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Abstract of the dissertation

The contents of this dissertation are various in nature and background. A connection

between them is a common effort to measure the singularities of a commutative

Noetherian ring using homological tools, and associated numerical invariants.

First, we study the index of a Gorenstein local ring, a numerical invariant that is

defined in terms of Auslander’s delta invariant. In particular, we find a counterex-

ample to a conjecture of Songqing Ding relating the index and the minimal Löewy

length of an Artinian reduction of the ring. Successively, we focus on two numerical

invariants for rings of prime characteristic, the F -pure threshold and the diagonal

F -threshold. We relate them with a third number, the a-invariant, proving most of a

conjecture made by Hirose, Watanabe, and Yoshida. Finally, we study Golod rings.

We present an example of a quotient of a polynomial ring over a field by a product of

monomial ideals that is not Golod. This answers, in negative, a question of Welker.
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Chapter 1

Introduction

The study of the singularities of a ring is a central topic in commutative algebra.

A celebrated Theorem of Auslander, Buchsbaum, and Serre from 1956 established a

first clear connection between the theory of singularities and homological algebra: a

local ring is regular if and only if the residue field has finite projective dimension.

This is also equivalent to any module having finite projective dimension.

Since a great deal of research in commutative algebra is directed at rings that are

not regular, considerable effort has been devoted to develop tools to measure how

singular a ring could be. If a local ring is not regular, then Auslander-Buchsbaum-

Serre’s Theorem implies that the maximal ideal has infinite projective dimension.

However, one can get information about singularities by looking, for instance, at the

projective dimension of other type of ideals. For example, a local ring is Cohen-

Macaulay if and only if the projective dimension of any ideal generated by a system

of parameters is finite. Cohen-Macaulayness is a weaker condition than regularity,

but such rings are still, generally speaking, very well behaved.

This is just one instance of many results of this kind, that typically come from ways
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of generalizing conditions equivalent to regularity. These characterizations sometimes

make use of numerical invariants, rather than conditions on actual modules or ideals.

Usually, the advantage of this approach is that numbers may be easier to deal with;

however, they may not remember all the information that the actual modules encode.

One very classical example is the Hilbert-Samuel multiplicity: roughly speaking, this

is a measure of “how fast” the powers of the maximal ideal in a local ring grow.

It is a well known result of Nagata that, as long as the completion at the maximal

ideal is unmixed, a local ring is regular if and only if the multiplicity equals one.

However, the restriction on the completion cannot be removed, as the easy example

kJx, y, zK/(xy, xz) shows.

We now focus more specifically on the topics that we study in this dissertation.

The first invariant that we investigate is the index of a Gorenstein local ring. It

is defined in terms of Auslander’s delta invariant, and it is directed at the study of

the Maximal Cohen-Macaulay modules of a ring. Maximal Cohen-Macaulay modules

over a local ring provide significant information about singularities: a local ring (R,m)

is regular if and only if every Maximal Cohen-Macaulay module over R is free. In

terms of the index, this is equivalent to saying that index(R) = 1. When R is

not regular, the index provides a measure of how singular the ring is: for instance,

if a Gorenstein local ring with infinite residue field is not regular, and has minimal

multiplicity, then index(R) = 2. In 1993, Songqing Ding conjectured that the index of

a Gorenstein local ring is equal to the minimal Löewy length of an Artinian reduction,
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an invariant that is called the generalized Löewy length. A regular local ring (R,m)

has generalized Löewy length one, since R/m is an Artinian reduction of R. Roughly

speaking, the generalized Löewy length measures “how short” an Artinian reduction

can be. Equality between these two invariants implies good and, somehow, expected

properties about ideals of finite projective dimension, as explained in Section 2.2. The

main goal of Chapter 2 is to exhibit several counterexamples to Ding’s conjecture.

In 1969, an amazing result of Kunz produced another homological device to detect

the singularities of a ring. This tool is only directly applicable to rings containing

a field of prime characteristic p, but it can be extended to a greater generality by

using methods of reduction to positive characteristic. The reason is that such rings

come equipped with a surprisingly useful map, the Frobenius endomorphism. Kunz’s

Theorem says that a local ring is regular if and only if the Frobenius endomorphism

is flat. The Frobenius is a very simple map: it raises every element of the ring to

its p-th power, but it turns out to be surprisingly powerful. One of the reasons is

that one can apply this map over and over again, obtaining significant asymptotic

information. It also allows to make sense out of taking p-th roots of elements of

the ring, and this somehow compensates for the lack of analytic methods for rings

in positive characteristic, as wonderfully explained in [9]. To be a bit more specific,

given either a local or a standard graded ring (R,m) of prime characteristic p on

which the Frobenius map acts injectively, let R1/p denote the rings of p-th roots of R.

The fact that an element f c/p, where c ∈ N and f ∈ R, is not inside the module mR1/p



4

is somehow saying that the function 1/f c/p does not blow-up at the point m. In fact,

f c/p is an element of R1/p, and being not inside mR1/p is saying that its “value” at the

point m is non-zero. For any f ∈ m, for small non-negative values of c we have that

f c/p /∈ mR1/p, while f c/p ∈ mR1/p for c� 0. Moreover, one can iterate the process of

taking p-th roots, studying whether for some f ∈ R it is the case or not that f c/p
e

is

inside mR1/pe for a certain value c ∈ N. This produces the notion of F -threshold of an

element f ∈ R, which is the supremum of all values c/pe ∈ Z[1/p] for which f c/p
e

is

not inside mR1/pe . This number is denoted by cm(f), for a given f ∈ R, and it can be

generalized to cI(a) for any two ideals a, I ⊆ R for which a ⊆
√
I. When R is regular,

the so-called diagonal F -threshold cm(m) measures the maximal order of a splitting

R1/pe → R, in a sense that we make more precise in Section 4.1. Researchers usually

refer to this number as the F -pure threshold, which is a characteristic p invariant that

has close connections with the log-canonical thresholds in equal characteristic 0. The

log-canonical threshold is an invariant that can be defined starting from a resolution

of singularities, and the relation with the F -pure threshold is via reduction to positive

characteristic methods. If R is not regular, the two notions of diagonal F -threshold

and F -pure threshold may differ. In general, the F -pure threshold seems to have a

better control of the singularities of the ring; for example, it is equal to the Krull

dimension if and only if the ring is regular. On the other hand, relations between the

diagonal F -threshold cm(m) and singularities, or connections with other invariants

in characteristic zero, are still quite obscure. In Chapters 3 and 4 we study F -pure
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thresholds and diagonal F -thresholds of standard graded algebras over a field. We

relate them with a third number, called the a-invariant, proving most of a conjecture

of Hirose, Watanabe and Yoshida. We also introduce the notion of F -pure regular

sequence, that is, a regular sequence that preserves some good splitting properties of

the ring. The maximal length of an F -pure regular sequence in the Gorenstein case is

surprisingly controlled by the F -pure threshold, and the existence of such sequences is

guaranteed, at least when the base field is infinite, by certain “Bertini-type” theorems.

The last topic that we investigate in this dissertation is the class of Golod rings.

A well established way to study singularities of a local ring (R,m, k), or a standard

graded k-algebra R, is to study the k-vector space dimensions βi := dimk TorRi (k, k),

which are called the Betti numbers of k. More globally, one can focus on the shape

of the generating series of the Betti numbers, PR(t) =
∑

i>0 βit
i, which is called the

Poincaré series of R. A restatement of Auslander-Buchsbaum-Serre’s Theorem is that

R is regular if and only if PR(t) is a polynomial. The study of the Poincaré series is

a classical problem in Commutative Algebra, and one of the fundamental questions

about PR(t), attributed by Serre and Kaplansky, was whether PR(t) is a rational

function. This means that it can be expressed as a ratio of two polynomials with

integer coefficients. The problem remained unsolved for several decades, until Anick

showed that there exist Artinian rings whose Poincaré series is irrational. However,

Serre showed that the Poincaré series of a ring is always bounded above, coefficient-

wise, by a rational series. The upper bound is sharp, and rings for which equality
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holds are called Golod. The class of Golod ring is a very interesting and, in some

sense, a very mysterious one. For instance, the only rings that are simultaneously

Golod and Gorenstein are hypersurfaces. In addition, there is no relation between the

Cohen-Macaulay property and the Golod property, and Golod rings do not behave

well with respect to standard operations like localization or, in general, going modulo

regular elements. The main purpose of Chapter 5 is to give an example of a product

of two monomial ideals that does not define a Golod ring. This is quite unexpected,

given that several partial results seemed to indicate that products of ideals may always

have been Golod. For example, powers of homogeneous ideals in a polynomial ring

C[x1, . . . , xn] are always Golod by [34].

1.1 Structure of the dissertation

The main achievement in Chapters 2 is a counterexample to a conjecture of Ding.

Chapters 3 and 4 are devoted to the study of certain numerical invariants in prime

characteristic, and to the proof of a conjecture made by Hirose, Watanabe, and

Yoshida. In Chapter 4 we also introduce and study some related notions, such as

the concept of F -pure regular sequence. Chapter 5 is focused on the study of Golod

rings, and the main achievement is an example that answers, in negative, a question of

Welker. The contents of the main Chapters will be briefly described in the following

subsections.
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1.1.1 Chapter 2

In Section 2.3 we establish some conditions that are equivalent to Auslander’s delta

invariant δ(R/mn) being equal to one, for one-dimensional Gorenstein local rings

(R,m, k). This easily allows to compute the index of such rings. One of these for-

mulations has been crucial in order to understand what can go wrong in a potential

counterexample to Ding’s conjecture. Namely, Proposition 2.3.2 (iii) suggested that

the equality mn+1 ∩ (x) = xmn, where x is a non zero-divisor in R, was somehow

required in order for the conjecture to hold in general. This equality is true when the

associated graded ring is Cohen-Macaulay, by Valabrega-Valla’s Theorem, but can

easily fail in general. This led to a series of counterexamples, exhibited in Section

2.4.

1.1.2 Chapter 3

In Section 3.1 we collect some facts about graded modules and local cohomology. In

the successive sections, we mainly focus on the prime characteristic case, looking at

interactions of local cohomology modules H i
m(R) and F -purity, that is, the splitting of

the natural inclusion R ⊆ R1/p. In Section 3.4 we recall some homogeneous Fedder-

type criteria to describe explicitly the R1/pe-module structure of the module of R-

homomorphisms from R1/pe to R. The results in Chapter 3 are essentially well known,

but sometimes hard to find in the literature.
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1.1.3 Chapter 4

In Section 4.1 we exhibit a formulation of the F -pure threshold of a homogeneous

ideal in a standard graded k-algebra that was probably known to experts, but never

recorded in this generality. This is crucial in order to attack a conjecture of Hirose,

Watanabe and Yoshida. In Section 4.2 we prove most of the conjecture, and find a

counterexample to the remaining part, at least in the generality in which the theorem

is stated. In Section 4.3 we focus on F -pure thresholds of Gorenstein standard graded

k-algebras, for which fpt(R) = −a(R) by our results in Section 4.2. In general, it is

quite hard to keep control of the F -pure threshold of a ring when going modulo a

homogeneous regular element. On the other hand, it is clear what happens to the

a-invariant in this instance. The fact that fpt(R) = −a(R) is crucial to set up an

induction, since it allows to control each step when going modulo a homogeneous

regular element. This led to the notion of F -pure regular sequence, that is, a ho-

mogeneous regular sequence that preserves F -purity when going modulo any of its

elements. In Section 4.4 we establish an upper bound for the length of an F -pure

regular sequence, that we prove to be sharp in case the base field k is infinite. In

fact, we obtain an existence result for F -pure regular sequences in the spirit of the

Bertini Theorems for smooth hyperplane cuts on a variety. More specifically, we show

that a generic choice of linear forms in a Gorenstein F -pure ring is an F -pure regular

sequence, as long as the length of the sequence is at most fpt(R).
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1.1.4 Chapter 5

In Section 5.2 we answer in negative a question of Volkmar Welker: we give examples

of standard graded k-algebras, over any field k, defined as quotients of polynomial

rings by products of homogeneous ideals, that are not Golod. Even more interestingly,

since the homogeneous ideals in question are monomial, these examples contradict a

previous Theorem of Sayed-Fakhari and Welker, which was stating that the question

had positive answer in the monomial case. In Section 5.3, we study the strongly

Golod property of rational powers of monomial ideals, proving that Ip/q is strongly

Golod whenever I is strongly Golod and p > q. As a consequence, we show that

Ip/q is strongly Golod if p > 2q. This is somehow consistent with a result of Herzog

and Huneke, which states that regular powers Id of homogeneous ideals are strongly

Golod. Note, however, that rational powers Ip/q do not need to be regular powers,

even when q divides p, since they are defined using integral closure. In Section 5.4 we

introduce the notion of lcm-strongly Golod, that generalizes the concept of squarefree-

strongly Golod, introduced by Herzog and Huneke. We show that lcm-strongly Golod

ideals are weakly Golod, that is, they have trivial multiplication on Koszul homology

in positive degrees. Finally, in Section 5.5, we study some sufficient conditions to

conclude that a product of ideals is Golod, and ask several general questions on

Golod rings.
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Chapter 2

Ding’s Conjecture

The central purpose of this chapter is to exhibit several counterexamples to a conjec-

ture made by Songqing Ding in 1993, regarding the index of a local ring. The main

results that we present appear in [15].

2.1 Preliminaries

Throughout, (R,m, k) will denote a commutative Noetherian local ring with identity,

with unique maximal ideal m and residue field k = R/m. In addition, M will denote

a finitely generated R-module. We will use λ(M) to denote the length of a module,

that is, the length of any composition series of M . Furthermore, µ(M) will denote the

minimal number of generators of a module, that is, the length of M/mM ∼= k⊗RM .

We will assume a basic knowledge of commutative algebra, on the level of Atiyah-

Macdonald [4] and Matsumura [52].
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2.1.1 The index of a local ring and Ding’s conjecture

Let (R,m, k) be a local ring. We recall here some known results about Auslander’s

delta invariant and the index of a local ring. For more details we refer the reader to [18]

and [48, Chapter 11]. We will say that R is Cohen-Macaulay if depth(R) = dim(R).

For a non zero finitely generated R-module X, we say that X is maximal Cohen-

Macaulay (MCM for short) if depth(X) = dim(R). For a finitely generated R-module

X, the free rank of X, denoted f-rank(X) is the maximal number of copies of R

splitting out of X. In other words, X can be written as X ∼= Rf-rank(X)⊕N , where N

has no free summands. This number is well defined over a local ring. In fact, having

a free splitting of X is equivalent to having an R-linear map ϕ : X → R such that

ϕ(x) /∈ m for some x ∈ X. Therefore, setting IX := {x ∈ X | ϕ(x) ∈ m for all ϕ ∈

HomR(X,R)}, we have that IX ⊆ X is an R-submodule, and f-rank(X) = λ(X/IX)

is independent of the direct sum decomposition.

Definition 2.1.1. Let (R,m, k) be a Cohen-Macaulay local ring and let M be a finitely

generated R-module. The Auslander delta invariant of M is defined as

δ(M) = min{f-rank(X) | X is MCM and there exists a surjection X →M → 0}.

Remark 2.1.2. There is always a surjection Rµ(M) → M → 0, and since R is MCM,

and M is finitely generated, we obtain that δ(M) 6 µ(M) < ∞. In addition, given

a surjection M → N → 0 of finitely generated R-modules, for any surjective map

X →M → 0 one obtains a surjection X → N → 0. Therefore δ(M) > δ(N).
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Using the notion of minimal MCM approximation, originally due to Auslander

and Buchweitz [5], one can compute δ(M) by looking at a specific choice of a MCM

module mapping onto M .

Definition 2.1.3. A MCM approximation of a finitely generated R-module M is an

exact sequence

0 // YM
i // XM

//M // 0,

where XM is a finitely generated MCM R-module, and YM is a finitely generated R-

module of finite injective dimension. The approximation is called minimal if YM and

XM have no common direct summand via i.

When R is Cohen Macaulay, minimal MCM approximations of a finitely generated

R-module M always exist, and they are unique up to isomorphism of short exact

sequences inducing the identity on M [48, Theorem 11.17 and Proposition 11.13].

We describe how to construct a minimal MCM approximation of a Cohen-Macauly

module M such that depth(R) − depth(M) = 1, in case R is Gorenstein. This

argument can be used, for instance, when R is a one-dimensional Gorenstein ring,

and M has finite length. Consider the module M∨ = Ext1
R(M,R), and say that

µ(M∨) = t. Then, there exists a short exact sequence 0 → Ω → Rt → M∨ → 0,

with Ω a MCM R-module. This follows from the depth-lemma [12], and the fact that

depth(M) = depth(R) − 1. Furthermore, Ω and Rt have no common free summand

via the map in the short exact sequence. Now apply HomR(−, R) to such a sequence,
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to obtain a long exact sequence

0 // HomR(M∨, R) // HomR(Rt, R) // HomR(Ω, R) // Ext1
R(M∨, R) // 0

where the last zero follows from the fact that Ext1
R(Rt, R) = 0, since Rt is free.

Note that HomR(M∨, R) = 0, and Ext1
R(M∨, R) ∼= M , by duality for Gorenstein

rings [12]. A quick way to see the vanishing of HomR(M∨, R) is to notice that, since

depth(M) < depth(R), there is a non zero-divisor x ∈ R that kills the module M∨,

and hence the module HomR(M∨, R). But this is a submodule of HomR(Rt, R) ∼= Rt,

which is torsion free. Thus HomR(M∨, R) = 0. Putting these facts together, we get

a short exact sequence

0 // Rt // HomR(Ω, R) //M // 0.

Note that Rt has finite injective dimension, because R is Gorenstein [12]. Fur-

thermore, the module HomR(Ω, R) is MCM, because Ω is MCM. Finally, Rt and

HomR(Ω, R) are finitely generated, and they have no common summands via the

map in the sequence, because otherwise the modules Ω and Rt in the first sequence

would have a common free summand. Therefore the one above is a minimal MCM

approximation of M .

Remark 2.1.4. Let 0 → YM → XM → M → 0 be a MCM approximation of an

R-module M . Then, given any surjection X → M → 0 from a MCM R-module X,
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there exists a map X → XM such that the following diagram commutes:

0 // K //

��

X //

��

M // 0

0 // YM // XM
//M // 0

In fact, since YM has finite injective dimension, and X is MCM, we obtain that

Ext1
R(X, YM) = 0 [48, Theorem 11.2]. This implies that the map HomR(X,XM) →

HomR(X,M) is surjective, proving the claim. In addition, every two lifts differ by an

element of HomR(X, YM).

In our context, minimal MCM approximation are very useful, because one can

read Auslander’s delta invariant from them.

Proposition 2.1.5 ([48], Proposition 11.27). If 0 → YM → XM → M → 0 is a

minimal MCM approximation of M , then δ(M) = f-rank(XM).

Proof. Let δ′ = f-rank(XM) and set δ = δ(M). Clearly δ 6 δ′, since XM is MCM,

and we are given a surjection XM → M → 0. Conversely, consider any surjection

X = X
⊕

R⊕δ → M → 0, with X a MCM module with no free summands. Also,

write XM = XM

⊕
R⊕δ

′
. By Remark 2.1.4, we can find a lift α : X → XM such that

the following diagram commutes:

X
π //

α

��

M // 0

0 // YM // XM

⊕
R⊕δ

′ p //M // 0
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Since X has no free summands, the image of the composition

X
α // XM

⊕
R⊕δ

′ // // R⊕δ
′

is contained in mR⊕δ
′
. Therefore, α(X) contains no minimal generators of M/p(XM)

and, thus, µ(M/p(XM)) 6 µ(M/p(α(X))).

Claim. Let 0 → Z → W
p→ M → 0 be a short exact sequence. Assume that

W = W
⊕

R⊕n, with W a MCM module with no non-zero free summands. Then

µ(M/p(W )) 6 n, with equality if the one above is a minimal MCM approximation of

M

Proof of the Claim. To prove the claim, consider the following commutative diagram:

0

��

0

��

0

��
0 // ker(p|W ) //

��

Z //

��

ker(p)

��

// 0

0 //W

��

//W

p

��

// R⊕n

p

��

// 0

0 // p(W )

��

//M

��

//M/p(W )

��

// 0

0 0 0

The rightmost column shows that µ(M/p(W )) 6 µ(R⊕n) = n. Now assume that the

middle column is a minimal MCM approximation of M . If µ(M/p(W )) < n, then

ker(p) has a non-zero free summand. By exactness of the first row, and commutativity
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of the upper-right square, this must be a non-zero free summand that Z and W have

in common, contradicting minimality.

Now the proposition immediately follows. In fact, by the Claim, we have

δ = f-rank(X) > µ(M/π(X)) = µ(M/p(α(X))) > µ(M/p(XM)) = δ′.

We now focus on δ(M) for some special choices of M : for any integer n > 1

consider δ(R/mn). It follows from Remark 2.1.2 that

0 6 δ(R/m) 6 δ(R/m2) 6 . . . . . . 6 δ(R/mn) 6 δ(R/mn+1) 6 . . . . . . 6 1,

Definition 2.1.6. Let (R,m, k) be a Gorenstein local ring. The index of R is

index(R) := inf{n | δ(R/mn) = 1}.

Note that, potentially, δ(R/mn) could be zero for all n ∈ N, so that index(R) =∞.

However, the index is finite when R is Gorenstein [18, Theorem 1.1]. In fact, if R

is Gorenstein and x1, . . . , xd is a maximal regular sequence in R, the beginning of a

minimal free resolution of R/(x1, . . . , xd) is

0 // Ω // R // R/(x1, . . . , xd) // 0,

and Ω has finite injective dimension since R and R do. Therefore the one above is

a MCM approximation of R/(x1, . . . , xd), and it is easily seen to be minimal. For

example, it is minimal because R is local, hence it is an indecomposable R-module.
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Then, we get that δ(R/(x1, . . . , xd)) = 1 for any choice of a maximal regular sequence

x1, . . . , xd ∈ R. In particular, if one chooses n � 0, so that mn ⊆ (x1, . . . , xd),

which is possible because
√

(x1, . . . , xd) = m, then there is a surjection R/mn →

R/(x1, . . . , xd)→ 0, and this gives δ(R/mn) = 1. Therefore index(R) 6 n <∞.

Definition 2.1.7. Let (R,m, k) be a local ring of dimension d. For an R-module M of

finite length, we define the Löewy length of M as ``(M) := min{n ∈ N | mnM = 0}.

If M is a finitely generated R-module of dimension c > 0, we define the generalized

Löewy length of M to be

g``(M) = min

{
``

(
M

(x1, . . . , xc)M

) ∣∣∣∣ x1, . . . , xc a system of parameters for M

}
.

The argument before the definition shows that, when R is Gorenstein, we have

that index(R) 6 ``(R/(x1, . . . , xd)) for any system of parameters x1, . . . , xd for R.

Therefore the inequality index(R) 6 g``(R) always holds.

We are finally in a position to state Ding’s conjecture.

Conjecture 2.1.8. Let (R,m, k) be a Gorenstein local ring of dimension d. Then

index(R) = g``(R).

Herzog showed that the conjecture is true for homogeneous Gorenstein algebras

over an infinite field [32] (extending the concepts in an obvious way to the graded

case). Later, Ding generalized this result proving that it holds true if the associated

graded ring grm(R) is Cohen-Macaulay [19, Theorem 2.1]. Hashimoto and Shida
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pointed out in [29] that Ding’s result needs the residue field k to be infinite, and the

conjecture may fail for rings with finite residue field, even if grm(R) is Cohen-Macaulay

[29, Example 3.2].

2.1.2 Hilbert functions and superficial elements

We now review some basic facts about associated graded rings, Hilbert functions, and

superficial elements. The literature regarding these topics is extremely rich; however,

we will restrict ourselves to the aspects that will be relevant for this dissertation.

More complete references for the contents that follow are [43, 59].

Definition 2.1.9. Let (R,m, k) be a local ring. The associated graded ring of R is

defined as

grm(R) =
⊕
n>0

mn/mn+1 = R/m⊕m/m2 ⊕m2/m3 ⊕ . . .

This object is a graded k-algebra, generated by its degree one part m/m2. Such

algebras are called standard graded. Given an element x ∈ R of order d, we will

denote by x∗ ∈ md/md+1 its image in the associated graded ring. The multiplication

in grm(R) is defined, for two homogeneous elements x∗ ∈ md/md+1 and y∗ ∈ mn/mn+1

coming from x, y ∈ R, as the image (xy)∗ ∈ md+n/md+n+1 of the element xy. We

then extend by linearity to sum of homogeneous elements.

Proposition 2.1.10. Let P = k[x1, . . . , xn] be a polynomial ring over a field, and let

n = (x1, . . . , xn). Assume that Q is either the completion P̂ with respect to n, or the



19

localization Pn. Let R := Q/I for some ideal I ⊆ Q, and let m be the maximal ideal

of R. Then the associated graded ring grm(R) is isomorphic, as a graded k-algebra,

to P/I∗, where I∗ = (f ∗ | f ∈ I) is the initial ideal of I, that is, the homogeneous

ideal of P generated by the initial forms f ∗ of elements f ∈ I.

Proof. Let M be the maximal ideal of Q, so that m = M/I. For an integer n > 0,

we have that

mn

mn+1
=
Mn + I

Mn+1 + I
∼=

Mn

Mn ∩ I +Mn+1

from the second isomorphism theorem. Note that Mn/Mn+1 ∼= nn/nn+1 as k-vector

spaces, via k ∼= P/n ∼= R/m. Furthermore

I∗ :=
⊕
n>0

Mn ∩ I +Mn+1

Mn+1
⊆
⊕
n>0

Mn

Mn+1
∼=
⊕
n>0

nn

nn+1
∼= P

is easily seen to be a homogeneous ideal of P , which is the ideal I∗ generated be the

initial forms f ∗ of elements f ∈ I. In fact, note that the initial form of an element

f ∈ Mn rMn+1 is precisely the image of f ∈ Mn ∩ I modulo Mn+1. Finally, we

have that the ring operations are preserved by these isomorphisms, therefore

grm(R) ∼=
⊕
n>0

Mn

Mn ∩ I +Mn+1
∼=
⊕
n>0

Mn/Mn+1

(Mn ∩ I +Mn+1)/Mn+1
∼= P/I∗

as graded k-algebras.

Definition 2.1.11. Let (R,m, k) be a local ring. The Hilbert function HFR : N→ N

of R is defined as

HFR(n) := λ(mn/mn+1) for all n > 0.
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Note that, by definition, the Hilbert function of R coincides with the Hilbert

function of its associated graded ring.

Remark 2.1.12. For n� 0, the Hilbert function is a polynomial of degree dim(R)−1.

In particular, when dim(R) = 1, the Hilbert function HFR(n) = λ(mn/mn+1) is

eventually constant.

Remark 2.1.13. For given integers d, n there is a unique expression

d =

(
kn
n

)
+

(
kn−1

n− 1

)
+ . . .+

(
k1

1

)

with kn > kn−1 > . . . > k1 > 0. See, for instance, [12, Lemma 4.2.6] for more details.

We define

d〈n〉 :=

(
kn + 1

n+ 1

)
+

(
kn−1 + 1

n

)
+ . . .+

(
k1 + 1

2

)
.

We now recall, without proof, a well-known theorem of Macaulay on Hilbert func-

tions of standard graded algebras over a field.

Theorem 2.1.14. ([51], [12, Theorem 4.2.10]) Let k be a field and let A be a standard

graded k-algebra. Then

HFA(n+ 1) 6 HFA(n)〈n〉 for all n > 1.

Proposition 2.1.15. Let (R,m, k) be a local ring, and let x ∈ R. Then, there is a

surjective homomorphism π : grm(R)/(x∗)→ grm/(x)(R/(x)) of graded rings, which is

of degree zero. In other words, for all n ∈ N, the map π sends the degree n part of

grm(R)/(x∗) to the degree n part of grm/(x)(R/(x)).
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Proof. For n ∈ N, the degree n part of grm(R)/(x∗) is

[grm(R)/(x∗)]n =
mn

mn+1 + xmn
.

On the other hand, the degree n part of grm/(x)(R/(x)) is

[
grm/(x)(R/(x))

]
n

=
mn + (x)

mn+1 + (x)
∼=

mn

mn+1 + mn ∩ (x)
.

Since xmn−1 ⊆ mn ∩ (x), for all n ∈ N there is a k-vector space surjective map

[grm(R)/(x∗)]n →
[
grm/(x)(R/(x))

]
n
, which gives rise to a degree preserving surjection

of graded rings π : grm(R)/(x∗)→ grm/(x)(R/(x)).

We now turn our attention to superficial elements, connecting their properties

with the ones of the associated graded ring.

Let (R,m, k) be a local ring. For a non-zero element x ∈ R, we denote by ord(x)

the order of x, that is the largest integer n such that x ∈ mn. The order is well

defined, because
⋂
nm

n = (0) by Krull’s Intersection Theorem.

Definition 2.1.16. Let (R,m, k) be a local ring and let x ∈ m with ord(x) = d > 1.

Then x is said to be a superficial element of order d if there exists an integer c such

that (mn+d : x) ∩mc = mn for all n > c.

Remark 2.1.17. If depth(R) > 0, then any superficial element is a non zero-divisor of

R. The converse is true for a general non zero-divisor of R, i.e., a non zero-divisor that

avoids a certain closed set with respect to the Zariski topology. Superficial elements

of any order exist if the residue field is infinite.
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Proposition 2.1.18. Let (R,m, k) be a one-dimensional local ring. A non zero-

divisor x ∈ R with ord(x) = d is a superficial element if and only if the initial form

x∗ is a homogeneous parameter of degree d in the associated graded ring grm(R).

Proof. Let G := grm(R), and let M be the irrelevant maximal ideal of G. Let

(0) = q1∩. . .∩qs∩J be a primary decomposition of the ideal (0) in G, where pi =
√
qi

is a minimal prime of grm(R) for all i, and either
√
J =M or J = G. Assume that

x is superficial of order d, so that there is c ∈ N such that (mn+d : x) ∩ mc = mn

for all n > c. To prove that x∗ is a parameter, we have to show that x∗ /∈ pj for all

j = 1, . . . , s. For all i, we have that pi = (0 :G y∗i ) for some homogeneous y∗i ∈ G.

In fact, since G is graded, all associated primes are homogeneous. Let zi ∈ R be an

element of order c such that its image z∗i in G is not contained in pi. This means

that z∗i y
∗
i 6= 0. Notice that pi = (0 :G y

∗
i ) ⊆ (0 :G z

∗
i y
∗
i ) and, since associated primes

are maximal among annihilators, we must have pi = (0 :G z∗i y
∗
i ). Let wi = ziyi, and

notice that z∗i y
∗
i is the image in G of wi; in addition, note that ord(wi) > c. Putting

things together, if w∗i denotes the image of wi in G, for all i = 1, . . . , s we have that

pi = (0 :G w
∗
i ), with ord(wi) = di > c, for all i = 1, . . . , s. Now, assume that x∗ ∈ pi

for some i. Then x∗w∗i = 0, and this means that xwi ∈ md+di+1. By choice of di,

we then have wi ∈ (md+di+1 : x) ∩ mdi ⊆ mdi+1, and hence ord(wi) > di, which is a

contradiction.

Conversely, assume that x∗ is a parameter of degree d, so that x∗ /∈ pi for all

i = 1, . . . , s. Here, we are using that dim(G) = dim(R) = 1, so that all primes pi are
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minimal in G. Since J is either M-primary or the whole ring, we can choose c ∈ N

such that ms/ms+1 ⊆ J for all s > c−1. Now, let z ∈ (mn+d : x)∩mc, for some n > c

and, by way of contradiction, assume that z /∈ mn. Without loss of generality, we can

assume that z ∈ mn−1. Then, we have that zx ∈ mn+d, so that z∗x∗ = 0. Using the

primary decomposition of (0) in G and the fact that x∗ /∈ pi for all i, this means that

z∗ ∈ (0 :G x
∗) = (q1 :G x

∗) ∩ . . . (qs :G x
∗) ∩ (J :G x) ⊆ q1 ∩ . . . ∩ qs.

Finally, since n− 1 > c− 1, we have that z∗ ∈ mn−1/mn ⊆ J . Thus, we obtain that

z∗ ∈ q1∩. . .∩qs∩J = (0), and hence z ∈ mn. This gives the desired contradiction.

Lemma 2.1.19. [43, Lemma 8.5.3] Let (R,m, k) be a local ring, and let x ∈ m be a

non zero-divisor of order d. Then x is superficial if and only if mn+d : x = mn for all

n� 0.

Proof. Assume that x is superficial. There exists c ∈ N such that (mn+d : x)∩mc = mn

for all n > c. Since ord(x) = d, it is clear that mn ⊆ mn+d : x for all n > 1. For

the other containment, it is enough to show that mn+d : x ⊆ mc for all n � 0. Let

y ∈ mn+d : x, so that xy ∈ mn+d ∩ (x). By the Artin-Rees Lemma [52, Theorem 8.5]

there exists t ∈ N such that mn+d ∩ (x) ⊆ xmn+d−t for all n > t. Choose n > t− d+ c

so that xy ∈ xmn+d−t ⊆ xmc. Since x is a non zero-divisor for R, this implies that

y ∈ xmc : x = mc, as required.

For the converse, assume that mn+d : x = mn for all n > c, for some integer c ∈ N.

Then, for all n > c, we have (mn+d : x) ∩ mc ⊆ mn+d : x = mn ⊆ (mn+d : x) ∩ mc,
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forcing equality. Hence, x is a superficial element.

We recall the definition of Hilbert-Samuel multiplicity of a ring. To be precise, the

following is the Hilbert-Samuel multiplicity of the ring with respect to the maximal

ideal, when the ring has positive dimension. The multiplicity can be also defined,

more generally, for any finitely generated R-module with respect to any m-primary

ideal, even for Artinian rings. However, we will stick to the simplified version, since

we will not need this notion in its full generality.

Definition 2.1.20. Let (R,m, k) be a local ring of dimension d > 0. The Hilbert-

Samuel multiplicity of R is

e(R) := lim
n→∞

(d− 1)! HFR(n)

nd−1
.

Remark 2.1.21. From Remark 2.1.12 we deduce that, when R is one-dimensional,

HFR(n) = λ(mn/mn+1) = e(R) for all n� 0.

Proposition 2.1.22. Let (R,m, k) be a one-dimensional Cohen-Macaulay local ring,

and let x ∈ m be a non zero-divisor. If d = ord(x), then

λ(R/(x)) > d · e(R).

Furthermore, equality holds if and only if x is a superficial element of order d.

Proof. For all n > 1 we have an exact sequence

0 // m
n+d : x

mn
// R

mn

·x // R

mn+d
// R

mn+d + (x)
// 0.
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By Remark 2.1.21, using that dim(R) = 1, we conclude that there exists an integer

N such that λ (mn/mn+1) = e(R) and mn+d ⊆ (x) for all n > N . For n > N we have

λ(R/(x)) =

= λ

(
R

mn+d + (x)

)
= λ

(
mn

mn+d

)
+ λ

(
mn+d : x

mn

)
= d · e(R) + λ

(
mn+d : x

mn

)
> d · e(R).

Finally, equality holds if and only if mn+d : x = mn for all n � 0 and, by Lemma

2.1.19, this happens if and only if x is a superficial element.

2.1.3 Irreducibility of polynomials in two variables

We refer to [27, Section 19.5] for more details about some notions and results that we

are about to use.

A simple cycle in R2 is a graph that has the same number of vertices and edges,

and such that every vertex has degree exactly two. A polygon is the closure of the

interior of a simple cycle in R2, with the Euclidean topology.

Definition 2.1.23. We say that a polygon is convex if, given any two of its points,

the line segment connecting them is entirely contained inside the polygon.

By vertex or edge of a polygon we will mean a vertex or edge of the graph that

forms its boundary.
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Definition 2.1.24. A polygon N ⊆ R2 is said to be a convex lattice polygon if there

exists a finite subset A of the non-negative integer lattice Z2
>0 such that N is the

convex hull of A, that is, N is the smallest convex polygon that contains A.

Given two polygons M and N , we define

M +N := {(m1 + n1,m2 + n2) | (m1,m2) ∈M, (n1, n2) ∈ N}.

Note that, if M and N are two convex lattice polygons, then so is M+N . Futhermore,

the vertices of M +N come from the sum of a vertex in M with a vertex in N .

Definition 2.1.25. We say that a convex lattice polygon is integer reducible if it can

be written as the sum of two convex lattice polygons, each consisting of at least two

points. Otherwise, it is said to be is integer irreducible.

One way to obtain a convex lattice polygon is starting from a polynomial in two

variables. Let k be a field. For a polynomial f ∈ k[x, y], the Newton polygon Nf of

f is the convex hull of all points (i, j) ∈ Z2
>0, where axiyj appears as a monomial in

f with non-zero coefficient a ∈ k.

Proposition 2.1.26. [27, Theorem 19.7] Let f be a polynomial that is not divisible

by either x or y. If Nf is integer irreducible, then the polynomial f is irreducible.

Proof. Assume that f = gh for some non constant polynomials g, h ∈ k[x, y]. By

assumption, neither g or h is divisible by x or y, therefore Ng and Nh consist of

at least two points. Every exponent of a monomial appearing in f is of the form
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(i + a, j + b) = (i, j) + (a, b) for some (i, j) ∈ Ng and (a, b) ∈ Nh. Hence, the

exponents of monomials in f all lie inside Ng + Nh, and thus the convex hull Nf of

such points is itself contained in Ng +Nh, since Ng +Nh is convex. Conversely, every

vertex of the polygon Ng + Nh is the sum of a vertex in Ng and one in Nh. This

means that any vertex (i+ a, j + b) of Ng +Nh comes from a pair of exponents (i, j)

of a monomial in g and a pair of exponents (a, b) of a monomial h. Thus, (i+a, j+ b)

is a pair of exponents of a monomial in f = gh. Therefore (i + a, j + b) ∈ Nf for all

vertices of Ng +Nh, and hence Ng +Nh ⊆ Nf by convexity of Nf .

Lemma 2.1.27. [27, Corollary 19.2] If a convex lattice polygon N has en edge with

vertices (0,m) and (n, 0), with m and n relatively prime, and N is contained in the

triangle with vertices (0,m), (n, 0), (0, 0), then N is integer irreducible.

Proof. Suppose that N = N1 +N2, for two convex lattice polygons N1 and N2 with at

least two points. Then N1 must contain two integer points of the form (n1, 0), (0,m1),

and N2 must contain two integer points of the form (n2, 0), (0,m2), and none of them

is the point (0, 0). In fact, since N = N1 + N2, there are two points (i, j) ∈ N1 and

(a, b) ∈ N2 such that (i + a, j + b) = (n, 0). Since all these real numbers are non-

negative, we have that i+a = n and j = b = 0. In addition, if (i, 0) ∈ N1 and (a, 0) ∈

N2 are such that i+a = n, then 0 < i, a < n. In fact, suppose by way of contradiction

that i = n, so that (i, 0) = (n, 0) ∈ N1. Then, for any point (0, 0) 6= (c, d) ∈ N2, we

have (n, 0) + (c, d) = (n+ c, d) ∈ N , but this is impossible since N is contained in the

triangle with vertices (0,m), (n, 0), (0, 0), and (n+ c, d) is outside of it. Furthermore,
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if we let n1 and n2 be the maximal values among the ones for which (n1, 0) ∈ N1 and

(n2, 0) ∈ N2, then n1 and n2 are forced to be integers satisfying 0 < n1, n2 < n, and

such that n1+n2 = n. Similarly, one can show that (0,m) = (0,m1)+(0,m2) for some

integer points (0,m1) ∈ N1 and (0,m2) ∈ N2, both different from (0, 0). Now, consider

the points (n1, 0) + (0,m2) ∈ N and (n2, 0) + (0,m1) ∈ N . Since N is contained in

the triangle with vertices (0,m), (n, 0), (0, 0), we must have m2 6 m − m

n
n1 and

m1 6 m − m

n
n2. Note that, since m1,m2 ∈ Z, and gcd(m,n) = 1, equality cannot

hold in any of the two inequalities. In fact, suppose for instance that m2 = m−m
n
n1,

then nm2 = nm −mn1. Since m −m2 = m1, we have that nm1 = mn1, and since

gcd(m,n) = 1, then m divides m1. This implies that m1 = m, and m2 = 0, which is

a contradiction. Thus, m2 < m− m
n
n1 and m1 < m− m

n
n2. Therefore, adding them,

we obtain that

m = m1 +m2 < 2m− m

n
(n1 + n2) = m,

which is a contradiction. Therefore N is integer irreducible.

Remark 2.1.28. We note that the methods of this subsection can be generalized to

polynomials in more than two variables, modifying the definitions and the claims

accordingly. We presented only the two variable version of them, since we will need

these tools only in such generality.
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2.2 A motivation behind Ding’s conjecture

Ideals and modules of finite projective dimension often play a crucial role: they share

good properties, and they usually imply nice conditions about the ring itself. For

example, one form of Bass’s Question states that if a ring has a module of finite length

and finite projective dimension, then it is Cohen-Macaulay. Bass’s Question is now a

theorem, since it follows from the Intersection Theorem. The latter has been proved

by Peskine-Szpiro for rings of positive characteristic, or essentially of finite type over

a field [55, 56], extended by Hochster to the general equicharacteristic case [38], and

finally proven by Paul Roberts in the mixed characteristic case [57]. Ideals generated

by a system of parameters in a Cohen-Macaulay local ring are resolved by the Koszul

complex, and, in a sense, they are special ideals of finite projective dimension. The

following fits into a more general frame of questions about minimality for ideals of

finite projective dimension.

Question 2.2.1. Let (R,m, k) be a Cohen-Macaulay local ring. Does there exist an

ideal I generated by a full system of parameters for R, such that ``(R/I) 6 ``(R/J)

for all m-primary ideals J of finite projective dimension?

If, for a Gorenstein ring R, Ding’s conjecture holds true, then Question 2.2.1 has

positive answer for such an R. In fact, if J is any ideal of finite projective dimension,

then

0 // J // R // R/J // 0,
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is a minimal MCM approximation of R/J . The only thing to show that is not entirely

clear is that J has finite injective dimension. This is because we have a finite resolution

0 → Fd → Fd−1 → . . . → F1 → R → R/J → 0, where the R-modules Fj are free

for all j. From the exact sequence 0 → Fd → Fd−1 → Ωd−1 → 0 we deduce that

idR(Ωd−1) < ∞, since both Fd and Fd−1 have finite injective dimension, being free.

Repeating the argument with the short exact sequences 0 → Ωj+1 → Fj → Ωj → 0,

we get down to the sequence 0 → Ω2 → F1 → J → 0, and we conclude that

idR(J) <∞, as claimed.

By Proposition 2.1.5, we then conclude that δ(R/J) = 1. Now, let n = ``(R/J),

so that we have an inclusion mn ⊆ J . This gives a surjection R/mn → R/J → 0

and, by Remark 2.1.2, it follows that δ(R/mn) = 1. As a consequence, index(R) 6 n.

Finally, we are assuming that Ding’s conjecture holds true for R, therefore g``(R) =

index(R) 6 n. This precisely means that there exists an ideal I, generated by a full

system of parameters, such that ``(R/I) 6 n = ``(R/J).

Remark 2.2.2. We note that, even if Ding’s conjecture fails for a ring R, Question

2.2.1 may still have positive answer. For instance, if dim(R) = 1, every non-zero ideal

I of finite projective dimension must be generated by a parameter. In fact, given the

short exact sequence 0→ I → R→ R/I → 0, it follows that I has to be free of rank

one. Therefore I = (x) for some non zero-divisor x ∈ R.
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2.3 One-dimensional rings

We now turn back to the index and Ding’s conjecture. In particular, we focus our

attention on one-dimensional rings, for which we will present a result that allows us

to get a manageable description of the index. We start with an explicit description

for the dual of an ideal. See [43, Section 2.4] for more details.

Lemma 2.3.1. Let (R,m, k) be a local ring, and let I ⊆ R be an ideal containing a

non zero-divisor x. Then HomR(I, R) ∼= (x) : I.

Proof. Consider the map Φ : HomR(I, R) → (x) : I that sends ϕ ∈ HomR(I, R) to

Φ(ϕ) = ϕ(x). Fist of all, we want to show that it is well defined. Let y ∈ I, then

ϕ(x)y = ϕ(xy) = xϕ(y) ∈ (x), therefore y ∈ (x) : I. It is easy to see that it is

a R-module homomorphism. To show injectivity, assume that ϕ(x) = ψ(x) for two

homomorphisms ϕ, ψ ∈ HomR(I, R). Then, for all y ∈ I, we obtain

xϕ(y) = ϕ(xy) = yϕ(x) = yψ(x) = ψ(xy) = xψ(y).

Since x is a non zero-divisor, we conclude that ϕ(y) = ψ(y) for all y ∈ I and, thus

ϕ = ψ. Hence, Φ is injective. To show surjectivity, let z ∈ (x) : I, and set ϕ(y) = yz
x

for all y ∈ I. We claim that ϕ ∈ HomR(I, R). It is clearly R-linear, so it is enough

to show that ϕ(I) ⊆ R. Let y ∈ I, then yz ∈ (x), say yz = xw, for some w ∈ R.

Therefore ϕ(y) = xw
x

= w ∈ R, as claimed. This shows that Φ is surjective and,

hence, an isomorphism.



32

Proposition 2.3.2. Let (R,m, k) be a one-dimensional Gorenstein local ring and let

x ∈ m be a non zero-divisor. For n > 1, the following facts are equivalent

(i) δ(R/mn) = 1.

(ii) xn ∈ m((xn) : mn).

(iii) xmn : m ⊆ (x).

(iv) ∆ /∈ xmn : m for any ∆ ∈ (x) : m, ∆ /∈ (x).

Proof. It is shown in [20, Proposition 1.2] that under our assumptions

δ(R/mn) = 1 + µ(Ext1
R(R/mn, R))− µ(HomR(mn, R)).

Therefore δ(R/mn) = 1 if and only if µ(Ext1
R(R/mn, R)) = µ(HomR(mn, R)). Notice

that, by dimension shifting, we have

Ext1
R(R/mn, R) ∼= HomR(R/mn, R/(xn)) ∼=

(xn) : mn

(xn)
.

On the other hand, by Lemma 2.3.1, we have that HomR(mn, R) ∼= (xn) : mn, and

putting these facts together we obtain that δ(R/mn) = 1 if and only if µ
(

(xn):mn

(xn)

)
=

µ((xn) : mn), if and only if xn ∈ m((xn) : mn). This shows that (i) and (ii) are

equivalent. Using that R is Gorenstein, by duality (ii) holds if and only if

(x) = (xn+1) : (xn) ⊇ (xn+1) : (m((xn) : mn)) =
(
(xn+1) : ((xn) : mn)

)
: m.

Since x is a non zero-divisor, we have that ((xn) : mn) = ((xn+1) : xmn), and by

duality we obtain that (xn+1) : ((xn+1) : xmn) = xmn. Therefore (ii) is equivalent to
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(iii). Finally, (iii) clearly implies (iv). For the converse, assume that (iii) does not

hold, that is xmn : m 6⊆ (x). Consider the following short exact sequence

0 // (x)

xmn
// R

xmn
// R

(x)
// 0,

which, applying HomR(k,−), induces an exact sequence on socles

0 // (x) ∩ (xmn : m)

xmn

ψ // xm
n : m

xmn

ϕ // (x) : m

(x)
.

Note that the module soc(R/(x)) is isomorphic to k, therefore ϕ is either surjective

or it is zero. By assumption, we have that xmn : m 6⊆ (x), therefore we conclude that

(x) ∩ (xmn : m) ( xmn : m. As a consequence, ψ is not an isomorphism, and thus

ϕ is surjective. This means that there exists a choice of ∆ ∈ (x) : m, ∆ /∈ (x), such

that ∆ ∈ xmn : m, proving that (iv) does not hold.

As a corollary, we easily recover Ding’s conjecture for one-dimensional Gorenstein

rings with infinite residue field, and whose associated graded ring is Cohen-Macaulay

[19, Theorem 2.1].

Corollary 2.3.3. Let (R,m, k) be a one-dimensional Gorenstein local ring, and as-

sume that the associated graded ring grm(R) has a homogeneous non zero-divisor of

degree one. This condition is satisfied, for example, if grm(R) is Cohen-Macaulay and

k is infinite. Then index(R) = g``(R).

Proof. We only have to show that index(R) > g``(R) as the other inequality always

holds. Let n = index(R) and let x ∈ m be a non zero-divisor such that x∗ is a non
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zero-divisor in grm(R) of degree one. In particular, ord(x) = 1. By Proposition 2.3.2

(iii) we have that xmn : m ⊆ (x). By way of contradiction suppose that mn 6⊆ (x), so

that we can choose ∆ ∈ mn which represents a non-zero socle element in R/(x). Then

∆m ⊆ mn+1 ∩ (x) = xmn by Valabrega-Valla’s Theorem [67, Theorem 2.3], because

x∗ is a non zero-divisor in grm(R) of degree one. Hence ∆ ∈ xmn : m ⊆ (x), and this

contradicts the fact that ∆ is chosen to be non-zero in R/(x). Thus mn ⊆ (x) and

g``(R) 6 n = index(R).

Example 2.3.4. [29, Example 3.2] Consider the one-dimensional hypersurface R =

F2Jx, yK/(xy(x + y)). In this case, index(R) = 3, and g``(R) = 4, therefore Ding’s

conjecture fails. Note that for this ring there does not exist a homogeneous non zero-

divisor of degree one in gr(x,y)R(R), and thus Corollary 2.3.3 (or [19, Theorem 2.1])

cannot be applied.

2.4 The counterexample

If (R,m, k) is a one-dimensional Gorenstein local ring, the index of R can be checked

on any non zero-divisor x ∈ R, just by testing what is the minimal n ∈ N for which

any of the equivalent conditions in Proposition 2.3.2 are satisfied. On the other hand,

a generic choice of a non zero-divisor x ∈ R will give a maximal value of ``(R/(x)),

whereas g``(R) is defined as the minimum of such Löewy lengths. Therefore, to

verify that a potential candidate is a counterexample, one should take in account the
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Löewy length of R/(x) for every non zero-divisor x ∈ R. We now present our first

counterexample to Ding’s conjecture.

Let k be a field, and let S = k[x, y, z](x,y,z), with maximal ideal n. Consider

I = (x2 − y5, xy2 + yz3 − z5)S ⊆ S

and let R := S/I. We now use the methods developed in Subsection 2.1.3 to show

that R is a domain.

Lemma 2.4.1. For any field k, the ideal J := (x2−y5, xy2+yz3−z5) ⊆ k[x, y, z] =: T

is prime.

Proof. Since y ∈ T is a non zero-divisor modulo J , it suffices to show that JT [y−1]

is a prime in the localization T [y−1] of T at the element y. After some algebraic

manipulations, we obtain

JT [y−1] =(x2 − y5, x+ y−1z3 − y−2z5)T [y−1]

= ((−y−1z3 + y−2z5)2 − y5, x+ y−1z3 − y−2z5)T [y−1].

Set x′ := x+ y−1z3 − y−2z5, then we have

JT [y−1] = (y−2z6−2y−3z8 +y−4z10−y5, x′)T [y−1] = (z10−2z8y+z6y2−y9, x′)T [y−1].

Note that T [y−1] = k[x, y, z, y−1] = k[x′, y, z, y−1]. Since x′ ∈ JT [y−1], we have

that JT [y−1] is prime if and only if (z10 − 2z8y + z6y2 − y9)Q[y−1] is prime, where

Q = k[y, z]. Because y ∈ Q is a non zero-divisor modulo (z10−2z8y+z6y2−y9)Q, we
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finally reduce the claim to showing that the polynomial f = z10− 2z8y+ z6y2− y9 is

irreducible in Q. The exponents of the pure powers of z and y are 10 and 9, so they

are relatively prime. Furthermore, the pairs of exponents (8, 1) and (6, 2) of the other

monomials −2z8y and z6y2 appearing in f are contained in the triangle with vertices

(0, 0), (0, 9), (10, 0). It follows from Proposition 2.1.26 and Lemma 2.1.27 that f is

irreducible.

Lemma 2.4.1 shows that, for any field k, the ring R = S/I defined above is a do-

main. Denote by m the maximal ideal n/I of R. The ring R is a one-dimensional com-

plete intersection. We used the computer algebra programs CoCoA [1] and Macaulay2

[26] to obtain the following information: the associated graded ring of R with respect

to m is G := grm(R) ∼= P/I∗, where P = k[X, Y, Z] and

I∗ = (X2, XY 2, XY Z3, Y Z6) = (X2, Y ) ∩ (X,Z6) ∩ (X2, Y 2, Z3) ⊆ P.

From now on, we will identify G with P/I∗. The Hilbert function of R is

n 0 1 2 3 4 5 6 7 8 . . .

HFR(n) 1 3 5 6 7 7 8 8 8 . . .

with HFR(n) = 8 = e(R) for all n > 6. See the Ending Remarks on page 44 for

comments about the use of computer algebra programs for this example.

Theorem 2.4.2. Let R = S/I be as above. Then

index(R) = 5 < 6 = g``(R).
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Proof. Using CoCoA [1] and Macaulay2 [26] we obtain that

ym5 : m = (y5, xy3, yz4, xyz3, y3z2, xy2z2, y4z)R ⊆ yR

and

ym4 : m = (y4, yz3, y2z2, xyz2, y3z, xy2z, xz4)R 6⊆ yR.

Therefore index(R) = 5 by Proposition 2.3.2. On the other hand, a direct computa-

tion shows that m6 ⊆ yR, therefore g``(R) 6 6, and we want to show that equality

holds. To do this, we need to prove that for any f ∈ mr {0} we have ``(R/fR) > 6.

Assume the contrary, i.e., that there exists f ∈ m such that m5 ⊆ fR. Lifting to S

we get that n5 ⊆ I + (f) =: J , that is J = J + n5 = (x2, xy2 + yz3, f) + n5.

First, assume that ord(f) = 1, and let f ∗ be the initial form of f . Since ord(f) = 1,

f can be made a part of a minimal set of generators of n: say that f, a, b ∈ n are

linearly independent modulo n2. Furthermore, we have the equality J ∩ n2 + n3 =

(x2, f 2, af, bf) + n3, so that

3 6 λ((J∗)2) = λ

(
J ∩ n2 + n3

n3

)
6 4,

and such length is equal to three if and only if x2 ∈ (f 2, af, bf) + n3. But, by choice

of f, a, b, this happens if and only if f = ux+ g, for some unit u ∈ S and some some

g ∈ S of order at least two. Then, for h = u−1g, we have

n5 + (f) ⊆ J = (x2, xy2 + yz3, ux+ g) +n5 = (h2,−hy2 + yz3, ux+ g) +n5 ⊆ n4 + (f).
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Notice that λ

(
n4 + (f)

n5 + (f)

)
= 5, and

λ

(
J

n5 + (f)

)
= λ

(
(h2,−hy2 + yz3) + (n5 + (f))

n5 + (f)

)
6 2,

therefore λ

(
n4 + (f)

J

)
> 3. But this is a contradiction, because

n4 + (f)

J
⊆ soc (S/J) = soc(R/fR),

which is simple because R is Gorenstein. We ruled out the case λ((J∗)2) = 3, so we

are left with the case λ((J∗)2) = 4. Under such condition, the Hilbert function of

R/fR, which is the Hilbert function of P/J∗, is

n 0 1 2 3 4 5 6 7 . . .

HFR/fR(n) 1 2 2 h k 0 0 0 . . .

where k 6 1 because R is Gorenstein and because m5 ⊆ fR by assumption, and

h 6 2 by Macaulay’s Theorem 2.1.14. On the other hand, λ(R/fR) > e(R) = 8

by Proposition 2.1.19, therefore we necessarily have k = 1 and h = HFR/fR(3) =

HFP/J∗(3) = 2. In addition, again by Proposition 2.1.19, f must be a superficial

element. Since

I∗ = (X2, Y ) ∩ (X,Z6) ∩ (X2, Y 2, Z3)

and f is superficial if and only if f ∗ /∈
⋃

p∈min(G) p = (X, Y )G∪(X,Z)G by Proposition

2.1.18, we conclude that f ∗ /∈ (X, Y ). Let M = (X, Y, Z) be the irrelevant maximal

ideal of P . Then, since f ∗ ∈Mr (M2 ∪ (X, Y )), we have that (f ∗, X, Y ) =M. Let

K := I∗ + (f ∗) ⊆ P , then we have

λ (K3) > λ

(
(X3, X2Y,XY 2) + f ∗M2

M4

)
= 9.
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But HFP (3) = 10, therefore HFP/K(3) 6 1. In particular, we see that HFP/K(3) <

HFP/J∗(3). On the other hand, by Proposition 2.1.15, there is always a surjective

homomorphism of graded rings

P/K → P/J∗ → 0, (2.4.1)

which is homogeneous of degree zero. This gives the desired contradiction. We

analyzed all possible cases when ord(f) = 1, so let us assume now that ord(f) = 2.

Again, let J := I + (f) and K := I∗ + (f ∗). In this case J ∩ n2 + n3 = (x2, f) + n3,

so that

1 6 λ((J∗)2) = λ

(
(x2, f) + n3

n3

)
6 2,

and such length is equal to one if and only if f = ux2 +g for some unit u ∈ S and g of

order at least three. Assume that we are in the latter case, then the Hilbert function

of R/fR, which is the Hilbert function of P/J∗, is

n 0 1 2 3 4 5 6 7 . . .

HFR/fR(n) 1 3 5 h k 0 0 0 . . .

with k = HFR/fR(4) 6 1, because R/fR is a zero-dimensional Gorenstein local

ring and m5 ⊆ fR. By Macaulay’s Theorem 2.1.14 we must have h 6 7. Also

λ(R/fR) > 16 by Proposition 2.1.19, because (f ∗) = (X2) is contained in the minimal

prime (X, Y ) of G, so that f cannot be superficial. Therefore h = HFR/fR(3) =

HFP/J∗(3) = 7 and k = 1 are forced. On the other hand, (f ∗) = (X2) ⊆ I∗, therefore

K = I∗ and HFP/K(3) = HFG(3) = HFR(3) = 6. This is again a contradiction
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because of the surjection (2.4.1). Thus we can assume that λ((J∗)2) = 2. In this case

the Hilbert function of R/fR is

n 0 1 2 3 4 5 6 7 . . .

HFR/fR(n) 1 3 4 h k 0 0 0 . . .

with k 6 1. In addition, Macaulay’s Theorem 2.1.14 implies that h 6 5. Thus

λ(R/fR) 6 14 < 16 = 2e(R), contradicting Proposition 2.1.19. Finally, let us assume

that ord(f) > 3, so that λ(R/fR) > 24 by Proposition 2.1.19. Since HFR/fR(4) 6 1

because R is Gorenstein and we are assuming that m5 ⊆ fR, the maximal possible

Hilbert function for R/fR is

n 0 1 2 3 4 5 6 7 . . .

HFmax(n) 1 3 6 10 1 0 0 0 . . .

But then λ(R/fR) 6 21 < 24, a contradiction. This shows that for any f ∈ mr {0}

we have m5 6⊆ fR, and completes the proof that g``(R) = 6 > 5 = index(R).

2.5 Further examples and remarks

Given that the conjecture fails in general, even for complete intersection domains of

dimension one, one may wonder if the conjecture is true for some smaller classes of

rings. A ring R is called quasi-homogeneous if it isomorphic to the completion of

a positively graded k-algebra at the irrelevant maximal ideal. In the counterexam-

ple of Section 3, it is not possible to give weights to the variables x, y and z that
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make the completion R̂ of R quasi-homogeneous. This does not say that R is not

quasi-homogeneous, since such weights could exist for a different choice of minimal

generators of the maximal ideal m, but we were not able to find it. On the other

hand, it is easy to find a quasi-homogeneous counterexample if one is not looking for

a domain:

Example 2.5.1. Let S = kJx, y, zK, where k is any field, and let n = (x, y, z) be the

maximal ideal of S. Consider the one-dimensional complete intersection R := S/I,

where

I = (x2 − y5, xy2 + yz3)S.

The ring R is quasi-homogeneous, since it is the completion of the positively graded

ring k[x, y, z]/(x2− y5, xy2 + yz3) with weights w(x) = 15, w(y) = 6 and w(z) = 7 at

the maximal ideal (x, y, z). Using CoCoA [1] and Macaulay2 [26], we checked that

zm5 : m = (xy2z, z5, xz4, y3z2, y4z, y2z3, xyz3)R ⊆ zR,

and

zm4 : m = (xy2, x2y, z4, xz3, y2z2, xyz2, y3z)R 6⊆ zR.

Therefore index(R) = 5, and because m6 ⊆ (y− z) we also have that g``(R) 6 6. On

the other hand, note that I+n5 = (x2, xy2+yz3)+n5, I∗ = (X2, XY 2, XY Z3, Y Z6) ⊆

k[X, Y, Z] and e(R) = 8 are the same as in the counterexample of Theorem 2.4.2.

Therefore, using the same proof, we get that g``(R) = 6.
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Remark 2.5.2. In [20, Corollary 3.3], Ding claims that the conjecture is true for what

he calls gradable rings such that depth(grm(R)) > dim(R) − 1. In our notation,

gradable rings correspond to quasi-homogeneous rings. His argument is not correct,

since he uses results that need a standard grading, i.e. the weights of all the minimal

generators of m must be one. Example 2.5.1 gives a counterexample to his statement.

Another direction of investigation is to consider Gorenstein analytically irreducible

rings, i.e. local rings such that the completion at the maximal ideal is a domain.

Remark 2.5.3. Note that the example in Theorem 2.4.2 is not analytically irreducible.

We thank William Heinzer for suggesting the following argument:

R̂ ∼=
kJx, y, zK

(x2 − y5, xy2 + yz3 − z5)
∼=

kJt2, t5, zK
(z5 − t2z3 − t9)

⊆ kJt, zK
(z5 − t2z3 − t9)

:= T,

is an integral extension. The inclusion follows from the fact that t4 is in the conductor

R̂ :R̂ T , and it is a non zero-divisor in R̂. The initial form z5− t2z3 has two relatively

prime non-constant factors z3 and z2− t2 in QJt, zK, therefore T is not a domain [47,

Theorem 16.6]. Since R̂ and T have the same total ring of fractions, R̂ is also not a

domain.

However, there is an analytically irreducible counterexample:

Example 2.5.4. Let S = Q[x, y, z](x,y,z) and let n = (x, y, z)S be the maximal ideal

of S. Consider the one-dimensional domain

R := Q[t8 + t10, t9, t20 + t36](t8+t10,t9,t20+t36)
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and let m = (t8 + t10, t9, t20 + t36)R be its maximal ideal. Using CoCoA or Macaulay2

one sees that R ∼= S/I, where

I = (z2 + f1, y
4 − x2z + 2y2z + z2 + f2) ⊆ S

for some f1, f2 ∈ n5. In particular, R is a complete intersection. We checked with

Macaulay2 and CoCoA that m6 ⊆ xR, xm5 : m ⊆ xR and xm4 : m 6⊆ xR, hence

index(R) = 5 and g``(R) 6 6. On the other hand, there does not exist f ∈ S such

that n5 ⊆ I+ (f), otherwise I+ (f) = (z2, y4−x2z+ 2y2z, f) +n5 and since e(R) = 8

one can use arguments which are analogous to the ones used in the proof of Theorem

2.4.2 to show that this cannot happen. Therefore g``(R) = 6. Finally, to show that

R is analytically irreducible, notice that R ⊆ Q[t]m := V is an integral birational

extension, and since V is normal we have in fact that V is the integral closure of R

in its field of fractions. The ring V is semi-local, with maximal ideals N1, . . . , Ns.

Since Ni ∩ R = m, each Ni contains t9, and hence it must contain t. So V has only

one maximal ideal, namely (t)V , and thus it is local. There is a well-known one to

one correspondence between maximal ideals in the integral closure of R and minimal

primes in R̂ [54, Exercise 1 p. 122], therefore R̂ is a domain.

Remark 2.5.5. If R is an equicharacteristic one-dimensional complete local domain,

the integral closure R of R in its quotient field is isomorphic to a power series ring

kJtK. Thus, R is of the form kJf1, . . . , fnK for some f1, . . . , fn ∈ kJtK. Ding proved

that the conjecture is true when the fi’s are monomials in t [18, Proposition 2.6].
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This is no longer true if the fi’s are not monomials, as Example 2.5.4 shows. In fact,

with the notation introduced above, we have that R̂ is a one-dimensional complete

equicharacteristic local domain, and by [29, Lemma 3.3 and Corollary 5.2] we have

that

index(R̂) = index(R) = 5 < 6 = g``(R) = g``(R̂).

Ending Remarks. We conclude by making some comments about the role of com-

puter algebra programs in the proofs contained in this chapter. In Theorem 2.4.2,

we justify certain arguments, such as the inclusion ym5 : m ⊆ yR, by saying that

we checked them with CoCoA and Macaulay2. We also verified the validity of these

statements by hand. These are just tedious computations, adding no real content

to the argument, and we decided not include them in this dissertation. Analogous

considerations apply to Example 2.5.1. On the other hand, in Example 2.5.4, both

the equations in S defining R and the inclusion xm5 : m ⊆ xR are rather hard compu-

tationally, hence the correctness of Example 2.5.4 relies heavily on a careful analysis

of the answers given by CoCoA and Macaulay2.
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Chapter 3

Graded rings in positive
characteristic

In this chapter, we introduce and develop some of the concepts that we will need in

Chapter 4. The results in this chapter are essentially well-known to experts. However,

in some cases they are hard to pinpoint in the literature. In fact, they are often stated

only for local rings, while we need their analogous restatement in the standard graded

setting. We will only treat the notions that will be relevant for us, trying to keep the

exposition as self-contained as possible.

3.1 Local cohomology and grading

We start by defining local cohomology modules. Let R be a commutative Noetherian

ring with 1. Let I ⊆ R be an ideal, and let f1, . . . , ft be elements in R that generate

I. Consider the Čech complex, Č•(f ;R):

0 // R //
t⊕
i=1

Rfi
//

t⊕
i,j=1

Rfifj
// . . . . . . // Rf1···ft

// 0,
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where every homomorphism is a localization map with an appropriate sign. More

specifically, for (i1, . . . , is) ∈ Ns and (j1, . . . , js+1) ∈ Ns+1 we consider the sets A :=

{i1, . . . , is} and B := {j1, . . . , js+1}. We want to define a map δA,B : Rfi1 ···fis →

Rfj1 ···fjs+1
. If A 6⊆ B, then set δA,B = 0. Otherwise, we have that B = A ∪ {jm}, for

some 1 6 m 6 s + 1. We then define δA,B : Rfi1 ···fis → Rfi1 ···fisfjm to be the natural

localization map, multiplied by (−1)m−1. Since every module in the Čech complex is

a direct sum of modules of this form, this defines the differential on Č•(f ;R). It is a

routine computation to check that this yields a complex of R-modules.

Definition 3.1.1. Let I = (f1, . . . , ft) be an ideal in R, and let M be an R-module.

We define the i-th local cohomology of M with support in I to be

H i
I(M) := H i(Č•(f ;R)⊗RM).

We record some well-known facts about local cohomology. A standard, but ex-

haustive reference for them is [11].

Properties. (i) We have that H i
I(−) is a functor from the category of R-modules

to itself. These functors are, in general, not exact. However, for any I ⊆ R,

H0
I (−) is left-exact. Moreover, if (R,m, k) is either local or standard graded,

and if d = dim(R), the functor Hd
m(−) is right exact.

(ii) The local cohomology modules H i
I(M) do not depend on the choice of genera-

tors, f1, . . . , ft, of I. In fact, they only depend on the radical of I.
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(iii) The smallest i ∈ Z such that H i
I(M) 6= 0 is equal to grade(I,M), that is, it

equals the maximal length of a regular sequence on M contained in I.

(iv) As a consequence of Property (iii), if (R,m, k) is either local or standard graded,

the smallest i ∈ Z such that H i
m(R) 6= 0 is the maximal length of a regular

sequence (homogeneous in the second case) inside m, i.e., the depth of the ring.

(v) If (R,m, k) is either local or graded, and M is a finitely generated (graded in

the second case) R-module of Krull dimension c, then Hc
m(M) 6= 0.

(vi) If (R,m, k) is either local or graded, and M is a finitely generated (graded)

R-module, then the modules H i
m(M) are Artinian, for all i ∈ Z.

We now review some results about grading and graded modules, and relate them

with local cohomology. Assume that (R,m, k) is standard graded, and that I ⊆ R is

a homogeneous ideal, so that we can choose homogeneous generators f1, . . . , ft for I.

Note that, since R is N-graded, and the modules in the Čech complex Č•(f ;R) are

localization at the homogeneous elements f1, . . . , ft, the modules in the Čech complex

are Z-graded. The maps are graded as well and, as a consequence, the modules H i
I(R)

are Z-graded for all i ∈ Z.

The a-invariant of a graded ring was introduced by Goto and Watanabe in [25].

It is defined in terms of degrees of the top local cohomology module Hd
m(R). More

generally, we consider a-invariants that can be defined starting from all the modules

H i
m(R), for i ∈ Z.
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Definition 3.1.2. For all i ∈ Z such that H i
m(R) 6= 0, we define the i-th a-invariant

of R to be ai(R) := max
{
t ∈ Z | H i

m(R)t 6= 0
}

. If H i
m(R) = 0, we set ai(R) = −∞.

The definition makes sense since, for all i ∈ Z, we have that [H i
m(R)]t = 0 for all

t � 0, because such a module is Artinian. These numbers can be related to several

other important invariants in Commutative Algebra. Just to name a few, if R = S/I is

a graded quotient of a polynomial ring S over a field, then the Castelnuovo-Mumford

regularity can be obtained as regS(R) = max{ai(R) + i | i ∈ Z} (see [11, Theorem

16.3.7]). In addition, when R is Cohen-Macaulay, ad(R) is the initial degree of a

graded canonical module of R (see [11, Remarks 14.5.21]).

3.2 Rings of positive characteristic

Assume thatR is a Noetherian ring containing a field of positive characteristic p. Then

R comes equipped with a very powerful tool, namely the Frobenius endomorphism

F : R → R. The map F raises every element r ∈ R to its p-th power rp and, since

char(R) = p > 0, this is a ring homomorphism. One of the reasons why this turns

out to be an extremely useful is that we can apply F over and over again. In other

words, for e ∈ N, we get the e-th iterated Frobenius endomorphism F e : R→ R that

raises every r ∈ R to its pe-th power rp
e
.

If R is reduced, we denote by R1/pe the ring of pe-th roots of R, that is, the

ring that we obtain by adjoining all the pe-th roots of elements in R, inside some
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integral extension. We have that R and R1/pe are abstractly isomorphic as rings,

just by associating r ∈ R with r1/pe ∈ R1/pe . Under this isomorphism, ideals I ⊆ R

correspond to I1/pe = {r ∈ R1/pe | rpe ∈ I}, which are ideals in R1/pe , and conversely.

For an ideal I ⊆ R, we have that IR1/pe ⊆ R1/pe is an ideal. Under the isomorphism

above, this corresponds to I [pe] := (ip
e | i ∈ I) ⊆ R, the ideal of pe-th powers of

elements in I. We will study this correspondence more formally in Proposition 3.2.4.

The reason why it is useful to consider the rings R1/pe is that, for all e > 1 we can

identify F e : R → R with the inclusion R ⊆ R1/pe . This is better explained by the

following commutative diagram:

R
F // R

∼=

��
R �
� // R1/p

We clearly have that R ⊆ R1/p is an integral extension, but it does not have to be

finite. An example where it is not finite is R = Fp(x1, x2, . . .), a field generated over

Fp by infinitely many transcendental elements.

Definition 3.2.1. Let R be a reduced Noetherian ring of positive characteristic p.

We say that R is F -finite if R1/p is a finitely generated R-module.

Note that R is F -finite if and only if R1/pe is finitely generated as an R-module

for any (equivalently, for all) integer e > 1. This follows from the fact that for any

e > 1 the inclusion R1/pe−1 ⊆ R1/pe is isomorphic to R ⊆ R1/p, and R ⊆ R1/pe can be

thought of as the chain of inclusions R ⊆ R1/p ⊆ R1/p2 ⊆ . . . ⊆ R1/pe−1 ⊆ R1/pe .



50

It turns out that F -finiteness is not a very restrictive condition to require. The

following proposition shows that, for standard algebras over a field, the example of a

non-F -finite field that we provided before is essentially the only relevant case.

Proposition 3.2.2. [21, Lemma 1.5] If (R,m, k) is a standard graded reduced k-

algebra, then R is F -finite if and only if k is F -finite.

Proof. Since R is a quotient of a polynomial ring S = k[x1, . . . , xn], it is enough to

show that S is F -finite if and only if k is F -finite, i.e., [k1/p : k] < ∞. In fact, if

R = S/I and S1/p is a finitely generated S-module, then by base change we obtain

that S1/p ⊗S S/I ∼= S1/p/IS1/p is a finitely generated S/I = R-module. But then,

because IS1/p ⊆ I1/p, we obtain a surjection S1/p/IS1/p → S1/p/I1/p ∼= R1/p → 0 of

R-modules, which shows that R1/p is a finitely generated R-module as well.

The proof that if S if F -finite then k is F -finite is along the lines of the argument

that we just used, this time using n = (x1, . . . , xn) instead of I. Conversely, if

k1/p is finitely generated over k, we get that k1/p[x1, . . . , xd] is a finitely generated

S = k[x1, . . . , xn]-module. Furthermore, S1/p ∼= k1/p[x
1/p
1 , . . . , x

1/p
d ] is generated by

{xi1/p1 · · ·xid/pd | 0 6 i1, . . . , id 6 p − 1} as a k1/p[x1, . . . , xn]-module. Therefore, S1/p

is a finitely generated S-module, i.e., S is F -finite.

Remark 3.2.3. We will show in Proposition 3.3.9 that, in case S is a polynomial ring,

the set of generators for S1/p as an S-module displayed in the proof is in fact a basis.

In the rest of this section, we relate the R-modules R1/pe with grading and local
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cohomology. In what follows, assume that (R,m, k) is standard graded and reduced.

We have noticed before that R ∼= R1/pe as rings. Note that, since R is N-graded, the

module R1/pe has a a natural
N
pe

-grading. In fact, given an element x ∈ R1/pe we have

that xp
e ∈ R. Then, we can write it as xp

e
= rd1 + . . .+ rdt for some rdj ∈ R that are

homogeneous of degree dj ∈ N. Thus, we obtain that x = r
1/pe

d1
+ . . .+ r

1/pe

dt
, and each

element r
1/pe

dj
is homogeneous of degree

dj
pe
∈ N
pe

. This shows that R1/pe =
∑
i>0

R
1/pe

i/pe ,

where R
1/pe

i/pe := (Ri)
1/pe . In addition, the sum is direct, since if x ∈ R1/pe

i/pe ∩ R
1/pe

j/pe for

some i 6= j, then xp
e ∈ Ri ∩ Rj = {0}, so that x = 0 because R is reduced. Finally,

since R1 is finite dimensional over k and R = k[R1], we obtain that R
1/pe

1/pe is finite

dimensional over k1/pe , and R1/pe = k1/pe [R
1/pe

1/pe ].

We now focus on graded modules over these two rings. Let C =modZ(R) be

the category of Z-graded R-modules, with Z-graded R-linear homomorphisms. Let

D =modZ/pe(R
1/pe) be the category of

Z
pe

-graded R1/pe-modules, with R1/pe-linear

homomorphisms that are
Z
pe

-graded.

Proposition 3.2.4. The categories C and D are isomorphic.

Proof. To show that C ∼= D, we need to define two functors Φe : C → D and Ψe :

D → C such that Ψe ◦ Φe = 1C and Φe ◦Ψe = 1D.

If M is any R-module, then define Φe(M) to be the the same as M as an abelian

group, with R1/pe-module structure given by x ·m = xp
e
m ∈M for all x ∈ R1/pe and

all m ∈ M . If M =
⊕

i∈ZMi is Z-graded, for all
i

pe
∈ Z
pe

we set Φe(M)i/pe = Mi, so

that Φe(M) =
⊕

i/pe∈Z/pe Φe(M)i/pe is
Z
pe

-graded. This module is usually denoted by
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M1/pe .

Conversely, if N is an R1/pe-module, then Ψe(N) is defined to be the same as N

as an abelian group, with R-module action given by r · n = r1/pen for all r ∈ R and

n ∈ N . If N =
⊕

i/pe∈Z/pe Ni/pe is
Z
pe

-graded, then set Ψe(N)i = Ni/pe for all i ∈ Z,

and this makes Ψe(N) =
⊕

i∈Z Ψe(N)i into a Z-graded R-module.

Finally, given f : M → N an R-module homomorphism that is graded of degree

t ∈ Z, we define Φe(f) : Φe(M) → Φe(N) to be Φe(f)(Φe(m)) = Φe(f(m)). This is

a R1/pe-homomorphism, and Φe(f)(Φe(Mi)) ⊆ Φe(Nd+i) = N(d+i)/pe , for all i ∈ Z, so

that Φe(f) is graded of degree d/pe. Analogous arguments applies to graded R1/pe-

homomorphisms. It is clear from the definitions that Φe and Ψe preserve compositions

and identities. It also follows immediately that the compositions of these functors give

identities, showing that the categories C and D are isomorphic.

Remark 3.2.5. Given the definitions of Φe and Ψe, it is clear that these functors are

exact.

We now define a version of the a-invariants for the modules R1/pe .

Definition 3.2.6. Let i ∈ Z. We define the i-th a-invariant of R1/pe to be

ai(R
1/pe) = max

{
t ∈ Z

pe
| H i

m(R1/pe)t 6= 0

}
if H i

m(R1/pe) 6= 0. Otherwise, we set ai(R
1/pe) = −∞.

Using the isomorphisms Φe and Ψe described above, it turns out that the a-

invariants of the modules R1/pe are directly related to the a-invariants of R.
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Lemma 3.2.7. Let (R,m, k) be a standard graded reduced F -finite algebra over a

field k of positive characteristic p. Then, for all i ∈ Z and all integers e > 1, we have

ai(R
1/pe) =

ai(R)

pe
.

Proof. Let x1, . . . , xd be a full homogeneous system of parameters in R, so that√
(x1, . . . , xd) = m. Consider the Čech complex Č•(x1, . . . , xd;R) that gives the

modules H i
m(R) as cohomology. After tensoring with R1/pe , we obtain a new complex,

whose homology are the modules H i
m(R1/pe), by definition. Note that, via the functor

Ψe, the complex Č•(x1, . . . , xd;R) ⊗R R1/pe of
Z
pe

-graded R1/pe-modules corresponds

to the complex Č(xp
e

1 , . . . , x
pe

d ;R) of graded Z-modules.. Since
√

(xp
e

1 , . . . , x
pe

d ) = m,

i.e., xp
e

1 , . . . , x
pe

d is still a full homogeneous system of parameters of R, and local co-

homology only depends on the radical of the ideal that such elements generate, we

obtain that the cohomology of Ψe(Č
•(x1, . . . , xd;R) ⊗R R1/pe) = Č•(xp

e

1 , . . . , x
pe

d ;R)

is still H i
m(R). Using that Φe ◦Ψe = 1D and that Ψe is an exact functor, we obtain

H i
m(R1/pe) = Φe(Ψe(H

i(Č•(x1, . . . , xd;R)⊗R R1/pe)))

∼= Φe(H
i(Č•(xp

e

1 , . . . , x
pe

d ;R)) = Φe(H
i
m(R))

as graded
Z
pe

-modules. Finally, since Φe(H
i
m(R))s/pe = Φe(H

i
m(R)s) for all s ∈ Z by

definition of the functor Φe, we obtain that

ai(R
1/pe) = max

{
t ∈ Z

pe
| Φe(H

i
m(R))t 6= 0

}
=

max{s ∈ Z | Φe(H
i
m(R)s) 6= 0}

pe
=
ai(R)

pe
.
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3.3 F -purity and local cohomology

We start by introducing the central notion of this section, that is, F -purity. F -pure

rings have been first investigated by Hochster and Roberts in [40], and by many other

authors since then (for instance see [2, 65]).

Definition 3.3.1. A Noetherian ring R of positive prime characteristic p is called

F -pure if the Frobenius endomorphism F : R→ R is a pure homomorphism, that is,

F ⊗ 1 : R⊗RM → R⊗RM is injective for all R-modules M .

Another notion, that is closely related, is the one of F -split ring.

Definition 3.3.2. A Noetherian ring R of positive prime characteristic p is called

F -split if F : R→ R is a split monomorphism.

F -split rings are clearly F -pure, and if R is an F -pure ring, F itself is injective

and R must be a reduced ring. Given the identification between the Frobenius map

and the natural inclusion R ⊆ R1/p, we have that R is F -split if and only if R ⊆ R1/p

is a split inclusion. If R is an F -finite ring, being F -pure is equivalent to being F -

split (see [40, Corollary 5.3]). Since, in what follows, we will always assume that R is

F -finite, we use the word F -pure to refer to both these notions.

Example 3.3.3. If R = F2[x, y]/(x3 + y3), then R is not F -pure. In fact, if so, there

would be a graded map ϕ : R1/2 → R, such that ϕ(1) = 1. Note that ϕ(x2) =

x2ϕ(1) = x2. In addition x2 + y(xy)1/2 = 0 in R1/2, because (x2 + y(xy)1/2)2 =
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x(x3 + y3) = 0 in R. Therefore, we have that

0 = ϕ(x2 − y(xy)1/2) = x2 − yϕ((xy)1/2),

which implies that x2 ∈ (y) in R. This is a contradiction, therefore the inclusion

R ⊆ R1/2 does not split, and R is not F -pure.

Example 3.3.4. If R = F2[x, y]/(xy), then R is F -pure. In fact, by Proposition

3.3.9, we have that {1, x1/2, y1/2, (xy)1/2} is a basis of (F2[x, y])1/2 = F2[x1/2, y1/2] as

an F2[x, y]-module. As a consequence, we have that {1, x1/2, y1/2} generates R1/2 as

an R-module, where we disregard (xy)1/2 since it is equal to zero in R1/2. Define

ϕ : R1/2 → R by ϕ(1) = 1, and ϕ(x1/2) = ϕ(y1/2) = 0. Then ϕ is a splitting of the

natural inclusion R ⊆ R1/2. The only thing to show here is that ϕ is well defined.

It suffices to show that if f + gx1/2 + hy1/2 = 0 in R1/2, for some f, g, h ∈ R, then

f = 0. Lifting such a relation to F2[x, y], this means that f 2 + g2x + h2y ∈ (xy).

Write f = A+
∑b

i=1Bix
i +
∑c

j=1Cjy
j modulo (xy), for some A,Bi, Cj ∈ F2, so that

f 2 = A +
∑b

i=1Bix
2i +

∑c
j=1Cjy

2j modulo (xy). Note that no term in g2x or h2y

will have a pure power in x or y of even degree. Therefore, by degree considerations,

we conclude that Bi = 0 = Cj for all i = 1, . . . , b and j = 1, . . . , c. Finally, again

by degree considerations, we also conclude that A = 0, so that f ∈ (xy). But this

precisely means that f = 0 in R. Thus the splitting ϕ is well defined, and R is F -pure.

Let R be a Noetherian ring containing a field of positive characteristic p. Then, for

any multiplicatively closed set W ⊆ R, we obtain a map FW : RW → RF (W ), induced
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by the Frobenius endomorphism F on R. We claim that RF (W ) = RW . Clearly

RF (W ) ⊆ RW , since F (W ) ⊆ W . Conversely, let x ∈ RW . Then we can assume that

x =
r

w
for some r ∈ R and w ∈ W . We can rewrite x as x =

wp−1r

wp
∈ RF (W ), and

this shows that the other inclusion is also true. In conclusion, we obtain an induced

endomorphism F : RW → RW , which is precisely the Frobenius endomorphism on

RW . Now let W ⊆ R be a multiplicatively closed set, and consider the natural

localization map ϕ : R→ RW . Let K = ker(ϕ) and I = Im(ϕ). Note that F (K) ⊆ K,

since ϕ(rp) = rp−1ϕ(r) = 0 for all r ∈ R. In addition, F (I) ⊆ I, because if s = ϕ(r),

then ws = wr for some w ∈ W . But then, wpsp = wprp, which means that ϕ(rp) = sp,

and hence sp = F (s) ∈ I. Therefore we get commutative squares

K

F

��

� � // R

F

��

RW

F

��

ϕ // I

F

��
K �
� // R RW

ϕ // I

We now specialize to local cohomology modules. Let I = (f1, . . . , ft) ⊆ R be

an ideal. Since the modules H i
I(R) are obtained from the Čech complex, which is

essentially constructed from localization maps, we obtain a commutative diagram

0 // R

F

��

//
⊕t

i=1Rfi

F
��

//
⊕t

i,j=1 Rfifj

F
��

// . . . . . . // Rf1···ft

F

��

// 0

0 // R //
⊕t

i=1Rfi
//
⊕t

i,j=1 Rfifj
// . . . . . . // Rf1···ft

// 0

As explained in the previous discussion, F preserves kernels and images.Therefore we

obtain induced maps in cohomology H i
I(F ) : H i

I(R) → H i
I(R) for all i ∈ Z, that we
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denote by Fi. Note that Fi is not necessarily an inclusion. However, this is the case

for F -pure rings.

Proposition 3.3.5. Let R be an F -finite and F -pure ring. Then, for all i ∈ Z and

all ideal I ⊆ R, the map Fi : H i
I(R)→ H i

I(R) is a split inclusion.

Proof. By assumption, we have that the Frobenius map F : R ↪→ R is a split inclusion.

That is, there exists a ring homomorphism ϕ : R → R such that ϕ ◦ F = 1R. Then,

by functoriality of local cohomology H i
m(−), we obtain induced maps Fi = H i

I(F ) :

H i
I(R) → H i

I(R) and ϕi := H i
I(ϕ) : H i

I(R) → H i
I(R). In addition, we have that

ϕi ◦Fi = H i
I(ϕ◦F ) = H i

I(1R) = 1Hi
I(R). Therefore, the map Fi is a split inclusion.

Proposition 3.3.6. [50, 65] Let (R,m, k) be an F -finite and F -pure ring. For an

integer e > 1, let R ⊆ R1/pe be the natural inclusion. For an integer i ∈ N, let

ψi : H i
m(R) → H i

m(R1/pe) be the induced map on local cohomology. Then, the map

H i
m(R)⊗R1/pe → H i

m(R1/pe), induced by v ⊗ r1/pe 7→ r1/peψi(v) is surjective.

Proof. The statement is equivalent to showing that the R1/pe-span of H i
m(R) generates

H i
m(R1/pe). Equivalently, we are going to show that the image of H i

m(R) under the

map H i
m(F e) : H i

m(R)→ H i
m(R) generates H i

m(R) as an R-module. In addition, it is

enough to show the claim for e = 1, since we can then reiterate the argument. As

in Proposition 3.3.5, we denote by ϕ : R → R a splitting of the Frobenius map, we

denote the map H i
m(F ) : R→ R by Fi, and its splitting by ϕi. For all r ∈ R and all

v ∈ H i
m(R), we have ϕi(r · v) = ϕ(r) · ϕi(v). Let v ∈ H i

m(R) be an arbitrary element.
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For all integers n > 0 consider the following R-submodules of H i
m(R):

Mn = R-span{F n
i (v), F n+1

i (v), . . .} ⊆ H i
m(R).

We have a descending chain M0 ⊇ M1 ⊇ . . . ⊇ Mn ⊇ Mn+1 ⊇ . . . which stabilizes,

since H i
m(R) is Artinian. Let n be the minimum integer for which Mn = Mn+1. If

n = 0, we obtain that v ∈ M0 = M1. This means that there exist r1, . . . , rt such

that v =
∑t

j=1 rjF
j(v), concluding the proof in this case. Assume n > 0. Since

F n(v) ∈ Mn = Mn+1, there exist r1, . . . , rt ∈ R such that F n
i (v) =

∑t
j=1 rjF

n+j
i (v).

Apply ϕi:

F n−1(v) = ϕi(F
n(v)) =

t∑
j=1

ϕi(rjF
n+j
i (v)) =

t∑
j=1

ϕ(rj)F
n+j−1(v).

Since ϕ(rj) ∈ R, we obtain that F n−1(v) ∈Mn. Then Mn−1 = Mn, contradicting the

minimality of n. This concludes the proof.

Proposition 3.3.7. [40, Proposition 2.4] Let (R,m, k) be a standard graded F -pure

k-algebra. Then ai(R) 6 0 for all i ∈ Z.

Proof. If H i
m(R) = 0, then ai(R) = −∞ by definition. Suppose that H i

m(R) 6= 0, and

assume that ai(R) > 0. Let v ∈ H i
m(R)ai(R) be a non-zero element of degree ai(R).

Since R is F -pure, we have that the map Fi : H i
m(R) → H i

m(R), induced by the

Frobenius endomorphism on R, is injective by Proposition 3.3.5. But Fi(v) ∈ H i
m(R)

is then a non-zero element of degree pai(R) > ai(R), which is a contradiction.
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We end this section by introducing another notion of F -singularity, namely, strong

F -regularity. It has been defined for F -finite rings by Hochster and Huneke in [39],

in relation to the notion of tight closure and test ideals.

Definition 3.3.8. An F -finite reduced standard graded k-algebra R is called strongly

F -regular if for any element f ∈ R \ {0}, there exists e ∈ N such that the inclusion

f 1/peR ⊆ R1/pe splits.

Examples of strongly F -regular rings include F -finite polynomial rings.

Proposition 3.3.9. Let S = k[x1, . . . , xn], where k is an F -finite field of positive

characteristic p. Then S1/pe is a finitely generated free S-module for all e > 1. In

particular, S is strongly F -regular.

Proof. Since k is a field, we have that k1/pe is a finitely generated free k-module by

Proposition 3.2.2. Therefore, we have that k1/pe [x1, . . . , xn] is a finitely generated free

S-module. In addition, S1/pe ∼= k1/pe [x
1/pe

1 , . . . , x
1/pe

n ] is a free k1/pe [x1, . . . , xn]-module,

with basis {(xi11 · · ·xinn )1/pe | 0 6 i1, . . . , in 6 pe − 1}. In fact, using Proposition

3.2.4 and the functors Φe and Ψe, this is equivalent to the fact that the elements

{xi11 · · ·xinn | 0 6 i1, . . . , in 6 pe − 1} form a k ∼= S/n-basis of S/n[pe].

For strong F -regularity, if f ∈ S is a non-zero element, choose e � 0 such that

f /∈ n[pe]. This integer exists, since otherwise f ∈
⋂
e n

[pe] = (0). Then f 1/pe /∈ nS1/pe ,

and hence it is not a minimal generator of S1/pe as an S-module. By freeness, this

means that it can be made part of a basis. In particular, we can define a splitting of
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the map f 1/peS ⊆ S1/pe , as desired.

Remark 3.3.10. Strongly F -regular rings are F -pure, since one can choose f = 1 in

the definition, and get that the inclusion R ⊆ R1/pe splits for some (equivalently, all)

integers e > 1. Strongly F -regular rings are normal and Cohen-Macaulay domains.

Note that F -pure rings need not be either normal or Cohen-Macaulay.

Example 3.3.11. Let R = k[x, y, z]/(xy, xz). Then R is a two-dimensional F -pure

ring, but it is not Cohen-Macaulay, since depth(R) = 1. In particular, R is not S2,

hence not normal.

3.4 Fedder-type results

We now present an extremely useful explicit description of HomR(R1/pe , R), proved

by Richard Fedder in [22], and some of its consequences.

Let (S, n, k) be an F -finite standard graded Gorenstein reduced ring, and let e > 1

be an integer. Then HomS(S1/pe , S) is a
N
pe

-graded S1/pe-module, that is a canonical

module of S1/pe [12, Theorem 3.3.7 (b)]. Since S and S1/pe are isomorphic as rings,

we have that S1/pe is also Gorenstein. Therefore, there exists an S-homomorphism

Tre that generates HomS(S1/pe , S) as a S1/pe-module. Furthermore, it is unique up

to multiplication by a unit in S1/pe .

When S = k[x1, . . . , xn] is a standard graded polynomial ring over a field k of

positive characteristic p, we can describe Tre more explicitly.
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Definition 3.4.1. Let S = k[x1, . . . , xn] be a polynomial ring over an F -finite field.

The e-trace map Tre ∈ HomS(S1/pe , S) is defined by

Tre

(
λx

α1/pe

1 · · ·xαn/pen

)
=


λx

α1−p
e+1

pe

1 · · ·x
αn−pe+1

pe

n λ ∈ k, αi ≡ pe − 1 mod pe ∀i

0 otherwise

on monomials, and extended by linearity to S1/pe.

Remark 3.4.2. Note that, for all integers e, e′ > 1, we have Tre′ ◦Tr1/pe
′

e = Tre′+e,

where Tr1/pe
′

e : S1/pe+e
′
→ S1/pe

′
is defined as Tr1/pe

′

e (r1/pe+e
′
) =

(
Tre(r

1/pe)
)1/pe

′

.

Lemma 3.4.3. [21, Lemma 1.6] Let S = k[x1, . . . , xn] be a polynomial ring over

an F -finite field of positive characteristic p. Let H be a (possibly improper) ideal

of S1/pe, and let J ⊆ R be an ideal in R. Then Tre(f
1/peH) ⊆ J if and only if

f 1/pe ∈ (JS1/pe :S1/pe H).

Proof. We note that, if f 1/peH ⊆ JS1/pe , then Tre(f
1/peH) ⊆ Tre(JS

1/pe) ⊆ J ,

because Tre is S-linear. We now prove the converse implication, that is, we assume

that Tre(f
1/peH) ⊆ J . Since H ⊆ S1/pe is an ideal, we have that this happens

if and only if Tre(f
1/pehS1/pe) ⊆ J for all h ∈ H. Recall that S1/pe is a free S-

module by Proposition 3.3.9, and let {µ1/pe

i } be a basis. In addition, let {ηj} be its

dual basis. Since ηj ∈ HomS(S1/pe , S), which is a cyclic S1/pe-module, we have that

ηj = Tre(θ
1/pe

j ·−), for some θ
1/pe

j ∈ S1/pe . Let h ∈ H be any element. By assumption,

for all i, we have that Tre(f
1/pehµ

1/pe

i ) = νi, for some νi ∈ J . On the other hand,
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using that {µ1/pe

i } and {ηj = Tre(θ
1/pe

j · −)} are dual bases, we obtain that

Tre(
∑
j

νjθ
1/pe

j µ
1/pe

i ) =
∑
j

νjηj(µ
1/pe

i ) = νi

for all i. Therefore Tre(f
1/peh · −) = νi = Tre(

∑
j νjθ

1/pe

j · −), that is,

Tre

(
(f 1/peh−

∑
j

νjθ
1/pe

j ) · −

)
= 0.

Hence f 1/peh =
∑

j νjθ
1/pe

j ∈ JS1/pe , as desired.

Theorem 3.4.4. [21, Corollary to Lemma 1.6] Let S = k[x1, . . . , xn] be a polynomial

ring over an F -finite field k of positive characteristic p. Let I ⊆ S be a homogeneous

ideal, and let R = S/I. We have an isomorphism of R-modules

Γe :
(IS1/pe :S1/pe I1/pe)

IS1/pe

∼=−→ HomR(R1/pe , R)

which is graded of degree −n(pe − 1)

pe
, and such that Γe(f

1/pe) = ϕf,e is the image of

Tre(f
1/pe · −) inside HomR(R1/pe , R).

Proof. Given f 1/pe ∈ (IS1/pe :S1/pe I1/pe) it is clear that this defines an R-module map

ϕf,e ∈ HomR(R1/pe , R) by setting ϕf,e(r
1/pe) = Tre(f

1/per1/pe) for all r ∈ R. Here we

are identifying elements in S with their images in R = S/I.

Since S1/pe is a free S-module, every homomorphism φ ∈ HomR(R1/pe , R) =

HomS(S1/pe/I1/pe , S/I) can be lifted to a homomorphism φ0 ∈ HomS(S1/pe , S)

(
⊕

S) ∼= S1/pe

φ0

��

// S1/pe/I1/pe

φ

��

// 0

S // S/I // 0
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Since HomS(S1/pe , S) is a cyclic S1/pe-module, we have that φ0 = Tre(f
1/pe · −) for

some f 1/pe ∈ S1/pe . In addition, f 1/pe ∈ (IS1/pe :S1/pe I1/pe) by Lemma 3.4.3 applied

to H = I1/pe and J = I. This shows surjectivity.

Clearly Γe(IS
1/pe) = 0, since Tre(IS

1/pe) ⊆ I. If Γe(f
1/pe) = ϕf,e = 0, then we

have that Tre(f
1/peS1/pe) ⊆ I. Using again Lemma 3.4.3 with H = S1/pe and J = I,

we conclude that f 1/pe ∈ IS1/pe , showing injectivity. It is easy to check that the

map in question is R-linear and, hence, an isomorphism. Finally, the isomorphism

is graded, since it sends an element f 1/pe ∈ (IS1/pe :S1/pe I1/pe) of degree
i

pe
∈ N
pe

to the graded homomorphism ϕf,e = Tre(f
1/pe · −). For any homogeneous element

r1/pe ∈ R1/pe of degree
j

pe
∈ N
pe

, the map ϕf,e sends r1/pe either to zero, or to a

non-zero element of degree
i+ j − n(pe − 1)

pe
, by the definition of the trace map Tre.

Therefore, ϕf,e has degree
i− n(pe − 1)

pe
= deg(f)− n(pe − 1)

pe
, which means that the

isomorphism is graded of degree −n(pe − 1)

pe
, as desired.

Lemma 3.4.5. Let S = k[x1, . . . , xn] be a polynomial ring over an F -finite field k of

positive characteristic p. Let n = (x1, . . . , xn), let I ⊆ S be a homogeneous ideal, and

set R = S/I. Let e > 1 be an integer and let g1/pe ∈ R1/pe be a homogeneous element

of degree
i

pe
, for some i ∈ N. Then, the R-module inclusion g1/peR ⊆ R1/pe splits if

and only if there exists a homogeneous element f 1/pe ∈ (IS1/pe :S1/pe I1/pe) of degree

n(pe − 1)− i
pe

such that f 1/peg1/pe ≡ (x1 · · ·xn)(pe−1)/pe modulo nS1/pe.

Proof. Assume that g1/peR ⊆ R1/pe splits. Then, there exists an R-module map

ϕ : R1/pe → R such that ϕ(g1/pe) = 1. In addition, the splitting ϕ can be chosen to
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be graded of degree − i

pe
. In fact, this is clear if ϕ is graded, since deg(g1/pe) =

i

pe
and

ϕ(g1/pe) = 1. If not, since R is F -finite, ϕ can be written as a sum of graded R-linear

homomorphisms ϕ = ϕ1 + . . . + ϕt [23, Lemma 4.2]. Since g1/pe is homogeneous, it

follows that ϕj(g
1/pe) = 1 for some j, so we can replace ϕ by ϕj and assume that

ϕ is graded of degree − i

pe
. In this proof, we will not distinguish between elements

of S or S1/pe and their images in R and R1/pe . By Theorem 3.4.4, there exists a

homogeneous f 1/pe ∈ (IS1/pe :S1/pe I1/pe) such that ϕ = ϕf,e. Furthermore, since

the isomorphism Γe described in Theorem 3.4.4 is the inverse of the one we need

here, f 1/pe must have degree
n(pe − 1)− i

pe
. Finally, notice that if f 1/peg1/pe ∈ nS1/pe ,

then Tre(f
1/peg1/pe) ⊆ n, so that ϕf,e(g

1/pe) ⊆ m, by S-linearity of the trace map Tre

and by definition of ϕf,e. But this is not possible, since ϕf,e(g
1/pe) = 1. Therefore,

f 1/peg1/pe is a homogeneous element of degree
n(pe − 1)

pe
that is not contained in

nS1/pe . This implies that f 1/peg1/pe ≡ λ(x1 · · ·xn)(pe−1)/pe modulo nS1/pe for some

constant λ ∈ k1/pe r {0}. If λ ∈ k1/pe r k, then we have that Tre(f
1/peg1/pe) = 0, by

the definition of the trace map, contradicting again that ϕf,e(g
1/pe) = 1. Therefore,

we get that λ ∈ k r {0}. Finally, we have that 1 = ϕf,e(g
1/pe) = λ, as desired.

Conversely, assume that f 1/pe ∈ (IS1/pe :S1/pe I1/pe) is such that f 1/peg1/pe ≡

(x1 · · · xn)(pe−1)/pe modulo nS1/pe . Consider the R-module map ϕf,e : R1/pe → R.

Since the degree of the homogeneous element f 1/peg1/pe is
n(pe − 1)

pe
, we conclude

that Tre(f
1/peg1/pe) = Tre((x1 · · ·xn)(pe−1)/pe) = 1, by the definition of the trace

map. Therefore, we obtain that ϕf,e(g
1/pe) = 1, that is, the inclusion g1/peR ⊆ R1/pe
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splits.

As an immediate corollary, after identifying the colon ideal (IS1/p :S1/p I1/p) with

(I [p] : SI), we recover the well know criterion of Fedder for F -purity of quotients of

polynomial rings.

Corollary 3.4.6. [21, Proposition 1.7] Let S = k[x1, . . . , xn] be an F -finite polyno-

mial ring over a field k of positive characteristic p. Let n = (x1, . . . , xn), and let

I ⊆ S be a homogeneous ideal. Then the ring R = S/I is F -pure if and only if

(I [pe] :S I) 6⊆ n[pe] for some (equivalently, for all) integer e > 1.

Remark 3.4.7. Let S = k[x1, . . . , xn], and let n = (x1, . . . , xn). Let R = S/(f) be a

hypersurface, for some homogeneous 0 6= f ∈ S. We have that R is F -pure if and

only if ((fp) :S f) 6⊆ n[p]. Since f is a regular element in S, we obtain that R is F -pure

if and only if fp−1 /∈ n[p]. In particular, the ring in Example 3.3.3 is not F -pure, since

(x3 + y3) ∈ (x2, y2), while the ring in Example 3.3.4 is F -pure, because xy /∈ (x2, y2).

We now turn our attention to compatible ideals. They have been introduced first

by Schwede in [61].

Definition 3.4.8. [61] Suppose that R is an F -finite ring. An ideal J ⊆ R is said to

be compatible if φ(J1/pe) ⊆ J for all integers e > 1 and all R-linear maps φ : R1/pe →

R.

Note that, if R is an F -pure ring, then so is R/I for any compatible ideal I.

In fact, if ϕ : R1/p → R is such that ϕ(1) = 1, giving a splitting of the inclusion
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R ⊆ R1/p, we can defined ϕ : R1/p/I1/p → R/I as the map induced by ϕ on the

residue class rings. This is possible precisely because ϕ(I1/p) ⊆ I. Then ϕ(1) = 1, so

that it gives a splitting of the inclusion R/I ⊆ (R/I)1/p, showing that R/I is F -pure.

Using Theorem 3.4.4, we can give a precise description of what compatible ideals

of graded quotients of polynomial rings look like when lifted to the ambient space.

Proposition 3.4.9. Let S be a polynomial ring over an F -finite field. Let I ⊆ S

be a homogeneous ideal, and let R = S/I. Let J ⊆ R be a homogeneous ideal,

and let J̃ denote its pullback in S. We have that J is compatible if and only if

(IS1pe :S1/pe I1/pe) ⊆ (J̃S1/pe :S1/pe J̃1/pe) for all e > 1.

Proof. Let J be a compatible ideal in R, and let e > 1 be an integer. For any

f 1/pe ∈
(
IS1/pe :S1/pe I1/pe

)
, the map ϕf,e = Tre(f

1/pe · −) as in Theorem 3.4.4 is an

element of HomR(R1/pe , R). By compatibility of J , we have that ϕf,e(J
1/pe) ⊆ J ,

which means that Tre(f
1/pe J̃1/pe) ⊆ J̃ , after lifting to S. By Lemma 3.4.3, we obtain

that f 1/pe ∈
(
J̃S1/pe :S1/pe J̃1/pe

)
, as desired.

We now prove the converse statement. Let e > 1 be an integer, and let φ ∈

HomR(R1/pe , R). By Theorem 3.4.4 there exists f 1/pe ∈ (IS1/pe :S1/pe I1/pe) such that

φ = Tre(f
1/pe · −). By assumption, f 1/pe J̃1/pe ⊆ JS1/pe , therefore Tre(f

1/pe J̃1/pe) ⊆

Tre(J̃S
1/pe) = J̃ Tre(S

1/pe) ⊆ J̃ . This implies that φ(J1/pe) ⊆ J , hence J is a com-

patible ideal.
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Chapter 4

F -thresholds of graded rings

The results contained in this Chapter have been obtained in joint work with Luis

Núñez-Betancourt, and they appear in [17]. One of the main goals is to study the

following conjecture, made by Hirose, Watanabe and Yoshida in [37]:

Conjecture 4.0.10. Let (R,m, k) be a standard graded strongly F -regular ring. Let

fpt(R) be the F -pure threshold, let c(R) be the diagonal F -threshold and let a(R) be

the a-invariant of R. Then

(i) fpt(R) 6 −a(R) 6 c(R).

(ii) R is Gorenstein if and only if fpt(R) = −a(R).

We will show that a more general version of (i) holds even for rings that are

just F -pure. In addition, if R is Gorenstein F -pure, then fpt(R) = −a(R), but the

converse is not true. However, at the best of our knowledge, the “if” direction of (ii)

remains open for strongly F -regular rings.
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4.1 F -thresholds: definitions and basic properties

Definition 4.1.1. [66] Let R be a Noetherian ring, containing Fp, which is F -finite

and F -pure, and let I ⊆ R be an ideal. For a real number λ > 0, we say that (R, Iλ)

is F -pure if for every e � 0, there exists an element fe ∈ Ib(p
e−1)λc such that the

inclusion of R-modules f
1/pe

e R ⊆ R1/pe splits. Here, bαc denotes the largest integer

that is less than or equal to α.

Remark 4.1.2. Note that (R, I0) = (R,R) being F -pure simply means that R is F -

pure, according to Definition 3.2.1. Therefore, if R is F -pure, then the pair (R, Iλ) is

F -pure at least for λ = 0.

Definition 4.1.3. [66] Let (R,m, k) be Noetherian ring, containing Fp, which is F -

finite and F -pure, and let I ⊆ R be a homogeneous ideal. The F -pure threshold of I

is

fpt(I) = sup{λ ∈ R>0 | (R, Iλ) is F -pure}.

When (R,m, k) is either local or standard graded, and I = m, we denote the F -pure

threshold by fpt(R).

We are now aiming at a different way of characterizing the F -pure threshold of

an ideal. We start with some auxiliary notions.

Definition 4.1.4. [2] Let (R,m, k) be a standard graded k-algebra which is F -finite

and F -pure. For all integers e > 1 consider the ideals

Ie(R) := {r ∈ R | ϕ(r1/pe) ∈ m for every ϕ ∈ HomR(R1/pe , R)}.
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In addition, we define P(R) :=
⋂
e Ie(R). We will show that P(R) is a homogeneous

prime ideal, called the splitting prime of R. We also define the splitting dimension of

R to be sdim(R) := dim(R/P(R)).

Remark 4.1.5. For an integer e > 1 let

Je := {r ∈ R | ϕ(r1/pe) ∈ m for every homogeneous ϕ ∈ HomR(R1/pe , R)}.

Then clearly Ie ⊆ Je. On the other hand, for r ∈ Je and any ϕ ∈ HomR(R1/pe , R),

we have that ϕ = ϕ1 + . . . + ϕt is a sum of graded maps in HomR(R1/pe , R) by [23,

Lemma 4.2], since R is F -finite. Then ϕj(r
1/pe) ∈ m for all j = 1, . . . , t, therefore

ϕ(r1/pe) ∈ m, that is, r ∈ Ie.

Remark 4.1.6. Let r ∈ R be a homogeneous element such that r 6∈ Ie(R). Then

there is a map ϕ ∈ HomR(R1/pe , R) such that ϕ(r1/pe) = 1. In fact, by Remark

4.1.5, that there exists e > 1, and a graded homomorphism ψ ∈ HomR(R1/pe , R),

such that ψ(r1/pe) /∈ m. Since both r1/pe and ψ are homogeneous, this implies that

ψ(r1/pe) = λ ∈ k r {0}. We can then define a splitting as ϕ := λ−1ψ.

The following proposition gives basic properties of the ideals Ie(R) and of the

splitting prime P(R) for standard graded k-algebras. We refer to [2, Theorem 3.3,

and Theorem 4.7] and [61, Remark 4.4] for the analogous statements for local rings.

Proposition 4.1.7. Let (R,m, k) be an F -finite F -pure standard graded k-algebra.

Then

(i) Ie(R) and P(R) are homogeneous ideals.
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(ii) P(R) is a prime ideal.

(iii) P(R) is the largest compatible ideal of R.

(iv) R/P(R) is strongly F -regular.

Proof. (i) Let e > 1. If r ∈ Ie(R), then ϕ(r1/pe) ∈ m for all homogeneous ϕ ∈

HomR(R1/pe , R). Let r = r0 +r1 + . . .+rt ∈ Ie(R), with ri ∈ R of degree di. We want

to show that, for all ϕ ∈ HomR(R1/pe , R), we have ϕ(r
1/pe

i ) ∈ m for all i. Assume

that ϕ ∈ HomR(R1/pe , R) is homogeneous of degree k. Then

ϕ(r1/pe) = ϕ(r
1/pe

0 ) + . . .+ ϕ(r
1/pe

t ) ∈ m,

and each ϕ(r
1/pe

i ) now has degree di+k. Since m is homogeneous, we get ϕ(r
1/pe

i ) ∈ m,

showing that ri ∈ Ie(R) for all i = 1, . . . , t. In addition, P(R) is homogeneous since

it is an intersection of homogeneous ideals.

(ii) Let x, y ∈ R be elements not inside P(R). Since P(R) is homogeneous, we

can assume that x and y are homogeneous elements. Then, there exist e, e′ > 1 and

maps ϕ : R1/pe → R and ψ : R1/pe
′
→ R such that ϕ(x1/pe) = 1 and ψ(y1/pe

′
) = 1.

Define ψ1/pe : R1/pe+e
′
→ R1/pe as

ψ1/pe(r1/pe+e
′

) :=
(
ψ(r1/pe

′

)
)1/pe

∈ R1/pe

for all r1/pe+e
′
∈ R1/pe+e

′
. Note that ψ1/pe is an R1/pe-linear map, because ψ is R-linear.

Consider the R-linear map ϕ ◦ ψ1/pe : R1/pe+e
′
→ R. Note that

ϕ ◦ ψ1/pe

((
xp

e′

y
)1/pe+e

′
)

= ϕ

(
x1/pe

(
ψ(y1/pe

′

)
)1/pe

)
= ϕ(x1/pe) = 1.
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Therefore, xp
e′
y /∈ Ie+e′(R), and in particular xy /∈ Ie+e′(R). Finally, this implies that

xy /∈ P(R) =
⋂
e>1 Ie(R).

(iii) First, we show that P(R) is compatible. Let x ∈ P(R), so that for all e > 1

and all homogeneous ϕ ∈ HomR(R1/pe , R) we have ϕ(x1/pe) =: y ∈ m. Suppose that

y /∈ P(R). There exists e′ > 1 and ψ ∈ HomR(R1/pe
′
, R) such that ψ(y1/pe

′
) = 1.

Consider ψ ◦ ϕ1/pe
′
. Then we have ψ ◦ ϕ1/pe

′

(x1/pe+e
′

) = ψ(y1/pe
′

) = 1, which implies

that x /∈ Ie+e′ . Therefore, x /∈ P(R), which is a contradiction. We then conclude that

y ∈ P(R), and thus P(R) is compatible. Now suppose that J ⊆ R is a homogeneous

compatible ideal, and let z ∈ J . Then, for all e > 1 and all homogeneous ϕ ∈

HomR(R1/pe , R), we get ϕ(z1/pe) ∈ J ⊆ m, so that z ∈ P(R).

(iv) Let T := Rm. By [49, Lemma 4.2], we have that R/P(R) is strongly F -

regular if and only (R/P(R))m
∼= T/P(R)m is strongly F -regular. Let x ∈ T/P(R)m

be a non-zero element, and let x denote also a lift of such an element to T . Then

wx ∈ R for some integer w ∈ R r m, and wx /∈ P(R), otherwise x ∈ P(R)m.

Then, there exists e > 1 and ϕ ∈ HomR(R1/pe , R) such that ϕ((wx)1/pe) /∈ m.

Since P(R) is compatible, this gives a map ψ ∈ HomR/P(R)((R/P(R))1/pe , R/P(R)),

such that ψ((wx)1/pe) /∈ m/P(R). After localizing at m, we then obtain a map

ψm : (T/P(R)m)1/pe → T/P(R)m such that ψm((wx)1/pe) is a unit in T/P(R)m. It

follows that (wx)1/peT/P(R)m ⊆ (T/P(R)m)1/pe splits, hence so does x1/peT/cP (R) ⊆

(T/P(R)m)1/pe , since w /∈ m. Then T/P(R)m is strongly F -regular, and so is R/P(R).
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We now make a crucial definition. The purpose is to measure how deep one can

choose an element f inside an ideal, giving a splitting f 1/peR ⊆ R1/pe for some e.

Definition 4.1.8. Let (R,m, k) be an F -finite F -pure standard graded k-algebra. Let

J ⊆ R be a homogeneous ideal. Then, we define

bJ(pe) = max{r ∈ N | Jr 6⊆ Ie(R)}.

Remark 4.1.9. Note that, by definition, for all e > 1 there exists an element g ∈

J bJ (pe) r Ie, that we can choose to be homogeneous. Then, by Remark 4.1.6, the

inclusion g1/peR ⊆ R1/pe splits. As a consequence, taking J = m, we have that for

all e > 1 we can find a homogeneous element g1/pe of degree
bm(pe)

pe
such that the

inclusion g1/peR ⊆ R1/pe splits.

Lemma 4.1.10. Let (R,m, k) be a standard graded k-algebra which is F -finite and

F -pure. Let J ⊆ R be a homogeneous ideal. Then, p · bJ(pe) 6 bJ(pe+1).

Proof. Let f ∈ J bJ (pe)rIe(R) be a homogeneous element. Then, f 1/peR ⊆ R1/pe splits

as map of R-modules. In particular, there exists ϕ : R1/pe → R such that ϕ(f 1/pe) =

1. Since R is F -pure, the inclusion R1/pe ⊆ R1/pe+1
splits. Therefore, there exists

ψ : R1/pe+1 → R1/pe such that ψ(1) = 1. Consider the map θ := ϕ ◦ ψ : R1/pe+1 → R.

Then note that θ(fp/p
e+1

) = ϕ(ψ(f 1/pe)) = ϕ(f 1/pe) = 1. Therefore, we have that

fp /∈ Ie+1(R). On the other hand, fp ∈ Jp·bJ (pe), therefore p · bJ(pe) 6 bJ(pe+1).

We now present a characterization of the F -pure threshold that may be known to

experts (see [30, Key Lemma] for principal ideals). However, we were not able to find
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it in the literature in the generality we need. This characterization will be crucial in

order to attack Conjecture 4.0.10.

Proposition 4.1.11. Let (R,m, k) be a standard graded k-algebra which is F -finite

and F -pure. Let J ⊆ R be a homogeneous ideal. Then

fpt(J) = lim
e→∞

bJ(pe)

pe
.

Proof. For all integers e > 1 there exists a homogeneous f ∈ J bJ (pe) \ Ie(R), by

definition of bJ(pe). Then, the inclusion f 1/peR → R1/pe splits by Remark 4.1.6.

Therefore, we have
bJ(pe)

pe
∈ {λ ∈ R>0 | (R, Jλ) is F -pure}. Hence, for all e > 1, we

have
bJ(pe)

pe
6 fpt(J). In particular,

{
bJ(pe)

pe

}
is a bounded sequence and thus, by

Lemma 4.1.10 it converges to a limit, because it is non-decreasing. In addition, we

conclude that lim
e→∞

bJ(pe)

pe
6 fpt(J).

For the converse inequality, let σ ∈ {λ ∈ R>0 | (R, Jλ) is F -pure}. For e � 0, so

that Jb(p
e−1)σc 6⊆ Ie(R), by definition of bJ(pe). Then, we obtain that

b(pe − 1)σc
pe

6

bJ(pe)

pe
, and therefore, taking limits as e→∞:

σ = lim
e→∞

b(pe − 1)σc
pe

6 lim
e→∞

bJ(pe)

pe
.

Since this holds for all σ such that (R, Jσ) is F -pure, we obtain that fpt(J) 6

lim
e→∞

bJ(pe)

pe
, as desired.

Remark 4.1.12. One can make similar definitions for Noetherian local rings (R,m, k).

Then an analogous restatement of Proposition 4.1.11 for F -finite F -pure local rings

is also true, and the proof is essentially the same, mutatis mutandis.
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We end this section by defining the F -threshold of an ideal I with respect to an-

other ideal J . It has first been introduced by Huneke, Mustaţă, Takagi and Watanabe

in [42]. F -thresholds are closely related to the theories of tight closure and integral

closure.

Definition 4.1.13. Let R be Noetherian ring containing Fp. Assume that R is F -

finite, and let I, J be two ideals such that I ⊆
√
J . Let νJI (pe) = max{r ∈ N | Ir 6⊆

J [pe]}, and define

cJ−(I) = lim inf
e→∞

νJI (pe)

pe
and cJ+(I) = lim sup

e→∞

νJI (pe)

pe
.

If the two limits coincide, we denote the common value by cJ(I) and call it the F -

threshold of I with respect to J .

The previous limit exists for F -pure rings [42, Lemma 2.3]. When (R,m, k) is

either local or standard graded, and I = J = m, we denote cm(m) by c(R), and call

it the diagonal F -threshold of R.

4.2 F-thresholds and a-invariants

In this section, we start the proof of Conjecture 4.0.10, in the more general setting of

F -pure standard graded k-algebras. We start with the relation between the F -pure

threshold and the a-invariants, as conjectured in the first inequality of 4.0.10 (i).

Theorem 4.2.1. Let (R,m, k) be a standard graded k-algebra which is F -finite and

F -pure. Then fpt(R) 6 −ai(R) for every i ∈ N.
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Proof. If H i
m(R) = 0 there is nothing to prove, since ai(R) = −∞. Let i ∈ N be

such that H i
m(R) 6= 0. For all integers e > 1, pick a homogeneous element fe ∈

mbm(pe) r Ie(R). The map

R �
� // R1/pe

1 � // f
1/pe

e

splits, and the inclusion is homogeneous of degree
bm(pe)

pe
. Applying the i-th local

cohomology functor, we get a homogeneous split inclusion H i
m(R) ↪→ H i

m(R1/pe),

which is still of degree
bm(pe)

pe
. Let v ∈ H i

m(R)ai(R) be an element in the top graded

part of H i
m(R), which has degree ai(R). Under the inclusion above, this maps to a

nonzero element of degree ai(R)+
bm(pe)

pe
in H i

m(R1/pe). Therefore, by definition of the

i-th a-invariant of R1/pe , we have that ai(R) +
bm(pe)

pe
6 ai(R

1/pe) =
ai(R)

pe
. Taking

limits as e→∞ we obtain the desired claim:

ai(R) + fpt(R) = ai(R) + lim
e→∞

bm(pe)

pe
6 lim

e→∞

ai(R)

pe
= 0.

Before stating a consequence of Theorem 4.2.1, we recall that we defined the

splitting dimension of R as sdim(R) = dim(R/P(R)).

Corollary 4.2.2. Let (R,m, k) be a standard graded k-algebra which is F -finite and

F -pure. If ai(R) = 0 for some i, then sdim(R) = 0.

Proof. If ai(R) = 0 for some i, we have that fpt(R) = 0 by Theorem 4.2.1. Then,

we have that be = 0 for every e ∈ N by Lemma 4.1.10 and Proposition 4.1.11. As a
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consequence, m ⊆ Ie for every e ∈ N. Since Ie(R) ⊆ m holds true because R is F -pure,

we have that m = Ie(R) for every e ∈ N. Hence, P(R) = m, and sdim(R) = 0.

We now want to study how the F -pure threshold varies going modulo compatible

ideals. The following result allows us to keep track the degrees of the splittings via

some kind of duality.

Lemma 4.2.3. Let S = k[x1, . . . , xn] be a polynomial ring over an F -finite field

k. Let n = (x1, . . . , xn) denote the maximal homogeneous ideal. Let I ⊆ S be a

homogeneous ideal such that R := S/I is an F -pure ring, and let m = nR. Then,

min

{
t ∈ N

pe

∣∣∣∣ [(IS1/pe :S1/pe I1/pe) + nS1/pe

nS1/pe

]
t

6= 0

}
=
n(pe − 1)− bm(pe)

pe

Proof. Let e > 1 be an integer. By Remark 4.1.9 there exists a homogeneous

element g1/pe ∈ R1/pe of degree bm(pe)/pe such that g1/peR ⊆ R1/pe splits. By

Lemma 3.4.5, there exists a homogeneous element f 1/pe ∈ (IS1/pe :S1/pe I1/pe) of

degree
n(pe − 1)− bm(pe)

pe
such that f 1/peg1/pe /∈ nS1/pe . A fortiori, we have that

f 1/pe /∈ nS1/pe . Therefore, the right-hand-side is greater than or equal to the left-hand-

side of the equation. If there were a homogeneous element f 1/pe ∈ (IS1/pe :S1/pe I1/pe)

of degree s =
j

pe
<

n(pe − 1)− bm(pe)

pe
that is not inside nS1/pe , then by Lemma

3.4.5 we would be able to find a homogeneous element h1/pe ∈ R1/pe of degree

n(pe − 1)− j
pe

>
bm(pe)

pe
such that the inclusion h1/peR ⊆ R1/pe splits. But this

contradicts the definition of bm(pe), given Remark 4.1.9.
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Theorem 4.2.4. Let (R,m, k) be a standard graded k-algebra which is F -finite and

F -pure, and let J ⊆ R be a homogeneous compatible ideal. Then, we have fpt(R) 6

fpt(R/J). In particular, fpt(R) 6 fpt(R/P(R)) 6 sdim(R).

Proof. Let S = k[x1, . . . , xn] be a polynomial ring such that there exists a surjection

S → R, and let n = (x1, . . . , xn), so that m = nR. Let I denote the kernel of the

surjection. Let J̃ ⊆ S be the pullback of J . We have that (IS1/pe :S1/pe I1/pe) ⊆

(J̃S1/pe :S1/pe J̃1/pe) for every e ∈ N by Proposition 3.4.9. Then,

α := min

{
t ∈ N

pe

∣∣∣∣
[

(J̃S1/pe :S1/pe J̃1/pe) + nS1/pe

nS1/pe

]
t

6= 0

}
6

6 min

{
t ∈ N

pe

∣∣∣∣ [(IS1/pe :S1/pe I1/pe) + nS1/pe

nS1/pe

]
t

6= 0

}
=: β.

As a consequence, we get

bm(pe) =
n(pe − 1)

pe
− β 6

n(pe − 1)

pe
− α = bm/J(pe)

by Lemma 4.2.3. Then, fpt(R) 6 fpt(R/J). The last claim follows from the fact

that the splitting prime is compatible by Proposition 4.1.7 (iii), and fpt(R/P(R)) 6

sdim(R) by [66, Proposition 2.6(1)].

We finally focus on the diagonal F -threshold c(R). Note that

max

{
t ∈ 1

pe
· Z
∣∣∣∣ [R1/pe/mR1/pe

]
t
6= 0

}
=
νmm(pe)

pe
.

Before proving the second inequality in Conjecture 4.0.10 (i), we set some more

notation. Observe that the inclusion R ⊆ R1/pe endows R with a
N
pe

-grading, that
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is compatible with the original N-grading on R. In fact, an element r ∈ R of degree

n ∈ N can be viewed as an element of degree n =
pen

pe
∈ N
pe

. Then, for
i

pe
∈ N
pe

, we set

R(i/pe) to the same as R, but with
Z
pe

-grading given by R(i/pe)j/pe = Ri/pe+j/pe . Note

that, since R is N-graded, if i+j is not a positive multiple of pe, then R(i/pe)j/pe = 0.

Theorem 4.2.5. Let R be an F -finite standard graded k-algebra, and let d = dim(R).

Then, −ad(R) 6 cm−(m). Furthermore, if R is F -pure, then −ai(R) 6 c(R) for every

i such that H i
m(R) 6= 0.

Proof. We fix i ∈ N such that H i
m(R) 6= 0. Let v1, . . . , vr be a minimal system of

homogeneous generators of R1/pe as an R-module, with degrees γ1, . . . , γr ∈
N
pe

. As

noted before, we can view R as a
N
pe

-graded module. We then have a degree zero

surjective map
r⊕
j=0

R(−γj) π // R1/pe // 0

where πj : R(−γj)→ R1/pe maps 1 to vj. This induces a degree zero homomorphism

j⊕
i=0

H i
m(R(−γj))

ϕ // H i
m(R1/pe).

If i = d, then ϕ is surjective by right exactness of Hd
m(−). We now prove that ϕ

is also surjective for i 6= d, when R is F -pure. In this case, the natural inclusion

R ⊆ R1/pe induces an inclusion H i
m(R) ⊆ H i

m(R1/pe). We have that the map ψi :

H i
m(R) ⊗R R1/pe → H i

m(R1/pe) is surjective by Proposition 3.3.6. By right exactness

of tensor products, we also have that

H i
m(R)⊗R

(
r⊕
j=0

R(−γj)

)
1⊗π // H i

m(R)⊗R R1/pe
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is surjective. Thus, ϕ is surjective, because ϕ = θ ◦ (1⊗ π).

We have now that ϕ is surjective under the given assumptions, for all i ∈ Z such

that H i
m(R) 6= 0. Since

νmm(pe)

pe
= max{γ1, . . . , γj}, since ϕ is surjective we have that

ai(R
1/pe) =

ai(R)

pe
6 max{ad(R(−γi)) | i = 0, . . . , j} = ai(R) +

νm(pe)

pe
.

Taking limits as e→∞, we obtain that

0 = lim inf
e→∞

ai(R)

pe
6 lim inf

e→∞

(
ai(R) +

νm(pe)

pe

)
= ai(R) + cm−(m).

Finally, we note that if R is F -pure cm−(m) = c(R), and this concludes the proof.

4.3 F -thresholds of Gorenstein rings

Suppose that (R,m, k) is an F -finite standard graded Gorenstein k-algebra. Let

S = k[x1, . . . , xn], and let I ⊆ S be a homogeneous ideal such that R ∼= S/I as graded

rings. Since HomR(R1/p, R) is a cyclic R1/p-module, we have that for all integers e > 1

there exist homogeneous polynomials f
1/pe

e ∈ S1/pe such that (IS1/pe :S1/pe I1/pe) =

f
1/pe

e S1/pe+IS1/pe , by Theorem 3.4.4. In fact, even more is true: if (IS1/p :S1/p I1/p) =

f 1/pS1/p + IS1/p for some f 1/p ∈ S1/p, then we can choose fe := f 1+p+···+pe−1
, i.e, for

all e > 1 we have (IS1/pe :S1/pe I1/pe) = f (1+p+···+pe−1)/peS1/pe + IS1/pe .

Remark 4.3.1. When R = S/I is F -pure, we have (IS1/pe :S1/pe I1/pe) 6⊆ nS1/pe by

Fedder’s criterion (Corollary 3.4.6). If R is Gorenstein, we have (IS1/pe :S1/pe I1/pe) =
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f (1+p+···+pe−1)/peS1/pe + IS1/pe for some homogeneous element f ∈ S. In particular,

min

{
t ∈ N

pe

∣∣∣∣ [(IS1/pe :S1/pe I1/pe) + nS1/pe

nS1/pe

]
t

6= 0

}
=

deg(f)(1 + p+ . . .+ pe−1)

pe

We now prove the “only if” direction of Conjecture 4.0.10 (ii), only assuming that

the ring is F -pure.

Theorem 4.3.2. Let (R,m, k) be a Gorenstein standard graded k-algebra which is

F -finite and F -pure, and let d = dim(R). Then we have fpt(R) = −ad(R).

Proof. Let S = k[x1, . . . , xn] be a polynomial ring, and let I ⊆ S be a homogeneous

ideal such that R ∼= S/I as graded rings. Let n = (x1, . . . , xn), so that m = nR.

Let a = ad(R). Consider the natural map S1/p/IS1/p → S1/p/I1/p induced by the

inclusion IS1/p ⊆ I1/p. Then such a map extends to a map of complexes ψ• from

a minimal free resolution of S1/p/IS1/p to a minimal free resolution of S1/p/I1/p as

S1/p-modules. Furthermore, such a map ψ• can be chosen graded of degree zero.

Since ad(R
1/p) =

a

p
, we have that the last homomorphism in the map of complexes is

S(−n−a)→ S((−n−a)/p), and it is then given by multiplication by a homogeneous

element f 1/p ∈ S1/p. Furthermore, we have that IS1/p :S1/p I1/p = f 1/pS1/p + IS1/p

[68, Lemma 1]. Since ψ• is homogeneous of degree zero, we have that deg(f 1/p) =

(p− 1)(n+ a)

p
. In addition, recall that, for all e > 1, we have (IS1/pe :S1/pe I1/pe) =
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f (1+p+...+pe−1)/peS1/pe + IS1/pe . By Remark 4.3.1 and Lemma 4.2.3, we obtain that

fpt(R) = lim
e→∞

n(pe − 1)− (deg(f) · (1 + p+ . . .+ pe−1))

pe

= lim
e→∞

n(pe − 1)

pe
− lim

e→∞

deg(f) · (1 + p+ . . .+ pe−1)

pe

= n− deg(f)

p− 1

= n− (p− 1)(n+ a)

p− 1

= −a.

We now give an example to show that an F -finite and F -pure standard graded

k-algebra such that fpt(R) = −ad(R) is not necessarily Gorenstein.

Example 4.3.3. Let S = k[x, y, z] with k a perfect field of characteristic p > 0, and

let n = (x, y, z) be its homogeneous maximal ideal.

I = (xy, xz, yz) = (x, y) ∩ (x, z) ∩ (y, z) ⊆ S.

Let R = S/I, with maximal ideal m = n/I. Note that R is a one-dimensional

Cohen-Macaulay F -pure ring. Consider the short exact sequence

0 // R // S

(x, y)
⊕ S

(x, z) ∩ (y, z)
// S

(x, y) + (x, z) ∩ (y, z)
∼= k // 0.

Then, we get a long exact sequence of local cohomology modules

0 // k // H1
m(R) // H1

n (S/(x, y))⊕H1
n (S/(xy, z)) // . . .
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The maps in this sequence are homogeneous of degree zero. Thus, a1(R) > 0, because

k injects into H1
m(R). On the other hand, since R is F -pure, we have that a1(R) 6 0;

therefore, fpt(R) = a1(R) = 0. However, R is not Gorenstein, since the canonical

module ωR ∼= (x, y)/(xy, xz + yz) has two generators.

Remark 4.3.4. The ring in Example 4.3.3 is not strongly F -regular. In fact, strongly

F -regular rings are normal, and normal local rings of dimension one are regular. How-

ever, the ring above, when localized at m, is not even Gorenstein since the canonical

module ωRm
∼= ((x, y)/(xy, xz + yz))m is again not cyclic. Therefore, Example 4.3.3

is not a counterexample to Conjecture 4.0.10 (ii).

4.4 F -pure regular sequences

We now aim at an interpretation of the F -pure threshold of a standard graded Goren-

stein k-algebra as the maximal length of a regular sequence that preserves F -purity.

We start with an auxiliary lemma that will allow us to start the process of finding

F -pure regular elements inside a ring.

Lemma 4.4.1. Let S = k[x1, . . . , xn] be a polynomial ring over and F -finite field,

with the standard grading, and let n = (x1, . . . , xn) be its irrelevant maximal ideal.

Let I ⊆ S be an ideal such that R = S/I is an F -pure ring, and let m = nR. Then,

P(R) = m if and only if (I [pe] :S I) ⊆ (n[pe] :S n) for all integers e > 1.

Proof. By Proposition 4.1.7 (iii), we have that P(R) is a compatible ideal. If P(R) =
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m, by Proposition 3.4.9 we obtain that (I [pe] :S I) ⊆ (n[pe] :S n), as desired. Con-

versely, if (I [pe] :S I) ⊆ (n[pe] :S n), then we have that m is a compatible ideal, again

by Proposition 3.4.9. Since R is F -pure, we have that 1 /∈ Ie for all integers e > 1. In

particular, P(R) =
⋂
e>1 Ie ⊆ m, because the ideals Ie are homogeneous. Since P(R)

is the largest compatible ideal of R by Proposition 4.1.7 (iii), and m is maximal, we

get that P(R) = m.

Proposition 4.4.2. Let S = k[x1, . . . , xn] be a polynomial ring over an F -finite

infinite field k. Let n = (x1, . . . , xn) denote the maximal homogeneous ideal. Let I ⊆ S

be a homogeneous ideal such that R = S/I is an F -pure ring, and let m = nR. Let f ∈

(IS1/p :S1/p I1/p) r nS1/p be a homogeneous element. If deg(f 1/p) 6
(p− 1)(n− 1)

p
,

then there exists a linear form ` ∈ S such that:

1. `p−1f 6∈ n[p].

2. the class of ` in R does not belong to P(R).

3. ` is a non zero-divisor in R.

Proof. Write f =
∑
|α|=deg(f) cαx

α, with cα ∈ k. Let `(y) = y1x1 + . . . + ynxn ∈

S[y1, . . . , yn] be a generic linear form. We note that

`(y)p−1 =
∑
|θ|=p−1

gθ(y)xθ,

where gθ(y) = (p−1)!
θ1!···θn!

yθ ∈ k[y1, . . . , yn]. Since f 6∈ n[p], there exists xβ ∈ supp{f} such

that xβ 6∈ n[p]. Since |β| ≤ (p − 1)(n − 1) and xβ 6∈ n[p], there exists xγ ∈ np−1 such
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that xγxβ 6∈ n[p] by the pigeonhole principle. Let

h :=
∑

β+γ=θ+α

cαgθ(y) ∈ k[y1, . . . , yn]

We note that h 6= 0 because cβgθ 6= 0. In addition, h is the coefficient of xθ+γ in

`(y)p−1f . We note that P(R) 6= m by Lemma 4.4.1, since deg(f) 6 (p − 1)(n − 1).

Therefore, we have that P(R) ∩ m 6= m. Since k is an infinite field, we can pick a

point v ∈ kn such that h(v) 6= 0 and the class of `(v) does not belong to P(R). We

set ` := `(v). By our construction, xβ+γ ∈ supp{`p−1f} and xβ+γ 6∈ n[p]. In addition,

` /∈ P(R). Since the pullback of P(R) to S contains every associated prime of R (see

[2], for example), we have that ` is a non zero-divisor in R.

Note that, for ` as in Proposition 4.4.2, if we set I ′ := I+(`) we have that the ring

S/I ′ is again F -pure. In fact, for f as above, we have that `p−1f ∈ (I ′[p] : I ′) r n[p],

and F -purity follows by Fedder’s criterion 3.4.6.

As a consequence of these results, and of Theorem 4.3.2, we give an interpretation

of the F -pure threshold of a standard graded Gorenstein F -pure algebra in terms

of the maximal length of a regular sequence that preserves F -purity. We start by

introducing the notion of F -pure regular sequence.

Definition 4.4.3. Let (R,m, k) be a standard graded k algebra which is F -finite and

F -pure. We say that a homogeneous regular sequence f1, . . . , fr is an F -pure regular

sequence if R/(f1, . . . , fi) is an F -pure ring for all i = 1, . . . , r.
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Lemma 4.4.4. Let (R,m, k) be a standard graded k-algebra. If f is a regular element

of degree d > 0, then d+ ai(R) 6 ai−1(R/(f)) for all i ∈ N such that H i
m(R) 6= 0.

Proof. Suppose that H i
m(R) 6= 0. Consider the homogeneous short exact sequence

0 // R(−d)
f // R // R/(f) // 0.

For all j ∈ Z, this gives rise to an exact sequence of k-vector spaces

. . . // H i−1
m (R/(f))j // H i

m(R)j−d // H i
m(R)j // . . .

Since d > 0, for j = ai(R) + d we have that H i
m(R)j = 0. Then,

H i−1
m (R/(f))ai(R)+d

// H i
m(R)ai(R)

// 0

is a surjection. We note that H i
m(R)ai(R) 6= 0, which yields H i−1

m (R/(f))ai(R)+d 6= 0,

and hence ai−1(R/(f)) > ai(R) + d.

Corollary 4.4.5. Let (R,m, k) be a standard graded k-algebra which is F -finite and

F -pure. If f1, . . . , fr is a homogeneous F -pure regular sequence of degrees d1, . . . , dr,

then
∑r

j=1 dj 6 min{−ai(R) | i ∈ N}.

Proof. We proceed by induction on r > 1. Assume that r = 1. If H i
m(R) = 0,

we have that d1 6 −ai(R) = ∞, therefore there is nothing to prove in this case.

If H i
m(R) 6= 0, by Lemma 4.4.4 we have that ai(R) + d1 6 ai−1(R/(f1)). Since

R/(f1) is F -pure, it follows from Proposition 3.3.7 that ai−1(R/(f)) 6 0, and hence

d1 6 −ai(R). Thus, d1 6 −ai(R) for all i ∈ N, that is, d1 6 min{−ai(R) | i ∈ N}.
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This concludes the proof of the base case. For r > 1, if H i
m(R) = 0 we have that∑r

i=1 di 6 −ai(R) = ∞ and, again, there is nothing to prove in this case. Assume

that H i
m(R) 6= 0. By induction, we get that

∑r
j=2 dj 6 −as(R/(f1)) for all s ∈ N. In

particular, we have that
∑r

j=2 dj 6 −ai−1(R/(f1)). By Lemma 4.4.4, we have that

−ai−1(R/(f1)) > −ai(R) − d1. Combining the two inequalities, and rearranging the

terms in the sum, we obtain
∑r

j=1 di 6 −ai(R). Therefore, we obtain
∑r

j=1 dj 6

min{−ai(R) | i ∈ N}

We are finally in a position to state and prove the main result of this section.

Theorem 4.4.6. Let (R,m, k) be a Gorenstein standard graded k-algebra which is

F -finite and F -pure, and let d = dim(R). If f1, . . . , fr is an F -pure regular sequence,

then r 6 fpt(R). Furthermore, if k is infinite, then there exists an F -pure regular

sequence consisting of fpt(R) linear forms.

Proof. By Theorem 4.3.2, we have that fpt(R) = −ad(R). The first claim follows from

Corollary 4.4.5. For the second claim, let S = k[x1, . . . , xn] be a polynomial ring and

let I ⊆ S be a homogeneous ideal such that R ∼= S/I as graded rings. We proceed by

induction on fpt(R). The case fpt(R) = 0 is trivial. We now assume fpt(R) > 0. From

the proof of Theorem 4.3.2, we have that (IS1/p :S1/p I1/p) = f 1/pS1/p + IS1/p for a

homogeneous element f 1/p ∈ S1/p r nS1/p, of degree deg(f 1/p) 6
(p− 1)(n+ ad(R))

p
.

Since ad(R) = − fpt(R) < 0 by assumption, there exists a linear non zero-divisor
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`1 ∈ R such that R/(`1) is F -pure by Proposition 4.4.2. Consider

0 // Hd−1
m (R/(`1)) // Hd

m(R)(−1)
`1 // Hd

m(R) // 0,

that is a homogeneous short exact sequence of degree zero, obtained from the natural

short exact sequence by applying the local cohomology functors. It follows that

ad−1(R/(`1)) = ad(R) + 1. Since R/(`1) is Gorenstein, we have that fpt(R/(`1)) =

−ad−1(R/(`1)) = −ad(R)− 1 = fpt(R)− 1 by Theorem 4.3.2. The claim now follows

by induction.
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Chapter 5

Golod rings

The results contained in this chapter appear in [16]. We specialize to the case when

R is a Noetherian positively graded algebra over a field k, but most of the results,

appropriately restated, hold also in the case of Noetherian local rings, as well as in

some reasonable generalizations of these two concepts. The main problem that we

study is a question of Volkmar Welker:

Question 5.0.7. [53, Problem 6.18] Let k be a field, and let R be a Noetherian

positively graded k-algebra, and let I, J be two proper homogeneous ideals in R. Is

the ring R/IJ always Golod?

We will provide a negative answer to this question, exhibiting examples of products

of monomial ideals IJ inside a polynomial ring S such that S/IJ is not Golod. We

will also study some positive cases, where we will be able to conclude that the ring is

Golod or, at least, weakly Golod.
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5.1 Preliminaries on Golod rings

Let k be a field, and let R =
⊕

i>0Ri denote a Noetherian positively graded algebra

over R0 = k. In these assumptions, the modules TorRi (k, k) are finitely generated

k-vector spaces, whose dimensions are βi := dimk TorRi (k, k), the Betti numbers of k

as an R-module.

Definition 5.1.1. The Poincaré series of R is defined as the generating series of the

integers {βi}i>0, that is

PR(t) =
∑
i>0

βit
i ∈ ZJtK.

A natural question, attributed to Serre and Kaplansky, is whether this series is

always rational. This means that PR(t) is the ratio of two polynomials with integer

coefficients. This is not the case in general, as shown by Anick in 1982 [3].

Example 5.1.2. The following ring has irrational Poincaré series:

R :=
Q[x1, x2, x3, x4, x5]

((x2
1, x

2
2, x

2
4, x

2
5, x1x2, x4x5, x1x3 + x3x4 + x2x5) + (x1, . . . , x5)3)

.

Classes of rings for which the Poincaré series are rational include Koszul algebras,

algebras defined by monomial ideals [8], Artinian Gorenstein compressed algebras

with socle degree s 6= 3 [58], and some special rings, for which the resolution of k has

a particular structure, such as complete intersections.

Even though PR(t) may not be rational, it is always bounded above, coefficient-

wise, by a rational series. We now describe this upper bound, proved by Serre.



90

Since R is Noetherian and graded, it is a finitely generated as an algebra over k.

We can then find a polynomial ring S = k[x1, . . . , xn] that maps onto R. We can also

assume that this is done minimally: if ϕ : S → R is the surjection, we can assume

that ker(ϕ) ⊆ (x1, . . . , xn)2. In this case n, i.e, the number of variables of S, is called

the embedding dimension of R. Serre showed that PR(t) is bounded above by the

following rational series:

PR(t) � (1 + t)n

1−
n∑
i=1

dimk

(
TorSi (k,R))

)
ti+1

. (5.1.1)

The symbol � denotes inequality term by term. The bound is sharp, and the case

when the Poincaré series is maximal produces the class of rings at the center of

investigation in this chapter.

Definition 5.1.3. The ring R is called Golod if equality holds in (5.1.1).

Remark 5.1.4. As an evident consequence of the definition, Golod rings constitute

another class of algebras that have rational Poincaré series.

There are several other ways to characterize Golod rings. In fact, Golod rings

were named after Evgenii S. Golod, who proved that the upper bound in (5.1.1) is

achieved if and only if the Eagon resolution is minimal [24]. This happens if and

only if all the Massey operations of the ring vanish. We now describe the Massey

operations in more details. We essentially follow the treatment of [6], and we refer to

Section 5.2 in that book and to [28, Chapter 4] for more details.
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As noted before, since R is a Noetherian graded k-algebra, we can write R ∼= S/I,

where S = k[x1, . . . , xn] is a polynomial ring, and I ⊆ S is a homogeneous ideal.

We can always assume that I ⊆ (x1, . . . , xn)2. Let K• be the Koszul complex on the

elements x1, . . . , xn of S, which is a minimal free resolution of k over S. We have that

K1 is a free S-module of rank n, and we denote by {e1, . . . , en} a basis. In addition,

we have that Ki
∼=
∧
iK1 for all i = 1, . . . , n. On a basis element et1 ∧ . . .∧ eti of Ki,

where t1, . . . , ti ∈ {1, . . . , n} are i distinct integers, the differential δi : Ki → Ki−1 is

given by the following formula

δi(et1 ∧ . . . ∧ eti) =
i∑

j=1

(−1)j−1 xtj et1 ∧ . . . ∧ etj−1
∧ etj+1

∧ . . . ∧ eti ,

and extended by linearity to Ki. Let K•(R) = K• ⊗S R be the Koszul complex on

R. We denote by Z•(R) the Koszul cycles, and by H•(R) the Koszul homology on R.

We will use δ also to denote the differential on the Koszul complex K•(R) on R, and

we denote by [−] the equivalence class of a Koszul cycle in the homology H•(R).

The following formulation of the Massey operations is taken from [34].

Definition 5.1.5. Let R be a positively graded k-algebra, let m be the irrelevant

maximal ideal of R, and let K•(R) be the Koszul complex on R. We say that all

the Massey operations on R vanish if for each subset S of homogeneous elements of⊕n
i=1Hi(R) there exists a function θ, defined on the set of finite sequences of elements

from S, with values in m⊕ (
⊕n

i=1Ki(R)), such that

(1) For each h ∈ S, we have that θ(h) is a Koszul cycle, and h = [θ(h)].
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(2) If h1, . . . , hm is a sequence in S, with m > 1, then

δ(θ(h1, . . . , hm)) =
m−1∑
j=1

θ(h1, . . . , hj)θ(hj+1, . . . , hm),

where a = (−1)i+1a if a ∈ Ki(R).

Theorem 5.1.6 (Golod). [24] A ring R is Golod if and only if all the Massey oper-

ations on R vanish.

The proof of Golod’s Theorem is quite involved, and would take us far from the

purposes of this chapter. We refer to [28, Theorem 4.2.2] for a proof that the Massey

operations are trivial if and only if the Eagon resolution of k is minimal. It is then a

matter of counting ranks to show that the Eagon resolution is minimal if and only if

Serre’s upper bound is achieved.

From the equivalent definition of Golod rings in terms of Massey operations, we

readily obtain the following corollary.

Corollary 5.1.7. If a ring R is Golod, then the multiplication on the positive degree

Koszul homology H>1(R) is identically zero.

Proof. Note that Definition 5.1.5 (2) and Theorem 5.1.6 imply that, for any two

h1, h2 ∈ S, we have that θ(h1)θ(h2) = δ(±θ(h1, h2)) is a boundary. Therefore, choos-

ing S to be a k-basis for
⊕n

i=1 Hi(R), we obtain that h1 · h2 = [θ(h1)][θ(h2)] =

[δ(±(θ(h1, h2)))] = 0 in H•(R) for all h1, h2 ∈ S. In particular, the multiplication on

H>1(R) is trivial.
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Since we will repeatedly use this property in the following sections, we give a name

to rings that satisfy this condition.

Definition 5.1.8. A ring R is called weakly Golod if the second Massey operation is

zero, that is, if the multiplication on the positive homological degree part of the Koszul

homology is trivial.

5.2 Examples of products that are not Golod

In this Section we give a negative answer to the following question of Welker:

Question 5.2.1. [53, Problem 6.18] Let k be a field, and let R be positively graded

k-algebra. Let I, J be two proper homogeneous ideals in R. Is the ring R/IJ always

Golod?

The general belief, supported by strong computational evidence, was that this

question had positive answer. The first result in this direction is a theorem of Herzog

and Steurich [35]: let S be a polynomial ring over a field, and let I,J be two proper

homogeneous ideals of S. If I∩J = IJ , then S/IJ is Golod. Another reason to believe

that Question 5.2.1 had positive answer comes from a result of Avramov and Golod

[7], which says that Golod rings are never Gorenstein, unless they are hypersurfaces.

This is consistent with a result of Huneke [41], according to which S/IJ is never

Gorenstein, unless I and J are principal. More recently, Herzog and Huneke show

that, if I is a homogeneous ideal in a polynomial ring S over a field of characteristic
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zero, then, for all d > 2, the ring S/Id is Golod [34, Theorem 2.3 (d)]. Another

similar result of Herzog, Welker and Yassemi, states that S/Id is Golod for all d� 0,

with no assumption on the characteristic of k [36].

We are now ready for the first example.

Example 5.2.2. Let k be a field, and let S = k[x, y, z, w], with the standard grading.

Let n = (x, y, z, w) be the irrelevant maximal ideal, consider the monomial ideal J =

(x2, y2, z2, w2) and let

I := nJ = (x3, x2y, x2z, x2w, xy2, y3, y2z, y2w, xz2, yz2, z3, z2w, xw2, yw2, zw2, w3).

Then, the ring R = S/I is not Golod.

Proof. Golod rings are weakly Golod, by Corollary 5.1.7. Therefore, to show that

R is not Golod, it is enough to find two elements α, β ∈ H>1(R) such that αβ 6= 0.

Consider the element u = (ex ∧ ey)⊗ xy ∈ K2(R) = K2 ⊗S R. It is a Koszul cycle:

δ2(u) = ey ⊗ x2y − ex ⊗ xy2 = 0 in K1(R),

because x2y ∈ I and xy2 ∈ I. Then, let α := [u] ∈ H2(R) be its residue class in

homology. Similarly, let v = (ez ∧ ew) ⊗ zw ∈ Z2(R), and let β := [v] ∈ H2(R). We

want to show that uv = (ex ∧ ey ∧ ez ∧ ew) ⊗ xyzw ∈ Z4(R) is not a boundary, so

that αβ = [uv] 6= 0 in H4(R). Note that K5(R) = 0, hence such a product is zero in

homology if and only if uv ∈ K4(R) is zero as a cycle. Since K4(R) is free over R,

this happens if and only if xyzw ∈ I. But xyzw /∈ I, as every monomial generator of

I contains the square of a variable.
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Important Remark. In [62, Theorem 1.1] Seyed Fakhari and Welker write that any

product of proper monomial ideals in a polynomial ring over a field is Golod. The

key step in their proof is to show that products of monomial ideals always satisfy the

strong-GCD condition, that we now recall:

Definition 5.2.3. [45, Definition 3.8] A monomial ideal I ⊆ S satisfies the strong-

GCD condition if there exists a linear order ≺ on the set MinGen(I) of minimal

monomial generators of I such that, for any two monomials u ≺ v in MinGen(I),

with gcd(u, v) = 1, there exists a monomial w ∈ MinGen(I), v 6= w, with u ≺ w and

such that w divides uv.

The ring in Example 5.2.2 satisfies the strong-GCD condition, for example choos-

ing the order on the monomial generators induced by the Lex order on the variables.

In fact, the result of Seyed Fakhari and Welker is correct, but it only shows that prod-

ucts of monomial ideals satisfy the strong-GCD condition. The fact that monomial

ideals that satisfy the strong-GCD condition are Golod is first stated by Jöllenbeck in

[45, Theorem 7.5], provided an extra assumption, called Property (P), is satisfied, and

then by Berglund and Jöllenbeck in [10, Theorem 5.5], where the extra assumption

is removed. The mistake seems to be contained inside [45], and the validity of the

claims made subsequently in [10] is then affected by this [46].

Another way to show that the ring in Example 5.2.2 is not Golod, is to compare

the Poincaré series of R with the one expected for Golod rings. Using Macaulay2
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[26], one can compute the first Betti numbers of k over R:

. . . // R11283 // R2312 // R493 // R98 // R22 // R4 // R // k // 0.

Therefore the Poincaré series of R is

PR(t) = 1 + 4t+ 422t2 + 98t3 + 493t4 + 2312t5 + 11283t6 + . . .

On the other hand, the upper bound given by Serre’s inequality is

(1 + t)4

1− 16t2 − 30t3 − 20t4 − 5t5
= 1 + 4t+ 22t2 + 98t3 + 493t4 + 2313t5 + 11288t6 + . . .

Since the two series are not coefficientwise equal, R is not Golod. We also checked

that R is not Golod using the Macaulay2 command isGolod(S/I) which computes

the generators of all the Koszul homology modules, and determines whether their

products are zero.

5.2.1 Another example

The ring of Example 5.2.2 is not the first example of a non-Golod product of ide-

als that we discovered. In fact, the ring of Example 5.2.2 was suggested to us by

Srikanth Iyengar, after some discussions about Example 5.2.4, that we describe in

this Subsection.

The proof that the ring in Example 5.2.4 is not Golod relies on lifting Koszul cycles.

More specifically, we use the double-complex proof of the fact that TorS• (k, S/I) can

be computed in two ways, to lift a Koszul cycle to a specific element of a finitely
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generated k-vector space. The results that we use are very well-known, so we will not

explain all the steps. We refer the reader to [69] or [60] for more details.

Let S = k[x1, . . . , xn] be a polynomial ring over a field k, not necessarily standard

graded, and let n be the irrelevant maximal ideal of S. Let I ⊆ n2 be a homogeneous

ideal in S, and consider the residue class ring R = S/I. Since K• is a free resolution

of k over S, we have that Hi(R) := Hi(K•⊗SR) ∼= TorSi (k,R), and its dimension as a

k-vector space is the i-th Betti number, βi, of R as an S-module. On the other hand, if

F• → R→ 0 is a minimal free resolution of R over S, then Hi(k⊗SF•) ∼= k⊗Fi is also

isomorphic to TorSi (k,R). There is map ψ : Zi(R) → k ⊗ Fi, which is constructed

by ”lifting cycles”. Since the boundaries map to zero via ψ, this induces a map

ψ : Hi(R) → k ⊗S Fi, which is an isomorphism. See [31] for a canonical way to

construct Koszul cycles from elements in k ⊗ Fi (that is, a canonical choice of an

inverse for ψ). We are now ready to illustrate the example.

Let k be a field, and let S = k[a, b, c, d, x, y, z, w]. Consider the monomial ideals

I1 = (ax, by, cz, dw) and I2 = (a, b, c, d) inside S. Let I := I1I2 be their product, and

set R = S/I. Let T = Z[a, b, c, d, x, y, z, w], and let J be the ideal I inside T . Then,

using the Macaulay2 command res J, we get a resolution of J over T

F• : 0 // T 5 ϕ4 // T 20 ϕ3 // T 30 ϕ2 // T 16 ϕ1 // T
ϕ0 // T/I // 0.

Assume that char(k) = p > 0. We checked with Macaulay2 [26] that (a2x) ⊆ I(ϕ1),

where I(ϕ1) is the Fitting ideal of the map ϕ1. This is still a regular element after

tensoring with −⊗Z Z/(p), so that grade(I(ϕ1 ⊗ 1Z/(p))) > 1. Similarly, one can see
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that

(a12x3, b12y3) ⊆ I(ϕ2) (a15x3, b15y3, c15z3) ⊆ I(ϕ3) (a5x, b5y, c5z, d5w) ⊆ I(ϕ4).

Since they stay regular sequences after tensoring with −⊗Z Z/(p) we obtain that

grade(I(ϕi ⊗ 1Z/(p))) > i

for all i = 1, . . . , 4. In addition, the ranks of the maps add up to the correct numbers

after tensoring. By Buchsbaum-Eisenbud’s criterion for exactness of complexes [14],

F• ⊗Z Z/(p) is a minimal free resolution of J ⊗Z Z/(p) as an ideal of T ⊗Z Z/(p) ∼=

Z/(p)[a, b, c, d, x, y, z, w]. Finally, since the map T ⊗Z Z/(p) → S is faithfully flat,

tensoring with (F•⊗ZZ/(p))⊗Z/(p)S gives a minimal free resolution of I over S, using

Buchsbaum-Eisenbud’s criterion for exactness of complexes [14] once again. When

char(k) = 0, one can use Q instead of Z/(p) and the same arguments can be applied.

Therefore we get a resolution

F• ⊗Z S : 0 // S5 ϕ4 // S20 ϕ3 // S30 ϕ2 // S16 ϕ1 // S
ϕ0 // R // 0.

Letting E
(i)
j be the canonical bases of the modules Fi ∼=

⊕βi
j=1 T , for i = 0, . . . , 4,

the matrices representing the differentials of the minimal free resolution of J over T

are the same as the ones of a minimal free resolution of I over S. Here follows a

description of such matrices. All the missing entries must be regarded as zeros:

ϕ1 E
(1)
1 E

(1)
2 E

(1)
3 E

(1)
4 E

(1)
5 E

(1)
6 E

(1)
7 E

(1)
8 E

(1)
9 E

(1)
10 E

(1)
11 E

(1)
12 E

(1)
13 E

(1)
14 E

(1)
15 E

(1)
16

E
(0)
1 a2x abx acx adx aby b2y bcy bdy acz bcz c2z cdz adw bdw cdw d2w
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ϕ
2

E
(2

)
1

E
(2

)
2

E
(2

)
3

E
(2

)
4

E
(2

)
5

E
(2

)
6

E
(2

)
7

E
(2

)
8

E
(2

)
9

E
(2

)
1
0
E

(2
)

1
1
E

(2
)

1
2
E

(2
)

1
3
E

(2
)

1
4
E

(2
)

1
5
E

(2
)

1
6
E

(2
)

1
7
E

(2
)

1
8
E

(2
)

1
9
E

(2
)

2
0
E

(2
)

2
1
E

(2
)

2
2
E

(2
)

2
3
E

(2
)

2
4
E

(2
)

2
5
E

(2
)

2
6
E

(2
)

2
7
E

(2
)

2
8
E

(2
)

2
9
E

(2
)

3
0

E
(1

)
1
−
b
−
c

−
d

E
(1

)
2

a
−
c

−
d

−
y

E
(1

)
3

a
b

−
d

−
z

E
(1

)
4

a
b

c
−
w

E
(1

)
5

−
b
−
c

−
d

x

E
(1

)
6

a
−
c

−
d

E
(1

)
7

a
b

−
d

−
z

E
(1

)
8

a
b

c
−
w

E
(1

)
9

−
b
−
c

−
d

x

E
(1

)
1
0

a
−
c

−
d

y

E
(1

)
1
1

a
b

−
d

E
(1

)
1
2

a
b

c
−
w

E
(1

)
1
3

−
b
−
c

−
d

x

E
(1

)
1
4

a
−
c

−
d

y

E
(1

)
1
5

a
b

−
d

z

E
(1

)
1
6

a
b

c
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ϕ3 E
(3)
1 E

(3)
2 E

(3)
3 E

(3)
4 E

(3)
5 E

(3)
6 E

(3)
7 E

(3)
8 E

(3)
9 E

(3)
10 E

(3)
11 E

(3)
12 E

(3)
13 E

(3)
14 E

(3)
15 E

(3)
16 E

(3)
17 E

(3)
18 E

(3)
19 E

(3)
20

E
(2)
1 c d

E
(2)
2 −b d

E
(2)
3 a d −yz

E
(2)
4 −b −c

E
(2)
5 a −c −yw

E
(2)
6 a b −zw

E
(2)
7 c d

E
(2)
8 −b d xz

E
(2)
9 a d

E
(2)
10 −b −c xw

E
(2)
11 a −c

E
(2)
12 a b −zw

E
(2)
13 cz dw

E
(2)
14 c d −xy

E
(2)
15 −b d

E
(2)
16 a d

E
(2)
17 −b −c xw

E
(2)
18 a −c yw

E
(2)
19 a b

E
(2)
20 −by dw

E
(2)
21 ax dw

E
(2)
22 c d −xy

E
(2)
23 −b d −xz

E
(2)
24 a d −yz

E
(2)
25 −b −c

E
(2)
26 a −c

E
(2)
27 a b

E
(2)
28 −by −cz

E
(2)
29 ax −cz

E
(2)
30 ax by
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ϕ4 E
(4)
1 E

(4)
2 E

(4)
3 E

(4)
4 E

(4)
5

E
(3)
1 −d

E
(3)
2 c

E
(3)
3 −b

E
(3)
4 a −yzw

E
(3)
5 −d

E
(3)
6 c

E
(3)
7 −b xzw

E
(3)
8 a

E
(3)
9 −d

E
(3)
10 c −xyw

E
(3)
11 −b

E
(3)
12 a

E
(3)
13 −d xyz

E
(3)
14 c

E
(3)
15 −b

E
(3)
16 a

E
(3)
17 −dw

E
(3)
18 cz

E
(3)
19 −by

E
(3)
20 ax
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Using this explicit expression for the differentials, we prove that R is not Golod.

Example 5.2.4. Let k be a field, and let S = k[a, b, c, d, x, y, z, w]. Consider the

monomial ideals I1 = (ax, by, cz, dw) and I2 = (a, b, c, d) inside S. Let

I := I1I2 = (a2x, abx, acx, adx, aby, b2y, bcy, bdy, acz, bcz, c2z, cdz, adw, bdw, cdw, d2w)

be their product, and set R = S/I. Then, the ring R is not Golod.

Proof. Let 0→ F4 → F3 → F2 → F1 → F0 → R→ 0 be a minimal free resolution of

R over S, with maps ϕj : Fj → Fj−1, j = 1, . . . , 4, and ϕ0 : F0 = S → R being the

natural projection. For each i = 0, . . . , 4 and each free module Fi = Sβi fix standard

bases E
(i)
j , j = 1, . . . , βi. In this way, the differentials can be represented by matrices,

as shown before. We have the following staircase:

S ⊗S S5

1S⊗ϕ4

��

δ0⊗1S5 // k ⊗S S5

K1 ⊗S S20

1K1
⊗ϕ3

��

δ1⊗1S20 // S ⊗S S20

K2 ⊗S S30

1K2
⊗ϕ2

��

δ2⊗1S30 // K1 ⊗S S30

K3 ⊗S S16

1K3
⊗ϕ1

��

δ3⊗1S16 // K2 ⊗S S16

K4 ⊗S S
δ4⊗1S //

1K4
⊗ϕ0

��

K3 ⊗S S

K4 ⊗S R
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Let u = (ex ∧ ey)⊗ (ab), and v = (ez ∧ ew)⊗ (cd), inside K2(R) = K2 ⊗S R. As they

are cycles, we can consider their classes α = [u] and β = [v] in homology. We want to

construct a lifting ψ(uv) of the Koszul cycle uv = (ex∧ey∧ez∧ew)⊗(abcd) ∈ K4(R).

Given (ex ∧ ey ∧ ez ∧ ew)⊗ (abcd) ∈ K4⊗S R we consider the lift (ex ∧ ey ∧ ez ∧ ew)⊗

(abcd E
(0)
1 ) ∈ K4 ⊗S S, and then apply the differential δ4 ⊗ 1S:

(δ4 ⊗ 1S)((ex ∧ ey ∧ ez ∧ ew)⊗ (abcd E
(0)
1 )) =

+(ey ∧ ez ∧ ew)⊗ (abcdxE
(0)
1 )

−(ex ∧ ez ∧ ew)⊗ (abcdy E
(0)
1 )

+(ex ∧ ey ∧ ew)⊗ (abcdz E
(0)
1 )

−(ex ∧ ey ∧ ez)⊗ (abcdw E
(0)
1 )

This is now a boundary, and, in fact, it is equal to

(1K3 ⊗ ϕ1)



+(ey ∧ ez ∧ ew)⊗ (cd E
(1)
2 )

−(ex ∧ ez ∧ ew)⊗ (cd E
(1)
5 )

+(ex ∧ ey ∧ ew)⊗ (ab E
(1)
12 )

−(ex ∧ ey ∧ ez)⊗ (ab E
(1)
15 )


Now we apply δ3 ⊗ 1S16 to this element:

(δ3 ⊗ 1S16)



+(ey ∧ ez ∧ ew)⊗ (cd E
(1)
2 )

−(ex ∧ ez ∧ ew)⊗ (cd E
(1)
5 )

+(ex ∧ ey ∧ ew)⊗ (ab E
(1)
12 )

−(ex ∧ ey ∧ ez)⊗ (ab E
(1)
15 )


=

+(ez ∧ ew)⊗ (cdy E
(1)
2 − cdx E

(1)
5 )

−(ey ∧ ew)⊗ (cdz E
(1)
2 − abx E

(1)
12 )

+(ey ∧ ez)⊗ (cdw E
(1)
2 − abx E

(1)
15 )

+(ex ∧ ew)⊗ (cdz E
(1)
5 − aby E

(1)
12 )

−(ex ∧ ez)⊗ (cdw E
(1)
5 − aby E

(1)
15 )

+(ex ∧ ey)⊗ (abw E
(1)
12 − abz E

(1)
15 )
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This is a boundary. Namely, it is equal to

(1K2 ⊗ ϕ2)



−(ez ∧ ew)⊗ (cd E
(2)
13 )

+(ey ∧ ew)⊗ (dz E
(2)
3 + bx E

(2)
17 + bd E

(2)
20 )

−(ey ∧ ez)⊗ (cw E
(2)
5 + bx E

(2)
23 + bc E

(2)
28 )

−(ex ∧ ew)⊗ (dz E
(2)
8 + ay E

(2)
18 + ad E

(2)
21 )

+(ex ∧ ez)⊗ (cw E
(2)
10 + ay E

(2)
24 + ac E

(2)
29 )

−(ex ∧ ey)⊗ (ab E
(2)
30 )



.

We now apply the map δ2 ⊗ 1S30 to such a lift:

(δ2 ⊗ 1S30)



−(ez ∧ ew)⊗ (cd E
(2)
13 )

+(ey ∧ ew)⊗ (dz E
(2)
3 + bx E

(2)
17 + bd E

(2)
20 )

−(ey ∧ ez)⊗ (cw E
(2)
5 + bx E

(2)
23 + bc E

(2)
28 )

−(ex ∧ ew)⊗ (dz E
(2)
8 + ay E

(2)
18 + ad E

(2)
21 )

+(ex ∧ ez)⊗ (cw E
(2)
10 + ay E

(2)
24 + ac E

(2)
29 )

−(ex ∧ ey)⊗ (ab E
(2)
30 )



=

=

+ex ⊗ (dzw E2
8 − czw E

(2)
10 + ayw E

(2)
18 + adw E

(2)
21 − ayz E

(2)
24 − acz E

(2)
29 + aby E

(2)
30 )

−ey ⊗ (dzw E
(2)
3 − czw E

(2)
5 + bxw E

(2)
17 + bdw E

(2)
20 − bxz E

(2)
23 − bcz E

(2)
28 + abx E

(2)
30 )

+ez ⊗ (−cyw E
(2)
5 + cxw E

(2)
10 + cdw E

(2)
13 − bxy E

(2)
23 + axy E

(2)
24 − bcy E

(2)
28 + acx E

(2)
29 )

−ew ∧ (−dyz E(2)
3 + dxz E

(2)
8 + cdz E

(2)
13 − bxy E

(2)
17 + axy E

(2)
18 − bdy E

(2)
20 + adx E

(2)
21 ).
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Again, this element is a boundary. In fact, it is equal to

(1K1 ⊗ ϕ3)



+ex ⊗ (zw E
(3)
7 + a E

(3)
20 )

−ey ⊗ (zw E
(3)
4 + b E

(3)
19 )

+ez ⊗ (xy E
(3)
13 + c E

(3)
18 )

−ew ⊗ (xy E
(3)
10 + d E

(3)
17 )


.

One more time, we apply δ1 ⊗ 1S20 , to get

(δ1 ⊗ 1S20)



+ex ⊗ (zw E
(3)
7 + a E

(3)
20 )

−ey ⊗ (zw E
(3)
4 + b E

(3)
19 )

+ez ⊗ (xy E
(3)
13 + c E

(3)
18 )

−ew ⊗ (xy E
(3)
10 + d E

(3)
17 )


=

= 1⊗ (−yzw E
(3)
4 + xzw E

(3)
7 − xyw E

(3)
10 + xyz E

(3)
13 − dw E

(3)
17 + cz E

(3)
18 − by E

(3)
19 + ax E

(3)
20 ).

This is a boundary: it is equal to (1S ⊗ϕ4)(1⊗E(4)
5 ). When applying δ0⊗ 1S5 to the

lift, we finally get the image of uv under the map ψ : Z4(R)→ k ⊗S S5. Namely:

ψ(uv) = (δ0 ⊗ 1S5)(1⊗ E(4)
5 ) = 1⊗ E(4)

5 ∈ k ⊗S S5,

and since the latter is non-zero (because it is part of a k-basis of k ⊗S S5) we obtain

that uv is not a boundary of the Koszul complex. Thus, αβ is non-zero in H4(R),

and R is not Golod.

Remark 5.2.5. With the same notation as in Example 5.2.4, we have that x− a, y −

b, z−c, w−d is a regular sequence modulo I. Modulo these linear forms, one recovers
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the ring of Example 5.2.2. In fact, by [6, Proposition 5.2.4] adapted to the standard

graded case, we see that the ring in Example 5.2.4 is Golod if and only if the ring in

Example 5.2.2 is Golod.

We end this section presenting another ideal that satisfies the strong-GCD con-

dition (see Definition 5.2.3), and that is not Golod. Although it is not a product, it

has the advantage of having fewer generators than our previous examples.

Example 5.2.6. Let S = k[x, y, z], and let I = (x2y, xy2, x2z, y2z, z2). Set R = S/I.

The ideal I satisfies the strong-GCD condition, for example choosing x2y ≺ xy2 ≺

x2z ≺ y2z ≺ z2. Using Macaulay2 [26], we checked that the Poincaré series of R

starts as

PR(t) = 1 + 3t+ 8t2 + 21t3 + 55t4 + 144t5 + 377t6 + . . .

and that the right-hand side of Serre’s inequality is

(1 + t)3

1− 5t2 − 5t3 − t4
= 1 + 3t+ 8t2 + 21t3 + 56t4 + 148t5 + 393t6 + . . .

Therefore, R is not Golod. Alternatively, one can use the Macaulay2 command

isGolod(S/I), or one can show, with arguments similar to the ones used for the

previous examples, that the product of Koszul cycles

((ex ∧ ey)⊗ xy) · (ez ⊗ z) ∈ K3(R)

is not zero in homology. Looking for a squarefree example, using polarization, one

obtains that I ′ = (axy, bxy, axz, byz, cz) ⊆ k[a, b, c, x, y, z] satisfies the strong GCD

condition, and is not Golod.
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5.3 Strongly Golod property for rational powers

of monomial ideals

In this section, we present some positive results: we are able that quotients by some

rational powers of monomial ideals are Golod. The techniques are, for most part,

similar to the ones used in [34] for the integral closure.

Let k be a field, and let S = k[x1, . . . , xn], with deg(xi) = di > 0. We recall the

definition of rational powers of an ideal.

Definition 5.3.1. For an ideal I ⊆ S and positive integers p, q define the ideal

Ip/q := {f ∈ R | f q ∈ Ip}.

The integral closure of Ip inside the definition is needed in order to make the set

into an ideal, and to make it independent of the choice of the representation of p/q

as a rational number.

Remark 5.3.2. We would like to warn the reader about a potential source of confusion.

When p = q, the ideal Ip/q = I1/1 is the integral closure I of I, and should not be

regarded as the ideal I1 = I, even though the exponents 1/1 and 1 are equal.

Remark 5.3.3. If I ⊆ S is a monomial ideal, then so is Ip/q.

Proof. Let f =
∑d

i=1 λiui ∈ Ip/q, where 0 6= λi ∈ k and ui are monomials. Since Ip

is monomial, we have that f qr ∈ Ipr for all integers r � 0 [33, Theorem 1.4.2]. In

addition, Ipr is monomial, therefore every monomial appearing in f qr belongs to Ipr,
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and in particular for any i = 1, . . . , d we have that uqri ∈ Ipr for all r � 0. This shows

that uqi ∈ Ip, that is ui ∈ Ip/q for all i = 1, . . . , d, and hence Ip/q is monomial.

In the rest of this section, we assume that the characteristic of k is zero.

Definition 5.3.4 ([34]). A proper homogeneous ideal I ⊆ S is called strongly Golod

if ∂(I)2 ⊆ I.

Here, ∂(I) denotes the ideal of S generated by the partial derivatives of elements

in I. By [34, Theorem 1.1], if I is strongly Golod, then S/I is Golod. This condition,

however, is only sufficient. For example, the ideal I = (xy, xz) ⊆ k[x, y, z] is Golod

[64], or [6, Proposition 5.2.5]. However, it is not strongly Golod. This example is

not even squarefree strongly Golod (see Section 5.4 for the definition). In case I is

monomial, being strongly Golod is equivalent to the requirement that, for all minimal

monomial generators u, v ∈ I, and all integers i, j such that xi divides u and xj divides

v, one has uv/xixj ∈ I.

The following argument is a modification of [34, Proposition 3.1], and shows that

strong Golodness is preserved if one takes “at least” the integral closure of an ideal.

Theorem 5.3.5. Let I ⊆ S be a strongly Golod monomial ideal. If p > q, then Ip/q

is strongly Golod.

Proof. Let u ∈ Ip/q be a monomial generator, then uqr ∈ Ipr for all r � 0. Let j be

an index such that xj | u, we claim that (u/xj)
qr ∈ Ipr/2 for all even r � 0. Notice
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that if x2
j | u then, for any even r � 0, we have

(
u

xj

)qr
= uq(r/2)

(
u

x2
j

)qr/2
∈ Ip(r/2),

as desired. Now suppose that xj divides u, but x2
j does not. Since for any r � 0 we

have that uqr ∈ Ipr, we can write

uqr = m1m2 · · ·mpr,

where mi ∈ I for all i. Again, we can assume that r is even. For i = 1, . . . , pr let di

be the maximum non-negative integer such that xdij divides mi. Then we can rewrite

uqr = m1 · · ·mama+1 · · ·ma+bma+b+1 · · ·mpr,

where di = 0 for 1 6 i 6 a, di = 1 for a+1 6 i 6 a+b and di > 2 for a+b+1 6 i 6 pr.

Because of the assumption x2
j 6 | u we have that

qr =

pr∑
i=1

di = b+

pr∑
i=a+b+1

di > b+ 2(pr − b− a).

But we assumed that p > q, therefore pr > b+2(pr−b−a), which gives a+b/2 > pr/2

and also a+ bb/2c > pr/2 because pr/2 is an integer. Write

(
u

xj

)qr
=
uqr

xqrj
= m1 · · ·ma

ma+1

xj
· · · ma+b

xj

ma+b+1 · · ·mpr

xqr−bj

,

then ma+1 . . .ma+b/x
b
j ∈ Ibb/2c because I is strongly Golod, so that ∂(I)b ⊆ Ib

b
2
c.

Furthermore, m1 · · ·ma ∈ Ia. Therefore

(
u

xj

)qr
∈ Ia+bb/2c ⊆ Ipr/2.



110

Now let v ∈ Ip/q be another monomial generator, and assume that xi|v. Then, for all

even r � 0 we have (
uv

xjxi

)qr
∈ Ipr

which implies that uv/xjxi ∈ Ip/q. Since u and v were arbitrary monomial generators,

Ip/q is strongly Golod.

Corollary 5.3.6. [34, Proposition 3.1] Let I ⊆ S be a monomial strongly Golod ideal,

then I is strongly Golod.

Proof. Choose p = q in Theorem 5.3.5.

Proposition 5.3.7. Let I ⊆ S be a monomial ideal. If p > 2q, then Ip/q is strongly

Golod.

Proof. Note that, for integers a, b, c ∈ N, and an ideal J , we have Jab/c = (Ja)b/c. In

fact, this follows from the fact that (Ja)b = Jab. To prove the proposition, note that

I2 is strongly Golod by [34, Theorem 2.3 (d)]. Therefore, by Theorem 5.3.5, we have

that Ip/q = (I2)p/2q is strongly Golod, since p > 2q by assumption.

Remark 5.3.8. Herzog and Huneke show that powers of ideals are strongly Golod.

Proposition 5.3.7 reflects this behavior. However, even when p > 2q, rational powers

Ip/q need not be actual regular powers.

If I is not strongly Golod and 2q > p > q, it is not true in general that Ip/q is

strongly Golod, as the following family of examples shows.
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Example 5.3.9. Let 2q > p > q be two positive integers and consider the ideal

I = (xy, zq) inside the polynomial ring S = k[x, y, z], where k is a field of characteristic

zero. Then

(xy)q(zq)p−q = (xyzp−q)q ∈ Ip,

that is xyzp−q ∈ Ip/q. Thus, u := y2z2p−2q ∈ ∂(Ip/q)2. On the other hand, uq =

y2qz2pq−2q2
/∈ Ip because the only monomial generator of Ip that can appear in an

integral relation for u is zpq. But

y2qnz2pqn−2q2n /∈ (zpqn)

for any n because pqn > 2pqn − 2q2n ⇐⇒ p < 2q, and we have the latter by

assumption. As a consequence, u /∈ Ip/q, and thus Ip/q is not strongly Golod.

Remark 5.3.10. If we choose p = q = 2 in Example 5.3.9, we have in addition that

Ip/q = I = I = (xy, z2) is not even Golod, because it is a complete intersection of

height two.

As a consequence, not all integrally closed ideals, even if assumed monomial, are

Golod. A more trivial example is the irrelevant maximal ideal n of S. However, as

noted above in Corollary 5.3.6, if I is a strongly Golod monomial ideal, then I is

strongly Golod. More generally, if I ⊆ S = k[x1, . . . , xn] is homogeneous, then Ij

is strongly Golod for all j > n + 1 [34, Theorem 2.11]. It is still an open question

whether Ij is strongly Golod, or, at least, Golod, for any ideal I and j > 2. Since for

j > 2, the ideal Ij is strongly Golod, one can ask the following more general question,
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which has already been raised by Craig Huneke:

Question 5.3.11. [53, Problem 6.19] Let I ⊆ S be a homogeneous strongly Golod

ideal. Is I [strongly] Golod?

Remark 5.3.12. We checked with Macaulay2 [26] that the ideal I of Example 5.2.4 is

integrally closed. Therefore, the integral closure of a product of ideals, even monomial

ideals in a polynomial ring, may not be Golod.

We end the section with a more generic question about Golodness of the ideal

I3/2. Note that for each ideal I = (xy, zq) of the family considered in Example 5.3.9,

the rational power I3/2 is not strongly Golod. However, it is Golod. In fact, it is

not hard to see that I3 = I3 = (x3y3, x2y2zq, xyz2q, z3q). As a consequence, we have

I3/2 = (x2y2, xyzd
q
2
e, zd

3q
2
e). Consider the linear form x−y, which is a non zero-divisor

modulo I3/2. The image of I3/2 in the polynomial ring S ′ = S/(x − y) ∼= k[x, z] is

(x4, x2zd
q
2
e, zd

3q
2
e). Such an ideal is easily seen to be strongly Golod, hence Golod. By

[6, Proposition 5.2.4 (2)], the ideal I3/2 is then Golod.

Question 5.3.13. Let I ⊆ S be a proper homogeneous ideal. Is I3/2 always Golod?

Is it true if I is monomial?

5.4 lcm-strongly Golod monomial ideals

In this section we introduce the notion of lcm-strongly Golod monomial ideal, that

generalizes the one of square-free strongly Golod, as defined in [34]. We then study
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the Golod property for this new class of ideals.

Let k be a field, and let S = k[x1, . . . , xn], with deg(xi) = di > 0.

Definition 5.4.1. Let m ∈ S be a monomial, and let I ⊆ S be a monomial ideal.

Define Im ⊆ I to be the ideal of S generated by the monomials of I which divide m.

We say that I is m-divisible if I = Im.

Remark 5.4.2. Note that, choosing m = x1 · · ·xn, then m-divisible simply means

squarefree.

We now recall the Taylor resolution of a monomial ideal. Let I ⊆ S be a monomial

ideal, with minimal monomial generating set {m1, . . . ,mt}. For each subset Λ ⊆

[t] := {1, . . . , t} let LΛ := lcm(mi | i ∈ Λ). Let aΛ ∈ Nn be the exponent vector of

the monomial LΛ, and let S(−aΛ) be the free module, with generator in multi-degree

aΛ. Consider the free modules Ti :=
⊕
|Λ|=i S(−aΛ), with basis {eΛ}|Λ|=i. Also, set

F0 := S. The differential τi : Ti → Ti−1 acts on an element of the basis eΛ, for Λ ⊆ [t],

|Λ| = i, as follows:

τi(eΛ) =
∑
j∈Λ

sign(j,Λ) · LΛ

LΛr{j}
· eΛr{j}

Here sign(j,Λ) is (−1)s+1 if j is the s-th element in the ordering of Λ ⊆ [t]. The

resulting complex is a free resolution of S/I over S, called the Taylor resolution. The

following was already noted in [13, Corollary 3.2], and [44, Corollary to Theorem 1].

Remark 5.4.3. [13, Corollary 3.2] Let I be an m-divisible monomial ideal. Then, the

Koszul homology H•(S/I) is Zn-multigraded, and it is concentrated in multidegrees
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aΛ′ ∈ Nn such that the monomial x
(aΛ′ )1

1 · · ·x(a′Λ)n
n = LΛ′ divides m.

In [34], given a squarefree monomial ideal, Herzog and Huneke introduce the no-

tion of squarefree strongly Golod monomial ideal. Given Remark 5.4.2, we generalize

it to the notion of lcm-strongly Golod. Let I be a monomial ideal, and let m := lcm(I)

be the least common multiple of the monomials appearing in the minimal monomial

generating set of I. By definition, I is always m-divisible. Also, if I is m′-divisible

for some other monomial m′, then m divides m′.

In what follows, we assume that the characteristic of k is zero.

Definition 5.4.4. Let I ⊆ S be a monomial ideal, and let m := lcm(I) be as defined

above. Let ∂(I)[2] denote the ideal (∂(I)2)m. We say that I is lcm-strongly Golod if

∂(I)[2] ⊆ I.

The following is the main result of the section. It is a generalization of [34,

Theorem 3.5].

Theorem 5.4.5. Let I ⊆ S be an lcm-strongly Golod monomial ideal. Then, S/I is

weakly Golod.

Proof. Let m := lcm(I), so that I is m-divisible and ∂(I)[2] ⊆ I. By Remark 5.4.3,

we can choose a k-basis of H•(S/I) consisting of elements of multidegrees αΛ, where

xαΛ divides m. Let a, b be two such elements. If ab has multidegree α ∈ Nn, such

that xα does not divide m, then necessarily ab = 0 because of the multigrading on

H•(S/I). So assume that the multidegree α of ab is such that xα divides m. By [31],
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a and b can be represented by cycles whose coefficients are k-linear combinations of

elements in ∂(I). Since I is monomial, so is ∂(I). Because of the multidegree of ab,

we then have that a and b can be represented by cycles whose coefficients are k-linear

combinations of monomials u, v ∈ ∂(I), such that the products uv divide m. Then

uv ∈ ∂(I)[2] ⊆ I for each product uv appearing in these sums, and, as a consequence,

ab = 0 in H•(S/I).

Remark 5.4.6. Given Theorem 5.4.5, it seems natural to ask whether the condition

of being Golod and weakly Golod are equivalent, at least for some classes of rings.

A recent example of Lukas Katthän shows that weakly Golod rings, even defined by

monomial ideals, do not need to be Golod [46]. This is in contrast with the claim

made in [10, Theorem 5.1], which, as noted in Section 5.2, relies on some erroneous

statements made in [45].

Discussion 5.4.7. It is easy to see that being lcm-strongly Golod is only sufficient

to be weakly Golod. For example, the ideal (xy, xz) ⊆ k[x, y, z] is even Golod [64],

but not lcm-strongly Golod. The proof of Theorem 5.4.5, as well as the proofs of [34,

Theorem 1.1] and [34, Theorem 3.5], are based on a canonical description of Koszul

cycles whose residue classes form a k-basis for the Koszul homology H•(S/I) [31]. We

want to suggest a slightly different definition of strong Golodness:

Potentially, one has to check that ∂i(f)∂j(g) ∈ I for any f, g ∈ I, and any i, j =

1, . . . , n, where ∂i = ∂/∂xi and ∂j = ∂/∂xj. However, by [31], each ∂i(f) appears as

a factor in some coefficient of a Koszul cycle, which has the form (ei ∧ . . .)⊗ ∂i(f) ∈
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K• ⊗ S/I = K•(S/I). Therefore, the corresponding product ∂i(f)∂j(g) will appear

inside some coefficient of the form

(ei ∧ ej ∧ . . .)⊗ ∂i(f)∂j(g).

For i = j, we have that ei ∧ ej = 0. Hence we may consider only products ∂i(f)∂j(g),

for i 6= j, in the definition of strongly Golod and lcm-strongly Golod. With this

modification, the ideal (xy, xz) becomes lcm-strongly Golod. The ideal (x2, xy) in the

polynomial ring k[x, y], which is lcm-strongly Golod, with this modification becomes

strongly Golod. In fact,
xy

x
· xy
x

= y2 /∈ (x2, xy) is the product that is preventing it

from being strongly Golod. However, the partial derivatives, in this case, are both

with respect to x, so we can disregard such a product.

Here follows an example of a non-squarefree ideal which is lcm-strongly Golod,

but not strongly Golod, even with the modified definition.

Example 5.4.8. Let k be a field of characteristic zero, and let I = (x2y2, x2z, y2z) ⊆

k[x, y, z]. Then I is not strongly Golod, even in the definition suggested above. In fact,

xz, yz ∈ ∂(I) come from taking derivative with respect to x and y, respectively, but

their product is xz ·yz /∈ I. However, such an element does not divide lcm(I) = x2y2z,

therefore it can be disregarded when looking at the lcm-strongly Golod condition. In

fact, one can check that ∂(I)[2] ⊆ I, that is, I is lcm-strongly Golod in this case.

As shown in [34, Proposition 3.7] for the squarefree part, if m is a monomial in S,

then the m-divisible part of a strongly Golod monomial ideal is lcm-strongly Golod.
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We record it in the next proposition.

Proposition 5.4.9. Let I ⊆ S be a strongly Golod monomial ideal, and let m be a

monomial. Then Im is lcm-strongly Golod. In particular, I is lcm-strongly Golod.

Proof. We have that

∂(Im)[2] = (∂(Im)2)m ⊆ (∂(I)2)m ⊆ Im.

As mentioned in Section 5.3, if I is a strongly Golod monomial ideal, then I is

strongly Golod. It is natural to ask the following question:

Question 5.4.10. If I ⊆ S is an lcm-strongly Golod monomial ideal, is I (lcm-

strongly) Golod? For integers p > q, is the ideal Ip/q (lcm-strongly) Golod?

The inequality p > q seems reasonable to require, given previous results.

5.5 Golodness of products and further questions

In this final section, we give some sufficient conditions for a product of ideals to be

strongly Golod, hence Golod. We end by asking some general questions about the

Golod and the strongly Golod properties.

Let k be a field of characteristic zero, and let S = k[x1, . . . , xn] be a polynomial

ring over k, with deg(xi) = di > 0. It is easy to see that arbitrary intersections
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of strongly Golod ideals are strongly Golod [34, Theorem 2.3 (a)]. Given a proper

homogeneous ideal I ⊆ S, one may ask what is the intersection of all the strongly

Golod ideals containing I. In other words, what is the smallest ideal that contains

I and that is strongly Golod. Clearly, such an ideal must contain I + ∂(I)2. On the

other hand, note that ∂(∂(I)2)) ⊆ ∂(I), therefore

∂(I + ∂(I)2)2 ⊆ I + ∂(I)2.

Thus, I + ∂(I)2 is strongly Golod, and it is indeed the smallest strongly Golod ideal

containing I.

We now introduce a sufficient condition, which is far from being necessary, for the

product of two ideals to be strongly Golod.

Definition 5.5.1. Let S = k[x1, . . . , xn] and let I, J ⊆ S be two ideals. (I, J) is

called a strongly Golod pair if ∂(I)2 ⊆ I : J and ∂(J)2 ⊆ J : I.

Note that, for examples of small size, the conditions from Definition 5.5.1 can

easily be checked with the aid of a computer. The following proposition is the main

motivation behind the definition.

Proposition 5.5.2. If (I, J) is a strongly Golod pair, then IJ is strongly Golod.

Proof. We noted above that the smallest strongly Golod ideal containing IJ is IJ +

∂(IJ)2. In our assumptions, we have

∂(IJ)2 ⊆ (∂(I)J + I∂(J))2 ⊆ ∂(I)2J2 + I2∂(J)2 + IJ ⊆ IJ.
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Therefore, IJ + ∂(IJ)2 = IJ , which is then strongly Golod.

Note that, looking at the proof of Proposition 5.5.2, one may notice that the

conditions ∂(I)2 ⊆ IJ : J2 and ∂(J)2 ⊆ IJ : I2 are sufficient in order for the product

IJ to be strongly Golod. However, when studying properties of the product IJ , one

can replace the ideal I with IJ : J without affecting the product. In fact:

IJ ⊆ (IJ : J)J ⊆ IJ,

forcing equality. Repeating the process, one gets an ascending chain of ideals con-

taining I, that eventually stabilizes. Therefore one can assume that IJ : J = I.

Similarly, one can assume that IJ : I = J . Therefore the conditions above become

∂(I)2 ⊆ IJ : J2 = (IJ : J) : J = I : J,

which is precisely the requirement in the definition of strongly Golod pair. Of course,

as long as one can write an ideal in terms of a Golod pair, one gets that the ideal is

strongly Golod. Therefore, one may keep in mind the weaker colon conditions that

come from the proof of Proposition 5.5.2. Examples of strongly Golod pairs include:

(1) (Ir, Is), for any proper ideal I ⊆ S and any integers r, s > 1.

(2) If I and J are strongly Golod, then (I, J) is a strongly Golod pair.

(3) If I ⊆ J and I is strongly Golod, then (I, J) is a strongly Golod pair.

(4) (I, I : ∂(I)2) is a strongly Golod pair for any proper ideal I ⊆ S.



120

Remark 5.5.3. Let I1, . . . , In be proper ideals in S. Assume that, for all i = 1, . . . , n

there exists j 6= i such that (Ii, Ij) is a strongly Golod pair, then the product I :=

I1 · · · In is strongly Golod. In fact

∂(I1I2 . . . In) ⊆ ∂(I1)I2 . . . In + I1∂(I2) . . . In + . . .+ I1I2 . . . ∂(In).

Thus

∂(I)2 ⊆ ∂(I1)2I2
2 · · · I2

n + I2
1∂(I2)2 · · · I2

n + . . .+ I2
1I

2
2 · · · ∂(In)2 + I.

By assumption, for each i there exists j 6= i such that ∂(Ii)
2Ij ⊆ Ii, and the claim

follows. More generally, one could define (I1, . . . , In) to be a strongly Golod n-uple

provided

∂(Ii)
2 ⊆ I : (I1 · · · Ii−1 · Ii+1 · · · In)

for all i = 1, . . . , n. Then, the above argument shows that if (I1, . . . , In) is a strongly

Golod n-uple, the product I1 · · · In is strongly Golod.

All the conditions discussed above are sufficient, but evidently not necessary, for

a product of two ideals to be Golod. We raise the following general question:

Question 5.5.4. Is there some relevant class of [pairs of] ideals for which products

are [strongly] Golod?

In particular, note that in all the examples of Section 5.2, the ideals appearing in

the product are not Golod. It is then natural to ask:
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Question 5.5.5. If one of the two ideals I1, I2 [or both] is Golod, is then S/I1I2

Golod?

Another problem relating Golod rings to products is the following. Let I, J be

two proper homogeneous ideals in a polynomial rings S = k[x1, . . . , xn], with n =

(x1, . . . , xn). Suppose that S/IJ is Cohen-Macaulay. In [41], Huneke asks whether

the Cohen-Macaulay type, that is, t(S/IJ) = dimk Extdepth(S/IJ)(k, S/IJ), is always

at least the height of IJ . This was motivated by the fact that Gorenstein rings are

never products, unless they are hypersurfaces. Thus, when S/IJ is Cohen-Macaulay

and not a hypersurface, the type is always at least two. As noted in [41], the case

when I = n and J is n-primary, follows by Krull’s height theorem. In our context, it

seems natural to ask the following question:

Question 5.5.6. Let I ⊆ S be a homogeneous ideal such that S/I is Cohen-Macaulay

and Golod. Is it true that the Cohen-Macaulay type t(S/I) is always at least ht(I)?

Is the Cohen-Macaulay assumption needed?

In [34, Proposition 2.12], Herzog and Huneke show that the Ratliff Rush filtration

of a strongly Golod ideal is strongly Golod. We obtain a similar statement.

Proposition 5.5.7. If (I, J) is a strongly Golod pair, then the ideal

⋃
n>0

(
In+1J : In

)
is strongly Golod.
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Proof. Let f ∈ S be such that fIn−1 ⊆ InJ for some n. Then fIn ⊆ In+1J . Let ∂

denote a partial derivative with respect to any variable. Taking partial derivatives,

from the containment above we obtain that

∂(f)In ⊆ fIn−1∂(I) + In∂(I)J + In+1∂(J) ⊆ In∂(I)J + In+1∂(J).

Let f, g ∈
⋃
n>0 I

n+1J : In and choose n� 0 such that fIn−1 ⊆ InJ and gIn−1 ⊆ InJ .

Then

∂(f)∂(g)I2n ⊆ I2n∂(I)2J2 + I2n+2∂(J)2 + I2n+1J ⊆ I2n+1J

because ∂(I)2J ⊆ I and I∂(J)2 ⊆ J .

In particular, Proposition 5.5.7 shows that the Ratliff-Rush closure of any power

Id, d > 2, is strongly Golod. In fact, it is enough to apply Proposition 5.5.7 to the

strongly Golod pair (Id−1, I). This already follows from [34, Proposition 2.12], since

Id is strongly Golod for any d > 2.

Given that the Ratliff-Rush closure of a strongly Golod ideal is strongly Golod we

ask:

Question 5.5.8. Given a strongly Golod ideal I ⊆ S, is every coefficient ideal of I

[strongly] Golod?

Question 5.5.8 is a more general version of Question 5.3.11. In fact, both the

integral closure and the Ratliff-Rush closure are coefficient ideals. See [63] for details

about coefficient ideals.
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We conclude the section with two questions regarding the notion of strongly Golod

ideal. The definition of strongly Golod ideals is restricted to homogeneous ideals in

a polynomial ring S = k[x1, . . . , xn], with k a field of characteristic zero. This is

because Herzog’s canonical lift of Koszul cycles [31] can be applied only under these

assumptions.

Question 5.5.9. Is there a suitable definition of strongly Golod for local rings, at

least when the ring contains a field?

Question 5.5.10. Is there a notion of strongly Golod that does not require the

characteristic of k to be zero?
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[57] Roberts, P. Le théorème d’intersection. C. R. Acad. Sci. Paris Sér. I Math.
304, 7 (1987), 177–180.
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