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Abstract

This thesis presents progress on segmenting human movement based on a notion of

movement quality. This research is an extension of a style-based motion classification

where, here, this classification is used to segment long motion phrases into smaller,

discrete motion snippets. In particular, this thesis presents a given trajectory that is

segmented into three shorter trajectories that each has their own length and quality.

The objective of the thesis is to refine this segmentation, extend it to an arbitrary

number of segmentation points, apply it to motion capture data and explore other

extensions. A key novel contribution of this thesis is the analytical derivation of first

order necessary conditions for optimality. The research may be used to build a library

of motion primitives and aid the study of motion recognition in automation.
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Chapter 1

Introduction

Motion, which is talked about, performed and planned by almost everybody in

everyday life, is so familiar to us as human beings that sometimes we do not realize

we execute so many movements in our life. For example, to get a mug on the dinner

table, we have to separate it into several smaller tasks: stand up from the chair, open

the door of the study, avoid the running cat, and finally grab the mug. This example

suggests the fact that the way we execute movements and the way we think about

them are not the same. We make decisions step-by-step with finite operations in our

mind but movements are coherent and in a space of infinite states. It is obvious that

our nervous system has a way of mapping between discreteness and continuousness

by abstracting from a higher dimensional space to a lower one. Since this thesis is in

the discipline of engineering, we are more interested in the state of arts in artificial

systems, where the situation is not the same as natural systems.

As mathematical theories and computation tools developed, more and more re-

searches have been devoted to the study of human motion, progress has been made in

recognizing human gesture, controlling humanoid robots and other applications. The

similarity of these previous works is they started from observed data and ended in

certain functions. There is no doubt that these data-driven, or bottom-up, research

1
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efforts have solved many problems. However, as these progress expressed through

mathematical or technical terms, like control laws, it is difficult for ordinary people

without engineering training to benefit from them directly. This obstacle might be

removed if computational systems are able to abstract motions to lower dimensional

space of commands qualitatively, or implement the experience of movement to higher

dimensional space of actions.

The difficulty of relating the qualitative experience of movement to a quantitative

analysis – a top-down approach – lies in the gap between the nature of observable

human motion and human cognition. The motions are executed in continuous time

and have uncountable states; whereas, the state space of human decisions is finite,

and they are made discretely. Since the machines are designed by human, it is easier

to do experiments and collect data on them than modeling human or testing human

systems. As a result of this relatively low barrier to entry, the bottom-up approach is

common. The top-down approach, which is the focus of this thesis, offers significant

progress that breaks with convention.

Before introducing our top-down framework, remember the human motion ex-

ample in the first paragraph. People do not pick up a mug directly; the negative

feedback loop in our body keeps modifying the motion trajectory until the goal is

achieved. This intriguing claim could rise another question of why robots look so

different from human when they execute a similar motion and with a feedback loop

as well? Similarly, it is easy to discern a human from a human-like toy or Micky the

Mouse. Whereas, it would not be so obvious what’s the difference from a human to a

zombie or Marvin. The first step of this top-down approach is modeling motion with

mapping between the discreteness and continuousness.

The work of style-based motion classification by LaViers [1] provided a way of

connecting the quantitative notion of motion to qualitative data, which combines the

motion system of effort from Laban’s dance theory [2] and inverse optimal control
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method from engineering discipline [3]. This research of motion segmentation offers a

way of applying the classification progress in [1], which focus on single movement, to a

series of movements by segmenting large dataset to smaller pieces. This segmentation

work also makes it possible to build up a library of motion primitives, that have

distinctive characteristic from each other.

This thesis begins with an introduction of the fundamental theory of the research

and the parallel researches on motion with different approaches in Ch. 2, with a

formal statement of the problem to be presented in Ch. 3. After that, we present

the analytical and numerical solution to the problem in Ch. 4 & 5. A segmentaition

method built on Fourier Transformation will be introduced in CH. 6. The compar-

ison with other methods will be discussed in Ch. 7. And in Ch. 8 the expected

contribution of the thesis to robots control and motion recognition will be bestowed.



Chapter 2

Background

The research presented in this thesis is a direct extension of the style-based motion

classification by LaViers [1] and the optimal control of switch system [3]. Further,

the work of LaViers [1] was built on the theory of Laban [2] and inverse optimal

control [4]. Figure 2.1 shows the relationship of the fundamental theories.

Figure 2.1: Theory foundation for the thesis.

In this chapter, we will first discuss the former approaches of classifying or seg-

menting motions in Sec. 2.1. And then the theory of Laban and style-based motion

classification will be explained in Sec. 2.2. After that, the literature of inverse optimal

control (Sec. 2.3) and will be reviewd.

4
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2.1 Previous Attempts at Classification and Seg-

mentation

The method in [1] is similar to many other inverse optimal control approaches

[5–8] and other robotic control research [9–11]. And former researchers also have

attempted to segment dynamic motion primitives (movemes [12]) which could be

assembled into consistent motions [13–16] and used to generate orders for robots

[17–19]. However, the method presented here incorporates a more corporal sense

of movement by employing notions from dance theory; namely, movement quality

as defined by dance scholar Rudolf Laban. Laban’s set of codified motion factors

measures quality, a quantity observed by mover and viewer that describes the nature

of any given movement. His eight basic efforts illustrate the variety of possibly

qualities.

Engineers have come up with some ideas of assigning certain style for motions.

The work of [20] presented an inverse kinematics system based on a learned model of

human poses. A real-time motion generation technique that allows us to generate the

motions of a particular individual performing parameterized displacement activities

was presented in [21]. Hauser et al. presented a method of computing efficient and

natural looking motions for humanoid robots walking on varied terrain in [22], which

used a small set of high-quality motion primitives.

It is necessary to point out that the majority method of human or robot motion

studies is different from the one mentioned in Section 2.1. A mathematical representa-

tion for characterizing human arm motions was presented in [23], and the method was

very simple for implementation and generated a human-like posture for an arbitrary

arm configuration. The work of [24] presented two incremental teaching approaches

to transfer gestures and associated constraints to a humanoid robot without using

historical data, and compared the results with a batch training procedure. [25] pre-
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sented an implementation of a PCA/ICA/HMM-based system to encode, generalize,

recognize and reproduce gestures, and demonstrates the usefulness of using a stochas-

tic method to encode the characteristic elements of a gesture and the organization of

these elements. [26] presented a robotics-based approach for the synthesis of human

motion using task-level control, it characterizes effort expenditure in terms of mus-

culoskeletal parameters, rather than just skeletal parameters. [27] showed that the

parametric description is qualitatively more appropriate to model the key features

extracted from the trajectories. Li et al. surveys an idea of group motion segmenta-

tion in [28] and tries to build up the foundation for solving the problem of multi-object

activity recognition. Rao et al. studied the problem of segmenting tracked feature

point trajectories of multiple moving objects in an image sequence in [29]. These re-

search focus on separating motion from the background or extracting the trajectory;

they share the same term of motion segmentation as us by are not working on time

series segmenting.

2.2 Style-Based Motion Classification and Laban

In order to achieve the desired shift from top-down to bottom-up methods, we

introduce the concept of quality. This idea is not an invention from engineering but

of dance theorist Rudolf von Laban. Laban developed a system of effort to describe

the movement quality. He used four factors to describe a motion [2], which are space,

weight, time and flow. The dynamosphere, Fig. 2.2, shows the relationship between

three of them.

The dynamosphere is powerful for dancers, choreographers, and movement prac-

titioners and observers, in general. However, this qualitative model does not indicate

how to solve an engineering problem with data. A quantitative model then given by
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TIME 
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flexible direct 

strong 

light 
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Dabbing 

Floating Gliding 

Flicking 

Thrusting 
Slashing 

Wringing 
Pressing 

Figure 2.2: The dynamosphere. Laban’s arrangement of eight basic efforts according
to the axes of space, weight and time. The forth factor flow is not included in this
sphere and the use of flow may be bound or free.

LaViers [30]. In the work an association was made as below,

Q ∼ direct (2.1)

R ∼ light (2.2)

P ∼ sustained (2.3)

S ∼ bound. (2.4)

Then a quadratic cost function was established as

Ju =
1

2

∫ T

0

[(y − σ)′Q(y − σ) + u′Ru+ ẋ′Pẋ] dt+
1

2
(y − σ)′S(y − σ)

∣∣∣∣∣∣∣
T

(2.5)

where Q ∈ Rl×l, R ∈ Rm×m, P ∈ Rn×n, and S ∈ Rl×l.

In order to generate a trajectory with desired quality, she then solved the optimal
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control problem as below,

min
u
Ju (2.6)

s.t.


ẋ = Ax+Bu x(0) = x0

y = Cx

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rl×n. The optimal x (and thus y) are elected

by the weights in Eq. 2.5. Based on the notion of style-based motion, the method

of style-based motion classification was constructed by solving an inverse optimal

problem [1].

2.3 Inverse Optimal Control

In [6] a way of transferring biological motions to robots was presented with some

numerical method, but the analytical solution for the inverse optimal control problem

was not been solved. Hatz etc. tried to estimate system parameter with inverse

optimal control method in [31]. [32] shows an approach of obtaining physics-based

representation of realistic character motion with inverse optimization method.

When researchers mentioned inverse optimal control in the 1950s, what they meant

is to design regulators with optimization method. Fujii et al. presented a complete op-

timality condition for the multi-input inverse optimal control problem in [33]. Krstic

and Tsiotras [34] use inverse optimal control to reconstruct optimal controllers from

knowledge of a control Lyapunov function and a particular stabilizing control policy.

Li, et al. [35] present an inverse optimal control method for nonlinear systems based

on computing an approximate value function given a control policy.

The area became active again in the new millennium and was named inverse

reinforcement learning by many researchers. In [36], a new algorithm was presented
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which allowed the researcher to solve the inverse problem without solving the forward

problem. A optimality principle for human walking was studied in [37] with biological

motor system.



Chapter 3

Statement of Problem

In this chapter, we will first formulate the problem we dealing with; and then the

objectives and hypothesis of the research will be presented and discussed.

As shown in Fig. 3.1, we will segment a trajectory into n + 1 pieces with n

switching points. Note that the number of τ and π are not the same, we have one

Figure 3.1: The n switching time problem with n segmenting points and n+1 qualities.

10
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more element of quality than switch time. The problem of this research is to find a

way to obtain proper π and τ for any trajectory. Here, we define

µ = [π; τ ] (3.1)

as our desired parameter. We set up a minimization problem to find µ, which is

min
µ

∫
L(x, ρ)dt+ Ψ(x, ρ) (3.2)

where L is the cost function and Ψ is the terminal cost. Since x is dependent on µ,

we have to solve the control vector u for the dynamical system

ẋ = f(x, u) (3.3)

Thus an optimal control problem will be established as

u = arg min

∫
F (x, u, µ)dt+ ψ(x, ρ). (3.4)

Notice that there is a µ in F , which presents the dependence of u on µ.

This thesis is based on the following hypothesis: the previous notion of motion

quality in 1-dimension provides a way to pose the segmentation problem by incorpo-

rating a human-generated single segment; in this thesis the success of this solution

will be measured by analytical rigor.

The objective of this thesis is three-fold:

1. Segment a trajectory with single switch time by using an inverse optimal control

problem (Ch. 4) ,

(a) dealing with discontinuities that arise analytically,

(b) implementing the solution.
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2. Segment that trajectory into n pieces and classify the segments simultaneously

(Ch. 5) ,

(a) dealing with discontinuities that arise analytically and deduct the first

order necessary optimal condition for the problem (Sec. 5.1) ,

(b) implementing the solution with two segment points (Sec. 5.2) .

3. Compare the novel method to existing data analysis techniques (Ch. 6 & 7) .



Chapter 4

Single Switch Time Problem

To solve the problem step by step, we started at a single switch time style-based

motion segmentation problem as

min
τ

∫ T

0

L(x, ρ)dt+ Ψ1(x(τ), ρ(τ)) + Ψ2(x(T ), ρ(T )) (4.1)

s.t.



u1 = arg min
∫ τ

0
F (x, u1, σ)dt+ ψ1(x(τ), σ(τ))

u2 = arg min
∫ T
τ
F (x, u2, σ)dt+ ψ2(x(T ), σ(T ))

ẋ =


fx(x, u1) [0, τ) x(0) = x0

fx(x, u2) (τ, T ] x(τ) = xτ

(4.2)

where τ ∈ R is a switch time variable that segments the novel data, ρ ∈ Rl, into

two movements; x ∈ Rn is the state; xτ is given by integrating fx(x, u1) on [0, τ);

u1, u2 ∈ Rm are the inputs; y ∈ Rl is the output; and σ ∈ Rl is the reference signal

representing a nominal movement.

13
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4.1 Analytical Solution

Theorem 4.1.1. The first order optimality conditions on τ with respect to the cost

given in are

κτ (0) = 0 (4.3)

where the value κ(0) is given by the differential equation


κ̇τ = −λx

∂fx
∂τ
− λξ

∂fξ
∂τ
− λσ

∂fσ
∂τ

κτ (T ) = 0

, (4.4)

and with

λ̇x = −∂L
∂x
− λx

∂fx
∂x
− λξ

∂fξ
∂x

(4.5)

λ̇ξ = −λx
∂fx
∂ξ
− λξ

∂fξ
∂ξ

(4.6)

λ̇σ = −λx
∂fx
∂σ
− λξ

∂fξ
∂σ
− λσ

∂fσ
∂σ

(4.7)

with



λx(τ
−) = ∂Ψ1

∂x
(x(τ))− λξ(τ−)∂G1

∂x
(x(τ)) + λx(τ

+)

λx(T ) = ∂Ψ2

∂x
(x(T ))− λξ(T )∂G2

∂x
(x(T ))

λξ(0) = 0

λξ(τ
+) = 0

λσ(0) = 0

λσ(τ+) = λσ(τ−) + λξ(τ
−)∂G1

∂σ

(4.8)

Since the results for this single switch time problem has been published in [38]

and this single switch time problem is a special case of the problem we will discuss
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in the following sections, we do not present the proof for the analytical solution and

the process we obtain the numerical solution in detail. Please see [38] for this detail.

4.2 Numerical Results

The results of the simulation are shown in Fig.4.1. The red trajectory is the

original data ρ. The green line is the reference data σ. The blue trajectory y(u∗) is

generated as described in Sec. 2.2 from the original data ρ, quality π and segmenting

time τ . Initial intuition might say that the segment time τ should be at the neighbor

of a extremum point of ρ.

Figure 4.1: This figure shows the result of simulation: the output y (in blue) tracks
the original data ρ (in red), the green line is the reference signal σ and the purple τ
with red dash line indicates the segmentation point.

Figure 4.2(a) shows the cost converges when performing gradient descent with

fixed step on τ . The plot of x(t) over time is shown in Fig. 4.2(b) where the blue

line is θ (the joint angle over time) and the green line is θ̇ (the velocity of the joint

angle). They are both continuous and the sharp turn of θ̇ on τ reflects the fact that
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the control vector u is not continuous on τ . Various costates involved are also shown

in Fig. 4.2; note their discontinuities at τ .

(a) Converging cost during nu-
merical implementation.

(b) x(t) ∈ R2.

(c) ξ(t) ∈ R2. (d) λx(t)
T ∈ R2.

(e) λξ(t)
T ∈ R2. (f) λσ ∈ R2.

Figure 4.2: These figures provide insight into the optimization process; from here we
can see that the cost converges and that the x and λσ are continuous, and the costates
involved have discontinuities.



Chapter 5

Multiple Switch Time Problem

We now extend the results from previous chapter to a multiple switch time problem

with simultaneous classification. Let n be the number of switching times τ1, τ2, ..., τn.

Recalling that in the single switch time problem [38], we segmented the original tra-

jectory into two shorter trajectories with the same quality; similarly we will segment

the original trajectory into n + 1 segments distinguished by qualities π1, π2, ..., πn+1

by n switch time.

Setting π = [π1; π2; ...; πn+1], τ = [τ1; τ2; ...; τn] and µ = [τ ; π], the problem is

min
µ

n+1∑
i=1

[∫ τi

τi−1

L(x, ρ)dt+ Ψk(x(τk), ρ(τk))

]
(5.1)

s.t.



ui = arg min
∫ τi
τi−1

F (x, ui, σ, πi)dt+ ψi(x(τi), ρ(τi))

s.t.

ẋ = f(x, ui) x(τi−1) =


x0 i = 1

x(τi−2) +
∫ τi−1

τi−2
ẋdt i = 2, 3, ..., n+ 1

σ̇ = fσ(σ, τ, ρ) σ(τi−1) = ρ(τi−1)

σ(τi) = ρ(τi)

, (5.2)

17
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where τ1, τ2, ..., τn ∈ R are switch time variables which segment the novel data ρ ∈ Rl,

into shorter “movements”, τ0 = 0 and τn+1 = T are the initial and terminal times,

x ∈ Rn is the state, u1, u2, ..., un+1 ∈ Rm are the inputs, y ∈ Rl is the output, σ ∈ Rl

is a reference signal.

First, we derive the first order necessary optimal condition as the analytical solu-

tion for the problem. Then, we provide numerical implementation.

5.1 Analytical Solution

5.1.1 Forward Probelm

The first task at hand is to solve the “forward” optimization problem for u (which

is the same as that used to generate quality-endowed trajectories from the previous

section).

Thus, we solve

min
ui

∫ τi

τi−1

F (x, ui, σ)dt+ ψi(x(τi), σ(τi)) (5.3)

s.t.



ẋ = f(x, ui) x(τi−1) =


x0 i = 1

x(τi−2) +
∫ τi−1

τi−2
ẋdt i = 2, 3, ..., n+ 1

σ̇ = fσ(σ, τ, ρ) σ(τi−1) = ρ(τi−1)

σ(τi) = ρ(τi)

. (5.4)

Lemma 5.1.1. The first order necessary optimality conditions on u with respect to

the cost in Eq. 5.3 subject to the constraints in Eq. 5.4 are given by

δĴ(ui; ν) = κui(τi−1) = 0 (5.5)
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where

κ̇ui = −∂F
∂ui
− λ∂fx

∂ui
(5.6)

κui(τi) = 0 (5.7)

and with

λ̇ = −∂F
∂x
− λ∂fx

∂x
(5.8)

λ(τ−i ) =
∂ψi
∂x

(x(τi), σ(τi)) (5.9)

Proof. The augmented cost is given by

Ĵui =

∫ τi

τi−1

[F (x, ui, σ) + λ (f − ẋ)] dt+ ψi(x(τi)).

Consider a variation in u such that

ui 7→ ui + εν.

This variation also causes a variation in the state, i.e.,

⇒ x 7→ x+ εη.

Computing the directional derivative of the augmented cost produces the following:

δĴui(ui; ν) = lim
ε→0

1

ε

[
Ĵui(ui + εν)− Ĵui(ui)

]

=

∫ τi

τi−1

[(
∂F

∂ui
+ λ

∂f

∂ui

)
ν +

(
∂F

∂x
+ λ

∂f

∂x

)
η − λη̇

]
dt+

∂ψi
∂x

(x(τi))η(τ−i−1).
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Integrating by parts gives

=

∫ τi

τi−1

[(
∂F

∂ui
+ λ

∂f

∂ui

)
ν +

(
∂F

∂x
+ λ

∂f

∂x
− λ̇
)
η

]
dt

+λ(τi−1)η(τi−1)− λ(τ−i )η(τ−i ) +
∂ψi
∂x

(x(τi))η(τ−i )).

To fill in the boundary conditions, note that η(τi−1) = 0 because η starts at xτi−1
,

which is fixed. The following substitutions

λ̇ = −∂F
∂x
− λ∂f

∂x

λ(τ−i ) =
∂ψi
∂x

(x(τi))

reduce the derivative to

δĴui(ui; ν) =

∫ τi

τi−1

(
∂F

∂ui
+ λ

∂f

∂ui

)
ν dt,

which should equal zero for all values of ν to achieve optimality. To keep track of this

in the compact way presented in the lemma, let

κui =

∫ τi

t

(
λ
∂f

∂ui
+ λ

∂f

∂ui

)
dt.

Differentiating κu with respect to time gives the expressions in Eq. 5.7, which con-

cludes the proof.

Then the optimizer, u∗i , can be expressed as a function of x, ξ, πi and σ, where is

the costate satisfying

ξ̇ = −∂F
T

∂x
− ∂fT

∂x
ξ (5.10)

ξ(τi) =
∂ψ

∂x
(x(τi), σ(τi)). (5.11)
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Plugging in the optimal u∗i into the equations for x and ξ gives the expression for

the Hamiltonian dynamics on interval (τi−1, τi):

ẋ = fx(x, u
∗
i (x, ξ, σ, τi−1, τi, πi)) (5.12)

ξ̇ = fξ(ξ, u
∗
i (x, ξ, σ, τi−1, τi, πi)), (5.13)

which we denote with

ẋ = fx,ui(x, ξ, σ, τi−1, τi, πi) (5.14)

ξ̇ = fξ,ui(x, ξ, σ, τi−1, τi, πi). (5.15)

5.1.2 Inverse Problem

A second cost function, which is minimized with respect to the timing parameter

τ under the constraints imposed by the forward problem, is now defined. That is,

min
µ

n+1∑
i=1

[∫ τi

τi−1

L(x, ρ)dt+ Ψi(x(τi), ρ(τi))

]
(5.16)

s.t.



ẋ = fx,ui(x, ξ, σ, µ) x(τi−1)

=


x0 i = 1

x(τi−2) +
∫ τi−1

τi−2
ẋdt i = 2, 3, ..., n+ 1

ξ̇ = fξ,ui(x, ξ, σ, µ) ξ(τ−i ) = Gi(x(τi), σ(τi))

σ̇ = fσ(σ, τi−1, τi, ρ) σ(τi−1) = ρ(τi−1)

σ(τi) = ρ(τi)

, (5.17)

where ρ is the empirical data we wish to mimic and thus segment with τ = [τ1, τ2, ..., τn]T .

The function Gi is place-holder for the conditions derived in the Eq. 5.9; namely,
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Gi = ∂ψi

∂x
(x(τi)).

Theorem 5.1.1. The first order optimality conditions on µ with respect to the cost

given in are

κµ(0) = 0 (5.18)

where the value κ(0) is given by the differential equation

κ̇µ = −λx
∂fx
∂µ
− λξ

∂fξ
∂µ
− λσ

∂fσ
∂µ

(5.19)

κµ(T ) = 0, (5.20)

and with

λ̇x = −∂L
∂x
− λx

∂fx
∂x
− λξ

∂fξ
∂x

(5.21)

λ̇ξ = −λx
∂fx
∂ξ
− λξ

∂fξ
∂ξ

(5.22)

λ̇σ = −λx
∂fx
∂σ
− λξ

∂fξ
∂σ
− λσ

∂fσ
∂σ

(5.23)

with



λx(τ
−
i ) = ∂Ψi

∂x
(x(τi))− λξ(τ−i )∂Gi

∂x
(x(τi)) + λx(τ

+
i )

λx(T ) = ∂Ψn+1

∂x
(x(T ))− λξ(T )∂Gn+1

∂x
(x(T ))

λξ(0) = 0

λξ(τ
+
i ) = 0

λσ(0) = 0

λσ(τ+
i ) = λσ(τ−i ) + λξ(τ

−
i )∂Gi

∂σ

i = 1, 2, ..., n

(5.24)
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Proof. We begin by augmenting the cost,

Ĵµ =

∫ T

0

L(x, ρ)dt

+
n+1∑
i=1

{∫ τi

τi−1

[
λx(fx,ui−1

− ẋ) + λξ(fξ,ui−1
− ξ̇) + λσ(fσ − σ̇)

]
dt

+Ψi(x(τi), ρ(τi))

}
.

Now consider a variation in τ such that

µ 7→ µ+ εθ.

Such a variation also causes a variation in the state, x, costate, ξ, and the dynamics

of the nominal move, σ, which is interpolated between ρ(τi), i.e.,

⇒



x 7→ x+ εη

ξ 7→ ξ + εν

σ 7→ σ + εω.

The variation in τ also disturbs the costate’s boundary condition, ξ(τ−i ) , which is

given by ξ(τ−i ) 7→ ξ(τ−i )+ εν(τ−i ) ,but since ξ(τ−i ) = Gi(x(τi), σ(τi)) , the relation can

be written as

ξ(τ−i ) 7→ ξ(τ−i ) + ε

(
∂Gi

∂x
η(τ−i ) +

∂Gi

∂σ
ω(τ−i )

)
, (5.25)

thus we obtain a expression for ν(τ−i ) as

ν(τ−i ) =

(
∂Gi

∂x
η(τi) +

∂Gi

∂σ
ω(τi)

)
(5.26)
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The difference in the augmented cost and its variation is given by:

Ĵµ(µ+ εθ)− Ĵµ(µ) =

n+1∑
i=1

{∫ τi

τi−1

[
ε
∂L

∂x
η − ελxη̇ − ελξν̇ − ελσω̇

+ελx

(
∂fx,ui
∂x

η +
∂fx,ui
∂ξ

ν +
∂fx,ui
∂σ

ω +
∂fx,ui
∂µ

θ

)

+ελξ

(
∂fξ,ui
∂x

η +
∂fξ,ui
∂ξ

ν +
∂fξ,ui
∂σ

ω +
∂fξ,ui
∂µ

θ

)
+ελσ

(
∂fσ
∂σ

ω +
∂fσ
∂µ

θ

)]
dt

+ε
∂Ψi

∂x
(x(τi))η(τi)

}
+O(ε).

+
n∑
i=1

∫ τ−i +εθi

τ−i

[
ε
∂L

∂x
η − ελxη̇ − ελξν̇ − ελσω̇

+ελx

(
∂fx,ui
∂x

η +
∂fx,ui
∂ξ

ν +
∂fx,ui
∂σ

ω +
∂fx,ui
∂µ

θ

)

+ελξ

(
∂fξ,ui
∂x

η +
∂fξ,ui
∂ξ

ν +
∂fξ,ui
∂σ

ω +
∂fξ,ui
∂µ

θ

)
+ ελσ

(
∂fσ
∂σ

ω +
∂fσ
∂µ

θ

)]
dt

−
n∑
i=1

∫ τ+i +εθi

τ+i

[
ε
∂L

∂x
η − ελxη̇ − ελξν̇ − ελσω̇

+ελx

(
∂fx,ui
∂x

η +
∂fx,ui
∂ξ

ν +
∂fx,ui
∂σ

ω +
∂fx,ui
∂µ

θ

)

+ελξ

(
∂fξ,ui
∂x

η +
∂fξ,ui
∂ξ

ν +
∂fξ,ui
∂σ

ω +
∂fξ,ui
∂µ

θ

)
+ ελσ

(
∂fσ
∂σ

ω +
∂fσ
∂µ

θ

)]
dt

Now the mean value theorem is applied on [τi, τi + εθi], causing the integrals there

to vanish. Computing the directional derivative of the augmented cost produces:

δĴµ(µ; θ) = lim
ε→0

1

ε

[
Ĵµ(µ+ εθ)− Ĵµ(µ)

]

=
n+1∑
i=1

{∫ τi

τi−1

[
∂L

∂x
η − λxη̇ − λξν̇ − λσω̇
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+λx

(
∂fx,ui
∂x

η +
∂fx,ui
∂ξ

ν +
∂fx,ui
∂σ

ω +
∂fx,ui
∂µ

θ

)

+λξ

(
∂fξ,ui
∂x

η +
∂fξ,ui
∂ξ

ν +
∂fξ,ui
∂σ

ω +
∂fξ,ui
∂µ

θ

)
+ λσ

(
∂fσ
∂σ

ω +
∂fσ
∂µ

θ

)]
dt

+
∂Ψi

∂x
(x(τi))η(τi)

}
Integrating by parts and collecting terms by variation gives

=

∫ T

0

(
∂L

∂x
+ λx

∂fx
∂x

+ λξ
∂fξ
∂x

+ λ̇x

)
η dt+

n+1∑
i=1

[
λx(τ

+
i−1)η(τi−1)− λx(τ−i )η(τi)

]

+

∫ T

0

(
λx
∂fx
∂ξ

+ λξ
∂fξ
∂ξ

+ λ̇ξ

)
ν dt+

n+1∑
i=1

[
λξ(τ

+
i−1)ν(τ+

i−1)− λξ(τ−i )ν(τ−i )
]

+

∫ T

0

(
λx
∂fx
∂σ

+ λξ
∂fξ
∂σ

+ λσ
∂fσ
∂σ

+ λ̇σ

)
ω dt+

n+1∑
i=1

[
λσ(τ+

i−1)ω(τi−1)− λσ(τ−i )ω(τi)
]

+

∫ T

0

(
λx
∂fx
∂µ

+ λξ
∂fξ
∂µ

+ λσ
∂fσ
∂µ

)
θ dt+

n+1∑
i=1

∂Ψi

∂x
(x(τi))η(τi)

To unravel the boundary conditions, remember that η(0) = 0 since η starts at x0,

which is fixed. Likewise, σ(0), σ(xτi) and σ(T ) are fixed to be the value of ρ at each

respective time; thus, ω(0) = ω(T ) = 0. It has also be shown that an expression in

terms of η(τi) and ω(τi) for ν(τi) can be obtained as in Eq. 5.26.

Further, if the dynamics of the new costates are set to be

λ̇x = −∂L
∂x
− λx

∂fx
∂x
− λξ

∂fξ
∂x

λ̇ξ = −λx
∂fx
∂ξ
− λξ

∂fξ
∂ξ

λ̇σ = −λx
∂fx
∂σ
− λξ

∂fξ
∂σ
− λσ

∂fσ
∂σ

,
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then the derivative has reduced to

=
n∑
i=1

(
−λx(τ−i ) + λx(τ

+
i ) +

∂Ψi

∂x
(x(τi)) + λξ(τ

−
i )
∂Gi

∂x
(x(τi))

)
η(τi)

+

(
∂Ψn+1

∂x
(x(T ))− λx(T )− λξ(T )

∂Gn+1

∂x

)
η(T )

+
n∑
i=1

λξ(τ
+
i )ν(τ+

i ) + λξ(0)ν(0)

+
n∑
i=1

(
λσ(τ+

i )− λσ(τ−i )− λξ(τ−i )
∂Gi

∂σ

)
ω(τi)

+

∫ T

0

(
λx
∂fx
∂µ

+ λξ
∂fξ
∂µ

+ λσ
∂fσ
∂µ

)
θ dt.

Setting

λx(τ
−
i ) =

∂Ψi

∂x
(x(τi))− λξ(τ−i )

∂Gi

∂x
(x(τi)) + λx(τ

+
i ) (5.27)

λx(T ) =
∂Ψn+1

∂x
(x(T ))− λξ(T )

∂Gn+1

∂x
(x(T )) (5.28)

λξ(0) = 0 (5.29)

λξ(τ
+
i ) = 0 (5.30)

λσ(0) = 0 (5.31)

λσ(τ+
i ) = λσ(τ−i ) + λξ(τ

−
i )
∂Gi

∂σ
(5.32)

i = 1, 2, ..., n

leaves

δĴµ(µ; θ) =

∫ T

0

(
λx
∂fx
∂µ

+ λξ
∂fξ
∂µ

+ λσ
∂fσ
∂µ

)
θ dt

which should equal zero for all values of θ to achieve optimality. To keep track of this
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in the compact way presented in the theorem, let

κµ =

∫ T

t

(
λx
∂fx
∂µ

+ λξ
∂fξ
∂µ

+ λσ
∂fσ
∂µ

)
dt.

Differentiating κµ with respect to time gives the expressions in Eq. 5.20, concluding

the proof.

5.1.3 Remarks

To express this result more explicitly, we will rewrite the κµ to κπ and κτ in the

following Remarks.

Remark 5.1.1.
κ̇πi =


−λx

∂fx,ui
∂πi

− λξ
∂fx,ui
∂πi

− λσ
∂fσ
∂πi

(τi−1, τi)

0 else

κπi(T ) = 0

(5.33)

Remark 5.1.2.



κ̇τi =



−λx
∂fx,ui
∂τi

− λξ
∂fx,ui
∂τi

− λσ
∂fσ
∂τi

(τi−1, τi)

−λx
∂fx,ui+1

∂τi
− λξ

∂fx,ui+1

∂τi
− λσ

∂fσ
∂τi

(τi, τi+1)

0 else

κτi(T ) = 0

(5.34)

Eq. 5.33 indicates that the quality of a segmented shorter trajectory only depends

the information in the in terval. Similarly , Eq. 5.34 indicates that a certain seg-

menting time relies on the information of the two intervals beside it. However, these



28

do not mean that we get same analytical solution with the one interval situation.

Because the costates λ are influenced by every interval.

5.2 Numerical Results

In this section, the way of obtaining a numerical solution will be explained.

5.2.1 Necessary Derivations

We use a similar cost function as Eq.2.5

F =
1

2

∫ T

0

[
(y − σ)TQ(y − σ) + uTRu+ ẋTPẋ

]
dt (5.35)

ψi =
1

2
(y − σ)TS(y − σ)

∣∣∣∣
τi

(5.36)

L(x, ρ) =
1

2
‖y − ρ‖2 (5.37)

Ψi =
1

2
‖y − σ‖2

∣∣∣∣
τi

. (5.38)

And we choose the following metries to set up the comparison of opur simulated

trajectory with real data. We choose the same linear system as in Eq. 2.6, which is


ẋ = Ax+Bu x(0) = x0

y = Cx

(5.39)

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rl×n.
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Differentiating the Hamiltonian of the forward probelm in Sec. 5.1.1 :

H =
1

2
[(y − r)TQ(y − r) + uTRu+ ẋTPẋ] + λf (5.40)

∂H

∂u
= uT (R +BTPB) + xTATPB + λB = 0 (5.41)

from which it follows that

u = −(R +BTPB)−1(BTPAx−BTλT ) (5.42)

and

∂H

∂x
= −λ̇ = xT (CTQC + ATPA) + uTBTPA+ λA− σTQC (5.43)

from which it follows that

ξ̇ = −λ̇T = [ATPB(R +BTPB)−1BTPA− CTQC − ATPA]x

+[ATPB(R +BTPB)−1BT − AT ]ξ + CTQσ (5.44)

ẋ = (A−B(R +BTPB)−1BTPA)x−B(R +BTPB)−1BT ξ (5.45)

The reference signal we choose is

σ̇ =
ρ(τi)− ρ(τi−1)

τi − τi−1

(5.46)

The following derivatives will be necessary for the optimal conditions:

∂ψi
∂x

(x(τi)) = CTSCx(τi)− CTSσ(τi) (5.47)

∂2ψi
∂x2

(x(τi)) = CTSC (5.48)

∂L

∂x
= xTCTC − ρTC (5.49)

∂Ψi

∂x
(x(τi)) = CTCx(τi)− CTρ(τi) (5.50)
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∂fx
∂x

= A−B(R +BTPB)−1BTPA (5.51)

∂fξ
∂x

= ATPB(R +BTPB)−1BTPA− CTQC − ATPA) (5.52)

∂fx
∂ξ

= −B(R +BTPB)−1BT (5.53)

∂fξ
∂ξ

= ATPB(R +BTPB)−1BT − AT (5.54)

∂fx
∂σ

= 0 (5.55)

∂fξ
∂σ

= CTQ (5.56)

∂fσ
∂σ

= 0 (5.57)

∂fx
∂τi

= 0 (5.58)

∂fξ
∂τi

= 0 (5.59)

∂fσ
∂τi

=



−σ(τi)− σ(τi−1)

(τi − τi−1)2
(τi−1, τ)

σ(τi+1)− σ(τi)

(τi+1 − τi)2
(τi, τi+1)

0 else

. (5.60)

Let

Λ = R +BTPB (5.61)

and

πi = [πi1; πi2; πi3; πi4], (5.62)
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then the derivatives associated with π are:

∂fx
∂πi

=

[
∂fx
∂πi1

,
∂fx
∂πi2

,
∂fx
∂πi3

,
∂fx
∂πi4

]
(5.63)

∂fx
∂πi1

= 0n×l (5.64)

∂fx
∂πi2

= BΛ−2BT (πi3Ax+ ξ) (5.65)

∂fx
∂πi3

= −BΛ−1BTAx+BBTBH−1BT (πi3Ax+ ξ) (5.66)

∂fx
∂πi4

= 0n×l (5.67)

∂fξ
∂πi

=

[
∂fξ
∂πi1

,
∂fξ
∂πi2

,
∂fξ
∂πi3

,
∂fξ
∂πi4

]
(5.68)

∂fξ
∂πi1

= CT (σ − Cx) (5.69)

∂fξ
∂πi2

= −πi3ATBΛ−2BT (πi3Ax+ ξ) (5.70)

∂fξ
∂πi3

= ATBΛ−1BT (πi3Ax+ ξ)πi3A
TBBTBΛ−2BT (πi3Ax+ ξ)

+(2πi2A
TBΛ−1BTA− ATA)x

(5.71)

∂fξ
∂πi4

= 0n×l (5.72)

5.2.2 Solving the Boundary Condition

The Hamiltonian dynamics are given by



ẋ

ξ̇

ẇx

ẇξ


=



M
0 0

0 0

−CTC 0

0 0

−MT





x

ξ

wx

wξ


+



0 0

CTQ 0

0 CT

0 0



 σ

ρ

 (5.73)
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The entries of M are

M11 = A−B(R + bTPB)−1BTPA (5.74)

M12 = −B(R +BTPB)−1BT (5.75)

M21 = ATPB(R +BTPB)−1BTPA− CTQC − ATPA (5.76)

M22 = ATPB(R +BTPB)−1BT − AT (5.77)

Set

z = [x, ξ, wx, wξ]
T , (5.78)

then we rewrite Eq.5.73 as

ż =Mz +N ζ, (5.79)

where

M =



M
0 0

0 0

−CTC 0

0 0

−MT


, (5.80)

N =



0 0

CTQ 0

0 CT

0 0


, (5.81)

ζ =

 σ

ρ

 . (5.82)
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The solutions of z on τi6− is

z(τ−i ) = eM(τi−τi−1)z0 +

∫ τi

τi−1

eM(τi−t)N ζ(t)dt, (5.83)

which can be written as

z(τ−i ) = Ωizτi−1
+ Γi, (5.84)

where

Ωi = eM(τi−τi−1), (5.85)

Γi =

∫ τi

τi−1

eM(τi−t)N ζ(t)dt. (5.86)

We can write the jump condition at each switch time or segmenting point of z as

z(τ+
i ) = αiz(τ−i ) + βi, (5.87)

where

αi =



In 0 0 0

CTSC 0 0 0

−CTSC 0 In CTSC

0 0 0 0


, (5.88)
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βi =



0

−σ(τ)CT

ρ(τ)CT

0


. (5.89)

Lemma 5.2.1. The expression of z(τ) on z0 are

z(τ−i ) =

(
i−1∏
k=1

Ωkαk

)
Ωiz0 +

[
i−1∑
j=1

(αjΓj + βj)
i−1∏

k=j+1

Ωkαk

]
Ωi + Γi, (5.90)

z(τ+
i ) =

(
i∏

k=1

Ωkαk

)
z0 +

i∑
j=1

(αjΓj + βj)
i∏

k=j+1

Ωkαk, (5.91)

i = 0, 1, 2, ..., n+ 1.

Proof. We use mathematical induction to prove the lemma.

When i = 0 , z(τ0) = z(0) , so the statement holds for i = 0 .

When i = 1 , z(τ−1 ) = Ω1z0 +Γ1 and z(τ+
1 ) = Ω1α1z0 +α1Γ1 +β1, so the statement

holds for i = 1 .

When i = 2 ,

z(τ−2 ) = Ω2z(τ+
1 ) + Γ2 = (Ω1α1)Ω2z0 + (α1Γ1 + β1)Ω2 + Γ2,

z(τ+
2 ) = α2z(τ−2 ) + β2 = (Ω1α1Ω2α2)z0 + (α1Γ1 + β1)Ω2α2 + (α2Γ2 + β2),

so the statement holds for i = 2 .

Assume that the statement holds when i = m , so

z(τ−m) =

(
m−1∏
k=1

Ωkαk

)
Ωmz0 +

[
m−1∑
j=1

(αjΓj + βj)
m−1∏
k=j+1

Ωkαk

]
Ωm + Γm,

z(τ+
m) =

(
m∏
k=1

Ωkαk

)
z0 +

m∑
j=1

(αjΓj + βj)
m∏

k=j+1

Ωkαk.
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When i = m+ 1 ,

z(τ−m+1) = Ωm+1z(τ+
m) + Γm+1

=

(
m∏
k=1

Ωkαk

)
Ωm+1z0 +

[
m∑
j=1

(αjΓj + βj)
m∏

k=j+1

Ωkαk

]
Ωm+1 + Γm+1,

z(τ+
m+1) = αm+1z(τ−m+1) + βm+1

=

(
m∏
k=1

Ωkαk

)
Ωm+1αm+1z0

+

[
m∑
j=1

(αjΓj + βj)
m∏

k=j+1

Ωkαk

]
Ωm+1αm+1 + (Γm+1αm+1 + βm+1)

=

(
m+1∏
k=1

Ωkαk

)
z0 +

m+1∑
j=1

(αjΓj + βj)
m+1∏
k=j+1

Ωkαk,

so the statement also holds for i = m+ 1 .

Thus the statement holds for i=0, 1, 2, ... , n+1 .

Since we set τn+1 = T and there is no discontinuity at terminal, so

z(T ) = z(τn+1) = z(τ−n+1)

=

(
n∏
k=1

Ωkαk

)
Ωn+1z0 +

[
n∑
j=1

(αjΓj + βj)
n∏

k=j+1

Ωkαk

]
Ωn+1 + Γn (5.92)

Then the solution of z(T ) can be written as

z(T ) = Φz0 + η, (5.93)
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where

Φ =

(
n∏
k=1

Ωkαk

)
Ωn+1, (5.94)

η =

[
n∑
j=1

(αjΓj + βj)
n∏

k=j+1

Ωkαk

]
Ωn+1 + Γn. (5.95)

And from this algebra, we can find the necessary boundary conditions for z, let

Φ =



Φ11 Φ12 Φ13 Φ14

Φ21 Φ22 Φ23 Φ24

Φ31 Φ32 Φ33 Φ34

Φ41 Φ42 Φ43 Φ44


, (5.96)

η =



η1

η2

η3

η4


. (5.97)

Next, plug in the following boundary conditions:

ξ(T ) = CTSCx(T )− CTSσ(T ) (5.98)

wx(T ) = CTCx(T )− CTρ(T )− CTSCwξ(T ) (5.99)

wξ(0) = 0 (5.100)
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Rearranging the resulting expression gives



x(T )

ξ(0)

wx(0)

wξ(T )


= A−1





Φ11

Φ21

Φ31

Φ41


x0 +



η1

η2

η3

η4


+ B

 σ(T )

ρ(T )




, (5.101)

where

A =



In −Φ12 −Φ13 0

CTSC −Φ22 −Φ23 0

−CTC −Φ32 −Φ33 CTSC

0 −Φ42 −Φ43 In


, (5.102)

B =



0 0

CTS 0

0 −CT

0 0


(5.103)

and where the invertibility of A is guaranteed by the complete controllability of the

system [1]. Thus the desired dynamics, ż and z0, where y recreates ρ optimally

according to the structure of Jµ as best as the structure of Ju will allow are given.
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5.2.3 Simulation Results

For this implementation, we choose

A =

 0 1

0 0

 , B =

 0

1

 , C =

[
1 0

]
.

And the weight matrices in Ju are set as

Q = qIl

R = rIm

P = pIn

S = sIl

where In is an n× n identity matrix.

Thus the quality parameter could be presented as

π =



q

r

p

s


With the setup, we can implement the segmentation method on a single joint angle,

like the motion of the elbow. However, as it is an initial process, the implementation

showed in this section worked on some simulated data rather than the real data

captured from human motion.

First, we will generate an original trajectory ρ with an initial segmentation point

τ̄ . The quality of the trajectory before and after τ̄ are different. What should be
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pointed out is that, this is the only parameter that helps to generate ρ and the solution

of the minimization to find τ ∗ might not equal τ̄ . Then, we initialize the states of

the linear system in Eq.2.6 as x0 = [ρ(0), ρ′(0)]T . Performing gradient descent with

fixed step on τ , we can get the converging cost as shown in Fig.5.1(b) and obtain the

optimal value of τ as shown in Figure 5.1(a).

Since we only achieve first order necessary optimality condition for the problem,

a global optimal is not guaranteed during numerical process. Figure. 5.1(c) is a good

example for this. The blue trajectory goes apart from the red one after τ2 and have a

similar shape as it. This is because the numerical solution we get in this instance is

a local optimal or saddle point, so the quality we get for the second and third pieces

are not good enough. As the generation of the trajectory is influenced by the whole

information on [0, T ], there is a maximum point after τ2 rather than between τ1 and

τ2. Figure. 5.1(d) shows another type of unsatisfied result we got. It is caused by the

reference signal σ we choose.



40

(a) ρ is the original trajectory needed to be
segmented. σ is a reference ,. y(u∗) is the
trajectory with a certain quality generated
by our algorithm.

(b) Converging cost during numerical implementa-
tion.

(c) ρ is the original trajectory needed to be
segmented. σ is a reference ,. y(u∗) is the
trajectory with a certain quality generated
by our algorithm.

(d) ρ is the original trajectory needed to be
segmented. σ is a reference ,. y(u∗) is the
trajectory with a certain quality generated
by our algorithm.

Figure 5.1: The numerical results for a segmentation problem with 2 segmenting
points.



Chapter 6

Segmentation Method Based on

Fourier Transformation

In this chapter, we present a segmentation method building on Fourier Transfor-

mation [39], more specifically we use Fast Fourier Transform algorithm [40] to analyze

the frequency characteristic of data, which is the movement trajectory in our research.

We established a utility function to compute the difference in frequency spectrum

between each segmented pieces. As shown in Fig. 6.1, we choose the couple of

segmenting points where the utility reaches its maximum. The segmentation result

and the spectrum associated with each segmented piece are as in 6.2.

41
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Figure 6.1: Searching for segmenting points combination with maximum utility.
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Figure 6.2: Segmentation result with Fourier transformation and the spectrum asso-
ciated with each segmented piece.



Chapter 7

Comparison to Existing Data

Analysis Methods

In this chapter, we will compare our method of style-based segmentation with

other existing data analysis methods. The main point to note here is how our methods

fundamentally different from these common data analysis techniques.

7.1 Polynomial Curve Fitting

As we aim to segment the original trajectory into 3 shorter ones, we have 12

parameter for the polynomial curve fitting. As shown in 7.1(a), polynomial curve

fitting has a smaller cost than our classification method. However, as explained in

Section 2.3, our classification method provides a mapping between the qualitative

description and the quantitative data.

7.2 Segmenting by Clustering Methods

K-means clustering [41] tends to segment the trajectory in to three shorter ones

with almost same number of points as in Figure 7.1(b). It is not a proper way of

44



45

segmentation because the segments are not temporally contiguous. With the Gaus-

sian distribution model, EM-clustering [42] can achieve better result that K-means

clustering. Sometimes the algorithm even clusters points not close to each other into

one set, the red dots in Figure 7.1(c). Figure 7.1(d) shows that the optimal cluster

sets number is 4.

(a) Polynomial Curve Fitting (b) K-Means Clustering

(c) Expectation-maximization Algorithm (d) Selecting the Number of Clusters

Figure 7.1: Segmenting results with data clustering methods.

7.3 Summary

The shown in Table 7.1, our method has a better performance than other methods.
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Table 7.1: A summary of Qualitative Comparison

Robust Approximation Contiguous Segmentation

K-means N Y

EM Y N

Style-based Segmentation Y Y



Chapter 8

Conclusion

In summary, a novel approach to the segmentation of human movement has been

posed; in particular, the ability to incorporate a user defined notion of a single motion

as a template for segmenting a longer trajectory makes this approach distinctive.

This thesis gives an analytical solution and design a numerical method to solve the

problem. And, the study of human motion – particularly as it may be incorporated

into robotics and automation – will benefit from the tool proposed here as discussed

in this chapter.

If human motions could be segmented into movements with certain quality, then

it would be possible to use a combination of movements to represent a motion. And

the once continuous trajectory would become discrete and the redundant information

would be eliminated by ‘sampling’. Also, the state space of motion would become

finite instead of infinite and this would be much easier for human to analyze something

discrete and finite. With these primitives, it will be possible to build up a library of

motion primitives. We could achieve better understanding of human motion based on

these primitives. The traditional way of motion recognition as comparing the captured

data with database could cost a lot both in time and storage space. And at most

occasions, the data of the motion is redundant for machine to recognize. With the

47
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segmentation technique, the motion could be representing as a string, whose letters

represent a certain motion primitive in the motion library. Then the comparing

process could be executed very fast. Or the gesture could be spoken out directly,

since the string might be meaningful in a dictionary for human motion.
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