
Summer 2024 Technology Internship: Internal Data Discrepancies in Customer Servicing
Platform

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Alex Catahan

Spring, 2024

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

Summer 2024 Technology Internship: Internal Data Discrepancies in Customer Servicing
Platform

CS4991 Capstone Report, 2023

Alex Catahan
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
rac4sq@virginia.edu

ABSTRACT
 The company I worked for, a
prominent North American banking company,
has struggled with a critical issue in its newly
developed customer agent servicing platform
—an i s sue invo lv ing in te rna l da ta
discrepancies that affects around 20,000
customers. To address the challenges
stemming from this issue, my team and I
utilized Vue.js and Node.js to develop the
front-end and back-end of a system that
detects an internal data discrepancy in a
customer’s account and promptly notifies the
customer service agent using a modal. My
team utilized an agile methodology to
streamline and coordinate our workflow, and
we used different javascript libraries to
develop and test our code. I also practiced
cross-team communication skills, and gained
the ability to work in an enormous codebase.
This project is expected to reduce customer
agent incident tickets by 5-10 weekly, and
decrease agent handling time by an average
of 20%. This detection system will be
extended to other components of the customer
agent servicing platform, and will be
maintained as the platform continues to
develop.

1. INTRODUCTION
 Customer service can be a frustrating
exper ience for both cus tomers and
employees, especially if the account
attempting to be serviced is causing the
system to malfunction. This is exactly what
happened to customers of my company with
accounts with multiple Enterprise Servicing
Customer Identification numbers (ESCIDS).
This problem stems from data discrepancies
within internal systems, and can be caused by
a variety of reasons but most often is a result
of user error when inputting a personal
identifiable number such as a social security
number or birthday.
 During my internship, my team
performed analysis of this issue and
determined that there were around 100 daily
occurrences. The prevalence of this issue
caused many customer service agent incident
tickets to be submitted, taking up developer
time to diagnose this issue because the
existing system provided extremely vague
feedback. Customer experiences were also
negative when this issue occurred, as the
customer service agents were of no help.

 1

2. RELATED WORKS
 Many articles have covered the
importance of having good customer service,
which was the motivation behind my summer
project. In fact, Lemons, et. al. (2016)
conducted a recent study which showed
“improving the customer experience received
the most number one rankings when
executives were asked about their top
priorities.” As customer service is a key
feature in the overall customer experience,
studies and sentiments such as this served as
the motivation to resolve a critical issue in the
customer servicing platform, which led to the
creation of my summer project.
 Data discrepancies, such as the one
affecting my company, is not a new issue for
corporations. Bozeman (2019) asserts that
across corporations, “approximately 20% of
the average database is dirty.” He also
discusses potential causes for this issue, one
of which is relevant for my work—
“Inaccurate Customer Data”—and suggests
“companies to invest in data enrichment
initiatives,” which aligns with the goal given
to my summer intern team.

3. PROJECT DESIGN
 The following sections describe the
design of my project, including: overview of
the system’s architecture; challenges faced
when onboarding for development; coding of
a solution; and key components of the
process.

3.1 Overview of System’s Architecture
 The customer service platform my
team and I worked on utilized a micro-
frontend architecture. This meant the platform
was designed so the front-end components of
the web application were broken up into
smaller pieces, typically by functionality,
allowing parallel development on different

functions, as well as independent testing and
deployment. This approach ultimately
allowed for more flexibility and agility in
development in comparison to a monolithic
architecture.
 Effectively, this meant there are many
GitHub repositories that house the code for
every separate front-end element. For
example, front-end elements that dealt with
“payments” would be in a different GitHub
repository than elements that dealt with
“customer profiles,” allowing both sections to
be deve loped i ndependen t l y w h i l e
simultaneously ensuring complications would
be i so la ted to a s ingle repos i tory.
Understating this architecture and how the
code relates to what is actually displayed on
the web application was critical for successful
development.

3.2 Onboarding Challenges
 In order to add a feature to the
customer servicing platform, I first had to set
up the development environment on my
laptop. This lengthy process involved gaining
company access to needed entitlements, using
many terminal commands to download
needed software, and debugging when the
environment failed to work. Once my
development environment was set up
properly, my team and I had to understand
how the platform’s codebase was structured.
This involved quickly clicking through
dozens of files while analyzing the code and
attempting to trace the front-end features to
lines of code.
 O n c e I g a i n e d a s u f f i c i e n t
understanding, I began developing; however,
I had to adhere to the current standards of
coding, as well as adopt the codebases’
technology stack. For the whole team, this
meant learning new javascript frameworks,
Node.js and Vue.js.

 2

3.3 Coding Solution
 My team’s solution for the data-
discrepancy notification system was split into
fou r pa r t s : o r ches t r a t i ng back -end
infrastructure; integrating the user-interface
(UI); building the UI; then testing the system.
 We first orchestrated the back-end
infrastructure. This meant adding an
Application Programming Interface (API)
route that queried a back-end data source,
telling us whether an account had a data-
discrepancy. We utilized an existing API
endpoint that returned an error code when
queried with a customer ID of a data
discrepant account. While an existing route
already used this endpoint, the parameters of
the query varied slightly with the needs of our
project, so we simply used the existing code
as a template and created our new route.
 Once the back-end infrastructure was
created we began integrating it with the UI.
T h i s m e a n t c o d i n g t h e n e c e s s a r y
infrastructure for our newly-created API route
to be called when the landing page of a
customer’s account is loaded on the servicing
website. This step involved creating new
VueX stores and dispatching actions that
invoked the new API within the “created”
lifecycle hook of the landing page’s Vue file,
efficiently updating the state of the current
customer upon page load.
 Once our back-end was created and
integrated with this UI, we could finally build
the UI. This means creating the actual
features displayed on the website that an
agent would see. While this may seem
simple, the nature of the problem we were
solving is inherently sensitive, as it dealt with
personally identifiable information for
customers, such as date of birth or social
security numbers. Providing the steps that
enabled agents to remedy the issue was a

complicated legal issue, and the developers
do not decide what to display. My team and I
had to retrieve the information to display
from another database populated with
messages approved by the legal team.
 Once the message to present to the
agents was successfully retrieved, we created
a simple modal using an internal library of
front-end elements, and connected it to our UI
integration.
 When development was completed
extensive testing was necessary to validate
the functionality of our added system. We
performed integration testing, where we
manual ly went in our development
environments with different accounts to
check for a desired outcome. We also
completed performance testing, where we
used a software called JMeter to ensure our
back-end could handle large loads without
crashing. Throughout the process we also
performed unit testing as a sanity check while
actually coding.

3.4 Key Components of Process
 During our process there were many
smaller steps of equal importance as the main
programming steps. First, my team and I
conducted an analysis to understand the data-
discrepancy problem more deeply, and to
gauge how much of the customer servicing
platform was affected. Throughout our
developmental process, we had to perform
unit testing for every line of code we added,
which helps autonomously ensure that the
code provides the correct functionality. This
meant learning how to use unit test
frameworks in order for our added and
modified files to reach 100% code coverage.
 Because the customer servicing
platform used a micro-frontend architecture,
each container of functionality for the
platform was “owned” by a different team

 3

within my company. Since our project’s reach
was well beyond the container owned by my
team, our project fostered a lot of cross-team
communication, which is critical for coding
in industry. Many steps of our coding process
had to be approved by other teams, and
attendance to code reviews held by the team
whose codebase we were contributing to were
required to have our code be accepted into
their codebase.

4. ANTICIPATED RESULTS
 My team and I were able to complete
our project quickly and efficiently, and by the
end of the summer our code was pushed to
the actual production customer servicing
platform. However, there was an allow-list
with employee ID’s that only allowed
associates overseeing our project to test it in
production. While our contributions were not
broadly released during my time there, my
manager and product owner would continue
our work for a full release of our system.
Once broadly released, the new notification
system was expected to reduce agent handling
time by an average of 20%, as well as reduce
agent incident tickets by 5-10 weekly. It was
also expected for other teams to adopt our
code and implement a system similar to ours
in their own containers.

5. CONCLUSION
 The customer servicing platform used
at my company was developed in 2018. From
the platform’s infancy, developers knew about
this data discrepancy issue; however, the
issue was overlooked, possibly due to
underestimating its scale. Through analysis,
my team determined there were ~20,000

customers affected by this issue, and we
created the pipeline to resolve this issue for
agents. The ultimate goal of our project was
to increase customer satisfaction and
experience when encountering this issue. We
not only accomplished that, but also reduced
agent handling time and eliminated developer
time handling a simple data-discrepancy
issue.

6. FUTURE WORK
 When I ended my summer internship,
my project was completed and released to my
manager and our product owner to be
thoroughly tested in the production
environment before general release. When my
manager and product owner approve of our
changes, it will be released to a test-team of
customer service agents in order to conduct
live testing with our added features. If all
goes well, our added system goes into general
release, where any agent will see our features
if they assist a customer with a data-
discrepancy issue.

REFERENCES
Bozeman, Ryan. “Common Customer Data

Issues and How to Fix Them.” RevOps
Agency, impulsecreative.com/blog/
common-customer-data-issues-and-how-
to-fix-them. Accessed 12 Nov. 2023.

Lemon, Katherine N., and Peter C. Verhoef.
“Understanding customer experience
throughout the customer journey.”
Journal of Marketing, vol. 80, no. 6,
2016, pp. 69–96, https://doi.org/10.1509/
jm.15.0420.

 4

