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Chapter 1

Introduction

1.1 Specific Aims

The human microbiome is vital to human health as a
metabolic “organ” with important catabolic and an-
abolic functions. Development of microbiome-targeted
therapies requires mechanistic understanding of how mi-
crobes interact with each other and with the host. Mech-
anistic computational approaches can increase knowl-
edge gains from experiments, infer system parameters
that cannot be measured, and accelerate the design of
novel therapies. Constraint-based reconstruction and
analysis (COBRA) of genome-scale metabolic networks
is a powerful mechanistic approach that has been widely
applied to the study of metabolism in single species, but
is underdeveloped and underutilized as a tool for study-
ing metabolism in microbial communities. The appli-
cation of COBRA methods to microbial communities is
still hampered by:

1. A lack of approaches for integrating metabolic net-
works with other community data such as spatial
organization or known interactions

2. The difficulty of characterizing individual species in
a complex community

3. The infeasibility of manually reconstructing
metabolic network for hundreds of species in a
community

To address these challenges, we completed the following
objectives:

Aim 1: Integrate metabolic networks into mul-
tiscale models of microbial communities. Within
microbial communities, metabolism influences and is in-
fluenced by other physical and chemical factors such as
spatial structure and interspecies interactions. Until our
work, genome-scale metabolic networks were used pri-
marily to model well-mixed communities. For the first
part of this objective, we created the first (to our knowl-
edge) multiscale model that integrates metabolism with
spatial distribution and we recapitulated known features
of Pseudomonas aeruginosa biofilm formation. For the
second part of this objective, we integrated a Boolean
network representation of interspecies interactions in a
murine microbiome with metabolic networks to explore
the role of metabolism in species interaction networks.

Aim 2: Reconstruct species-level metabolic
networks from metagenomic samples. Attempts to
model the metabolism of microbial communities are of-
ten limited by a lack of knowledge about the constituent
species of the communities. Culture-free techniques such
as metagenomic sequencing provide information about
the genomes of all species in a community, but the ge-
nomic fragments are mixed together. A challenge in the
field is to sort mixed sequence fragments into the cor-
rect species bins, and we found that metabolic networks
can guide the binning process. We developed the SOrt-
ing by NEtwork Completion (SONEC) approach, which
improves the sequence coverage of individual species’
genomes and simultaneously reconstructs a metabolic
network for each species. The SONEC approach im-
proves access to species-specific information which can
then be used in modeling approaches.

Aim 3: Improve predictions generated by draft
metabolic networks. Metabolic network reconstruc-
tions require months of manual curation before they can
be used to make useful predictions. Because the hu-
man microbiome contains hundreds of different species
which vary from person to person and across time, it is
infeasible to manually curate models for each individ-
ual species. To address this problem, we developed an
ensemble approach, which improves the prediction ac-
curacy of automatically-generated networks by pooling
predictions from several draft networks representing the
same species. Each network within the ensemble repre-
sents a hypothesized network structure, and these are re-
constructed based on random subsets and permutations
of the available data for each species. We found that
ensemble predictions are superior to those of single re-
constructions with respect both to overall network prop-
erties (such as nutrient utilization predictions) and to
mechanistic details (such as gene essentiality). Our en-
semble approach leverages the speed of automated net-
work reconstruction while improving predictions, mak-
ing it possible to generate valuable predictions about
complex microbial communities within a practical time
span.

Multiscale models which include metabolic network
reconstructions have the potential to generate detailed
hypotheses linking genes to community phenotypes. In
completing these aims, we developed two novel multi-
scale models which integrated metabolic network mod-
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2 CHAPTER 1. INTRODUCTION

els with spatial structure and interaction networks. Fur-
thermore, we overcame two substantial obstacles hinder-
ing the future application of such multiscale models by
improving the process of reconstructing genomes from
metagenomic sequence fragments, and by improving the
accuracy of draft models using an ensemble approach.
The completion of these objectives paves the way for
much broader adoption of mechanistic, multiscale mod-
els in microbiome research.

1.2 A Preview of this Dissertation

I chose to organize the specific aims in the chronolog-
ical order in which the work occurred. I hope that in
presenting my work this way it is clear to the reader
how the inspiration for the second and third aims arose
naturally from the first. Aim 1 consists of the earliest
work where I ambitiously jumped ahead to address the
engineering problem of multiscale modeling of microbial
communities. In the process of developing such models,
I discovered substantial barriers to implementing those
multiscale models in the real-life setting of complex mi-
crobial communities. Aim 2 addresses one barrier, which
is the lack of reference genomes for most members of nat-
ural microbial communities. Aim 2 addresses a second
barrier, which is the need for substantial manual cura-
tion of metabolic networks.

The organization of this dissertation follows the three
specific aims above, with some additional material at
the end to provide context for future directions. My
work relating to Aim 1 is found in Chapters 2–4. Chap-
ter 2 describes at a multiscale model of P. aeruginosa
biofilm formation. Chapter 3 describes a multi-faceted
analysis of a gut microbial community using both dy-
namic network analysis and genome-scale metabolic net-
works. Chapter 4 is a review article describing the
available techniques for modeling microbial interactions
using genome-scale metabolic networks and future di-
rections for the field. My work relating to Aim 2 is
found in Chapter 5, where I describe and demonstrate
the SONEC algorithm. My work relating to Aim 3 is
found in Chapter 6, where I present a novel approach
to modeling microbial metabolism using ensembles of
genome-scale metabolic networks.

In addition to completing work on the three aims
above, I completed additional experimental work that
will soon serve a powerful role in improving our ability to
test and validate the types of computational approaches
I developed in Aims 1–3. In Chapter 7, I present the
results of our genetic and metabolic characterization of
a model murine gut microbiota known as the altered
Schaedler flora (ASF). Finally, in Chapter 8 I discuss
the impact of the work reported in this dissertation, and

future directions.
Two helpful asides: One, despite having a focus on

microbial communities, several of the computational
projects make use of the single species Pseudomonas
aeruginosa. This is because previous research in the
Papin lab resulted in high quality metabolic network re-
constructions of P. aeruginosa which is convenient for
purposes of algorithm validation. Two, there are many
mentions of “Supplemental Materials”, all of which are
available for each chapter through the online version of
the corresponding published manuscript.



Chapter 2

Novel Multiscale Modeling Tool Applied to
Pseudomonas aeruginosa Biofilm
Formation

The text for this chapter has been previously pub-
lished as a research article here:

Biggs MB and Papin JA. (2013). Novel Multiscale Mod-
eling Tool Applied to Pseudomonas aeruginosa Biofilm
Formation. PLOS One, 8(10):e78011.

2.1 Context

This paper began as a class project in SYS6035: Agent-
based Modeling and Simulation of Complex Systems.
The instructor, Dr. Gerard Learmonth, encouraged us
to make publication a goal of our experience in the class.
I found that starting with publication as the end goal
motivated my learning and my choice of class project.
At the time of writing of this dissertation, this paper
had been cited 13 times. I continue to receive personal
inquiries through email about the MatNet tool described
in this paper. I have corresponded with researchers who
are using MatNet at many institutions in the United
States and around the world, including the University
of Michigan, the Massachusetts Institute of Technology,
Ohio State University, the United States Department
of Agriculture, and institutions in Iran, Israel, France,
Germany, Austria, and the United Kingdom.

2.2 Synopsis

Multiscale modeling is used to represent biological sys-
tems with increasing frequency and success. Multiscale
models are often hybrids of different modeling frame-
works and programming languages. We present the
MATLAB-NetLogo extension (MatNet) as a novel tool
for multiscale modeling. We demonstrate the utility of
the tool with a multiscale model of Pseudomonas aerugi-
nosa biofilm formation that incorporates both an agent-
based model (ABM) and constraint-based metabolic
modeling. The hybrid model correctly recapitulates
oxygen-limited biofilm metabolic activity and predicts
increased growth rate via anaerobic respiration with the
addition of nitrate to the growth media. In addition, a

genome-wide survey of metabolic mutants and biofilm
formation exemplifies the powerful analyses that are en-
abled by this computational modeling tool.

2.3 Introduction

Multiscale modeling is a broad class of hybrid modeling
techniques that attempt to represent physical systems
that span multiple spatial or time scales. Spatial and
time scales are particularly interdependent in biological
applications and there is increasing utility for multiscale
models that capture this interdependency [1]. A recent
example is a model of vascular adaptation that com-
bines an agent-based model (i.e. cellular level) with a
continuum biomechanical model (i.e. tissue level) [2, 3].
Using this model, Hayenga et al. identify causal factors
in arterial adaptation to sustained increases in blood
pressure. These predicted factors are active at different
spatial scales and include cell growth and tissue remod-
eling. This remodeling in turn occurs as a function of
the changes in production and removal of collagen and
smooth muscle cells due to hemodynamically-induced
stresses, emphasizing the highly multiscale nature of the
biological system and the need for mathematical models
that integrate data from disparate spatial and tempo-
ral scales [2]. Multiscale models show significant poten-
tial for representing the inherent complexity of biological
systems, generating testable hypotheses to understand
fundamental mechanisms.

The hybrid nature of many multiscale models creates a
need for software tools in which to implement the mod-
els. Different software packages offer unique strengths
(e.g. R provides vast statistics capabilities [4], NetLogo
provides a rich environment for agent-based modeling
[5], and MATLAB offers a wealth of engineering tools
[6]). It is often advantageous to implement separate por-
tions of a model in the most appropriate language and
to combine the results dynamically. Dynamically com-
bining model results between software platforms can be
achieved with packages written for that purpose. Ex-
amples of current packages that perform this function

3



4 CHAPTER 2. NOVEL MULTISCALE MODELING TOOL

are the NetLogo-R extension by Thiele and Grimm [7]
and R.matlab by Bengtsson [8]. As multiscale models
are built with increasingly diverse computational com-
ponents, more tools will be needed that facilitate dy-
namic integration of disparate software tools.

Here, we present a novel software tool that fills a need
in biomedical and biological multiscale modeling. The
MATLAB-NetLogo extension (MatNet) provides new
functions within NetLogo that allow data passing be-
tween NetLogo and MATLAB, and the calling of any
valid, one-line MATLAB commands from within NetL-
ogo. The need for this tool is demonstrated by pub-
lications that have used NetLogo and MATLAB (as
the most appropriate software platforms) to implement
biomedical multiscale models [2, 3, 9]. The new tool
presented herein facilitates future dynamic integration
of these software platforms.

To demonstrate the utility of this tool, we present
a multiscale model of Pseudomonas aeruginosa biofilm
growth. P. aeruginosa is a common opportunistic
pathogen that forms biofilms on medical implants [10]
and in the lungs of cystic fibrosis patients [11], and is a
model organism for biofilm formation. In our model, we
combine an existing ABM of biofilm development [12,
13] with a genome-scale metabolic model of P. aerugi-
nosa metabolism [14]. This biofilm model is multiscale
in its incorporation of biofilm-level spatial information
such as structural remodeling and nutrient diffusion, as
well as cell-level details of metabolic functions such as
nutrient uptake and growth yields. The ABM, originally
developed in C++, was implemented in NetLogo to ex-
ploit the existing framework and flexibility it offers as
an ABM platform [15]. Metabolic modeling was imple-
mented in MATLAB as done previously [16]. The result-
ing model reproduces known biofilm structure from lim-
ited oxygen diffusion. The model further demonstrates
the utility of MatNet by generating hypotheses for how
gene-level perturbations influence biofilm structure.

2.4 Methods

Agent-Based Model of Biofilm Structure

Here, we briefly describe the structure and processes of
the ABM and refer the reader to our publicly-available
model as well as corresponding citations for further de-
tails. The rules for the two-dimensional ABM of biofilm
growth were implemented in NetLogo essentially as de-
scribed by Pizarro et al. [12, 13]. The purpose of the
ABM is to capture emergent biofilm structure that re-
sults from growth and dispersion of individual bacterial
cells. The biofilm is represented as a two-dimensional
cross-section divided into squares. Each square repre-

sents a region of liquid growth media. As such, each
square contains variables that represent nutrient levels
in that area, and nutrients are allowed to diffuse from
higher to lower concentrations. Each agent in the simu-
lation represents bacteria. Agents diffuse randomly un-
less adjacent to “biofilm”. “Biofilm” is defined in the
simulation as agents directly adjacent to the bottom
surface of the simulated space, or adjacent to a chain
of agents that terminates at the bottom surface. Agents
in the biofilm do not move except as a result of division.
Bacterial agents undergo binary division once the nu-
trients consumed exceed a pre-defined threshold. Only
one agent may occupy a square; therefore, once an agent
divides into two, the new agent is placed in a randomly-
selected adjacent square, and if that square is occupied,
the next agent is displaced to a random adjacent square.
This process, termed “shoving”, is continued until no
square contains more than one agent.

The key difference in our model from the Pizarro et al.
formulation is a change from representative “food parti-
cles” to concentrations of all 105 extracellular metabo-
lites used in the genome-scale metabolic network recon-
struction of P. aeruginosa [14]. Each metabolite dif-
fuses independently as a function of the molecular mass.
Metabolites diffuse more slowly through regions of the
ABM space defined as biofilm (60% of aqueous rate for
gases, and 25% of aqueous rate for all other metabolites)
[17].

The multiscale modeling of the biofilm is an itera-
tive process involving analysis in MATLAB and NetL-
ogo. First, constraints on exchange fluxes for the FBA
problem in MATLAB are scaled to local nutrient con-
centrations. This simplifying assumption can be relaxed
with more detailed flux constraints implemented as such
data is available. However, these simplified constraints
are sufficient to illustrate the value of the modeling tool
presented here. After solving the FBA problem in MAT-
LAB, local nutrient concentrations are calculated and
returned, along with the growth rate, to the NetLogo en-
vironment. The nutrient concentrations are updated in
NetLogo, agents with accumulated biomass divide in two
and rearrange according to the shoving rule, nutrients
diffuse, and the new nutrient concentrations are passed
to MATLAB. These steps constitute one time step of
the simulation, which simulates a 5 minute interval of
biofilm growth. A single simulation of 200 time steps
simulates biofilm growth over a period of ∼17 hours.

Our implementation of the biofilm model in NetLogo
displays the same behavior as the Pizarro et al. model
(Figure S1). Because the ABM was independently val-
idated previously [12, 13], it will not be further vali-
dated here except as pertains to the hybrid metabolic
and agent-based models.
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Figure 2.1: MATLAB-NetLogo Extension (MatNet) diagram and example code. MATLAB and NetLogo
are both Java-based applications and are able to pass data via the Java Serial library. The user is insulated from
the details of data passing, and can call MATLAB functions (native or user-defined) from within NetLogo using
simple commands. In the example above, a list of numbers is created in NetLogo and passed to MATLAB where
the numbers are summed. The answer is retrieved from MATLAB and displayed in NetLogo.

Genome-Scale Metabolic Network Reconstruc-
tion

P. aeruginosa metabolism was modeled using the previ-
ously published genome-scale metabolic reconstruction
[14]. The model was analyzed with functions from the
COBRA Toolbox [18] implemented previously in MAT-
LAB. The COBRA Toolbox utilized the Gurobi opti-
mizer [19]. Metabolite concentrations in each occupied
square of the ABM were used to constrain uptake rates
in the model. Discrete solutions for each cell agent at
each time point were found using flux balance analysis
(FBA) [20]. Cell agent biomass and metabolite concen-
trations were updated using dynamic FBA [21].

Metabolic Model Constraints

Initial conditions simulating glucose minimal media
were generated by including negative, non-zero lower
bounds for the extracellular metabolite exchange reac-
tions: Iron (Fe and Fe3+), Oxygen (O2), D-Glucose
(C6H12O6), Cadmium (Cd), Carbon Dioxide (CO2),
Sulfate (H2O4S), Copper (Cu), Water (H2O), Man-
ganese (Mn), Cobalt (Co), Ammonium (NH4+), Sodium
(Na), Nitrogen (N2), Magnesium (Mg), Orthophosphate
(H3O4P), and Zinc (Zn). For the anaerobic respira-
tion simulation, an additional negative, non-zero lower
bound was included for the Nitrate (HNO3) exchange
reaction. The metabolic model and accompanying con-
straints were previously described [14] and were not fur-
ther validated here except as pertains to the hybrid
model.

Software Availability

MatNet, example code, and the biofilm model
are available from: bme.virginia.edu/csbl/Downloads1-
matnet.html

Simulation Specifications

Simulations were performed on a 64-bit Sony Vaio laptop
with 6 GB of RAM and a 2.8 GHz dual-core processor
running Windows 7, NetLogo version 5.0.3 and MAT-
LAB version 2012b. The duration of single simulations
of biofilm growth ranged from 5 to 15 hours, depending
on model settings.

2.5 Results/Discussion

Novel Multiscale Modeling Tool

MatNet was written in Java, utilizing the NetLogo Ex-
tensions API (Figure 2.1). NetLogo and MATLAB pass
data using the Java Serial library. MATLAB is opened
as a background process and runs a server script that is
an implementation of a finite state machine. The archi-
tecture was based on R.matlab [8] and the NetLogo-R
extension [7]. This extension adds nine commands or
“primitives” for sharing and evaluating data with MAT-
LAB from within NetLogo (see “User Guide” in Supple-
mental Material S1). The resulting extension provides
a simple interface between the NetLogo and MATLAB
platforms that allows users to exploit the strengths of
both languages in their models (Figure 2.1). While the
following multiscale analysis is a biomedical example,
this tool could readily find application in other fields for
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Figure 2.2: Oxygen-dependent metabolic activity
in P. aeruginosa biofilms. (A) Progression of biofilm
growth in a multiscale model with the associated time
step (time steps represent 5 minute intervals). Each cir-
cle represents a cluster of P. aeruginosa cells. (B) Snap-
shot from multiscale biofilm model in glucose minimal
media at time step 2,000. (C) in vitro P. aeruginosa
biofilm cross section grown in glucose MOPS media for
four days (modified from Xu et al. [22]). The oxy-
gen gradient through the biofilm limits metabolic ac-
tivity. Only with high O2 (near the surface) can cells
actively synthesize protein. The multiscale model reca-
pitulates this pattern of oxygen-limited metabolic activ-
ity throughout the biofilm.

which integrated MATLAB and NetLogo analyses are
of value such as ecology [23], finance [24], or behavioral
science [25].

Individual simulations were performed over 5 to 15
hours. We evaluated the computational time for each
of the functions in a given simulation. A large fraction
of the simulation run time is claimed by the metabolite
diffusion simulations in NetLogo and the repeated FBA
simulations in MATLAB. The slower run time of these
steps is expected, given that both processes are called
frequently during each time step, and both are compu-
tationally intensive. While an appreciable portion of
the computational time was spent passing data between
MATLAB and NetLogo, this computational time is at-
tributable to the high frequency with which these func-
tions were called. The passing of data between the two

environments via MatNet did not add undue computa-
tional overhead. Among all the functions in the simula-
tion, each MatNet function was listed among the fastest
on a per-function-call basis.

Oxygen-Limited Metabolic Activity in a P.
aeruginosa Biofilm Model

The ABM correctly recapitulates oxygen-limited
metabolic activity in a biofilm (Figure 2.2A). Biofilm
formation was simulated under glucose minimal media
conditions. Metabolic activity was defined as an
increase in biomass (> 0.01 mass dry weight) associated
with a particular agent in the two-dimensional space.
Metabolites were allowed to diffuse in from the top to
mimic fresh media being washed over the biofilm as
done by Pizarro et al. [12, 13]. Oxygen at the top
was held at a constant 0.21 mM [21]. All simulations
showed reduced metabolic activity in the interior of the
biofilm, and increased metabolic activity at the surface.
An evaluation of the exchange reaction fluxes in the
metabolic models indicated oxygen as the limiting
metabolite (Figure 2.2B), consistent with findings from
Xu et al. who report oxygen-limited growth in P.
aeruginosa biofilms (Figure 2.2C) [22]. Furthermore,
metabolic activity (as measured by protein synthesis)
is restricted to a layer of cells at the biofilm surface
(Figure 2.2C) as previously reported [22]. Therefore,
this model of biofilm growth correctly recapitulated
known characteristics of P. aeruginosa biofilm.

Nitrate Promotes Anaerobic Respiration and In-
creased Biofilm Growth Rate

Our multiscale model recapitulated increased biofilm
growth rate in nitrate-supplemented media (Figure
2.3A). Addition of nitrate (NO3) to the in silico growth
media increased biofilm growth rate by approximately
10-fold, as determined by the change in cell agent counts
over the first 263 time steps (Figure 2.3B). Nitrate re-
lieves the oxygen limitation in P. aeruginosa by allowing
anaerobic growth via denitrification [22, 26]. Denitrifi-
cation, or anaerobic respiration, is the process whereby
nitrate (NO3) is reduced to dinitrogen (N2), and ni-
trate replaces gaseous oxygen as the terminal electron
acceptor. Anaerobic respiration prolongs active growth
deeper in the biofilm after oxygen is removed from the
microenvironment. The model prediction of increased
growth rate was subsequently validated via literature
search; Borriello et al. report increased biofilm growth
with the addition of nitrate [27]. Although a direct com-
parison is not possible due to different growth conditions
than those simulated in the model, the results reported
by Borriello et al. serve as a qualitative validation for
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Figure 2.3: ABM simulations of nitrate-dependent
growth rates. (A) Predicted biofilm formation in the
presence of nitrate (NO3) shows higher proportion of
active cells when compared to glucose minimal media
control (Figure 2.2). (B) Predicted biofilm growth with
and without nitrate (3 independent runs each). Addi-
tion of nitrate is predicted to increase biofilm growth
rate by enabling anaerobic growth deeper in the biofilm.
Note that for simulations in glucose minimal media (blue
lines), slower growth increases the impact of random cell
spacing and resultant heterogeneous nutrient usage such
that the model resulted in differing final cell counts for
the same 15 hour simulation times.

the model predictions. This validated model prediction
demonstrates that hybrid ABM-metabolic models can
display predictive emergent behavior that is physiologi-
cally relevant.

in silico Gene-Deletion Screen

An in silico gene-deletion screen predicts the influence of
individual genes on biofilm growth. Genes were deleted
from the metabolic model by constraining reaction flux
to zero. All possible single-gene deletions were evaluated
in MATLAB using FBA. From the results of this analy-
sis, a subset of metabolic models was selected to repre-
sent a range of growth phenotypes (lethal, sub-optimal
and wild-type). A multiscale model was generated for
each mutant background selected and was evaluated for
200 time steps on nitrate-supplemented glucose minimal
media (Figure 2.4). Qualitative behavior was clearly evi-
dent by time step 200, which was chosen consequently as
a stopping point. Note that with MatNet a genome-wide
gene deletion screen and the resulting phenotypic differ-
ences of a multicellular system can quickly and easily
be explored, thus providing useful hypotheses to guide
experimental design.

We present the hybrid model results for nine mod-
els: wild-type, ∆sdhD, ∆nasA, ∆gcd, ∆wbpL, ∆aceE,
∆pgm, ∆atpD, and ∆lysS. The wild-type model served
as a positive control, while ∆lysS served as a nega-
tive control (lysS encodes a tRNA synthetase and is
an essential gene on nitrate-supplemented glucose mini-
mal media). Reduced growth was predicted for ∆sdhD,
∆aceE and ∆atpD. sdhD plays a role in aerobic respi-
ration [28] and its deletion restricts growth by limiting
cells to anaerobic respiration. atpD encodes a subunit
of ATP synthase. aceE encodes a pyruvate dehydro-
genase and its deletion uncouples the citric acid cycle
from glycolysis. Severely restricted growth (only slightly
more biomass was found at time step 200 than what
was initially seeded into the system) was predicted for
∆gcd and ∆pgm. gcd encodes a glucose dehydrogenase
and de Werra et al. report that on glucose minimal
media, mutant strains without gcd initially grow very
slowly [29]. pgm encodes a phosphoglycerate mutase.
The ∆nasA model is of interest because nasA encodes
a nitrate transporter, and yet the model predicts near-
wild-type growth on nitrate-supplemented media. Fur-
ther investigation showed that the metabolic reconstruc-
tion contains two independent nitrate transport path-
ways. In the ∆nasA model, nitrate is taken into the
cell via a separate nitrate ABC transporter encoded by
PA2294, PA2295, PA2296, or PA2327, PA2328, PA2329.
The results of the ∆nasA model are of further inter-
est because they highlight the utility of this multiscale
modeling approach to explore the interplay of gene func-
tion and biofilm microenvironment heterogeneity. While
some model predictions were validated through litera-
ture search, the unsupported predictions stand as hy-
potheses awaiting experimental validation. The purpose
of this screen is simply to demonstrate the power of our
hybrid model to survey genome-wide, gene-level pertur-
bations on biofilm-level phenotype.

2.6 Conclusion

This model framework correctly recapitulated known
biofilm characteristics and yielded useful predictions
that may guide future experimental design. Future de-
velopment of the models presented here could include an
accounting of extracellular polymeric substances in the
ABM [30–33], the addition of rules linking specific genes
to biofilm growth, and the inclusion of gene regulation
in the metabolic model. Another potential biological
process highly amenable to hybrid modeling using Mat-
Net is quorum sensing, in which spatial information of
the cells contributes to the signaling and gene regula-
tion of the bacteria. Models of quorum sensing could
also be integrated with the biofilm model, facilitating
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Figure 2.4: Single-gene deletion screen. Models of several single-deletion mutants were evaluated for biofilm
formation after 200 time steps in nitrate-supplemented glucose minimal media. The wild-type (WT) model serves
as a positive control. ∆lysS is known to be lethal, and provides a negative control. As such, the six initial cells
seeded in the model never produced any additional biomass. (A) Snapshots of each multiscale simulation at time
step 200. (B) Proportions of active and inactive biomass for each ABM at time step 200. ∆sdhD, ∆aceE and
∆atpD grew more slowly than wild-type. ∆gcd and ∆pgm appeared to have significant growth defects (final
biomass only slightly more than that initially seeded). This screen is an example of a powerful analysis that
is enabled by the multiscale simulations integrating spatial modeling with NetLogo and the metabolic network
analysis performed in MATLAB.

an interrogation of the transition from a planktonic to
biofilm state. The current work demonstrates that even
simplified multiscale models can capture important bi-
ological behaviors that would be difficult or impossible
to predict otherwise, and that our tool enables powerful
cross-platform modeling that could be of value in mul-
tiple biomedical and other applications.
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Inference of Network Dynamics and
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Microbiome
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3.1 Context

Steve Steinway was an MD/PhD student completing his
research in Dr. Tom Loughran’s lab in the Department
of Medicine. Steve moved to UVA partway through his
PhD program from Pennsylvania State University where
he was co-mentored by Dr. Reka Albert, a computa-
tional biologist. His expertise was in building dynamic
Boolean network models of protein signalling networks.
He and I met at a mixer for the Jefferson Trust Big Data
Fellowship. He and I shared interests in network mod-
eling and the gut microbiome. We teamed up, and were
successful in winning a Jefferson Trust Big Data Fel-
lowship which totaled more that $44,000. Once again,
we set a goal to publish our work, which required a lot
of re-starting from scratch over the course of a year as
project ideas failed. Finally, we hit upon a great time-
series data set, an interesting approach to analyzing it
and some encouraging wet lab results which supported
our conclusions. I was lucky to find someone as talented
and fun to work with as Steve, and we both were lucky
to have supportive mentors through the process of com-
pleting this independent and seeming ”side project”. At
this writing, Steve was completing his MD at the Penn-
sylvania State University School of Medicine.

3.2 Synopsis

We present a novel methodology to construct a Boolean
dynamic model from time series metagenomic infor-
mation and integrate this modeling with genome-scale

metabolic network reconstructions to identify metabolic
underpinnings for microbial interactions. We apply this
in the context of a critical health issue: clindamycin
antibiotic treatment and opportunistic Clostridium dif-
ficile infection. Our model recapitulates known dynam-
ics of clindamycin antibiotic treatment and C. difficile
infection and predicts therapeutic probiotic interven-
tions to suppress C. difficile infection. Genome-scale
metabolic network reconstructions reveal metabolic dif-
ferences between community members and are used to
explore the role of metabolism in the observed microbial
interactions. In vitro experimental data validate a key
result of our computational model, that B. intestiniho-
minis can in fact slow C. difficile growth.

3.3 Introduction

Human health is inseparably connected to the billions of
microbes that live in and on us. Current research shows
that our associations with microbes are, more often than
not, essential for our health [1]. The microbes that live
in and on us (collectively our “microbiome”) help us to
digest our food, train our immune systems, and protect
us from pathogens [2, 3]. The gut microbiome is an enor-
mous community, consisting of hundreds of species and
trillions of individual interacting bacteria [4]. Microbial
community composition often persists for years without
significant change [5].

When change comes, however, it can have unpre-
dictable and sometimes fatal consequences. Acute and
recurring infections by Clostridium difficile have been
strongly linked to changes in gut microbiota [6]. The
generally accepted paradigm is that antibiotic treatment
(or some other perturbation) significantly disrupts the
microbial community structure in the gut, which creates
a void that C. difficile will subsequently fill [7–10]. Such
infections occur in roughly 600,000 people in the United
States each year (this number is on the rise), with an as-
sociated mortality rate of 2.3% [11]. Each year, health
care costs associated with C. difficile infection are in ex-
cess of $3.2 billion [11]. An altered gut flora has further

10
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been identified as a causal factor in obesity, diabetes,
some cancers and behavioral disorders [12–17].

What promotes the stability of a microbial commu-
nity, or causes its collapse, is poorly understood. Until
we know what promotes stability, we cannot design tar-
geted treatments that prevent microbiome disruption,
nor can we rebuild a disrupted microbiome. Studying
the system level properties and dynamics of a large com-
munity is impossible using traditional microbiology ap-
proaches. However, network science is an emerging field
which provides a powerful framework for the study of
complex systems like the gut microbiome [18–23]. Pre-
vious efforts to capture the essential dynamics of the
gut have made heavy use of ordinary differential equa-
tion (ODE) models [24, 25]. Such models require the
estimation of many parameters. With so many degrees
of freedom, it is possible to overfit the underlying data,
and it is difficult to scale up to larger communities [26,
27]. Boolean dynamic models, conversely, require far less
parameterization. Such models capture the essential dy-
namics of a system, and scale to larger systems. Boolean
models have been successfully applied at the molecular
[28, 29], cellular [20], and community levels [30]. Here
we present the first Boolean dynamic model constructed
from metagenomic sequence information and the first
application of Boolean modeling to microbial commu-
nity analysis.

We analyze the dynamic nature of the gut micro-
biome, focusing on the effect of clindamycin antibiotic
treatment and C. difficile infection on gut microbial
community structure. We generate a microbial inter-
action network and dynamical model based on time-
series data from metagenome data from a population
of mice. We present the results of a dynamic network
analysis, including steady-state conditions, how those
steady states are reached and maintained, how they re-
late to the health or disease status of the mice, and how
targeted changes in the network can transition the com-
munity from a disease state to a healthy state. Further-
more, knowing how microbes positively or negatively im-
pact each other—particularly for key microbes in the
community—increases the therapeutic utility of the in-
ferred interaction network. We produced genome-scale
metabolic reconstructions of the taxa represented in this
community [31], and probe how metabolism could—and
could not—contribute to the mechanistic underpinnings
of the observed interactions. We present validating ex-
perimental evidence consistent with our computational
results, indicating that a member of the normal gut flora,
Barnesiella, can in fact slow C. difficile growth.

Figure 3.1: Dynamic analysis workflow. Time
course genus abundance information was acquired from
metagenomic sequencing of mouse gastrointestinal tracts
under varying experimental conditions. Missing time
points from experimental data were estimated such that
genus abundances existed at the same time points across
all treatment groups. Next, genus abundances were bi-
narized such that Boolean regulatory relationships could
be inferred. A dynamic Boolean model was constructed
to explore gut microbial dynamics, therapeutic interven-
tions, and metabolic mediators of bacterial regulatory
relationships.

3.4 Methods

Data Sources

Buffie et al. reported treating mice with clindamycin
and tracking microbial abundance by 16S sequencing
[32]. Mice treated with clindamycin were more suscepti-
ble to C. difficile infection than controls. The collection
of 16S sequences corresponding to these experiments was
analyzed by Stein et al. [24]. First, Stein et al. aggre-
gated the data by quantifying microbial abundance at
the genus level. Abundances of the ten most abundant
genera and an other group were presented as operational
taxonomic unit (OTU) counts per sample. We use the
aggregated abundances from Stein et al. as the starting
point for our modeling pipeline (Figure 3.1).

This processed dataset consisted of nine samples and
three treatment groups (n = 3 replicates per treat-
ment group). The first treatment group (here called
“Healthy”) received spores of C. difficile at t = 0 days,
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and was used to determine the susceptibility of the na-
tive microbiota to invasion. The second treatment group
(here called “clindamycin treated”) received a single
dose of clindamycin at t = -1 days to assess the effect
of the antibiotic alone, and the third treatment group
(here called clindamycin+ C. difficile treated) received
a single dose of clindamycin (at t = -1 days) and, on
the following day, was inoculated with C. difficile spores
(Figure S1A). Under the clindamycin+ C. difficile treat-
ment group conditions, C. difficile could colonize the
mice and produce colitis; however this was not possible
under the first two treatment group conditions.

Interpolation of Missing Genus Abundance In-
formation

The gut bacterial genus abundance dataset included
some variation in terms of time points in which genera
were sampled. That is, genus abundances were mea-
sured between 0 to 23 days; however, not all samples
had measurements at all the time points (Figure S1A).
Particularly, the healthy population only included time
points at 0, 2, 6, and 13 days and Sample 1 of clin-
damycin+ C. difficile treated population was missing
the 9 day time point. Missing abundance values for these
4 points were estimated using an interpolation approach
(Figure S1B). For healthy samples, the 16 and 23 day
time points could not be interpolated as the last exper-
imentally identified time point for these samples is at
13 days. The assumption of the approximated polyno-
mial for these samples is that extrapolated data points
are linear using the slope of the interpolating curve at
the nearest data point. Because genera abundances are
fairly stable across time in this treatment group (i.e. the
slope of most of the genera abundances is approximately
zero), extrapolating two time points was deemed reason-
able. A principal component analysis was completed on
the interpolated data (Figure 3.2A) and shows that the
interpolated time series bacterial genus abundance data
clusters by experimental treatment group in the first two
principal components. Furthermore, the results of the
binarization for the healthy population suggest that in-
terpolation did not have any concerning effects on the
16 and 23 day time points (Figure S2).

Natural cubic spline interpolation was used to esti-
mate genus abundances at missing time points in some
samples. A cubic spline is constructed of piecewise third
order (cubic) polynomials which pass through the known
data points and has continuous first and second deriva-
tives across all points in the dataset. Natural cubic
spline is a cubic spline that has a second derivative equal
to zero at the end points of the dataset [33]. Natural
splines were interpolated such that all datasets had time

points at single day intervals through the 23 day time
point (Figure S1B).

Network Modeling Framework

We use a Boolean framework in which each network node
is described by one of two qualitative states: ON or OFF.
We chose this framework because of its computational
feasibility and capacity to be constructed with minimal
and qualitative biological data [34]. The ON (logical
1) state means an above threshold abundance of a bac-
terial genus whereas the OFF (logical 0) state means
below-threshold genus absence. The putative biologi-
cal relationships among genera are expressed as mathe-
matical equations using Boolean operators [29, 34]. We
inferred putative Boolean regulatory functions for each
node, which are able to best capture the trends in the
bacterial abundances. These rules, (edges in the interac-
tion network) can be assigned a direction, representing
information flow, i.e. effect from the source (upstream)
node to the target (downstream) node. Furthermore,
edges can be characterized as positive (growth promot-
ing) or negative (growth suppressing). An additional
layer of network analysis is the dynamic model, which
is used to express the behavior of a system over time
by characterizing each node by a state variable (e.g.,
abundance) and a function that describes its regulation.
Dynamic models can be categorized as continuous or
discrete, according to the type of node state variable
used. Continuous models use a set of differential equa-
tions; however, the paucity of known kinetic details for
inter-genus and/or inter-species interactions makes these
models difficult to implement.

Binarization

Genus abundance data was binarized (converted to a
presence-absence dataset) to enable inference of Boolean
relationships for modeling applications. We adapted a
previously developed approach called iterative k-means
binarization with a clustering depth of 3 (KM3) for this
purpose [35]. This approach was employed because bi-
narized data is able to maintain complex oscillatory be-
havior in Boolean models constructed from this data,
whereas other binarization approaches fail to maintain
these features [35].

Briefly, this approach uses k-means clustering with a
depth of clustering d and an initial number of clusters
k = 2d. In each iteration, data for a specific genus G are
clustered into k unique clusters C1

G, , C
k
G, then for each

cluster, CnG, all the values are replaced by the mean value
of CnG. For the next iteration, the value of d is decreased
and clustering is repeated. This methodology is repeated
until d = 1. This approach, with d = 3 (referred to here
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as KM3 binarization) has previously been demonstrated
as a superior binarization methodology to other bina-
rization approaches for Boolean model construction be-
cause it conserves oscillatory behavior [35]. These anal-
yses were performed using custom Python code based
on a previously written algorithm [35] and is available
in the supplemental materials.

Because KM3 binarization has a stochastic compo-
nent (the initial grouping of binarization clusters), we
employed KM3 binarization on the entire bacterial genus
abundance time series dataset 1000 times. The average
binarization for each sample (Figure S2) was used to de-
termine the most probable binarized state of each genus
in each sample at each time point (Figure S3). A princi-
pal component analysis of the most probable binarized
genus abundances for each sample demonstrates that
as with the continuous time series abundances (Figure
3.2A), binarized bacterial genus abundance data cluster
by experimental treatment group (Figure 3.2B). For in-
ference of Boolean rules from the binarized genus abun-
dances (Figure S3), the consensus of two of three samples
for each treatment population was used as the binarized
state of each genus at each time point in each sample
(Figure 3.2C).

Inference of Boolean Rules from Time Series
Genus Abundance Information

The Best-fit extension was applied to learn Boolean rules
from the binarized time series genus abundance informa-
tion [36]. For each variable (genus) Xi in the binarized
time series genus abundance data, Best-fit identifies the
set of Boolean rules with k variables (regulators) that
explains the variable’s time pattern with the least error
size. The algorithm uses partially defined Boolean func-
tions pdBf(T, F ), where the set of true (T) and false vec-
tors (F) are defined as T = {X ′ ∈ {0, 1}k : Xi(t+1) = 1}
and F = {X ′ ∈ {0, 1}k : Xi(t+ 1) = 0}. Intuitively, the
partial Boolean function summarizes the states of the
putative regulators that correspond to a turning ON
(T) or turning OFF (F) of the target variable. The
error size ε of pdBf(T, F ) is defined as the minimum
number of inconsistencies within X ′ that best classifies
the T and F values of the dataset. The Best-Fit ex-
tension works by identifying smallest size X ′ for Xi.
For more detailed information refer to [36]. In line
with this, we considered the most parsimonious repre-
sentation of the rules with the smallest ε. If the most
parsimonious rule was self-regulation, we also consid-
ered rules with the same ε that included another reg-
ulator. If multiple rules fit these criteria for a given
Xi, it implied that they can independently represent
the inferred regulatory relationships. In cases where

Figure 3.2: Construction of a network model of the
gut microbiome from time course metagenomic
genus abundance information. Principal component
analysis coefficients associated with each sample in the
metagenomic genus abundance dataset was completed
for A) interpolated genus abundances and B) binarized
interpolated genus abundances. “*” = Healthy; “∧” =
clindamycin treated; “#” = clindamycin+ C. difficile
treated. C) Consensus binarization of genus abundance
information. Each heatmap represents the consensus bi-
narization for each treatment group. The horizontal axis
represents the day of the experiment that the sample
came from. The vertical axis represents the specific gen-
era being modeled. Each genus was binarized to a 1
(ON; above activity threshold) or 0 (OFF; below activ-
ity threshold). D) Interaction rules were inferred from
the binarized data. The interaction rules were simpli-
fied for visualization (compound rules were broken into
simple one-to-one edges).

the alternatives had the same value of (non-zero) ε, we
explored combinations (such as appending them by an
OR rule) and used the combination that best described
the experimentally observed final (steady state) out-
comes. For example, we combined the two alternative
rules for Blautia with an OR relationship. In the case
of Barnesiella, we chained three rules (“Other”, “Lach-
nospiraceae other”,“Lachnospiraceae”) by an OR rela-
tionship, and “not Clindamycin” by an AND relation-
ship to incorporate the loss of Barnesiella in the presence
of clindamycin (Figure 3.2C). This was also done for
rules for “Lachnospiraceae”, “Lachnospiraceae other”
and “Other” and all four nodes attained the same
rule. There are six nodes with multiple inferred (al-
ternative) rules: “Barnesiella”, “Blautia”, “Enterococ-
cus”, “Lachnospiraceae”, “Lachnospiraceae other”, and
“Other” had 4, 2, 5, 4, 4, and 4 rules, respectively. The
six other nodes had a single inferred rule. The network
in Figure 3.2C represents the union of all of the alter-
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native rules produced by Best-Fit, or in other words, it
is a super-network of all alternative rules. Any alterna-
tive networks would be a sub-network of what we show.
A strongly connected component between the nodes in-
hibited by clindamycin is a feature of the vast majority
of these sub-networks. We used the implementation of
Best-Fit in the R package BoolNet [37].

Dynamic Analysis

Dynamic analysis is performed by applying the inferred
Boolean functions in succession until a steady state is
reached. Boolean models and discrete dynamic models
in general focus on state transitions instead of following
the system in continuous time. Thus, time is an im-
plicit variable in these models. The network transitions
from an initial condition (initial state of the bacterial
community) until an attractor is reached. An attrac-
tor can be a fixed point (steady state) or a set of states
that repeat indefinitely (a complex attractor). The basin
of attraction refers to the set of initial conditions that
lead the system to a specific attractor. For the net-
work under consideration, the complete state space can
be traversed by enumerating every possible combination
of node states (212) and applying the inferred Boolean
functions (or update rules) to determine paths linking
those states. The state transition network describes all
possible community trajectories from initial conditions
to steady states, given the observed interactions between
bacteria in the community.

We made use of two update schemes to simulate net-
work dynamics: synchronous (deterministic) and asyn-
chronous (stochastic). Synchronous models are the sim-
plest update method: all nodes are updated at multiples
of a common time step based on the previous state of the
system. The synchronous model is deterministic in that
the sequence of state transitions is definite for identical
initial conditions of a model. In asynchronous models,
the nodes are updated individually, depending on the
timing information, or lack thereof, of individual biologi-
cal events. In the general asynchronous model used here,
a single node is randomly updated at each time step [38].
The general asynchronous model is useful when there is
heterogeneity in the timing of network events but when
the specific timing is unknown. Due to the heteroge-
neous mechanisms by which bacteria interact, we made
the assumption of time heterogeneity without specifi-
cally known time relationships. Synchronous and asyn-
chronous Boolean models have the same fixed points,
because fixed points are independent of the implemen-
tation of time. However, the basin of attraction of each
fixed point (i.e. the initial conditions that lead to each
fixed point) may differ between synchronous and asyn-

chronous models (Table S2). For identification of all of
the fixed points in the network (the attractor landscape),
the synchronous updating scheme was used. However,
for the perturbation analysis, the asynchronous updat-
ing scheme was used because it more realistically mod-
els the possible trajectories in a stochastic and/or time-
heterogeneous system. The simulations of the gut micro-
biome model were performed using custom Python code
built on top of the BooleanNet Python library, which fa-
cilitates Boolean simulations [39]. Our custom Python
code is available in the supplemental materials.

Perturbation Analysis

To capture the effect of removal (knockout) or addition
(probiotic; forced over abundance) of genera, modifi-
cation of the states/rules to describe removal or addi-
tion states were performed. These modifications were
implemented in BooleanNet by setting the correspond-
ing nodes to either OFF (removal) or ON (addition)
and then removing the corresponding updating rules for
these nodes for the simulations. By examining many
such forced perturbations, we can identify potential
therapeutic strategies, many of which may not be ob-
vious or intuitive, particularly as network complexity
increases. We used asynchronous update when simu-
lating the effect of perturbations on the microbial com-
munities. In each case we performed 1000 simulations
and report the percentage of simulations that achieve a
certain outcome.

Generating Genus-Level Genome-Scale
Metabolic Reconstructions

To generate draft metabolic network reconstructions for
each of the ten genera in the paper, we first obtained
genome sequences for representative species by search-
ing the Genomes database of the National Center for
Biotechnology Information (NCBI). Complete genomes
for the first ten (or if less than ten, all) species within
the appropriate genus were downloaded. During the pro-
cess of reconstructing genus-level metabolic reconstruc-
tions, some genera were underrepresented (fewer than 10
species genomes) in the NCBI Genome database, includ-
ing Akkermansia, Barnesiella and Coprobacillus (Table
S3). The search result order is based on record update
time, and so it is quasi-random. Genomes were uploaded
to the rapid annotations using subsystems technology
(RAST) server for annotation [40]. Draft metabolic net-
work reconstructions were generated by providing the
RAST annotations to the Model SEED service [41].
Metabolic network reconstructions were downloaded in
.xls format. Genus-level metabolic reconstructions were
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produced by taking the union of all species-level recon-
structions corresponding to each genus, as has been done
previously [42]. The one exception was C. difficile, which
was produced by taking the union of three strain-level
reconstructions.

Subsystem Enrichment Analysis

Subsystems were defined as the Kyoto Encyclopedia of
Genes and Genomes (KEGG) map with which each re-
action was associated [43, 44]. These associations were
determined based on annotations in the Model SEED
database [41]. To quantify enrichment, the complete set
of unique reactions from all genus-level reconstructions
was pooled, and the subsystem annotations correspond-
ing to those reactions were counted. To determine en-
richment for a given subset of the community (either a
single genus-level reconstruction, or a set of reconstruc-
tions corresponding to a subnetwork), the subsystem oc-
currences were counted within the subset. The proba-
bility of a reconstruction containing N total subsystem
annotations, with M or more occurrences of subsystem
I, was determined by taking the sum of a hypergeomet-
ric probability distribution function (PDF) from M to
the total occurrences of subsystem I in the overall pop-
ulation. Enrichment analysis was performed in Matlab
[45].

Identifying Seed Sets and Defining Metabolic
Competition and Mutualism Scores

To quantify metabolic interactions, we started by utiliz-
ing the seed set detection algorithm developed by Boren-
stein et al. [46, 47]. The algorithm follows three steps:

1. The genome-scale metabolic network reconstruction
is reduced into simple one-to-one edges, such that
for each reaction, each substrate and product pair
forms an edge (e.g. A + B → C would become
A→ C and B → C).

2. The network is divided into strongly connected
components, those groups of nodes for which two
paths of opposite directions (e.g. A → B and
B → A) exist between any two nodes in the group.

3. Nodes (and strongly connected components with
five or fewer nodes) for which there are exclusively
outgoing edges are defined as “inputs” to the model,
or seed metabolites.

The rationale is that metabolites that feed into the net-
work, but cannot be produced by any reactions within
the network, must be obtained from the environment.

Competition metrics were generated following the pro-
cess of Levy and Borenstein [46]. For a given pair of
genera, the competition score is defined as:

CompScoreij =
|SeedSeti ∩ SeedSetj |

|SeedSeti|

Here SeedSeti is the set of obligatory input metabo-
lites to the metabolic network reconstruction for genus
i, and |SeedSeti| is the number of metabolites contained
in SeedSeti. The competition score indicates the frac-
tional overlap of inputs that genus i shares with genus
j, and so ranges between zero and one. The higher the
score, the more similar the metabolic inputs to the two
networks, making competition more likely.

For a given pair of genera, the mutualism score is de-
fined as:

MutualismScoreij =
|SeedSeti ∩ ¬SeedSetj |

|SeedSeti|

Here ¬SeedSetj is the set of metabolites that can be
produced by the metabolic network for species j (i.e. all
non-seed metabolites). The mutualism score indicates
the fractional overlap of inputs that genus i consumes
which genus j can potentially provide. The mutualism
score ranges between zero and one. The higher the score,
the more potential there is for nutrient sharing between
species. While the score does not measure mutualism
per se (it cannot necessarily distinguish between other
interactions such as commensalism or amenalism [48]),
for simplicity, we will refer to these scores as the com-
petition and mutualism scores.

All metabolic reconstructions, seed sets, competition
scores and mutualism scores are available in the supple-
mental materials. Seed set generation was performed
using custom Matlab scripts, which are available in the
supplement. Statistical tests were performed in R [49].

Co-culture and Spent Media Experiments

Barnesiella intestinihominis DSM 21032 and Clostrid-
ium difficile VPI 10463 were grown anaerobically in
PRAS chopped meat medium (CMB) (Anaerobe Sys-
tems, Morgan Hill, CA) at 37 ◦C. To prepare B. in-
testinihominis spent medium, B. intestinihominis was
grown in CMB until stationary phase (44 hours). The
saturated culture was centrifuged, and the supernatant
was filter sterilized (0.22 µM pore size). Growth curves
were obtained by inoculating batch cultures in 96-well
plates and gathering optical density measurements (870
nm) using a small plate reader that fits in the anaero-
bic chamber [50]. Single cultures were inoculated from
overnight liquid culture to a starting density of 0.01.
The co-cultures were started at a 1:1 ratio, for a total
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starting density of 0.02. Optical density was measured
every 2 minutes for 24 hours, and the resulting growth
curves were analyzed in Matlab [45]. Maximum growth
rates were calculated by fitting a smooth line to each
growth curve, and finding the maximum growth rate
from among the instantaneous growth rates over the
whole time course: [log(ODt+1) − log(ODt)]/[t+1 − t].
The achieved bacterial density—area under the growth
curve (AUC)—in a culture was calculated by integrat-
ing over the growth curve in each experiment using the
“trapz()”function in Matlab. It can be thought of as
representing the total biomass produced over time. The
simply additive null model was calculated by fitting a
Lotka-Volterra model [24] to the single cultures for both
B. intestihominis and C. difficile. The null model of co-
culture (assuming zero interaction between species) was
simulated by using the parameters from single culture,
and summing the predicted OD870 values.

All scripts used to analyze the data are available at:
bitbucket.org/gutmicrobiomepaper/.

3.5 Results

Processing of a Microbial Genus Abundance
Dataset for Network Inference

To capture the dynamics of inter-genus interactions in
the intestinal tract we employed a pipeline (Figure 3.1)
which translates metagenomic genus abundance infor-
mation into a dynamic Boolean model. This approach
involves three steps: 1) discretization (binarization) of
genus abundances, 2) learning Boolean relationships
among genera, and 3) translation of genus associations
into a Boolean (discrete) dynamic model.

Construction of a Dynamic Network Model from
Binarized Time Series Microbial Genus Abun-
dance Information

Boolean rules (Table S1e) were inferred from the time
series binarized genus abundances using an implemen-
tation of the Best-fit extension [36] in the R Boolean
network inference package BoolNet (see Methods) [37].
A network of 12 nodes and 33 edges was inferred (Figure
3.2D). The inferred interaction network has a clustered
structure: the cluster (subnetwork) containing the two
Lachnospiraceae nodes and Barnesiella is strongly in-
fluenced by clindamycin whereas the other subnetwork
is largely independent of the first, except for the single
edge between Barnesiella and C. difficile (Fig 3.2D). In
fact, Lachnospiraceae nodes, Barnesiella and the group
of “Other” genera form a strongly connected compo-
nent; that is, every node is reachable from every other

node. Most nodes of the second subnetwork are posi-
tively influenced by C. difficile, with the exception of
Coprobacillus, for which no regulation by other nodes
was inferred, and Akkermansia, which is inferred to be
regulated only by Coprobacillus. These latter two gen-
era are transiently present (around day 5) in the clin-
damycin treatment group, but they do not appear in
the final states of any of the treatment groups (see Fig-
ure S1). This network structure is consistent with pub-
lished data in which the dominant Firmicutes (Lach-
nospiraceae) and Bacteroidetes (Barnesiella) are dev-
astated by antibiotic administration [51, 52]. Further-
more, the clustered structure (Figure 3.2D) supports the
established mechanism of C. difficile colitis: loss of nor-
mal gut flora, which normally suppresses opportunistic
infection (clindamycin cluster), and the presence of C.
difficile at a minimum inoculum (C. difficile cluster) [10,
53]. The network clusters have a single route of interac-
tion between Barnesiella and C. difficile.

The negative influence of Barnesiella on C. diffi-
cile is in agreement with recently published findings in
which Barnesiella was strongly correlated with C. dif-
ficile clearance [54]. The role of Barnesiella as an in-
hibitor of another pathogen (vancomycin-resistant En-
terococci (VRE)) has been shown in mice [55], which
is also visible in the network model as an indirect re-
lationship between Barnesiella and Enterococcus (Fig-
ure 3.2D). Related species of Bacteroidetes have been
shown to play vital roles in protection from C. diffi-
cile infection in mice [56][56]. Furthermore, the network
structure shows that Lachnospiraceae positively inter-
acts with Barnesiella, leading to an indirect suppression
of C. difficile. Interestingly, the two Lachnospiraceae
nodes and the “Other” node form a strongly connected
component, suggesting a similar role in the network, par-
ticularly in promoting growth of Barnesiella, which di-
rectly suppresses C. difficile. In support of this finding,
Lachnospiraceae has been shown to protect mice against
C. difficile colonization [52, 57]. Therefore, the structure
of the network is both a parsimonious representation of
the current data set, and is supported by literature evi-
dence.

We applied dynamic analysis using the synchronous
updating scheme (see Methods) to determine all the pos-
sible steady states of the microbiome network model. In
a 12 node network, there are 212 possible network states.
We employed model simulations using the synchronous
updating scheme to visit all possible network states and
identify all fixed points of the model. Exploration of the
steady states of this network reveals 23 possible fixed
point attractors (Figure S4). Three of the identified at-
tractors (Figure 3.3A) are in exact agreement with the
experimentally identified terminal time points of bina-
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Figure 3.3: Steady states and node perturbations
in the gut microbiome model. A) Heatmap of the
three steady states in the gut microbiome model. These
steady states are identical to steady states identified in
the three experimental groups. B) The effect of node
perturbations represented by four heatmaps. On the
y-axis of each of the four heatmaps are nodes (gen-
era) in each steady state. On the x-axis of each of the
four heatmaps are the steady states found under normal
model conditions (i.e. no node perturbations) and also
the specific perturbation of a single network node. The
two heatmaps in the left column of the figure demon-
strate the effect of addition (forced overabundance) of
individual genera, and the two heatmaps in the right
column of the figure demonstrate the effect of removal
(knockout) of individual genera. The top row heatmaps
show the effect of node perturbations on the clindamycin
treated group and the bottom row heatmaps show the
effect of node perturbations on the clindamycin+ C. dif-
ficile treatment group. * Genus abundance of 0 means
present in 0% of asynchronous simulations and is indi-
cated in blue; Genus abundance of 1 means present in all
(100%) of asynchronous simulations, shown in yellow. n
= 1000 simulations were applied for all Boolean model
simulations.

rized genus abundances (Figure 3.2C). These attractors
make up a small subset of the entire microbiome network
state space (Table S2).

The attractor landscape can be divided into six groups
based on abundance patterns they share (Figure S4).
Group 1 is made up of a single attractor wherein all gen-
era are absent (OFF). The second group attractor con-
sists of the experimentally defined healthy state (Attrac-
tor 2) and genera in the C. difficile subnetwork which
can be abundant (ON) independent of the clindamycin
subnetwork. The third grouping has the clindamycin
treated steady state (Attractor 7) and genera in the C.

difficile subnetwork that can survive in the presence of
the clindamycin. Group 4 contains the clindamycin+C.
difficile steady state (Attractor 12) and its subsets in
which one or both of the source nodes Mollicutes and
Enterobacteriaceae are absent. Group 5 contains at-
tractors in which clindamycin is absent and C. difficile
is present. Even if clindamycin is absent, our model
suggests that C. difficile can thrive if Lachnospiraceae
and Barnesiella are absent, i.e. these states represent
a clindamycin-independent loss of Lachnospiraceae and
Barnesiella. Lastly, group 6 attractors have both clin-
damycin and C. difficile as OFF. Blautia and Entero-
coccus are always abundant in these attractors. Indeed,
because of the mutual activation between Blautia and
Enterococcus they always appear together. Attractors in
this group may also include the abundance (ON state)
of the source nodes Mollicutes and Enterobacteriaceae.

Perturbation Analysis

We next explored the perturbation of genera in the gut
microbiome network model. We considered the clin-
ically relevant question of which perturbations might
alter the microbiome steady states produced by clin-
damycin or clindamycin+C. difficile treatment after
clindamycin treatment was removed. Thus, we con-
sidered the clindamycin-treated steady state (Attrac-
tor 7 in Figure S3) and the clindamycin+C. difficile
treated steady state (Attractor 12) as initial conditions
and assumed that clindamycin treatment was stopped.
Our simulations, employing asynchronous update (see
Methods), indicate that for both initial conditions, only
the state of clindamycin changes after the treatment is
stopped; these steady states become Attractor 1 and
Attractor 19, respectively (S4 Fig). In other words,
the steady states remain identical in the absence of
clindamycin. We next explored the effect of addition
(overabundance; Figure 3.3B, left column) and removal
(knockout; Figure 3.3B, right column) of individual gen-
era, simultaneously with the stopping of clindamycin
treatment, on the model predicted steady states. For
the perturbation analysis, the model was initialized from
the clindamycin treated steady state (Figure 3.3B, top
row) or the clindamycin+C. difficile steady state (Fig-
ure 3.3B, bottom row). From the clindamycin treated
state, addition of Lachnospiraceae or “Other” nodes re-
stores the healthy steady state; however, no removal re-
store the healthy steady state (Figure 3.3B). From the
clindamycin+C. difficile state, addition of Barnesiella,
Lachnospiraceae, or “Other” nodes lead to a shift toward
the healthy steady state (suppression of C. difficile).



18 CHAPTER 3. INFERENCE OF MICROBIOME INTERACTIONS

Generating Genus-Level Metabolic Reconstruc-
tions

Species-level reconstructions from the genus Enter-
obacteriaceae contained the most reactions on average
(1335), while those from Mollicutes contained the least
(485) (Table S3). The Barnesiella and Enterococcus re-
constructions contained the most unique reactions (Ta-
ble S4) and, interestingly, also displayed more overlap
in reaction content between each other (503 reactions)
than was observed between any other pair of reconstruc-
tions (Table S5). Lachnospiraceae and Barnesiella had
the next highest degree of overlap (424 reactions). Mol-
licutes and Coprobacillus had the least degree of over-
lap (363 reactions) (Table S5). Note that the metabolic
reconstructions produced by the SEED framework are
draft quality, and as such, may lack the predictive power
of well-curated metabolic reconstructions.

Subsystem Enrichment Analysis

Enrichment analysis was performed for the 99 unique
subsystem annotations that were observed in the
community. 22 subsystems displayed interesting en-
richment patterns with respect to the structure of
the interaction network (Figure 3.4). The subsys-
tems for glycolysis/gluconeogenesis and nucleotide sug-
ars metabolism are enriched in all taxa, highlighting
the fact that all taxa contain relatively full comple-
ments of reactions within those subsystems. Inter-
estingly, C. difficile is highly enriched for reactions
in cyanamino acid metabolism compared to all other
genera. Lipopolysaccharide (LPS) biosynthesis and
cyanoamino acid metabolism subsystems are differen-
tially enriched between C. difficile and both Barne-
siella and Lachnospiraceae. Between Barnesiella and
Enterococcus, Barnesiella is more highly enriched for
d-glutamine and d-glutamate metabolism, pantothen-
ate and CoA biosynthesis, LPS biosynthesis. With re-
spect to Enterococcus, Barnesiella is less highly enriched
in pyrimidine metabolism, and phenylalanine, tyrosine,
and tryptophan biosynthesis.

Generating Metabolic Competition and Mutual-
ism Scores

The metabolic reconstructions were used to explore the
potential metabolic underpinnings of the inferred inter-
action network. Competition scores were generated for
all pairwise relationships between the genera considered
in the model (self-edges were excluded). The two Lach-
nospiraceae genera were treated as metabolically identi-
cal, and the “Other” group was excluded. We grouped
pairs of genera into five groups based on being connected

Figure 3.4: Subsystem enrichment analysis high-
lights metabolic differences between taxa. The p-
values from the enrichment analysis are log-transformed
and negated, such that darker regions indicate greater
enrichment. The enrichment analysis quantifies the like-
lihood that a given subsystem (row) would be as highly
abundant as observed within a given metabolic recon-
struction (column) by chance alone. A subset of 22
interesting subsystems is shown here. Subsystems of
interest include those for which all taxa are enriched,
such as glycolysis, and nucleotide sugars metabolism,
highlighting the fact that all taxa contain relatively full
compliments of reactions within those subsystems. Simi-
larly, subsystems for which a single genus differs from the
remaining genera are interesting, such as cyanoamino
acid metabolism, where C. difficile is highly enriched
for reactions in that subsystem. Some subsystems are
differentially enriched between Barnesiella and Lach-
nospiraceae, and C. difficile such as lipopolysaccharide
biosynthesis and cyanoamino acid metabolism.

by a positive or negative edge, a negative or positive path
(meaning an indirect relationship), or no path. A pos-
itive relationship was found between competition score
and edge type in the interaction network (i.e. positive
edges tend to have a higher competition score), which
was not statistically significant, perhaps due to the small
sample size (p-value = 0.058 by one-sided Wilcoxon rank
sum test) (Figure S5A). The mutualism score did not
display any obvious trends with respect to the network
structure (Figure S5B). All pairs with inferred edges ex-
hibited relatively high competition scores and low mu-
tualism scores (Figure S5C). Barnesiella, a key inhibitor
of C. difficile in the interaction network, holds the sec-
ond smallest competition score with C. difficile (Figure
3.5A). Barnesiella and C. difficile also have the high-
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est mutualism score among all interacting pairs in the
network (Figure S5C).

The positive relationship between edge type and com-
petition score suggests that more metabolic similar-
ity between genera tends to foster positive interaction.
The converse is also true, where less metabolic similar-
ity tends to foster negative interactions (Figure S5A).
Here, “positive/negative interaction” is derived from the
Boolean model, where a positive edge between species A
and B indicates that if A is ON at time t, then B is likely
to turn ON at t+ 1.

Co-culture and Spent Media Experiments

Barnesiella intestinihominis was chosen as a represen-
tative species for the genus Barnesiella for the in vitro
experiments. C. difficile grew more slowly in B. intes-
tinihominis spent media (n = 16, p-value < 0.005, by
one-sided Wilcoxon rank sum test) (Figure 3.5B). The
co-culture with both B. intestinihominis and C. difficile
grew more slowly than C. difficile alone (n = 16, p-value
< 0.05, by one-sided Wilcoxon rank sum test) (Figure
3.5B). C. difficile area under the growth curve (AUC),
a measure of the achieved bacterial density over the ex-
periment, was not statistically different between growth
in fresh media and B. intestinihominis spent media (n
= 16, p-value = 0.22 by one-sided Wilcoxon rank sum
test). However, the co-culture displayed a much lower
AUC than expected under a null model of interaction (in
which the two species do not interact) (Figure 3.5C).
Examining the co-culture growth curve, it maintained
a consistently lower density than a null model (Figure
3.5D).

3.6 Discussion

Here we have developed a novel strategy for generating
a dynamic model of gut microbiota composition by in-
ferring relationships from time series metagenomic data
(Figure 3.1). To our knowledge, this is the first Boolean
dynamic model of a microbial interaction network and
the first Boolean model inferred from metagenomic se-
quence information. Metagenomic sequencing is a pow-
erful tool that tells us the consequences of microbial
interaction—changes in bacterial abundance. Bacterial
interactions are, in fact, mediated by the many chemi-
cals and metabolites the bacteria use and produce. In a
network sense these relationships are a bipartite graph;
bacterial genera produce chemicals/metabolites, which
have an effect on other bacteria. Because there is no
comprehensive source for the bacterial metabolites and
their effect on other bacterial genera, we infer the effects
of genera on each other from the relative abundances

Figure 3.5: Metabolic competition scores and in
vitro data indicate a non-metabolic interaction
mechanism. A) Competition scores for all pairs of gen-
era with C. difficile. Notice that Barnesiella has nearly
the lowest competition score. B) Maximum growth rates
for all growth conditions. C. difficile grew more slowly
in B. intestinihominis spent media (n = 16, p-value <
0.005, by one-sided Wilcoxon rank sum test). The co-
culture with both B. intestinihominis and C. difficile
grew more slowly than C. difficile alone (n = 16, p-
value < 0.05, by one-sided Wilcoxon rank sum test).
C) Area under the curve (AUC) was not significantly
different for C. difficile in fresh media or B. intestiniho-
minis spent media (n = 16, p-value = 0.22 by one-sided
Wilcoxon rank sum test). D) The experimental (red,
solid line) and simulated (blue, dashed line) co-culture
growth curves. “Binte” indicates B. intestinihominis,
while “Cdiff” stands for C. difficile. On average, the ex-
perimental co-culture growth curves maintained a lower
density than the simply additive null model. Error bars
represent the standard error of the mean from 16 inde-
pendent replicates.

of genera in a set of microbiome samples, and we em-
ploy genome-scale metabolic reconstructions to gain in-
sight into these relationships (Figure 3.6B). Binarization
of the microbial abundances clarifies these relationships
and is the starting point for the construction of a dy-
namic network model of the gut microbiome. Interest-
ingly, principal component analysis demonstrates that
the time series data clusters by experimental treatment
group, suggesting that our initial assumption of binary
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relationships does not lead to significant information loss
(Figures 3.2A and 3.2B).

We analyze the topological and dynamic nature of the
gut microbiome, focusing on the effect of clindamycin
antibiotic and C. difficile infection on gut microbial com-
munity structure. We generate a microbial interaction
network and dynamic model based on time-series data
from a population of mice. We validate a key edge in
this interaction network between Barnesiella and C. dif-
ficile through an in vitro experiment. Consistent with
the literature, our model affirms that solely inoculating a
healthy microbiome with C. difficile is insufficient to dis-
rupt the healthy intestinal tract microbiome. Addition-
ally, our results demonstrate that clindamycin treatment
has a tremendous effect on the microbiome, greatly re-
ducing many microbial genera, and that during the time
C. difficile is present, a certain subset of bacteria come
to dominate the microbiome (Figures 3.2C, S1, and S2).

Our dynamic network model reveals the steady state
conditions attainable by this microbial system, how
those steady states are reached and maintained, how
they relate to the health or disease status of the mice,
and how targeted changes in the network can transition
the community from a disease state to a healthy state.
Furthermore, we examine genome-scale metabolic net-
work reconstructions of the taxa represented in this com-
munity, examine broad metabolic differences between
the taxa in the community, and probe how metabolism
could—and could not—contribute to the mechanistic
underpinnings of the observed interactions.

Network Structure

The first feature that stands out in the inferred inter-
action network is its clustered structure. Clindamycin
has a strong influence on the subnetwork containing the
two Lachnospiraceae nodes and Barnesiella. The other
subnetwork contains C. difficile and other genera that
become abundant during C. difficile infection (Figure
3.2D). Also worth noticing are the two contradicting
edges in the network, between Coprobacillus and Blau-
tia, and the self-edges for Blautia (Figure 3.2D). These
arise from rules in the Boolean model that are context-
dependent. Such context-dependent rules can manifest
as opposite edge types, depending on the state of other
nodes in the network. Context-dependent interactions
have been demonstrated in many microbial pairings, and
nutritional environments can even be designed to induce
specific interaction types [58]. It is possible that subtle
environmental changes over the course of the experiment
altered conditions in a way that flipped the Coprobacil-
lus-Blautia interaction. Because the interaction network
is derived from time-series data, it is possible to estimate

causality, and therefore, derive a directed graph. A di-
rected network with clear, causative interactions can be
used to study community dynamics. This is in contrast
with association networks, which are often derived from
independent samples, and cannot determine direction of
causality [48, 59–61]. Such networks are more limited
in utility because they cannot be used to predict system
behavior over time, or system responses to perturbations
[24, 62]. Note that the inferred network structure rep-
resents a set of hypotheses as to potential interactions
among genera. Determining whether or not the interac-
tions truly occur requires further experimentation, sim-
ilar to the experimentation completed to validate the
edge between Barnesiella and C. difficile.

Experimental Validation of Barnesiella Inhibi-
tion of C. difficile

We experimentally validated a key edge in the interac-
tion network, and showed that Barnesiella can in fact
slow C. difficile growth. C. difficile was grown alone,
in co-culture with B. intestinihominis, and in B. intes-
tinihominis spent media. C. difficile grew more slowly
in both co-culture and spent-media conditions. Though
moderate, the effect was statistically significant (Fig-
ure 3.5B). The fact that C. difficile growth rate was
inhibited under spent-media conditions indicates that
B. intestinihominis-mediated inhibition does not require
B. intestinihominis to sense the presence of C. difficile.
Further, C. difficile growth on B. intestinihominis spent
media demonstrates that the two species have different
nutrient requirements. Whether the reduction in growth
rate is a result of nutritional limitations (e.g. C. difficile
resorts to a less preferred carbon source) is unknown,
but unlikely given the AUC data.

The AUC—a summation of the OD over the entire
time course—is a measure of the total bacterial den-
sity achieved over the course of the experiment. It can
be thought of as a single metric combining growth rate
and biomass production over time. Examining the AUC
for all conditions showed that C. difficile AUC did not
significantly change between fresh media and spent me-
dia (Figure 3.5C). Thus, C. difficile was able to pro-
duce comparable overall biomass despite a reduction in
growth rate, further demonstrating that nutrient avail-
ability was sufficient in the spent media condition. The
AUC for the co-culture was much lower than expected in
a simulated null model (Figure 3.5C). Apparently, in co-
culture, the total community biomass production capac-
ity is reduced from what would be expected in a scenario
without species interaction. Thus, there is a measurable
negative interaction between B. intestinihominis and C.
difficile in co-culture that impacts biomass production.
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This can be observed over the full time-course of the co-
culture, where the overall density is consistently lower
than what would be expected in a null model (Figure
3.5D).

Network Dynamics and Perturbation Analysis

Computational perturbation analysis showed that forced
overabundance of Barnesiella led to a shift from
the “disease” state (clindamycin+C. difficile treatment
group) to a state highly similar to the original healthy
state (loss of C. difficile). This result is particularly in-
teresting from a therapeutic design standpoint. In this
case, the model results indicate that Barnesiella may
serve as an effective probiotic. Model-driven analysis
can be used to identify candidate organisms for probi-
otic treatments. Recent work by Buffie et al. performed
a proof-of-concept study in which they used statistical
models to identify candidate probiotic organisms, which
were then tested on a murine model of C. difficile infec-
tion [54]. This model-driven approach can be favorably
contrasted with the brute-force experimental approach
in which successive combinations of microbes are tested
until a curative set is found [56]. The model-driven ap-
proach requires far fewer experiments, and saves time
and resources. While the computational model pre-
sented here differs from that used by Buffie et al., the
integration of computational models in probiotic design
has been shown to be a feasible, effective approach. Im-
proved tools, such as the perturbation analysis presented
here, will surely accelerate the probiotic design process
and shorten the path to the clinic.

Metabolic Competition Scores Point towards a
Non-metabolic Interaction Mechanism

Genome-scale metabolic network reconstructions can be
used to estimate the interactions between microbes in a
complex community based purely on genome sequence
data. Our use of genus-level metabolic network recon-
structions (a union of several species-level reconstruc-
tions) may not reflect the unique, species-level inter-
actions and heterogeneity within a community. This
higher-level model will only capture broad trends and
the possible extent of metabolic capacity within a genus.
Furthermore, the draft status of these models precludes
the effective application of flux balance analysis (FBA)
to estimate interactions among genera. This is due to
the established lack of precision in draft reconstructions
in predictions of growth rates and substrate utilization
patterns [63], and the sensitivity of interaction mod-
els to metabolic environment and model structure [58,
64]. Future efforts to infer metabolic interactions using
FBA and well-curated metabolic networks could provide

deeper insights into specific metabolites that are shared
(or competed for) between specific microbial pairs.

The application of competition scores demonstrated
here (Figure S5A) could potentially be used to quickly
establish a rough expectation (notice the spread of com-
petition scores for the species pairs not connected by a
path through the network) for community structure—
based solely on genomic information—that can then be
tested experimentally. Interestingly, the fact that higher
competition score is associated with more positive in-
teractions inferred from the Boolean model relates to
previous work that demonstrates that higher competi-
tion scores were associated with habitat co-occurrence
[46]. In this same work, the authors suggest that this
effect is due to habitat filtering; that is, microbes with
similar metabolic capabilities tend to thrive in similar
environments. It has been shown experimentally that
microorganisms from the same environment tend to lose
net productivity in batch co-culture, indicating simi-
lar metabolic requirements [65]. Thus, it appears that
metabolically similar organisms tend to co-locate to sim-
ilar niches, and over evolutionary time, co-localized or-
ganisms tend to develop positive relationships with each
other.

Understanding this relationship between competi-
tion score and interaction type leads to the conclu-
sion that negative interactions are probably not caused
by metabolic competition. Of all the genus competi-
tion scores with C. difficile, Barnesiella showed the sec-
ond lowest (Figure 3.5A). In other words, Barnesiella
is among the least likely to share a similar metabolic
niche with C. difficile, which fits with the broad trend
mentioned above. The fact that the competition score
between C. difficile and Barnesiella is so low strongly
suggests that the negative interaction between them is
due, not to competition for scarce resources (although it
does not completely exclude the possibility), but rather
to some non-metabolic mechanism. The similarity in
reaction content between Barnesiella and Enterococcus
indicates similar network structure (Table S5), and yet,
Enterococcus does not inhibit C. difficile in the inferred
interaction network (Figure 3.2D). Either the differences
that are present between Barnesiella (65 unique reac-
tions) and Enterococcus (36 unique reactions) are hints
at the mechanism of interaction, or metabolism does
not play a significant role in C. difficile inhibition in
the environment of the gut. For example, enrichment
analysis showed that that, with respect to Enterococ-
cus, Barnesiella is more highly enriched for d-glutamine
and d-glutamate metabolism, pantothenate and CoA
biosynthesis and LPS biosynthesis. With respect to
Enterococcus, Barnesiella is less enriched in pyrimidine
metabolism, and phenylalanine, tyrosine, and trypto-
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phan biosynthesis. The possible role of LPS is discussed
further on. The possible roles of these other metabolic
pathways in C. difficile inhibition is unclear.

There is experimental evidence that Barnesiella (and
other normal flora) may combat pathogen overgrowth
through non-metabolic mechanisms. As a first step, it
has been shown that VRE can grow in sterile murine ce-
cal contents—indicating the presence of sufficient nutri-
tion to support VRE—but is inhibited in saline-treated
cecal contents—indicating that live flora are needed to
suppress VRE growth, and that this suppression is not
through nutrient sequestration [66]. Further, the pres-
ence of B. intestinihominis has been demonstrated to
prevent and cure VRE infection in mice [55], and is
strongly correlated with resistance to C. difficile infec-
tion in mice [54]. Clearly, Barnesiella plays a key role
in pathogen inhibition, and pathogen inhibition can be
caused by mechanisms other than nutrient competition.

This non-metabolic mechanism may be direct or in-
direct (Figure 3.6A). We demonstrated in vitro that B.
intestinihominis can inhibit C. difficile growth rate (Fig-
ure 3.5C and 3.5D). The fact that C. difficile grows on
B. intestinihominis spent media at all indicates that the
metabolic requirements of the two species are different,
which is consistent with our computational results sup-
porting the hypothesis that C. difficile and Barnesiella
do not compete metabolically (Figure 3.5B). Further,
C. difficile is moderately inhibited both in co-culture
with B. intestinihominis and in B. intestinihominis-
spent media, indicating a direct mechanism of inhibition.
In further support of a direct mechanism, it has been
shown that Clostridium scindens inhibits growth of C.
difficile through the production of secondary bile acids
[54]. Perhaps Barnesiella works through an analogous
mechanism in vivo, enhancing the moderate inhibition
observed in vitro.

In support of an additional indirect mechanism of bac-
terial interaction, Buffie and Pamer, in a recent review,
hypothesized that the normal flora (of which Barnesiella
is a member) may prevent pathogen overgrowth by stim-
ulation of a host antimicrobial response (Figure 3.6A)
[67]. Specifically, they point out that Barnesiella can
activate host toll-like receptor TLR signaling, which ac-
tivates host antimicrobial peptide production. For ex-
ample, LPS and flagellin have been shown to stimulate
the host innate immune response through toll-like re-
ceptor (TLR) signaling and production of bactericidal
lectins [68, 69]. Barnesiella shows enrichment for LPS
biosynthesis pathways (Figure 3.4). However, this mech-
anism did not seem to be responsible for inhibition of
VRE by Barnesiella [55]. An indirect, host-mediated
mechanism is further supported by the fact that mem-
bers of the normal gut flora can interact differently with

Figure 3.6: Computational models can bring us
closer to true interaction networks. A) Potential
inhibitory mechanisms include direct inhibition of C. dif-
ficile by Barnesiella (e.g. via competition for scarce re-
sources, or toxin production), or indirect inhibition (e.g.
through a host antimicrobial response). B) A great deal
has been published on the topic of network inference
from complex data sets, and more can be done to im-
prove inference methods. Particularly for microbial in-
teraction networks, it is essential to identify, not only the
nature of the interactions, but also the underlying mech-
anisms. Metagenomic genus abundance information can
be used to infer causal relationships between bacteria;
however, other information sources are required to de-
termine the exact nature of these interactions. Each
individual network edge may have very different un-
derlying causes (metabolic, physical interaction, toxin-
based, etc.). Including more tools in the pipeline, such as
metabolic network reconstructions, bioinformatics tools,
etc., will help elucidate these mechanisms, allowing far
more rapid hypothesis generation, leading to a more fo-
cused effort in the wet lab.

pathogens depending on the host organism [54]. Regard-
less, any indirect mechanism is in addition to the direct
inhibitory mechanism observed in vitro. Both direct and
indirect mechanisms may play a role in vivo, and further
work is needed to clearly discern the underlying process
that allows Barnesiella to play this protective role.

We demonstrate that dynamic Boolean models cap-
ture key microbial interactions and dynamics from time-
series abundance data in a murine microbiome. We show
that this computational approach enables exhaustive in
silico perturbation, which leads to fast candidate selec-
tion for probiotic design. We further describe the use of
genome-scale metabolic network reconstructions to ex-
plore the metabolic potential attributed to community
members, and to estimate metabolic competition and
cooperation between members of the microbiome com-
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munity. Analysis of genome-scale metabolic network re-
constructions indicates that Barnesiella likely inhibits
C. difficile through some non-metabolic mechanism. We
present empirical in vitro evidence that B. intestiniho-
minis does in fact inhibit C. difficile growth, likely by a
non-metabolic mechanism, and our findings are in good
agreement with published results. We present this work
as a demonstration of the use of dynamic Boolean mod-
els and genome-scale metabolic reconstructions to ex-
plore the structure, dynamics, and mechanistic under-
pinnings of complex microbial communities.
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Chapter 4

Review: Metabolic Network Modeling of
Microbial Communities

The text for this chapter has been previously pub-
lished as a review article here:

Biggs MB, Medlock GL, Kolling GL, Papin JA. (2015).
Advanced Review: Metabolic Network Modeling of Mi-
crobial Communities. WIREs Syst Biol Med. doi:
10.1002/wsbm.1308.

4.1 Context

At the time we wrote this review, there was a lot of
interest in using genome-scale metabolic networks to
model the metabolic behaviors of microbial communi-
ties, but there was no centralized resource which summa-
rized what had already been achieved. Our review filled
an important niche in the field, which is highlighted by
the fact that it was among the top ten most accessed re-
views in WIREs Systems Biology and Medicine in 2015.
Completing this review was important for my research
in that the reading and synthesis required to write it
gave me a more comprehensive perspective on the role
of genome-scale metabolic networks in community mod-
eling and how such network models could be integrated
with other data types and modeling frameworks.

4.2 Synopsis

Genome-scale metabolic network reconstructions and
constraint-based analyses are powerful methods that
have the potential to make functional predictions about
microbial communities.Genome-scale metabolic net-
works are used to characterize the metabolic functions of
microbial communities via several techniques including
species compartmentalization, separating species-level
and community-level objectives, dynamic analysis, the
‘enzyme-soup’ approach, multiscale modeling, and oth-
ers. There are many challenges in the field, including
a need for tools that accurately assign high-level omics
signals to individual community members, the need for
improved automated network reconstruction methods,
and novel algorithms for integrating omics data and en-
gineering communities. As technologies and modeling
frameworks improve, we expect that there will be corre-

sponding advances in the fields of ecology, health science,
and microbial community engineering.

4.3 Introduction

Microbial communities represent a gargantuan force of
nature that exerts influence on global geochemical cycles
[1], agriculture [2], human health [3], food preparation
[4], and a host of relevant aspects of life on earth [5, 6].
Traditional microbiology has made great strides over the
last century in describing and categorizing these micro-
scopic neighbors. More recently, advances in sequenc-
ing technologies have provided the first glimpses at the
composition of natural microbial communities, including
insights into the physiology of non-culturable microbes
[7]. Databases are filling with mountains of genomic
fragments, gene and protein expression data, and other
such large-scale ‘-omics’ information, all describing the
content of diverse microbial communities [8, 9]. Despite
the plethora of data, we yet lack true understanding
of the mechanisms that cause communities to function
and interact with their environments [10]. Consider-
ing the importance of microbial communities to many
global ecosystems, health, and various industries, there
is a great need to move beyond a descriptive ‘parts list’
approach of the field, and transition to more functional,
predictive models of microbial community structure and
function.

Predictive community models have the potential to
engender many beneficial technologies including: ratio-
nal probiotic design for restoring a diseased intestinal
microbiota [11], efficient chemical-producing consortia
[12], or optimal bioremediation communities [13]. Fur-
thermore, predictive models will allow novel exploration
of basic questions in microbial ecology [14, 15], leading
to new insights into the development and evolution of
microbial communities (Figure 4.1) [10]. All of these
potential applications will require improvements in the
mathematical toolbox used to represent biochemical net-
works and their interactions.

Genome-scale metabolic network reconstructions
(GENREs) have been successfully applied to the rep-
resentation, study, and engineering of single microbes

26
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Figure 4.1: There are many aspects of life in a micro-
bial community that would be useful to capture using
mathematical models. Techniques utilizing constraint-
based metabolic models (sometimes in conjunction with
other modeling approaches) are capable of capturing all
of these scenarios.

(Figure 4.2) [16]. The last decade has seen extensive tool
development for the analysis of models encompassing
single strains up to complex microbial communities [10,
17–22]. Since the first published community model in
2007 of a mutualistic microbial community, the accumu-
lating body of work has highlighted many unique chal-
lenges related to microbial community modeling [23]. In
this review, we discuss the existing frameworks that have
been developed using GENREs for community analysis
(Figure 4.3 and Table 4.1), the types of questions that
can be addressed, and challenges in the field that present
opportunities for progress.

4.4 Current State of the Field

Genome-Scale Metabolic Reconstructions: What
They Are and What They Can Do

GENREs are an organized collection of the metabolic re-
actions that can occur within a biological system. This
collection of reactions is inferred from genome annota-
tions, and the resulting gene-to-protein-to-reaction map-
ping allows genotypephenotype predictions (Figure 4.2).
The heart of a GENRE is the stoichiometric (S) ma-
trix, which consists of the stoichiometric coefficients for
each reaction represented in the network reconstruction.
Mass and charge are balanced for every reaction. This
simple representation can be used to explore the space
of possible biochemical conversions that can be carried
out by the set of reactions in the GENRE. Optimization
techniques such as flux balance analysis (FBA) are used

Figure 4.2: A simple workflow for genome-scale
metabolic network reconstruction and accompa-
nying constraint-based analysis. The process be-
gins with an annotated genome. The metabolic net-
work is derived from this genome annotation by search-
ing databases for homologous proteins with known en-
zymatic activity. The corresponding metabolic reactions
are collected into a draft network reconstruction. This
simple procedure can be augmented through gap filling,
and often manual curation. A metabolic objective is
defined, which for microbes is often assumed to be a
biomass equation (i.e., it is assumed that cells are con-
figured to grow as fast as possible). Exchange reactions
are defined to allow metabolites to enter and leave the
network. All reactions are compiled into a stoichiomet-
ric (S) matrix. FBA is a common analytical approach
that searches for a flux distribution through the net-
work that optimizes the metabolic objective subject to
steady-state constraints and flux bounds.

to estimate optimal yields given a particular metabolic
environment and GENRE [24]. The reconstruction and
analysis of GENREs for single organisms have been re-
viewed extensively [16, 25].

The basic principles for the generation and analysis of
GENREs learned from studies of single organisms have
been extended in innovative ways to represent the in-
teractions between multiple species within communities.
Each of these extensions provides a unique approach to
a set of field-specific questions:

1. Structure: How should species models be ‘linked’
together? Should there be an unbiased, wholesale
sharing of metabolites, essentially ignoring species
boundaries? Or should metabolite sharing be re-
stricted to only those compounds for which there
is empirical evidence? Should species models be
linked to the environment/host? And if so, how?

2. Analysis: Should optimization be used to estimate
optimal species yield or optimal community yield?
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Is there tension between these two objectives in sil-
ico or in vitro? What optimization strategies lead
to the most useful analyses?

3. Refinement: How much curation effort should go
into the individual species-level reconstructions?

4. Validation: What kind of experimental data can be
used to validate model predictions?

5. Applications: Given the model structure and anal-
ysis, how informative are the model predictions?
How can the model be used to answer impactful
questions or inform engineering design choices?

The answers to these questions depend entirely on the
purpose of the study, and the questions being asked. We
review the various efforts to understand microbial com-
munities using GENREs, and describe each modeling
framework utilized to-date.

Compartmentalization

The first framework devised for linking GENREs to-
gether is an extension of the compartmentalization ap-
proach used for eukaryotic GENREs (Figure 4.3A) [26].
In eukaryotic models, organelles and other compart-
ments are divided, and reactions specific to each com-
partment are separated by transport reactions [26].
Along the same lines, multiple species-level GENREs
are incorporated into a large “meta-stoichiometric ma-
trix” and transport reactions are explicitly added to en-
able metabolite flux between species compartments, of-
ten with an extracellular compartment inserted as a rep-
resentation of the local environment.

The first community GENRE was developed to rep-
resent the mutualistic interaction between Desulfovib-
rio vulgaris and Methanococcus maripaludis [23]. The
species GENREs consisted only of reactions in central
metabolism and were linked using a compartmentaliza-
tion approach, with shared byproducts and exchange re-
actions flowing through a shared compartment. FBA
was used to estimate optimal growth rate and metabo-
lite fluxes, where the objective function was chosen to be
a linear, weighted combination of the biomass functions
for each species (with the weights based on experimen-
tally determined species biomass ratios in active com-
munities). Several results highlight the types of ques-
tions that can be addressed using this modeling frame-
work. First, FBA results were closest to experimen-
tal results during the active-growth phase, where there
were no nutrient limitations, which is consistent with
the explicit assumption of pseudo-steady-state growth in
FBA. Next, simulated flux patterns of primary metabo-
lites matched experimental measurements, such as the

large flux in D. vulgaris from lactate (the sole carbon
substrate) to acetate, with some CO2 and formate pro-
duction, and production of a reduced compound, ei-
ther hydrogen or formate. Flux through M. maripaludis
showed consumption of acetate or CO2 and production
of CH4. Further, in silico simulations offered insight
into the amount of non-productive ATP hydrolysis re-
quired to match experimentally measured biomass. This
study highlights strengths of the compartmentalization
and optimization-based approaches. It allowed the ex-
ploration of theoretical limits on growth and nutrient
fluxes as a function of the metabolic network structure.

Other studies have successfully utilized the same com-
partmentalization approach. In one study, this approach
was used to computationally design media conditions
that induce commensalism or mutualism between mi-
crobe pairs [27]. In another, three GENREs (Bacteroides
thetaiotamicron, Eubacterium rectale, and Methanobre-
vibacter smithii) were used to explore the impact of the
gut microbiome on host metabolism [28]. To accomplish
this, two optimization frameworks were defined which
are referred to as the α-problem and the β-problem.
The α-problem is used to predict the uptake and se-
cretion of metabolites when the diet and species abun-
dances are known. The β-problem is the inverse, where
the model predicts species abundances when metabolite
uptake and secretion rates are known. The results from
this novel analytical approach are validated using ex-
perimental data from gnotobiotic mice. Finally, a host-
pathogen interaction between Mycobacterium tuberculo-
sis and an alveolar macrophage was simulated using this
compartmentalization strategy [29]. The GENRE for
M. tuberculosis was included as a compartment within
the macrophage model, effectively representing a specific
metabolic state that M. tuberculosis can inhabit dur-
ing infection [29]. Several other groups have published
models that utilize this compartmentalization approach,
summarized in Table 4.1.

The compartmentalization framework is an intuitive
and simple way to represent microbial interactions.
This approach has been used more frequently than any
other, providing mechanistic insight into community
metabolism and good agreement with experiment. How-
ever, the compartmentalization strategy may limit the
types of analyses that can be performed. First, this rep-
resentation of a community inherently forces an assump-
tion of balanced growth making it difficult to account
for metabolite accumulation in the environment because
of steady-state constraints in FBA. Second, single-level
optimization-based analyses of compartmentalized mod-
els often assume that each species in the community is
growing optimally (i.e., the objective function in FBA
is often assumed to be a combination of the objective



4.4. CURRENT STATE OF THE FIELD 29

A Timeline for Computational Metabolic Systems Biology of Microbial Communities

C Stolyar et al. (2007)
Recapitulate mutualistic interaction between Desulfovibrio vulgaris and
Methanococcus maripaludis [23]

OM Christian et al. (2007)
Emergent biosynthetic capacity for 99,681 species pairs determined by
network expansion [30]

C,ES Taffs et al. (2009)
Interaction of three microbial guilds. Interrogated using three modeling
approaches, including simple compartmentalization, “enzyme soup”, and an
approach based on elementary mode analysis (EMA) [31]

C Bordbar et al. (2010)
Mycobacterium tuberculosis embedded in alveolar macrophage metabolic
reconstruction [29]

C Klitgord & Segrè (2010)
Computationally design media to induce commensal and mutualistic
interactions between several pairs of species [27]

OM Sun et al. (2010)
Comparative analysis of Pelobacter carbinolicus and Pelobacter propionicus
[32]

C Freilich et al. (2011)
Prediction of competitive and cooperative potential among 6,903 species pairs
[33]

DA Hanly & Henson (2011)
Optimization of glucose/xylose utilization by mixed cultures of E. coli and
Saccharomyces cerevisiae [34]

DA Zhuang et al. (2011)
Simulation of community responses to nutrient modulation. Community
included G. sulfurreducens and R. ferrireducens [35]

DA Tzamali et al. (2011) Exploration of interactions between many E. coli gene-knockout strains [36]

CO Zomorrodi & Maranas (2012)
OptCom method introduction and analysis of D. vulgaris and M. maripaludis
community [37]

C Heinken et al. (2013) Interaction of Bacteroides thetaiotamicron and mouse host [38]

C Khandelwal et al. (2013)
Development of tools to estimate species abundances and yields, applied to
co-culture of Escherichia coli auxotrophs [39]

C Nagarajan et al. (2013)
Electron flow between Geobacter metallireducens and Geobacter
sulfurreducens, integrating multi-omics data [40]

C Shoaie et al. (2013)
Interactions between combinations of 2 and 3 of B. thetaiotamicron,
Eubacterium rectale, and Methanobrevibacter smithii. Authors also apply
OptCom and compare results [28]

DA Hanly & Henson (2013)
Optimization of glucose/xylose utilization in community of S. cerevisiae and
Scherffersomyces stipitis [41]

OM Levy & Borenstein (2013)
Analysis of competition and cooperation among all pairs of 154 species using
graph-based method [42]

OM Bartell et al. (2014)
Comparative analysis of Burkholderia cenocepacia and Burkholderia
multivorans [43]

OM Vinay-Lara et al. (2014) Comparative analysis of two strains of Lactobacillus casei [44]

CO El-Semman et al. (2014)
Interaction of Bifidobacterium adolescentis and Faecalibacterium prausnitzii.
OptCom and classic FBA are used in analysis [45]

CO,DA Zomorrodi et al. (2014)
OptCom is adapted to dynamic simulations. Simulated communities of E. coli
auxotrophs, and a uranium-reducing community involving Geobacter
sulfurreducens, Rhodoferax ferrireducens, and Shewanella oneidensis [46]

DA Chiu et al. (2014)
Screening of 6,670 two-species communities for emergent biosynthetic
capacity [47]

DA Harcombe et al. (2014)
Spatial element integrated with dFBA to model interaction of
Methylobacterium extorquens, E. coli, and Salmonella enterica [48]

C Ye et al. (2014)
Analysis of cross-feeding in vitamin-C-producing community composed of
Ketogulonicigenium vulgare and Bacillus megaterium [49]

ES Tobalina et al. (2015) Analysis of a naphthalene-degrading community [50]

Table 4.1: A Timeline for Computational Metabolic Systems Biology of Microbial Communities.
C indicates the compartmentalization approach. CO indicates the community objectives method. DA indicates
the dynamic analysis approach. ES indicates the enzyme soup approach. OM indicates other methods including
graph-based approaches, network expansion, and the comparative method.
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Figure 4.3: Community modeling frameworks that feature GENREs. (A) The compartmentalization
approach unites all species-level GENREs into a unified stoichiometric matrix with a shared compartment. The
objective function is generally assumed to be a linear combination of the individual biomass functions from each
species. The community objectives approach (OptCom) is an extension of the simple compartmentalization ap-
proach that utilizes a nested, bi-level optimization framework. The bi-level optimization enables the representation
of more classes of interactions between species, but comes at the cost of increased computational complexity. (B)
Dynamic analysis simulates changes in metabolites and biomass over time, which requires constraints on uptake
reaction kinetics. (C) “Enzyme soup” FBA ignores species boundaries and assumes that all reactions can inter-
act in a community-level meta-GENRE. Other methods include: (D) network expansion, which has been used
to identify potential emergent biosynthetic capacity between species by comparing species-specific “reachable”
metabolites to the result of pooling reactions from both species; (E) graph-based methods, which can be used
to quantify general characteristics of an interaction between species, such as the level of expected competition or
cooperation; (F) comparative analyses, which are used to assess the differences in gene essentiality, biosynthetic
capacity, and resource utilization between species. Note that mets signifies metabolites, Bm stands for biomass,
s.t. means subject to, ub and lb signify upper and lower bounds, respectively.
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functions for each species). Third, species abundance is
assumed to be fixed, rather than allowing for changes in
abundance as interactions unfold. These and other lim-
itations are addressed in more recent analytical frame-
works.

Community Objectives

The OptCom approach is an extension of the basic com-
partmentalization strategy that allows for a community-
level objective function [37] (as opposed to only consid-
ering the species-level objective functions as described
above [23]) (Figure 4.3A). A nested, bi-level optimiza-
tion framework enables the simulation of several classes
of metabolic interactions, including mutualism, syner-
gism, commensalism, parasitism, or competition. For
example, a mutualistic interaction can be represented by
setting the outer optimization problem to maximize the
biomass of two interacting community members, subject
to the inner optimization conditions for each species.
The inner optimization conditions can be customized,
and may include maximization of biomass production
or alternative objective functions and steady-state con-
straints. However, a parasitic interaction may be better
represented by setting the community objective function
to only maximize parasite network biomass production
[37]. Beyond the flexibility to represent many qualita-
tively different types of interactions, OptCom offers a
powerful way to think about community interactions: as
a result of competing objectives between all community
members.

Given the bi-level structure of OptCom, a distinct ad-
vantage of this framework is the ability to explore trade-
offs between individual and community objectives. A
hypothetical example could be that two species maintain
suboptimal metabolic states allowing them to catabolize
disparate carbon sources and share the resulting byprod-
ucts. OptCom is an excellent tool for exploring and
explaining such trade-offs between individual metabolic
states and community-level optimality. In summary, by
altering the community objective and the constraints on
interspecies fluxes as part of the outer problem, Opt-
Com can be used to explore many types of communities,
and the reasons for observed interactions with respect to
trade-offs between objectives. In a representative study,
OptCom was used to simulate the interaction between
two gut bacteria—Bifidobacterium adolescentis, an ac-
etate producer, and Faecalibacterium prausnitzii, an ac-
etate consumer and butyrate producer [45]. Flux vari-
ability analysis (FVA) was utilized to explore the pos-
sible range of flux values for shared metabolites (such
as acetate) [45]. OptCom is computationally expensive
and not appropriate for some optimization solvers due

to the nonlinear constraints [45]. In addition, the anal-
ysis is sensitive to the user-defined optimization func-
tions and flux constraints. Therefore, OptCom may be
less suitable for poorly defined communities where the
metabolic interactions are less well known. Studies that
have used OptCom are summarized in Table 4.1.

Dynamic Analysis

Standard FBA results in a set of fluxes—or metabolite
consumption/production rates—across a GENRE dur-
ing pseudo-steady state conditions. In dynamic FBA
(dFBA) these fluxes are integrated over time (using
standard numerical integration techniques) [51]. With
dFBA, it is possible to simulate changes to initial con-
ditions over time, including the consumption and pro-
duction of metabolites, changes in biomass, and shifts
in metabolism in response to environmental changes.
dFBA provides an entire time course, as opposed to a
single snapshot from standard FBA. Kinetic parameters,
particularly relating to uptake rates of limiting metabo-
lites (such as glucose and oxygen) [34, 51] are required
for the implementation of dFBA. Challenges with the
implementation of dFBA include an increased computa-
tional load and a paucity of the required kinetic param-
eters for many systems (Figure 4.3B).

In the dFBA framework, metabolites are free to accu-
mulate or disappear. Species abundance and metabolic
states are free to change in response to interactions and
changing environment. Thus, the need for defining a
community objective function and to set proper bounds
on interspecies fluxes is obviated, given that the proper
kinetic parameters are known. Furthermore, it is pos-
sible to extend other community modeling methods—
including OptCom—and perform dynamic analysis [46].

As an example of multispecies dFBA the co-culture
of Escherichia coli and Saccharomyces cerevisiae was
modeled [34]. Each microbe was capable of consuming
a unique sugar (glucose or xylose), and the simulations
were used to optimize community ethanol production.
A similar approach was taken to model the co-culture of
S. cerevisiae and Scherffersomyces stipitis in which the
production and degradation of growth-inhibitory com-
pounds such as furfural were represented and growth
conditions for ethanol production were optimized [52].

dFBA has been used to identify emergent biosynthetic
capacity in 6,670 unique two-species communities [47].
FBA was used to estimate microbial growth at each
time point, constrained by kinetic uptake parameters
for limiting nutrients [47]. Exchange fluxes can take on
a range of possible values, so the lower bound of each
was determined by FVA and the sum of all exchange re-
action fluxes was minimized. In this way, a reproducible
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time course was produced by each simulation. In sil-
ico species could share metabolites through the shared
environment, and emergent metabolites were those that
could be produced by a co-culture simulation, but not
by either species individually [47]. Interestingly, there is
a clear window of phylogenetic distances in which two
interacting species are more likely to exhibit emergent
metabolic capacity [47].

Another use of dFBA is to capture spatiotemporal
dynamics in a community of organisms. In one case,
dFBA was used to model the formation of Pseudomonas
aeruginosa biofilm, where the ‘community’ is the col-
lection of cells in different metabolic states [53]. In
this study, a GENRE corresponding to P. aeruginosa
was used in a dFBA framework to estimate metabo-
lite secretion, production, and diffusion over time across
compartments in an agent-based model of biofilm, re-
capitulating known features of biofilm formation such
as oxygen-limited biofilm growth. In a similar study,
dFBA was used to model the spatio-temporal dynamics
of three-species microbial communities on a 2D surface
[48]. dFBA was used to estimate biomass production,
and nutrient concentration changes in local compart-
ments where diffusion allowed changes to impact con-
nected compartments. The authors report successfully
predicting the steady-state species composition of an en-
gineered three-member community [48].

These examples demonstrate the versatility of dFBA
for modeling small, well-characterized communities, per-
forming large-scale surveys of many potential communi-
ties and the possible emergent properties among them,
and accounting for spatial dynamics. dFBA represents
an exciting and underexplored area of GENRE analy-
sis. dFBA may present a community modeling option
with fewer up-front assumptions. However, use of dFBA
may be constrained by computational limitations, given
the inherent increase in computation over a time-course
[47] or spatial environment [48]. Furthermore, dFBA
relies on additional kinetic parameters, which may nul-
lify a primary advantage of FBA-based techniques which
avoid extensive parameterization. A summary of dFBA-
based community models is presented in Table 4.1.

It is worthwhile to compare dFBA with other estab-
lished dynamic models of microbial communities. The
Activated Sludge Model (ASM) has a long history in
bioreactor control for wastewater treatment [54]. These
models are based on ordinary differential equations,
and predict the changes in nutrient concentrations and
microbial abundances over time. Nutrients of inter-
est are grouped (e.g., carbon, nitrogen, and phospho-
rus sources), and microbes grouped according to nu-
trient utilization (e.g., nitrifying bacteria, phosphorus-
accumulating bacteria). An ASM can predict the change

in abundance of each microbial group as a function of nu-
trient concentrations, and subsequent changes in nutri-
ent concentrations as a result of microbial growth. The
parameters for these models are chosen to fit experi-
mental data. An ASM does not represent each taxon
individually, nor does it account for the metabolic dif-
ferences between organisms within a group. For exam-
ple, two bacteria from different taxa may both be clas-
sified as “nitrifying”. They would likely have different
overall metabolic networks, and therefore respond dif-
ferently to changes in carbon and phosphorus concentra-
tions [55]. An ASM would not account for these taxon-
specific metabolic differences, thus resulting predictions
may be misleading. In contrast, modeling frameworks
that can capitalize on genome-scale metabolic recon-
structions, such as dFBA, are capable of accounting for
these metabolic differences and can potentially improve
prediction accuracy. In addition, dFBA dynamics are
typically a function of specific uptake rates while ASM
dynamics are a result of fitting the system kinetics to
observed data. A recent review describes ASM models
as well as other alternative community modeling frame-
works that are not based on metabolic network recon-
structions [56].

“Enzyme Soup” FBA

In contrast to the simple compartmentalization ap-
proach, OptCom, and dFBA, the “enzyme soup” ap-
proach [18] ignores species boundaries entirely (Figure
4.3C). The emphasis is on exploration of the metabolic
potential of an entire community rather than the in-
teractions between species within a community. A
community-level ‘enzyme soup’ GENRE is produced by
annotating a meta-omic dataset for enzyme presence,
and the associated reactions are agglomerated into a
single set without an attempt to segregate reactions
by species. In this framework, any reaction from any
species can potentially connect with any other reaction
into a “meta-pathway”. Early work on this approach
ignored stoichiometric constraints within this network,
and examined the topological differences between net-
works reconstructed from healthy and diseased metage-
nomic data [57].

More recent work pioneered the analysis of these
community-level GENREs using constraint-based meth-
ods such as FBA to predict biomass production and
substrate utilization [50]. In this work, the authors
base their reconstruction on metaproteomic data from a
naphthalene-enriched soil microbe dataset. They main-
tain stoichiometric constraints, and assign metabolic ac-
tivity to taxa within the community based on the tax-
onomic annotation of the enzymes in the model. The
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biomass function is assumed to be a generalized biomass
equation borrowed from other organisms, under the as-
sumption that many components of biomass are common
to many organisms [50].

The enzyme soup approach has been used successfully
to explore the metabolic capacity of complex natural
communities. In one study, the interaction of several
microbial ‘guilds’ was studied using both the compart-
mentalization approach and the enzyme soup method
(which they refer to as the “pooled reactions” method),
and a “nested consortium analysis” [31]. The guilds
represent community functions attributable to prokary-
otic oxygenic phototrophs, filamentous anoxygenic pho-
totrophs, and sulfate reducers found in thermophilic,
phototrophic mat communities from Yellowstone Na-
tional Park (USA). The enzyme soup method is appro-
priate when there is limited a priori knowledge about
the community; conversely, the compartmentalization
approach is a more accurate representation of the biol-
ogy if extensive knowledge is available about the various
community members [31]. The nested consortium anal-
ysis is based on elementary mode analysis (EMA) [31,
58]. First, elementary modes (i.e., a pool of valid phys-
iological states) are identified for each guild. Second,
elementary modes are re-computed for the entire com-
munity using the guild-level modes as input [31]. This
“nested consortium analysis” also requires significant a
priori knowledge of the community in order to select
useful elementary modes at the guild-level.

The issue of compartmentalization in GENREs has
been discussed in the context of eukaryotic organisms,
in which extensive compartmentalization is used to rep-
resent organelles and compartments within the cell [26].
For example, analysis of the S. cerevisiae GENRE shows
that compartmentalization significantly impacts basic
properties such as network connectivity and the accu-
racy of analytical results such as flux values [26]. When
considering the “enzyme soup” approach, it is impor-
tant to consider the loss of accuracy associated with
dissolving the boundaries between community members.
The main advantage of this approach is the low a priori
knowledge required, such that it is applicable to little-
understood systems. In some sense, the “enzyme soup”
strategy can be thought of as placing bounds on the
potential metabolic capacity of a microbial community.
Further compartmentalization will provide more specific
solutions within those bounds. Studies utilizing the en-
zyme soup method are summarized in Table 4.1.

Other Methods

Other GENRE-based methods of community analysis
have been explored, providing yet more vantage points

from which to view the metabolism of complex com-
munities. Network Expansion is an algorithm in which
the metabolic potential of a set of reactions is explored
(Figure 4.3D) [59]. The algorithm starts with a set of
metabolites as input (the environment). An initial set
of reactions that can use the input metabolites as sub-
strates are added to the network. This network is ex-
panded in subsequent steps as products of the previ-
ously added reactions are made available. New reac-
tions that use some part of the accumulating pool of
metabolites are added to the network. This approach
was extended to a community-level analysis [30]. Given
the reaction sets from two organisms, the algorithm as-
sumes that any intermediate metabolites can be shared,
and so performs network expansion by pooling the reac-
tion sets from both organisms [30]. This algorithm has
been used to identify emergent properties of pairs of mi-
crobes, where the combination can produce metabolites
that cannot be produced by either parent species [30].

In contrast to the network expansion method [57], ap-
proaches based on identifying the “seed set” of a species-
level GENRE maintain species-specific boundaries and
can be used to estimate metabolic competition or coop-
eration (Figure 4.3E) [42, 60]. In this graph-based ap-
proach, the stoichiometric structure of the GENRE is de-
composed to create a directed graph from all substrate-
to-product pairs. The resulting graph represents paths
between metabolites, but does not contain stoichiomet-
ric information. Metabolites that are consumed, but
never produced by any reaction in the network, are as-
signed as network inputs, or the “seed set” [60]. The
seed sets for multiple species have been used to estimate
the potential for competition or cooperation between
species, demonstrating that species tend to co-occur in
nature with mutual competitors [42]. These graph-based
methods ignore stoichiometry and are therefore not use-
ful for making flux predictions, but rather more gen-
eralized statements about network similarity. This ap-
proach may be useful when using draft-quality models,
for which the accuracy of FBA or similar analyses may
be low.

As a final GENRE-based community analysis, we also
make note of the comparative approach, which ignores
interactions among species and seeks only to identify
functional differences between GENREs (Figure 4.3F).
For example, a comparative analysis of Burkholderia
cenocepacia and Burkholderia multivorans revealed the
unique reactions associated with each, and identified
functional outcomes associated with those differences,
such as differential virulence factor production capacity
[43]. Similarly, a comparative analysis of two strains of
Lactobacillus casei highlighted functional differences be-
tween these industrially-relevant strains [44]. Such com-
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parative analyses can help to identify the functional roles
of species within large communities by identifying both
redundancy and differential metabolic capacity between
community members.

Multiscale Models

Outside of the community modeling methods discussed
here which are effectively single-scale models (with the
possible exception of the spatial models that incorpo-
rate dFBA [48, 53]), GENREs have also been success-
fully incorporated into multiscale models. GENREs of
soil microbes have been integrated with a reactive trans-
port model based on local geochemical conditions [61].
A GENRE of the human hepatocyte has been connected
with a multicompartment pharmacokinetic model of the
human body [62]. Opportunities for multiscale mod-
eling abound with the increasing availability of omics
data. For example, in one mouse study the presence
of several gut microbes was modulated, and the result-
ing metabolomics data were fit with a compartmental
model that represented the host liver, pancreas, kidney,
and adipose tissues [63]. It is clear how a GENRE-based
compartmental model could be integrated into an analy-
sis of similar data. These studies highlight the potential
gains from combining the strengths of multiple modeling
frameworks.

Experimental Data That Meshes with GENRE-
Based Community Analysis

GENRE-based community models require data to be
constructed, constrained, and validated; for example,
quantifying species within a community is important
for constraining objective functions (ratios of biomass
equations) or validating dFBA simulation results. Many
omics technologies are well-suited for this purpose and
have been used extensively in GENRE studies of single
species. Additional experimental approaches provide in-
sight into microbial community function that may prove
useful to GENRE community models in the near future.

Metagenomics answers the question “who is there and
what might they be able to do?” The composition of
many highly complex microbial communities has been
elucidated in recent years through shotgun metagenomic
sequencing techniques [7]. This approach can be used
to identify the taxa that are present, estimate relative
abundances of each taxon, and provide a “parts list” of
genes that are present in the community [64]. Metage-
nomic data can be directly translated into community
GENREs using any of the techniques previously dis-
cussed; however, difficulties arise during taxonomic as-
signments within the community. Below, we discuss
tools that have been developed to address this issue in

metagenomic data. A parallel technology that may even-
tually overcome challenges in metagenomic sequencing
is single-cell sequencing [65, 66]. While throughput is
lost, confidence is gained in assignment of function to a
distinct organism within the community.

Metatranscriptomics and metaproteomics both help
address the question “what are they doing?” Functional
data can be used as the basis for constructing a GENRE,
or more commonly, to constrain an existing GENRE in
order to estimate metabolic pathway usage under spe-
cific conditions [40]. Once again, assigning mRNA tran-
scripts or proteins to a specific community member can
prove challenging. Single-cell transcriptomics and pro-
teomics can help with this difficulty [67], as can the gen-
eration of reference genomes to which transcripts and
peptides can be mapped [68].

Other techniques allow the quantification of commu-
nity member abundances, including real-time PCR, flow
cytometry, and in some cases, Coulter counters. Real-
time PCR can be used to quantify the abundances of
specific community members in a mixed culture [69].
There is generally good correlation between real-time
PCR and other measures such as optical density and vi-
ability data, unless the culture is under stress, in which
case real-time PCR tends to overestimate the number of
viable cells [69]. Even so, accurate maximum growth
rates can be calculated from real-time PCR regard-
less of culture conditions [69]. Flow cytometry can be
an effective technique to quantify community member
abundance, but is limited by the availability of species-
specific fluorescent markers [70]. Coulter counters have
been used in two-member communities where species
vary drastically in size [71].

The burgeoning field of metabolomics offers novel
tools to study the anabolic and catabolic capacities of
simple and complex communities. Both targeted (mea-
sure specific pre-defined metabolites) and non-targeted
(measure as many metabolites as possible, without pre-
selection) methods have been applied to studies of mi-
crobial communities [72]. Both nuclear magnetic reso-
nance (NMR) and mass spectrometry can be applied in
targeted and non-targeted ways, and can provide quan-
tification of metabolite abundances [73–75]. Targeted
or non-targeted metabolomic data can be used to con-
strain, and validate functional outcomes of GENRE sim-
ulations. A technique of interest, MALDI-TOF imag-
ing mass spectrometry, is a targeted method capable
of measuring metabolite concentrations over a physical
space [76, 77]. This technique has been used to identify
compounds that are produced during the co-culture of
Streptomyces coelicolor with other actinomycetes, and
how resulting metabolites localize spatially [76]. This
technique may pair particularly well with GENRE mod-
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eling techniques that account for spatial information [48,
53].

Many tools for studying microbial communities are
applied to the aggregate, which often makes it neces-
sary to partition the data in order to assign activity to a
specific community member. Spent media experiments
provide a way to dissect cellular interactions within co-
culture systems. Using this technique, spent media is
produced by growing the first organism in fresh media.
The first organism is removed (i.e., by filtration ster-
ilization) resulting in ‘sterile’ media, and the resulting
supernatant is then used to culture a second organism.
This technique was used to demonstrate that Enterobac-
ter cloacae produced fermentation byproducts that en-
hanced hydrogen production by Rhodobacter sphaeroides
[78]. Further, this technique was used to determine the
ability of Lactobacillus to inhibit growth of Candida al-
bicans, Gardnerella vaginalis, and Streptococcus agalac-
tiae [79]. A disadvantage of this technique is the in-
ability to maintain interspecies signaling, such that the
first species (used to produce spent media) cannot re-
spond to the presence of the second species. However,
the advantages of this technique are that the direction of
interaction and causality can easily be determined, and
individual species can be monitored because they are
grown separately. In addition, spent-media experiments
can be paired with metabolomics and other measures
to produce data that can be integrated with GENRE
simulations.

Co-culture of community members on solid surfaces
such as agar plates can also help to overcome difficul-
ties in partitioning community members. ‘Cross streak’
analysis is a technique whereby single cultures are mixed
on the surface of a plate [80]. Growth and other phe-
notypes can be visually assessed or paired with other
tools such as imaging mass spectrometry [76]. This ap-
proach was elegantly used to identify members of the
human microbiota that promote growth of antibiotic re-
sistant Staphylococcus aureus. At the most basic level,
these screens can be used to qualitatively determine the
nature of interactions, which can be used to interpret
results of GENRE simulations.

4.5 Challenges and Opportunities

Partitioning Communities

Assigning activity to particular species is a fundamental
difficulty working with mixed communities and is further
compounded when complete genomes are not available
for all species in the community [81]. This difficulty as-
signing activity to a particular species motivates the use
of “enzyme soup” methods as discussed above. Consid-

erable progress has been made recently to assemble cat-
alogues of reference genomes, but a great deal remains
to be done (and will likely never be “complete”) [82].
Traditional genome sequencing has relied on culturing
individual isolates in order to extract large quantities of
purified DNA, but this is not feasible for the vast major-
ity of organisms [83]. Alternative methods rely on com-
putationally partitioning genomes from mixed metage-
nomic sequencing samples [81, 83–90]. Three main types
of information are used to bin member genomes from
mixed samples: (1) DNA composition-based methods,
which rely on an empirically observed trend for genomes
to display unique “k-mer” frequencies (patterns of one
to five bases) [88, 91, 92]; (2) Abundance variations
across many samples, where contiguous DNA segments
with similar abundance profiles across many samples are
likely to originate from the same organism [81, 83–85];
(3) Taxonomic annotations derived from similarity to
known taxa [90, 93–95]. There are many active efforts
to improve the isolation of individual genetic informa-
tion from mixed metagenomic samples, and these ef-
forts can translate directly to improved GENRE con-
struction. Species-specific genomes, particularly from
non-culturable organisms, will be invaluable resources
for understanding the function of complex communities
through GENRE-based analysis.

Automating High-Quality Metabolic Recon-
structions

Ideally, automated generation of GENREs from metage-
nomic or genomic data will result in models that have
predictive power with minimal manual curation or ex-
perimental validation. In practice, however, even the
most well-curated GENREs cannot fully recapitulate ex-
perimental phenotypes [96]. Therefore, the validity and
usefulness of automatically generated GENREs should
be assessed by their utility relative to manual reconstruc-
tions. A GENRE that can be used to predict growth
conditions and gene essentiality will allow a myriad of
applications in community modeling and serves as an
attainable short-term goal for the development of algo-
rithms for automatically generating GENREs.

Several attempts at automated and semiautomated
creation of GENREs have been made, which have been
compared and reviewed previously [97, 98]. Many stud-
ies report using GENREs created with a combination
of automated methods and manual curation [43–45, 99],
but there are few, if any, reports of automatically gener-
ated GENREs used to contextualize experimental data
without manual curation to some degree. Greater preci-
sion and throughput is necessary when generating GEN-
REs for uncharacterized, unique communities composed
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of diverse sets of microbes that vary greatly across envi-
ronments or hosts, as is often the case in biomedical or
ecological applications.

The next generation of algorithms for automated
GENRE generation includes a variety of promising ap-
proaches in the context of community modeling. When
draft reconstructions are created directly from genome
annotations, gap-filling is needed to connect dead-end
reactions to produce a functional network. Parsimony-
based [100, 101], likelihood-based [102], and phylogeny-
based [103] strategies have been developed to fill gaps
during automated reconstruction without relying on
experimental data. Parsimony-based methods posit
that the most parsimonious pathway that fills a gap
is the most likely to occur, which results in a smaller
GENRE than other gap-filling methods. Likelihood-
based methods incorporate multiple gene annotations
and use them during the gap-filling stage to present al-
ternative reactions that are each given a likelihood score,
greatly expanding the space of possible pathways. While
likelihood-based and parsimony-based methods provide
similarly accurate results when predicting experimental
phenotypes [102], the former provides a framework for
finding low-quality gene annotations, which, when re-
moved or fixed, may improve the quality of GENREs
created with other methods. Phylogeny-based methods
start with the assumption that reactions tend to be more
conserved in closely related species than distantly re-
lated species. Phylogenetic relationships have been used
in the context of gene annotation by assuming that func-
tionally linked proteins have correlated evolution, thus
homologs for functionally linked proteins are likely to
be present in the same subset of organisms [104]. The
outcome of this assumption is that sets of proteins in-
volved in the same function or metabolic pathway can be
more accurately annotated in newly sequenced genomes
when corresponding homologs involved in that function
are identified in another species.

Evolutionary distances have been shown to have a sig-
nificant, predictable relationship to gene essentiality and
growth phenotypes [105]. A framework called CoReCo
has been developed which assumes such relationships a
priori to enhance the GENRE creation process for mul-
tiple species simultaneously [103]. Out of the existing
context-based methods, incorporating phylogenetic re-
lationships within a community to guide model creation
is particularly interesting because relationships should
be obtainable from metagenomic data. Conversely, the
assignment of species from metagenomic data could be
enhanced by evaluating the function of GENREs cre-
ated based on multiple putative phylogenies for putative
species.

These gap-filling methods present examples of the

types of information that need to be integrated in recon-
struction algorithms given the constraints of microbial
communities. Assumptions based on evolutionary argu-
ments have proven potential in this regard [106], and
may have exceptional power that needs to be explored
in communities containing both closely and distantly re-
lated species. Finally, integrating multiple assumptions
and sources of information has the potential to increase
GENRE validity in an additive manner and should be
explored further.

A final step in model generation that may be par-
ticularly relevant to community analyses is model rec-
onciliation. Reconciliation removes the differences be-
tween GENREs that represent non-biological noise cre-
ated through the reconstruction process. Such noise can
be due to many factors including, but not limited to,
gene annotation uncertainties, differences in the nam-
ing conventions in reaction databases used, and unspec-
ified or incorrectly specified reaction reversibility [106].
When reconciliation is performed between models for
two related species, the result is typically a reduction in
the number of reactions that are unique to each model.
This could be particularly useful for searching for ther-
apeutic targets in pathogens that are closely related to
a non-pathogen in the same community, as is common
in the human microbiome [107]. Reconciliation would
result in greater certainty that a target is unique to the
pathogen, reducing the probability of off-target effects
in commensal organisms.

Reconciliation of automatically generated GENREs
from a community may be particularly useful because
differences in sequencing quality are likely to be small
in a community sample and the same model generation
algorithm is likely to be used for all species. The result-
ing GENREs may be very effective at revealing noise
introduced from the reconstruction method, since differ-
ences in sequencing and model generation algorithms are
controlled. However, reconciliation between two models
currently requires a significant amount of manual input
and user choice, making it difficult to scale-up to large
communities.

Integrating Omics

High-throughput omics technologies such as tran-
scriptomics, proteomics, metabolic flux analysis, and
metabolomics all present opportunities for new under-
standing of microbial communities when integrated with
GENRE analysis, but challenges remain with the best
approaches for data integration. As with metagenomic
information, partitioning omics datasets and assigning
them to a particular community member remains a chal-
lenge. Along these lines, difficulties may arise when
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multiple, highly similar strains exist within the same
community interrogated with omics approaches. Tran-
scriptomics and proteomics will both benefit from ad-
vances in genome binning and assembly and the result-
ing species-specific references [82]. Leveraging proteomic
techniques, one study used peptide-based 13C metabolic
flux analysis to assign metabolic fluxes to species within
a community [108]. Metabolomics is perhaps the most
challenging, as it can be very difficult to trace the ori-
gins of a metabolite in a shared supernatant. Because
of inherent limitations in metabolomic technologies that
prevent assignment of metabolites to specific commu-
nity members, GENRE based analyses offer the most
effective way to generate ab initio hypotheses about the
partitioning of metabolic roles within microbial commu-
nities.

Regardless of the method of omics partitioning, it is
expected that existing methods for omics integration
into single-species models will translate well to commu-
nity models [28, 40]. Many tools for integration of ex-
pression data and proteomics data have been developed
and validated for individual species [109]; for example,
GIMME and MADE represent the trade-off between as-
sumptions and data [110, 111]. GIMME constrains a
GENRE with expression data by requiring user-supplied
thresholds for each gene, and then optimizing the solu-
tion based on consistencies in pathway up/down regula-
tion [110]. MADE is a related algorithm that infers gene-
specific thresholds based on multiple expression datasets
[111]. If expression data can be easily mapped to refer-
ence genomes or proteomes for individual species, these
and other existing tools will be applicable. However,
in a multispecies community, species abundance is con-
voluted with gene expression, and precautions should
account for such effects. The integration of meta-omics
data into community GENRE models may follow a simi-
lar path to that of genome assembly algorithms. Metage-
nomic assembly tools are very similar to single genome
assembly tools, with minor changes to address the chal-
lenges associated with mixed communities [112, 113].
Perhaps omics data integration algorithms will follow
a similar path.

Engineering Communities

Perhaps the most exciting aspect of GENRE community
models is the opportunity for community design and en-
gineering. As modeling techniques improve, it is hoped
that mechanisms of interspecies interaction will become
better understood and more predictable. Early compu-
tational tools have already proved valuable from a com-
munity engineering standpoint, as demonstrated by the
ability to design nutritional environments that modulate

the interactions between species in co-culture [27]. FBA-
based methods have indicated optimal growth rates of
E. coli which could be subsequently obtained by adap-
tive evolution experiments [39, 114]; likewise, it may be
possible to use FBA-based methods to predict the nec-
essary individual adaptations of synthetic auxotrophs in
co-culture [115]. When large community GENRE mod-
els are well-validated, they can be used to explore the
impact of specific therapeutic interventions such as pre-
biotics, probiotics, and targeted removal of species in
the human gut microbiome [20, 22, 116]. Analyses such
as gene-knockout screens may be extended to species-
knockout screens (i.e., sequential removal of each species
from the community and analysis of the resulting con-
sequences) [43, 117, 118]. For this type of analysis, it
is not currently known what adjustments to flux pre-
dictions need to be made to produce accurate simula-
tions. In the case of gene-knockout simulations, tech-
niques such as minimization of metabolic adjustment
(MOMA) are used to predict the updated flux distri-
bution [119]. Analogous algorithms will likely be useful
for community-level analyses.

It is also unclear how current metabolic engineering
tools will be extended to community engineering appli-
cations. Algorithms such as OptKnock, Opt-Gene, or
the Redirector algorithm have proven useful at a single-
organism level [120–122]. Similar optimization frame-
works may be devised for community models, but com-
plexity scales not only with the number of species, but
also with the many ways species models can be con-
joined. There are great incentives to advance such engi-
neering approaches since examples show that microbial
consortia are more efficient and robust than a single en-
gineered species [12, 123].

4.6 Conclusion

Metabolic systems biology of microbial communities is
an exciting and rapidly developing field with the po-
tential to revolutionize our understanding of microbial
communities of societal importance. Existing methods
have shown promise, including compartmentalization,
separating species-level and community-level objectives,
dynamic analysis, the “enzyme-soup” approach, multi-
scale modeling, and others. The rise of omics technolo-
gies has enabled high-level views of microbial community
composition and metabolism, but it remains a challenge
to partition community function and assign it to indi-
vidual community members. Future work is also need
to integrate omics data into community-level metabolic
models. Moreover, the sheer number of species in many
microbial communities demands new automated recon-
struction methods that result in GENREs without the
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need for further manual curation. As technologies and
modeling frameworks improve, we expect that there will
be corresponding advances in the fields of ecology, health
science, and microbial community engineering.
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Chapter 5

Metabolic Network-guided Binning of
Metagenomic Sequence Fragments

The text for this chapter has been previously pub-
lished as a research article here:

Biggs MB and Papin JA. (2016). Metabolic Network-
guided Binning of Metagenomic Sequence Fragments.
Bioinformatics. 32(6):867–874. doi: 10.1093/bioinfor-
matics/btv671.

5.1 Context

This paper started with an idea that sounded interest-
ing but far-fetched. We decided to do some exploratory
simulations on toy data, just to see if the idea held wa-
ter, and we were surprised to find out that it actually
worked. Once we knew the idea was viable, I took some
time to brainstorm the experiments that would need to
be done and outline a possible paper (I credit Phil Yen
for being a good example of deliberate planning). From
there, the process of doing the work and writing the pub-
lication was relatively fast (just a couple of months from
start to finish). The experience of writing this paper
taught me a couple of key principles: 1) do the make-or-
break experiment as early as possible (in this case, we
did simulations first thing) and 2) good planning in the
beginning makes the whole process more coherent and
prevents losing sight of the big picture.

This particular application of genome-scale metabolic
network reconstructions is “nifty”, but may not find
wide application because of recent technologies that re-
duce the need to computationally bin metagenomic se-
quence fragments. Single-cell sequencing and long-read
sequencing technologies are two that come to mind.
Even though SONEC may not be found on every future
bioinformatician’s hard drive, the knowledge that bio-
logical networks can add another layer of information to
deconvolve mixed-up omics data remains useful.

5.2 Synopsis

Motivation: Most microbes on Earth have never been
grown in a laboratory, and can only be studied through
DNA sequences. Environmental DNA sequence samples
are complex mixtures of fragments from many differ-
ent species, often unknown. There is a pressing need

Figure 5.1: Current approaches to reassembling
species-level genomes from metagenomic data
include: assembly, where short reads are assembled
into larger fragments (“contigs”) by sequence overlap;
grouping by sequence composition, where fragment sim-
ilarity is gauged by nucleotide sequence patterns (e.g.
G/C content or tetranucleotide frequencies); clustering
by cross-sample abundance profiles, where fragments
with strongly correlated abundance across independent
samples are grouped together; further curation can in-
clude mapping to closely-related reference genomes, tax-
onomic annotations, or testing that bins contain minimal
gene sets common to most organisms.

for methods that can reliably reconstruct genomes from
complex metagenomic samples in order to address ques-
tions in ecology, bioremediation, and human health.

Results: We present the SOrting by NEtwork Com-
pletion (SONEC) approach for assigning reactions to in-
complete metabolic networks based on a metabolite con-
nectivity score. We successfully demonstrate proof of
concept in a set of 100 genome-scale metabolic network
reconstructions, and delineate the variables that impact
reaction assignment accuracy. We further demonstrate

44
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Figure 5.2: The SONEC Algorithm. The algorithm
is initialized with bins of contigs (where the bins cor-
respond to species from the metagenome), and a set of
unassigned sequence fragments. A metabolic network re-
construction is produced for each bin and all unassigned
contigs. To determine the correct parent bin to which
unassigned contigs should be assigned, a metabolite con-
nectivity score is calculated for each pair of unassigned
reaction and parent network. This metabolite connectiv-
ity score quantifies the number of dead-end metabolites
in the parent network which would no longer be dead-
end with the addition of the unassigned reaction. Unas-
signed reactions will remove more dead-end metabolites,
on average, from the correct parent network than from
other, off-target networks. If there is a single maxi-
mum metabolite connectivity score for a given reaction,
the contig associated with that reaction is assigned to
the parent bin indicated by the metabolite connectivity
score (e.g. unassigned contig 1 is assigned to species bin
1, and unassigned contig 2 is assigned to species bin 2,
while unassigned contig 3 is ambiguous and cannot be
assigned).

the integration of SONEC with existing approaches
(such as cross-sample scaffold abundance profile cluster-

ing) on a set of 94 metagenomic samples from the Hu-
man Microbiome Project. We show that not only does
SONEC aid in reconstructing species-level genomes, but
it also improves functional predictions made with the
resulting metabolic networks.

Availability and implementation: The datasets and
code presented in this work are available at:
bitbucket.org/mattbiggs/sorting by network completion/.

5.3 Introduction

Most microbes cannot be cultured using existing tech-
niques [1]. It is possible to interrogate this vast world
of ‘unculturables’ by analysis of DNA from environ-
mental samples. Metagenomics is a burgeoning field,
and databases are accumulating trillions of bases of
DNA sequence from complex environmental samples.
These DNA fragments contain information about new
and interesting microbes. Many approaches for ana-
lyzing such complex mixtures of DNA fragments seek
to catalog the families of genes contained in the com-
munity metagenome, and how those families of genes
change over time [2–4]. Other approaches seek to as-
sign DNA fragments to known taxonomic groups [5,
6]. What is more difficult is the assignment of DNA
fragments—genes in particular—to yet undiscovered
parent genomes, and as a result, discovering the con-
text in which those genes operate. The goal is not only
to know that a given gene exists within the community,
but to know also to which species that gene belongs,
what other genes that species has, what metabolic ca-
pacity that species presents, the regulatory network that
controls those genes and so on. Answers to these ques-
tions will advance efforts to discover new pathogens,
industrially-relevant microbes and drivers of global geo-
chemical cycles [7–9].

Recent advances in reconstructing species-level
genomes from metagenomic samples have relied on sev-
eral sources of information: nucleotide patterns that
differentiate species, such as G/C content and tetranu-
cleotide frequencies (Figure 5.1) [10, 11]; taxonomic as-
signment based on similar, known genomes [12]; im-
proved fragment assembly [13]; and differential scaffold
abundance across multiple samples [14–18]. The best
approaches to-date use all of these sources of informa-
tion to extract high quality, species- or strain-specific
genomes [17]. While the best current approaches have
demonstrated the ability to extract hundreds of genomes
from a complex community such as the human gut, they
still leave a third of the available DNA fragments unas-
signed [17].

We propose a new, orthogonal source of information
that can be used to further improve species genome re-
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construction, in conjunction with existing approaches.
Metabolic networks are assumed to be effectively com-
plete (i.e. gapless) [19–22]. This assumption of net-
work completeness is a physiological equivalent of the
law of conservation of mass: that is, that mass drawn
into a cell must eventually leave or be integrated into
biomass. Thus, real metabolic networks do not contain
“dead end” metabolites—reaction substrates or prod-
ucts that are exclusively consumed or produced [19, 21].
This fact can be leveraged in the assignment of metage-
nomic fragments to species bins. Given a set of bins
containing genetic fragments (formed using orthogonal
sources of information as described above), and a set
of unassigned fragments, a metabolic network can be
reconstructed based on the gene content of each bin,
and new fragments assigned to these bins based on a
metabolite connectivity metric. The underlying assump-
tion driving this approach is that genetic fragments con-
taining metabolic genes will tend to fill gaps in the cor-
rect host metabolic network, and will be less likely to fill
gaps in a foreign network to which they do not belong.

We refer to this approach as SOrting by NEtwork
Completion (SONEC). We present proof-of-principle re-
sults from the successful application of this method using
a set of 100 genome-scale metabolic network reconstruc-
tions. Furthermore, we demonstrate the application of
this approach to 94 metagenomic samples from the Hu-
man Microbiome Project [23]. These computational ex-
periments highlight the utility of this novel method, and
delineate the sensitivity to variables that impact practi-
cal applications.

5.4 Methods

Obtaining metabolic network reconstructions

All metabolic network reconstructions were generated by
the Model SEED server [24]. These were downloaded as
spreadsheets and converted to Matlab objects using cus-
tom scripts, available in Supplementary Material [25].
To generate network reconstructions for each individual
cluster in the anterior nares dataset, the set of 9910 as-
sembled contigs was uploaded to the model SEED server.
The reactions for each cluster were assigned by mapping
the annotated open reading frames to the gene-protein-
reaction associations in the meta-reconstruction. All
100 single-species reconstructions are publically avail-
able through the model SEED, and our copies of all re-
constructions are also available as Matlab objects.

Proof-of-concept simulations

All simulations were performed using custom scripts in
Matlab R2013a on a machine running 64-bit Windows 7,
32 GB RAM and 3.6GHz processor speed. Confidence
intervals were calculated in R [26]. All scripts and data
are available in the Supplementary Materials.

Binary error estimation

We organized errors into the following categories: True
Positives (TP) result from the case where reactions were
unambiguously assigned to the correct parent network;
False Positives (FP) result from the case where reactions
were unambiguously assigned to an incorrect network;
True but Ambiguous (TA) results from the case where
there were one or more ties in the maximum metabolite
connectivity score (for definition of “metabolite connec-
tivity score”, see the “Algorithm” section of Results),
and included the correct parent network; False and Am-
biguous (FA) results from the case where there were
one or more ties in the maximum metabolite connec-
tivity score, none of which were the correct parent net-
work; True Rejection (TR) results from the case where
there was a metabolite connectivity score of zero for
all networks and the rejected reaction originated from
a shadow network (and thus, was correctly rejected; for
definition of ‘shadow network’, see the ‘Algorithm’ sec-
tion of Results); False Rejection (FR) results from the
case where there was a metabolite connectivity score of
zero for all networks, but the rejected reaction originated
from one of the visible networks and so was incorrectly
rejected. All error bars represent the 95% confidence
interval for the observed accuracy. Because the assign-
ments resulted in binary outputs (correct assignment or
not), confidence intervals were estimated using the Wil-
son score interval [27] in R.

Obtaining metagenomic samples

Illumina whole-genome shotgun reads were obtained
from the Human Microbiome Project database [23]. All
94 samples corresponding to the anterior nares were
downloaded, while 49 samples containing more than one
million reads were used to estimate coverage of assem-
bled fragments. These 49 samples were each reduced
to one million reads in order to normalize coverage es-
timates. This was done by randomly selecting one mil-
lion reads from the total sample using a custom Python
script (available in the Supplementary Material). The
methods pertaining to the complete analysis of this
metagenomic dataset can be found in the Supplemen-
tary Materials.
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In silico reaction essentiality screen

Reaction essentiality was determined by setting the up-
per and lower flux bounds to zero for each reaction
in turn. Flux Balance Analysis was performed using
the COBRA toolbox for Matlab [28] and the Gurobi
Optimizer [29]. Reactions were considered essential if,
when the reaction was prevented from carrying flux, flux
through biomass was also reduced to zero. Visualiza-
tion of the metabolic network and essential reactions
was performed using MetDraw [30]. Our data and code
are available in the Supplementary Material.

5.5 Results

Algorithm

We define a metabolite connectivity score (MCS) for re-
action i with respect to metabolic network j as:

MCSij =
|RSi ∩NCj |
|RSi|

+
|RPi ∩NPj |
|RPi|

where RSi is the set of substrates for reaction i (|RSi|
is the number of substrates for reaction i), RPi is the set
of products for reaction i, NCj is the set of metabolites
that are not consumed by any reaction in network j,
and NPj is the set of metabolites that are not produced
by any reaction in network j. ∩ indicates the intersec-
tion between sets. Given an unassigned reaction and a
set of metabolic networks, the metabolite connectivity
score is calculated for each network and the reaction is
assigned to the network with the maximum metabolite
connectivity score (Figure 5.2). In the case of a tie, the
correct assignment is ambiguous. In this work we chose
to only assign reactions with unambiguous metabolite
connectivity scores, but the algorithm could be readily
adapted to make more liberal assignments.

Additionally, the concepts of “groups” and “shadow
networks” are important for understanding the proof-of-
concept simulations that follow. We define a “group” as
a set of reactions that originate from the same metabolic
network. A group can be thought of as a set of metabolic
reactions that are obtained from genes on the same con-
tiguous metagenomic sequence fragment (or “contig”),
thus we can be confident that these genes come from the
same parent organism. A group metabolite connectivity
score is defined as the sum of the scores for each indi-
vidual reaction: MCSkj =

∑N
i MCSij where MCSkj

is the metabolite connectivity score for group k (of size
N reactions) with respect to metabolic network j, and
MCSij is the metabolite connectivity score for reaction
i (within group k) with respect to metabolic network j.

We define “shadow networks” as a pool of metabolic
networks which contribute reactions to the metagenome,
but which are not considered as potential bins to which
reactions can be assigned. For example, consider a
metagenomic dataset with many high-abundance species
and several low-abundance species. A bin can be cre-
ated corresponding to each high-abundance species be-
cause there is sufficient signal in the dataset. How-
ever, species of very low-abundance in the community
are probably not sequenced to sufficient depth to be as-
signed their own bins (in other words, this is a “shadow
species”). Because the sequence fragments from these
low-abundance species cannot be assigned to their own
bins, they may be incorrectly assigned to bins of high-
abundance species (because bins corresponding to high-
abundance species are the only available choices for as-
signment). Including these “shadow networks” in our
simulations allows us to evaluate the strength of the
MCS in differentiating reactions that do not originate
from any available choice of reconstruction.

While the analysis below demonstrates the value of
SONEC, we provide here specific examples of binning
based on the MCS to highlight the functionality and
caveats of this scoring scheme (Supplemental Figure S1).
Beginning with a set of 10 draft-quality metabolic net-
work reconstructions, we randomly removed reactions
from each and used the MCS to assign these reactions
back to a metabolic network. As an example of a true
positive result, the MCS was calculated for a reaction
catalyzed by a 5-phosphomevalonate phosphotransferase
drawn from Enterococcus sp. GMD1E (Supplemental
Figure S1A). The metabolic network for Enterococcus
sp. GMD1E was the only network of 10 that contained
dead-end metabolites that overlapped with products of
the reaction. In this case, diphosphomevalonate was not
produced by any reaction in the Enterococcus network,
and the MCS captured this complementary overlap with
the reaction products, resulting in a correct assignment.

In contrast, an example of a false positive result
is informative (Supplemental Figure S1B). The reac-
tion catalyzed by a nicotinate-nucleotide dimethylben-
zimidazole phosphoribosyltransferase overlapped with
dead-end metabolites in several networks. In the cor-
rect parent network of Shigella flexneri, the reaction
product—alpha-ribazole 5′-phosphate—was an unpro-
duced metabolite. Because there were three products
in the reaction, the MCS is 0.33. Conversely, in the net-
work for Pelagibacter ubique, a reaction substrate nicoti-
nate ribonucleotide was an unconsumed metabolite. Be-
cause there are only two substrates in the reaction, the
MCS is 0.5, and because this was the maximum, the
reaction was incorrectly assigned to P. ubique. These
specific examples of true and false positives exhibit how
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the MCS works in practice. We performed further simu-
lations which help to elucidate the role of variables that
influence reaction assignment accuracy using the MCS.

Proof-of-concept simulations

We simulated the problem of binning metagenomic sam-
ples into appropriate species bins. For each inde-
pendent simulation, we started with a set of draft-
quality metabolic network reconstructions randomly
drawn from among 100 bacterial networks obtained from
the Model SEED. We randomly removed reactions from
each. We used the MCS to assign these reactions back
to a metabolic network reconstruction. Unless other-
wise noted, accuracy of assignment was evaluated over
1000 independent simulations for every unique combina-
tion of parameters. While the simulations presented here
are performed with networks from the Model SEED, the
same analysis could be performed with networks derived
from other resources such as KEGG or Pathway Tools
[31, 32], ideally with more coverage of known microbial
taxa.

We first evaluated the effect of parent network
completeness on reaction assignment accuracy (Figure
5.3A). We randomly removed increasingly large subsets
of reactions from each of 10 metabolic networks. These
reactions were then assigned to a network. More com-
plete parent networks (fewer reactions removed from the
original) produced more true positive, and fewer false
positive, reaction assignments. As expected, as parent
networks become less complete, assignment accuracy di-
minishes with decreases in true positives and increases
in false positives. Each simulation was repeated 1000
times, with a new set of 10 parent networks being se-
lected randomly each time from the pool of 100 net-
works. We display results from group sizes (number of
reactions annotated from the same sequence fragment or
contig) of 1, 20 and 40 (Figure 5.3A).

Next, we investigated the impact of increasing the
number of parent networks from which unassigned reac-
tions were derived (Figure 5.3B). For these simulations,
the fraction of reactions removed was fixed at 0.15 and
the group size fixed at 25. As the number of networks
increased, we observed corresponding decreases in the
number of true positives and increases in the number of
false positive reaction assignments.

We further evaluated the effect of increasing group
size (Figure 5.3C). The fraction of reactions removed
was fixed at 0.15, and the number of parent networks
was fixed at 10. We observed that increasing the group
size improved assignment accuracy. Group sizes less
than five tended to produce true but ambiguous assign-
ments. Group sizes of six or greater produced mostly

true positive assignments, with a steadily improving
margin between true and false positives as group size in-
creased. The interaction between network completeness
and group size (or any other combination of parameters)
can be evaluated extensively through further simulations
(Supplemental Figure S2).

We also explored the impact of shadow networks (net-
works which contribute reactions to the unassigned pool,
but do not have a corresponding bin to which reactions
can be assigned) (Figure 5.3D). The fraction of reac-
tions removed was fixed at 0.15, the number of parent
networks fixed at 10 and the group size fixed at 25. Re-
actions drawn from shadow networks were included for
assignment, but the shadow networks were not included
as candidates to which reactions could be assigned. We
observed an interesting pattern of assignment accuracy
as the number of shadow networks increased (displayed
as a fraction of the total population of networks). True
positive assignments account for the majority, up un-
til the number of shadow networks is equivalent ∼0.2
of the population. Between 0.23 and 0.44, false posi-
tives account for the majority and from 0.44 to 0.5, true
but ambiguous assignments form the majority. We also
observed an interesting increase in false and ambiguous
assignments that peaked at ∼0.3.

Finally, we evaluated the impact of SONEC on func-
tional network predictions by comparing reaction essen-
tiality predictions from pre- and post-SONEC networks
to the predictions from the full, parent network (Fig-
ure 5.3E). In this set of simulations, the fraction of re-
actions removed was fixed at 0.15, the number of par-
ent networks fixed at 10 and the group size fixed at 25,
over 50 replicates. In each replicate, one network was
chosen for evaluation. After reactions were removed, a
copy of the incomplete network (the pre-SONEC net-
work) was gap-filled [33]. Subsequently, all reactions as-
signed by SONEC were added to a separate copy of the
imcomplete network (the post-SONEC network), which
was then gap-filled. Reaction essentiality for the pre-
SONEC, post-SONEC and full networks were all evalu-
ated using the same biomass function and exchange flux
bounds. The post-SONEC reaction essentiality predic-
tions achieved accuracies 1.8% greater, on average, than
the pre-SONEC predictions (p-value=2.7x106 by paired,
one-sided Wilcoxon rank sum test). The post-SONEC
predictions were the same or better 80% of the time, and
strictly better 68% of the time. In this case, we evalu-
ated reaction essentiality rather than gene essentiality (a
more common measure) due to the draft-quality status
of the gene-protein-reaction relationships.

Example values of SONEC parameters (e.g. group
size, network completeness) in existing metagenomic
datasets are described in the supplemental materials.
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Figure 5.3: Reaction assignment accuracy from simulations of the SONEC approach. (A) The accuracy
is displayed as a function of the number of reactions that were removed from the parent networks (shown as a
fraction of parent network size). An increasing number of reactions were removed from the total reaction content
of 10 randomly-selected metabolic networks. Results for group sizes (the number of reactions being assigned
together) of 1, 20 and 40 are shown. (B) Accuracy is displayed as a function of the number of parent bins to
which a reaction could potentially be assigned. The fraction of reactions removed was fixed at 0.15, and the group
size fixed at 25. (C) Accuracy is displayed as a function of reaction group size. The fraction of reactions removed
was fixed at 0.15, and the number of parent networks was fixed at 10. (D) Accuracy is displayed as a function of
the number of shadow networks. Shadow networks are a pool of network reconstructions from which reactions are
contributed to the unassigned pool, but which are not available as bins to which those reactions can be assigned.
The fraction of reactions removed was fixed at 0.15, the number of visible parent networks fixed at 10 and the
group size fixed at 25. (E) Reaction essentiality predictions from gap-filled networks pre- and post-SONEC were
compared to predictions from the full, reference networks. The difference in accuracy between paired experiments
(post-SONEC - pre-SONEC) is shown here as a boxplot, with the null hypothesis (zero, no difference) indicated
by the dashed, red line. SONEC improved the average accuracy by 1.8%, with a p-value of 2.7× 106 (by paired,
one-sided Wilcoxon rank sum test on 50 replicates). For A–D, all results are from 1,000 independent replicates
and shaded areas represent a 95% confidence interval around the mean, determined by the Wilson score interval
(see Section 2).

Pathway enrichment

Pathway enrichment was performed to evaluate the con-
tribution of different families of metabolic reactions to
assignment accuracy (Supplemental Figure 3 and Sup-
plemental Methods). For these simulations, 10 par-
ent networks were available for assignment, the fraction
of reactions removed was fixed at 0.15, the group size
fixed at 25, and there were no reactions from shadow
networks. Sulfur metabolism, nicotinate and nicoti-
namide metabolism, galactose metabolism, porphyrin
and chlorophyll metabolism, biosynthesis of steroids,
and terpenoid biosynthesis contributed to true posi-
tive assignments more than expected by chance alone.
Propanoate metabolism, pyruvate metabolism, amino
sugars metabolism, and others contributed to more false
positive assignments than expected by chance alone.
Several pathways, including ubiquinone biosynthesis, D-
glutamine and D-glutamate metabolism, were all en-
riched in both true positive and false positive assign-
ments.

SONEC applied to metagenomic samples

We applied the SONEC approach to metagenomic se-
quences from 94 samples sourced from the human an-
terior nares as part of the Human Microbiome Project
(Figure 5.4) [23]. The short reads were assembled into
contigs, and the abundance of each contig was estimated
across the subset of 49 samples containing more than
one million reads. The assembly process resulted in
1,543,959 contigs, with an N50 of 261. The N50 indicates
the contig length at which all contigs of that length or
greater contribute 50% of the cumulative length of the
dataset. We continued the analysis with the 9,910 con-
tigs with length of 800 base pairs (bp) or greater and
which had a non-zero abundance in at least 3 samples
(Figure 5.4A). These contigs were clustered into 2,849
clusters, such that contigs within a cluster likely origi-
nated from the same organism (Figure 5.4B). Metabolic
network reconstructions were obtained for all clusters
by uploading the corresponding contigs to the Model
SEED server resulting in 14 083 annotations including
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open reading frames and RNA elements [24]. We ob-
served 14 clusters with 90 or more annotated reactions
and an average cumulative length of 682,232bp. The re-
maining smaller clusters contained 44 or fewer annotated
reactions and an average cumulative length of 2171bp.
The taxonomic content of each cluster was estimated,
and the two large clusters with the most consistent tax-
onomic identity (Clusters 614 and 1,357) corresponded
to strains of Staphylococcus aureus. Cluster 614 (la-
beled “Strain 1”) contained 1,001 assembled fragments
with a cumulative length of 1,623,468bp, 742 assigned
metabolic reactions, and 100% of fragments aligned well
to S.aureus genomes. Cluster 1357 (labeled “Strain 2”)
contained 396 assembled fragments with a cumulative
length of 479,515bp, 326 assigned metabolic reactions,
and 90% of fragments aligned well to S.aureus genomes.
For reference, the complete genome for S.aureus New-
man is 2.9 million bp long [34]. These two clusters were
not correlated and thus, likely originated from different
strains of S.aureus (Figure 5.4A).

Comparing Strain 1 to a reference metabolic network
for S.aureus N315 (obtained from the Model SEED) re-
vealed 692 shared reactions of a possible 1,118. Strain
1 contained 50 unique reactions that were not found
in the reference metabolic network. These unique re-
actions were found in the following pathways: biosyn-
thesis of steroids; butanoate metabolism; glycine, ser-
ine and threonine metabolism; pentose and glucuronate
interconversions; pentose phosphate pathway. Strain
2 shared 319 reactions with the S.aureus N315 refer-
ence. Strain 2 contained a further 7 unique reactions in
the following pathways: glutathione metabolism; pen-
tose phosphate pathway; purine metabolism; pyrimidine
metabolism; pyruvate metabolism.

After using established techniques [14, 17] to identify
Strain 1 and Strain 2, we applied SONEC to further
complete these two clusters. Seven smaller clusters were
identified as also originating from strains of S.aureus.
These smaller clusters had cumulative lengths from 920
to 59378bp, were annotated with 10–42 metabolic reac-
tions, and 100% of fragments aligned well to S.aureus
genomes. The SONEC MCS was utilized to assign these
smaller clusters to one of the larger S.aureus clusters.
Five of the seven clusters produced non-zero metabo-
lite connectivity scores and could be assigned unambigu-
ously. Two were assigned to Strain 1 and three to Strain
2, which increased reaction overlap with the reference
metabolic network for S.aureus N315 by 3.8% and 7.8%
respectively. Many of the newly assigned reactions ex-
panded core subsystems such as glycolysis and amino
acid metabolism (Figure 5.4C). The addition of these
smaller clusters increased the total genetic content of
Strain 1 by 2,968bp and Strain 2 by 69,913bp. To deter-

mine the impact of these SONEC assignments on func-
tional predictions of the resulting metabolic networks,
we performed an in silico reaction essentiality screen on
Strain 1 before and after the application of SONEC (Fig-
ure 5.5). To begin, we identified an S.aureus minimal
medium and a biomass function [35]. We performed gap
filling based on the identified medium and biomass for-
mulation using a custom implementation of a previously
described gap fill algorithm (code available in the Sup-
plementary Material) [33]. We chose candidate reactions
for gap filling from the complete Model SEED reaction
database [24]. We gap filled Strain 1 before and after
the application of SONEC (Figure 5.5A), and evaluated
the essentiality of all reactions (excluding the reactions
added during the gap filling process). There were 14 re-
actions which were essential before SONEC, but not af-
ter (Figure 5.5B). An example of these is a nucleosidase
classified under methionine metabolism. There were 18
reactions which became essential after SONEC but were
not essential beforehand. An example of these is an oxi-
doreductase found in glutamate and arginine metabolic
pathways. There were 14 reactions which were consti-
tutively essential. Interestingly, no reaction added by
SONEC was essential.

5.6 Discussion

Here we present the SONEC approach for the as-
signment of metabolic reactions (and as an exten-
sion, metagenomic sequence fragments annotated with
metabolic genes) back to a parent metabolic network.
This work is motivated by the fact that current ap-
proaches are still unable to group complete metage-
nomic samples into member genomes, leaving, in a re-
cent study, 32% of metagenomic sequence fragments un-
accounted for [17].

We propose that information about the metabolic net-
work can be used to improve metagenomic fragment bin-
ning. It is commonly assumed that metabolic networks
are gapless, and gap filling of metabolic network recon-
structions is used regularly as a source of new biological
knowledge [19, 21, 33, 36]. Here, we demonstrate that
gap filling can similarly be used to assign reactions to the
correct parent metabolic network by using a metabolite
connectivity score, and thus improve metagenome se-
quence annotation (Figure 5.2).

We observe that more complete networks (recon-
structed from bins of metagenomic sequence fragments)
initially lead to improved reaction assignment accuracy
(Figure 5.3A). As parent networks degrade and lose
more and more reaction content, accuracy is lost. This
observation aligns with intuition, as more complete net-
works provide context in which to place new reactions.
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Figure 5.4: Generating species-level clusters from the anterior nares metagenome data set. (A) Average
cross-sample abundance profiles for all 2,849 clusters after application of the canopy algorithm. The profiles for the
two clusters which we refer to as Strain 1 and Strain 2 are highlighted in red and blue, respectively. (B) Histogram
of cluster size (number of contigs) for all clusters after application of the canopy algorithm [17]. Note that most
clusters are very small (2,500 clusters with fewer than 10 contigs), while there are few very large clusters. (C)
Reaction content of metabolic network reconstructions, organized by subsystem, for Strain 1 and Strain 2, before
and after the application of SONEC. Reaction content from a reference network for S.aureus is provided.

Figure 5.5: Application of SONEC alters functional predictions of metabolic network. In both panels
the metabolic network for Strain 1 is represented with metabolites as nodes (orange circles) and reactions as edges
between metabolites. (A) Reactions are colored by source: black indicates reactions from the original cluster
for Strain 1; yellow indicates reactions added by SONEC; and green reactions were added during the gap filling
process. (B) Reactions are colored to indicate essentiality: black reactions are non-essential in all conditions;
blue reactions were essential before the application of SONEC, but not after; red reactions were essential after
the application of SONEC, but not before; and purple indicates reactions which were essential before and after
SONEC.

Similarly, as the number of parent networks increases,
accuracy is lost (Figure 5.3B). This observation also
makes sense, recognizing that the presence of more net-
works increases the opportunity to mis-assign a reaction.

Encouragingly, increasing group (a set of metabolic re-
actions known to originate from the same organism) size
significantly improves reaction assignment accuracy un-
der all conditions (Figure 5.3C). Group size can be in-
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creased by improved assembly or fragment clustering—
anything that will increase the number of genes that
can be confidently associated with each other. While
any given reaction may fill gaps in several possible net-
works, the likelihood is low of an entire group of reac-
tions filling gaps in the same, incorrect, network. In
other words, for large groups of reactions, the error is
diluted over the many possible wrong choices, while the
metabolite connectivity score accrues for the correct par-
ent network. The presence of shadow networks takes a
toll on accuracy (Figure 5.3D). Shadow networks can
be thought of as the set of organisms in the community
that contributed metagenomic sequence, but were not
assigned bins. Therefore, any attempt to assign those
reactions to existing bins will be incorrect. Finally, simu-
lations showed that functional network predictions (Fig-
ure 5.3E) are generally improved by SONEC, an out-
come that has significant implications for application
of subsequent metabolic network analysis (Figure 5.5).
Interestingly, none of the reactions added by SONEC
were essential. However, by adding them, the network
structure changed in such a way as to make some pre-
viously essential reactions non-essential, and vice versa.
One possible explanation for this improvement is that
SONEC assigns reactions in a relatively unbiased way
(based on metabolite connectivity) compared to tra-
ditional gap-filling, which adds reactions to allow flux
through a biomass function. Future applications which
require functional predictions of the impact of genome
engineering or drug targeting within microbial commu-
nities can benefit from SONEC. In the end, the goal
of SONEC is to improve the reconstruction of individ-
ual genomes from metagenomic data. More complete
genomes will improve any downstream analyses.

Future work may improve assignment accuracy by
modifying the metabolite connectivity score. The ex-
ample in Supplemental Figure S1 highlights a weakness
of the metabolite connectivity score, wherein two mod-
els may contain a single dead-end metabolite that over-
laps with a reaction, but depending on whether it is a
substrate or product, the final gap score may be dif-
ferent. Maintaining the ratios in the metabolite con-
nectivity score is prudent from a parsimony standpoint,
because they ensure that the smallest reaction (with
the fewest participating metabolites) that can fill a gap
will be used. However, future work could explore alter-
native metabolite connectivity scores that address the
weaknesses with the scoring framework presented here.
One possibility would be to penalize the addition of
new metabolites that do not exist in the network, which
would have improved the outcome for the false positive
example in Supplemental Figure S1. This may prohibit
filling larger gaps consisting of more than one reaction,

or filling gaps in less complete networks. Another ap-
proach is to apply a global optimization-based gap fill
algorithm based on existing methods [33]. We chose not
to pursue this approach because it would be sensitive to
the choice of optimization function and exchange con-
straints, which are difficult to determine for uncharac-
terized microbes in complex environments.

Enrichment analysis highlights the families of re-
actions that tend to provide better assignment accu-
racy (Supplemental Figure S3). The underlying driver
may be that reactions that contain uncommon metabo-
lites are more likely to be assigned to the correct par-
ent network. Within the selection of 100 prokaryotic
reconstructions used here, porphyrin and chlorophyll
metabolism are uncommon. Given this hypothesis, fu-
ture work may improve assignment accuracy by selec-
tively weighting reactions that are unique within the en-
vironment being studied. For example, in the anterior
nares dataset explored here, the rarest pathways include
lipoic acid metabolism, inositol metabolism and capro-
lactam degradation. To improve group assignment ac-
curacy, metabolite connectivity scores corresponding to
reactions from these rare subsystems would be weighted
more heavily (as they would be expected to increase ac-
curacy disproportionately).

To demonstrate how the SONEC approach can be ap-
plied to real metagenomic data, we analyzed 94 metage-
nomic samples sourced from the human anterior nares
(Figure 5.4). It is important to note that these samples
were not sequenced very deeply, and as a result, the N50
we could achieve after assembly was quite low (250bp).
As a comparison, a recent study assembled DNA frag-
ments from stool samples to achieve an N50 of more than
40,000bp [37]. This observation simply indicates that in
applications with deeper sequencing, contigs will tend
to be much longer. Knowing that larger group size—
which is a function of longer contigs—improves SONEC
performance, it is likely that SONEC performance will
improve with deeper sequencing and more complete as-
sembly. While it is clear that the performance of SONEC
is highly dependent on the existing tools used to create
the initial bins, the simulations we performed demon-
strate that SONEC can add value and improve predic-
tions even with imperfect data.

We first applied established approaches to create ini-
tial clusters of metagenomic sequence fragments, in-
cluding short read assembly and clustering by cross-
sample abundance and nucleotide composition patterns.
A BLAST-based estimate of cluster taxonomic consis-
tency (that is, the percentage of fragments within the
cluster that map to the same taxonomy) revealed that
of the large clusters, only two clusters were >90% consis-
tent. This consistency can be compared to a larger-scale
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study which analyzed 396 microbiome samples from the
human gut, in which 115 large clusters were found to
be >95% consistent [17]. Clearly, it is possible to im-
prove the initial clustering and conditions before apply-
ing SONEC. Given the two large clusters which mapped
consistently to strains of S.aureus, we demonstrated how
SONEC can be used to assign smaller, orphan clusters
to these larger clusters. This practical demonstration
on real data shows that by including metabolic informa-
tion, ambiguous fragments can be assigned to the parent
genomes. As a quality check, the resulting metabolic
networks after applying SONEC are more consistent
with a reference S.aureus metabolic network reconstruc-
tion.
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Chapter 6

Managing Uncertainty in Metabolic Network
Structure and Improving Predictions Using
EnsembleFBA

6.1 Context

As the last computational project completed during my
graduate work, this project was the most organized,
best-documented, most reproducible and most computa-
tionally sophisticated. At the beginning of this project,
I grew immensely through long wrestles with linear al-
gebra and optimization theory. This project was also
my first to be shared on the preprint server bioRxiv
(biorxiv.org) which, especially as a senior graduate stu-
dent, made it very convenient to immediately share my
most recent work. At the time of writing this disser-
tation, this work was under review at PLOS Computa-
tional Biology.

6.2 Synopsis

Genome-scale metabolic network reconstructions (GEN-
REs) are repositories of knowledge about the metabolic
processes that occur in an organism. GENREs have
been used to discover and interpret metabolic functions,
and to engineer novel network structures. A major bar-
rier preventing more widespread use of GENREs, par-
ticularly to study non-model organisms, is the exten-
sive time required to produce a high-quality GENRE.
Many automated approaches have been developed
which reduce this time requirement, but automatically-
reconstructed draft GENREs still require curation be-
fore useful predictions can be made. We present a novel
ensemble approach to the analysis of GENREs which
improves the predictive capabilities of draft GENREs
and is compatible with many automated reconstruction
approaches. We refer to this new approach as Ensemble
Flux Balance Analysis (EnsembleFBA). We validate En-
sembleFBA by predicting growth and gene essentiality in
the model organism Pseudomonas aeruginosa UCBPP-
PA14. We demonstrate how EnsembleFBA can be in-
cluded in a systems biology workflow by predicting es-
sential genes in six Streptococcus species and mapping
the essential genes to small molecule ligands from Drug-
Bank. We found that some metabolic subsystems con-

tribute disproportionately to the set of predicted essen-
tial reactions in a way that is unique to each Streptococ-
cus species. These species-specific network structures
lead to species-specific outcomes from small molecule
interactions. Through these analyses of P. aeruginosa
and six Streptococci, we show that ensembles increase
the quality of predictions without drastically increasing
reconstruction time, thus making GENRE approaches
more practical for applications which require predictions
for many non-model organisms. All of our functions and
accompanying example code are available in an open on-
line repository.

6.3 Introduction

Metabolism is the driving force behind the wondrous
flurry of biological activity carpeting our planet. An
organism’s metabolism is determined by the metabolic
enzymes encoded in its genome, the chemical reactions
catalyzed by those enzymes, and whether or not those
enzymes are actively expressed [1]. The simplest bacte-
ria have hundreds of metabolic enzymes, while the most
complex eukaryotes have thousands. The products of
these enzymatic reactions serve as substrates for other
reactions, such that the chemical transformations car-
ried out in a cell can be represented as a vast network
[2]. Mass and energy flow through such networks, trans-
forming environmental inputs into the building blocks of
life. Every species has a unique metabolic network driv-
ing its growth and interaction with the environment.

Genome-scale metabolic network reconstructions
(GENREs) are formal representations of metabolic net-
works [3]. GENREs serve as a comprehensive collec-
tion of metabolic knowledge about a particular organ-
ism and they are amenable to mathematical analysis [4].
The process of reconstructing a GENRE takes months to
years, but the reconstruction process often leads to new
discoveries [5]. Mathematical analysis of GENREs gives
insight into how particular metabolic pathways are used
by an organism, what substrates it can utilize, which
of its genes are essential in a given environment, how a
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metabolic network can be engineered to produce more of
a desired product, or which enzymes within the network
should be targeted in order to halt growth in an organ-
ism [6–8]. The reconstruction and analysis of GENREs
for single species has greatly contributed to our under-
standing of microbes and our ability to engineer them.
Recently, analyses have been developed which predict
metabolic interactions between microbes [9, 10]. How-
ever, the application of these recent analyses has been
greatly limited by the large investment in time required
to reconstruct a useful GENRE. Many microbial com-
munities of interest consist of hundreds of species [11,
12]. It is decidedly impractical to spend decades manu-
ally curating hundreds of GENREs.

Many automated methods have been developed for
rapidly reconstructing more accurate GENREs [13–16].
We present a novel ensemble method that is complimen-
tary to these existing automated methods which we refer
to as Ensemble Flux Balance Analysis (EnsembleFBA).
EnsembleFBA pools predictions from many draft GEN-
REs in order to more reliably predict properties that
arise from metabolic network structure, such as nutrient
utilization and gene essentiality (Figure 6.1). The pri-
mary benefits of this new method are that it relies on
automatically-generated GENREs (which can be gen-
erated in a matter of minutes to hours) and yet pro-
duces more reliable predictions than individual GENREs
within the ensemble. We implement and discuss one
possible way of generating useful ensembles, but empha-
size that other automated methods could be modified to
generate useful ensembles.

We begin by discussing a common GENRE curation
procedure known as gap filling. We demonstrate that a
global gap filling procedure does not perform any better
than a sequential one. Instead, we introduce an ensem-
ble approach to pool the many possible network struc-
tures resulting from different sequences of the input me-
dia conditions (Figure 6.1). We demonstrate that an
ensemble reliably outperforms most of its constituent
GENREs in terms of predicting growth and gene essen-
tiality. By tuning the stringency of the voting threshold
(e.g. requiring a majority of GENREs to agree vs. com-
plete consensus) it is possible to achieve greater pre-
cision or recall than any of the constituent GENREs.
We show how additional steps to increase the diversity
among GENREs within the ensemble (e.g. reconstruct-
ing each member GENRE using subsets of the available
data) can further improve recall. Furthermore, we found
that incorporating negative growth information into our
GENREs improved overall accuracy of the ensemble. We
present proof of concept of the use of ensembles by pre-
dicting carbon source utilization and gene essentiality
in Pseudomonas aeruginosa, a well-studied, clinically-

relevant pathogen. We provide an example workflow us-
ing EnsembleFBA by predicting gene essentiality in six
Streptococcus species and mapping the predicted essen-
tial genes to small molecules ligands in DrugBank. All of
our data and code are available in an online repository,
including example scripts to make adoption of Ensem-
bleFBA easy. Our ability to make mechanistic predic-
tions about complex cellular communities requires ad-
vances in the way we leverage the data available to us,
and the way we handle uncertainty. Ensemble FBA is a
novel tool that maintains the speed of automated recon-
struction methods while improving predictions by inten-
tionally managing uncertainty in network structures.

6.4 Results

Gap Filling Against Multiple Media Conditions
in Different Orders Produces Different Network
Structures

Gap filling is the process of identifying mismatches be-
tween computational predictions and experimental re-
sults, and identifying changes to the network struc-
ture which will bring the computational predictions into
agreement with the experimental data. “Gaps” are
missing reactions and can be filled by drawing from a
database of possible metabolic reactions. Given that
there are usually many mismatches between computa-
tional and experimental results, we demonstrate that
simply changing the order in which computational re-
sults are brought into agreement with experimental can
result in different network structures. For example, sup-
pose that it is experimentally determined that a microbe
can grow on glucose minimal media and sucrose minimal
media, but the computational predictions do not match.
Gap filling the GENRE against a representation of glu-
cose minimal media first and sucrose minimal media sec-
ond, may result in a different network in the end than if
sucrose minimal media were first. In practice, the order
of gap filling is arbitrary.

We implemented a custom gap fill algorithm based
on the algorithms FASTGAPFILL and FastGapFilling
(see Materials and Methods) [17, 18]. We used the
Model SEED biochemistry database as our “universal”
reaction database from which to draw reactions for gap
filling [13]. We used the Model SEED web interface
to automatically generate a draft GENRE for Pseu-
domonas aeruginosa UCBPP-PA14 (without using the
Model SEED gap filling feature). We gap filled this
draft GENRE using 2, 5, 10, 15, 20, 25 and 30 media
conditions that experimentally support growth, with 30
replicates for each. For example, we selected five media
conditions at random and selected two random permu-
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Figure 6.1: Alternative network structures can be analyzed collectively as an ensemble. Gap filling a
network using the same media conditions, but in different orders, can lead to different network structures. Here we
display two networks for P. aeruginosa gap filled with two permutations of the same 10 minimal media conditions.
We highlight two unique reactions in each, and growth predictions which differ between the two. B. An ensemble
can be created by collecting many alternative network structures which are all consistent with available data.
Ensemble-level predictions are generated by treating the individual network predictions like votes. We used three
qualitatively different decision thresholds: the “any” threshold requires that a single network predict growth; the
“majority” threshold requires that a strict majority predict growth; the “consensus” threshold requires all networks
within the ensemble to be in agreement. Note that the top five growth conditions result in the same prediction
regardless of threshold, while the bottom three conditions result in threshold-dependent outcomes.

tations of these conditions (in this case, there are 120
possible permutations). We gap filled in the order pre-
scribed by the first permutation and then in the order
of the second, and compared the resulting networks. We
repeated the process 30 times, each time drawing a new
set of five random media conditions and gap filling using
two random permutations of those five media conditions.
We found that even with as few as two media conditions,
gap filling in a different order resulted in an average of
25 unique reactions per GENRE (Figure 6.2). As the
number of media conditions increased, so did the aver-
age difference between the resulting GENRES.

“Global” Gap Filling Provides No Advantages
Over a Sequential Approach

We hypothesized that rather than gap filling sequen-
tially, perhaps a “global” gap fill approach would re-
sult in more parsimonious, biologically-relevant solu-
tions without the ambiguity associated with changing
the gap fill order. We extended our custom gap fill algo-
rithm to identify a minimal set of reactions which could
be added to a GENRE to permit growth in multiple me-
dia conditions simultaneously (see Materials and Meth-
ods). We started with the P. aeruginosa UCBPP-PA14
draft GENRE from the Model SEED and repeated the
30 replicates from 2 to 30 media conditions as above, but
using the global gap fill approach that we developed (see
Materials and Methods; Figure 6.3). We found that this
global approach did not identify solutions that were any
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Figure 6.2: Gap filling in different orders leads to
different network structures. Each error bar indi-
cates an empirical 95% confidence interval from 30 sim-
ulations. For a single simulation, a set of media condi-
tions was randomly selected (we simulated sets sizes of
2–30) and we gap filled a GENRE twice, using the same
media conditions but in different orders. We compared
the resulting pair of GENREs and we found that on av-
erage, GENREs within a pair contained an average of
25–35 unique reactions. The average number of unique
reactions increased with the number of media conditions
used to gap fill.

more parsimonious (Figure 6.3A), and lead to dramatic
increases in solve times with increasing media conditions
(Figure 6.3B). In order to determine whether the global
solution was any more “biologically-relevant”, we also
compared the ability of the global and sequential ap-
proaches to reconstruct a well-curated GENRE for P.
aeruginosa UCBPP-PA14 called iPAU1129 [Bartell et
al. In review]. For each iteration (30 total), we removed
20% of reactions from iPAU1129 and used the sequen-
tial and global approaches to gap fill from the universal
database using a random selection of five media con-
ditions. The resulting networks were compared to the
original iPAU1129, under the assumption that the most
biologically-relevant approach would most faithfully re-
constructed the curated GENRE, iPAU1129. We found
no statistically significant difference between the two ap-
proaches (Figure 6.3C) (p-value = 0.63 by two-sided,
paired Wilcoxon signed rank test).

Collecting Many Alternative Network Structures
into an Ensemble Results in Improved Predic-
tions

Because the sequential gap filling approach produces
different results depending on the order of gap filling,
we chose to maintain many possible structures resulting
from random permutations of the input media condi-

tions rather than select a single GENRE structure for
downstream analysis. Not knowing the “true” network
structure, we considered each different structure to be a
“hypothesis” and analyzed them collectively. For each
of 2 to 30 training media conditions we produced 21
GENREs by randomizing the gap fill order (Supplemen-
tal Figure 1). We then evaluated each GENRE indi-
vidually by predicting growth or no growth on 34 test
media conditions (17 media conditions which experimen-
tally supported growth and 17 which did not) using flux
balance analysis (FBA). We found that each GENRE
produced slightly different growth predictions, resulting
in some GENREs being more accurate than others (Fig-
ure 6.4). In order to generate predictions using the en-
semble, we treated each GENREs prediction as a sin-
gle vote, and pooled the votes using a threshold (Figure
6.1B). We tested three qualitatively different thresholds;
“any”, “majority”, and “consensus”. The “any” thresh-
old simply requires that at least one GENRE predict
growth in a particular media condition. The “majority”
threshold requires greater than half to predict growth,
and the “consensus” threshold requires all GENREs to
predict growth. We evaluated the growth predictions in
terms of accuracy, precision, and recall (see Materials
and Methods).

We found that the “majority” threshold led the over-
all ensemble to achieve average accuracy with respect
to the individual GENREs, consistently outperforming
the least accurate of the individual GENREs (Figure 4
“Order Only”). The “any” threshold decreased overall
accuracy and precision to be worse than any individual
GENRE, but increased the recall to match the best in-
dividual GENREs. At the other extreme, we found that
the “consensus” threshold led to accuracy and precision
that matched the very best individual GENREs but di-
minished recall.

Increasing the Diversity of Network Structures
Increases Recall

While different gap fill order does result in different
GENRE structures, the differences are relatively small
(tens of differences relative to hundreds of reactions
overall). In order to span a greater range of potential
GENRE structures, we added random weights (drawn
from a uniform distribution) to the reactions in the gap
filling step (see Materials and Methods). The rationale
is that given two pathways of slightly different length
but the same biological function, random weights will
occasionally favor the longer pathway, thus exploring
alternatives that would otherwise be unobserved given
a strictly parsimonious procedure. Additionally, each
GENRE was reconstructed using a random subset of
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Figure 6.3: Results of global gap filling approach are no more parsimonious or biologically relevant.
For each number of media conditions, we reconstructed 30 pairs of GENREs. For each pair, a set of media
conditions was randomly selected and one GENRE was gap filled sequentially while the other was gap filled using
a global approach. A. We found that the GENREs resulting from the global approach were slightly larger than
those gap filled using the sequential approach, with an increasing size disparity as the number of media conditions
increased. B. The global gap fill approach required significantly more time to run (note the log scale on the y-axis).
The solve time increased quadratically with the number of media conditions, such that with 30 media conditions
the average solve time for the global approach was ∼1000 times greater than the sequential approach. Error bars
in panels A and B represent empirical 95% confidence intervals. C. We compared the ability of the sequential and
global approaches to replace reactions removed from a manually-curated GENRE for P. aeruginosa UCBPP-PA14,
iPAU1129. For each replicate, we removed 20% of the reactions from iPAU1129 and applied the sequential and
global gap filling approaches with the same set of randomly selected media conditions. We compared the reaction
content of the gap filled GENREs with iPAU1129 using the Jaccard similarity metric. We found that there was
no difference between the sequential and global approaches in terms of recovering the removed reactions (p-value
= 0.63 by two-sided, paired Wilcoxon signed rank test). Box plots indicate quartiles of the distributions.

only 80% of the reactions from the draft GENRE from
the Model SEED. Using this new procedure, we recon-
structed ensembles of 21 GENREs using 2 through 30
training media conditions (Supplemental Figure 2). We
evaluated the accuracy by predicting growth on the same
34 test media conditions as before. The resulting accu-
racy, precision and recall of the individual GENREs were
essentially the same on average (Figure 4 “Diverse”),
but the distribution spanned a much greater range, both
positively and negatively. In this case, the “majority”
threshold again achieved average behavior with respect
to the individual GENREs, outperforming the least ac-
curate individual GENREs (Figure 4 “Diverse”). The
“any” threshold tended to achieve the best accuracy and
precision, although not quite as good as the best indi-
vidual GENREs. However, the “any” threshold achieved
the best recall, better than the best individual GENREs

and better than the recall achieved with a less diverse
ensemble.

Accounting for Negative Growth Conditions
Greatly Improves Ensemble Accuracy, Precision
and Recall

Our experimental growth data for P. aeruginosa
UCBPP-PA14 included both positive (media conditions
which supported growth) and negative results (media
conditions which did not support growth). We formu-
lated an optimization-based procedure which allowed us
to incorporate information inherent in negative growth
conditions into our automated curation (see Materials
and Methods). In brief, the optimization problem iden-
tifies a minimal number of reactions to “trim” from a
GENRE in order to prevent growth on negative media
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Figure 6.4: Ensembles generated by gap filling against the same media conditions in different orders.
Using 20 media conditions, we generated 21 GENREs, where each GENRE was gap filled using either: a different
order of the same input media conditions (“Order Only”), random weighting of reactions in database and random
subsets of reactions from draft (“Diverse”), or a diverse ensemble which also included negative growth data through
a trimming step (“Negative Growth Data”). We evaluated the accuracy, precision, and recall of every individual
GENRE and of the ensembles by predicting growth on 17 positive media conditions and 17 negative media
conditions which were not used during gap filling. The average of the individual GENREs is shown as black points
with the maxima and minima as black lines extended above and below. The ensemble predictions using the three
different thresholds are shown as red circles “any”, green triangles “majority”, and blue squares “consensus”. Note
that there is less ensemble diversity when differences result only from media condition ordering (maxima/minima
of “Order Only” compared to “Diverse” or “Negative Growth Data”). Adding additional diversity results in
GENREs with both greater and lower accuracy than the best and worst of “Order Only”. Addition of the
trimming step (“Negative Growth Data”) improves overall accuracy and precision by ∼15%. In terms of ensemble
thresholds, the “majority” threshold tends to perform similarly to the average of the individual GENREs. The
“any” threshold achieves recall as good or better than the best individual GENREs. The “consensus” threshold
performs consistently well in terms of accuracy and precision if there is very little diversity in the ensemble (“Order
Only”).

conditions while maintaining growth on positive media
conditions. As before, we generated ensembles of 21
GENREs for 2 through 30 positive media conditions
(Supplemental Figure 3). We used random reaction
weights, random subsets of 80% of the reactions from
the draft GENRE from Model SEED, and this time we
selected 10 negative media conditions for each GENRE
(distinct from the negative conditions used to assess ac-
curacy) and incorporated them using our trimming pro-
cedure. We found that incorporation of the negative
media conditions increased the accuracy and precision
of both the individual GENREs and the ensembles by

∼15% (Figure 4 “Negative Growth Data”). The “major-
ity” threshold once again approximately tracked the av-
erage GENRE accuracy, precision and recall. The “any”
threshold achieved accuracy and recall that were often
better than the top individual GENREs, with recall ex-
ceeding that achieved previously.
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Ensembles Achieve Greater Precision or Recall
Than Best Individual GENREs When Predicting
Essential Genes

We evaluated the ability of ensembles to predict gene
essentiality. We generated an ensemble of 51 GENREs,
each created by gap filling with a random subset of
25 of the total 47 positive media conditions (53%), 10
randomly-selected negative media conditions from the
total of 40 (25%), and 1,210 randomly-selected reactions
from a total of 1,512 in the draft GENRE generated by
Model SEED (80%). Genes were associated with reac-
tions based on the assigned gene-protein-reaction (GPR)
relationships from the draft GENRE. We used an in sil-
ico representation of CF sputum medium and predicted
gene essentiality by removing reactions associated with
each gene in turn (according to the GPR logic) and run-
ning FBA. We compared the resulting gene essentiality
predictions with experimental results [19]. We found
that the “majority” threshold resulted in better accu-
racy and recall than the average of individual GENREs,
and drastic improvement over the worst GENREs (Fig-
ure 6.5). The “consensus” threshold resulted in a ∼20%
increase in precision over the best individual GENRE
and greater than 100% increase over the worst individ-
ual GENRE. Unsurprisingly, the increased precision of
the “consensus” threshold comes at the cost of reduced
recall. The “any” threshold resulted in lower precision
but a ∼40% increase in recall over the best individual
GENRE and a ∼170% increase over the worst individual
GENREs.

Increasing Ensemble Size Improves Predictions
for Small Ensembles

Using the same ensemble of 51 GENREs from above,
we examined the effect of ensemble size on predicting
essential genes. We sampled with replacement 10,000
small ensembles from among the 51 GENREs for en-
semble sizes of 2 through 51. We evaluated the accu-
racy, precision and recall against the same gene essen-
tiality data set using a “majority” threshold. We found
that smaller ensembles were less accurate, less precise,
and more variable than larger ensembles (Figures 6.6A
and 6.6B). Increasing size improved predictions but with
diminishing benefits as the ensemble grew larger. Inter-
estingly, with this “majority” threshold, average recall
increased initially, but diminishes again as the ensemble
grows larger (Figure 6.6C).

Figure 6.5: Ensembles outperform individual
GENREs when predicting gene essentiality.We
generated an ensemble of 51 GENREs by gap filling
against 25 randomly-selected positive growth conditions,
10 negative growth conditions, and 80% of the reactions
from the Model SEED draft network. We predicted gene
essentiality in CF sputum medium and compared the
predictions to in vitro gene essentiality data. We found
that the “consensus” threshold (blue squares) achieved
a ∼20% increase in precision over the best individual
GENRE and a ∼100% increase in precision over the
worst individual GENRE. Similarly, the “any” threshold
(red circles) achieved a ∼40% increase in recall over the
best individual GENRE and a ∼170% increase over the
worst. Note the threshold-dependent tradeoff between
precision and recall.

Common Reactions in Ensemble Are Consistent
with Manually-Curated Reconstruction

In order to characterize the way gap filling distributes
reactions throughout the ensemble, we generated an en-
semble of 100 GENREs (Figure 6.7A). Each GENRE
was reconstructed using a randomly-selected 80% of the
reactions in iPAU1129, and then sequentially gap filled
from the independent, universal reaction database using
25 random positive growth conditions. We found that
before gap filling, the “correct” reactions from iPAU1129
were initially distributed in a bell curve throughout the
ensemble (Figure 6.7B). The vast majority of “correct”
reactions were found in 50 or more of the GENREs, and
in 80 GENREs on average. In contrast, the “incorrect”
reactions (those added by gap filling but which were not
in the original iPAU1129) were distributed sporadically,
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Figure 6.6: Increasing ensemble size improves performance initially. Using the same ensemble of 51
GENREs, we used bootstrap sampling to simulate 10,000 ensembles of sizes 2 through 51. We evaluated the
performance of each sampled ensemble in terms of accuracy (A), precision (B), and recall (C) on the gene essen-
tiality predictions using the “majority” threshold. We found that accuracy and precision increased sharply until
around 15 GENREs, at which point gains were less pronounced with additional GENREs. This result suggests
that increasing ensemble size does not infinitely improve ensemble performance.

with the majority being found in 10 or fewer GENREs.
After the gap filling step, 65 “correct” reactions were
found to have been added to every GENRE, suggest-
ing a core set of “correct” reactions that were required
for biomass production in any condition. We observed
that the most common reactions (found in 50 or more
GENREs) were overwhelmingly “correct” reactions from
iPAU1129 (Figure 6.7C). All of these most common re-
actions (both “correct” and “incorrect”) were involved
in the production of biomass components, particularly
amino acids.

Identifying Small Molecules Which Interact with
Unique Streptococcus Species

We demonstrate how EnsembleFBA can be implemented
in a systems biology workflow. We selected six species
from the genus Streptococcus which all have growth phe-
notype data available through a previous study [20].
We reconstructed an ensemble for each species: Strep-
tococcus mitis, Streptococcus gallolyticus, Streptococcus
oralis, Streptococcus equinus, Streptococcus pneumoniae
and Streptococcus vestibularis (Figure 6.8A). For each
species, we generated a draft GENRE using the Model
SEED online interface. We generated a diverse ensemble
of 21 GENREs from each Model SEED draft, and gap
filled each member GENRE using 25 random growth
conditions specific to that species. We mapped all genes
(translated to protein sequences) from each Streptococ-
cus species to small molecule protein binding sequences
from DrugBank using NCBI standalone BLASTP and
an e-value threshold of 0.001 [21, 22]. For all poten-
tial gene targets, we used the ensembles to predict gene

essentiality using a “majority” threshold in rich media.

We found 261 small molecules in DrugBank that po-
tentially bind to the products of 169 essential genes
(evenly distributed throughout the six species). Many
of these small molecules (113) interact with an essential
gene in only one of the species, while 44 were predicted to
target conserved essential genes in all six species (Fig-
ure 6.8B). S. equinus was predicted to have the most
essential genes interact with unique small molecules
while S. pneumoniae was not predicted to have es-
sential genes interact with any unique small molecules
(Figure 6.8C). As an example of a conserved small
molecule interaction, DB04083 (N′-Pyridoxyl-Lysine-5′-
Monophosphate) is predicted to interact with essential
aspartate aminotransferases in all six species. Alter-
natively, DB03222 (2′-Deoxyadenosine 5′-Triphosphate)
is only predicted to interact with an essential ribonu-
cleotide reductase in S. gallolyticus.

To better understand the differences between the
metabolic networks which underpin these small molecule
screen results, we predicted reaction essentiality in rich
media for all six species using a “majority” threshold.
We found that several metabolic subsystems were en-
riched among essential reactions beyond what would be
expected from random chance (Figure 6.8D). Some sub-
systems were enriched in all six species, such as Peptido-
glycan biosynthesis, indicating that these reactions re-
lated to cell wall biosynthesis are disproportionately es-
sential in all six species. Other subsystems were enriched
among essential reactions in a unique species. For ex-
ample, S. mitis is predicted to have a greater proportion
of essential reactions related to Amino acid metabolism
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Figure 6.7: Common reactions in ensemble are
consistent with manually-curated reconstruc-
tion.A. We generated an ensemble of 100 GENREs using
a randomly-selected 80% of the reactions in iPAU1129,
and then sequentially gap filled from the universal reac-
tion database using 25 randomly-select positive growth
conditions. B. The distribution of reactions throughout
the ensemble is displayed as the proportion of reactions
(y-axis) which are found in a given number of GEN-
REs (x-axis). “Correct” reactions are whose which are
found in the manually-curated iPAU1129, while “incor-
rect” reactions are those which are added during gap
filling but not found in iPAU1129. We observed that
there is a common set of reactions which were found
in all 100 GENREs. The majority of this common set
are “correct” (88 reactions) while 23 are “incorrect”. C.
The common reactions (found in 50 or more GENREs)
consist of a greater proportion of “correct” reactions.
“Incorrect” reactions tend to be uncommon.

than other species, perhaps indicating that S. mitis
has less redundancy in those pathways than the other
six species. Essential reactions related to Butanoate
metabolism were most enriched in S. pneumoniae, while
essential reactions in Lysine degradation were most en-
riched in S. equinus. Interestingly, reactions associated

with core metabolic functions (e.g. Amino acid biosyn-
thesis, Valine and leucine biosynthesis, Phenylalanine
biosynthesis) were not equally enriched among essential
reactions for all species.

6.5 Discussion

Genome-scale metabolic network reconstructions (GEN-
REs) have been used for decades to assemble informa-
tion about an organism’s metabolism, to formally ana-
lyze that information, and in so doing, to make predic-
tions about that organism’s behavior in unobserved or
unobservable contexts. A major barrier preventing more
widespread use of GENREs, particularly in non-model
organisms, is the extensive time and effort required to
produce a high-quality GENRE. Many automated ap-
proaches have been developed which reduce this time
requirement (e.g. Model SEED, GLOBUS, CoReCo,
RAVEN) [13–16]. We demonstrate that gap filling—
although our results apply to many automated cura-
tion approaches—can lead to many potential GENRE
structures depending on the ordering of the input data.
Rather than arbitrarily selecting a single GENRE from
among many possible networks (which are all reasonably
consistent with the available data), we found that col-
lecting many GENREs into an ensemble improved the
predictions that could be made. We call this approach
“EnsembleFBA” and emphasize that ensembles are a
useful tool for dealing with uncertainty in network struc-
ture. We demonstrated how ensemble diversity impacts
predictions. We show that EnsembleFBA correctly iden-
tifies many more essential genes in the model organism
P. aeruginosa UCBPP-PA14 than the best individual
GENREs. We showcase how EnsembleFBA can be uti-
lized in a systems biology workflow by predicting how
small molecules interact with different essential genes in
six Streptococcus species. Ensembles increase the qual-
ity of predictions without incurring months of manual
curation effort, thus making GENRE approaches more
practical for applications which require predictions for
many non-model organisms. We have provided code to
facilitate the creation and analysis of ensembles of GEN-
REs.

Gap filling is a common step during the GENRE cu-
ration process, both for manually- and automatically-
curated GENREs [5]. We used a linear (rather than
binary) gap filling algorithm to expand GENREs so
that they are capable of producing biomass in silico on
growth media which supports growth of the organism in
vitro. Gap filling algorithms suggest parsimonious re-
action sets from some “universal” biochemical database
which, if added to a GENRE, will allow growth in the
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Figure 6.8: EnsembleFBA predicts unique essential genes targets of small molecules in six Strep-
toccocus species. A. We reconstructed ensembles of 21 GENREs for six Streptococcus species based on draft
GENREs from the Model SEED and 25 growth conditions. From among all genes within all six species, we identi-
fied with potential binding interactions with small molecules from the DrugBank database, and used the ensembles
to predict the essentiality of those genes. We found 261 small molecules with potential binding to essential gene
products. B. Many small molecules interact with an essential gene in only one species, while a core set of 44
small molecules interact with essential genes in all six species. C. Distribution of small molecule interactions with
essential genes, unique and conserved among the six species. Note that 44 small molecules interact with essential
genes in all six species. S. equinus is predicted to have essential genes uniquely interact with 43 small molecules,
while S. pneumoniae is predicted to not have any essential genes which interact with unique small molecules. D.
Subsystem enrichment among essential reactions by species. We predicted reaction essentiality for all six species
in rich media and then calculated a p-value indicating the likelihood of observing each subsystem among the
essential reactions given the total number of reactions associated with that subsystem. For clarity we display the
−log(p-value), where darker colors indicate greater enrichment (i.e. a disproportionate number of reactions in
that subsystem are predicted to be essential). Note that some subsystems are enriched among essential reactions
in all six species (e.g. Peptidoglycan biosynthesis) while others are uniquely enriched in a specific species (e.g.
Phenylalanine biosynthesis in S. mitis).
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new environment [6, 17, 18, 23]. Often, multiple re-
action sets can enable growth, so some heuristics are
needed to select a final solution. Sometimes gene ho-
mology metrics are used to select a solution, such that
genes which catalyze the suggested reactions are com-
pared to the current genome, and the reaction set with
the best matches in the current genome are selected as
the final solution. When validated, these solutions can
lead to re-annotation of the genome [6]. During auto-
mated curation, there is less opportunity for extensive
validation, and so the first or the most parsimonious
solution is selected. As we demonstrated, the order of
gap filling can change the final outcome, thus producing
GENREs with different structures from the exact same
input data (Figure 6.2). Under these circumstances, it is
difficult to know which solution is most correct without
additional data.

A possible way around this issue of gap fill order is
to remove the sequential nature of gap filling entirely
and use a global gap filling approach. We demonstrate
that not only is such a global approach much slower
(quadratic increases in solution time as growth media
conditions are added), but the solutions are no more
parsimonious or biologically relevant (Figure 6.3). Al-
ternatively, we found that two additional innovations
improved the predictions that could be obtained from
automatically-generated GENREs: the addition of neg-
ative growth conditions and the collection of multiple
GENREs into ensembles.

Negative growth conditions have not been extensively
incorporated into GENRE curation. To our knowledge,
only one group has developed an approach for removing
reactions in order to prevent growth in specific condi-
tions [23]. In that case, the reactions were not removed
from the GENRE, but rather, prevented from carrying
flux under particular conditions. This approach was sup-
ported by a biological justification that certain enzymes
may not be functional under certain conditions [23]. Our
approach is different in that it seeks to produce a single
GENRE structure that is consistent with all available
data, positive and negative. We achieved this by re-
moving a minimal reaction set to simultaneously prevent
growth in negative conditions and allow growth in posi-
tive growth conditions (see Materials and Methods). By
utilizing this untapped source of information, we found
that average GENRE accuracy increased by ∼15% (Fig-
ure 6.4). Automatically incorporating negative growth
conditions is a little-explored area that has the potential
to make better use of growth screening data.

Ensembles have been used for many years in the ma-
chine learning community to leverage the strengths of
many different models to improve predictions [24, 25].
Ensembles have been used previously to analyze GEN-

REs from a kinetic standpoint [26]. Because kinetic pa-
rameters are usually unknown for an entire genome-scale
network, ensembles of kinetic parameters are generated
such that all parameter sets lead to the same steady state
[26]. In this way, ensembles can represent the space of al-
lowable kinetic parameters. Our approach to generating
ensembles is different in that we attempt to represent
the space of allowable GENRE structures rather than
kinetic parameters.

Ensembles provide a significant advantage over indi-
vidual GENREs by tuning for specific results with de-
fined decision thresholds (Figures 6.4 and 6.5). Consis-
tently, by using the “any” threshold, recall can be made
to equal or exceed the best individual GENREs. This
result makes sense, considering that different network
structures will result in different growth or gene essen-
tiality predictions. By accepting any essential gene pre-
diction from among the constituent GENREs, we cast a
wider net and capture many more of the true essential
genes and growth conditions. The fact that many indi-
vidual GENREs contribute unique but true predictions
suggests that each GENRE recapitulates elements of the
“true” network structure (Figure 6.7). Similarly, by us-
ing the “majority” threshold, the ensemble predictions
perform like the average GENRE (Figures 6.4 and 6.5).
By requiring a majority of GENREs to agree, the ensem-
ble guards against poor predictions and, in most cases,
outperforms the worst individual GENREs. Finally, if
precision is the overall goal, a “consensus” threshold pro-
vides confidence that the majority of positive predictions
are true positives (Figure 6.5).

We observed that ensemble performance is limited by
the quality of the GENREs which form the ensemble.
The choice of decision threshold (“any”, “majority”, or
“consensus”) did not consistently improve overall accu-
racy of the ensemble. However, by improving the indi-
vidual GENREs using negative information, the overall
ensemble accuracy improved dramatically (Figure 6.4).
Also, it should be noted that the computational bur-
den required by ensembles will always be greater than
the burden of a single GENRE. For all the examples
in this study, computational burden scales linearly with
the number of GENREs in the ensemble (ensemble of
size N GENREs will require N times longer to calcu-
late FBA solutions) which is a modest expectation in
practice. Other applications, like predicting species in-
teractions, would not scale linearly if all possible pairs
of GENREs between two ensembles were simulated.

Increasing ensemble diversity impacted ensemble re-
call, but did not have an obvious effect on overall accu-
racy. Some degree of diversity is required in order to gain
any advantage through an ensemble representation. In
the “Order Only” ensemble (generated simply by chang-
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ing the order of gap filling; Figure 6.4) there were only
small differences between any of the GENREs so it was
difficult to improve on the best GENRE. By injecting
greater diversity through random weights and random
subsets of the data, we observed much greater variation
in individual GENRE performance (both positively and
negatively), but the average accuracy was the same as
the low diversity ensemble (Figure 6.4). The advantage
of diversity is in casting a wide net and thus improv-
ing ensemble recall, particularly when combined with
an “any” decision threshold. In practice, the choice to
increase diversity or not will depend on the goals of the
analysis. If the goal is to generate many candidate essen-
tial genes or media conditions, then more diversity will
be advantageous. If the goal is to generate fewer, more
confident predictions, then minimizing diversity will be
most effective.

EnsembleFBA is easily integrated into systems biol-
ogy workflows. As an example, a current challenge in
systems biology is to identify species-specific drug tar-
gets so that therapies will not disrupt the healthy micro-
biome structure [27, 28]. We reconstructed ensembles for
six Streptococcus species by gap filling with growth phe-
notype data, we predicted essential genes and mapped
those genes to potential small molecule binding partners
within a matter of hours, and can have more confidence
in the quality of the gene essentiality predictions than if
we were to work with single GENREs for each species
(Figure 6.8). The process scales well with the number of
species, such that 12 or 100 species would not take signif-
icantly longer than six, and the quality of the predictions
is maintained with scale. It is interesting to note that
among Streptococcus species, there are generally small
molecules which can be selected to uniquely interact
with essential genes in a single species, and other small
molecules which interact with conserved essential genes
(Figure 6.8C). The observed interactions between essen-
tial genes and small molecule ligands are species-specific
because of differences in network structure which lead
to some metabolic subsystems being disproportionately
represented among essential reactions (Figure 6.8D). In
the search for species-specific drug targets, it is impor-
tant to consider, not only the presence or absence of a
particular gene, but also the role of that gene in the
broader network context, and improved systems biology
tools such as EnsembleFBA can help to elucidate that
context with greater confidence.

Gap filling is not the only GENRE reconstruc-
tion approach that produces many possible solutions.
Likelihood-based gap filling produces a distribution of
possible annotations for each gene in a genome, assign-
ing a probability to each [14, 16, 29]. Network structure
is then based on maximizing the likelihood over all possi-

ble solutions. Ensembles could be generated easily using
this type of framework by sampling many alternative so-
lutions around the maximum likelihood. Indeed, it may
be beneficial to create an ensemble using GENREs re-
constructed using several different methods. We suggest
that there are many possible ways to generate ensembles
such that they will allow researchers to generate better
predictions about under-studied organisms.

Finally, we foresee ensembles playing an important
role beyond improving predictions, for example, in ex-
perimental design and model reconciliation. Within a
diverse ensemble, many possible network structures are
represented, and it is expected that some structures will
be closer to the truth than others. We suggest that
ensembles can be leveraged to design an optimal series
of experiments to weed out the most incorrect network
structures. For instance, such an approach could select
the most differentiating carbon sources to experimen-
tally test, or the most differentiating essential genes.
Ensemble-guided experimental design could save time
and experimental resources. Model reconciliation is an-
other field that could benefit from ensembles [8, 30].
Given GENREs for two different species, reconciliation
is the process of removing systematic differences from
the two GENREs so that any differences which remain
are due to biology alone. Systematic differences often
result from arbitrary choices during the process of re-
construction. Ensembles could be used to automate the
reconciliation process by representing the space of possi-
ble GENREs for each species and the reconciled versions
would be the two models from the two spaces that are
most similar to each other. Thus, ensembles have po-
tential to improve other tasks than prediction, including
experimental design and mapping the space of GENRE
structures for tasks like reconciliation.

6.6 Materials and Methods

Code and Data Availability

All data, Matlab (Natick, MA, USA) implementations of
algorithms, Matlab simulation scripts, results files and
figure generation scripts are publicly available in our on-
line repository: github.com/mbi2gs/ensembleFBA

Data Sources

All biochemical reference data was ob-
tained from the Model SEED database
(github.com/ModelSEED/ModelSEEDDatabase).
The metabolic reaction and compound databases
were parsed and formatted for use in Matlab using
a custom Python script available in our reposi-
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tory (“format SEED data.py”). A draft network
for P. aeruginosa UCBPP-PA14 was automatically
generated using the Model SEED web service (mod-
elseed.org/genomes/). Similarly, draft networks were
generated for Streptococcus mitis ATCC 6249, Strep-
tococcus gallolyticus ICDDRB-NRC-S3, Streptococcus
oralis ATCC 49296, Streptococcus equinus AG46,
Streptococcus pneumoniae (PATRIC ID 1313.5731),
and Streptococcus vestibularis 22-06 S6.

Representations of media conditions (including min-
imal media and cystic fibrosis sputum medium), and
biomass representations were drawn from previous
GENRE analyses of Pseudomonas aeruginosa [31, 32].

P. aeruginosa PA14 essential genes in cystic fibrosis
sputum medium were experimentally identified previ-
ously [19].

A manually curated, and thoroughly validated
GENRE of P. aeruginosa UCBPP-PA14 called
iPAU1129 was developed previously [Bartell et al.
In review], along with Biolog growth screen data for
P. aeruginosa UCBPP-PA14 indicating many media
conditions in which this strain will and will not grow.

Growth phenotype data for six Streptococcus species
was obtained from the file “Supplementary Data 1”
of [20]. Small molecule amino acid binding target se-
quences were downloaded from the DrugBank website
(http://www.drugbank.ca/) [21]. After identifying ho-
mologous genes to the target sequences using BLASTP
[22], we used a custom python script to parse the results
for input into Matlab (“listPossibleTargets.py”, avail-
able in repository).

Linear Gap Filling

We implemented a linear (as opposed to binary) gap
filling algorithm in Matlab, based on the algorithms
FASTGAPFILL and FastGapFilling [17, 18]. We used
the Gurobi solver version 6.0.5 for all optimization tasks
(Gurobi, Houston, TX, USA). To begin, we provide the
algorithm with a universal database of metabolic reac-
tions U , a universal database of exchange reactions X,
a biomass reaction, and a set of growth conditions for-
matted as lower bounds on exchange reactions. The al-
gorithm identifies a set of reactions from U and X that
allow flux through the biomass reaction under all growth
conditions. The algorithm is implemented as a linear
program (LP) that minimizes the sum of the absolute
value of all fluxes through U and X. The optimization
problem takes the form:

minz
∑
ruzu +

∑
rxzx

s.t. Uv +Xw = 0 (1)
lbu,i ≤ vi ≤ ubu,i ∀i ∈ [1, Nu] (2)
lbx,i ≤ wi ≤ ubx,i ∀i ∈ [1, Nx] . . .
−zu,i ≤ vi ≤ zu,i ∀i ∈ [1, Nu] (3)
−zx,i ≤ wi ≤ zx,i ∀i ∈ [1, Nx] . . .
zi ≥ 0 ∀i ∈ [1, Nu +Nx] (4)
vbiomass,gc=j ≥ 0.05 ∀j ∈ [1, Ngc] (5)
zu,i ≥ Czu,i ∀i ∈ [1, Nu] (6)
zx,i ≥ Czx,i ∀i ∈ [1, Nx] . . .

Where: U is the universal reaction library (as a stoi-
chiometric matrix); X is the universal exchange library
(same metabolites as U); Nu and Nx are the number of
reactions in U and X, respectively; Ngc is the number of
growth conditions; v is the vector of fluxes through U ;
w is the vector of fluxes through X; lbu,i, ubu,i, lbx,i, and
ubx,i are the lower and upper bounds on vi and wi, re-
spectively; vbiomass,gc=j is the flux through the biomass
reaction under growth condition j; Czu,i and Czx,i are
variables that can force reactions from U and X to be
included; z is a continuous variable which acts as a con-
straint on the absolute values of elements in v and w; r
is an optional weight on z which can be randomized.

In order to incorporate genome annotations from a
specific organism, we force the inclusion of all associated
reactions from those annotations using the Czu vari-
ables. Note that unlike a binary optimization, the LP
minimizing the sum of the absolute flux values through
U and X does not necessarily result in a solution with
the fewest reactions, but rather the solution which re-
quires the minimum sum of the absolute values of the
fluxes through it. The LP here can be extended to uti-
lize multiple growth conditions simultaneously (global
approach) by duplicating the U and X matrices, once
for each growth condition, but minimizing a single set
of z variables across all conditions. To gap fill using mul-
tiple growth conditions sequentially, we gap fill using the
first growth condition, incorporate the solution into the
GENRE, then repeat the process for all growth condi-
tions. Our Matlab function “expand()” implements this
optimization problem.

Incorporating Negative Growth Conditions by
Trimming Reactions

We implemented a binary optimization problem to trim
minimal reactions from a GENRE in order to prevent
growth under negative growth conditions while simul-
taneously maintaining growth in the positive growth
conditions. As input to the algorithm, we provide a
GENRE, and a set of both positive and negative growth
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conditions. We chose to run FBA first to identify mis-
matches between the computational predictions and the
in silico data (negative growth conditions erroneously
predicted to support growth in silico). Having identified
those, we then ran FBA on all the positive growth condi-
tions to identify the top five with flux distributions most
similar to the flux distribution of the negative growth
condition. The GENRE and the selected growth condi-
tions are passed to the trimming problem, which takes
the form:

maxy
∑
ruyu +

∑
rxyx

s.t. Uv +Xw = 0 (1)
yu,ilbu,i ≤ vi ≤ yu,iubu,i ∀i ∈ [1, Nu] (2)
yx,ilbx,i ≤ wi ≤ yx,iubx,i ∀i ∈ [1, Nx] . . .
vbiomass,gc=j ≥ 0.05 ∀j ∈ [1, Ngc] (3)
max(vbiomass,ngc=j) = 0 ∀j ∈ [1, Nngc] (4)
yu, yx ∈ [0, 1]

Where: U is the set of reactions from the GENRE (as
a stoichiometric matrix); X is the set of exchange re-
actions from the GENRE (same metabolites as U); Nu

and Nx are the number of reactions in U and X, re-
spectively; v is the vector of fluxes through U ; w is the
vector of fluxes through X; lbu,i, ubu,i, lbx,i, and ubx,i are
the lower and upper bounds on vi and wi, respectively;
vbiomass,gc=j is the flux through the biomass reaction un-
der growth condition j; yu and yx are arrays of binary
variables which determine inclusion of reactions from U
and X in the network; r is an optional weight on y which
can be randomized.

The term max(vbiomass,ngc=j) = 0 requires that the
maximum possible flux through the biomass reaction for
the negative growth conditions is constrained to be zero.
In order to implement this constraint, we took advan-
tage of duality theory as has been done previously [7].
Specifically, the optimal objective value of the dual of a
linear program will equal the optimal value of the pri-
mal. By constraining the primal and dual objectives to
equal each other, we can ensure that the flux through
the biomass objective is maximized. We can replace the
term max(vbiomass,ngc=j) = 0 with the following con-
straints:

vbiomass,ngc=j = λububy − λlblby (4.1a)
STλmets + λub − λlb = c (4.2)
λub, λlb ≥ 0 (4.3)

Where λmets, λub and λlb are the dual vectors asso-
ciated with the metabolites, upper and lower bounds
of the primal problem. c is a binary vector indicat-
ing the objective reaction in U . Note that the terms

λububy and λlblby are quadratic, requiring a multipli-
cation of the binary inclusion variable y with the dual
variables. Because y is a binary variable, in this case
the quadratic constraints can be converted to linear con-
straints through the substitution of additional variables:

tub ≤ Lλyi (4.4)
tub ≥ 0 (4.5)
tub ≤ λlb,iubi (4.6)
tub ≥ λlb,iubi − Lλ(1− yi) (4.7)

Where tub is a stand-in for the product λububy and
L is a large number greater than or equal to the upper
bound on λububy (e.g. 1000). Similar constraints would
be produced for the product λlblby. The quadratic con-
straint above (constraint 4.1a) can then be replaced by
a linear constraint:

vbiomass,ngc=j = tubub− tlblb (4.1b)

Our Matlab function “trim active()” implements this
optimization problem.

Iterative Approach to Reconstructing GENREs
Consistent with All Growth Screening Data

We implemented an iterative algorithm to integrate the
LP expansion step with the binary trimming step. The
algorithm first applies the expansion step to produce a
GENRE that is capable of growing in all positive growth
conditions. Next, the algorithm checks for negative
growth conditions that allow for biomass flux and for any
that do, applies the trim step as described above. The al-
gorithm iterates between the expand and trim steps until
either a completely consistent GENRE structure is iden-
tified, or it reaches a maximum attempts limit. A single
attempt is completed if the GENRE structure is not yet
consistent with the input growth conditions but stops
making progress (stuck in a local optimum). In this case,
a random reaction is removed from the GENRE and the
search is re-initiated. If the maximum attempts limit
is reached, the algorithm removes any negative growth
conditions that are inconsistent with the positive growth
conditions, and returns the final GENRE. This itera-
tive algorithm is implemented in our Matlab function
“build network()”.

Predicting Growth and Essential Genes

Growth media were simulated by setting the lower
bounds on exchange reactions for the appropriate nutri-
ents to negative values. The uptake of carbon source(s)
limited the final flux through biomass. “Growth” was
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determined by maximizing flux through the biomass ob-
jective. We predicted growth if a positive, non-zero
flux could be achieved through biomass. Gene knock-
outs were simulated by generating a new GENRE which
was missing the reactions dependent on the knocked-out
gene. The reaction-gene dependence was determined by
evaluating the binary logic of the GPRs provided by
Model SEED. Our custom script to evaluate GPR logic
is “simulateGeneDeletion()”.

We evaluated the growth predictions in terms of ac-
curacy (TP + TN) / (TP + FP + TN + FN), precision
(TP / TP + FP), and recall (TP / TP + FN) where
TP = number of true positives, FP = the number of
false positives, TN = the number of true negatives and
FN = the number of false negatives. Precision indicates
the fraction of positive predictions which are true pos-
itives. Recall indicates the fraction of positive events
which were correctly predicted by the method.

Predicting Small Molecule Interactions

We downloaded the Drug Target Sequences for small
molecules in FASTA format from DrugBank [21]. Us-
ing NCBI standalone BLASTP and an e-value cutoff
of 0.001, we identified homologous sequences in all six
Streptococcus proteomes [22].

Metabolic Subsystem Enrichment

We downloaded KEGG subsystem annotations
for the reactions in the Model SEED database
(“KEGG.pathways.tsv”). After predicting essential
reactions for each Streptococcus species, we used the
hypergeomtric distribution to calculate the probability
of drawing k essential reactions and finding that x or
more are annotated with subsystem j, from a popula-
tion of size M reactions, of which N are annotated with
subsystem j.

Computational Resources

The majority of our reconstructions and simulations
were performed on a 64-bit Dell Precision T3600 Desk-
top computer with 32 GB RAM and eight 3.6 GHz Intel
Xeon CPUs, running Windows 7. Incorporating nega-
tive growth information often lead to longer reconstruc-
tion times (sometimes 2 hours per GENRE) due to the
binary optimization step. To accelerate the reconstruc-
tion time while incorporating negative growth informa-
tion, we used the University of Virginia High Perfor-
mance Computing Cluster.

Generating Ensembles and Making Predictions
Using Our Software

Our Matlab scripts for generating an ensemble (using the
gap filling approach described in this work) and for ana-
lyzing an ensemble are freely available in a github repos-
itory (see Code and Data Availability). The Gurobi
solver is required, in addition to our Matlab scripts. We
have also included a tutorial script to guide the user
through the necessary steps to generate and analyze an
ensemble (“test eFBA.mat”).
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Chapter 7

Systems-level metabolism of the altered
Schaedler flora, a complete gut microbiota

The text for this chapter has been accepted as a re-
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Biggs MB, Medlock GL, Moutinho Jr. TJ, Lees HJ,
Swann JR, Kolling GLδ, Papin JAδ. (2016). Systems-
level metabolism of the altered Schaedler flora, a com-
plete gut microbiota. ISME Journal, in press.
δ Corresponding authors.

7.1 Context

Around the end of my first year as a graduate student,
Dr. Papin, knowing that I was interested in microbial
communities, gave me the opportunity to participate in
writing an NIH grant proposal in the area of microbiome
research. Writing that proposal was an education in it-
self, where I caught my first glimpse of the enormous
work required to fund a successful lab! The grant was
funded, and from that point (January 2014) until Sum-
mer 2016, we were working hard on this project. This
was the most collaborative project I participated in as a
graduate student, and the project with the heaviest “wet
lab” component. I want to thank all the co-authors on
this paper for sticking with this project through many
challenges and changes.

7.2 Synopsis

The altered Schaedler flora (ASF) is a model micro-
bial community with both in vivo and in vitro rele-
vance. Here we provide the first characterization of
the ASF community in vitro, independent of a murine
host. We compared the functional genetic content of
the ASF to wild murine metagenomes and found that
the ASF functionally represents wild microbiomes bet-
ter than random consortia of similar taxonomic com-
position. We developed a chemically-defined medium
that supported growth of seven of the eight ASF mem-
bers. To elucidate the metabolic capabilities of these
ASF species—including potential for interactions such
as cross feeding—we performed a spent media screen
and analyzed the results through dynamic growth mea-
surements and non-targeted metabolic profiling. We
found that cross-feeding is relatively rare (32 of 3,570

possible cases), but is enriched between Clostridium
ASF356 and Parabacteroides ASF519. We identified
many cases of emergent metabolism (856 of 3,570 pos-
sible cases). These data will inform efforts to under-
stand ASF dynamics and spatial distribution in vivo, to
design pre- and probiotics that modulate relative abun-
dances of ASF members, and will be essential for vali-
dating computational models of ASF metabolism. Well-
characterized, experimentally tractable microbial com-
munities enable research that can translate into more
effective microbiome-targeted therapies to improve hu-
man health.

7.3 Introduction

The microbiome is enormously complex and its composi-
tion varies not only between individuals, but within the
same individual spatially and temporally [1, 2]. Most of
the microorganisms that comprise the microbiome var-
iously interact through forms of competition and co-
operation that are largely uncategorized [3]. Despite
the daunting complexity of this system, a great deal
of research effort is expended with the goal of identify-
ing governing principles that will allow prevention and
treatment of a range of human conditions connecting
the immune system [4], diet and metabolism [5], emo-
tional health [6], and other relevant systems [7] to the
microbiome. If sufficiently understood, there is enor-
mous therapeutic potential in microbiome modulation.

It is well-established that the composition of microbial
communities is linked to host health, but many stud-
ies linking the microbiome to health-related outcomes
provide descriptive or correlative results rather than es-
tablish causation [3, 8]. Additionally, despite growing
databases of reference genomes, many species detected
in these studies are new, if they are detected at all
[9]. Germ-free animals colonized specifically with known
microorganisms—gnotobiotic animals—enable experi-
ments which can establish causation [10]. Such exper-
iments cannot easily be performed in humans, mak-
ing gnotobiotic animals crucial to studying microbiome
structure and function.

Germ-free and gnotobiotic mice often do not develop

71
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normal immune systems or gastrointestinal function [11].
This problem was addressed in part by work in which a
cocktail of eight microbial species known as the Altered
Schaedler Flora (ASF) was identified [12, 13]. Germ-
free mice colonized exclusively with the ASF develop
relatively normal immune systems and gastrointestinal
function [14, 15]. ASF-colonized mice are commercially
available and widely used [16–23]. The ASF serves as
an experimentally tractable surrogate for wild-type mi-
crobiomes.

A limiting factor in ASF-based research to-date is
the paucity of knowledge about the eight species con-
tained in the ASF. Little is known about the genet-
ics, metabolism, or in vitro characteristics of these eight
species, because their primary value historically has been
to standardize mice [13]. Draft genome sequences for
all eight ASF member species were published in 2014
[24]. Future efforts to understand the mechanistic un-
derpinnings of ASF-host interactions, or ASF dynamics
within the host, will depend on a much deeper knowl-
edge of the physiology and metabolism of each ASF
member individually, and the interactions among them.
To facilitate this goal, we exhaustively compared the
functional gene content of all ASF species among each
other, to wild-type murine metagenomes, and to random
consortia of similar taxonomic composition. We devel-
oped a chemically-defined medium and performed the
first in vitro analysis of the growth and metabolism of
ASF member species. Finally, we experimentally deter-
mined the effects on growth and metabolism of spent
media interactions between members of the ASF. The
results of this study will serve as a resource for future
ASF-based research, and provide a strong foundation
for future computational modeling efforts. By better un-
derstanding the ASF—including interactions between its
members—it will be possible to glean more from ASF-
based mouse experiments, thus increasing the value of
ASF-colonized mice as a model system for microbiome-
host interactions.

7.4 Materials and Methods

Strain Information

All strains are identified by the associated ASF number.
We performed experiments with ASF356 (Clostridium
sp.), ASF360 (Lactobacillus intestinalis), ASF361 (Lac-
tobacillus murinus), ASF457 (Mucispirillum schaed-
leri), ASF492 (Eubacterium plexicaudatum), ASF500
(Pseudoflavonifractor sp.), ASF502 (Clostridium sp.),
and ASF519 (Parabacteroides goldsteinii) [15]. All
strains are grown in an anaerobic chamber (Shel Lab
BactronEZ, Cornelius, OR, USA) with mixed anaero-

bic gas (5% Carbon Dioxide, 5% Hydrogen, 90% Ni-
trogen) at 37 ◦C. Anaerobic conditions were confirmed
periodically using an anaerobic indicator (Oxoid, Bas-
ingstoke, UK). All strains were propagated on supple-
mented Brain-Heart Infusion (BHI) agar.

Media Preparation

Supplemented BHI medium: Brain-Heart Infusion base
(BD, Franklin Lakes, NJ, USA) was supplemented with
yeast extract, hemin (0.005 g/l), L-cysteine (0.25 g/l),
vitamin K1 (9.84 mg/l) and 5% each of newborn calf
serum, horse serum, and sheep serum.

Supplemented LB medium: LB base in powder form
(Sigma, St. Louis, MO, USA) was combined with L-
cysteine (Sigma), added KH2PO4 (6 g/l), (NH4)2SO4 (6
g/l), NaCl (12 g/l), MgSO4·7H2O (2.5 g/l), CaCl2·2H2O
(1.6 g/l), L-cysteine (0.25 g/l) (see detailed formula-
tion in the Supplemental Materials) and deionized water,
which was autoclaved at 121 ◦C for 20 min. After cool-
ing, vitamin K1 (9.84 mg/l) and filter sterilized (0.22 µm
pore size) solutions of hemin (0.005 g/l), lactose (0.05
g/l), and Tween-20 (0.01 g/l) were added.

All media was equilibrated overnight in the anaerobic
chamber before inoculation with ASF members.

Genomic Analysis and Comparison with Wild
Murine Microbiota

Shotgun sequencing metagenomic data from the feces of
15 wild mice from a previous study [25] were used as a
reference data set (Shannon diversity of 163 ± 72) for
comparative analysis to the ASF. We downloaded pro-
tein sequences for all 15 samples, which were then anno-
tated with HMMER Version 3.1b2 [26], using bactNOG
(144,498 protein sequences) from eggNOG version 4.1
[27] as the profile hidden Markov models. For each gene
call, a non-supervised orthologous group (NOG) was as-
signed using the database target with the lowest e-value
below 10−10. Overall, 22.3% of metagenomic open read-
ing frames were assigned a NOG annotation. Protein
sequences for each ASF species were downloaded from
GenBank and annotated using the same procedure.

To compare metagenome coverage by the ASF to
coverage by random communities, species were drawn
from among the 989 Firmicutes and 176 Bacteroidetes
in bactNOG in a 6:2 ratio, respectively, to represent the
most abundant phyla in the mouse gastrointestinal tract
[28]. The complete list of Firmicutes and Bacteroidetes
in bactNOG is available in Supplemental Data 1. Ran-
dom communities of size 8, 16 and 32 were compared to
the ASF for percent coverage of NOGs annotated in any
metagenomic sample. This coverage was further sorted
by sample frequency, where each NOG can occur in up to
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15 metagenomic samples. NOGs containing functional
annotations in more than one category were discarded
during all portions of analysis (representing <1% of total
annotations in any sample).

Preparation of Spent Media

Spent media from each ASF member was prepared by
growing each species in supplemented LB for 70 h.
The resulting culture was centrifuged at 3,500 rpm for
10 minutes and the supernatant was filter sterilized
(PVDF membranes with 0.22 µm pore size). Aliquots of
spent medium were stored at -80 ◦C. Individual aliquots
were thawed and equilibrated in the anaerobic chamber
overnight before inoculation.

Growth Measurements

Growth curves were obtained for ASF members in the
anaerobic chamber using four miniaturized plate read-
ers measuring optical density at 870 nm [29]. Overnight
liquid cultures of 10 ml were prepared for each ASF
member: The entire volume of the overnight cultures
were centrifuged at 8 000 rpm for 2 minutes and the re-
sulting pellets were resuspended in fresh liquid medium
to produce a dense suspension of 0.75 ml. The opti-
cal density of the suspension was obtained on a Tecan
(Männedorf, Switzerland) plate reader at 600 nm. Liq-
uid cultures were prepared in six-well plates with 6 ml
per well, and inoculated (from the dense suspension) to
a starting OD600 of 0.001. Each experimental condi-
tion was replicated four times. Each plate was covered
with a Breath-Easy membrane (Sigma). The OD870 was
tracked for 70 h. At the final time point, the OD600 was
measured for each well on the Tecan. The growth curves
obtained at OD870 were normalized to the initial and
final OD600 measurements (see Supplemental Materials
and Methods). For each well of the 6-well plate, growth
curves from four independent LED pairs were averaged
to produce a single growth curve per well. To deter-
mine the area under a growth curve (AUC), we applied
trapezoidal numerical integration. The R (The R Foun-
dation, Vienna, Austria) code for growth curve analysis
is available in an open online repository (see Code and
Data Availability).

Determining Substrate Utilization and Byprod-
uct Consumption with NMR Spectroscopy

Media (fresh or spent) samples of 2 ml were filter ster-
ilized (0.22 µm pore size) and frozen at -80 ◦C. Stan-
dard one-dimensional (1D) 1H-NMR spectra with wa-
ter pre-saturation were acquired at 300 K using a 600
MHz Avance III spectrometer (Bruker, Rheinstetten,

Germany). Spectra were imported into Matlab R2014a
(The Mathworks, Inc., Natick, MA, USA). Biologically
irrelevant regions of the spectra were removed (TSP
resonance at δ1H 0 and residual water peak δ1H 4.5-
5.2) before peak alignment by recursive segment-wise
peak alignment [30]. The loadings of pairwise princi-
pal component analysis models, comparing blank me-
dia with the spent media of each bacteria species, were
used to identify metabolites generated or consumed in
each experiment. The relevant regions of the spectra
were integrated to calculate relative spectral intensities
for each metabolite. Relative intensities in spent and
double spent media were converted to z-scores with re-
spect to metabolite abundances in fresh media. We de-
fined significant abundance changes as those of mag-
nitude greater than ±2 standard deviations from zero
(zero being the metabolite abundance in fresh media).
The peak integral data and associated R code for anal-
ysis and visualization are available in an open online
repository. Instances of emergent metabolism were clas-
sified by comparing metabolite presence/absence calls
between single and double spent media conditions. We
describe our method in the Supplemental Materials and
Methods. The custom R script used to classify cases
of emergent metabolism is also available in the online
repository (see Code and Data Availability).

Genetic and Metabolic Similarity Analysis

We used the Jaccard distance (1 Jaccard similarity co-
efficient) to quantify the distance between NOG anno-
tation sets for all pairs of ASF members. We converted
the metabolomics profiles (all 85 metabolites) for each
species to lists of metabolites which were consumed (z-
score <-2) or produced (z-score >2) and calculated the
Jaccard distance between all pairs of spent media pro-
files. The Python script used for this analysis is available
in an online repository (see Code and Data Availability).

Code and Data Availability

Detailed methods for scanning electron microscopy,
colony imaging, media preparation, and NMR metabolic
profiling can be found in the Supplemental Materials.
Our data and analysis scripts are available at the follow-
ing repository: mbi2gs.github.io/asf characterization/
Some large analysis output files and annotation files for
metagenomic data are excluded due to file hosting size
limitations, but are available upon request from the au-
thors or can be generated using the indicated raw data,
HMMer, associated eggNOG files, and scripts in the
repository.
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Figure 7.1: Comparative analysis of the ASF and wild microbiomes. A) The unique contribution of each
ASF species to the ASF metagenome is relatively evenly distributed, with the unique contribution of each species
being roughly proportional to genome size. Unique NOGs are those present in only 1 ASF species. B) Coverage
of the 15 wild mouse fecal metagenomes by the ASF divided by NOG functional category. Coverage indicates how
representative the ASF metagenome is of wild mouse metagenomes. Coverage of individual metagenomic samples
is represented by red circles, median coverage is shown as a blue line within boxes, boxes extend to mean ± 1
standard deviation, and whiskers extend to 5th and 95th percentiles. Across all categories, the ASF overlaps with
∼35% metagenomic NOGs. C) Coverage of metagenomic NOGs by the ASF and random microbial consortia.
Random consortia mimic the phylum-level distribution of the most abundant species in the mouse gastrointestinal
tract. The x-axis indicates the number of metagenomes in which the NOGs are present. Coverage of metagenomic
NOGs by random consortia of 8, 16, and 32 species (dark to light shading, respectively) are indicated as median
lines surrounded by 5th/95th percentile distributions. The ASF covers core metagenomic NOGs (core NOGs occur
in all 15 samples) better than any combination of 8 or 16 species and better than the median of 32 species. D)
Unique contribution of each ASF species to core metagenomic NOGs. Parabacteroides ASF519 contributes the
majority of core NOGs in every category.

7.5 Results

Development of a Defined Medium

We developed a growth medium with defined chemi-
cal composition that supports the anaerobic growth of
all ASF members (excluding Mucispirillum ASF457).
This novel, defined medium is based on standard LB
medium, supplemented with minerals, salts, and compo-
nents commonly added to support growth of anaerobes
(see detailed formulation in the Supplemental Materi-
als). LB is not generally considered a “chemically de-
fined” medium because of complex ingredients such as
yeast extract. However, previous research has identified
the components of LB to a degree suitable for compu-
tational metabolic models and metabolomics purposes
[31, 32]. We confirmed the presence of the majority of

expected metabolites using NMR spectroscopy (Supple-
mental Table 1).

Morphology and Appearance

We describe the cellular and colony morphologies of all
eight ASF members in the supplemental materials (Sup-
plemental Figures 1 and 2).

ASF Compared to “Wild-Type” Murine Micro-
biome

We annotated the ASF genomes using the eggNOG
database and identified unique genetic content within
each species (Figure 7.1A). Non-supervised Orthologous
Groups (NOGs) are clusters of highly similar proteins,
where proteins within each cluster generally share the
same function. We found that all eight species possess
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Figure 7.2: Spent media experimental setup. Each ASF member species was grown independently in fresh
growth medium. Growth was monitored for 70 h by optical density, which allowed for comparison of growth
rates between species. The supernatant from these first cultures was filter sterilized to produce “spent media”,
which was subsequently profiled by NMR spectroscopy and compared to the fresh growth medium. This initial
metabolomics analysis identified the metabolites utilized and byproducts produced by each species. For the second
round, each ASF species was inoculated into spent medium from the other species. Growth was monitored and
compared to growth in fresh medium. The supernatant from this second round (“double spent media”) was filter
sterilized and compared to the spent medium from which it originated to identify further metabolites that were
used or consumed.

unique NOGs in proportion to genome size [24]. We next
compared the composite metagenome of the ASF to the
NOGs found in 15 wild murine metagenomes (Figure
7.1B). We found that the composite ASF metagenome
overlaps with the murine microbial metagenome by
∼35% in each functional category. Given that the ASF
was developed specifically as a surrogate murine mi-
crobiome, we hypothesized that the ASF would share
key functions with wild type microbiomes; functions
which would be less common in random microbial con-
sortia. We compared the composite ASF metagenome
to 10 000 random microbial consortia with similar tax-
onomic composition (Figure 7.1C). We sorted NOGs by
sample frequency (i.e. presence in 1–15 metagenomic
samples; frequency distribution shown in Supplemental
Figure 3) and determined a core group of NOGs that
occurred in all 15 wild murine metagenomic samples
(3,611 NOGs out of 135,013 unique NOGs observed).
Surprisingly, the ASF shares more gene content with
the wild metagenomes than any random 8-species con-
sortia. Larger random consortia approach (16 species)
and exceed (32 species) the ASF coverage of the wild
metagenomes. However, the ASF maintains better cov-
erage of core NOGs (those that occur in all 15 wild mi-
crobiomes) than any 16-species consortia and the me-
dian of 32-species consortia. Additionally, we found
that replacing a Bacteroidetes in the random consortia
with Mucispirillum ASF457 (a member of the phylum
Deferribacteres) decreased the coverage of core NOGs
(Supplemental Figure 4), demonstrating that the Defer-

ribacteres phylum does not explain the superior cover-
age by the ASF. The ASF contains 2,820 of the 3,611
(78.09%) core NOGs. Of these 2,820 core NOGs, 1
283 (45.50%) are unique to a single ASF species. Of
these unique NOGs 1,036 (80.75%) are contributed by
Parabacteroides ASF519, representing the majority of
unique core NOGs in every functional category (Fig-
ure 7.1D). These findings suggest that Parabacteroides
ASF519 is primarily responsible for the ASFs high cov-
erage of the core wild murine metagenome.

Individual Growth Characteristics

Each ASF member grew (excluding Mucispirillum
ASF457) in fresh supplemented LB medium (Supple-
mental Figure 5). Lactobacillus ASF361, Parabac-
teroides ASF519 and Clostridium ASF356 grew most
rapidly, while Pseudoflavonifractor ASF500, Eubac-
terium ASF492 and Clostridium ASF502 grew most
slowly. Taxonomic relatedness did not necessarily pre-
dict growth rates well, given that Clostridium ASF356
(a fast grower) and Clostridium ASF502 (a slow grower)
are both members of the genus Clostridia. Similarly, the
two Lactobacilli, Lactobacillus ASF360 and Lactobacillus
ASF361, vary drastically in growth rate—Lactobacillus
ASF361 grew more quickly and to a higher density in
liquid and on solid media.
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Figure 7.3: Relative changes for 85 NMR peaks in single spent media samples.NMR peak integrals are
proportional to metabolite concentrations. Relative changes in peak integrals are displayed as z-scores relative
to fresh media, with zero (white) indicating that the metabolite concentration is the same as in fresh media,
while values greater than 2 standard deviations above (red) or below (blue) fresh media indicates higher or lower
concentrations than fresh, respectively. Z-scores ≤ -6 or ≥ 6 are displayed as -6 or 6, respectively. Rows correspond
to individual ASF members. For example, the first row indicates the metabolite z-scores relative to fresh media
after the growth of Parabacteroides ASF519.

Interactions Characterized Using Spent Media

We characterized directional, species-species interac-
tions by screening all pairs of ASF members through a
series of spent media experiments (Figure 7.2). In brief,
spent medium was prepared for each species by grow-
ing it in fresh liquid media for 70 h. We use the nota-
tion “spentXXX” to indicate the supernatant resulting
from growth of ASFXXX (e.g. “spent356” to indicate
the spent media resulting from growth of Clostridium
ASF356). Having reached stationary phase, the super-
natant from the culture was filter sterilized. This result-
ing spent medium was used to culture each ASF member
in turn. The loss of some substrates and addition of new
byproducts from the first species influenced the growth
of subsequent species. The supernatant resulting from
the growth of a second species in the spent media from a
previous species is referred to as “double spent media”.

Growth Inhibition

No species was able to grow in its own spent medium,
which is consistent with the expectation that a species
has exhausted a media environment once it has entered
stationary phase (Supplemental Figure 5). The major-
ity of interactions resulted in decreased growth or com-
pletely stifled growth in the second species. Parabac-
teroides ASF519 was able to grow in the spent media
from most other member species with the exception
of spent medium from Lactobacillus ASF361. Lacto-
bacillus ASF360 and Pseudoflavonifractor ASF500 did
not grow in spent media from other species. Marginal
growth was observed with Lactobacillus ASF361 grown
on spent492 (i.e. spent media produced by Eubacterium
ASF492). Lactobacillus ASF361 prevented growth of
all other members, while spent media from Clostridium
ASF356 and Parabacteroides ASF519 prevented growth
of all species with the exception of each other.

Metabolic Profiling of Spent Media

NMR spectra were obtained for all fresh, spent, and dou-
ble spent media conditions (Supplemental Figure 6 and
Supplemental Metabolomics Plots). Across all samples,
85 NMR peaks exhibited significant variation (Supple-
mental Figure 6). We were able to confidently map 36
peaks to known metabolites in our library of reference
spectra.

Significant metabolic differences were observed among
the ASF members growing in fresh media (Figure 7.3).
Parabacteroides ASF519 consumed the fewest metabo-
lites (only glucose, Unknown41 and Unknown43), while
it produced many other metabolites including amino
acids (alanine, glycine, histidine, isoleucine, leucine, ly-
sine, methionine, phenylalanine, threonine, tryptophan,
tyrosine, and valine). Clostridium ASF356 uniquely con-
sumed isoleucine, valine, alanine, threonine and lactate
and some unidentified metabolites (Unknowns 33, 34,
and 35). Eubacterium ASF492 was the only species
to consume uridine and several unidentified metabo-
lites (Unknowns 45, 46, 56, and 58), while Pseud-
oflavonifractor ASF500 was the only consumer of his-
tidine. Eubacterium ASF492 was the only species to
produce butyrate in fresh media. Glucose was clearly
consumed by all species except Pseudoflavonifractor
ASF500. Nicotinamide, adenosine and two unidenti-
fied metabolites (Unknowns 54, 78) were also consumed
by most species. While all spent media was acidic,
Lactobacillus ASF361 produced the most acidic spent
media (Supplemental Table 2). The reproducibility of
these NMR-based observations was confirmed by com-
parison with an independent set of biological replicates
and subsequent NMR metabolomic profiling (Supple-
mental Metabolomics Plots).

We interpreted the double spent samples by compar-
ing them to the spent media from which they were de-
rived (Figures 7.4A and 7.4B). If a species was able to
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Figure 7.4: Metabolomics analysis of all media conditions. A) The black and white heat map underlying the figure indicates the growth
achieved under spent media conditions compared to fresh media conditions. Growth is quantified using the area under the curve (AUC), indicated
as a percentage of the AUC when a species is grown in fresh media. White indicates growth equal in rate and density to fresh media conditions
(e.g. Parabacteroides ASF519 grown in spent500), while black indicates complete inhibition of growth (e.g. Parabacteroides ASF519 grown in
spent361). For species that achieved an AUC of at least 10%, we annotate the AUC in the center of the appropriate tile. Circular heat maps within
each cell display the metabolomics profiles for the spent media in that column (inner ring) and the “double spent” media (the result of growing
the species from that row in the spent media from that column; outer ring). Metabolite concentrations are quantified as z-scores relative to fresh
media, and are displayed as circular heat maps. Zero (white) indicating that the metabolite concentration is the same as in fresh media, while
values greater than 2 standard deviations above (red) or below (blue) fresh media indicates higher or lower concentrations than fresh, respectively.
B) Qualitatively, there are 18 possible scenarios when comparing double spent media to the spent media from which it was derived. In general,
a metabolite can increase, decrease, or remain the same, and the interpretation of that behavior is related to whether there was observed growth
in that condition. For example, a metabolite that is depleted by the first species and remains so (no change) under a no growth condition may
indicate a metabolite which was required for growth of the second species. Alternatively, if a metabolite is produced by the first species, consumed
by the second and growth is observed, this constitutes evidence for cross feeding. C) An example: Nicotinamide is elevated in spent519 (inner ring)
and depleted when Clostridium ASF356 is grown in spent519 (outer ring). Clostridium ASF356 does grow (AUC=45%), so we hypothesize that
in a co-culture, Clostridium ASF356 would benefit from Parabacteroides ASF519 producing nicotinamide.
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grow in a spent media, the associated changes in metabo-
lite abundances can be attributed to metabolic activity
of that species. Of interest are those metabolites which
may contribute to cross-feeding or competition in a co-
culture setting. If growth is inhibited in a spent media,
the metabolite profiles of the spent media can indicate
compounds required for growth, or alternatively, toxic
compounds.

Of the 3 570 metabolite comparisons between spent
and double spent media conditions, 2 695 (75%) were un-
changed between the spent and double spent conditions
(Table 7.1). Of these, 2 081 (77%) unchanged metabo-
lites were associated with conditions where the second
species did not grow. Of the 2 550 comparisons where
the second species did not grow, 469 (18%) changed. If
a metabolite changed between spent and double spent
conditions, usually it increased (717 instances of 875
changed, or 82%).

Cases of potential cross feeding were rare, where the
second species grew and simultaneously consumed a
metabolite produced by the first species (32 instances
of 875 changed, or 4%). Clostridium ASF356 was
able to grow in spent519 (AUC=45% of fresh media
growth; Figure 7.4C) and was the condition most en-
riched for cases of potential cross-feeding (10 of 85 pos-
sible metabolites, or 12%). As an example of potential
cross-feeding, Parabacteroides ASF519 produced nicoti-
namide when grown in fresh media, and Clostridium
ASF356 appears to have consumed the nicotinamide
in the spent519 media (Figure 7.4A and C). Given
these data, we hypothesize that cross-feeding may occur
in a co-culture setting such that Clostridium ASF356
would consume nicotinamide produced by Parabac-
teroides ASF519. Between spent519 and Clostridium
ASF356 grown in spent519, similar cross-feeding-like
profiles are observed for alanine, isoleucine, lactate, thre-
onine, uracil and several unidentified metabolites (Un-
knowns 35, 52, 55, and 76).

There were 856 instances of emergent metabolism
(of 3,570 possible), 168 of which occurred in only one
condition. For instance, we observed cases of emer-
gent biosynthesis, such that a species produced a given
metabolite only when grown in the spent media of an-
other species. Parabacteroides ASF519 produced bu-
tyrate, betaine, and several unidentified metabolites
(Unknowns 2, 12, 14, 36, 39, and 40), but only when
grown on spent356 or spent500 (Supplemental Figure 6).
There were several cases where the emergent phenotype
occurred in a single condition. For example, Clostridium
ASF356 only produced aspartate, lysine, methionine,
phenylalanine, succinate, tyrosine and several uniden-
tified metabolites (Unknowns 23, 25, 26, and 65) when
grown in spent360. Alternatively, while Parabacteroides

Figure 7.5: Genetic distance associated with
greater variance in metabolic distance.We quan-
tified the genetic distance between all species pairs us-
ing the Jaccard distance between the NOG annotation
sets. We similarly quantified the distance between the
spent media metabolomics profiles for all pairs of ASF
members. Genetic similarity is not strongly correlated
with metabolic state under these conditions. Points are
labeled with the ASF identifiers for the species pair.

ASF519 produced 3-hydroxybutyrate in every other me-
dia condition, when grown in spent502 it switched to
consuming 3-hydroxybutyrate. The complete list of
emergent, metabolic observations is available in Supple-
mental Data 2.

Genetic Distance Associated with Variance in
Metabolic Distance

We quantified the genetic distance between all pairs
of ASF members using the Jaccard distance between
the NOG annotations for each pair. Using the same
metric, we quantified the distance between spent me-
dia metabolomics profiles for all pairs of ASF mem-
bers. We found that genetic similarity is not strongly
correlated with metabolic state under these conditions
(Figure 5). Indeed, some pairs of closely related species
(e.g. Lactobacillus ASF360 and Lactobacillus ASF361)
were more different in terms of spent media profiles
than some more distant pairs (e.g. Pseudoflavonifrac-
tor ASF500 and Clostridium ASF502). Furthermore, we
performed a correlation analysis and identified 11,079
NOG-metabolite pairs which were statistically signifi-
cant (Spearmans correlation and Bonferonni multiple
testing correction with n=160 746; Supplemental Fig-
ure 7). After excluding unique NOGs and metabolites
which were consumed or produced by a single species,
458 correlations were significant.
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Growth Subtotal No Growth Subtotal Totals

No change
High Medium Low

614
High Medium Low

2,081 2,695146 416 52 460 1,426 195

Lower in
Double Spent

High to
Low

High to
Med.

Med. to
Low

73

High to
Low

High to
Med.

Med. to
Low

85 1582 30 41 3 43 39

Higher in
Double Spent

Low to
High

Low to
Med.

Med. to
High

333

Low to
High

Low to
Med.

Med. to
High

384 7179 51 273 10 43 39

Table 7.1: Classification of metabolite profiles between spent media and double spent media (known
metabolites only). Categories correspond to those presented in Figure 7.4B. Metabolite relative abundance
indications: “High” indicates a relative abundance 2 standard deviations above that in fresh media; “Med.”
indicates an abundance within ±2 standard deviations of that in fresh media; “Low” indicates a relative abundance
2 standard deviations below that in fresh media. For example, where a second species grew in the spent media
of a first species (“Growth” column), there were 9 cases where a metabolite which was “low” in the spent media
increased to “high” in the double spent media (“Low to High”).

7.6 Discussion

We present a novel approach to characterizing microbial
communities in vitro, and the results of applying this ap-
proach to gain insights into a model microbial commu-
nity known as the ASF. Through a bioinformatics anal-
ysis, we found that the ASF is far more representative of
wild microbiome functionality than random consortia of
similar or larger size. Through a spent media screen, we
found that cross-feeding interactions are relatively rare,
while non-growth-associated and emergent metabolism
are relatively common. These, together with the rest of
our findings, form the beginnings of a rich knowledge
base which increases the utility of the ASF as a model
gut community.

A primary outcome of this work is standardization of
ASF resources. Firstly, our morphological descriptions
accompanied by images, all gathered under the same
conditions, provide a reference for future researchers.
Comparing morphology to references such as these will
improve reproducibility and support the discovery of
new phenotypes. Secondly, we developed a chemically-
defined LB-based medium which simplifies metabolic
profiling, and ongoing efforts to build genome-scale
metabolic network reconstructions for the ASF mem-
bers. One drawback of the new LB-based medium is
that it does not support the growth of Mucispirillum
ASF457 (M. schaedleri), which is difficult to grow effec-
tively, even in complex media [16]. We attempted, un-
successfully, to identify media components which would
allow Mucispirillum ASF457 to grow, including the ad-
dition of porcine mucin, given the fact that Mucispiril-
lum ASF457 colonizes the mucous layer in the murine
colon [33]. We also attempted to grow Mucispirillum
ASF457 in the spent media of other ASF members. This
is an area for future research (Supplemental Data 3 in-
cludes a list of gene annotations missing from Mucispir-

illum ASF457 that are present in all other ASF mem-
bers). Despite this shortcoming, the new media success-
fully enabled metabolic profiling of the remaining seven
ASF members and their interactions.

The presented genomic analysis of the ASF vastly ex-
pands our knowledge of how the ASF relates—on a func-
tional level—to more complex microbiomes. Indeed, the
ASF is far simpler than a wild-type microbiome in terms
of both species and genetic composition. We found that
Parabacteroides ASF519 is a major contributor to the
unique qualities of the ASF, with impressive coverage of
genes and metabolic activities that may be vital in the
wild mouse microbiome. Additional studies are needed,
which reach beyond coverage of functional orthologs, to
better understand both the essential and redundant roles
played by each ASF species.

Traditional co-culture experiments have several draw-
backs which make it challenging to determine the mecha-
nism underlying interactions between two species. These
include difficulties determining which species utilized or
produced a given metabolite [34], and measuring growth
of individual species which requires tools with lower
temporal resolution and much higher costs than optical
density [35–38]. Computationally inferring interactions
from metagenomic data generally cannot resolve inter-
action directionality, but rather is limited to identify-
ing correlations between species abundances [39]. Spent
media experiments resolve some issues confronted in co-
culture experiments and computational inference. By
separating interactions into two steps (Figure 7.2), it is
simple to infer interaction directionality, and straight-
forward to generate hypotheses about underlying mech-
anisms [40, 41]. Growth measurements can be gathered
at high resolution with metrics such as optical density
because only a single species is growing. It should be
noted, that spent media experiments do not allow for
cell-to-cell contact or dynamic signaling between species,
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which may otherwise be relevant in co-culture or in
vivo [42]. Moreover, the nature of interactions can be
context-specific, such that interactions identified in this
spent media screen are not definitive for all conditions
[43]. Finally, while we utilized 100% spent media in this
study, we expect that a wider range of growth pheno-
types will be observable by using spent media dilutions
or by creating “partially spent media” such that there
are sufficient nutrients to support growth, but molecules
from the first species would still be able to influence the
second species. This is a promising direction for future
research.

Our interpretation of these spent media experiments
relies first on comparing the growth dynamics of a given
species in both fresh media and spent media (Supple-
mental Figure 5). Subsequent metabolic profiling (Fig-
ure 7.4) identified specific compounds hypothesized to
play a role in causing the observed interaction dynam-
ics. In a similar spent media experiment between en-
vironmental isolates of leaf degrading bacteria, it was
found that natural isolates engage in less cross-feeding
than isolates evolved together for several generations in
vitro [41]. While the ASF has evolved for many gener-
ations as a single community within mice, the defined
media environment used in our in vitro experiments is
very different from the murine gut environment, and so
it is not surprising that we observed few instances of
cross-feeding. An interesting future direction would be
to evolve the ASF in vitro in the defined medium, after
which we would predict that more cross-feeding would
be observable. Our observation that emergent metabolic
phenotypes are common between ASF members (at least
one emergent phenotype identified between all pairwise
species interactions) agrees with recent computational
and in vitro work demonstrating that the vast majority
of microbial pairs and media conditions exhibit emer-
gent biosynthetic behaviors [44, 45]. Also of interest,
we observed 469 instances in which metabolite relative
abundances changed despite an absence of growth (e.g.
Lactobacillus ASF361 grown in spent500). One explana-
tion is that in these cases, inoculated cells are metaboli-
cally active without active cell division [46]. It is notable
that most species grew slower (or not at all) and to a
lower overall density in spent media (Figure7.4 and Sup-
plemental Figure 8). This is likely due to the rich media
conditions, in that it is unlikely that another species
could produce a mixture of compounds more growth-
promoting than already found in the fresh media. We
would expect to see more growth-enhancing interactions
under minimal media conditions.

We found that the similarity of genetic annotations
between any pair of ASF members was not strongly cor-
related with the metabolic phenotypes of those same

pairs (Figure 7.5). This result is not surprising given
that the relationship between the phylogenetic distance
and the metabolic capabilities of two species can be mod-
eled by an exponential , the relationship is neither linear
nor strong [47]. Furthermore, we identified several cases
where the NOG presence/absence distribution was sig-
nificantly correlated with the consumption or production
of specific metabolites (Supplemental Figure 7). How-
ever, because there are so few species, the vast major-
ity of these significant correlations are between NOGs
found in a single species and the metabolites which were
uniquely consumed or produced by that species. These
results reinforce the need for more sophisticated ap-
proaches to linking genotype to phenotype, for example,
using comparative metabolic network modeling [48].

Of the seven ASF members that grew in the supple-
mented LB medium, Clostridium ASF356 and Parabac-
teroides ASF519 grew most rapidly and to the high-
est overall density (Supplemental Figure 5). Further-
more, both species grow in spent media from each other
(Figure 7.4). A summary of the data for Clostridium
ASF356 and Parabacteroides ASF519 highlights com-
petition for glucose and many opportunities for cross-
feeding (Figure 7.6). Clostridium ASF356 consumed
a far more diverse assortment of metabolites, while
Parabacteroides ASF519 consumed very few. Parabac-
teroides ASF519 has a more diverse metabolic output
than Clostridium ASF356. Considering ASF spatial dis-
tribution in vivo, Clostridium ASF356 is more abun-
dant in the cecum and Parabacteroides ASF519 is the
most abundant ASF member in the colon [16]. Parabac-
teroides ASF519 appears to be a scavenger, growing ro-
bustly in the distal colon where the ability to produce
essential biomass components from few inputs is an ad-
vantage.

The observation that Parabacteroides ASF519 re-
quired few substrates is partially explained by its large
genome size (6.87 Mb), the largest of the ASF. We
would expect large genome size to correlate with greater
biosynthetic capacity, knowing that smaller genomes
correlate with auxotrophy [49]. The metabolic char-
acteristics of Parabacteroides ASF519 are also interest-
ing in light of our comparison of random consortia to
the ASF: the core functions found in fecal metagenomes
were covered best by Parabacteroides ASF519 (Figure
7.1D), which allowed the ASF to out-perform much
larger microbial consortia (Figure 7.1C). Naturally, the
large genome of Parabacteroides ASF519 could lead to
more coverage of the core metagenome. However, the
next two largest genomes from Eubacterium ASF492
(6.51 Mb) and Clostridium ASF502 (6.48 Mb) do not
come close to the same coverage, nor do these species dis-
play the same prolific biosynthetic activity under these
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Figure 7.6: Inferred metabolic interactions be-
tween Clostridium ASF356 and Parabacteroides
ASF519.Clostridium ASF356 and Parabacteroides
ASF519 were able to grow in many more spent me-
dia conditions than other species, including spent media
from each other. We combined evidence from four me-
dia conditions including spent356, spent519, Clostrid-
ium ASF356 grown in spent519 and Parabacteroides
ASF519 grown in spent356 to form our hypothesis of the
metabolic interactions that would occur in co-culture.
Black pentagons indicate metabolites that are con-
sumed only from fresh media, yellow pentagons indicate
metabolites that are consumed only from spent media,
and yellow triangles indicate metabolites that are pro-
duced only in spent media. In general, Parabacteroides
ASF519 produces many more compounds than Clostrid-
ium ASF356, while Clostridium ASF356 consumes many
more compounds than Parabacteroides ASF519. Both
species consume—and would be expected to compete
for—glucose. Both species produce propionate in abun-
dance, while both species also produce butyrate and be-
taine, but only when grown in the spent media from the
other. For clarity, we have excluded unidentified NMR
peaks from this figure.

in vitro conditions. Parabacteroides ASF519 is an unex-
pectedly vital contributor to the ASF metagenome and
metabolic activity.

Our analysis of the ASF metagenome and spent media
experiments have produced a profile of ASF genetics and
metabolism which will enable future research to lever-
age knowledge of the unique qualities of the ASF. As an
example of how the ASF can be used advantageously,
a recent study leveraged an understanding of ASF
metabolism to engineer a microbiome which improved

survival of mice with hepatic injury [20]. An example
where more detailed information about ASF metabolism
would have been highly relevant, a recent study colo-
nized gnotobiotic mice with a subset of the ASF in an
attempt to prevent butyrate production [50], knowing
that the full ASF community does produce butyrate in
vivo [51]. That subset correctly excluded Eubacterium
ASF492, but included Parabacteroides ASF519, which
we found to also produce butyrate. Future experiments
excluding Parabacteroides ASF519 from ASF-colonized
mice will enhance our understanding of its impact on
mouse health and metabolism, and could shed light on
the role of similar species in the gastrointestinal tract
of humans. The metabolomics profiles presented in
this study indicate nutritional supplements which could
be used as pre-biotics in ASF-colonized mice. Indeed,
greater understanding of the ASF increases its utility as
a testing ground for validating strategies for the devel-
opment of microbiome-targeted therapies.

The ASF is a unique microbial community with a long
history of use in murine models, with untapped poten-
tial to become a highly characterized model microbiome.
Our characterization of ASF morphology, functional ge-
netic content, growth, metabolism and interactions lays
a strong foundation for future research into gut ecology
and efforts to engineer the gut microbiome to improve
health
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Chapter 8

Reflections and Future Directions

Over the course of completing Aims 1–3, I developed
novel multiscale models which integrate metabolic net-
works with other relevant data on microbial communi-
ties, I leveraged information inherent in metabolic net-
works to improve the assembly of microbial genomes
from metagenomic data, and I demonstrated how en-
sembles of metabolic networks are an effective approach
to managing uncertainty in metabolic network structure.
In additional, related work, I spear-headed an effort to
characterize the altered Schaedler flora (ASF) and fur-
ther develop it as a model microbiota. Having completed
this work, I now turn to describing how each project
advanced my field in key ways. In this final section I
attempt to articulate my perspective on the work re-
ported in this dissertation, and I discuss the next steps
for developing computational models of the microbiota
into tools that will benefit society.

8.1 Evaluating impact and looking
forward

Computational models of the gut microbiome in
the clinic

The overarching motivation behind my work has been
a long-term view of the future of computational mod-
els of the human microbiome, and the positive impact
that those computational models can have on human
well-being. Eventually, I expect that it will be possible
to generate highly accurate physiological models for any
microbial species based exclusively on the genome, and
that it will be possible to accurately predict microbe-
microbe and microbe-host interactions based on genomic
information such as antimicrobial peptides produced or
sensitivity to such peptides, the influence of quorum
sensing and other signaling processes, the spatial dis-
tribution of the microbial community and host cells, the
metabolic environment, and many other important fac-
tors. Based on these sources of information, then it will
be possible, in principle, to use a computational model of
the gut microbiome to rationally design improved ther-
apeutic strategies and pharmaceuticals. Such models
will be useful for drug discovery by identifying highly-
relevant drug targets. Such models will be useful for
regulatory approval of therapeutic approaches or phar-

maceuticals (or at least as a pre-clinical trial step) in
much the same way that a computational model of the
glucose-insulin system is used by the FDA to test closed-
lop insulin pumps [1]. Perhaps such models will also be
used in a personalized medicine context by integrating
patient ’omics data and suggesting the optimal drug,
pre- or probiotic treatments. Eventually, mechanistic
computational models based on metabolic networks will
be powerful clinical tools.

While this long view is the motivation for my
work—to develop tools which will allow genome-scale
metabolic networks to impact the clinic in the ways
just described—there are substantial obstacles to ar-
riving at that point (e.g. present difficulties in anno-
tating genes, the stochastic element in microbiome dy-
namics, the many non-metabolic factors which influence
microbe-microbe interactions and microbe-host interac-
tions). In the short-term, genome-scale metabolic net-
works are exeptionally valuable as research tools, and
my work provides stepping stones to the exciting future
described above.

Mechanistic models are powerful research tools

In a research setting, genome-scale metabolic networks
serve two primary roles. First, they serve as a for-
malized repository of all knowledge about biochemi-
cal conversions that can be performed by a given or-
ganism. Second, that knowledge is represented in a
way amenable to simulation, which is a formalized way
to generate hypotheses about an organism’s metabolic
function. Viewed in this way, the value of mechanistic
models is not exlusively in the ability to make accurate
predictions, but additionally, in the ability to represent
knowledge in a useful way and to identify the natural
conclusions that arise from that knowledge as it accu-
mulates. A prediction from a metabolic network can be
correct (supported by experimental data) or not (dis-
agrees with experimental data), but either outcome is
valuable to the research process. For example, an in-
correct prediction indicates an incomplete or incorrect
understanding of the system. New simulations can be
performed to identify potential fixes to reconcile predic-
tions and experimental data. Those potential fixes then
serve as hypotheses which can be tested, which leads to
new knowledge.
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The value and future of mutliscale models of mi-
crobial communities

In a research setting, multiscale models serve the same
primary roles as genome-scale metabolic networks. Re-
ally, any mechanistic computational model of a poorly-
characterized biological system is most valuable in these
two roles (by mechanistic, I mean the elements of the
model correspond directly to elements in the system).
Multiscale models serve as a resource for representing
knowledge of how a systems works at different scales,
and for generating testable hypotheses that arise from
the current understanding. ‘Omics data sets are accu-
mulating as our ability to characterize microbial com-
munities at every scale increases, and we know that
every ‘omics perspective is dependent on others (e.g.
proteomics measures protein abundances, which are de-
pendent on mRNA transcripts, measurable by tran-
scriptomics). Additionally, macro-scale measurements
of microbial communities (such as species growth rates)
are highly dependent on the lower-level biological pro-
cesses. Multiscale models will become increasingly es-
sential for integrating these large-scale, complext data
sets and macro-scale measurements, and generating use-
ful hypotheses from them. Additionally, I expect that
as ‘omics data becomes easier to to generate, time-series
data sets will be come more common, and the need for
dynamic multiscale models (as presented in Chapter 1)
will grow.

The value of my work in Aim 1 is in the development
of new ways to represent knowledge at multiple scales
and to generate hypotheses from that knowledge.

In Chapter 2 I presented a multiscale model of P.
aeruginosa biofilm formation which integrated knowl-
edge about P. aeruginosa metabolism with knowledge
about the biofilm assembly rules from the standpoint
of the individual cells. To my knowledge, that was the
first time genome-scale metabolic networks had been in-
tegrated with information about the spatial distribution
of the community of cells. The following year, a simi-
lar modeling framework was developed to simulate in-
teractions between bacterial colonies on an agar plate
[2]. Without considering the resulting predictions, the
modeling framework itself is a conceptual advance that
can contribute to the study of any microbial commu-
nity where both chemical and spatial factors influence
community development over time.

An obstacle to the application of this particular mul-
tiscale modeling framework is the computational com-
plexity required to run simulations. The need to solve
repetitive linear programs (simulating metabolic pro-
cesses) and numerically simulate diffusion of more than
100 metabolites required 15+ hours to run every individ-

ual simulation. This computational burden can be pro-
hibitive to performing enough replicates of a simulation
to accurately estimate variance. Another concern with
this and other multiscale modeling frameworks is that
the model can become overly complex. The abundance
of parameters can lead to overfitting available data, or
to such complex simulations that interpreting the results
can be just as challenging as interpreting the results of
an actual experiment in the lab. The answer to these
concerns is that a model should only be as complicated
as needed to address a particular problem, and that ap-
propriately complex multiscale models can still lead to
biological discovery [2]. Future research could benefi-
cially be aimed at increasing the efficiency of various el-
ements of the multiscale model, including dynamic flux
balance analysis and diffusion simulations.

Moving forward, I expect that some form of this model
will be important to studying the dynamics of gut mi-
crobial communities. In the gut, unique microbes live
higher up in the GI tract with unique adaptations to
extremes in pH, and there are distinct changes in com-
munity composition moving from small intestine to colon
[3]. There is additional structure starting from the en-
dothelial cells of the intestinal wall up through the mu-
cus layer into the intestinal contents [4]. Metabolites
and cells are carried along by peristaltic forces, and dif-
fusion carries metabolites to and from the intestinal lin-
ing. The interplay of all these spatial factors creates
many unique and dynamic micro-environments, which in
turn interact with the metabolic process of each unique
species. A multiscale model of this system would open
the possibility of exploring unique questions. For exam-
ple, what factors in the system have the strongest impact
on host metabolism? A systematic sensitivity analysis
could identify the microbial taxa, spatial regions, and
spatial parameters (such as the velocity of lumenal con-
tents) which most impact the flow of nutrients to the
host. To build a large-scale model like this, it would
be prudent to start with a simpler system such as an
artificial gut reactor [5] or the gut microbiome of gno-
tobiotic mice [6]. The initial goal would be to maintain
the model as a knowledge repository and a method of
generating hypotheses. Such a pairing between a mul-
tiscale model and an experimental system would serve
as an additional stepping stone towards powerful clinical
tools.

In Chapter 3 I presented a microbial interaction net-
work inferred from time series metagenomic data. In
that work I integrated predictions from genome-scale
metabolic networks with the inferred interactions of the
network in order to hypothesize about mechanisms of
interaction. It was not a multiscale model in the same
sense as the biofilm model earlier, but it was a new way
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to integrate data from different scales together and make
hypotheses based on the available information. In terms
of the two primary roles I mentioned above, the work in
Chapter 3 addresses the second (i.e. a need for new ways
to generate hypotheses). The role of metabolic networks
in Chapter 3 was to estimate the role of metabolism in
explaining the inferred interactions. I chose to represent
genus-level metabolism as the union of many species-
level metabolic networks. This was intended to represent
the scope of the genus “pan-genome”, but an alternative
approach would be to represent a genus-level metabolic
network as an ensemble (a different application of ensem-
bles than discussed in Chapter 6). Interactions between
genera could then be represented as a distribution of
interactions between the species-level networks in each
genus-level ensemble. This is a potentially fruitful future
direction.

The value and future of SONEC

In Chapter 5 I presented SOrting by NEtwork COmple-
tion (SONEC), an approach for binning short metage-
nomic sequence fragments into species-specific genomes.
This is a fundamentally different role for metabolic net-
works than has been demonstrated previously. The
SONEC algorithm was intended to fill a need arising
from Aim 1: that is, in order to build multiscale mod-
els of real microbiomes, we first need genomes for each
species present. As I mentioned in the context for that
chapter, there are now sequencing technologies avail-
able which significantly reduce the need for metage-
nomic read binning approaches such as SONEC, includ-
ing single-cell [7] and long-read sequencing technologies
[8]. Therefore, the value of SONEC now is not so much
in the specific algorithm itself (which may find limited
use in traditional, short-read metagenomic data sets),
but rather in the concept that biochemical networks can
serve as an additional source of information for find-
ing order in chaotic meta-omics data. Other applica-
tions where a similar concept could be applicable are
metabolomics and proteomics. I can imagine a case
where draft metabolic networks could be reconstructed
for species in a community based on metagenomic data,
and those models would be used to help interpret addi-
tional meta-omics data, such as identifying the species
most likely to have produced a particular metabolite or
peptide.

The value and future of Ensemble FBA

In Chapter 6, I introduced Ensemble FBA, which allows
for the representation and analysis of many competing
hypotheses with regard to metabolic network structure.
I believe that ensemble analysis of metabolic networks

has improved—and with additional research, will con-
tinue to improve—the ability to predict microbial phys-
iological properties based on limited information (a key
challenge in computational biology). One possible direc-
tion for future work would be to develop optimal meth-
ods for deciding which networks within the ensemble
are closest to the true network structure. For exam-
ple, I explored the possibility of designing an alorithm
which would choose an optimal sequence of experiments
to systematically narrow down the network structures.
In this way, an ensemble could lead to more efficient use
of wet lab resources. A future direction that would fur-
ther apply ensembles to managing uncertainty in net-
work structure would be to integrate regulatory net-
works (or ensembles of regulatory networks) with ensem-
bles of metabolic networks. This would be one way to
represent the space of possible network structure/state
combinations given available information. Finally, an
important future direction will be to explore alternative
methods to generate ensembles of metabolic networks,
including sampling in probability-based reconstruction
methods, or generating individual networks using differ-
ent reconstruction methods altogether.

Another important result from the Ensemble FBA
project was the trimming algorithm, devised to make
better use of carbon utilization data. We found that by
incorporating negative growth conditions using this new
trimming algorithm, ensemble accuracy was improved
by ∼15%. However, I did not take into account the an-
notation confidence when trimming reactions, and pos-
sibly trimmed reactions which are actually active in the
organism. One possible direction for future work is to
weight the reactions by how confident the gene anno-
tation was, so that low-confidence reactions are more
likely to be removed. Another possible direction is to
incorporate the trimming algorithm with regulatory in-
formation, to identify genes whose expression is most
likely suppressed under particular growth conditions.

Ensemble FBA can improve the predictions generated
by metabolic network analysis. Improved predictions
benefit the integration of metabolic networks into mul-
tiscale models. Future efforts can be directed towards
improving ensemble-level predictions, including weight-
ing network votes or treating the distribution of votes
probabilistically.

The value and future of model microbiota paired
with computational models

In Chapter 7 I presented additional work characterizing
the altered Schaedler flora (ASF). The intention is that
the ASF serve as a platform for validating metabolic
network-based models of the gut microbiome. The gut
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microbiome is still a poorly-characterized system, even
given a mere 8 ASF species in a gnotobiotic mouse. By
first characterizing the ASF gut microbiome, we expect
that important principles will be discovered which are
applicable to more complex gut microbiomes. Genome-
scale metabolic networks will serve as a repository of
knowledge as our efforts to characterize the ASF ad-
vance, and analysis of the network models will guide
experimentation. Some questions we hope to address
would include: What is the role of each species in the
community in terms of host nutrition and community
structure? A related question, what happens when each
species is removed (in terms of community structure and
metabolic function)? What happens when the diet is
changed, and how are the changes a function of the
metabolism of each species? How do nutrients flow
through the system, and how much of the bioconver-
sions we observe can be predicted by metabolic models?

As the ASF microbiome becomes better characterized
(which we expect to happen much faster with the ASF
than with a more complex microbiome), we can move to-
wards testing new algorithms that could someday have
clinical value. The ASF will serve as a sandbox for test-
ing new pre- and probiotic design algorithms. For ex-
ample, an arbitrary objective could be to design prebi-
otics which increase the abundance of Parabacteroides
ASF519 in the small intestine. Starting with several
candidate pre- or probiotics suggested by one or more
algorithms, it would be much more straightforward to
test and evaluate those treatments in ASF gnotobiotic
mice than in other, more complex systems. Even with
a simple community such as the ASF, I would expect
this process to be difficult. As mentioned at the be-
ginning of this chapter, there are many non-metabolic
factors that determine microbial interactions. Even pre-
dicting metabolic interactions is still difficult to do with-
out prior knowledge about the community [9]. A large
part of working with a simple community such as the
ASF is being able to identify those factors , metabolic or
not (e.g. host diet, species abundances, non-metabolic
interactions), which are most predictive of desired out-
comes (e.g. metabolite levels in host blood, host weight,
abundances of particular community members) and de-
vising ways to incorporate those important factors into
the modeling framework.

The results from Aims 1–3 fit into a larger work-
flow

Conceptually, Aim 2 (SONEC) improved the first step
in a genome-scale metabolic network analysis, which is
to gain access to a genome. Aim 3 (EnsembleFBA) im-
proves the predictions that can be made from genomic

information. Both Aim 2 and Aim 3 support Aim 1
(multiscale modeling) by providing genomes and im-
proving the models derived from those genomes, which
then improves the predictions from any derivative mul-
tiscale models.

8.2 Conclusion

The human microbiome exerts an enormous influence on
host health. Genome-scale metabolic networks are pow-
erful research tools for tracking knowledge and system-
atically generating testable hypotheses. My graduate
work has resulted in advances in the ability to incor-
porate metabolic networks into rich multiscale models.
My work has also resulted in the SONEC algorithm, a
demonstration of how metabolic networks can help to in-
terpret meta-omics data. Ensemble FBA is a key result
that improves the predictions that can be generated from
draft metabolic networks. By beginning to characterize
the ASF, I have furthur molded the ASF into a useful
experimental tool for validating computational methods
and discovering important principles of gut microbiome
function. In summary, I have introduced conceptual ad-
vances and concrete tools which will serve as stepping
stones towards the larger goal of developing robust com-
putational biology tools for engineering microbial com-
munities of societal importance.
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