orange and blue: E. coli expressing GFP). (b) 

The cell counting accuracy (using an IoU matching threshold of 0.5 for each segmented 

object, Chapter 4.3 Materials and Methods) averaged over n=10 replicate datasets for cells 

labeled with cytosolic fluorophores. (c) Example image of cells labeled with cytosolic 

fluorophores (Cell density = 60.0%, SBR = 1.34, indicated by white rectangle in panels a 

and b. Similar images were generated N = 10 times with different cell arrangements.) (d) 

Voxel-level segmentation accuracy and (e) cell counting accuracy averaged over N=10 
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replicate datasets for cells labeled with membrane-localized fluorophores. (f) Example 

image of cells labeled with membrane-localized fluorophores (Cell density = 60.0%, SBR 

= 1.34, indicated by white rectangles in panels d and e. Similar images were generated N 

= 10 times with different cell arrangements.). The red arrows indicate a close cell-to-cell 

contact point. (g), (h) and (i) Comparison of segmentation accuracies achieved by 

conventional segmentation approaches (Hartmann et al., Seg3D, Yan et al.), Cellpose, and 

BCM3D (only using in silico-trained CNNs). Three simulated datasets (cytosolic 

fluorophores) with different SBRs and cell densities are shown. Segmentation accuracy is 

parameterized in terms of cell counting accuracy (y axis) and IoU matching threshold (x 

axis, a measure of cell shape estimation accuracy). Each data point is the average of N = 

10 independent biofilm images. Data are presented as mean values ± one standard deviation 

indicated by error bars. Curves approaching the upper right-hand corner indicate higher 

overall segmentation accuracy, as indicated by the dashed arrows. 

 

The accuracies of single-cell shape estimation and cell counting are predominantly 

affected by cell density. The variation is more prominent for membrane-stained cells, 

because inter-cellular fluorescence intensity minima are less pronounced when cell 

membranes are labeled and cells physically contact each other (red arrow in Figure 4.3c 

and f). By contrast, intracellular fluorophores produce the highest intensities at the cell 

center, so that the gaps between cells are more readily resolvable. Also noteworthy is the 

sharp drop-off in segmentation accuracies for SBRs of <1.7 for all cases. In such low SBR 

regimes, fluorescence signals of the cells become too difficult to be distinguished from the 

background. As a result, the CNNs falsely identify random noisy patterns in the 

background as cells. Additionally, thresholding of the CNN confidence maps often yields 

connected voxel clusters that contain multiple bacterial cells. False identification and 
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incomplete delineation of cells cause the pronounced decrease in segmentation accuracy 

for SBRs of <1.7.  

 

4.4.2 Post-processing of CNN confidence maps  

To better identify individual cells in low SBR and high cell density datasets, we 

developed a graph-based post-processing module (Chapter 4.3 Materials and Methods) that 

takes advantage of the fact that bacterial cell shapes are highly conserved for a given 

species. Briefly, we transformed the CNN ‘cell interior’ confidence maps into 3D point 

cloud data that trace out the central axes of individual cells. This transformation was 

achieved by medial axis extraction using size-constrained inscribed spheres (266) (Figure 

4.4). Single-cell axes are then identified as linearly clustered data points by LCuts – a 

graph-based data clustering method designed to detect linearly oriented groups of points 

(268). The so-identified single-cell axes are then mapped back onto the original 

segmentation volumes to obtain estimates of the 3D positions, shapes, and orientations of 

the now separated cells. 
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Figure 4.9 Segmentation accuracies achieved for biofilm images with different SBR and 

cell densities. (a), (b), and (c) represent results for datasets with SBR 1.19, Density 54.5%, 

SBR 1.71, Density 54.5% and SBR 2.56, Density 54.5%, respectively. Each curve is 

plotted by averaging 10 different datasets. Error bars represent ± one standard deviation.  

 

Post-processing with LCuts takes advantage of a priori knowledge about expected 

bacterial cell sizes (Figure 4.9) by removing erroneously segmented volumes that are 

significantly smaller than the expected value and by splitting incompletely segmented 

volumes representing fused cells. Improvements in cell counting accuracy of up to 15% 

and 36% are observed for cells labeled with cytosolic fluorophores (Figure 4.10a-c) and 

membrane-localized fluorophores (Figure 4.10d-f), respectively. The more substantial 

improvement for membrane-stained cells is due to fact that CNNs trained on membrane-

stained cells are more prone to erroneously identifying speckled background noise as 

fluorescence signals in low SBR images. In addition, membrane-intercalating fluorophores 

of two adjacent cells are in close proximity, making it difficult to resolve fluorescence 

signals from two separate cells due to spatial signal overlap (see the red arrow, Figure 4.8c 

and f). LCuts thus provides an important benefit in improving the cell counting accuracy 

to an extent not achieved by currently available thresholding- or watershed-based post-

processing algorithms (Figure 4.11).  
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Figure 4.10 Performance of BCM3D (in silico-trained CNNs and additional post-

processing by LCuts) on previously unseen simulated data. (a) Voxel-level segmentation 

accuracy and (b) cell counting accuracy (using an IoU matching threshold of 0.5 for each 

segmented object) averaged over N=10 replicate datasets for cells labeled with cytosolic 

fluorophores. (c) Improvement relative to silico-trained convolutional neural networks 

without post-processing. (d) Voxel-level segmentation accuracy and (e) cell counting 

accuracy averaged over N=10 replicate datasets for cells labeled with membrane-localized 

fluorophores. (f) Improvements relative to silico-trained convolutional neural networks 

without post-processing. 
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Figure 4.11 Comparison of LCuts to commonly used image post-processing methods. 

Shown is the cell counting accuracy averaged over 20 randomly chosen, simulated datasets 

of low SBR and/or high cell density, for which post-processing is required. The hysteresis 

thresholding-based algorithm of Ilastik (276) improves the cell counting accuracy by less 

than 6% on average for IoU matching thresholds less than 0.6. On the other hand, the 

watershed-based pipeline used by CellProfiler (277) provides negligible improvements 

and even decreases the average cell counting accuracy in many cases. This decrease is 

primarily due to oversegmentation. Among the three methods tested, LCuts provides the 

highest improvement in cell counting accuracy (>12% on average for IoU matching 

thresholds less than 0.6). 

 

4.4.3 Segmentation of Experimental Biofilm Images 

To test the performance of BCM3D on experimentally acquired biofilm images, we 

acquired time-lapse images of GFP expressing E. coli biofilms every thirty minutes for ten 

hours. We then manually annotated one 2D slice in the 3D images at the t = 5, 6, and 10-

hour time points. When referenced to these manual segmentation results, the LCuts-
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processed CNN outputs consistently achieved better cell counting accuracies than 

conventional segmentation methods (Figure 4.12, Figure 4.13). Initially, Cellpose and the 

Hartmann et al. algorithm outperform the in silico-trained CNNs on two out of three of the 

test images (t = 360 and 600 min), for which our in silico-trained CNNs struggle with 

undersegmentation problems. However, mathematical post-processing of the CNN outputs 

by LCuts corrects some of these errors, so that the integrated BCM3D workflow achieves 

improved results compared to Cellpose and Hartmann et al. at each of the indicated time 

points. Visual inspection of the segmentation results is also informative. Cellpose 

accurately segments individual cells in low density regions, but suffers from 

oversegmentation errors in high density biofilm regions (Figure 4.13e). The Hartmann et 

al. algorithm provides reasonable estimates of cell positions in low and high density 

biofilm regions, but again struggles with cell shape estimation (Figure 4.13d, see also 

Figure 4.8g-i). On the other hand, the integrated BCM3D workflow (CNN + LCuts) 

produces biologically reasonable cell shapes regardless of cell density (Figure 4.12).  
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Figure 4.12 Comparison of segmentation accuracies achieved by conventional 

segmentation approaches (Hartmann et al., Seg3D, Yan et al.), Cellpose, and BCM3D. The 

estimated SBRs are 2.2, 1.8, and 1.3, respectively. The estimated cell densities are 54.8%, 

59.0%, and 64.6%, respectively. (a-c) Three experimental E. coli datasets (cytosolic 

expression of GFP) acquired at different time points after inoculation of cells. 

Segmentation accuracy is parameterized in terms of cell counting accuracy (y axis) and 

IoU matching threshold (x axis). Each data point is the average of the cell counting 

accuracies calculated using annotation maps traced by N = 3 different researchers. Data are 

presented as mean values ± one standard deviation indicated by error bars. Curves 

approaching the upper right-hand corner indicate higher overall segmentation accuracy. (d) 
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Comparison of segmentation results achieved at the t= 600 minutes time point by manual 

annotation (shown is one of N = 3 researchers’ annotation result, the other two annotation 

results are shown in Figure 4.13f and g, and by BCM3D using in silico-trained CNNs only 

and after further refinement of CNN outputs using LCuts. Similar results were also 

obtained at the t = 300 and t = 360 minute time points. Segmentation results of the other 

methods are shown in Figure 4.13. 
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Figure 4.13 Visual comparison of segmentation results achieved by previous segmentation 

approaches that rely solely on mathematical image processing. (a) Experimental dataset is 

the E. coli biofilm containing GFP expressing cells 10 hours after the inoculation. (b) 

Segmentation result obtained using Seg3D (275). (c) Segmentation result obtained using 
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the algorithm in Yan et al. (234).  (d) Segmentation result obtained using Hartmann et al. 

(236). (e) Segmentation result obtained using Cellpose (246). (f) (g) manual annotation by 

two independent researchers. 

 

We attribute the more rapid drop-off of the cell counting accuracy as a function of 

increasing IoU matching threshold in Figure 4.12 to the following factors. First, human 

annotation of experimentally acquired biofilm images differs from the ground truth 

segmentation masks that are available for simulated data (Figure 4.14). The shape 

mismatches between algorithm segmented and manually annotated cell shapes (Figure 

4.14 and 4.15) lead to a global lowering of voxel-level segmentation accuracy and thus a 

more rapid drop-off of the cell counting accuracy as a function of increasing IoU matching 

threshold. Because bacterial cell shapes are not accurately captured by manual annotation 

(Figures 4.14), cell counting accuracies referenced to manual annotations should be 

compared only at low IoU matching thresholds (0.1-0.3, shaded grey in Figure 4.12a-c), 

as also noted previously (271). We also note that bacterial cells in experimental images 

appear motion-blurred if they are only partially immobilized and therefore wiggle during 

image acquisition. Furthermore, optical aberrations and scattering effects were not 

included in training data simulations, which may decrease the performance of the CNNs 

on experimental data. Still, at IoU matching threshold < 0.3, the cell counting accuracy of 

BCM3D remains above 75% while also producing biologically reasonable cell shapes. 

Thus, the bacterial cell segmentation results of BCM3D represent a substantial 

improvement over other approaches (Figure 4.12 and Figure 4.13). 
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Figure 4.14 (a) Fluorescence image slice of a 3D simulated biofilm and (b) the 

corresponding ground truth (GT).  (c) The fluorescence image slice shown in (a) masked 

by its corresponding GT shown in (b). The fluorescence is not completely masked because 

of the diffraction-limited resolution of light microscopy.  (d) Fluorescence image slice of 

the same simulated biofilm masked by the BCM3D segmentation result.  (e) Absolute value 

of the difference image between the GT and the BCM3D segmentation result.  White pixels 

indicate regions where the two masks do not agree.  (f) Absolute value of the difference 

image between a manual annotated mask (from researcher 3) and the BCM3D segmentation 

result.  (g) Fluorescence image slice of the same simulated biofilm masked by the manual 

annotation result. Researcher 3 chose to draw larger cell boundaries to mask more of the 

fluorescence intensity.  (h) Absolute value of the difference image between the GT and the 
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manually annotated mask. White pixels indicate regions where the two masks do not agree.  

(I) Segmentation accuracy achieved by manual annotation performed by three different 

researchers. Segmentation accuracy is parameterized in terms of cell counting accuracy (y 

axis) and IoU matching threshold (x axis, a measure of cell shape estimation accuracy. 

Curves approaching the upper right-hand corner indicate higher overall segmentation 

accuracy with respect to the ground truth. While IoU matching thresholds <0.3 yield good 

cell counting accuracies, the cell counting accuracy sharply decreases for IoU matching 

thresholds >0.3, because manually annotated cell shapes differ from the ground truth cell 

shapes.  

 

Figure 4.15  (a) Fluorescence image slice of the 3D E. coli biofilm shown in Figure 5c 

masked by the BCM3D segmentation result. (b) Fluorescence image slice of the 3D E. coli 

biofilm shown in Figure 5c masked by manual annotation. (c) Absolute value of the 

difference image between manual annotation and BCM3D segmentation.  

 

To demonstrate that BCM3D can achieve similarly high segmentation accuracies 

for membrane-stained cells in different cellular arrangements, we analyzed a small patch 

of a M. xanthus biofilm, which was stained with the membrane intercalating dye FM4-64 

(Figure 4.16). In contrast to E. coli biofilms, the submerged M. xanthus biofilm imaged 

here features cells in a mesh-like arrangement with close cell-to-cell contacts, which 

presents a unique challenge for 3D single-cell segmentation. To obtain reference data for 
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3D segmentation accuracy determination, we manually annotated each xy, xz, and yz slice 

of an entire 3D image stack (Figure 4.16b). When referenced to this 3D manual 

segmentation result, BCM3D (Figure 4.16c) produced cell counting accuracies above 70% 

at low (0.1-0.3) IoU matching thresholds, whereas segmentation results obtained by 

conventional image processing (Hartmann et al.) and by generalist CNN-processing 

(Cellpose) produced cell counting accuracies <50% in the same IoU matching threshold 

region (Figure 4.16d). We note however that neither Cellpose nor the Hartmann et al. 

algorithm were specifically optimized/designed for segmenting membrane-stained cells. 

Indeed, the performance of Cellpose on this type of biofilm architecture is inferior to the 

results achieved using the in silico-trained CNNs of BCM3D alone (without using LCuts 

post-processing). One reason might be that the pre-trained, generalist Cellpose model has 

not been trained sufficiently on long, thin, and highly interlaced rod-shaped cells, such as 

those contained in a M. xanthus biofilm.   
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Figure 4.16 3D Segmentation accuracy evaluation using M. xanthus biofilm images (cell 

density = 36.2%, and SBR = 1.58) using in silico-trained CNN processing. (a) Maximum 

intensity projection of a 3D M. xanthus fluorescence image. Cells were labeled with 

membrane-intercalating dye, FM4-64. Similar images were obtained at N = 120 different 

time points. (b) Maximum intensity projection of the manually obtained 3D segmentation 

result. (c) Maximum intensity projection of a CNN-based 3D segmentation result after 

LCuts post-processing. Cells that can be matched with the GT are displayed in the same 

colors as GT or otherwise colored in white. (d) Segmentation accuracy of compared 

algorithms parameterized in terms of cell counting accuracy (y axis) and IoU matching 

threshold (x axis). 
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4.4.5 Morphological Separation of Mixed Cell Populations 

Given the improved segmentation results obtained using BCM3D, we reasoned that 

the same CNNs may have additional capacity to assign segmented objects to different cell 

types based on subtle morphological differences in the acquired images. Differences in the 

imaged cell morphologies arise due to physical differences in cell shapes (e.g. spherical vs. 

rod-shaped cells) or due to differences in the fluorescent labeling protocols (e.g. 

intracellular vs. cell membrane labeling), because fluorescence microscopes simply 

measure the spatial distributions of fluorophores in the sample. The ability to separate 

different cell morphologies is important for the study of multispecies biofilms, where 

interspecies cooperation and competition dictate population-level outcomes (46-53, 224). 

Separation of differentially labeled cells is also important for the study of gene activation 

in response to cell-to-cell signaling (278). Expression of cytosolic fluorescent proteins by 

transcriptional reporter strains is a widely-used technique to visualize activation of a 

specific gene or genetic pathway in living cells. Such genetic labeling approaches can be 

complemented by chemical labeling approaches, e.g. using membrane intercalating 

chemical dyes that help visualize cells non-specifically or environmentally-sensitive 

membrane dyes that provide physiological information, including membrane composition 

(279, 280), membrane organization and integrity (281-283), and membrane potential (284, 

285). Chemical and genetic labeling approaches are traditionally implemented in two 

different color channels. However, there are important drawbacks to using multiple colors. 

First and foremost, the amount of excitation light delivered is increased by the necessity to 

excite differently colored fluorophores, raising phototoxicity and photobleaching concerns. 
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Second, it takes N times as along to acquire N-color images (unless different color channels 

can be acquired simultaneously), making it challenging to achieve high temporal sampling 

in time-lapse acquisition. For these reasons, methods that extract complementary 

physiological information from a single-color image are preferable.  

 

Figure 4.17 Segmentation of mixed population biofilms containing spherical cells and rod-

shaped cells. (a) Simulated fluorescence image of a mixture of spherical cells and rod-

shaped cells. The mixing ratio for this particular biofilm is 50:50, the cell density is 50.6%, 
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and the SBR is 2.56. (b) Segmentation result obtained by BCM3D and (c) ground truth. 

Three orthogonal planes are shown below each 3D image. 

 

We evaluated the ability of BCM3D to automatically segment and identify rod-

shaped and spherical bacterial cells consistent with shapes of E. coli and S. aureus in 

simulated images (Figure 4.17). To segment cells in two-population biofilms, we trained 

CNNs that classify pixels into five different classes: ‘background’, ‘cell interior of 

population 1’, ‘cell boundary of population 1’, ‘cell interior of population 2’ and ‘cell 

boundary of population 2’. Thresholding the CNNs confidence maps can achieve cell 

counting accuracies larger than 90% for both cell types independent of their population 

fractions (Figure 4.18a). Post-processing of this result using LCuts improved the cell 

counting accuracy by less than 0.5% on average, indicating that under-segmented cell 

clusters are not prevalent in this dataset.  
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Figure 4.18 Performance of BCM3D on mixed-population biofilm images. (a) Cell 

counting accuracy of BCM3D on simulated images containing different ratios of rod-

shaped and spherical cells. Black diamonds represent the counting accuracy for N = 10 

independently simulated datasets. Green dots represent the cell density for each 

independent dataset. Error bars represent ± one standard deviation. (b) Cell counting 

accuracy of BCM3D on simulated images with different ratios of membrane-labeled, and 

membrane-labeled and interior fluorescent protein expressing cells. Black diamonds 

represent the counting accuracy for N = 10 independently simulated datasets. Green dots 

represent the cell density for N = 10 independent datasets. Error bars represent ± one 

standard deviation. (c and d) Cell counting accuracy of BCM3D on experimental images 

of (c) membrane-labeled, and (d) membrane-labeled and interior fluorescent protein 

expressing E. coli cells (mixing ratio ~ 1:1). Each data point is the average of the cell 

counting accuracies calculated using annotation maps traced by three different researchers 

(N = 3). Data are presented as mean values ± one standard deviation indicated by error bars. 
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Figure 4.19 Segmentation of mixed population biofilms containing membrane-stained 

cells and membrane-stained cells that additionally express an intracellular fluorescent 

protein. (a) Simulated fluorescence image of a mixture of membrane-stained cells and 

membrane-stained cells that additionally express an intracellular fluorescent protein. The 

mixing ratio for this particular biofilm is 50:50, the cell density is 59.6%, and the SBR is 

2.56. (b) Segmentation result obtained by BCM3D and (c) ground truth. Three orthogonal 

planes are shown below each 3D image.  

 



Chapter 4: Non-Invasive Single-Cell Morphometry in Living Bacterial Biofilms 140 
 

 

We next evaluated the ability of BCM3D to automatically segment and separate 

membrane-stained cells that express cytosolic fluorescent proteins from those that do not 

(Figure 4.19). Again, the cell counting accuracy is consistently above 80% for all tested 

mixing ratios (Figure 4.18b). Finally, we applied BCM3D to experimentally acquired 

biofilm images of two different E. coli strains. Both strains were stained by the membrane 

intercalating dye FM4-64, but the second strain additionally expressed GFP (Figure 4.20). 

The cells were homogeneously mixed prior to mounting to randomize the spatial 

distribution of different cell types in the biofilm (see Materials and Methods). Multiple 2D 

slices from the 3D image stack were manually annotated and compared with the results 

obtained by BCM3D. Consistent with the single-species experimental data, a cell counting 

accuracy of 50% is achieved for each cell type at a 0.5 IoU matching threshold and, at 

lower IoU matching thresholds, the counting accuracies increased to 60% to 70%, (Figure 

4.18c and d). Thus, using appropriately trained CNNs in BCM3D enables automated and 

accurate cell type assignments based on subtle differences in cell morphologies in mixed 

population biofilms – a capability not available using conventional image processing 

methods. 
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Figure 4.20 (a) Experimental 2D slice of a mixed E. coli population containing membrane-

stained cells and membrane-stained cells that additionally express an intracellular 

fluorescent protein. The mixing ratio at the time of inoculation was 50:50. All cells were 

labeled by the FM4-64 membrane-intercalating dye. (b) BCM3D segmentation result 

corresponding to the image shown in (a). Membrane-stained cells are displayed in green, 

and cells that were both membrane-stained and cytosolically-labeled are displayed in 

magenta. 
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4.5 Conclusions 

CNNs have been successful applied to many different problems in biological image 

analysis, but their ability to segment individual cells in 3D and time-lapse 3D bacterial 

biofilm images has not yet been fully explored. Here, we demonstrated a new CNN-based 

image analysis workflow, termed BCM3D, for single-cell segmentation and shape 

classification (morphometry) in 3D images of bacterial biofilms. In this work, we applied 

BCM3D to 3D images acquired by lattice light sheet microscopy. However, BCM3D 

readily generalizes to 3D images acquired by confocal microscopy or advanced super-

resolution microscopy modalities, provided that realistic image formation models are used 

to simulate the training datasets. The use of simulated training data is a major advantage 

of BCM3D, because it overcomes inconsistencies inherent in manual dataset annotation 

(Figure 4.14 and 4.15) and thus solves the problem of obtaining sufficient amounts of 

accurately annotated 3D image data. The ability to use simulated training data provides 

needed flexibility not only in terms of the microscope platform used for imaging, but also 

in terms of the bacterial cell shapes that are to be segmented. 

We systematically investigated the advantages and limitations of BCM3D by 

evaluating both voxel- and cell-level segmentation accuracies using simulated and 

experimental datasets of different cell densities and SBRs. BCM3D enabled accurate 

segmentation of individual cells in crowded environments and automatic assignments of 

individual cells to specific cell populations for most of the tested parameter space. Such 

capabilities are not readily available when using previously established segmentation 

methods that rely exclusively on conventional image and signal processing algorithms. 
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While BCM3D surpasses the performance of previous approaches, we stress that 

further improvements are possible and, for long-term, high frame-rate time-lapse imaging 

experiments, absolutely needed. Our systematic analysis revealed that high cell density and 

low SBR datasets are particularly challenging for the CNNs used in this work. Future work 

will therefore focus on increasing the contrast and resolution in bacterial biofilm images. 

While, the use of optical super-resolution modalities can provide higher spatial resolution, 

such resolution improvements often come at a cost of reduced image contrast and faster 

photobleaching/phototoxicity. Software solutions that can process images with limited 

resolution and low SBRs will therefore play a tremendously important role in biological 

imaging. BCM3D is a general workflow that integrates computational simulation of 

training data, in silico-training of CNNs for a specific task or a specific cell type, and 

mathematical post-processing of the CNN outputs. Incorporating different training 

strategies and different CNNs, such as the generalist CNN used in Cellpose (246), into the 

BCM3D workflow will enable automated cross-validation of segmentation results when a 

ground truth or manual annotation map is not available. Furthermore, CNN-based image 

processing modules developed for contrast enhancement and denoising have also surpassed 

the performance of conventional methods based on mathematical signal processing (286-

289). Incorporating these tools into the BCM3D workflow promises to further improve the 

single-cell segmentation accuracies. We anticipate that the ability to accurately identify 

and delineate individual cells in dense 3D biofilms will enable accurate cell tracking over 

long periods of time. Detailed measurements of behavioral single-cell phenotypes in larger 

bacterial communities will help determine how macroscopic biofilm properties, such as its 
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mechanical cohesion/adhesion and its biochemical metabolism, emerge from the collective 

actions of individual bacteria. 
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5.1 Abstract 

The individual cell behaviors in living S. flexneri biofilms have not yet been 

explored. The non-invasive imaging technique, LLSM and the accurate cell segmentation 

modality, BCM3D, enable inspecting live bacterial biofilms with subcellular resolution. 

However, to study individual cell behaviors in biofilms, an accurate cell tracking method 

is needed. In this work, we present a multi-cell tracking algorithm which tracks cells with 

the highest similarity by considering cell observables, including cell positions, cell 

orientations, cell shapes, cell volumes and fluorescence intensities. We evaluated the 

tracking accuracy of the algorithm with simulated biofilm data and found a linear 

relationship between the tracking accuracy and the cell counting accuracy. Aiming to 

reveal the single cell dynamics in S. flexneri biofilms, we applied LLSM, BCM3D and the 

newly developed tracking algorithm to study the biofilm of this pathogenic bacterium. We 

uncovered the fast diffusion behaviors of S. flexneri cells in the biofilm. Finally, we present 

the capacity to calculate the growth rate of single S. flexneri cells within a 3D biofilm. 
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5.2 Introduction 

Shigella flexneri, an intracellular bacterial pathogen, can cause bacillary dysentery 

by invading epithelial cells in the colonic mucosa (34, 186-188). As a highly infectious 

agent, ingestion of as few as 10 to 100 S. flexneri cells are sufficient to result in an infection. 

After ingestion, the surviving and spreading of S. flexneri is challenged by several 

environmental conditions within the epithelial lining of the gut, such as host production of 

antimicrobial peptides, proteases, and bile salts (189). Among these reagents, the 

influences of bile salts have been widely investigated. The antimicrobial activities of bile 

salts are due to their amphipathic structures which provide detergent-like properties (190, 

191). Previous research revealed that bile salts modulate the interaction between Shigella 

species and its environment (33). Pope et al. first reported that growing in the presence of 

bile salt, deoxycholate (DOC), enhanced the adhesion of S. flexneri and S. dysenteriae to 

HeLa cells (192). In addition to increase the adhesion to host cells, Ellafi et al. found that 

the cell size of Shigella species decreases after having been exposed to bile salts (33). 

Shigella spp. was not expected to form biofilms, since they do not express canonical 

adhesins, curli, or flagella, which are common components of biofilms formed by other 

species (290, 291). However, Nickerson et al. recently reported that exposure to a mixture 

of DOC and cholate (CA) stimulates Shigella spp. to form biofilms (38).  

Due to the lack of flagellum expression, the intra- and inter- cell spread of Shigella 

spp. are accomplished by actin-based motility with the help of IcsA, an out membrane 

protein which localizes on a single pole of the cell (31, 32, 37). In addition to driving the 

spread of Shigella cells, Brotcke Zumsteg et al. found that IcsA is a necessary adhesin to 
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promote contact with host cells (31). Very recently, Koseoglu et al. reported that IcsA is 

critical for bile salt-mediated biofilm formation of Shigella (36).  

None of the above-mentioned studies on S. flexneri biofilms are performed in vivo 

with single cell resolution. Only bulk information of biofilms, such as the total biomass 

and the thickness, are provided. The dynamics of S. flexneri biofilms and the single cells 

within it are still poorly understood. Tracking the individual cell behaviors in S. flexneri 

biofilms could help develop strategies for eliminating S. flexneri biofilms and preventing 

the spread of this pathogenic strain. Therefore, in this work, our goal is to obtain a clear 

picture of single cell dynamics in S. flexneri biofilms. 

Quantitatively tracking cells within S. flexneri biofilms requires a suitable imaging 

approach with sufficient resolution, an automated cell segmentation method, a compatible 

biofilm formation device for the pathogenic species and a reliable cell tracking algorithm. 

As presented in Chapter 4, LLSM enables non-invasive imaging for biofilms and BCM3D 

(183), an image analysis workflow that combines deep learning with mathematical image 

analysis, enables accurate segmentation and classification of single bacterial cells in 3D 

fluorescence images. In Chapter 3, we designed a flow chamber system which is 

compatible with LLSM and allows real-time monitoring of biofilm formation for 

pathogenic species, such as S. flexneri. These imaging and cell segmentation approaches 

provide the data for quantitative cell tracking. However, a reliable multi-cell tracking 

method for dense 3D biofilms is still not available.  

The existing cell tracking methods can be broadly categorized into two main types: 

tracking by detection and tracking by model evolution (292-302). The first type involves 

two steps: 1) independently segmenting all target objects in all the frames of the entire 
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time-lapse data sets and 2) associating detected objects between frames, typically by 

optimizing a probabilistic objective function (303). In contrast, the second category 

accomplishes segmentation and tracking simultaneously by evolution of an explicitly or 

implicit defined curves or surfaces (303, 304). Recently, the application of machine 

learning techniques for both segmentation and tracking algorithms has been widely used 

and achieved great success (171, 174, 246, 260, 305-307). However, robust tracking 

methods for multi-cell tracking in dense 3D biofilms have not yet been reported.  

Multi-cell tracking in dense 3D biofilms is challenging because bacterial cells have 

similar morphometries and are closely packed. Cells can disappear and re-appear during 

imaging due to their fast wiggling. To minimize the impact of these issues on tracking, 

conventional tracking approaches for 3D bacterial biofilms often requires high frame rate 

imaging (134) or multicolor labeling (185) imaging. High frame rate imaging and 

multicolor imaging can both result in increased photodamage, especially for long-term 

experiments. However, high frame rate might be not experimentally achievable because of 

the large size (e. g. 50 by 50 µm) of the field of view (FOV) for imaging a biofilm, high 

frame rate might be not experimentally achievable.  

Conventional tracking approaches for 3D bacterial biofilms are often developed 

based on segmentation results with low accuracies due to the low quality of the biofilm 

images. Precise single-cell observables, including cell positions, cell orientations, cell 

shapes, cell volumes and fluorescence intensities, are not available from these 

segmentation results with low accuracies. LLSM can provide 3D biofilm images with high 

quality, such as high resolution and high signal to background ratios (SBRs). In addition, 

BCM3D (183), one of the state of the art image analysis workflow, can provide accurate 
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segmentation of single bacterial cells in 3D fluorescence images. The precise single-cell 

observables, including cell positions, orientations, shapes, volumes and fluorescence 

intensities, can be obtained from the accurate segmentation results. In this work, aiming to 

address the challenges associated with multi-cell tracking in crowded biofilms, we 

developed a bacterial cell tracking algorithm that leverages correlations among the above-

mentioned single-cell observables. The cell lineage is also determined by using observables, 

i.e. cell positions, length and volumes. By systematically evaluating the performance of the 

tracking algorithm with simulated biofilm data for a range of SBRs and cell densities, we 

found that the tracking accuracy improves linearly with the cell counting accuracy. We also 

compared the tracking accuracy of the tracking algorithm using the Hungarian algorithm 

(308) or the nearest neighbor algorithm to associate cells with the simulated biofilm data. 

We found the nearest neighbor algorithm provided higher tracking accuracy, and was 

therefore chosen for associating cells when processing experimental data. The tracking 

algorithm was then applied to investigate the dynamic events of single cells in S. flexneri 

biofilms. The diffusion coefficients and moving rates of single cells in the biofilm were 

calculated based on the trajectories. Our results showed that S. flexneri cells have larger 

diffusion coefficients and moving rates than the wild type E. coli strain, a classical model 

to study biofilms. The cell density of S. flexneri biofilms was then calculated and compared 

with that of E. coli. The much lower cell density is the likely reason why S. flexneri cells 

in the biofilm have larger diffusion coefficients.  

The work in this chapter provides methodologies for studying individual cell 

behaviors in S. flexneri biofilms. This work sheds light on interpreting the emergent 

properties of S. flexneri biofilms in terms of the fully-resolved behavioral phenotypes of 
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individual cells. These studies could provide valuable insight into understanding the spread 

of S. flexneri, a pathogenic strain. 

5.3 Materials and Methods 

Bacterial Strains and Growth Conditions: 

The wild-type S. flexneri 2457T strain was used in this study (309). The strain was 

labeled with fluorescent protein mCherry. The bacteria were grown overnight at 37 degrees 

in tryptic soy broth (TSB). Spectinomycin (100 μg/ml) was added into the media to 

maintain the pMMB-mCherry vector for constitutive mCherry expression. Before 

inoculating into the flow chamber system, the overnight culture was diluted 100 times into 

the same culture medium and grown to an optical density at 600 nm (OD600) of 0.6 – 1.0.  

Ampicillin resistant E.coli K12, constitutively expressing GFP (249), were cultured 

at 37 degrees overnight in LB medium with 100 μg/ml ampicillin. Overnight cultures were 

diluted 100 times into the same culture medium and grown to an OD600 of 0.6 – 1.0. 

Before inoculation, the cell culture was diluted by a factor of 10.  

 

Biofilm Formation and Imaging: 

Cell culture was inoculated into the home-built flow chamber system (Chapter 3). 

Cropped glass coverslip was mounted inside the flow channel as the substrate for biofilm 

formation. After inoculation, cells were allowed to settle to the flow channel and adhere to 

the coverslip for 1 hour at room temperature. For S. flexneri biofilm formation, the flow 

chamber system was filled with 25% TSB media containing 0.4% (w/w) bile salts and 100 
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μg/ml spectinomycin. For E. coli biofilm formation, the flow chamber system was filled 

with M9 medium containing 100 μg/ml ampicillin. The flow rate for all experiments was 

0.2 mL/hour. To keep the growth media fresh, the media was replaced every 24 hours.  

Fluorescence images of bacterial biofilms were acquired on a home-built lattice 

light sheet microscope (LLSM). Here, a continuous illumination light sheet was produced 

by a time-averaged (dithered), square lattice pattern (137), and the illumination intensity at 

the sample was <1 W/cm2. The sample-basin of LLSM was filled with sucrose solution. 

To minimize the aberration induced by refractive index mismatch, the concentration of the 

sucrose solution was adjusted to match the refractive index of the growth media (25% TSB: 

1.3338, M9: 1.3352) inside the flow channel. The S. flexneri mCherry strain was excited 

using the 560 nm light sheet, while the E. coli GFP strain was excited using the 488 nm 

light sheet. The sample-basin was warmed to 37 degrees. S. flexneri biofilm images were 

acquired every second for a total of 200 time points. At each time point, a  single 3D image 

stack contained 400 images were acquired with a 10 ms exposure time to avoid motion 

blur. The step size to acquire 400 frames of images was 200 nm. E. coli biofilm images 

were acquired every second for a total of 400 time points. At each time point, a single 3D 

image stack contained 200 images were acquired with a 10 ms exposure time. The step size 

to acquire 200 frames of images was 300 nm. 

Raw Data Processing: 

Raw data processing was accomplished by using the same procedure as described 

in Chapter 4.3.2 Raw Data Processing, which includes deskewing and deconvolution. 
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Generating Simulated Biofilm: 

To generate data for evaluating the tracking algorithm, we computationally 

simulated a series of fluorescence images of 3D biofilms to mimic the biofilm development. 

The simulation was accomplished by using the same procedure as descripted in Chapter 

4.3.3 Generation of Simulated Biofilm Images. Four time lapse datasets were simulated 

with different SBRs and cell densities. Each datasets contains 23 time points.  

In the simulated datasets, spatial arrangements among individual cells, trajectories 

of each cell and the lineage relationships among cells are known precisely and accurately 

at each time point. The tracks and the lineage relationships were used as the ground truth 

to evaluate our tracking algorithm.  

 

Bacterial Cell Segmentation and Tracking: 

Precise cell segmentation was accomplished with BCM3D (183). The pre-trained 

model for processing E. coli biofilms were applied to inference cells in the convolutional 

neural network module of BCM3D (183).  

In order to match cells between different time points, we first define a pairwise 

similarity function to weigh similarities among single-cells. The function is composed by 

five separate terms. These terms respectively quantify differences in cell position (P), cell 

orientation ϑ, cell shape (S), cell volume (V) and cellular fluorescence intensity (I). If A 

represents the cell-of-interest at time t and B represents a candidate cell to match at time 

t+1, then T(PA,PB) is the Euclidean center-of-mass distance between the two cells, R(ϑ(A), 

ϑ(B)) is the difference in their relative orientation, V(VA, VB) is their volume difference, 

S(SA, SB) is the difference of their aspect ratio (the ratio of the major axis to the minor axis), 
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and Di(IA,IB) is their intensity dissimilarity between the two cells. With these definitions in 

hand, we define the pairwise similarity between two cells as: 

𝑓𝐴𝐵 =  𝜆1 ∗ 𝑒−𝑇(𝑃𝐴 ,𝑃𝐵 ) + 𝜆2 ∗ 𝑒−𝑅(𝜗𝐴 ,𝜗𝐵) + 𝜆3 ∗ 𝑒−𝑉(𝑉𝐴 ,𝑉𝐵 ) + 𝜆4 ∗ 𝑒−𝑆(𝑆𝐴 ,𝑆𝐵 ) 

+𝜆5 ∗ 𝑒−𝐷𝑖(𝐼𝐴 ,𝐼𝐵 ) + 𝑅𝑒𝑔(𝜆1 , 𝜆2, 𝜆3, 𝜆4 , 𝜆5)                         (5.1) 

where 𝜆1, 𝜆2, 𝜆3 , 𝜆4, 𝜆5  are weighting coefficients defining the relative importance of 

individual terms, and Reg() is the regularization of the weighting coefficients, which 

ensures that fAB takes on values between 0 (no similarity) and 1 (perfect similarity). We 

assume that matching the same cell in subsequent time frames maximizes fAB with respect 

to all other possible matches. In this work, 𝜆1 , 𝜆2, 𝜆3, 𝜆4 , 𝜆5 are empirically set as 0.7, 0.05, 

0.1, 0.1, and 0.05, respectively. We consider linking the same cells across two different 

time points as a one-to-one assignment problem. We utilized both the Hungarian algorithm 

(310) and the nearest neighbor algorithm to solve the assignment problem (311). When 

applied iteratively over consecutive time frames (i.e. 12, 23, 34…), the algorithms 

determine the bacterial motion trajectories that minimize differences in cell positions, 

orientations, shapes, volumes and fluorescence intensities. The difference between the 

Hungarian algorithm and the nearest neighbor algorithm is the following. The Hungarian 

algorithm considers all possible one-to-one matches between segmented cells and then 

determines the set of matches that maximize the sum ∑ 𝑓𝐴𝐵  (minimize the difference). That 

is to say the Hungarian algorithm finds the globally optimal solution for matching. The 

nearest neighbor algorithm will simply match the two closest points amongst the two sets. 

That also means the nearest neighbor algorithm finds locally optimal solution for matching. 
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To set rational thresholds for each cell observable when associating cells, we 

manually tracked 10 pairs of cells between adjacent time points datasets. The differences 

of cell positions, orientations, shapes, volumes and fluorescence intensities for these 10 

pairs of cells were calculated and averaged, respectively. The threshold for each observable 

was set by added a buffer of 25 % to the averaged value.  

After obtaining tracks for all cells, the lineage relationships is determined by the 

following procedure. For a track A, assume it starts from time point t (t ≥ 2) and its first 

cell is C𝐴
𝑡1. Check all cells before time point t. A cell is assigned as the parent cell for C𝐴

𝑡1 

if it can satisfy three conditions: it is within a distance of 3 times of the cell length, its 

length and volume are 1.5 time of that of C𝐴
𝑡1. Then, the tracks C𝐴

𝑡1 belongs to will be split 

by C𝐴
𝑡1 to form two new tracks.  

 

Evaluation of Cell Counting Accuracy: 

The same metric as descripted in Chapter 4.3.7 Performance Evaluation is used to 

measure the cell counting accuracy. To evaluate the accuracy of cell segmentation on 

experimental data, we traced the cell contours on experimental 2D slices by using freehand 

selections in Fiji ROI Manger (259). 

Evaluation of Tracking Accuracy: 

We use the widely accepted (244) Acyclic Oriented Graph Matching (AOGM) 

metric, which uniquely quantifies tracking accuracy (TRA) (312). The AOGM metric 

assesses how difficult it is to transform an experimental tracking result (in the form of a 

mathematical graph) into the reference result (a graph obtained from ground truth 
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trajectories or from accurately and independently determined experimental 

trajectories). The normalized version of the AOGM measure (312) is finally calculated by: 

TRA = 1 −
min (𝐴𝑂𝐺𝑀,𝐴𝑂𝐺𝑀0)

𝐴𝑂𝐺𝑀0
                                               (5.2) 

where AOGM0 is the AOGM value required for constructing the reference graph from 

empty tracking results. The tracking accuracy would be negative when the AOGM value 

is larger than AOGM0. The negative tracking accuracy makes no sense; therefore, the 

minimum operator is added in the numerator to prevent it from having a final negative 

value. TRA always falls in the [0, 1] interval with this operation. The higher TRA values 

corresponds to better tracking performance.  

 

Tracking Analysis: 

The Mean Squared Displacement (MSD) is calculated according to: 

𝑀𝑆𝐷𝑛 =  
1

𝑁−𝑛
∑ (𝑥𝑖+𝑛 − 𝑥𝑖)

2𝑁−𝑛
𝑖=1 , 𝑛 = 1, … , 𝑁 − 1                          (5.3) 

using all available displacements of a given duration nΔt. Δt is the is the time 

between adjacent time points. N is the total number of time points. xi is the position of the 

cell at time point i. xi+n is the position of the cell at time point i+nΔt. Only trajectories with 

at least 4 localizations were considered for the calculation of MSD and further analysis.  

When the delay time for calculating MSD is Δt, the formula is simplified to:  

𝑀𝑆𝐷 =  
1

𝑁−1
∑ (𝑥𝑖+1 − 𝑥𝑖)

2𝑁−1
𝑖=1                                        (5.4) 

The apparent diffusion coefficient, D* is then computed as: 

                                              𝐷∗ =  
𝑀𝑆𝐷

2∙𝑑∙𝛥𝑡
                                                            (5.5) 
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where N is the total number of time points and xi is the position of the cell at time point i. 

It must be noted that the so-estimated apparent diffusion coefficients do not take into 

account the static and dynamic localization errors (313), or the effect of confinement. 

The moving rate of one cell is calculated by: 

𝑉 =  
1

(𝑁−1)∙𝛥𝑡
∑ √(𝑥𝑖+1 − 𝑥𝑖)

2 +  (𝑦𝑖+1 − 𝑦𝑖)2 + (𝑧𝑖+1 − 𝑧𝑖)2𝑁−1
𝑖=1                (5.6) 

where N is the total number of time points and (xi, yi, zi) is the position of the cell at time 

point i. 

 

Density Calculation: 

To estimate the density of the biofilm, we manually partitioned the segmentation 

results into several 3D tiles of size 64 by 64 by 8 voxels. We then estimated the local 

density as total cell volume contained in each tile divided by the tile volume. We calculated 

the mean density of the 10 densest tiles to define the density of the biofilm. 

5.4 Results and Discussion 

5.4.1 Additional Cell Observables Improve the Tracking Accuracy 

Distance between cells is conventionally only considered to associate cells when 

tracking. We first evaluated if we could improve the tracking accuracy by considering 

additional cell observables, such as cell orientation, shapes, volumes and fluorescence 

intensities (Figure 5.1). The cell observables were obtained from the segmentation results 

of BCM3D (183). The nearest neighbor algorithm, which finds cells with the highest 

similarity, is used to run the evaluation. For both scenarios, our results showed the tracking 
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accuracy improves linearly with cell counting accuracy (Figure 5.1). When using all the 

aforementioned cell observables to calculate the similarity between cells, the tracking 

algorithm can achieve higher tracking accuracy compared to only using the cell distance 

(Figure 5.1). However, the overall improvement is not substantial. This can be ascribed to 

the features of the simulated data. In the simulated biofilms, all cells grow under the control 

of the same setups. In this case, the change of cell orientations, shapes, volumes and 

fluorescence intensities between adjacent time points are very similar among all cells. The 

similar change of these cell observables among all cells is not so helpful for the tracking 

algorithm to find the correct cells belonging to the same track. However, such limitation is 

alleviated in the experimental data. Because cells’ phenotypic behavior and gene 

expression will be affected by the heterogeneous local environments in biofilms, the 

change of cell orientations, shapes, volumes and fluorescence intensities between adjacent 

time points could vary more among cells in different regions of the biofilm. These cell 

observables should then be helpful for tracking cells.  

Another key finding is that the improvement of the tracking accuracy is more 

pronounced when the cell counting accuracy is low (Figure 5.1). When the cell counting 

accuracy is low, the cell positions might not be enough accurate for tracking cells, thus 

considering more cell observables can help finding the correct cells that belongs to the 

same track. Overall, the results here demonstrate that by including additional terms in the 

computation of cell similarity, we can improve the tracking accuracy.  
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Figure 5.1 Tracking accuracy is improved by adding 5 cell observables into the tracking 

algorithm. The red line represents the accuracy of the tracking algorithm by using only cell 

position difference (distance) to associate cells. The blue line represents the accuracy of 

the tracking algorithm by using 5 cell observables, including cell positions, orientations, 

shapes, volumes and fluorescence intensities, to associate cells. Four simulated data with 

different image qualities which results in different cell counting accuracies are used.  

 

5.4.2 Comparison between Nearest Neighbor and Hungarian Algorithm 

The basic idea for tracking cells across different time points is a one-to-one 

assignment problem. The nearest neighbor algorithm and the Hungarian algorithm (310) 

are two widely used methods to solve the assignment problem. We compared the 
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performance of these two algorithms with simulated data. In this experiment, the above-

mentioned cell observables are all incorporated into nearest neighbor algorithm and the 

Hungarian algorithm when calculating the cell similarity. To set rational thresholds for 

each cell observable, we manually tracked 10 pairs of cells between adjacent time points 

datasets and then do the calculation as described in the method section (Chapter 5.3). For 

example, the threshold for the distance is set to 5 voxels for the simulated biofilm data. The 

distance threshold of 5 voxels means cells will not be linked into tracks when they are more 

than 5 voxels away. Setting thresholds for all cell observables significantly improves the 

tracking accuracy for the nearest neighbor algorithm (Figure 5.2). The maximum 

improvement of 0.11 is observed for the data with the lowest cell counting accuracy. 

Considering the significant improvement for the tracking accuracy, thresholds for cell 

observables were set with the same strategy when processing the experimental data. We 

observed that in this case the nearest neighbor algorithm outperforms the Hungarian 

algorithm for all the processed 4 simulated datasets (Figure 5.2). Therefore, we chose the 

nearest neighbor algorithm to associate cells for the experimental biofilm data. 
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Figure 5.2 Performance of the nearest neighbor algorithm and the Hungarian algorithm 

with and without setting thresholds for cell observables. The blue solid and dash lines 

represent tracking accuracy of the nearest neighbor algorithm with and without setting 

thresholds, respectively. The red solid line represents tracking accuracy of the Hungarian 

algorithm with setting thresholds. The result of the Hungarian algorithm without setting 

thresholds is about the same as with thresholds and is omitted here. 

 

5.4.3 Evaluation of the Cell Counting Accuracy for the Experimental Data 

We have shown that the tracking accuracy improves almost linearly with the cell 

counting accuracy (Figure 5.1 and 5.2). Therefore, higher cell counting accuracy is 

preferred for obtaining accurate tracking results. To evaluate the applicability of the 
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tracking algorithm to experimental data, we then measured the cell counting accuracy for 

the experimentally acquired data to see if we can obtain desired tracking accuracy (Figure 

5.3). By choosing an IoU threshold of 0.5, which is typically chosen when reporting single 

cell counting accuracy values (246, 271), the cell counting accuracies for experimental E. 

coli and S. flexneri datasets are 62.5% and 55.2%, respectively (Figure 5.3 vertical dash 

line), which falls well within the values obtained for simulated data (Figure 5.2), 

suggesting they will yield acceptable tracking accuracies.  

 

 

Figure 5.3 Cell counting accuracies of experimental data. The red line represents the 

counting accuracy of the experimental E. coli datasets (cytosolic expression of GFP), while 

the blue one represents the S. flexneri datasets. Each data point is the average of the cell 

counting accuracies calculated using the manually traced annotation maps. The annotation 
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is repeated by the same researcher 3 times. Error bars represent ± one standard deviation. 

Curves approaching the upper right-hand corner indicate higher overall counting accuracy. 

 

5.4.4 Tracking Analysis 

Many studies on diffusion behaviors of bacterial cells in planktonic states, in 

polymeric solutions and porous media have been reported (314-325). Other studies focus 

on investigating the diffusion of antibiotics, oxygen and other agents in biofilms (326-331). 

However, little is known about the diffusion behaviors of bacterial cells in biofilms. Herein, 

we analyzed the diffusion of S. flexneri cells in the biofilm and compared the result with 

that of E. coli, the classical model for biofilm studies (Figure 5.4). Compared to the 

diffusion coefficients of planktonic cells (314, 317, 324, 332), which exhibit several μm2/s 

to tens of μm2/s, the apparent diffusion coefficients of cells in biofilms obtained from this 

experiment are 2 to 4 orders of magnitude smaller. This is expected, since the gel like 

extracellular polymeric substances (EPS) (67, 68) in biofilms will have large constrains on 

cells’ motilities and largely decrease their movement speed, and thus their diffusion. S. 

flexneri cells show a mean diffusion coefficient (4.59 × 10-2 μm2/s) which is about 2 orders 

of magnitude larger than E. coli cells (3.3 × 10-4 μm2/s). The average moving rate for S. 

flexneri and E. coli cells in biofilms were then calculated and compared. S. flexneri cells 

show an average moving rate (0.1630 μm/s) which is more than 1 order of magnitude larger 

than E. coli cells (0.0107 μm/s). It is worth mentioning that the average moving rate for S. 

flexneri cells obtained in this work is comparable to previously reported intracellular 

motility rate for individual Shigella cells in mouse embryonic carcinoma cells (333).  
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The larger apparent diffusion coefficients and faster moving rate imply that S. 

flexneri cells in the biofilm possess a more mobile feature than E. coli. We then calculated 

the cell density (~20 %) for S. flexneri biofilms and found it is much smaller than that 

(~60 %) of E. coli biofilms (183). The low cell density indicates that S. flexneri biofilms 

have a loose structure. This is an unexpected result, since bacterial cells in biofilms are 

usually densely packed. The loose structure of S. flexneri biofilms provide a hint to 

understand the increased mobility of S. flexneri cells compared to E. coli. As widely studied, 

S. flexneri utilizes actin-based motility for intra- and inter- cell spread and the bacterial 

factor IcsA is the major determinant of its actin-based motility (31, 32, 37, 332, 334, 335). 

However, it is unclear how IcsA modulates the diffusion behaviors for S. flexneri cells in 

its biofilm and needs to be further explored.  

 

 

Figure 5.4 Probability distribution of the apparent diffusion coefficients. (a) The 

probability distributions of the apparent diffusion coefficients for  S. flexneri cells. 4691 

trajectories which have at least 4 localizations were used to calculate the apparent diffusion 

coefficients. The averaged diffusion coefficients for S. flexneri cells is 4.59 × 10-2 μm2/s 

(b) The probability distribution of the apparent diffusion coefficients for E. coli cells. 2768 
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trajectories which have at least 4 localizations were used to calculate the apparent diffusion 

coefficients. The averaged diffusion coefficients for E. coli cells is 3.3 × 10-4 μm2/s. 

 

5.4.5 Volume Change of Single Cell 

Trajectories of single cells enable researchers to inspect cells’ phenotypic behaviors 

or developmental states along both spatial and temporal dimensions. When using 

fluorescent reporter strains specific to a gene or pathway of interest, the change of the 

fluorescence intensity of single cells can provide information about the gene expression. 

Single-cell resolved information of this kind will advance our understanding of the 

interplay between biochemical and mechanical signaling mechanisms that coordinate 

cellular behaviors in multicellular 3D biofilms (278, 336). As a proof of principle, we 

analyzed the volume change for S. flexneri cells in biofilms as an example to show how 

our tracking results provide single-cell resolved information.  

The volume changes of single S. flexneri cells is measured by tracing cells’ volumes 

along their trajectories. To obtain the growth rate of single cells, we analyzed trajectories 

of cells which have continuous growing cell volumes (Figure 5.5). The result shows the 

growth rate of these cells are in the scale of 10-3 μm3/s. We could not find a previously 

reported result of the single cell growth rate for S. flexneri. The biological meaning of the 

single cell growth rate we obtained still needs further exploitation. However, we found that 

the slopes of the curves in Figure 5.5 are different. That means the growth rate of different 

cells in the same biofilm vary. When mapping these cells into the 3D biofilm structure, we 
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could obtain the spatial distribution of the heterogeneous developmental states for cells in 

the biofilm.  

 

 

Figure 5.5 The volume changes of single S. flexneri cells. Only 10 cells which have 

continuous growing cell volumes are shown as examples for the clarity of the figure.  

 

5.5 Conclusions 

The single cell behaviors within S. flexneri biofilms have not yet been fully 

explored. In this work, we first imaged live S. flexneri biofilms with subcellular resolution 

by utilizing LLSM and processed the data with one of the state of the art bacterial cell 
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segmentation modalities, BCM3D (183). We developed a multi-cell tracking approach 

which calculates the similarity between cells by using cell observables, including cell 

positions, cell orientations, shapes, volumes and fluorescence intensities. We demonstrated 

that considering additional cell observables can improve the tracking accuracy. The nearest 

neighbor algorithm is chosen to track cells based on highest similarity, since it outperforms 

the Hungarian algorithm. We revealed that the tracking accuracy improves almost linearly 

with the cell counting accuracy. We applied the tracking algorithm to the segmentation 

result of the experimentally acquired S. flexneri biofilm images and explored single cell 

dynamics. We observed the fast diffusion behaviors of S. flexneri cells in the biofilm. Being 

able to study the single cell behaviors in S. flexneri biofilm, a pathogenic strain, is a major 

enabling feature of the work presented here. 

While our tracking algorithm can achieve high tracking accuracy in its current state, 

we believe that further improvements are possible by optimizing the weighting coefficients 

for each term in formula to calculate similarity between cells (Chapter 5, Eq. 5.1). It 

important to note that the analysis of apparent diffusion coefficients in this work might 

need to be refined further (313). We obtained the probability distribution of apparent 

diffusion coefficients, but only discussed the mean value. Representing diffusion states for 

all cells with the mean value of their apparent diffusion coefficients might miss sub-

populations of cells with different diffusion behaviors. For example, cells adherent to the 

substrate or inside the biofilm could have smaller diffusion coefficients than cells on the 

surface of the biofilm. A potential approach for analyzing the apparent diffusion 

coefficients is to fit the curve of the probability distribution with a combination of different 
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diffusive states and to map based on the spatial distribution of the cells. The number of 

states can be determined by considering prior knowledge of the bacterial biofilm, such as 

the time for the biofilm to become mature and start dispersal cells. 
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6.1 Summary 

Biofilms, the 3D microbial communities, have been widely investigated for their 

impact on many highly significant public sectors, including wastewater remediation (13), 

energy production (26) and global public health (57, 243, 337). Little is known about how 

macroscopic biofilm properties, such as its mechanical adhesion/cohesion and its 

biochemical metabolism, emerge from the collective actions of individual cells. A better 

understanding on the biochemical and mechanical mechanisms employed by single cells 

in biofilms could enable the design of efficient strategies for removing pathogenic biofilms 

(338, 339) or enable the rational design of microbial ecosystems with desirable biomedical 

and bioengineering capabilities (19, 43-53, 224). Obtaining these knowledge requires 

investigating individual cell behaviors in 3D dense biofilms.  

Conventional imaging modalities, such as confocal-based microscopies are not able 

to resolve individual cells within thick 3D biofilms in a non-invasive manner due to the 

high phototoxicity (135, 278). To non-invasively image bacterial biofilms with 

cellular/subcellular resolution, we used lattice light-sheet microscopy (LLSM), a new 

imaging technology that effectively combines excellent 3D spatial resolution (200-400 nm) 

with fast temporal resolution (up to the scale of ms) and low phototoxicity. (137, 146-148). 

To enables growing and imaging biofilms at the same time, we designed a flow chamber 

system which is compatible with LLSM. The flow chamber system also allows growing 

and imaging any biofilms of interest on any desired materials. As a general sample holder, 

it expands the application of LLSM to perform studies when precisely in situ control of the 

environmental conditions for the sample is desired. The combination of LLSM and the 
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flow chamber system provide the ability to measure the spatial, phenotypic, and 

developmental trajectories of individual cells in 3D biofilms over multiple hours and days. 

To accurately segment and classify single bacterial cells in 3D fluorescence images 

acquired with LLSM, we developed Bacterial Cell Morphometry 3D (BCM3D), an image 

analysis workflow that combines deep learning with mathematical image analysis. 

Compared to state-of-the-art bacterial cell segmentation approaches, BCM3D consistently 

achieved higher segmentation accuracy and further enables automated morphometric cell 

classifications in multi-population biofilms. Precise single-cell observables, including cell 

positions, orientations, shapes, volumes and fluorescent intensities can be obtained from 

the accurate segmentation results by BCM3D. We developed a multi-cell tracking method 

by utilizing these cell observables to associate cells imaged at different time points. The 

integrated workflow were applied to study the diffusive behavior of individual cells in S. 

flexneri biofilms.  

In summary, our work enables 1) imaging of live biofilms (including pathogenic 

species) non-invasively at unprecedented spatial and temporal resolution using LLSM, 2) 

accurate segmentation and classification of single cells in 3D biofilms using BCM3D, 3) 

simultaneously tracking thousands of densely packed bacterial cells through 3D space and 

time. These capabilities allows study the emergent properties of microbial populations in 

terms of the fully-resolved behavioral phenotypes of individual cells. 
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6.2 Future Directions 

 Future work for the bacterial cell segmentation pipeline, BCM3D, include the 

following aspects. First, improving the simulation method to generate training data for 

CNNs. The current biofilm simulation model in BCM3D is not able to simulate species that 

are not straight rods, such as Caulobacter crescentus. To augment the application of 

BCM3D, a simulation module that can simulate biofilm formation of strains with curved 

cell shape should be developed. Second, it would be beneficial to integrate other types of 

CNNs and mathematical image processing techniques. In the current state of BCM3D, we 

combined U-Net with LCuts, but other networks and algorithms were not tested. As 

recently reported, Cellpose, a state-of-the-art, CNN-based, generalist cell segmentation 

algorithm can segment many cell types, without requiring parameter adjustments or further 

model retraining (246). The specialized algorithm designed for bacterial cell segmentation 

by Hartmann et al. using traditional mathematical image processing methods provided 

promising segmentation results from dense 3D Vibrio cholerae biofilms. Integrating these 

newly developed modalities into BCM3D might boost its performance on cell segmentation 

(236).  

Future work for the multi-cell tracking method will focus on three aspects. First, 

we must develop a more precise way to calculate the shape difference between 3D objects. 

Currently, the aspect ratio of cells is used to calculate the shape difference. The aspect ratio 

only provides limited information about the 3D cell shape. Shape features, such as the 

curvature and the surface smoothness, are missing. Adding these terms into the calculation 

of the shape difference might help to improve the tracking accuracy. One possible solution 
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is to use elastic shape analysis (340-342). In this analysis, the dissimilarity between two 

3D shapes can be measured by their geodesic distance in the shape space (340, 341). 

Second, optimization of the weight for the five terms, including cell positions, orientations, 

shapes, volumes and fluorescence intensity in the formula (Chapter 5, Eq. 5.1) to calculate 

the similarity between two cells. As said in Chapter 5, the weight for each term are 

empirically set. By utilizing the simulated biofilm data, we will be able to find the optimal 

values of the weight for each term, which can maximize the tracking accuracy. Third, 

precisely annotating experimental tracking data is required. Evaluation and optimization 

of the tracking algorithm are accomplished by using simulated biofilm data (Chapter 5), 

because the ground truth cell tracks are known a priori. However, the ground truth is 

unknown for the experimental biofilm data. To evaluate the performance of the tracking 

algorithm on experimental data, the reference for comparison must be first obtained. To 

obtain accurately and independently determined experimental trajectories, we can pursue 

three different approaches. (1) Generating the ground truth for the experimental data by 

human annotation. Specifically, the annotation includes two steps: manual annotation of 

the cells in the data set at each time point and manually association cells at different time 

points to generate cell tracks. Manual annotations are time consuming, but the human 

annotated tracking results are valuable not only for us to improve the performance of our 

tracking algorithm, but also for the research community when published. (2) Mixing 

doubly-labeled (GFP- and tdTomato-expressing) cells with singly-labeled (GFP-

expressing) cells at mixing ratios of 1:100 - 1:1000. The doubly-labeled cells are visible 

upon red and green excitation, while the GFP-expressing cells are only visible upon green 

excitation. Tracking the sparse tdTomoato fluorescence signal (by fluorescence centroid 
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tracking, as described previously (250, 343)) will provide accurate trajectories of a subset 

of cells in the biofilm. (3) Expressing fluorescent protein fusions that form bright 

fluorescent foci at the bacterial cell poles, such as PopZ-eYFP (344, 345), YFP-PilM (346), 

and mNeonGreen-μNS (146), in addition to intracellular or membrane labeling. This will 

allow tracking individual cells by 3D single-particle tracking, which can be accomplished 

with many publically available modalities (257, 347-350).  

Future work on the S. flexneri biofilms will focus on studying their development on 

physiologically relevant environments (e.g. human-derived intestinal organoid monolayers 

(351-353)). By taking the advantage of our flow chamber system, we can investigate 

biofilm formation on any desired substrates under controllable environmental conditions. 

Initial efforts will include growing intestinal organoids in the flow channel and subsequent 

inoculation of the infectious species, S. flexneri cell culture. Then, we can observe the S. 

flexneri biofilm growth on the layer of intestinal organoids with single cell resolution by 

imaging with LLSM. Obtaining physiologically relevant, contextual measurements of 

dynamic bacterial cell behaviors (e.g. surface adhesion and cell cohesion, biofilm 

formation, cell dispersal, and host cell and tissue invasion) is critical to understand how 

commensal and pathogenic bacteria colonize the human gastrointestinal system.  

The current analysis of the diffusion behaviors for S. flexneri cells in biofilms are 

based on Stokes-Einstein relation (313), under the assumption of a Brownian motion model. 

However, bacterial cells might not undergo pure Brownian motion, especially in biofilms. 

Additional terms, such as the confinement from the EPS and the effect of machineries that 

drive bacterial cells’ motion, should be incorporated into the model. As S. flexneri utilizes 
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actin-based motility for intra- and inter- cell spread, which relies on the bacterial factor 

IcsA (31, 32, 37, 332, 334, 335), exploring the effect of IcsA on the diffusive behaviors of 

S. flexneri cells in the biofilm would be desirable. 
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