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ABSTRACT

While theories for stellar evolution are well developed for single stars, the majority of massive

stars are found in binary systems, which gives rise to di�erent evolutionary pathways, phenomena

and fates for these stars. Colliding wind binaries, systems in which both massive stars have strong

stellar winds, are ideal laboratories for exploring the complex hydrodynamics in wind interacting

regions, given the extensive and detailed multi-wavelength studies from X-rays to radio of the high

and low energy emission produced by processes such as particle acceleration and dust formation.

High resolution, multi-dimensional simulations of colliding wind binaries can provide insight towards

the speci�c mass con�gurations, instabilities, and hydrodynamics of these complicated shocked wind

colliding regions. In this paper, we begin with a description of the observations and physics of stellar

winds, in particular the line-driven winds that characterize the stars in colliding wind binaries. We then

present hydrodynamic simulations of stellar winds and colliding wind binaries using the moving-mesh

magnetohydrodynamics simulation code arepo to generate predictions for single and binary systems

with immense stellar winds. We demonstrate that the two and three-dimensional arepo simulations

of a stellar outow from a single star are in good agreement with analytical solutions for a spherically

symmetric, stationary stellar wind. Having established that the code captures the relevant physics for

a single stellar outow, we apply the same numerical methods to colliding wind binaries. Our colliding

wind binary simulations are able to achieve an accurate contact discontinuity location to within 1:9%

of the analytical solution, an adiabatic strong-shocked density, temperature and velocity, accurate to

within 2%, 8:6% and 34%, respectively, and an isothermal shocked density accurate to within 22%.

Modeling these colliding wind binary systems is challenging due to the large dynamical range in uid

properties required to resolve shocks and instabilities while maintaining well-de�ned boundaries of the

stars. While this has been previously explored with adaptive mesh re�nement and smooth particle

hydrodynamics studies, applying arepo’s unique moving-mesh numerical methods to colliding wind

binaries lays the groundwork for future, complementary modeling, including detailed radiative cooling,

shock stability, dust formation, X-ray and radio emission, and binary evolution.

1. INTRODUCTION

Early type massive stars produce powerful, dense and high-velocity stellar winds before ending their lives as energetic,

core-collapse supernova explosions. The mass-loss through stellar winds not only impacts the pre-supernova stellar

evolution of massive stars, but also the properties and characteristics of the supernovae they produce. Analysis of core-

collapse supernova observations, particularly at radio wavelengths, indicate large amounts of circumstellar material

(CSM) surrounding Type II (exhibit H-lines in their spectra) and Type Ib/c (stripped supernovae that have H-poor

spectra) supernovae, many of which can be explained with density pro�les falling o� as r�2 { as expected for constant

velocity, steady stellar winds. However, there are an increasing number of systems that require extreme mass-loss

rates or show evidence for strong variations or oscillations in their light curves, e.g., SN 1988Z or SN 1979C (Panagia

& Bono (2000), Smith (2017)). Since a the majority of massive stars are found in a binary system, (Sana et al. 2012),

binary wind interactions could greatly a�ect the CSM surrounding a large fraction of supernovae progenitors. A deeper

understanding of the stellar evolutionary processes in massive stars alongside stellar wind theory and a computational

prediction of colliding wind binary structures could allow for more accurate predictions of progenitor objects when

analyzing supernovae or supernovae remnants. We hope that the simulations and discussions here will contribute to

advancing our understanding of the binary system progenitors that must be studied in order to explain supernovae

observations.

First, we broadly cover stellar evolutionary theory, with a particular emphasis on Wolf-Rayet stars and the issues

with their origin and evolution. Then, Section 3 covers theories for mass loss via stellar winds, including analytical
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solutions for stationary, spherically symmetric stellar winds, the physical processes behind line driven stellar winds,

and some observational properties of stars with large outows. Section 4 begins to discuss how the known theories

of stellar evolution and winds are complicated in binary systems, and provides justi�cation for why colliding wind

binaries demand further analysis. We cover wind interaction physics and establish analytical metrics to test the

CWB simulations. We then cover the numerical methods in the arepo code in Section 5, including discretization

techniques, the moving mesh, and the numerical hydrodynamics. Finally, we present our results for both single star

and CWB simulations, and discuss our techniques for analyzing the simulations. We conclude in Section 7 with an

outline of our plans for improvements and future work.

2. STELLAR EVOLUTION

For high mass stars with M & 15 M�, mass loss due to intense stellar winds has an increasingly critical e�ect on the

evolutionary process as the timescale for mass loss due to winds approaches the timescale for evolution due to nuclear

fusion (Pols 2011). de Jager et al. (1988) derived an empirical model for predicting the mass-loss rate (� _M) based on

the e�ective temperature (Te�) and luminosity (L) of a star:

log (� _M) � �8:16 + 1:77 log

�
L

L�

�
� 1:68 log (Te�) : (1)

Combining this equation with observational results from a Hertzsprung-Russell diagram allows for loose predictions

of how the mass-loss rate changes with a star’s evolving temperature and luminosity, (see Section 3 for an outline of

stellar wind theory and wind driving mechanisms). The most luminous stars near the Humphreys-Davidson limit are

observed to undergo periods of intense mass loss and experience large uctuations in both temperature and luminosity.

This limit can be understood following Rybicki & Lightman (1985); a spherically symmetric object surrounded by an

optically thin cloud with frequency independent absorption coe�cient �, experiences a radiative force per unit mass

of

frad =
�L

4�r2c
; (2)

where r is the radial distance from the star, and c is the speed of light. Equating this outward radiative force to the

inward gravitational force of the star of mass M leads to the upper luminosity limit for stars in which material is not

ejected from the star:

fG =
GM

r2
! frad = fG ! L =

4�cGM

�
; (3)

where G is the gravitational constant. For ionized hydrogen, the absorption coe�cient becomes � = �T =mH , (where �T
is the Thompson scattering cross-section for the electron and mH is the mass of H), leading to the accepted expression

for a star’s Eddington luminosity, Ledd,:

Ledd =
4�GMcmH

�T
= 3:2� 104

�
M

M�

�
L� : (4)

This is the maximum luminosity of a star that has no outow of material. This limit corresponds to a red supergiant

upper mass limit of 40M�, and is theorized as one of the driving physical properties of the Humphrey-Davidson limit

on the Hertzsprung-Russell diagram (Pols 2011).

It is thought (see e.g., (Pols 2011) and the references therein) that the luminous blue variable (LBV) stars with

mass-loss rates up to _M & 10�3M� yr�1 can eventually lose their outer layers and become Wolf-Rayet (WR) stars.

WR stars themselves exhibit massive stellar winds, and are often observed in colliding wind binary (CWB) systems. As

such, these systems may hold important clues to understanding extreme mass loss, and their formation and evolution

deserves attention.

2.1. Wolf-Rayet Stars

WR stars, �rst discovered by Charles J.E. Wolf and Georges-Antoine-Pons Rayet in 1867, are massive stars char-

acterized by broad, strong emission lines of heavy elements and extremely high surface temperatures. As depicted by

the optical spectrum of WR 137 in Figure 1, the strong emission lines corresponding to C, N and O indicate depleted

H and an exposed nuclear-fusing core (Pols 2011). WR sub-classi�cations depend on the relative abundances of heavy

surface elements: stars with strong N and He abundances with H are classi�ed as WNL, while WNE stars have similar
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Figure 1. Optical spectrum of WR 137, a WC7 star showing evidence of H depletion with relatively weak H lines compared to
the strong emission lines of heavy elements. Image Credit: Gypaete.

N and He abundances but depleted H. Stars with strong C, O and He abundances with little N and almost no H are
WC stars, while WO stars have even higher O abundances (Smith 1968). Crowther (2007) and other suggest that the
sub-classi�cation of WR stars follows an \early" to \late" evolutionary sequence, in which WNL stars are H-fusing,
WC stars are partially He-fusing and WO stars are completely He-fusing.

The depletion of H in WC and \later" WR stars leads to incredibly high luminosities, greatly exceeding the theoretical
\maximum" luminosity described in Equation 4. As such, WR stars have extremely strong and dense stellar winds.
The extensive mass loss WR stars experience makes their evolutionary sequences di�cult to identify. Abbott & Conti
(1987) were the �rst to suggest that WR stars evolve from O stars undergoing extreme mass loss due to strong
stellar winds, stripping the outermost layers and revealing the core, (known as the "Conti scenario"). However, the
observed association of WR stars as LBV phase objects complicated this generic evolutionary sequence. An alternative
consideration is WR evolution resulting from H envelope stripping due to binary interaction (Crowther 2007).

While WR stars demand attention due to their role as both supernova and Gamma-Ray Burst (GRB) progenitors,
they are also interesting in the case of colliding wind binaries, where WR stars are likely to be an important source
of dust in the interstellar medium (ISM) (Lau et al. 2022). Observationally, as discussed by Crowther (2007) and the
references therein, the photo-ionized material ejected from WR stars forms extended nebulae in the ISM. The material
in these nebulae can yield information about the past life of the WR star and can constrain the evolutionary path
taken to reach its current state. The strong stellar winds of WR stars will plow through the previously ejected material
from the \slow wind" precursor object. Studies of the \slower" winds of LBV, O, or red supergiant (RSG) stars being
shocked and/or swept up by WR winds have been compared with observations of a ring nebula surrounding young
WR stars, to gain insight into the evolutionary sequences of stars into the WR phase (van Marle & Keppens 2012).

2.2. Binary Evolution

The presence of a stellar companion further complicates the mysteries surrounding WR stars, their evolution, and
their role as supernova or GRB progenitors. van der Hucht (2001) estimates that 39% of Galactic WR stars are in a
binary system. However, since the majority of WR binary stars have an O or B type companion, it is possible that
observed isolated WR stars were formed in a binary and were ejected from the system when their stellar companion
underwent a supernova explosion (White & Tuthill 2024). Regardless, the presence of a massive binary companion
often a�ects WR evolutionary sequences. Crowther (2007) suggests that WR stars in binaries could either evolve
independently from their stellar companion (expected in wide binaries), or, evolvewith their stellar companion due to
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the exchange of mass and momentum. More recent studies indicate that close interacting binary evolution seems to
be increasingly important understanding WR and other massive stars (Sana et al. 2012; White & Tuthill 2024).

Close binary evolution drastically a�ects the evolution of massive stars. Sana et al. (2012) found that 71% of O
stars \interact" with a stellar companion, 20 to 30% will result in a binary merger, and 40 to 50% will either accrete
signi�cant mass from a stellar companion or be stripped of signi�cant mass. Even more signi�cantly, they suggest
that approximately three quarters of all massive stars will be strongly a�ected by some binary interaction before
a supernova explosion. These exceptional observational statistics certainly raise more questions than they answer,
however. Massive star evolutionary models are inevitably complicated by binary interaction, as the interiors of stars
accreting signi�cant material are mixed and envelopes are spun up by a gain in angular momentum (Brott et al.
2011). Furthermore, it seems likely that WR stars form as a result of signi�cant Roche lobe mass stripping due to
gravitational interaction with a large stellar companion. Crowther (2007) suggests that WR evolution via such binary
interaction, which allows for lower initial mass and luminosity constraints on the WR precursor, is more favorable.

Binary \interaction" is typically characterized by mass transfer between stars in a binary system. Each stellar
object has a region in space in which its own gravity is the most dominant, known as theRoche lobe. The size of the
Roche lobes depends on the ratio of the stellar masses and the orbital separation. Mass transfer, known as Roche-lobe
overow, from one star to the other occurs when a star expands (e.g., becoming a RSG) or the orbit shrinks, such that
the outermost edge of the star itself exists at the intersection between the Roche lobes, known as the L1 Lagrange
point. Material ows through the L1 point and into the potential well of the accretor. The pool of closely interacting
binaries suggest that the majority of the larger, primary stars begin to donate mass to the secondary in the H-shell
burning phase or the He-shell burning phase, as opposed to the H-core burning main sequence phase (Crowther 2007).
However, mass and angular momentum transfer can also occur via stellar winds (Edgar 2004). Wind accretion onto
either star will occur if one of the stars has a strong stellar wind. In the case where both stars have strong winds, the
winds will collide, and the resulting structures provide interesting information on the hydrodynamics of stellar wind
mechanisms and the evolutionary processes inside the stars (see Section 4).

3. MASS LOSS VIA STELLAR WINDS

Mass loss plays a pivotal role in stellar evolution, impacting a star's life expectancy, evolutionary sequence, and
�nal fate (e.g., strength and type, if any, of supernova explosion). In massive early-type stars where temperatures are
too high to allow the formation of dust grains, radiation interacts with material in the outer stellar atmospheres at
wavelengths where the outer material is highly opaque, resulting in acceleration due to many ultraviolet lines.Line
driven radiation theory predicts very high wind speeds due to the continuous transfer of energy and momentum from
the ejected radiation at redder and redder photon wavelengths, as the material is accelerated towards terminal velocity
(Cassinelli 1979). Doppler broadening of the opaque wind lines results in a \positive feedback mechanism", allowing
the wind to continually absorb photons of higher and higher energy and allowing massive acceleration to high velocities
(Pols 2011). While line-driven radiation theory is well understood, observed inhomogeneities and asymmetries make
realizing predictions di�cult. The subject of this work, the shock interaction between two stellar winds in colliding
wind binaries (CWBs) and the often luminous, multi-wavelength emission produced, is a useful tool to probe both the
hydrodynamic processes of stellar wind mechanisms and the evolutionary phases of the interacting stars. However, we
begin with an outline of the analytic and theoretical expectations for idealized, single star winds.

3.1. Wind from a Single, Spherically Symmetric Star

Following Gawryszczak et al. (2002), we derive di�erential equations for the density and velocity of a spherically
symmetric, stationary wind. The continuity equation for stellar winds relates the velocity, v(r ), and density, � (r ),
distributions as functions of the radial coordinate:

_M = 4 �r 2� (r )v(r ) : (5)

The momentum conservation equation is

v
dv
dr

= �
1
�

dP
dr

; (6)

where P is the gas pressure, and we disregard the gravitational deceleration,GM
r 2 , assuming it is exactly balanced by

a wind acceleration mechanism (see Section 3.2). Explicit analytical solutions can be simpli�ed using the polytrope
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equation of state. Chandrasekhar (Chandrasekhar 1939) concluded from the prior work of Kelvin, Lane, and Emden
that a quasi-static adiabatic process will have the form

P = K�  ; (7)

for a constant, K , and where , the adiabatic index, pertains to the ratio of the speci�c heats of the gas and is related
to the polytropic index by  = ( n +1) =n. This famous polytrope relation provides a simple, useful, and intuitive model
for pressure and density in stars and large self-gravitating objects. Use of the chain rule leads to the pressure radial
derivative:

dP
dr

=
dP
d�

d�
dr

= K�  � 1 d�
dr

; (8)

which, when substituted into Equation 6 yields:

v
dv
dr

= � K�  � 2 d�
dr

: (9)

Taking the radial derivative of mass continuity (Equation 5) provides us with a `pivot equation':

d�
dr

= �
_M

4�

�
2

r 3v
+

1
r 2v2

dv
dr

�
: (10)

The set of Equations 9 and 10, in combination with mass continuity (Equation 5) allow us to directly express di�erential
equations for wind density and velocity as a function of radial distance from the star, with constant parameters
polytrope proportionality constant, K , adiabatic index,  , and mass-loss rate, _M , where we substitute the constant
� = _M=4� , as done in Gawryszczak et al. (2002):

d�
dr

=
�
r

2
K� � 2�  +1 r 4 � 1

: (11)

dv
dr

=
v
r

2K
r 2 � 2v +1 � 1�  � K

: (12)

The early 19th century empirical thermodynamic work done by Avogadro, Charles, Boyle, and Gay-Lussac was
compiled into the famousideal gas lawby Clapeyron (1834). Here, we use the form involving density, average particle
mass,� , and mH = 1 :67� 10� 24 g:

P =
�k B T
�m H

: (13)

Taking advantage of the polytrope relation again, (Equation 7), we eliminate pressure and express the temperature,
T, of the wind as a function of density with constant parameters, , and the initial wind temperature and density, T0

and � 0:

T = T0

�
�
� 0

�  � 1

: (14)

3.2. Line-driven Winds

The bulk of the radiation emitted by hot stars is at ultraviolet wavelengths, for which the outer atmosphere has
many absorption lines with very high opacity, up to 106 times the opacity of electron scattering, (Lamers & Cassinelli
1999). The Doppler shift plays a crucial role in e�cient line driving. In a static atmosphere, photons are absorbed
and scattered in regions closer to the star's center. When the outer atmosphere is accelerating outwards, increasingly
red-shifted photons are able to contribute their momenta to the outermost parts of the atmosphere, allowing for a
continuous `feedback loop' of radiation transfer. Consider an atom moving radially outwards at velocityvr . After
absorbing a photon, the momentum of the atom increases bymv0

r = mvr + h�=c, wherem is the mass of the atom,� is
its frequency andh = 6 :626� 10� 27 erg s� 1 is the Planck constant, such that the increase in velocity is � v = h�=mc .
Then, the atom emits a photon at a new frequency in a random direction� with respect to the radial trajectory, and
the post-emission momentum ismvr

00= mvr
0 � h� 0

c cos� .
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If the atom can only absorb and emit a photon of frequency� 0 in the rest frame, the observer sees a photon absorbed
at � = � 0(1 + vr =c) and emitted at � 0 = � 0(1 + v0

r =c). The atom's post-emission velocity can then be written in terms
of the initial velocity and the rest frequency:

vr
00= vr +

h� 0

mc

�
1 +

vr

c

�
(1 � cos� ) �

1
c

�
h� 0

mc

� 2 �
1 +

vr

c

�
cos� :

In the non-relativistic limit, when vr � c and h� 0 � mc, h� 0=mc is small and higher order terms can be disregarded:

� v = vr
00� vr '

h� 0

mc
(1 � cos� ) : (15)

This equation implies that there is no net change in momentum during forward scattering, where� = 0, and that
backward scattering, where� = � , results in a net change in momentum � p = 2h� 0=c. During de-excitation photons
are emitted in a random direction, so the mean momentum transfer is given by the average value over a sphere:

h� mvi =
h� 0

c
1

4�

Z �

0
2� (1 � cos� )sin� d� =

h� 0

c
:

Consequently, the change in the momentum is the same for isotropic resonance scattering and pure absorption. Ad-
ditionally, in the non-relativistic limit, di�use isotropic radiation produces zero acceleration (Lamers & Cassinelli
1999).

3.3. Line-driven Winds: Coulomb Coupling

To achieve a steady outow of material, the imparted momentum must be equally distributed among the atoms.
Absorbing atoms interact electrically with surrounding elements and distribute the imparted momentum in a process
named coulomb coupling. The transfer of momentum from an absorbing atom to the surrounding plasma �eld is
e�cient if the time to slow down by �eld interactions, ts, is small compared to the time to reach a large drift velocity,
td. That is, the condition for Coulomb Coupling is

ts < t d : (16)

For an element with atomic mass A, charge Z, electron number densityne and a wind temperature Te, the slow down
time in seconds is given by (Spitzer (1962), page 135):

ts = 0 :305
A
Z 2

Te
3=2

ne(1 � 0:022 ln ne)
: (17)

The drift time is the time for incident photons to increase the momentum of an atom by an amount equal to the thermal
velocity of the plasma. In terms of the atom's acceleration due to momentum transfer and the thermal velocity, the
drift time is

td = vth =gi ; (18)

where the thermal velocity, vth , of the �eld is given by

vth =
�

2k
mH

� 1=2 �
Te

A f

� 1=2

; (19)

and the acceleration of a non-�eld-interacting atom, gi , is given by the change in momentum

d(mv)
dt

= Am H gi =
�e 2

mec
F � 0

c
f ; (20)

where m = Am H was used,f is the oscillator strength of the transition and F � 0 is the energy ux a distance r from
the star at line rest frequency � 0. The ux at the stellar surface is F �

� 0
= L �

� 0
=4�R 2, so the ux a distance r from the

star is related to the ux at the surface by F � 0 = F �
� 0

�
R
r

� 2
. The coulomb coupling condition given in Equation 16 is

satis�ed when
L �

� 0
Te

4�r 2ne
<

Z 2c
0:61

p
2kmH

�
�e 2

mec
f

� � 1

A f
� 1=2 : (21)
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The Planck law describes the spectral density of electromagnetic radiation for a blackbody in thermal equilibrium:

B � (�; T ) =
2h� 3

c2

1

exp
�

h�
kB T

�
� 1

: (22)

If the wind temperature is Te ' 0:5 Te� , the peak of the Planck law occurs at frequency� max = 5 :83 � 1010 Te� ,
leading to a peak ux of F � max = 5 :97 � 10� 16 T3

e� . We rewrite the electron number density in terms of the wind
density, ne = 5 :2 � 1023 � , and substitute the wind density for constant mass-loss rate, (Equation 5), to express the
coupling condition in terms of our analytic parameters above. For a �eld atomic massA f ' 1 (protons), transition
oscillator strength f = 0 :1, and absorbing atomic chargeZ = 3, the coulomb coupling condition is:

L � v
_M

< 5:9 � 1016 ; (23)

in units of L � , km s� 1, and M � yr � 1 (Lamers & Cassinelli 1999).

3.4. Line-driven Winds: Energy and Momentum

Intuition for the energy transfer theory comes from Einstein's famous mass-energy equivalency equation,E = Mc2.
The rate of change of energy emitted from the star, i.e. it's luminosity, is then related to the rate of change of mass:

dE
dt

=
dM
dt

c2 ! L = _Mc2 : (24)

Consider a hot luminous star with a stellar wind driven by a single line with rest frequency � 0. Assume the wind
has zero velocity at the photosphere (r = 0) and the velocity is terminal as r approaches in�nity. Assume that the
photosphere radially emits a continuum spectrum of photon frequencies and that the wind is very optically thick in the
one line, such that photons with a frequency range from� 0 to � 0 (1 + v1 =c) are absorbed. The location of probable
interaction for a photon with frequency in this range depends only the Doppler velocity of the wind. Photons with � 0

can be absorbed immediately, and photons with� max � � 0 (1 + v1 =c) are absorbed atr = 1 . The total photospheric
radiation absorbed per second is

L abs =
Z � max

� 0

4�R 2F � d� ; (25)

and the momentum transferred isL abs=c (Lamers & Cassinelli 1999). The outwards momentum of a wind with mass-
loss rate _M is _Mv 1 . In the single line model, outwards momentum of the wind must equal the momentum transferred
to the wind such that

_Mv 1 =
1
c

Z � max

� 0

4�R 2F � d� '
4�R 2

c
F � 0 � 0

v1

c
; (26)

where the last approximation can be made if the photospheric continuum spectrum is about constant over the frequency
width. A key feature of this approximation is that it allows for an expression of mass-loss rate that is independent of
the terminal velocity.

If the photosphere continuum spectrum is approximately a blackbody spectrum with e�ective temperature and
frequency at the peak of the Planck law, (Equation22), then� max F � max ' 0:62 � B T4

e� . Then, using the same relations
earlier to rewrite ux at point r in terms of L � , the mass-loss rate for a single, optically thick wind line is approximately

_M ' 0:62L � =c2 ' L � =c2 :

Repeating the same approximation for a numberNe� optically thick lines, the mass-loss rate is:

_M ' Ne� L � =c2 ; (27)

with the e�ective number of lines with large optical thickness given by,

Ne� =

P N
i =1

R� i (1+ v1 =c)
� i

� F � d�
R1

0 F � d�
:
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Table 1. Observed properties of hot massive stars and their winds from Table 8.1 of Lamers & Cassinelli (1999). Ideally, � e = 0
and _M pred = _M .

Parameter � Pup � Ori P Cyg � Sco WR1

L=L � 7:9 � 105 4:6 � 105 7:2 � 105 3:2 � 104 1:0 � 105

Te� (K) 42400 28000 19300 30000 40000
R=R� 17 33 76 6.5 2.2
M=M � 59 42 30 15 9
_M (M � yr � 1) 2:4 � 10� 6 4:0 � 10� 6 1:5 � 10� 5 7:0 � 10� 9 6 � 10� 5

Ne� 45 129 309 3.2 8800
v1 (km s� 1) 2200 1500 210 2000 2000
� e 2:2 � 10� 4 1:3 � 10� 3 1:1 � 10� 3 1:3 � 10� 2 1:0 � 10� 2

_M pred (M � yr � 1) 7:3 � 10� 6 6:2 � 10� 6 6:9 � 10� 5 3:2 � 10� 7 1:0 � 10� 6

Using this model, a star with 105L � would need Ne� = 150 to achieve a mass-loss rate of 10� 6M � yr � 1. As Ne�

approaches in�nity, the maximum mass-loss rate occurs when all of the emitted photons are absorbed and scattered:

_M max v1 = L=c : (28)

This is known as the single-scattering limit for line-driven stellar winds.
Table 8.1 from Lamers & Cassinelli (1999) provides observational data for �ve \typical" early-type stars, a few

relevant columns from their table is shown in Table 1 demonstrating the accuracy of the line driven theory, particularly
taking into account the uncertainties in the derived values from observations. The accuracy score of the model using
number of e�ective lines is given by � e =

�
�
� N eff L

_Mc 2

�
�
� � 1, (ideally zero), and the maximum predicted mass-loss rate is given

by _M pred = L
cv1

.

3.5. P Cygni Pro�les

In the outow of stellar material, resonance lines of abundant ions with high oscillator strengths produce observable
absorption lines. Since the winds are accelerated, a parcel of wind moving towards the observer has a velocity gradient,
and the blue-shifted absorption lines can provide a measure of the wind velocity. Furthermore, if the wind parcel is
moving quickly enough, the blue-shifted absorption line is \far away" enough and is resolvable from the central
continuum emission pro�le observed in the stellar spectra. The central continuum is ejected in all directions, and the
wind moving away from the observer produces red-shifted emission features. The combination of a single element's
blue-shifted absorption and red-shifted emission lines is the eponymousP Cygni pro�le , named for the LBV hypergiant
P Cygni, and shown in Figure 2. The mass column in shaded grey points from the star to the observer and contains
the blue-shifted absorption lines with a maximum Doppler velocity corresponding to the terminal velocity of the wind.
Continuum emission is emitted in all directions, but the component moving away from the observer contains red-shifted
emission lines. The P Cygni pro�les of the 3819.6�A HeI and H � lines are shown in Figure 3.

4. COLLIDING WIND BINARIES

When two stars, both with strong outows, are involved in a binary system, the wind interaction results in an
immense and dynamic shock structure, whose temperature, instabilities and asymmetries manifest in a wide range
of multi-wavelength phenomena. The high temperature shock-heated plasma produces X-rays via bremsstrahlung
(free-free) emission, the ionized gas produces thermal radio emission and the accelerated, relativistic electrons produce
synchrotron radiation in the radio, while dust grains formed in the denser, cooling gas also emit at infrared wavelengths
(Lau et al. (2022); Tuthill et al. (1999), Williams et al. (1990)). The complex interplay of all these processes is not
well understood, and continues to be pursued via observational and theoretical studies.

The stars in CWBs are characterized by extremely strong and dense stellar winds driven by radiation pressure on
lines, as described above in Section 3. CWBs typically consist of WR or O type stars, with wind velocities on the order
of v1 � 1000� 3000 km s� 1 and mass-loss rates around_M � 10� 5 � 10� 4 M � yr � 1, and _M � 10� 7 � 10� 6 M � yr � 1,
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Figure 2. Schematic diagram of a P Cygni pro�le showing how blue-shifted and red-shifted absorption and emission contribute
to the characteristic line shape. Image credit: Walker (2017).

Figure 3. Observed HeI and H� lines from the LBV hypergiant P Cygni (Israelian & de Groot 1999).

respectively (Stevens et al. 1992). These extreme wind conditions lead to immense collisions between the stellar
outows, and the variety of orbital periods, eccentricities and di�erences in the strengths of the stellar outows (their
wind momenta) leads to a corresponding variation in the properties of emitting shock regions, e.g., their persistence,
shape, size and luminosity. For example, the short period (220� 30 day), close (1:9 � 2:6 AU separation) and near
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Figure 4. The archetypal \Pinwheel Nebula", WR 104, observed in the infrared (Tuthill et al. 1999).

Figure 5. JWST MIRI image of the \nested dust shells" from the WR 140 colliding wind binary (Lau et al. 2022).

circular (e < 0:06) orbit of CWB WR 104 results in observed continuous dust formation, producing the archetypal
pinwheel nebulashown in Figure 4 (Tuthill et al. 1999; Lamberts et al. 2012). On the other hand, the highly eccentric
(e = 0 :89) and long orbital period (2895 day) of CWB WR 140, (Figure 5), leads to periodic forceful wind collision, in
which dust formation occurs only during periastron when the stars are separated by about 1:61 AU (Lau et al. 2022).
Explaining the production of both X-rays and dust in the shocked regions is challenging. It is thought that the dense
gas in the shock can cool rapidly and that a highly inhomogeneous, clumpy stellar wind might lead to dust formation
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where high density and opacity clumps shield delicate molecules and dust grains from the incident radiation �elds,
e.g., White & Tuthill (2024). The region of highly compressed, shocked wind between two massive stars is able to
support and protect carbonaceous dust and carry them into the ISM.

4.1. Wind Interaction Physics

Obtaining predictable quantities from a CWB for comparison with observational data requires understanding of the
physics of the wind interaction. The governing equations for the stellar outows are the uid continuity equation, as
well as the conservation equations for momentum, thermal energy, and kinetic energy:
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D
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�

= � v � r P ; (29)

where D=Dt is the material derivative, (de�ned in Equation 39), � is the speci�c energy per unit mass, and we omit
viscosity and gravity terms. In the steady-state, plane-parallel approximation, the material derivative reduces to a
spatial derivative of one dimension since the system is symmetric in the other dimensions and is independent of time.
The governing equations reduce to:
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The �rst of these neatly leads to the conclusion that �v = const. Performing chain rule di�erentiation and sub-
stituting into the reduced momentum conservation equation leads to�v 2 + P = const. Finally, adding together the
thermal and kinetic energy conservation statements and substituting yields1

2 v2 + � + P=� = const. These conditions are
assigned `1' and `2' subscripts denoting the pre-shock and post-shock values, and are known as theRankine-Hugonoit
jump conditions:

� 1v1 = � 2v2 ; (31)
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These equations are typically written in terms of the Mach number, M � v=cs =
q

�v 2

P , where cs is the sound
speed. A \strong shock" occurs when the uid speed is much larger than the speed of sound,M � 1. The adiabatic
Rankine-Hugonoit conditions can be rewritten in terms of the mach number, and once the strong shock condition is
applied, reduce to the following:
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For an isothermal equation of state, (isothermal is de�ned asT1 = T2), the strong shock conditions are:
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where the sound speed of the gas is

cs =

s
kB T
�m H

: (36)

For two su�ciently strong winds colliding with each other, the surface of the interaction will form a planar contact
discontinuity . If both winds have reached their terminal velocity, they experience little acceleration and the pressure
terms of the second Rankine-Hugonoit condition (Equation 32) drop out. Then, writing the wind density in terms of
velocity using mass continuity (Equation 5) yields the distances from each star to the plane (d1 and d2) in terms of
their wind terminal velocities and mass-loss rates (Stevens et al. 1992):

 
_M 1v1

_M 2v2

! 1=2

=
d1

d2
: (37)

The theoretical location of the contact discontinuity provides a metric to test simulation data. Figure 6 depicts a
schematic diagram of the contact discontinuity formed by the stellar wind collision of two stars.
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Figure 6. Schematic diagram of the wind collision region showing the position of the contact discontinuity (dashed line) in a
colliding wind binary. Image credit: S. Mohamed.

4.2. Radiative Cooling and Shock Instabilities

The speci�c hydrodynamics of the compressed, shocked gas is complicated by radiative cooling. Speci�cally, radiative
cooling alters the energy conservation equations described in Section 4.1, and even more importantly, results in
hydrodynamic instabilities in the wind collision regions. While we included isothermal models rather than taking into
account detailed radiative cooling in this paper, we give a brief summary of how radiative cooling a�ects the shocks in
CWBs more broadly. The cooling and heating processes in the shock-compressed region of CWBs include line cooling,
dust heating and emission, inverse Compton cooling, photo-ionization and free-free emission. In their discussion of
radiative cooling in CWBs, Stevens et al. (1992) introduce a cooling time parameter, given by the ratio of the time
it takes the shocked gas to radiate its thermal energy (tcool ) and the time it takes the shocked gas to ow out of the
shock region (tesc):

� �
tcool

tesc
�

v4
8d12

_M � 7
(38)

where v8 is the wind velocity in units of 1000 km s� 1, d12 is the distance to the contact discontinuity in units of
107 km = 1012 cm, and _M � 7 is the mass-loss rate of the star in units 10� 7 M � yr � 1, where the cooling rate is
approximated as constant for the ranges of wind temperatures typically in CWBs (Stevens et al. 1992). The cooling
parameter � characterizes the importance of radiative cooling: for� & 1 the wind is adiabatic, while for � � 1
the wind is isothermal. Furthermore, since Equation 38 shows that� / d, it follows that the cooling parameter
characterizes the orbital period: � / P3=2. Use of this simple model demonstrates that CWBs with larger periods are
expected to be more adiabatic. Stevens et al. (1992) also indicate that� is more important to the system if the wind
collision shocks occur at oblique angles.

Possibly even more importantly, Stevens et al. (1992) show that structural dynamic instabilities grow rapidly as the
cooling parameter � increases. The thermal instability of the shocked gas is related to the cooling rate, and Kelvin-
Helmholtz instabilities arise due to velocity shear along the discontinuity. Regardless, the evolution of CWBs can
certainly be characterized by the stability or instability of substructures formed in the shocked material, the nature
of which can be studied using high resolution multi-dimensional hydrodynamic simulations.

5. THE AREPO CODE

We use thearepo code (Springel 2010). The behavior of a set of particles is uniquely determined by solving a
corresponding set of di�erential equations. Given a set of initial conditions, numerical simulations uniquely provide
predictions for the behavior of a system by performing numerical integrations for the governing di�erential equations
and updating the positions of each particle in a time-step evolution. As computing power and sophisticated software
continue to advance, numerical simulations become more and more accurate at predicting a system's time evolution.
arepo is one such code which generates predictions of the evolution of systems through use of a moving-mesh mag-
netohydrodynamics (MHD) algorithm. While arepo has been widely used for large-scale cosmological simulations
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and galaxy formation and morphology, (Nelson et al. 2021), it has also been used for smaller-scale, isolated systems,
like the common envelope phase of binary stars (Ohlmann et al. 2016). Here,arepo is used to test the theoretical
understanding of stellar wind models and the shocks in CWBs.

5.1. Discretization

The challenge of numerical simulations is accurately representing real world, continuous systems in discrete space
and time. The solution does not lie in simply implementing a grid on which to obtain discrete space and perform
calculations, as this leads to further problems: How do you set up a grid to represent highly non-uniform uids? How
do you e�ciently parallelize computing when one cell may have many more calculations to perform than another?
Some methods like SPH, (smoothed particle hydrodynamics), (Gingold & Monaghan 1977; Lucy 1977), employ a
Lagrangian uid speci�cation in which the code frame automatically follows uid parcels through use of the material
or convective derivative (Zingale 2025):

D
Dt

�
�
�t

+ u � r : (39)

These methods have the bene�t of tracking the position, velocity and acceleration as functions of time at the location
of the particle, and leads to high understanding of a uid's advection (Zingale 2025).

On the other hand, Eulerian methods concern a �xed, �nite volume region and track particles as they enter and exit
this �xed frame. Simulation codes with Eulerian grids can partition the grid to higher resolution depending on the
density of the uid and calculate the ux through each partitioned cell's boundaries to obtain a larger picture of the
uid. By measuring how the uid's hydrodynamic properties change over time at a �xed location, this methodology is
particularly useful for laminar ows and systems with known �xed boundaries (Robertson et al. 2010). However, each
method has its limitations. Eulerian methods provide no history of individual particles, and Lagrangian methods are
di�cult to accommodate boundary conditions and can be computationally expensive.

The arepo code is a quasi-static Euler-Lagrangian moving-mesh code which combines the advantages of both
methods. arepo operates on a dynamic, moving Voronoi mesh. The mesh is constructed via Voronoi Tessellation in
which cells are generated around a mesh-generating point, and whose boundaries de�ne the region of space in which
all points are closest to a single mesh-generating point (Weinberger et al. 2020). The boundaries between Voronoi
cells are inherently equidistant between mesh-generating points, and are perpendicular to the line connecting any
two points (Figure 7). The set of Voronoi cell boundaries forming lines equidistant to mesh-generating points form
three-dimensional tetrahedra, known as a Delaunay triangulation. The circumsphere of each Delaunay tetrahedron will
always contain a single mesh-generating point (Weinberger et al. 2020), providing an extremely useful and insightful
means of discretizing space to compute hydrodynamic equations and evolve time steps. The combination of the Voronoi
Tessellation and the Delaunay topological dual-space counterpart results in a unique and most optimal triangulation of
any set of two dimensional points (Springel 2010). Furthermore, the adaptive mesh re�nement (AMR) scheme employed
by arepo automatically re�nes or de-re�nes cells based on physical quantities in the cells. For the hydrodynamic
simulations presented here, the re�nement criterion is a \reference gas particle mass", which varied from simulation
to simulation and acts as a resolution parameter, e.g., dividing cells into smaller and smaller elements at the regions
of interest, such as the high-density shock interface.

5.2. Finite Volume Hydrodynamics

The governing di�erential equations for compressible, inviscid uids are the Euler equations for conservation of mass,
momentum, and energy. Springel (2010) introduces a state vector and ux equation
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with equation of state, P = (  � 1)�� , in order to compactly express the Euler equations as:
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Figure 7. 2D example of a Voronoi tessellation. The cells are colored so that space in each cell is closest to a single point.
Note how the cell boundaries form lines equidistant to points on either side, and that lines connecting any two points are always
normal to the cell boundary. Image credit: by Balu Ertl.

To compute conserved quantities for each cell, Springel (2010) adopts a�nite-volume approach, in which the compu-
tational domain is subdivided into a �nite number of cells, whose averages are used to calculate conserved quantities.
This translates to an integral over the volume of each cell to de�ne the mass, momentum and energy of each cell:
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U dV : (43)

Use of theDivergence Theoremand the compact Euler equations (Equation 42) leads to a surface ux integral around
the surface of each cell. Since in 3D the cells are polyhedra with at polygonal faces, Springel (2010) de�neA ij as
the vector area between any two cellsi and j , such that the averaged ux across the boundary is

F ij =
1

A ij

Z

A ij

�
F (U ) � Uw T �

dA ij ; (44)

where w is the velocity of the cell boundary points (w 6= v exactly, see Springel (2010) section 3). The �nite volume
form of the Euler equations is then:

dQ i
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= �
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j

A ij F ij : (45)

5.3. Time Integration

The global time discretization between ux time integrations is a modi�ed Courant{Friedrichs{Lewy (CFL) condition

� t i = CCFL
Ri

ci + jv i � w i j
; (46)

where v and w are the uid and cell boundary velocities, respectively,R is the cell radius as a function of cell volume
R = (3 V=� )1=3, (or R = ( V=� )1=2) in 2D), ci =

p
P=� is the speed of sound in the cell, andCCFL � 0:4 � 0:8 is
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Table 2. Code units of stellar wind simulations and relevant physical constants. Constants � and  represent the mean
molecular weight and the adiabatic index, respectively.

Name Value

UNITMASS 1 M �

UNITLENGTH 1 R �

UNITVELOCITY 10 8 cm s� 1

UNITTIME 696 s
UNITDENSITY 5 :90 g cm� 3

UNITENERGY 1 :99 � 1049 erg
UNITSPECINT 10 16 erg g� 1

mH 1:67 � 10� 24 g
kB 1:38 � 10� 16 erg K � 1

� 1:2
 5=3

the CFL coe�cient. In the hydrodynamic simulations presented here, adaptive time-stepping is used where the initial
global timestep of the simulation is determined, and then individual cell timesteps are calculated taking into account
the minimum CFL timestep of all the cells, plus additional constraints from source physics.

5.4. Temperature Issues at Low Resolutions

Galilean invariance is a classical mechanical principle which states that laws of motion are the same in all reference
frames. In the context of computational hydrodynamics, in order for a uid to be Galilean-invariant, the physical
conserved quantities of the uid must appear the same from all observer reference frames. This poses a di�cult
problem for hydrodynamic simulations. arepo , the moving-mesh solution presented by Springel (2010), is a Galilean-
invariant code. However,arepo still struggles with issues of \spurious dissipation" leading to incorrect temperature
calculations. This arises when there is poor resolution in areas where the uid ow is much larger than the speed of
sound. In the case of stellar winds in CWBs, the high wind velocities leads to supersonic uids, which leads to poor
temperature calculations for these kinetically dominated ows in the case of insu�cient resolution. Due to �nite time
and computational resources, the 3D simulations presented in Section 6 su�er from compounding discretization errors
which leads to too high simulated temperatures. One possible solution, which we plan to explore in future work, is to
evolve the entropy rather than energy in these regions.

6. SIMULATIONS AND ANALYSIS

We present simulations of single and binary stellar winds with a variety of di�erent system parameters and resolutions.
The simulation code units and relevant constants are given in Table 2. While the hydrodynamic evolution is computed
by arepo , initial conditions (ICs) are required to set up the problem, with the relevant stellar and domain boundaries,
as well as the initial parameters and stellar wind properties to evolve. To accomplish this, we use the Python
HEALPix (Hierarchical Equal Area isoLatitude Pixelation) package, healpy, to set up discretized spherical shells
as stellar boundaries. The role of the ICs is to ensure that the boundaries of the stars are well de�ned, to ensure that
the stellar boundaries continuously eject wind material at densities, velocities and temperatures required, and to mark
these cells so that the code does not evolve, deform, or (de)re�ne them. The number of boundary cells, and their
corresponding IDs or \types" are carefully set, determining resolution in the IC shells. The computational methods
used to ensure successful setup of the ICs were then redesigned to accommodate 2D simulations.

6.1. Three-Dimensional Initial Conditions

The initial simulation variable parameters are the wind velocity and temperature, stellar masses, radii, and mass-loss
rates. The resolution of the healpix shells is determined by a resolution parameter set at the start of each simulation,
N . The initial number of mesh-generating Voronoi points is equal toNBDRY = 12 � N 2. Through use of the Python
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packagehealpy, we set up four concentric spherical shells, each withNBDRY points, separated radially by a small
spacing parameter,d. The outermost shell simulates boundary of the star. The particles are ejected through the
outermost \sticky" boundary, which is a no-slip boundary in which the boundary particles are forced to be immobile.
Across the no-slip \sticky" boundary, the uid has zero relative velocity with respect to the boundary. The uid also
has zero tangential ow at the boundary. The inner shells consist of either \solidside" or \uidside" boundaries, which
are reective boundaries. For the reective boundaries, the normal component of the uid velocity is reversed, while
the parallel components are preserved. Physical hydrodynamic quantities are copied over across the boundary at each
time step such that the reective boundaries act like a mask over the region representing the star. The IC shells are
placed over a background grid, with resolution parameterNBDRY = N 3

CPD evenly-spaced background mesh points, in
a cube of lengthL box . The volume of the ISM is L 3

box , and the total mass of the ISM is determined by the volume
and the density, which is a variable simulation parameter. The initial speci�c internal energy of the ISM is a function
of the initial ISM temperature, which is a simulation variable:

U(T) =
kB T

�m H ( � 1)
: (47)

The initial ejection speci�c internal energy of the wind is computed by the same equation. The initial wind parameters
are then concatenated into spherical arrays and compiled into an hdf5 �le using the Python packageh5py. For binary
star stellar wind systems, the stellar boundaries are duplicated and their centers are placed equidistant from the grid's
center.

6.2. Two Dimensional ICs

The governing physical equation for stellar wind, the continuity equation, has a di�erent form in two dimensions:

_M = 2 �R� (r )v(r ) : (48)

The simulation variable parameters in 2D are mostly the same as those in the 3D case, except rather than a healpix
resolution parameter N , the resolution of the now circular shells is set by the spacing parameter of the shells,d, via:

N � =
20�R

d
+ 1 ; (49)

where R is the radius of the star. Rather than setting up spherical arrays with h5py, we manually set the circular
boundary points using the x and y coordinates of the stellar centers, and placing points in a circle around each stellar
center using angle

� i =
2� (i + 0 :5)

N �
: (50)

6.3. Single Star Tests

To learn how to properly operate, understand, and interpret results from arepo , we begin by simulating the
hydrodynamic outows of a single stellar wind. We construct radial histograms of the simulated density, temperature
and velocity, and overlay the three physical quantities with analytical results from Equations 11 and 14. We used
a standard Runge-Kutta algorithm to perform numerical integration of Equation 11. We were unable to achieve a
convergent numerical solution for the velocity di�erential equation (Equation 12). This may be due to mistakes in
the derivation of the di�erential equation or errors in implementing the numerical integration. Either way, since the
simulated stellar winds have such incredibly high velocities, we assume no wind deceleration or acceleration towards
the center of the star, leading to a predicted constant velocity result. We ran many test simulations to understand
the impact of di�erent input and resolution parameters. The four single stellar wind simulations presented are named
3DLow, 3DHigh, 2DLow, and 2DHigh, where \high" or \low" refers to the relative resolution of the simulations.
Simulation variable input parameters for the four single star runs are shown in Table 3.

We encountered issues with the radial pro�les where even at high resolution the velocity and temperature pro�les did
not line up with the predicted analytical solution. We suspect that this is due to the shape of �rst cells surrounding
the stellar boundaries in the initial conditions. If the �rst binned simulation density does not occur at the exact
same radial coordinate as the ejected density in the initial condition �le, then there will be a scaling error due to
the ejected density either occurring too far or too close to the center. In our case, we found that in 3D was a slight
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Table 3. Parameters for the 2D and 3D low and high resolution, single stellar outow simulations, in code units, with the
exception of mass-loss rate ( _M ) which is in the standard units of solar masses per year (M � =yr). N is the healpix resolution
parameter discussed in Section 6.1,d is the shell spacing parameter, and RGPM is the reference gas particle mass, which is the
criterion for re�nement based on cell mass. Here, � t simply refers to the amount of simulation time between snapshots, and
does not refer to the integration time of the simulation.

3DLow 3DHigh 2DLow 2DHigh

R 10 10 3 3
v0 3 3 1.22 1.22
T0 20000 20000 45000 45000
� 0 or � 0 5:85 � 10� 14 5:85 � 10� 14 2:88 � 10� 11 2:88 � 10� 11

_M [M � =yr] 10� 5 10� 5 3 � 10� 5 3 � 10� 5

N 16 64
N � 377 377
d 0.5 0.2 0.2 0.2
RGPM 10 � 16 10� 16 10� 13 10� 15

NCPD 32 64 128 128

Figure 8. Comparison of the 3DHigh density radial pro�les while varying bin resolution. Left: three di�erent bin resolutions
in comparison to the analytical solution (black dashed line). Right: analytical density divided by simulation density ( � 0=� ) for
the same bin resolution comparison.

under-density, even at high resolution. To ensure that the observed simulation under-density was not due to binning
resolution (number of bins when constructing radial pro�les), we run a test on the 3DHigh run where we construct the
radial pro�les at 100, 500, and 800 bins, and demonstrate the multiplying factor between the simulation and analytical
densities (Figure 8).

Figure 8 con�rms that the observed under-density is not due to poor bin resolution. To �x the under-density, we
identify the calculated density in the �rst bin of the simulation radial pro�le, and scale the analytical solution so
that the initial densities align. The bin-scaling corrected radial pro�les for the 3DLow and 3DHigh runs are shown
in Figure 9. We show that the predicted constant velocity wind matches the simulated result. However, the 3DLow
result achieves only an approximately accurate density result, and a very poor temperature result, while the higher
resolution 3DHigh result is able to achieve highly accurate density pro�les. The poor temperature result in the higher-
resolution 3D run is due to the concerns discussed in Section 5.4. We were unable to achieve high enough resolution in
the 3D runs to achieve accurate temperature calculation given our limited computational resources and time. Figure
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Figure 9. Radial pro�le snapshots at t=10.0 for the 3DLow (left) and 3DHigh (right) simulation runs. Temperature and
velocity data are plotted on the left axis of each plot, and density is plotted on the right axis of each plot.

Figure 10. 3DLow density and velocity cross sections.

10 and 11 show late snapshots of the 3DHigh and 3DLow cross sections for the simulation density, temperature and
velocity. The 3DLow temperature cross section results were omitted since they neither match the shape nor scale of
the analytical solution. On the other hand, the 3DHigh temperature cross section results were included since the shape
approximately matches the analytical solution, while only the scale is incorrect. The 3DHigh temperature cross section
computed values are incorrect, but the morphology of the temperature gradient matches the analytical solution for
a single spherically symmetric stellar wind. The cross section plots for all three hydrodynamic quantities display the
shockwave produced by the initial wind ejection colliding with the ISM. Since we are not modeling shock physics for
the single star case, the shock wave should be disregarded and only material inside the shock should be considered. It is
also notable from the velocity cross sections and radial pro�les that the simulation does an excellent job of maintaining
constant velocity inside the relevant region (within the shock).

To achieve su�cient resolution given our time and computational constraints, we opted to carry out further tests
and the binary simulations in 2D, allowing for higher resolution and saving computational power and time. Since
the governing equations supporting the derivation of the density and velocity di�erential equations discussed earlier
are inherently three dimensional, we opt to use solely the 2D continuity equation (Equation 48) as our analytical
solution for the 2D simulations. We are able to demonstrate that the Runge-Kutta numerical integration of the
density di�erential equation is equivalent to the 3D continuity equation for a symmetric stellar outow (see Figure 12).
Then, since the 2D continuity equation is the exact reduced-dimensionality analog of the 3D continuity equation, the
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Figure 11. 3DHigh density, temperature and velocity cross sections.

Figure 12. Runge-Kutta numerical integration of the density di�erential equation (Equation 11) along with the analytical
solution from the 3D continuity equation for constant velocity, both as a function of radius.

2D continuity equation is an accurate representation of an analytical solution to circular symmetric stellar outows.
The same temperature analytical solution is used for testing the 2D simulations, and the velocity is, again, assumed
to be constant.

Radial histograms of the 2D simulations were constructed and compared to the analytical results discussed above,
similar to the 3D runs. The combined radial pro�le of the 2DLow and 2DHigh runs is shown in Figure 13, while
late snapshot cross sections of the 2DLow and 2DHigh densities, temperatures and velocities are shown in Figures 14
and 15. The 2D radial pro�les were bin-scaled again, scaling the analytical solution to the �rst calculated simulation
quantity. Note that even with the bin scaling and higher resolution of the 2DLow simulation there is still a slight
inaccuracy in simulated temperature. This, again, is likely due to poor resolution, since we demonstrate that good
temperature agreement is �nally achieved in the 2DHigh run. There was user error in setting up the 2DLow simulation
which caused the boundaries of the simulation to not act as inow-outow boundaries, resulting in material reecting
o� the boundary and forming non-physical instabilities with the outow, thus the edge instabilities should be ignored;
the inner region of the cross section accurately matches the analytical solution.

The agreement of the 2D pro�les with the analytical solution in correspondence with the accuracy between the
Runge-Kutta and continuity equations and the physical analog of the 2D to the 3D continuity equations leads us to
believe that the initial conditions setup and subsequent evolution in arepo result in the expected properties and
evolution of a steady state, spherically symmetric stellar outow. The analysis and results of these single star tests
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Figure 13. Latest time combined radial pro�le snapshot for the 2DLow (left) and 2DHigh (right) simulation runs. Temperature
and velocity data are plotted on the left axis of each plot, and density is plotted on the right axis of each plot.

Figure 14. 2DLow density, temperature and velocity cross sections. Ignore instabilities at box edges.

Figure 15. 2DHigh density, temperature and velocity cross sections.

improved our understanding of the numerical setup and solvers inarepo and was also useful for developing and
testing the necessary simulation interpretation and analysis scripts and tools.

6.4. Simulating Colliding Wind Binaries

Due to limited time and computational resources, all CWB simulations were performed in two dimensions.1 The
above single stellar outow models were necessary to test the setup and results inarepo for a simpli�ed case where

1 The rendered plots below show the structures that would form in the binary orbital plane, we thus refer to them as `cross sections'.



22

Table 4. Simulation parameters for the four CWB models. Since each simulation is for a pair of stars, each table entry with
a comma-separated pair indicates the values for each star, while entries with a single value indicates the value is the same for
both stars. Each simulation is also assigned a run nickname, allowing for easy reference. Both stars for all four runs have
M 1 = M 2 = 10 M � , R1 = R2 = 3 R � , T1 = T2 = 45000 K, and semi-major axis a = 0 :3 AU = 64 :7 R� . The time between each
snapshot for all runs is � t = 0 :5. Units are in code units unless otherwise speci�ed.

Equal Corotate Isothermal Unequal

_M 1 , _M 2 [M � yr � 1 ] 3 � 10� 5 3 � 10� 5 3 � 10� 5 3 � 10� 5 , 3 � 10� 6

v0;1 , v0;2 1.22 1.22 1.22 1.22, 2
RGPM 10 � 12 10� 12 10� 12 10� 13

Nsnap 611 414 446 611

exact analytical solutions can be derived. The CWB simulations presented here are again idealized with the goal of
comparing the results to analytical estimates and expectations. These CWB simulations, therefore, act as a stepping
stone towards understanding the intricate and complex hydrodynamics of a colliding wind region, bolstered by our
con�dence in the ability of the arepo code to accurately capture the physics of the stellar outows and shocks. The
simulation parameters for the four main CWB simulations are shown in Table 4. We present two stationary binaries,
\Equal" and \Unequal", along with two binaries in the co-rotating frame of reference, \Corotate" and \Isothermal".
The stationary binary simulations are applicable in the case that the wind velocity is much greater than the orbital
velocities of the member stars, which is likely in wide systems when the CWB consists of one or more WR stars. Of
the stationary binaries, the �rst, \Equal", features two stars with equal wind velocities and mass-loss rates, resulting
in the ideal shock interaction structure discussed at length by Stevens et al. (1992). The second stationary binary,
\Unequal", is a higher resolution simulation of two stars with unequal mass-loss rates but the same wind velocity. The
other two CWB simulations account for the orbital motion of the two stars through space by enabling the simulation
particles to be accelerated via the Coriolis and centrifugal forces. Therefore, both the \Corotate" and \Isothermal"
runs are simulated in the co-rotating frame of the CWB, while the \Isothermal" run uses an isothermal equation of
state in addition. The isothermal sound speed iscs = 0 :0167, from Equation 36. Both co-rotating simulations have
equal mass-loss rates and wind velocities.

6.4.1. Analysis of CWB cross sections and radial pro�les

Density and velocity cross sections for the \Isothermal" CWB are shown in Figure 16, in which the winds of both stars
are subject to strong cooling, leading to expected thin-shell instabilities in the contact discontinuity. The isothermal
equation of state results in the width of the shock being much smaller than in the adiabatic case. Density, velocity and
cross section plots for the equal stationary \Equal" CWB are shown in Figure 17. In the wind collision, kinetic energy
is converted to thermal energy, heating the gas which expands outwards away from the contact discontinuity. As was
found in previous studies, the latter is subject to strong instabilities (e.g., the Kelvin-Helmholtz instability produced
by shear between the two stellar winds). The density plot (top left) exhibits the classic contact discontinuity modeled
extensively by Stevens et al. (1992) and resembles their model. Figure 18 demonstrates the adiabatic co-rotating frame
with Coriolis and centrifugal forces. Here, the width of the shock is much larger than in the isothermal case. Figure 19
demonstrates the unequal stationary binary, resulting in the \bow-shock-like" outow from the stronger star towards
the weaker. Figure 20 is a line pro�le plot of the density for the latest evolution of the \Unequal" CWB. Applying the
mass-loss rates and velocities to equation 37 yields a prediction for the location of the contact discontinuity. Equation
37 predicts d1=d2 = 2 :47. Based on the density line pro�le shown in Figure 20, we estimate a contact discontinuity
location of 13:45 R� to the right of the center. Since each star is spaced 32:34 R� from center, the simulated ratio
of each star's distance to the contact discontinuity is 2:42. Our \Unequal" CWB simulation is able to achieve the
predicted value from Equation 37 to within 1:9% of the predicted result.

In the non-isothermal cases, the temperature of the gas in the shocked region is so much larger than the gas
in the non-shocked regions that the non-shocked regions appear to have temperature towards zero. We see that the
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