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Abstract 

When placed in the oral cavity, we almost immediately recognize the physical characteristics of 

food, such as its compliance, surface roughness, and geometry. Moreover, we can instinctively judge the 

amount of mastication necessary to break a food down into a bolus ready to be swallowed. The perceptual 

encoding of food during stages of oral processing is of significant importance in the research of food 

science, but efforts to reproduce percepts such as ‘firmness,’ ‘smoothness,’ and ‘thickness,’ via the 

modulation of tribological and rheological properties have been especially evasive. Furthermore, these 

efforts have overlooked roles of sensory and proprioceptive feedback from the tongue. In this work, we 

developed predictive computational models that clarify the interplay of subtypes of sensory neural afferents, 

and their capacity to contribute to the neural encoding of stimulus diameter, contact geometry, and relative 

position. First, we employed differential equation models that abstract the neural biophysics in generating 

mechanosensitive currents and spike firing. Second, we built models of afferent population, varying in 

density, that encode spatial elements of stimuli such as diameter and contact geometry. Moreover, we 

leveraged machine learning approaches to classify stimulus spatial elements through their elicited afferent 

population responses. Our efforts aim in the longer-term development of a computational platform to 

decode stimulus compliance, surface roughness, and lateral motion, via population response profiles of 

mechanosensitive afferents, as more layers of complexity in terms of stimulus contact mechanics with the 

simulated tongue become available. Furthermore, the grand aim of this effort is to provide the foundational 

steps in creating a computational platform, which can decode complex percepts, e.g. firmness, smoothness, 

and thickness.   



5 
 

Contents 
 
Overview of aims ........................................................................................................................................... 6 
Significance and Contribution ....................................................................................................................... 8 
Background .................................................................................................................................................. 10 
Aim 1. Differentiate unique contributions of neural afferent subtypes in encoding features of simulated food 
stimuli during the first bite stage of oral processing. ................................................................................... 12 

Introduction .............................................................................................................................................. 13 
Methods ................................................................................................................................................... 14 
Results ...................................................................................................................................................... 18 
Discussion ................................................................................................................................................ 22 

Aim 2:  Develop an afferent population model to encode the shape, size, position, and motion of simulated 
food stimuli during the first bite stage of oral processing. .......................................................................... 23 

Introduction .............................................................................................................................................. 24 
Methods ................................................................................................................................................... 27 
Results ...................................................................................................................................................... 34 
Discussion ................................................................................................................................................ 40 

Overall conclusions and future work ........................................................................................................... 41 
Summary of Findings .............................................................................................................................. 41 
Aim 1. ...................................................................................................................................................... 41 
Aim 2 ....................................................................................................................................................... 42 
Implications for Food Science and Industry. ........................................................................................... 43 
Future Work ............................................................................................................................................. 43 
Incorporation of Additional Afferent Subtypes. ...................................................................................... 43 
Exploration of Complex Stimuli. ............................................................................................................. 43 
Application to Oral Processing Disorders. .............................................................................................. 44 
Publications .............................................................................................................................................. 44 

References .................................................................................................................................................... 45 
 

  



6 
 

Overview of aims 

 The objective of this effort is to develop predictive computational models that will uncover the 

utility of how sensory neural afferent types signal the mechanical properties of simulated stimuli during 

oral processing. We are particularly interested in clarifying the interplay of various afferent subtypes during 

modulation of stimulus stress magnitude and vibrational frequencies, and their capacity to uniquely 

contribute to the neural encoding of various stimulus geometries, diameters, and positions over time. This 

clarification will be conducive to our understanding of the cues that are critical in informing higher level 

physical attributes of food such as compliance, surface roughness, and movement velocity. 

When we eat something, we have an almost immediate perception of its characteristics such as 

compliance, surface roughness, size, and shape. Moreover, we instinctively know the amount of mastication 

necessary to break the food down into a bolus that is ready to be swallowed, by tracking its tribological 

behavior, compliance, and geometry during oral processing. The currently accepted paradigm for creating 

new food products that are optimized for consumer preferences, is to vary their chemical composition 

through trial and error, in such a way that their mechanical properties are measurably modulated. Then, 

participants are asked to intermittently evaluate a food’s perceptual properties such as ‘firmness,’ 

‘smoothness,’ and ‘thickness’ during its breakdown, until it is swallowed. Beyond percepts alone, facial 

electromyography (EMG) can simultaneously measure chewing forces, jaw muscle activity, and motor 

movement. However, these motor-oriented efforts overlook roles of sensory and proprioceptive feedback 

from the tongue, and do not provide a computational platform for creating new food products due to 

innumerable possible variations in their chemical composition, which can be evaluated perceptually. Our 

central hypothesis is that computational models of populations of mechanosensitive afferents of the tongue 

can be built to replicate important sensory inputs, and thereby differentiate the aforementioned food 

stimulus characteristics over the spatiotemporal course of their food breakdown. In the long term, this 

approach may help curtail the need for incessant, one-off perceptual evaluation of foods, by reducing the 

input domain to subsets of food stimuli. We addressed the central hypothesis by differentiating the unique 
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contributions of afferent subtypes in encoding food stimulus features and building an afferent population 

model capable of encoding compliance, size, shape, position, and motion of food stimuli. Methods include 

i) employed differential equation models that represent a leaky-integrate-and-fire abstraction of a neuron, 

of 2 afferent subtypes (of slowly-adapting, rapidly-adapting) to generate mechanotransduction currents and 

spike firing, ii) developed an afferent population model of 25 to 5000 units (44% slowly-adapting, 56% 

rapidly-adapting) and modulating their relative density and spatial configuration to encode geometry, 

position, and size of stimuli, and leveraging machine learning approaches such as Random Forest 

classification and regression, to predict stimulus input parameters, according to population spike firing 

profiles. These methods were used to address two aims:  

Aim 1: Differentiate unique contributions of neural afferent subtypes in 

encoding features of simulated food stimuli. 

We employed computational models of neural afferents using differential equations that represent 

a leaky-integrate-and-fire abstraction of a neuron, to generate mechanotransduction currents and spike 

firing patterns, distinct for slowly-adapting and rapidly-adapting subtypes, that encode physical features of 

simulated food stimuli. These are biophysical computational models, and primarily differ from each other 

in time constant settings which represent the inactivation period of their mechanotransduction currents. As 

input to these models, we simplified the contact mechanics of stimuli derived from mechanical 

measurements in the literature, focused upon attributes of material compliance and surface roughness. 

Ramp-and-hold stimuli simulate forces during mastication and swallowing of foodstuffs. Periodic stimuli 

mimic behavior of food sliding over the tongue. Rather than using a finite element model to simulate the 

stimulus to skin interactions, we generated representative spatiotemporal stress traces over time to be 

delivered to simulated receptive fields of the afferent subtypes in normal directions. 
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Aim 2: Develop an afferent population model to decode the geometry and 

diameter of simulated food stimuli. 

We developed a population model of slowly-adapting (SA) and rapidly-adapting (RA) 

mechanosensitive afferents, varying in density, and receptive field sizes inspired by human 

neurophysiological data of the tongue and glabrous skin of the hand. The results indicate that spike firing 

response profiles of a population of 1000 afferents (44% SA, 56% RA) on 50 x 25 mm cross-sectional area 

of the tongue, can reliably differentiate stimulus geometry across a wide range of diameters from 0.05 mm 

to 20 mm, while remaining insensitive to changes in stimulus position due to high afferent density. Machine 

learning techniques were employed to make predictions of these high-level spatial attributes, based solely 

on the total number of afferents recruited, and total number of spikes elicited by a particular stimulus. 

Following efforts to mitigate risks of overfitting, using 5-fold cross-validation of training data, we achieved 

a 90.85% mean accuracy rate in geometry classification, and a 0.92 mean-squared error (R! = 0.98) for 

diameter regression using a Random Forest algorithm. Classification of relative stimulus position yielded 

accuracy rates lower than chance (50%), verifying the population model’s invariance to position 

modulation. This effort offers a foundational first step for building more complex mechanosensory models, 

affording the eventual encoding of stimulus compliance, surface roughness, and movement velocity, via 

their amalgamation with biomechanics of the human tongue. 

Significance and Contribution 

Due to discoveries regarding the detriment of foods high in sugar and fat content to our health, and 

thereby quality of life, shifting away from them has been an imperative direction in the food industry. 

However, maintaining equal levels of consumer satisfaction during this transition has been particularly 

evasive with synthetic fat and sugar substitutions that mimic the mechanical properties of the original. More 

specifically, while rigorous testing and iterative production of these newly engineered foods has been done 

to exactly replicate the rheological and tribological behaviors of their predecessors during oral processing, 
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reproducing mouthfeel percepts such as ‘thickness,’ ‘firmness,’ and ‘smoothness’ have been considerably 

more difficult. This has not been aligned with consumer preferences. Relationships between sensory 

perception and oral tribology [1], and jaw muscle activities using electromyography [2] are valuable, but 

they do not address the neural encoding of food stimuli, an intrinsic and vital aspect of perceptual 

realization. While there are other types of neural receptors in the tongue that have important contributions 

to sensory perception, such as nociceptors (pain detection), thermal receptors, and taste receptors, in this 

work we focus on a subset of low threshold mechanoreceptors specialized for informing the physical 

properties of stimuli, which is inherently valuable. Our findings have important implications for the food 

industry, particularly in the design and development of new food products that are optimized for specific 

consumer preferences, while mitigating the need for tedious psychophysical experimentation of foods 

during their mechanical breakdown. Additionally, the results of this research could inform interventions for 

individuals with oral processing impairments such as chronic xerostomia, and stroke victims who cannot 

determine when their food is ready to swallow.  

Gap in the Knowledge Base. Herein, we develop predictive computational models that uncover 

the utility of how sensory neural afferent types signal the mechanical properties of food stimuli during oral 

processing, using biophysical models. To achieve this goal, we built a population model comprised of two 

afferent subtypes, capable of encoding geometry, diameter, and position of food stimuli, and used machine 

learning techniques to predict stimulus parameters, based on their afferent population responses. As 

research on the neurophysiology of the tongue is scarce, we faced certain limitations in terms of validating 

our models biologically. First, such computational models have never been built before for afferents in the 

tongue, let alone populations of mixed afferent subtypes. Moreover, we validated our individual 

computational models based on tongue microneurography data elicited from Von-Frey monofilaments.  
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Background 

Mechanical attributes of food stimuli and their interrelations with sensory perception. A 

critical aspect of understanding consumer food selectivity and appeal to certain textures while avoiding 

others, lies in the interrelations between the physical and structural properties of food and how they are 

perceived during oral processing. As texture perception during oral processing is the emanation of output 

from multiple sensory modalities such as vision, hearing, and touch, it is particularly difficult to delineate 

what exact structural, mechanical, and surface properties of food evoke a particular percept [3]. A sensory 

method known as the Temporal Dominance of Sensation (TDS) has been used to build texture pathways to 

evaluate the dynamics of perceptions such as ‘crispiness,’ ‘brittleness,’ and ‘stickiness’ during various 

stages chewing solid foods [4], [5], [6], [7]. Through the modulation of microstructures in whey protein/k-

carrageenan mixed gels, and thereby their mechanical attributes, others have demonstrated that sensory 

percepts of soft-solid foods can be generated over the course of the different phases of oral processing; first 

compression, first bite, mastication, and before swallowing [8]. Oral muscle activity and chewing 

frequency/duration have also been strongly correlated with the sensory perception of ‘firmness’ [2].  

Single unit afferent subtypes in glabrous skin. A complex array of mechanosensory neurons 

enable us to detect objects that come into contact with our skin surface [9], [10], [11], [12]. In the glabrous 

skin of the mammalian hand, at least four distinct classes of mechanoreceptors, or afferents, have been 

discovered; each optimized for extracting particular attributes of an external stimulus. Slowly-adapting SAI 

afferents for normal indentation, slowly-adapting SAII afferents for skin stretch, rapidly-adapting RAI 

afferents for rapid skin displacement, and RAII afferents for vibration. The primary distinction between 

rapidly-adapting and slowly-adapting mechanoreceptors can be made in their spike firing patterns in 

response to a simple indenting stimulus. This stimulus will elicit a sustained response from the SA afferents 

for as long as it exists, contrary to how RA afferents transiently respond during its onset and offset periods, 

remaining quiescent for the steady-state phase.  
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Somatosensory feedback of the tongue. A technique known as microneurography affords the 

direct, single and multi-unit recordings from nerves in the peripheral nervous system, comprised of any 

nerve structure outside of the brain and spinal cord [12], [13]. Orofacial recordings from humans have 

identified multiple afferent classes, as well as their associated receptive field sizes, force detection 

thresholds, and innervation locations across the tongue and other intraoral structures [14], [15], [16], [17], 

[18]. Currently, there is concrete evidence for at least three classes in the lingual nerve; RAI and SAI, which 

terminate in the surface skin of the tongue, and proprioceptive afferents deep in the oral musculature. More 

recent efforts however, have indicated the possibility for the existence of more based on the non-supervised 

clustering of afferent calcium imaging responses in mouse tongue, including a type that exclusively 

responds to light, lateral stroking with a brush [19]. 

Computational modeling of SAI afferents. Each mechanoreceptor subtype has a specialized 

anatomical structure, known as end organs, that determine their responses to external stimuli. The SAI 

afferent’s end organ is a cluster of what is termed a Merkel cell-neurite complex [20], [21]. With mechanical 

stimulation, Merkel-cell neurite complexes produce a generator current that is converted to action 

potentials, producing spikes. Predictive computational models have been used to synthesize these 

mechanotransduction currents arising from a normally indented ramp and hold stimulus, in the context of 

a finite element skin mechanics simulation. In response to this stimulus, a stress trace is passed to a 

generator function, which calculates the generator current for one Merkel cell-neurite complex. This 

generator current (Eq. 1) is comprised of three individual currents, a slowly inactivating (SI) current 

attributed to the Merkel cell, and rapidly inactivating (RI) and ultra-slowly inactivating (USI) currents 

arising from neurites. Finally, the generator current is used to compute the afferent spike timings using a 

leaky-integrate-and-fire model (LIF) (Eq. 2), a biophysical model which essentially solves a differential 

equation for the membrane potential, and produces a spike if it exceeds a certain biologically validated 

threshold, in this case  5 mv [22], [23], [24].  Biophysical models of first order neurons are advantageous 

in comparison to stimulus dependent models, which directly fit the spike generation parameters to a 
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presented stimulus’ position, velocity, acceleration, and jerk [25], [26]. The latter reduces the physiological 

relevance of the computational model to actual neural dynamics, and makes it highly dependent on 

parameter fitting to specific stimuli. 

Population modeling of first order afferents. Reciprocal interpretation, a principle stating that 

the population response of a first order afferent can be approximated with recordings from a single fiber, 

provides the basis for simulating afferent populations [27], [28]. Since recording directly from many 

neurons simultaneously is impossible, measures have been taken to computationally visualize the response 

profiles of afferents more accurately. Population responses of rapidly-adapting (RA) afferents have shown 

sensitivity to their spatial organization, with significant differences between uniform and Gaussian 

distributions [29]. Other models have used metrics such as firing rate, spike timing, and response adaptation 

to assess the effects of skin elasticity, afferent density, and stimulus shape on simulated population 

responses with respect to the static and vibratory indentation of a wide range of stimuli [24], [26], [28], 

[30], [31], [32]. 

Aim 1. Differentiate unique contributions of neural afferent 

subtypes in encoding features of simulated food stimuli.  

Abstract 

 Upon contact, the spike firing patterns of touch afferents encode object attributes such as force, 

vibration, and spatial geometry. Computational models in cutaneous skin have sought to emulate firing 

patterns of slowly and rapidly-adapting afferents. Herein, for the tongue, we develop biophysical versions 

of such models, which rely upon functions and parameters with physiological relevance, as opposed to 

stimulus features, and are extendable to a broad range of object interactions. The models are evaluated with 

mechanical inputs relevant to the oral processing of food, in particular, across stress ranges spanning 

material compliances and periodic vibrations emulating surface sliding. The results indicate the models 
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recapitulate spike firing patterns of human afferents innervating the tongue. Moreover, predicted patterns 

of spike firing, e.g., the mean and peak firing frequency, first spike latency, and number of spikes, compare 

favorably with neural recordings across force magnitudes, as do the number of spikes per cycle across a 

range of periodic amplitudes and frequencies. For extension into a population of afferents in oral mucosa, 

these single-unit models are a starting point for the further efforts to capture the encoding of higher-level 

perceptible attributes, e.g., compliance, geometry, surface roughness, and movement velocity. 

Introduction 

 The mechanosensory capabilities of intra-oral structures, such as the tongue, play a fundamental 

role in enabling speech and the processing of food [33]. In contrast to cutaneous skin, where the encoding 

capacities of tactile afferents have been more comprehensively evaluated [9], [12], [34], [35], [36], prior 

studies are far less abundant in oral tissues [16], [19], [37], [38]. This is due, in part, to logistical challenges 

in obtaining electrophysiological recordings from afferents innervating the oral cavity, especially in 

humans. However, recent efforts in mice have begun to probe neural signaling properties via calcium 

imaging of cell bodies in trigeminal ganglion [19]. Moreover, solid mechanics measurements and models 

of the tongue are attempting to understand its nonlinear, anisotropic behaviors during speech and food 

processing [39], [40], [41].  

In effort to understand the role of mouthfeel in the oral processing of food, computational models 

of the neural dynamics of spike firing may complement empirical observations. Despite prior biophysical 

[22], [23] and stimulus-dependent models in cutaneous skin [26], [32], [42], neural dynamics models have 

not been specialized to afferents of the oral cavity. Indeed, the tissue structure and neural innervation of the 

oral cavity may prove distinct from cutaneous skin. For instance, in one of few microneurography studies 

in human tongue, slowly (SA) and rapidly-adapting (RA) afferents are present, yet distinct from their 

cutaneous counterparts, with smaller receptive fields and lower detection thresholds [37]. As well, the 

presence of non-taste filiform papillae auxiliary structures in the tongue lead to patterns of innervation that 

contrast with those of hair follicles, intermediate ridges, and sweat ducts [12], [43]. Details regarding the 
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exact end-organ morphology of these afferents remain largely unknown, but likely differ from cutaneous 

Merkel cells, Ruffini endings, Meissner corpuscles, and Pacinian corpuscles [19], [33]. We do know, from 

calcium imaging studies at trigeminal ganglion, of at least five functional types of responders innervating 

mouse tongue, differentiated in terms of their force-response relations and adaptation profiles [33]. Two of 

these types, sustained and transient responders, behave somewhat similarly to slowly and rapidly-adapting 

afferents in cutaneous skin.  

  A better understanding of the role of mouthfeel in oral processing will require evaluating how a 

population of afferents captures perceptible attributes such as material compliance, spatial geometry, surface 

roughness, and movement velocity. Computational models of the neural dynamics of single units are 

prerequisite and slowly and rapidly-adapting afferents are the most direct link to prior observations in the 

tongue. As a basis for such efforts, we can look to numerous models of cutaneous skin afferents [22], [23], 

[26], [32], [42]. Many models have been stimulus dependent, in that they rely on stimulus displacement and 

multiple of its derivatives as inputs. Such dependence can require a model to be refit to new stimuli. In 

contrast, biophysical models have internal dynamics derived from physiologically measurable time constants 

and parameters. 

  This work develops biophysical models of mechanosensitive afferents in human tongue. Ramp-and-

hold stimuli simulate forces during mastication and swallowing of foodstuffs. Periodic stimuli mimic 

behavior of food sliding over the tongue. 

Methods 

  At the core of the computational model is a generator function, which converts tissue stress into 

mechanotransduction current, before a leaky integrate-and-fire function produces spike firing. Prior 

microneurography recordings from slowly and rapidly-adapting afferents in human, with forces induced by 

von Frey monofilaments are used to initially evaluate model produced instantaneous firing frequency. Using 

an experimental approach with two primary stimulus input modes, ramp-and-hold stress magnitudes over 

eleven levels (10-100 kPa), and periodic stimulus frequencies (5 to 300 Hz) and amplitudes (3.75 and 7.50 
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kPa to mimic 0 and -6 dB) are evaluated against data from the literature [34], [35], [44]. For the ramp-and-

hold stimulus, output metrics include mean instantaneous firing frequency (IFF), peak IFF, first spike latency 

(timing of first spike after stimulus activation), and total number of spikes. For the periodic stimulus, the 

number of spikes per cycle is evaluated. 

Biophysical Generator Function 

  In Fig. 1A, the generator function takes tissue stress as input and produces mechanotransduction 

current I(t). Its mathematical form is adapted from a model specialized for slowly-adapting Merkel cell 

afferents in skin [22]. The model has been adapted to produce currents for both slowly and rapidly-adapting 

afferents, with its final parameters in Table 1.  

  The core distinction between the modeled generator functions for the SA and RA afferents lies in 

their individual mechanotransduction current components. In particular, the SA model includes three 

subcomponents of rapidly inactivating (RI), slowly inactivating (SI), and ultra slowly inactivating (USI) 

currents, which together determine the rate of current decay and adaptation to a stimulus. Each of these 

functions has time constant (𝜏"# , 𝜏$# , 𝜏%$#) derived from the literature, and unique linear transformation 

coefficients a, b, and c that determine the relative contribution of each subcomponent to overall current. 

Moreover, the SI current includes a peak-to-steady state ratio (where 𝐾$#!"#$ +	𝐾$#%&"#'( = 1). The 

𝐾$#%&"#'( parameter is effectively 0 for the RI and USI terms [22]. In contrast to the SA generator function, 

the RA version uses only the RI component and a coefficient, as this afferent type exhibits a much more 

rapidly decaying current, and spike firing to held stimuli. Finally, the subcomponents of the model are 

convolved with a stress signal which is the weighted sum of the tissue stress and its rate of change, by 

parameters g and h. Mechanotransduction current I(t) is multiplied by -1 when below 0 to produce spikes 

during stimulus retraction. A leaky integrate-and-fire (LIF) model converts current I(t) to potential u(t), 

producing a spike when potential is above a threshold of 30 mV before potential is reset [22], [23]. 

  The biophysical generator function is distinct from typical stimulus-dependent models, Fig. 1B, 

where stimulus to tissue displacement (x) is used as input, and derivatives of velocity and acceleration are 
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separated into positive and negative components, assigned weights (𝑤& −𝑤'), passed through a saturation 

filter using a separate 𝐼( parameter to generate mechanotransduction current. This type of model requires 

refitting of parameters to every new stimulus, which reduces its physiological relevance. 

 

Sensitivity Analysis 

  The model’s range of output IFF was evaluated across a range of decay time constants (𝜏"#) and 

linear transformation coefficients (a and b) which control the relative contributions of RI and SI currents. 

Fig. 2A (upper) modulates 𝜏"# of the simulated SA afferent at 1, 8, 30, and 100 ms for a ramp-and-hold 

stimulus. Fig. 2A (lower) modulates coefficient b at 2, 4, 8, and 16. Fig. 2B shows simulated RA afferent’s 

response to a periodic stimulus at 10 Hz frequency and 3.75 kPa amplitude. Time constant 𝜏"# was tested at 

Fig. 1. Distinctions between biophysical and stimulus-based generator functions. (A) Biophysical 
function where tissue stress (𝜎) and its rate is convolved with current made up of the sum of three 
subcomponents of rapidly inactivating (RI), slowly inactivating (SI), and ultra slowly inactivating (USI) 
current, which determine the rate of adaptation to a stimulus. Each subcomponent has a corresponding 
time constant (𝜏"# , 𝜏$# , 𝜏%$#), and linear transformation coefficient (a, b, c). Additionally, the SI 
component includes a peak to steady-state ratio (where 𝐾$#!"#$ +	𝐾$#%&"#'( = 1).  (B) Typical stimulus-
dependent function, where tissue displacement (x) is used as input, and its direct derivatives of velocity 
(first) and acceleration (second) are separated into positive and negative components, assigned weights 
(𝑤& −𝑤'), passed through a saturation filter using a separate 𝐼( parameter to generate the 
mechanotransduction current. The current from either model passes through a leaky integrate-and-fire 
model which accumulates potential until a threshold is reached upon which a spike is fired and then 
potential is reset to zero. 
 

Table 1.1. Parameters of Biophysical Generator function 

 Parameter 

Afferent type 𝝉𝑹𝑰(𝒎𝒔) 𝝉𝑺𝑰(𝒎𝒔) 𝝉𝑼𝑺𝑰(𝒎𝒔) a b c 𝑲𝑺𝑰	𝑺𝒕𝒆𝒂𝒅𝒚 𝑲𝑺𝑰	𝑷𝒆𝒂𝒌 g h 

Slowly-adapting 8 200 1744.6 0.74 2.75 0.07 0.13 0.87 0.4 1 

Rapidly-adapting 2.5 0 0 35 0 0 0 0 0.4 1 
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1, 1.5, 2.0 and 2.5 ms (Fig. 3B, upper), and coefficient a at 10, 20, 30, and 40 (Fig. 2B, lower). The remaining 

model parameters were constant while 𝜏"# , a, and b were varied in the sensitivity analysis. 

 

Model Fitting and Validation 

  The model’s spike firing was evaluated, with stress input derived from a 5 mN von Frey 

monofilament and microneurography recordings from SA and RA afferents (Fig. 3) [37]. To approximate 

stress at a receptive field, the force was divided by the cross-sectional area of the monofilament. Its diameter 

is 0.05 

mm, producing a maximum stress of 25 kPa, when scaled down by a factor of 10e-2. Scaling was done to 

produce stress values of the same order of magnitude as in skin mechanics models of the human finger [45]. 

The model parameters, taken with biophysical assumptions in cutaneous skin [22], were manually tuned to 

match firing rates of afferents of the tongue (Fig. 3) with the final parameters listed in Table 1.  

 

Fig. 1.2. Sensitivity of model spike firing with respect to parameter changes in the generator 
function. (A) SA afferent model’s sensitivity to changes in the 𝜏"# time constant, which subtly affects 
the rate of decay in instantaneous firing frequency (IFF), and coefficient b, which affects the magnitude 
of IFF to a large degree.  (B) RA afferent model’s sensitivity to changes in the 𝜏"# time constant and 
coefficient a, during the first 200 msec of a periodic signal. The periodic signal is delivered atop a baseline 
stress level of 25 kPa, at a frequency of 10 Hz, and amplitude of 3.75 kPa, consistent with the periodic 
stimuli utilized in Fig. 3. As is observable, in panel B (top), a larger 𝜏"# time constant prolongs the decay 
in IFF and produces a higher peak IFF. In panel B (bottom), a larger coefficient a transformation 
coefficient increases the magnitude in IFF. 
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Experiments with Ramp-and-Hold, Periodic Stimuli 

  In Fig. 4, the model’s response was evaluated over eleven stress magnitudes (10-100 kPa) [22], [45]. 

In Fig. 5, the model’s response was evaluated over periodic frequencies (5-300 Hz) and amplitudes (3.75 

kPa and 7.50 kPa to mimic amplitudes of 0 and -6 dB) [34], [35]. The periodic stimulus consisted of a 30 ms 

onset and offset duration to and from 25 kPa, with a periodic, sinusoidal stimulus from 500-1,500 ms.  

 

Results 

Ramp-and-Hold Stress Magnitudes 

  Fig. 4A gives three exemplar traces of instantaneous firing frequency at stress levels 10, 25, and 80 

kPa. Both models are sensitive to the level of input stress. The response of the simulated SA afferent displays 

sustained IFF over the course of the stimulus ramp at all three stresses. The response of the simulated RA 

afferent responds only at stimulus ramp and retraction, with the exception of a few spikes at 80 kPa due to 

slight force relaxation in this larger magnitude stimulus. These results are in line with general response 

 

 

Fig. 1.3. Comparison of SA and RA model outputs to microneurography recordings in human 
tongue. (First row) Model produced spike firing for slowly (left column) and rapidly (right column) 
adapting afferents in response to ramp-and-hold stimulation by stress curve (third row) expected in tissue 
in response to an experimentally reported 5 mN von Frey monofilament (fourth row). (Second row) 
Instantaneous firing frequency (IFF) of the models replicates the actual recordings. 
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characteristics per afferent type (Fig. 3) and  literature showing increased stress magnitude and rate increase 

IFF magnitude [44].  

 In Fig. 4B, the average IFF over the stimulus duration is shown across eleven magnitudes of stress. 

The response of the SA afferent model consistently exhibits a higher average firing rate than the RA model 

across stress levels, as it is not responding during the stimulus hold. Fig. 4C shows both models’ peak IFF, 

first spike latency, and total number of spikes across stress levels. Fig. 4D compares normalized ranges 

(difference between minimum and maximum) for peak IFF, first spike latency, and number of spikes to prior 

work [44]. In particular, this study employed nine compliant, flat discs with stiffness from 0.21–7.79 mm/N, 

producing a large range of stress at the contact interface. Microneurography recordings in humans were 

collected from SA and RA afferents at force levels of 1, 2, 4 N. The SA and RA models’ spike firing were 

compared to results obtained at 1 N across that paper’s range of compliances. The SA and RA afferent 

models display similar behavior in terms of these metrics and their directionality, except for the peak IFF of 

the RA model. This may be due in part to differences in experimental conditions, as well as higher than 

expected sensitivity to change in stress by the modeled RA afferent. Relative to SA model, the RA model’s 

peak firing rates are consistently higher across stress levels. The RA model saturates at 60 kPa, causing the 

peak IFF to remain at 500 Hz at higher stress levels until 100 kPa, which is not observed in actual neural 

data, and indicates an area yet to be addressed. First spike latency is consistently higher for the SA model, 

which is expected due to the RA afferent’s sensitivity to change in stress. The SA model also produces more 

spikes, due to its sustained response to stimuli, relative to the RA’s transient behavior.  

Periodic Sinusoidal Frequencies and Amplitudes 

  In Fig. 5A, exemplar spike trains are shown for SA and RA models, in addition to their 

corresponding instantaneous firing frequency and stress traces, for a stimulus that ramps to 25 kPa, and 

includes a sinusoidal stress signal from 500 to 1,500 ms at 10 Hz. The two amplitudes exhibit distinct firing 

properties, with the 7.5 kPa case resulting in higher IFF during the periodic portion of the stimulus. This 

difference in firing is characterized by the number of spikes per cycle during the first 200 ms of the sinusoid 
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Fig. 1.4. Model responses across ramp-and-hold stress magnitudes. (A) Instantaneous firing 
frequency of slowly (green) and rapidly (blue) adapting models in response to ramp-and-hold stress 
magnitudes 10, 25, and 80 kPa. (B) Model derived average IFF per afferent type across all stress levels. 
Colored data points correspond to traces in panel A. (C) Peak IFF, first spike latency, and number of 
spikes across all stress levels. (D) Normalized relative differences of the summary statistics presented in 
panel C, captured across levels, in comparison to prior microneurography recordings to compliant stimuli 
which vary in effective force. The SA and RA afferent models display similar behavior in terms of these 
metrics and their directionality, except for peak IFF of the RA model, where there is a prominent 
difference with that of the neural recordings.   



21 
 

 

 
Fig. 1.5. Model responses across periodic frequencies and amplitudes. (A) Spikes and IFF produced 
by SA and RA models upon low (3.75 kPa) and high (7.50 kPa) amplitudes of periodic input. (B) 
Magnified view of spikes in relation to stress oscillations during the first 200 ms of the sinusoidal signal. 
The frequency of periodic stimulus has an inverse relationship with the total number of spikes produced 
in each of its cycles. (C) Total number of spikes per cycle produced (upper panel) by the model at two 
amplitudes and five frequencies in comparison to (lower panel) microneurography data at two amplitudes 
of 0 and -6 dB and six frequencies. The model and experimental amplitudes share the same power ratio, 
and are identical to those of panels A and B. The models’ drop in the number of spikes per cycle with 
increase in frequency is consistent with the microneurography recordings. However, the number of spikes 
per cycle generated by the model are slightly higher. This is likely due to experimental stimulus 
differences in the absolute values of baseline stress and amplitudes of the periodic stimulus. More 
specifically, the microneurography data were collected with pure sinusoidal stimulation and not on top 
of the stress ramp into the skin as done with the model.  
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(Fig. 5B). The number of spikes per cycle are shown at 10 Hz with a high amplitude for the SA model, and 

40 Hz with a low amplitude for the RA model. The number of spikes per cycle exhibit an inverse 

relationship with the frequency of the stimulus. Fig. 5C compares the number of spikes per cycle generated 

by the model for two amplitudes, and frequencies of 5, 10, 20, 40, 100, and 300 Hz with microneurography 

from SA and RA afferents in cutaneous skin [34] in response to sinusoidal skin displacements at similar 

frequencies and amplitude ratios. The models behave similarly in terms of spikes per cycle, with the RA 

model generally more sensitive across frequencies, and exhibiting the expected inverse relationship 

between frequency and number of spikes per cycle.  

Discussion 

The work  in Aim 1 develops computational models for SA and RA mechanosensory afferents in 

human tongue. The models recapitulate the general spike firing patterns observed in microneurography 

recordings [37]. This work’s focus on afferents of the oral cavity is distinguished from prior efforts in 

cutaneous skin [22], [23]. To simulate the range of forces occurring during mastication, as well as sliding 

behavior over a single afferent’s receptive field, the model evaluates the encoding of stress magnitudes of 

ramp-and-hold stimuli and frequency/amplitude pairs of periodic stimuli. Such single-unit models are a 

building block towards population models as tied to the oral processing of food, likely to encode 

compliance, surface roughness, geometry, and movement velocity.  

This effort centers upon biophysically relevant models, which differ from stimulus dependent 

models, in that they are fitted directly to the neurophysiology of mechanosensory afferents, and not the 

underlying stimulus. In particular, stimulus dependent computational models, such as those presented in 

[26], [42], employ assigned weights to tissue displacement and its derivatives to produce spike firing. Such 

dependence can require a model to be refit to new stimuli. Biophysical model parameters used herein are 

tuned from prior reports for slowly-adapting Merkel cell afferents in cutaneous skin, only quite minimally. 

Future work may be done to compare distinctions and implications in the parameters between body sites. 
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 Prior efforts in the tongue have uncovered at least five functional types of afferents, including sustained 

and transient responders [16], [19], [37]. However, the end-organ morphology of these responders remains 

poorly understood, despite their behavioral similarities in spike firing responses with  afferents in cutaneous 

skin [9], [12], [34], [36]. Microneurography in the human tongue poses significant logistical challenges, 

limiting the likelihood of a substantial increase in empirical data for various stimulation scenarios in the 

foreseeable future. Therefore, developing robust computational models of afferent populations may prove 

valuable to bridge gaps between neural mechanosensation and high-level perception in the oral cavity. 

Areas for model improvement are first in its producing a higher than expected sensitivity to changes 

in stress for the RA afferent, particularly in terms of peak IFF. Second, the number of spikes per cycle 

evoked by the model for periodic stimuli are slightly higher than what has been reported [34]. More 

exhaustive parameter tuning methods such as grid search or Bayesian optimization might be employed in 

the future to address such discrepancies.  

Aim 2:  Develop an afferent population model to decode the 

geometry and diameter of simulated food stimuli. 

Abstract 

Sensory feedback from interactions with the tongue helps in encoding of the qualities of food during 

stages of oral processing. To augment physical mechanical measurements and perceptual studies in this 

domain, computational biophysical models of single mechanosensitive afferents have been developed to 

recapitulate spike firing patterns of human afferents innervating the tongue. However, the tongue is 

populated with thousands of single afferents, and from such population responses arise higher-level 

perceptible spatial attributes, e.g., stimulus diameter and geometry. Herein, we develop a population model 

of slowly-adapting (SA) and rapidly-adapting (RA) mechanosensitive afferents that vary in density and 

receptive field sizes, as informed by published human neurophysiological data from the tongue and the 
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glabrous skin of the hand. Configured in a population of 1,000 single afferent models (44% SA, 56% RA) 

over 50 by 25 mm cross-sectional area of the tongue, the model generates spike firing responses that can 

readily differentiate a set of 11 stimulus diameters from 0.05 to 20 mm, as well as blunt and curved 

geometric tips, while remaining insensitive to changes in stimulus position. Moreover, a Random Forest 

machine learning algorithm was employed to differentiate the stimuli from high-level spatial attributes, 

based on the total number of afferents recruited and total number of spikes elicited. Following efforts to 

mitigate risks of overfitting, using augmentation and cross-validation of training data, we achieved an 

87.1% accuracy rate in classifying stimulus geometry, and a 0.55 mean-squared error (R! = 0.99) for 

diameter regression. Classification of the relative position of the stimulus yielded an approximately 50.5% 

mean accuracy rate, verifying the population model’s invariance to stimulus position. This effort offers a 

foundational first step for building more complex mechanosensory models, affording the eventual encoding 

of stimulus compliance, surface roughness, and movement velocity, via their amalgamation with 

biomechanics of the human tongue.  

Introduction 

The sensory capabilities of the tongue are essential for encoding the perceptual qualities of food 

during oral processing, otherwise referred to as mouthfeel, through terms like ‘firmness,’ ‘smoothness,’ and 

‘thickness.’ Numerous prior efforts have sought to study the encoding of such high-level attributes by 

evaluating the biomechanics of interactions of particular substances and the tongue. These approaches have 

sought to modulate tribological and rheological properties, e.g., textures of edible substances, to uncover 

whether they can be decoded by oral processing behaviors such as jaw movement and muscle activity, 

coupled with mastication forces, frequency, and duration [1], [2], [3], [4], [5], [6], [7], [8], [46]. Others, 

through solid mechanics measurements of the tongue, have tried to understand its nonlinear, anisotropic 

properties during speech and food processing [39], [40], [41]. Distinct from these biomechanical 

approaches, psychophysical methods, such as temporal dominance of sensation (TDS), have evaluated the 

dynamics of mouthfeel percepts such as ‘crispiness,’ ‘brittleness,’ and ‘stickiness’ during various stages of 
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chewing solid foods [5], [6]. These efforts report the subjective responses of human participants via 

numerical ratio scales at time intervals between 1 and 60 sec. [47].. Aside from these two distinct 

approaches – surface mechanics at the tongue and human perceptual responses – only a few efforts have 

sought to understand neural encoding mechanisms in between, i.e., input-output responses of peripheral 

neural afferents in signaling sensory and proprioceptive mouthfeel percepts. 

A few empirical efforts have sought to measure peripheral neural responses underlying the tongue’s 

sensory system, though at a rate far less than for cutaneous skin. Indeed, single neuron microneurography 

has been conducted in the  lingual nerve innervating the human tongue [15], [16], [17], [37], while calcium 

imaging studies in mice have emerged to study populations of sensory cell bodies in the trigeminal ganglion 

[33]. While microneurography in humans may be easier to connect with perceptual responses, as opposed 

to animal models, recording directly from many afferents simultaneously is impossible, as attaining neural 

recordings in humans are often risky and tedious, due to tongue innervating nerves near the neck and head. 

From the latter studies, we have begun to learn of functional similarities to slowly and rapidly-adapting 

afferent subtypes of cutaneous skin, though with distinctions in input-output response properties, receptive 

field sizes, and the ratio of slowly to rapidly-adapting units [19], [33], [43]. However, such studies are 

limited to animal models, where it is more challenging to conduct perceptual experiments and have evolved 

distinct dietary characteristics. For these reasons, computational models offer a practical approach. 

In Aim 1, we developed and validated single unit, biophysical models of mechanosensitive 

afferents for the human tongue, which encode ramp-and-hold forces to simulate mastication and swallowing 

foodstuffs, and periodic movements to emulate food sliding over the tongue. However, a model of a 

population of afferents is sought as the tongue is populated with thousands of single afferents, and from 

such population responses arise perceptible spatial attributes, e.g., stimulus diameter, geometry, and motion 

of food interactions. Indeed, prior efforts in cutaneous skin have produced population responses, via top-

down definition of metrics tied to overall firing magnitude and rate, between afferent spike timing. Such 

models have sought to evaluate a simulated population’s response given distinct afferent densities, spatial 
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arrangements, stimulus geometries, and skin elasticities [26], [28], [30], [31], [32], [48]. For instance, Guclu 

and Bolanowski showed that spatial organization of rapidly-adapting afferents affect their population 

responses, with significant differences reported between uniform and Gaussian distributions [29]. In 

general, the principle of reciprocal interpretation [27], [28] – which posits that the collective response of an 

afferent population can be inferred from the response of individual, or a small subset of afferents– provides 

the basis for computational approximation of afferent population responses. That said, all of the prior efforts 

have been designed and validated for tactile afferents in cutaneous skin. Moreover, in contrast with these 

top down approaches – where metrics such as firing rate and first spike latency are defined a priori – many 

machine learning and statistical inference efforts have used a bottom up approach to learn stimulus metrics 

from population response profiles [49], [50], [51], [52], [53], [54], [55], [56], [57]. For instance, advanced 

techniques coupled with information-theoretic analysis [58], [59] have shown that stimulus size, vibrational 

frequency, ramp length, and ramp amplitude can be decoded by the activity of afferent populations, varying 

in density, in glabrous skin of hand [54]. 

Herein, to generate a population response to decode stimulus geometry and diameter, we develop 

a computational model in the context of single unit models, receptive field sizes, and ratios between SA 

and RA afferents attuned to the tongue. We seek to identify the optimal population density to complete 

these tasks, while remaining insensitive to changes in stimulus position over a 2D cross-sectional area 

representing the tongue. Moreover, in addition to the traditional statistical evaluation of population 

responses by metrics of total spikes and number of afferents recruited, a machine learning algorithm is 

employed to classify a presented stimulus diameter and geometry. Overall, this effort seeks to establish a 

foundational first step for building more complex mechanosensory models, affording the eventual encoding 

of stimulus compliance, surface roughness, and movement velocity, via their amalgamation with 

biomechanics of the human tongue.  
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Methods 

The single unit models developed for slowly-adapting and rapidly-adapting afferents in Aim 1 were 

adapted for response to stimuli that were not directly above their receptive field. The core of the biophysical 

model for neural dynamics, i.e., the generator function and leaky-integrate-and-fire model (LIF), as well as 

their parameters, were not modified. By employing this new spatially sensitive single-unit model, a map 

was developed on a 50 x 25 mm cross-sectional area of a simulated human tongue. The SA and RA afferents 

were distributed according to a uniform probability density function, with varying total afferent densities 

and receptive field sizes. The ratio between SA and RA afferents remained constant at 0.786 (44% SA, 56% 

RA), while stimuli of varying tip geometry (curved/blunt), diameter, and relative position were indented 

onto the population. The total number of recruited afferents per subtype, and the total number of spikes per 

subtype elicited by the stimulation were used as fundamental population metrics to evaluate whether 

geometry, diameter, and position can be differentiated. A predictive machine learning model (Random 

Forest) was used to classify stimulus spatial elements according to their spike firing metrics at the 

population level.  

Computational Experiment I. Spatial Model of Single-unit Afferents 

Assuming reciprocal interpretation, a spatial response profile was built for a blunt and curved 

stimulus, as they were indented normally at increments of 0.2 mm over the receptive field of a single SA 

or RA afferent, as shown in Fig. 2.1. The response profile was designed based on neural data derived from 

[60], [61],  where the normalized response of an afferent was reported to be approximately 20% of its 

absolute value in the center of a blunt stimulus, with respect to its edges (Fig 2.1A). As an approximation 

for a curved stimulus, it was assumed that this response profile is inverted, and that the normalized response 

of a single afferent will be 20% of its absolute value at the edges of the stimulus contact area (Fig 2.1B). 
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The receptive field sizes for the SA (1, 10, 19.6 mm!) and RA (1, 6.5, 12.5 mm!) afferent subtypes were 

derived from [62], where 10 and 6.5 mm! were chosen as median values of what was reported as the 

smallest and largest receptive field size for slowly-adapting and rapidly-adapting afferents in human 

glabrous skin of the hand (rounded up to the nearest whole number), respectively. A single unit will produce 

a firing response depending on its Euclidean distance from the center (curved), or edge (blunt) of the 

stimulus, using the same biophysical computational model developed and validated in Aim 1. The 

piecewise functions governing the absolute value of normal stress, with respect to its distance from the 

 

Fig. 2.1. Number of total spikes elicited by a blunt and curved stimulus, across receptive field sizes. 
A stimulus is normally indented at 50 distinct spatial locations, moving from -5 to 5 mm at a resolution 
of 0.2 mm. The stimulus was 3.17 mm in diameter for all experiments. The number of spikes are recorded 
in response to a blunt (A) and curved (B) tip stimulus, as the receptive field sizes of the SA (1 to 19.6 
mm!) and RA (1 to 12.5 mm!) afferents are modulated. The blunt stimulus elicits a response which 
produces maximal stress at the edges of the stimulus, whereas the curved stimulus produces the maximum 
at the center of the stimulus.   
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center of an afferent’s receptive field are shown in Eq. 1 (blunt stimulus) and Eq. 2 (curved stimulus). 

Where 𝜎 is normal stress, (𝑥), 𝑦)) are the position of the stimulus center, (𝑥* , 𝑦*) are the position of the 

receptive field center, 𝑟) is the radius of the stimulus, 𝑟"+ is the radius of the receptive field, and 𝜀 is the 

computational tolerance.  

Computational Experiment II. Population Model of Afferents in Human Tongue 

A population model of afferents was simulated by distributing the single units tuned in 

Computational Experiment I, over a 50 x 25 mm cross-section of a hypothetical, two-dimensional human 

tongue. This model receives as input, a single stress trace and stimulus metrics, e.g., diameter, geometry, 

and calculates the normal stress over time on the receptive field of each afferent in the population, according 

to its receptive field center’s distance from the stimulus edge, or center for curved stimuli. The normal stress 

traces of each afferent are then received by the generator function and leaky-integrate-and-fire model, 
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developed in Aim 1, subsequently producing spike times, based on the afferent subtype, e.g. SA or RA. 

Spike times and afferent recruitment were aggregated across the population to produce outputs of total 

number of spikes, and total number of afferents recruited, per subtype. The afferent locations were 

 

Fig. 2.2. Population model simulation of blunt (top) and curved (bottom) stimulus. A sample 
simulation of the population model of afferents over a 25 x 50 mm cross-section of the tongue is 
shown, for a 10 mm diameter stimulus. Afferent locations were produced through a uniform 
distribution for both stimulus types, as well as a uniform distribution for each afferent’s receptive 
field size. The viable options for SA receptive field sizes were 1, 10, 19.6 mm!, and 1, 6.5, 12.5 
mm! for RA afferents. The opacity of the afferents’ receptive fields are determined by their response 
intensity, dependent on their Euclidean distance from the edge for the blunt stimulus, and center for 
the curved stimulus, respectively. This simulation was run with 1000 total afferents, with 44% SA 
and 56% RA. The distribution of afferent subtypes remains constant throughout this effort, with a 
44% probability of being SA, and 56% probability of being an RA afferent.    
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distributed using a uniform probability density function, with a 44% probability of the subtype being SA, 

and a 56% probability of being RA, as reported for the glabrous skin of the human hand [62]. The total 

number of afferents could be modulated as desired, but the distribution between subtypes were kept constant 

in this effort. The afferent receptive field sizes were also determined from a uniform probability density 

function A sample simulation for a blunt and curved stimulus is shown in Fig. 2.2., with a total of 1000 

afferents (n = 1000) across both subtypes, for a 10 mm diameter stimulus at two distinct positions. A darker 

opacity for a particular afferent’s receptive field signals a higher firing intensity, based its distance from 

the stimulus center, dependent on its geometry. 

The total number of afferents in the population were chosen by optimizing model outputs for 

minimal relative variance in the two fundamental population metrics of total number of spikes and total 

number of afferents recruited per subtype, as the spatial position of the stimuli were modulated. In Fig. 2.3., 

population responses were calculated and recorded for the SA and RA afferents separately, at four (x, y) 

mm positions of (10, 5), (40, 5), (10, 20), and (40, 20) mm, as the total number of afferents were modulated 

to seven quantities varying from 25 to 5000. A 10 mm diameter, blunt stimulus was used for this simulation. 

While it can be gleaned from Fig. 2.3 that the relative variance between the population metrics decreases 

significantly after 500 afferents, a more precise quantitative measure of variance is presented in Fig. 2.4. 

via the mean coefficient of variation for the total number of spikes and total afferents recruited, over the 

aforementioned four positions. The goal from this section of the work was to build a model that is spatially 

invariant. In particular, a population model that is not extremely sensitive to the relative position of the 

stimulus, which was achieved by using 1000 total afferents, with no significant reduction in the coefficient 

of variation above this point.  

Computational Experiments III. Differentiation of Stimulus Geometry and Diameter 

Population responses were simulated by the computational model across 20 (x, y) mm positions 

over the tongue cross-section, with possible values for x being 10, 20, 25, 30, 40 mm, and possible values 

for y being 5, 10, 15, 20 mm. The stimulus geometry was modulated between a curved and blunt tip, each 
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designed to produce distinctive stress distribution profiles at the contact interface. For both stimulus 

geometries, simulations were run across 10 diameters ranging from 0.05 to 20 mm. A diameter of 3.17 mm 

was also tested in addition to the others, in an effort to relate stimulus sizes to prior literature [31]. The total 

number spikes produced by every afferent that was activated in the population during the stimulus 

indentation (onset, hold, offset), and the total number of afferents recruited – an afferent was considered 

recruited if it produces at least one spike over the experiment duration – were compared across both stimulus 

geometries, and all 11 diameters. Pairwise t-tests were performed for both population metrics across all 

diameters, to test statistical significance of the differences in mean between the curved and blunt stimulus. 

For the 3.17 mm diameter stimulus, the temporal accumulation of these population metrics was collected 

as well across the 20 spatial positions, in an effort to visualize whether the curved and blunt stimulus are 

differentiable before the terminal state of the stimulus.  

Computational Experiment IV. Prediction of Stimulus Geometry, Position, and Diameter using 

Population Response Metrics 

A Random Forest algorithm, with 5-fold cross-validation, and a 70/30 train-test split of data was 

used to make predictions of stimulus geometry, position, and diameter. The four features used for training 

and fitting the Random Forest model were the total number of spikes for SA, total number of spikes for 

RA, total number of recruited SA afferents, and total number of recruited RA afferents, over the entirety of 

the population. 5-fold cross validation were performed to mitigate the risk of overfitting.  
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Fig. 2.3. Normalized population responses of SA and RA afferents as total afferent density 
increases. Normalized population responses for total number of spikes (top) and total afferents recruited 
(bottom) are shown as the afferent density is increased from 25 to 5000. This simulation was run at four 
distinct positions on the tongue cross-section, characterized by the (x, y) mm pairs of (10, 5), (40, 5), 
(10, 20), and (40, 20) mm. The relative variance between the responses for SA and RA decreases as the 
afferent density increases. This decrease in variance is especially noticeable above 500 afferents. The 
stimulus had a blunt tip, and a diameter of 10 mm. 
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Results 

Computational Experiment III. Differentiation of Stimulus Geometry and Diameter 

An in-depth analysis of the 3.17 mm diameter stimulus is presented in Fig. 2.5 and Fig. 2.6 for 

1000 total afferents. In Fig. 2.5, the distribution of the population metrics is shown for a curved and blunt 

 

Fig. 2.4. Coefficient of variation for population metrics across afferent densities. Building upon 
Fig. 2.3., the mean coefficient of variation is shown for population metrics of total spikes and total 
number of afferents recruited, as a more precise measure of relative variance as afferent density 
increases. The population model is stable at 1000 afferents, which was chosen to run further 
experiments. The stimulus used was blunt, with a 10 mm diameter, indented at 4 distinct positions, as in 
Fig. 2.3. 
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stimulus across 20 positions, with separate boxplots for the SA and RA subtypes. The stimulus geometry 

is reliably differentiated by the model for both afferent subtypes at the terminal state of the experiment, 

with slightly higher median values elicited by the RA afferent. This can be attributed to the higher density 

of RA afferents in the population, as compared to SA. In Fig. 2.6, the accumulation of median population 

metrics is shown over time, for the curved and blunt stimuli. The shaded regions indicate the inter-quartile 

range (IQR). Once again, stimulus geometry is reliably differentiable, over the entire duration of the 

experiment with the blunt stimulus producing a higher number of spikes and recruited afferents overall. 

 

 

 

Fig. 2.5. Comparison of population responses for blunt and curved stimuli. (A) Population response 
distributions across 20 distinct spatial points of stimulation for a curved and blunt stimulus, of a 3.17 mm 
diameter. The stimulus type is reliably differentiated across both population metrics of total spikes (top) 
and total afferents recruited (bottom). The median RA response is slightly higher than the median SA 
response for both metrics.  
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In Fig. 2.7, a more comprehensive experiment is shown across 11 stimulus diameters, ranging from 

0.05 to 20 mm for 1000 afferents. Each stimulus was indented at the same 20 positions (n = 20) as the 3.17 

mm stimulus. Error bars indicate standard deviation. Blunt and curved stimuli are robustly differentiable 

across a wide range of diameters, with pairwise t-tests performed at each diameter/population metric pair 

to show statistical significance. These results are shown in Table 2.1, with highly significant differences in 

mean for every case (p-value < 0.01), except for the total number of recruited RA afferents for the 20 mm 

stimulus (p = 0.0694). Within a stimulus geometry type, the diameters are highly differentiable for values 

larger than 1.0 mm, but only slightly different for diameters 0.5 mm and smaller. 

 

Fig. 2.6. Temporal accumulation of median population responses. (A) Median population responses 
over time, as the 3.17 mm diameter stimulus is indented, across 20 distinct points on the tongue cross-
section. Blunt and curved stimuli are reliably differentiable over time for both population metrics, with 
the blunt stimulus consistently eliciting a higher rate of accumulation. Shaded regions indicate the inter-
quartile range (IQR) for each metric.  
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Computational Experiment IV. Prediction of Stimulus Geometry, Position, and Diameter 

In Fig. 2.8, Random Forest classification was performed, using 5-fold cross-validation to mitigate the risk 

of overfitting, was performed for classifying stimulus geometry (top left), and relative position (X 

dimension top right, Y dimension bottom left). The data included population responses for curved and blunt 

stimuli, at 20 positions, and at all diameters used in Fig. 2.7.  The model can reliably classify geometry 

(mean accuracy 90.85%), but below chance (50% accuracy) for most x (mean accuracy 40.9%) and y 

positions (mean accuracy 43.1%). 

 

Fig. 2.7. Population responses for blunt and curved stimuli across stimulus diameters. As a 
comprehensive experiment to compare blunt and curved stimuli, the stimulus diameter was modulated 
from 0.05 to 20 mm, at 20 distinct spatial points, while population responses were recorded. The data 
for the 3.17 mm stimulus were included here to showcase a direct comparison to other stimulus 
diameters. Blunt and curved stimuli are robustly differentiable across a wide range of diameters, with 
pairwise t-tests performed at each diameter to show statistical significance. These results are shown in 
Table 2.1, with highly significant differences in mean.   
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Table 2.1. Statistical significance of differences between curved and blunt stimuli 

Diameter (mm) Metric t-statistic p-value 
0.05 SA Total Spikes 8.2153 < 0.0001 
0.05 RA Total Spikes 4.7524 0.0001 

0.05 SA Total Afferents 
Recruited 6.1677 < 0.0001 

0.05 RA Total Afferents 
Recruited 2.0811 0.0444 

0.1 SA Total Spikes 8.2341 < 0.0001 
0.1 RA Total Spikes 4.8281 0.0001 

0.1 SA Total Afferents 
Recruited 6.0184 < 0.0001 

0.1 RA Total Afferents 
Recruited 2.0582 0.0468 

0.25 SA Total Spikes 7.9718 < 0.0001 
0.25 RA Total Spikes 5.078 0.0001 

0.25 SA Total Afferents 
Recruited 5.4341 < 0.0001 

0.25 RA Total Afferents 
Recruited 2.2026 0.0339 

0.5 SA Total Spikes 8.208 < 0.0001 
0.5 RA Total Spikes 5.5864 < 0.0001 

0.5 SA Total Afferents 
Recruited 6.0885 < 0.0001 

0.5 RA Total Afferents 
Recruited 2.5001 0.017 

1 SA Total Spikes 8.2967 < 0.0001 
1 RA Total Spikes 6.7761 < 0.0001 

1 SA Total Afferents 
Recruited 5.5968 < 0.0001 

1 RA Total Afferents 
Recruited 3.6076 0.0009 

2.5 SA Total Spikes 8.8716 < 0.0001 
2.5 RA Total Spikes 7.9534 < 0.0001 

2.5 SA Total Afferents 
Recruited 7.6538 < 0.0001 

2.5 RA Total Afferents 
Recruited 4.3877 0.0001 

3.17 SA Total Spikes 8.9339 < 0.0001 
3.17 RA Total Spikes 8.363 < 0.0001 

3.17 SA Total Afferents 
Recruited 7.8903 < 0.0001 

3.17 RA Total Afferents 
Recruited 4.4082 0.0001 

5 SA Total Spikes 11.2133 < 0.0001 
5 RA Total Spikes 9.8932 < 0.0001 

5 SA Total Afferents 
Recruited 9.7146 < 0.0001 

5 RA Total Afferents 
Recruited 4.3703 0.0001 

10 SA Total Spikes 11.0785 < 0.0001 
10 RA Total Spikes 6.9241 < 0.0001 

10 SA Total Afferents 
Recruited 9.373 < 0.0001 

10 RA Total Afferents 
Recruited 3.4301 0.0015 

15 SA Total Spikes 7.9064 < 0.0001 
15 RA Total Spikes 5.9398 < 0.0001 

15 SA Total Afferents 
Recruited 9.0166 < 0.0001 

15 RA Total Afferents 
Recruited 3.4381 0.0015 

20 SA Total Spikes 4.8634 < 0.0001 
20 RA Total Spikes 3.1053 0.004 

20 SA Total Afferents 
Recruited 5.1995 < 0.0001 

20 RA Total Afferents 
Recruited 1.8698 0.0694 
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This indicates the model is invariant in response to spatial modulation of the stimulus, meaning the afferent 

density is sufficient at 1000 afferents. Using the same overfitting prevention techniques, Random Forest 

regression was implemented for diameter prediction. This yielded a mean-squared error of 0.92 mm!, and 

an 𝑅! score of 0.98, indicating robust stimulus diameter prediction. 

Fig. 2.8. Prediction of stimulus geometry, relative position, and diameter using a Random Forest 
algorithm. Random Forest classification, using 5-fold cross-validation to mitigate the risk of 
overfitting, was performed for classifying stimulus geometry (top left), diameter (top right), and relative 
position (X dimension bottom left, Y dimension bottom right). The data included population responses 
for curved and blunt stimuli, at 20 positions, and at all diameters used in Fig. 2.7.  The model can reliably 
classify geometry (mean accuracy 90.85%), but below  chance (50% accuracy) for most x (mean 
accuracy 40.9%) and y (mean accuracy 43.1%) positions. This indicates the model is invariant in 
response to spatial modulation of the stimulus, meaning the afferent density is sufficient at 1000 
afferents. Using the same overfitting prevention techniques, Random Forest regression was 
implemented for diameter prediction. This yielded an MSE of 0.92, and an 𝑅! score of 0.98, indicating 
robust stimulus diameter prediction. 
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Discussion 

This work develops a biophysical afferent population model to encode the geometry and diameter, 

of simulated food stimuli. The model focuses on how a population of slowly-adapting and rapidly-adapting 

mechanosensory afferents, varying in density and receptive field sizes, can differentiate stimulus geometry 

and diameter, as they are indented at distinct positions. This effort extends beyond single-unit models (Aim 

1), to capture emergent population-level behaviors, essential for understanding the neural encoding of high-

level perceptible attributes. 

Population response metrics, such as total number of spikes and recruited afferents, were used as 

the fundamental method to differentiate blunt and curved stimuli across a range of 11 diameters, and at 20 

distinct positions. The results, confirmed through statistical analyses and machine learning techniques, 

indicate that these metrics can indeed encode the shape and size of food stimuli, although is model’s efficacy 

in differentiating spatial positioning is less robust, performing only slightly above chance (50% accuracy). 

However, this insensitivity is positive in the sense that a human tongue will likely perform in the same way, 

given its high afferent density. For instance, two stimuli of identical force and diameter will elicit identical 

perceptual cues on the tongue, albeit at two distinct points of contact. In retrospect, in predicting stimulus 

position, an improved method would be to train a regression model on the L2-norm of (x, y) mm pairs, 

using a point of reference, such as the center of the tongue cross section, as the origin. This would combine 

both dimensions into a single value, rather than requiring two separate, discretized classifications, which 

may be causing information loss. 

This work offers a foundational step towards developing more complex biophysical models of 

tongue that are able to encode higher level perceptible attributes such as stimulus compliance, surface 

roughness, movement velocity, and dynamic changes during the breakdown of food due to mastication. 

However, empirical biomechanical data and finite element models of the tongue are a prerequisite for this 

advancement. 
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Overall conclusions and future work 

In this work, we developed predictive computational models that clarify the interplay of subtypes 

of sensory neural afferents, and their capacity to contribute to the neural encoding of stimulus diameter, 

contact geometry, and relative position. First, we employed differential equation models that abstract the 

neural biophysics in generating mechanosensitive currents and spike firing. Second, we built models of 

afferent population, varying in density, that encode spatial elements of stimuli such as diameter and contact 

geometry. Moreover, we leveraged machine learning approaches to classify stimulus spatial elements 

through their elicited afferent population responses.  

Our efforts aim in the longer-term development of a computational platform to decode stimulus 

compliance, surface roughness, and lateral motion, via population response profiles of mechanosensitive 

afferents, as more layers of complexity in terms of stimulus contact mechanics with the simulated tongue 

become available. The grand aim of this effort is to provide the foundational steps in creating a 

computational platform, which can decode complex, non-linear percepts, e.g. firmness, smoothness, and 

thickness, but certain limitations exist in collecting in vivo neural and biomechanical data from tongue 

during oral processing of food. The overall scarcity of these data, and level of difficulty in collecting them 

present major challenges for developing models that are solely validated by tongue data. Using comparable 

information from cutaneous skin in other parts of the peripheral nervous system provides a viable path 

forward in building such computational models, until more data become available in tongue.    

Summary of Findings and Contributions 

Aim 1 Findings. Differentiated the contributions of SA and RA afferents in encoding food stimulus 

features during the first bite stage. The biophysical models developed recapitulated general spike firing 

patterns observed in microneurography recordings, validating their physiological relevance. The models 

showed that SA afferents are sensitive to stress magnitudes of ramp-and-hold stimuli, while RA afferents 

respond to the frequency and amplitude of periodic stimuli. 
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Aim 1 Contributions. A single-unit SA afferent model was adapted to function in response to both 

ramp-and-hold, and periodic stimuli, with direct comparison to similar microneurography data in the 

glabrous skin of the hand. Second, parameters were added to the generator function, which enabled a 

response to the onset and offset of stimuli, characteristic of RA afferent response profiles. These are the 

first single-unit computational models for SA and RA mechanosensitive afferents to be fitted to neural spike 

firing data in the human tongue. The contributions from Aim 1 have been accepted for publication in the 

IEEE Engineering in Medicine and Biology Conference (IEEE EMBC, 2024). 

Aim 2 Findings. Developed an afferent population model capable of encoding the geometry and 

diameter of food stimuli. The model demonstrated that population response metrics could effectively 

differentiate between blunt and curved stimuli across various diameters. The use of machine learning 

techniques enhanced the model's predictive capabilities, achieving high accuracy in classifying stimulus 

geometry and predicting diameter, while remaining insensitive to position modulation. 

Aim 2 Contributions. Single-unit models developed in Aim 1, were adapted to become sensitive 

to spatial modulation of a stimulus that is not directly above their receptive field. Their responses were 

determined by the amount of normal stress the afferent was subjected to, according to its proximity from 

the stimulus edge (blunt stimulus) or center (curved stimulus). The mathematical form of the piecewise 

functions used to quantify this normal stress were presented in Eq. 1 and Eq. 2, for a blunt and curved 

stimulus, respectively. Second, these single unit models were distributed, according to a uniform probability 

density function, over a 50 x 25 mm two-dimensional simulated cross-section of the tongue. The total 

number of afferents in the population were optimized to minimize the amount of relative variance 

(coefficient of variation) elicited by spatial modulation of the stimulus center, to varying positions. This is 

the first computational population model, comprised of multiple afferent subtypes, specialized for the 

human tongue. Moreover, another novel contribution in this effort is the prediction of stimulus attributes, 

e.g. diameter and geometry, by synthesizing population responses from multiple afferent subtypes. The 
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contributions from Aim 2 have been used to form a complete manuscript draft and will be submitted to the 

Journal of Texture Studies for publication. 

Implications for Food Science and Industry. The insights gained from this research are relevant 

for the food industry, particularly in designing food products that better mimic the sensory experience of 

traditional foods, even when using alternative ingredients. Understanding how different textures are 

encoded by neural afferents can help create products that maintain consumer satisfaction, while paring the 

need for one-off perceptual evaluations. 

Future Work 

Incorporation of Additional Afferent Subtypes. Extend the model to include other 

mechanosensory afferents, such as those responding to lateral shear and movement velocity, to provide the 

basis for encoding motion of stimuli over the tongue. This would be especially important if lateral motion 

cannot be recapitulated with the current population model, which only receives normal stress tensors as 

input. 

Clarifying Afferent Subtype Contributions in Predicting Stimulus Diameter and Geometry. 

In this effort, the population responses from both SA and RA afferents were used to discriminate stimulus 

diameter and geometry. However, it would be conducive to our understanding of neural encoding, to know 

exactly how much each afferent subtype contributes to these contributions, specifically when stimuli are 

varied in terms of their force magnitude and vibrational frequency. Moreover, whether predictions of 

stimulus attributes can reliably be made with small subsets of temporal data, e.g. during the first 100 ms of 

stimulus onset, as opposed to using all of the available data, at the aggregate level.   

Exploration of Complex Stimuli. Investigate the neural encoding of higher-level physical 

attributes of stimuli, including varying compliance, surface roughness, as well as dynamic changes during 

mastication and food breakdown, to extend the model's applicability to real-world oral processing. 
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Application to Oral Processing Disorders. Use the findings to inform interventions for 

individuals with oral processing impairments. Developing assistive technologies or therapeutic strategies 

based on the neural encoding principles uncovered in this study could improve the quality of life for these 

individuals. 
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