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“I am among those who think that science has great beauty” 

-Marie Curie 

 

“We are not afraid to follow truth wherever it may lead, nor to tolerate any error so long as 

reason is left free to combat it.” 

-Thomas Jefferson



 

Abstract 

 

Fibrosis, the accumulation of excess extracellular matrix, is a characteristic of many pathologies. 

But it is currently poorly understood, partially because it was long thought to be simply a 

reaction to injury or a side effect of healing, rather than a treatable disease process. However, 

fibrosis is increasingly a focus of research as anti-fibrotic therapy has the potential to improve 

the prognosis for patients with fibrosis. In most organs fibrosis is associated with increased 

mortality because it disrupts normal organ function, and it can be progressive and permanent. In 

the heart, fibrosis is particularly devastating because increased extracellular matrix stiffens 

cardiac tissue and the mechanical properties of the heart are crucial to efficient pumping. Even 

post-myocardial infarction, when fibrosis is necessary to prevent rupture of the ventricular wall, 

the character and extent of matrix production is an important determinant of cardiac health. This 

is particularly true since cardiomyocytes do not repopulate the infarct scar, leaving the matrix 

and the fibroblasts who maintain it the important role of preserving pump function.  

Another reason the mechanisms of fibrosis remain unknown is that it is a complex, 

heterogeneous response to a variety of injuries. In order for fibrosis to develop, a multitude of 

signals from the extracellular matrix, inflammatory cells, injured parenchymal cells, and 

endothelial cells drive matrix protein production or degradation. Often the relative amount of 

different matrix proteins, cell types, and chemical stimuli are specific to the organ and the 

initiating injury, meaning each fibrosis type is unique. Furthermore, fibroblasts, thought to be the 

main cell type involved in fibrosis development, are highly plastic. That is, they are capable of 

adopting a variety of phenotypes in response to different signaling contexts, and that results in a 
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variety of effects on the extracellular matrix. Fully investigating the complex signaling milieu 

and consequent cell decision-making is a difficult, almost intractable, experimental challenge. 

What drives fibrosis is exactly the sort of question that is suited to a systems biology approach. 

With computational modeling it is easier to interrogate fibrosis as a system to determine which 

cell type, which signaling pathway, or which protein is the major modulator of fibrosis 

development in a given setting. Ultimately, a systems biology investigation of fibrosis could 

identify potential therapeutic approaches for prevention or reversal of fibrosis through targeting 

fibroblast signaling.  

This study represents a first step in that direction by focusing on cardiac fibroblast 

signaling and decision-making. We used the literature on cardiac fibroblast and general 

fibroblast signaling interactions to compile a manually curated network of fibroblast signaling 

pathways. This network is effectively a review of the current understanding of fibroblast 

signaling. This network was used in a logic-based ODE model that can predict changes in 

relative activity of network members given an extracellular signaling context (both mechanical 

and chemical).  

We applied this model to the question: how does signaling context determine which node 

or pathway can modulate collagen expression? We first investigated how pathways are organized 

into modules and how these modules are affected by which stimulus is applied to the model. This 

led us to the prediction that mechanical signaling depends on the TGFβ pathway to induce 

αSMA production, and this was validated in rat cardiac fibroblasts. The model was also used to 

predict how dynamic signaling in the post-MI setting affects collagen I expression in fibroblasts. 

We predicted that IL1 signaling is the dominant pathway determining fibroblast phenotype in the 

early (0.5 day) post-MI signaling context, and that TGFβ is the dominant pathway at the 7 day 
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time-point. We found that ROS is a context-dependent regulator of collagen I mRNA expression 

in both dynamic and steady-state simulations. We also hypothesize, based on model predictions, 

that nodes such as PKC or IL1RI are pro-fibrotic modulators of fibroblast signaling in the post-

MI dynamic signaling context. This use of a model to investigate wound healing process is an 

important advance, as the dynamics of acute wound healing are difficult to study. Ultimately, the 

model predicted that up-regulation of a node is more likely to be pro-fibrotic than anti-fibrotic. 

This leads to the general hypothesis that cardiac fibroblasts are primed to increase collagen 

production in response to a variety of stimuli. 

As drug discovery is an important use of computational modeling, we developed a 

pipeline for in silico drug screening using the fibroblast signaling model. With this pipeline we 

were able to predict drugs that can improve (triflusal) or worsen (arsenic trioxide or anti-

thymocyte globulin) cardiac remodeling post-MI through regulation of collagen I expression by 

fibroblasts.  

In this study we developed a signaling network and computational model that together 

provide a framework for understanding how fibroblasts decide to adopt a certain phenotype. I 

outline in this dissertation a few important applications for this model: linking topological 

structure to function, screening for potential pro- or anti- fibrotic activity of drugs, and 

determining the context-dependence of collagen modulators. But this network and model are 

flexible enough to be applied to other questions. Gene expression data could be used to inform 

model parameters and make predictions about how organ-specific or patient-specific fibroblasts 

respond to different signaling contexts. This model could be incorporated into a multi-scale 

model of tissue-level fibrosis, or stochastic variation could be added to the model to predict how 

populations of fibroblasts lead to changes in matrix composition. Finally, pathways could be 
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added onto this network either through further manual curation or through network expansion 

using inference techniques and high-throughput expression or proteomics data. The capabilities 

of this model highlight how it can be useful in organizing current knowledge to make hypotheses 

about fibroblast behavior.  
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Modeling of Cardiac Fibroblasts and Fibrosis.” Journal of Molecular and Cellular Cardiology 
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1.1 Foreword 

In order to properly introduce this thesis, it’s important to explain why I initially wanted to 

pursue this project. I joined the Saucerman lab because I find the heart fascinating, and I felt it 

would be beneficial to gain skills in systems biology, as this is rapidly becoming an essential tool 

for solving problems of complex diseases. This dissertation underscores my deep interest in 

cardiac and systems level research. However, this project is first and foremost about a 

wonderfully plastic and multi-tasking cell - the fibroblast. When given the choice of projects to 

work on, I chose to work on fibrosis because I was taught in medical school how intractable a 

problem it was. In almost every system we studied, fibrosis emerged as the end-point to many 

pathologies. Despite years of futile research, there is no cure for fibrosis, which means it is often 

presented as a boring clinical problem, a basic sign that the body is injured rather than a disease 

state to be treated. Although in some organs treatment of the underlying cause can reverse 

fibrosis, in many organs, fibrosis is a death knell. I specifically remember meeting a patient with 

idiopathic pulmonary fibrosis just after learning this diagnosis had a median survival rate of two 

years. It was hard to listen to him speaking because all I could think about was how soon he was 

going to die. This is the kind of problem that attracted me, and many others, to a career as a 

physician scientist. There are patients for whom there is little hope, and we seek to provide some 

sliver of additional opportunity for them through research.  

Since I began working on this dissertation, I have learned that fibrosis is a complex and 

terrifying process - often utilizing aggressive feed-forward signaling to perpetuate further matrix 

production. This is, I think, the type of problem most suited to a systems biology approach. 

There is no one single cell type, one single stimulus, or one single matrix protein that makes 

fibrosis. Instead it is a complex interplay between many signals and many cells, which can easily 



 | 3 

 

tip matrix production from helpful to harmful. The matrix itself is a complex meshwork whose 

composition and arrangement can determine everything from a single cell’s phenotype to an 

organ’s mechanical properties. Even the most well designed in vivo experimental study cannot 

fully investigate all the temporal, cell-specific, and organ-specific drivers of fibrosis. The 

question of what drives fibrosis is one that can benefit from the power of computational 

experimentation where variation in all of these factors can be investigated quickly and cheaply. 

This thesis uses computational modeling to understand how fibroblasts, the cell type central to 

fibrosis, integrate complex stimuli and respond to the benefit or harm of the heart. In this 

chapter, I review what had been accomplished in the area of computational modeling of 

fibroblasts in the heart.  

 

1.2 Introduction 

Altered fibroblast behavior can lead to pathologic changes in the heart such as arrhythmia, 

diastolic dysfunction, and systolic dysfunction. Computational models are increasingly used as a 

tool to identify potential mechanisms driving a phenotype or potential therapeutic targets against 

an unwanted phenotype. In this chapter, we review how computational models incorporating 

cardiac fibroblasts have clarified the role for these cells in electrical conduction and tissue 

remodeling in the heart. Models of fibroblast signaling networks have primarily focused on 

fibroblast cell lines or fibroblasts from other tissues rather than cardiac fibroblasts, specifically, 

but they are useful for understanding how fundamental signaling pathways control fibroblast 

phenotype. In the future, modeling cardiac fibroblast signaling, incorporating -omics and drug-

interaction data into signaling network models, and utilizing multi-scale models will improve the 
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ability of in silico studies to predict potential therapeutic targets against adverse cardiac 

fibroblast activity. 

Fibroblasts are integral to the normal structure and function of the heart. During 

development, fibroblasts deposit extracellular matrix (ECM) to provide structural integrity of the 

myocardium (K T Weber 1989; Souders, Bowers, and Baudino 2009). Throughout life, 

fibroblasts maintain and remodel the ECM in response to the environment and act as sentinel 

cells, integrating the tissue’s response to various mechanical, chemical, and electrical cues 

(Miragoli, Gaudesius, and Rohr 2006; Souders, Bowers, and Baudino 2009). For example, 

fibroblasts play a role in initiating and resolving the inflammatory response following 

myocardial injury such as infarction (Díaz-Araya et al. 2015). Finally, it is increasingly clear that 

fibroblasts are electrically coupled to myocytes and contribute to the electrical properties of the 

myocardium (Shibukawa et al. 2005; Souders, Bowers, and Baudino 2009; Miragoli, Gaudesius, 

and Rohr 2006).  

Cardiac injury, such as an infarct, prompts changes in fibroblast activity that can be 

helpful or pathologic. Following an infarct, inflammatory cytokines induce migration of 

fibroblasts into the tissue that are, at later stages of healing, induced to deposit collagen and 

differentiate into pro-fibrotic myofibroblasts. A balance of ECM production and degradation is 

necessary to prevent excessive loss of matrix proteins which can increase risk of wall rupture and 

infarct expansion (Ma et al. 2013), or excessive matrix production which can lead to increased 

interstitial fibrosis even in areas distant from the infarct (Sun and Weber 2000). Activated 

myofibroblasts have been observed in human cardiac tissue many years after an infarct, 

indicating the potential for long-term tissue remodeling by fibroblasts (Willems et al. 1994). 

Fibroblast activation can be triggered by many other forms of cardiac injury including pressure 
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overload (K T Weber 1989), diabetes (Asbun and Villarreal 2006), and infectious diseases such 

as Chagas disease(Galvão and Miranda 2010) or Coxsackie B3 infection (Nishtala et al. 2011).  

Not only does fibroblast activity change in response to injury and disease, but altered 

fibroblast matrix production can also provoke disease. For example, myxomatous valve disorders 

are associated with an increase in matrix metalloproteinase (MMP) production by myofibroblasts 

without an increase in collagen expression leading to a loss of structural integrity in the valve 

(Rabkin et al. 2001). Increased ventricular fibrosis is associated with a worse prognosis and 

worsened diastolic dysfunction (Wong et al. 2012; Moreo et al. 2009). Fibrosis is also implicated 

in conduction abnormalities that increase risk for arrhythmia (Krul et al. 2015; Miragoli, 

Gaudesius, and Rohr 2006). Restoring the balance of fibroblast activity could be a valuable 

therapeutic approach, which would rely on a more complete understanding of fibroblast 

regulation and function. 

Yet the complexity of cardiac fibroblasts and fibrotic tissue hinders such an 

understanding. Teasing apart the competing roles of fibroblasts in response to mechanical, 

chemical, and electrical cues is difficult to do experimentally. When closely integrated with 

experimental studies, computational models can provide a powerful framework for developing a 

quantitative understanding of complex biological systems. Indeed, computational models of 

cardiomyocytes have long been employed to make substantial insights into cardiac 

electrophysiology, mechanics, and signaling networks, as recently reviewed elsewhere 

(Trayanova and Boyle 2014; J. H. Yang and Saucerman 2011). Increasingly, computational 

models have also begun to provide important insights into cardiac fibroblasts and cardiac 

fibrosis. Here, we review the contributions of computational modeling to the field’s 

understanding of how fibroblasts modulate electrical conduction, coordinate tissue remodeling, 
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and integrate signals. We then outline future directions for improving modeling of cardiac 

fibroblasts toward a better understanding of the role of fibroblasts in heart disease and targeted 

design of therapeutic strategies.  

 

1.3 Electrophysiological Modeling 

Fibroblasts play a role in electrical conduction through the heart both indirectly through 

regulation of extracellular matrix proteins and directly by connecting to cardiac myocytes (Rohr 

2009; Spach and Boineau 1997). Fibroblasts have been shown to conduct electrical activity 

through direct connection to myocytes via gap junctions composed of Cx43 and Cx45 

(Gaudesius et al. 2003; Miragoli, Gaudesius, and Rohr 2006). Their resting membrane potential 

in vitro is primarily determined by K+ currents and was measured around at -60mV (Shibukawa 

et al. 2005). Fibroblasts alter myocyte electrical behavior in vitro by raising their resting 

membrane potential and by slowing conduction velocity (Chilton et al. 2005). Here we review 

how computational modeling has been used to better understand how electrical coupling to 

fibroblasts modulates both cardiac myocyte and tissue electrophysiology. 

 

Linking Fibroblasts to Cardiac Myocytes 

Kohl et al. developed the first computational model linking fibroblasts and cardiac myocytes, 

applying it to test the hypothesis that mechanosensitive fibroblasts modulate the spontaneous 

firing rate of the sinoatrial node (SAN) (P Kohl et al. 1994). They modeled fibroblasts as 

electrically passive (lacking voltage-dependent ion currents) but responsive to mechanical 
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stretch. When coupled to a single myocyte, this model predicted that fibroblasts increased the 

rate of SAN firing in response to stretch, consistent with previous studies. Further, the model was 

able to predict how variations in the coupling between fibroblasts and myocytes would affect 

these responses (P Kohl et al. 1994). The Oxsoft model was later expanded by linking it with the 

Kurata rabbit SAN model and was used to examine how fibroblasts affect SA node activity 

(Oren and Clancy 2010). The model predicted that fibroblasts act as electrical sinks and slow 

conduction from SAN to atrium. This could provide a mechanistic link between age-associated 

increases atrial conduction times and atrial fibroblast numbers. 

While early models represented fibroblasts as electrically passive, the MacCannell model 

was the first to incorporate active, voltage-dependent ion currents based on patch clamp 

measurements from isolated cardiac fibroblasts (MacCannell et al. 2007). This electrically active 

fibroblast model was coupled to the ten Tusscher model of cardiac myocyte electrophysiology, 

which has experimentally-based parameters for ion current densities and gating kinetics from 

human ventricular myocytes and in vivo data (ten Tusscher et al. 2004). The MacCannell model 

described the fibroblast’s electrical activity based on four currents: a delayed-rectifier K+ 

current, an inward-rectifying K+ current, a Na+-K+ pump, and a “leak” Na+ current. The 

parameters for the delayed-rectifier K+ current were derived experimentally, while the 

parameters for the inward-rectifying K+ current were estimated from the ten Tusscher model. 

This “active” model was more accurate than a comparable “passive” model of fibroblast activity, 

which lacked voltage-dependent ion currents. This model predicted that fibroblasts would 

partially depolarize the resting membrane potential for myocytes and shorten the action potential 

duration (Fig. 1.1A), which agrees with experimental studies(Miragoli, Gaudesius, and Rohr 
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2006). This model was subsequently adapted for use in several models of tissue-level conduction 

as described below. 

 

 

 Around the same time, Jacquemet et al. published a more phenomenological model that 

described the voltage-dependence of fibroblast ion currents as a polynomial fit to in vitro 

data(Jacquemet and Henriquez 2007). They coupled the fibroblast to a model of a mouse 

myocyte(Bondarenko et al. 2004) as a single fibroblast-myocyte pair or a strand of myocytes 

covered with a layer of fibroblasts. Increasing myocyte-fibroblast coupling and increasing 

fibroblast activity decreased the conduction velocity and prolonged action potential duration. 

Importantly, they predicted that the fibroblast’s resting membrane potential was an important 

determinant of the effect on the myocyte. When the myocyte membrane potential was more 

negative than the fibroblast, the fibroblast acted as a source of current, but the fibroblast acted a 

Figure 1.1: Electrical behavior of fibroblasts. (A) The MacCannell model predicts myocyte action 

potential duration and fibroblast potential elevation are shortened as the number of fibroblasts 

connected to myocytes is increased. Figure adapted with the permission by Biophysical Journal from 

MacCannell et al 2007. (B) Predictions from the Ashihara model show that increased numbers of 

fibroblasts connected to a myocyte can slow conduction (dashed arrow) or even cause conduction 

block (double lines). Figure adapted with permission by Circulation Research from Ashihara et al 

2012. 
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current sink when the myocyte potential was less negative. A later modification of this model 

retained the same fibroblast-myocyte organization but used a model of a canine atrial 

myocyte(Ramirez, Nattel, and Courtemanche 2000) coupled to the MacCannell 

model(Jacquemet and Henriquez 2008).This model predicted the myocyte resting membrane 

potential would be higher with increased fibroblast-myocyte coupling, in agreement with the 

MacCannell model. They determined that a lower fibroblast resting membrane potential shortens 

the action potential duration (APD), while a higher resting membrane potential prolongs the 

APD. This reconciles the apparent contradiction between the findings in their previous study and 

those in the MacCannell study using the same conclusion that the relative difference between the 

myocyte and fibroblast membrane potentials determines the effect on electrical conduction.  

 Others have used a more detailed Markov model of the fibroblast time- and voltage-

dependent outward K+ current and reached the same conclusion that the relative membrane 

potentials of the two cells is important for determining the effect of fibroblasts on electrical 

activity(Sachse, Moreno, and Abildskov 2008). Additionally, the model predicted that increased 

heterocellular coupling (through decreased myocyte-fibroblast resistance) intensified the effect 

of fibroblasts on electrical activity. Overall, these studies and others(Xie, Garfinkel, Weiss, et al. 

2009; Xie, Garfinkel, Camelliti, et al. 2009; Sachse et al. 2009), provide quantitative support for 

hypothesis that fibroblasts affect the electrical activity of cardiomyocytes by acting as a current 

source or sink depending on the context. The Sachse model used four arrangements of myoctes 

and fibroblasts that are simplifications of organizations that could be observed in vivo. For 

example, fibroblasts forming a bridge between chains of myocytes, as would be found in focal 

fibrosis, were predicted to lead to conduction block, which was consistent with in vitro 

studies(Gaudesius et al. 2003). Together these studies provide a basis for understanding how 
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coupling to a fibroblast affects myocyte resting potential and action potential, and applying these 

simplified models to more complex heterocellular arrangements allows for an increased 

understanding of tissue-level electrical conduction and arrhythmia.  

   

Modeling Fibroblast Contribution to Ventricular Arrhythmia 

A number of studies have built upon these models of conduction velocity to examine the impact 

of fibroblasts on ventricular arrhythmia. In a highly influential study, Zlochiver et al. combined 

experimental and computational approaches to examine the role of myofibroblast-myocyte 

coupling on reentrant arrhythmias(Zlochiver et al. 2008). Their model coupled an active 

myofibroblast model to the Viswanathan model of a ventricular myocyte(Viswanathan, Shaw, 

and Rudy 1999; Zlochiver et al. 2008) to simulate electrical propagation in a co-culture of 

myofibroblasts and myocytes. The arrangement of the cells was designed to match the 

experimental arrangements measured in vitro. Their model predicted that increased 

myofibroblasts would decrease reentry of a spiral wave but would increase the complexity of the 

electrical propagation (increased phase singularities). Further, an increase in myofibroblast-

myocyte and myofibroblast-myofibroblast coupling decreased phase singularities but had a 

biphasic relationship with conduction velocity, with the lowest conduction velocity occurring at 

intermediate myofibroblast density. These findings were remarkably consistent with data from 

their co-culture experiments(Zlochiver et al. 2008). The biphasic relationship between 

conduction velocity and myofibroblast coupling highlights the potential for fibroblasts either to 

contribute to or protect against conduction abnormalities.  
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Other models have expanded on the detailed MacCannell fibroblast model to explore how 

fibroblasts contribute to arrhythmia development. The Zlochiver group later developed a model 

based on the MacCannell model linked to the ten Tusscher model with fibroblasts arranged as a 

layer on top of a sheet of myocytes (bilayer model) or interspersed between the myocytes as a 

monolayer(Greisas and Zlochiver 2012). This model predicted a biphasic relationship between 

spontaneous depolarization frequency that peaks at intermediate fibroblast/myocyte ratios. 

However, they found that stability of the reentrant wave decreases with increased fibroblast 

density and increased fibroblast-myocyte coupling, which is in contrast to the Zlochiver model. 

The most likely reason they cited for the discrepancy was that the previous model assumed that 

fibroblasts and myocytes were the same size. While this assumption may be appropriate in vitro, 

this newer model represented the in vivo case where fibroblasts are much smaller than myocytes.  

There are also other factors regarding fibroblasts and extracellular matrix that differ between 

in vitro and in vivo experiments. Ashihara et al. adapted the MacCannell model to model 

fibroblasts or myofibroblasts and coupled it to the Courtmanche human atrial model(Ashihara et 

al. 2012). Myofibroblasts were represented as fibroblasts with increased capacitance. They found 

that both fibroblasts and myofibroblasts shortened action potential duration and that areas of high 

fibroblast or myofibroblast density slow conduction (Fig. 1.1B) and are arrhythmogenic, but that 

fewer myofibroblasts than fibroblasts are sufficient to induce conduction block. Simulation of 

ablation in those areas prevented reentry, providing a rationale for the treatment of arrhythmia 

with ablation.  

Myocardial infarction is a risk factor for the development of arrhythmia. McDowell et al. 

integrated the MacCannell model into a finite element model (FEM) based on an MRI of a rabbit 

heart to investigate how fibroblasts in the infarct zone and peri-infarct zone affect electrical 
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conduction throughout the heart (McDowell et al. 2011). As predicted by the Jacquemet model 

(Jacquemet and Henriquez 2008), this model predicted that the fibroblasts act as a current sink 

during the action potential to shorten APD, but during rest the fibroblasts act as a current source 

and raise the resting membrane potential. Furthermore, the resting membrane potential was 

higher with increased myofibroblast-myofibroblast coupling within the scar and was further 

increased with a higher density of myofibroblasts in the infarct zone. Their model also predicted 

that intermediate levels of myofibroblasts in the peri-infarct zone are arrythmogenic because 

there is a dispersal of the APD, but at higher densities the myofibroblasts act as a current sink to 

limit reentry. Together these studies indicate that fibroblasts can support arrhythmia by 

increasing the heterogeneity of electrical conduction, but they can limit arrhythmia by slowing 

conduction or facilitating conduction depending on the strength of fibroblast-myocyte or 

fibroblast-fibroblast connection. As the electrical properties of fibroblasts in vivo are clarified 

(recently reviewed by Kohl et al. (Peter Kohl and Gourdie 2014)), updates on these models can 

incorporate more accurate parameters and improve our understanding of the role of fibroblasts in 

modulating electrical activity in the heart. 

 

1.4 Fibroblasts and Tissue Remodeling 

The extracellular matrix is a critical determinant of cardiac mechanics, and abnormal quantity or 

organization of matrix can lead to both systolic and diastolic dysfunction. Many past studies 

have used computational modeling to demonstrate the acute mechanical effects of cardiac matrix 

structure and organization (Bogen et al. 1980; Fomovsky et al. 2011; Moyer et al. 2015; Wall et 

al. 2006; Wenk et al. 2011). Herein, we focus our review on models that predict fibroblast-
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mediated, long-term changes in scar structure, i.e. growth and remodeling during wound healing 

and/or fibrosis. Cardiac fibroblasts drive matrix turnover through an orchestrated balance of 

matrix protein secretion and processing (e.g., collagen I, collagen III, fibronectin, elastin, etc.), 

proteinase secretion and activation (e.g., MMP 1, 2, 3, 7, 8, 9, 12, 13, 14, etc.), and proteinase 

inhibitor secretion and activation (e.g., tissue inhibitor of metalloproteinases (TIMP) 1, 2, 3, 4) 

(see reviews by Creemers (Creemers et al. 2001), Lindsey (Lindsey and Zamilpa 2012), and 

Vanhoutte (Vanhoutte et al. 2006)). Fibroblasts can also organize matrix structure by exerting 

acto-myosin generated contractile forces on matrix fibers via focal adhesions (Hailong Wang et 

al. 2014; Harris, Stopak, and Wild 1981), and by directing the deposition of matrix fibers with 

preferred orientations parallel to the cells’ own orientations (Birk and Trelstad 1986; Trelstad 

and Hayashi 1979; Canty et al. 2004). Fibroblast-mediated turnover and fibroblast-mediated 

remodeling are both sensitive to chemical and mechanical environmental cues that can 

dramatically change during disease conditions (Nahrendorf M, Sam F 2016; Richardson WJ, 

Clarke SA 2016). The relationships between local signals and long-term matrix remodeling have 

therefore been the focus of a number of computational studies, which have varied in modeling 

framework and biological complexity. Here we divide the studies by the biological components 

explicitly included in their simulations: matrix only, matrix plus fibroblasts, or matrix plus 

multiple cell types.  

 

Matrix-Only Models 

Extracellular matrix growth and remodeling across diverse tissues has been predicted using a 

variety of computational frameworks including simple ODE (ordinary differential equation) 

models, FEMs, constrained mixture models, agent-based models, and others. To our knowledge, 
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the first simulations focusing specifically on cardiac matrix remodeling were performed by 

Driessen and colleagues to test the effects of mechanical loading on collagen fiber orientations in 

the aortic valve. In a series of studies (N. J. Driessen et al. 2003; N. J. B. Driessen, Bouten, and 

Baaijens 2005; N. J. B. Driessen et al. 2008), they used an FEM of the aortic valve geometry and 

loading to calculate strain and stress distributions throughout the valve. Assuming that steady-

state fiber content increases linearly with stretch2 and that fibers tend to align according to 

positive principal strain directions, matrix remodeling simulations were conducted stepwise with 

new matrix structure (and corresponding new material parameters) calculated in remodeling 

steps, then new tissue strains calculated in FEM steps. Over time, these straight-forward 

assumptions proved to be sufficient to successfully generate the distinctive, fiber architecture 

experimentally observed in mature valves with fibers running from commissure to commissure. 

 

Matrix & Fibroblast Models 

Some of the earliest models explicitly combining fibroblasts with matrix remodeling were 

formulated by Dallon and colleagues, who simulated fibroblast-mediated dermal wound healing 

by simulating matrix properties as a continuous 2D-vector field and fibroblasts as discrete 

elements migrating in that field (J. C. Dallon, Sherratt, and Maini 1999; J. Dallon et al. 2000). In 

these simulations, fibroblasts oriented themselves by averaging their previous orientation 

direction with the local collagen fiber direction, then migrated, reoriented existing collagen, and 

laid down new collagen according to prescribed rate parameters. Not surprisingly, the long-term 

matrix alignment and content was highly dependent on a variety of parameters including initial 

cell positions, cell speed, cell persistence, fiber reorientation rate, initial fiber alignment, fiber 

production rate and others. In two later studies, Dallon et al. (J. C. Dallon, Sherratt, and Maini) 
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and McDougall et al. (McDougall et al. 2006) improved upon their basic model to include the 

effects of chemical signals in the wound territory. Specifically, the concentrations of tissue 

growth factor beta (TGFβ) and a generic chemoattractant were included in the simulations as 

functions of position and time in order to modulate a variety of rate parameters according to 

experimental observations (e.g., TGFβ increases collagen deposition, and chemotactic gradients 

enhance wound infiltration rates). These important model additions improved the match between 

model and experimental data, and also enabled more explicit testing of specific therapeutic 

interventions.  

 In the first model of cardiac infarct wound healing, Rouillard and Holmes adapted Dallon 

and McDougall’s agent-based model (ABM) to simulate cardiac fibroblast infiltration and 

collagen remodeling in infarct tissue (Fig. 1.2) (Rouillard and Holmes 2012). A critical extension 

of Rouillard was the addition of a mechanical cue to combine with local chemical and structural 

cues to guide fibroblast proliferation, orientation, migration, apoptosis, collagen production, 

collagen degradation, and collagen reorientation. An additional advance was that nearly every 

parameter value was determined directly from independent experimental data in the literature. 

With this framework, Rouillard found that a uniaxial strain environment lead to an anisotropic 

collagen matrix with both cells and fibers aligned in parallel to the strain direction, while a 

biaxial strain environment lead to an isotropic collagen matrix with cells and fibers more 

randomly oriented. Importantly, both these predictions matched experimental data from rat 

infarcts subjected to either uniaxial or biaxial loading environments for 3 weeks (Fomovsky, 

Rouillard, and Holmes 2012; Fomovsky and Holmes 2010). Moreover, the model also correctly 

recapitulated a transmural variation in infarct collagen alignment experimentally observed in pig 

infarcts (Holmes, Nuñez, and Covell 1997): collagen alignment is highest at the midwall where 
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the mechanical cue and pre-existing fiber cue are parallel, and alignment is lowest at the 

endocardial and epicardial surfaces where mechanical cue and pre-existing fiber cue are 

competing. These findings demonstrate the ability of these types of models to integrate 

information about multiple different mechanisms of matrix remodeling to predict their combined 

effects in vivo, which is vital to the ability to develop effective therapeutic interventions to 

control matrix structure and thereby improve cardiac function in disease conditions. 
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Figure 1.2: Agent-based modeling of infarct wound healing. Rouillard and Holmes used an agent-

based framework to capture fibroblast proliferation, orientation, migration, and collagen 

remodeling in response to mechanical, chemical, and structural cues. During the healing time 

course, high chemokine levels in the wound lead to fibroblast infiltration and collagen 

accumulation, and the strain patter (biaxial vs. uniaxial) determine fibroblast and collagen 

orientations (random vs. aligned, respectively). Figure is adapted with permission by the Journal of 

Physicology from Rouillard and Holmes 2012.  
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Rouillard and Holmes have recently updated their original framework by coupling ABM 

predictions to an FEM of infarct mechanics (Rouillard and Holmes 2014). Those simulations 

used the previously developed ABM to predict changes in scar structure, which is passed as 

fiber-based constitutive material properties to an FEM of a 2D infarct section. New strains are 

then calculated by the FEM and passed back to ABM to provide updated mechanical cues for the 

next remodeling time step, and so forth. This coupled ABM-FEM allowed Rouillard to correctly 

predict not only scar fiber structure but also regional deformations seen following coronary 

ligation in rats (Fomovsky and Holmes 2010). It also suggested that fibroblast alignment parallel 

to a strain cue actually provides negative feedback to drastic changes in local fiber orientations: 

as fiber orientation deviates from an aligned direction, the tissue becomes stiffer parallel to the 

new orientation and strain becomes greater perpendicular to the new orientation, driving 

fibroblasts and subsequent fiber orientations away from the deviation direction and back toward 

the original alignment direction. We should note one limitation to their approach is that 

fibroblast-mediated reorientation of collagen was represented by phenomenologically modifying 

local fiber orientation distributions. As an alternative, several groups have simulated cell 

compaction of collagen gels by explicitly calculating the mechanical equilibrium between each 

cell’s contractile forces and nearby collagen fibers’ mechanical properties (Reinhardt and Gooch 

2014; Checa et al. 2014). 

 

Multiple Cell Type Models 

While the addition of fibroblasts to matrix remodeling simulations offers many benefits, 

fibroblasts are of course not the only cell type contributing to changes in cardiac matrix structure, 

and several groups have included a variety of other cells in efforts to more faithfully capture 
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important cell-cell interactions. For example, Neagu and colleagues developed a lattice-based 

ABM of endothelial-mesenchymal transformation (EMT) during cardiac morphogenesis based 

on the interactions of endothelial cells, mesenchymal cells, and local matrix (Neagu et al. 2010). 

Each component interacts with neighboring components by cohesion and adhesion, and 

migration. Proliferation, or EMT occur according to a decision-tree of component interactions 

and remodeling probabilities. With the assumed behavior rules and cohesion/adhesion interaction 

parameters, simulations predicted not just the occurrence of EMT but also the morphological 

formation of cushion tissue. Additionally, simulations predicted that cell-matrix adhesion is more 

critical than cell-cell adhesion for promoting EMT – a finding with potential therapeutic 

implications.  

Jin and colleagues also investigated the role of interacting cell types as well as fibrosis-

related cytokines by developing an ODE model of fibroblast, macrophage, collagen, TGFβ, and 

MMP9 mass action kinetics in post-infarction myocardium (Jin et al. 2011). The basic 

interactions included the following: macrophages secrete TGFβ and MMP9, TGFβ stimulates 

fibroblasts to secrete collagen, TGFβ stimulates macrophage infiltration, TGFβ inhibits MMP9, 

and MMP9 degrades collagen. Interaction parameters were set to experimentally-estimated 

values, and myocardial remodeling was simulated for 30 days, which correctly predicted 

biphasic macrophage, TGFβ, and MMP levels, and monotonically increasing fibroblast and 

collagen levels. Perhaps surprisingly, simulating reduced TGFβ actually raised collagen levels 

while elevated TGFb reduced collagen levels. This finding was due to TGFβ-induced 

macrophage infiltration leading to 1) high MMP9 levels and collagen degradation, and 2) lower 

early fibroblast levels because of macrophage crowding. Experimentally, there is in fact evidence 

that elevating TGFβ delays wound healing after cardiac injury (Nakajima 2000).  
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Galvao and colleagues have developed 2D and 3D ABMs of Chaga’s cardiomyopathy by 

including not just fibroblasts and fibrosis but also the Trypanosoma cruzi parasites, inflammatory 

cells, cardiomyocytes, bone marrow stem cells (BMSC), and tumor necrosis factor-α (Galvão, 

Miranda, and Ribeiro-dos-Santos 2008; Galvão and Miranda 2010). In their lattice-based 

simulations, each grid location is designated as one of these component types or left empty, and 

successive time steps updates each location designation according to simple, experimentally-

motivated rules based on which component types are nearby. For example, a cardiomyocyte 

location near a fibroblast will transition to a fibrotic location to simulate fibroblast deposition of 

matrix, or an empty location near a parasite will transition to a parasite to simulate T. cruzi 

replication. Using just a handful of these transition rules was sufficient for the model to 

reproduce experimentally-observed, biphasic temporal dynamics of fibrotic area, inflammatory 

cell fraction, and parasite nest numbers over 7 months of disease progression in infected mice, 

and subsequent 6 months of BMSC injection therapy (M. B. Soares et al. 2001; M. B. P. Soares 

et al. 2004). The simulations also found that the spatial pattern of fibrosis was the most critical 

determinant of the kinetics of BMSC-induced regeneration in the Chagastic heart and should 

therefore be an important therapeutic consideration. 

The above studies highlight the utility of computational approaches to investigate cardiac 

fibroblast behavior and matrix remodeling in a variety conditions, and it is clear that modeling 

approaches can range in system complexity by including not just matrix but also fibroblasts, not 

just fibroblasts but also other cell types, and not just cell types but also specific signaling 

molecules.  Additional levels of complexity, while requiring more experimental data for model 

generation and validation, offer new layers of therapeutic relevance by enabling simulations to 

both elucidate mechanisms and screen novel treatment approaches. Not surprisingly, similar 
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modeling frameworks have been applied to fibroblasts and fibrosis in non-cardiac tissues as well 

including pulmonary fibrosis (Brown et al. 2011), cystic fibrosis (Voit 2014), liver fibrosis 

(Dutta-Moscato et al. 2014), and kidney fibrosis (Hao, Rovin, and Friedman 2014).  

 

1.5 Signaling Networks and Fibroblast Phenotype 

Fibroblasts are a plastic cell type – able to respond to chemical, mechanical, and electrical cues 

with large alterations in cell behavior. For example, fibroblasts break down the extracellular 

matrix by producing MMPs in response to inflammatory cytokines. However, growth factors 

prompt fibroblasts to increase their expression of collagens and fibronectin, leading to tissue-

level fibrosis. Fibroblasts migrate in response to inflammatory cues in order to infiltrate an 

infarct.  Phenotypic alterations also occur such as endothelial to mesenchymal transitions, which 

increase the number of fibroblasts or differentiation into the contractile, pro-fibrotic 

myofibroblast phenotype. Ultimately, these changes lead to tissue-level remodeling and altered 

electrical conduction as described above. To our knowledge, there are no published models of 

cardiac fibroblast-specific signaling. However, such models are useful for investigating how 

external cues are translated into changes in cell behavior and for predicting which signaling 

players are necessary for a specific cellular response. Here we review models of fundamental 

signaling pathways, migration, and phenotype switching in non-cardiac fibroblasts as they are 

likely useful for understanding cardiac fibroblast physiology. 

 Several kinetic models based on data in other cell types have been built of signaling 

pathways that are relevant to fibroblast physiology. For example, a large-scale model of 

epidermal growth factor (EGF) signaling with 94 different signaling isoforms was used to 
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examine how EGF receptor dynamics affect MAPK activation in HeLa cells. This model 

predicted that increasing the concentration of EGF or the EGF receptor was translated in the 

signaling network as an increase in the rate or duration of ERK activation rather than an increase 

in peak ERK activation (Schoeberl et al. 2002). Extracellular signaling models have also been 

developed such as Vempati et al.’s model of a network of 17 MMPs and TIMPs that predicted 

active MMP9 can deactivate other active MMP9 molecules(Vempati, Karagiannis, and Popel 

2007). Previously it had been assumed that only TIMPs deactivated MMP9, but that mechanism 

was insufficient to quantitatively explain the experimental dynamics of MMP9 activity. Both of 

these studies point to the benefit of large-scale models of signaling networks as a method for 

hypothesizing key determinants of phenotypes.  

 

Models of Signaling Networks Regulating Migration 

Migration is important for recruitment of fibroblasts into the cardiac tissue. Importantly, 

inhibiting migration of fibroblasts affects wound healing after an infarct (Shinde and 

Frangogiannis 2014). The Lauffenberger group used decision-tree modeling to investigate how 

EGF and fibronectin signaling integrate to affect cell migration speed. This data-driven modeling 

approach was based on a 3T3 lineage cell line expressing human EGF-receptor. The initial 

model was based on one time point and found that ERK phosphorylation level was sufficient to 

predict whether a fibroblast was moving slowly or not, but determining whether migration was at 

medium or high speed required information on MLC (myosin light chains), PKC (protein kinase 

C), and PLC (phospholipase C) phosphorylation levels (Hautaniemi et al. 2005). A later model 

from this group incorporated data from two time points. This model predicted a biphasic 

relationship between migration speed and MLC levels, so that at low levels of MLC, migration 
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speed is paradoxically increased. This new model also predicted ERK was necessary for medium 

or high-speed migration (Kharait et al. 2007).  

Rangamani et al. built a stochastic cell-spreading model regulated by a curated kinetic model 

of integrin signaling based on data from MEFs (mouse embryonic fibroblasts) (Rangamani et al. 

2011). This model was used to make predictions about mechanical determinants of migration 

kinetics. In this study, they concluded that initiation of migration depends on the signaling 

environment, but, once triggered, migration depends on membrane mechanics and is robust to 

changes in integrin-mediated signaling. These models demonstrate how in silico studies of 

signaling can provide potential mechanisms for how dynamic signals are translated into cell 

behavior.  

 

Models of Signaling Networks Regulating Phenotype Switching 

Cardiac injury triggers EMT and differentiation of fibroblasts into myofibroblasts to increase the 

number and activity of fibroblasts. Myofibroblasts express high levels of collagen and 

fibronectin as well as contractile proteins such as αSMA (alpha smooth muscle actin). Schroer et 

al. used a kinetic model based on experimental data from wild type and FAK-/- (focal adhesion 

kinase knock out) MEFs to explore how TGFβ, FGF(fibroblast growth factor), and integrin 

signaling pathways combine to influence expression of alpha smooth muscle actin. In this study 

they compared different mechanistic models and found that including a time-dependent negative 

regulation of ERK in the model was important for explaining the adaptive kinetics observed 

experimentally (Fig. 1.3). The model also predicted that FAK KO increases the sensitivity of 

αSMA to substrate stiffness (Schroer, Ryzhova, and Merryman 2014). This study highlights how 
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signaling network models can be used to test potential signaling interactions and identify likely 

mechanisms that can be validated experimentally.   

 

 

Similarly, data-driven models can be used to hypothesize how signaling is changing in 

different phenotypic contexts. Desai et al. used phosphorylation data from an airway epithelial 

cell line to build a mixed-effects model to study the signaling differences after epithelial-

mesenchymal transition (EpMT) when the cells have become fibroblast-like. Epithelial-

mesenchymal transition is analogous to the endothelial-mesenchymal transition that occurs in the 

heart during development or cardiac injury to increase the density of fibroblasts in the tissue 

(Zeisberg et al. 2007). Interestingly, they found that following EpMT there is a rewiring of the 

phosphorylation network (Desai et al. 2015). For example, they identified a novel loss of 

connection between IL6 and pSTAT3 and an increased correlation between pSMAD2 and 

Figure 1.3: Fibroblast signaling network. (A) Schematic of signaling network incorporating integrin, 

TGFβ, and FGF pathways. The red line indicates the time-dependent ERK regulation included in 

model 4. (B) Comparison of the experimental levels of ERK phosphorylation with TGFβ or FGF 

treatment with the model prediction that demonstrates that including ERK regulation improved 

the model prediction. Figures adapted with permission by Cellular and Molecular Bioengineering 

from Schroer et al 2014.  
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GSK3α in cells that had undergone EpMT, which could be the basis for differential signaling in 

this phenotype.  

Together these models indicate that context-specific signaling is important in determining 

phenotype. The role of the fibroblast in integrating mechanical, chemical, and electrical cues 

makes understanding context-dependent signaling important for identifying useful therapeutic 

targets against fibrosis. As there are significant differences between cardiac fibroblasts and other 

fibroblasts (Furtado et al. 2014) it would be important to apply a computational modeling 

approach to cardiac fibroblasts, specifically, to identify which key signaling components 

determine fibroblast behavior in the heart.  

 

1.6 Future Directions 

In this chapter, we have reviewed a wide variety of modeling approaches applied to exploring 

different aspects of cardiac fibroblast physiology. Different types of modeling are appropriate for 

answering different biological questions (see Table 1). While there are pros and cons to 

individual modeling approaches, in general models can be improved by incorporating more 

biological detail to increase relevance or by simplifying the model to improve computational 

efficiency and biological interpretation. Incorporating new data into computational models 

increases their predictive capability so that model interpretation can generate more plausible 

hypotheses. One way to incorporate data in an unbiased way is by developing models using high-

throughput datasets as described in the next section. Additionally, model reduction approaches as 

described by Holland et al. can simplify highly detailed models without sacrificing predictive 

power, which can simplify interpretation of model predictions (Holland, Krainak, and Saucerman 
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2011). Here, we identify three major areas of significant potential for future computational 

models of cardiac fibroblasts: incorporation of high-throughput data, multi-scale modeling of 

tissue physiology, and a focus on using models to identify potential therapeutic targets.   

Table 1.1: Summary of approaches used to model fibroblasts and fibrosis 

 

 

Inference from High-Throughput Data Sets 
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As high-throughput sequencing and proteomic methods become more common, integrating these 

datasets into computational models will be an important tool for understanding the functional 

consequences of the many simultaneous changes revealed by these data. There are available 

datasets of gene expression in cardiac fibroblasts and myofibroblasts [42,43], and there are 

algorithms for combining high-throughput datasets with some manual curation to increase 

biological relevance of the predicted hits [44,45]. Using gene expression data to generate 

predictive models allows an unbiased method for determining context-dependent effects on 

phenotype.  

 Proteomics datasets can also be used to infer networks, which can be adapted into 

predictive computational models. For example, statistical modeling has been applied to a 

proteomics dataset to generate hypotheses about crosstalk in coxsackievirus B3 infection in 

cardiomyocytes(Jensen et al. 2013). Kupfer et al. used the NetGenerator algorithm to infer an 

ODE signaling model of gene expression from synovial fibroblasts from rheumatoid arthritis 

patients[47,48]. These types of approaches could be applied to cardiac fibroblasts in order to 

generate testable hypotheses linking gene expression to phenotype. Ultimately, this could lead to 

an understanding of the genetic predisposition for cardiac fibrosis and heart failure.  

 

Multi-Scale Modeling 

This review highlights the breadth of cardiac fibroblast-related computational studies extending 

across length scales from subcellular signaling, to local cell-cell and cell-matrix interactions, to 

tissue remodeling, and to organ level conduction properties.  Of course, processes across these 

scales do not occur in isolation but operate as an interconnected system with every level passing 
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information to other levels. In fact, many phenomena emerge specifically out of these multi-scale 

interactions. For a more complete understanding of fibroblast functions within such a system, 

researchers are now developing multi-scale modeling frameworks.  Such approaches have shown 

benefit in many contexts including morphogenesis, wound healing, blood flow, arterial growth 

and remodeling, bone mechanics, cardiac mechanics, and many others (Walpole, Papin, and 

Peirce 2013; Bajikar and Janes 2012; Fedosov, Noguchi, and Gompper 2014; Vermolen and 

Gefen 2013; Hayenga et al. 2013; Weinberg, Shahmirzadi, and Mofrad 2010; Hunter et al. 2006; 

Campbell and McCulloch 2011), but multi-scale models involving cardiac fibroblasts and 

fibrosis are still rare.  

As described above, Rouillard and Holmes extended their multi-cell ABM of myocardial 

infarct growth and remodeling by coupling it with an FEM of infarct mechanics to iteratively 

update both local scar structures and tissue-level deformations (Rouillard and Holmes 2014). It is 

easy to imagine how to extend such a model to an even larger scale by replacing the prescribed 

tissue loading with a whole-ventricle FEM for computing new boundary loads. Additionally, the 

ABM framework is well-suited for extending to a smaller scale as well by replacing prescribed 

turnover rate constants with an intracellular signaling model to calculate collagen and MMP 

synthesis rates based on each cell’s local chemical and/or mechanical signals. Such an approach 

could be useful for modeling other tissue-level behaviors as well. For example, a multi-scale 

model linking intracellular signaling to a tissue-level ABM could be useful for modeling 

fibroblast reprogramming to myocytes and the effect on tissue function (see review on 

reprogramming in this issue by Czubryt et al. (Czubryt MP, Safi HA 2016)). While multi-scale 

modeling brings computational challenges, it offers enormous potential for integrating biological 

processes within the context of a broader system to determine functional responses to diseases 
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and therapies. 

 

 

Prioritizing Therapeutic Targets Against Fibrosis 

Current heart failure therapies such as ACE inhibitors and aldosterone antagonists can affect 

cardiac fibrosis, and promising drugs such as nintedanib and pirfinedone have been approved to 

reverse lung fibrosis. However, it’s unclear how these drugs limit fibrosis. Computational 

Figure 1.4: Summary of future directions. Currently used models of electrical conduction, cardiac 

tissue remodeling, and signaling networks could be integrated with –omics data and drug interaction 

data and combined into multi-scale models to identify potential therapeutics against heart disease.  
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models can help identify the mechanisms by which these drugs suppress fibrosis and can identify 

therapeutic strategies that could be more targeted and efficacious against cardiac fibrosis. 

Computational models of cardiomyocyte signaling have successfully been used to predict which 

signaling nodes are most important for cardiomyocyte hypertrophy in vitro(Ryall et al. 2012, 

2014) or how phenomena such as compartmentalization affect hypertrophy(J. H. Yang et al. 

2014; Greenwald et al. 2014). Markov models are also useful for determining the effect of ion 

channel mutations on electrical conduction(Clancy and Rudy 2002). Integrating molecular level 

models into tissue level models can help clarify how mutations develop into tissue-level 

phenotype changes (Fig. 1.4). A well-designed model can save money by testing all potential 

therapeutic targets in silico and identifying the most likely hits.  Pharmaceutical companies are 

already using modeling to direct research focus in an effort to increase the likelihood of success 

and lower costs(Visser et al. 2014). It is likely this approach will benefit academic research in the 

same manner.   

 

1.7 Conclusions 

This chapter reviews how computational models have been useful for clarifying the role of 

cardiac fibroblasts in electrical conduction and tissue remodeling in the heart. Although cardiac-

specific models of fibroblast signaling had not yet been developed prior to this thesis, models of 

general fibroblast signaling have generated hypotheses about how fibroblasts integrate signaling 

cues. Future work will benefit from incorporating large -omics datasets into computational 

models. Multi-scale models allow researchers to explore how molecular- and cellular-level 
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changes affect tissue function. This can be useful for identifying potential therapeutic targets 

against cardiac fibrosis.  
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Chapter 2: 

A computational model of cardiac 

fibroblast signaling predicts context-

dependent drivers of myofibroblast 

differentiation. 

 

 

 

 

 

Adapted from AC Zeigler, WJ Richardson, JW Holmes, JJ Saucerman “A computational model 

of cardiac fibroblast signaling predicts Context-Dependent Drivers of Myofibroblast 

Differentiation” Journal of Molecular and Cellular Biology Vol 94 pp 72-81 (2016), with 

permission from Elsevier 

Author Contribution: A.C. Zeigler - developed computational model, performed all 

computational analysis, wrote paper, W.J. Richardson - performed experiments, assisted in 

writing the paper, J.W. Holmes - assisted in designing the model and experiments and in writing 

the paper, J.J. Saucerman - assisted in designing the model and experiments and in writing the 

paper. 
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2.1 Foreword 

In chapter 1, I highlighted the previous efforts to develop computational models of cardiac 

fibroblasts. Importantly, prior to this study, there were no large-scale models of fibroblast 

signaling. Previous models focused on a single pathway or were not cell-type specific. In this 

chapter, I describe the development of a manually-curated fibroblast signaling network and its 

application in a logic-based ODE model. The model serves as a systems framework for 

predicting modulators of fibroblast phenotype in different signaling contexts (as we demonstrate 

in chapter 3 and 4).  

 

2.2 Introduction 

Cardiac fibroblasts play an important role in cardiac physiology by maintaining the 

extracellular matrix (ECM), linking with myocytes to participate in electrical propagation, and 

by actin as a sentinel cell mediating response to cardiac injury(Souders, Bowers, and Baudino 

2009). These cells are critical to the heart’s ability to adapt to mechanical, chemical, and 

electrical changes, and dysregulation of fibroblast activity leads to cardiac pathology. Increased 

fibrosis in the heart is associated with tissue dysfunction such as arrhythmias, diastolic failure, 

and systolic failure(Moreo et al. 2009; Wong et al. 2012). Moreover, increased ECM is an 

independent risk factor for the development of heart failure and is associated with a worse 

prognosis(Masci et al. 2014). In a failing heart, a major source of ECM is the population of 

myofibroblasts – differentiated fibroblasts characterized by increased contractility (αSMA) and 

increased expression of collagens, fibronectin, and tissue inhibitors of matrix metalloproteinases 
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(TIMPs), which increase the stiffness of the extracellular matrix. Identifying key drivers of this 

fibrotic phenotype could be the key to understanding the pathogenesis of heart failure. 

Cardiac fibroblasts experience competing cues from growth factors, inflammatory cytokines 

and mechanical signals, among others, and integrate these diverse signals to produce increases or 

decreases in matrix turnover. Therefore, appropriate therapeutic strategies to modulate cardiac 

fibrosis must function within the rich milieu of diverse signaling cues present in the diseased 

heart, and designing such therapies relies on understanding how cells integrate these 

signals(Angela C Zeigler et al. 2015). Large-scale computational models have been used to 

describe hypertrophic signaling in cardiac myocytes and have successfully identified signaling 

mechanisms and key regulatory hubs for cardiac hypertrophy(Ryall et al. 2012, 2014; J. H. Yang 

and Saucerman 2011). 

In this study we developed a large-scale computational model of the cardiac fibroblast 

signaling network in order to identify context-dependent drivers of myofibroblast differentiation 

and extracellular matrix remodeling. The model integrates multiple signaling pathways in order 

to predict changes in gene expression and protein activity across different signaling contexts. The 

model identifies a context-dependent functional role for transforming growth factor β receptor 

(TGFβ-R) and reactive oxygen species (ROS). Additionally, TGFβ-R was found to be important 

for up-regulation of alpha smooth muscle actin (αSMA) under many signaling contexts. The 

model predicted that regulation of αSMA by TGFβ-R is dependent on the level of mechanical 

stimulation, and this novel cross-talk mechanism was experimentally validated in rat cardiac 

fibroblasts.  
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2.3 Materials and Methods 

Model Development 

A cardiac fibroblast consensus signaling network was manually reconstructed from previous 

experimental studies from the literature. This network integrates 10 pathways with 11 

mechanical or biochemical stimuli that are altered during cardiac injury or heart failure 

including: IL1 (interleukin 1), IL6 (interleukin 6), TNFα (tissue necrosis factor α), NE 

(norepinephrine), NP (natriuretic peptide), β-integrins, TGFβ (tissue growth factor β), 

angiotensin II, PDGF (platelet derived growth factor), ET1 (endothelin 1), mechanical 

stimulation, and forskolin. 

A review of the literature on cardiac fibroblast signaling was conducted, with a focus on the 

pathways described above. During literature review, studies were separated for use in validation 

(see Model Validation section below) if the cell type used was human or rat cardiac fibroblasts 

and the study investigated input (biochemical or mechanical stimulus) to pathway output (e.g. 

collagens, αSMA, cell migration, proliferation, and other ECM proteins) responses. 

Alternatively, studies that focused on direct signaling mechanisms were used to identify 

interactions to define the structure of the signaling network. Initially, interactions were added 

based on direct experimental evidence in mammalian cardiac fibroblasts (112 reactions). Then, 

we performed gap filling of each pathway with intermediate reactions (20 reactions) between 

those that had support in cardiac fibroblasts if they were well-characterized in other cell types 

and there was evidence for the interaction in a fibroblast-related cell type. Each reaction in the 

network is supported by two independent studies, at least one of which was performed in 
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fibroblasts, with a majority of the reactions supported by data in cardiac fibroblasts. Extracellular 

interactions were included from cell-free measurements. The network includes 91 nodes 

(mRNA, proteins, and cell processes) connected by 142 reactions. Full documentation of the 

experimental evidence supporting each reaction is provided in Database S1.  

The network reconstruction was converted into a predictive computational model using a 

previously described logic-based ordinary differential equation modeling approach used 

previously described(Ryall et al. 2012). Briefly, the activity of each node is modeled using a 

normalized Hill ODE with default parameters and logic gating. Default reaction parameters 

include weight (1), Hill coefficient (1.4), and EC50 (0.6), and species parameters include yinit (0), 

ymax (1), and τ. The τ parameter (time constant) was scaled according to the type of reaction: 6 

minutes for signaling reactions, 1 hour for transcription reactions, and 10 hours for translation 

reactions. The system of ODEs was auto-generated from Database S1 using the Netflux software 

available at: https://github.com/saucermanlab/Netflux and implemented in MATLAB.   

 

Model Validation 

Literature for validating network input-output relationships (see Table S2) were identified by 

searching for each network input and output together with the phrase “cardiac fibroblast” in the 

Pubmed database. Other validation literature was identified while reviewing literature for the 

development of the network (see above). As a quality and reproducibility control, model 

validation used only studies that use rat or human cardiac fibroblasts and have at least two 

agreeing data points for that response (e.g., two methods of measurement, two dosages, two time 

points, or two independent studies). All supporting studies used in validation were independent 

https://github.com/saucermanlab/Netflux
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of those used to develop the model network. Validation was performed by comparing the 

qualitative increase, decrease, or no change in output activity of the model simulation to the 

experimental results. Changes of less than 0.1% were categorized as “no change”. 

 

Sensitivity Analysis 

A systematic functional analysis was performed by simulating full knockdown of each node 

and predicting the change in activity of every node in the network. First the steady-state activity 

of all nodes was computed under baseline conditions, serving as a control. Then, we knocked 

down the activity of each node one at a time and subtracted the basal activity levels from the 

activity in the knocked down case to calculate “Δ Activity”. Influence is measured as the number 

of nodes with 25% change or greater in activity following knock out of the perturbed node, 

sensitivity is the number of nodes that will affect the target by a 25% change or greater when 

knocked out. The collagen sensitivity and αSMA sensitivity are defined as either the change in 

collagen I activity + change in collagen III activity or the change in αSMA activity respectively 

when the target node is knocked out. The topology of the fibroblast signaling network was 

analyzed using the NetworkAnalyzer plugin in Cytoscape (Shannon et al. 2003; Assenov et al. 

2008). AND relationships were collapsed into their target node using MetaNodes plugin 

(developed by John Morris, University of California, San Francisco) and network analysis was 

performed on that topology. The correlation coefficient for matching topological to functional 

metrics was computed using the fitlm function in MATLAB.  

Functional modules were identified using k-means clustering of the sensitivity analysis in the 

high TGFβ context. Nodes were clustered based on both influence and sensitivity by 
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concatenating the sensitivity matrix with its transpose. Clustering was performed using 

MATLAB’s kmeans function using the “correlation” distance measure. The clustering was 

performed 20 times with different initial centroid positions and nodes were grouped into the 

module that most frequently appeared. The number of clusters was set at 10 because that gave 

the highest inter-cluster vs intra-cluster distance without having clusters of single nodes. 

Functional relationships between modules were derived from the high TGFβ or high mechanical 

stimulus sensitivity analysis (described above) by summing the influence of all nodes in one 

module over all nodes in the second module. The line weights indicate the sum of influence of 

one module over another, with the shape of the target arrow indicating whether the overall 

relationship is positive or negative.  

 

Cardiac Fibroblast Isolation 

Adult rat cardiac fibroblasts were isolated and cultured as previously 

published(Thomopoulos, Fomovsky, and Holmes 2005). Briefly, Sprague-Dawley rats (6 weeks 

old, ~ 200g) were sacrificed and the ventricles removed, minced into ~1 mm pieces, and digested 

using Liberase Blendzyme 3 (Roche, Indianapolis, IN). Successive digestions were centrifuged 

for 10 min at 400x g and cells were resuspended into culture medium containing Dulbecco’s 

modified Eagle medium (Sigma-Aldrich, St. Louis, MO) with 10% fetal bovine serum (FBS, 

Atlanta Biologicals, Flowery Branch, GA), 100 U/mL penicillin, 100 g/mL streptomycin, and 2 

ng/mL amphotericin B (all Sigma-Aldrich). After incubating in culture flasks for 4 hrs at 37 C 

and 5% CO2, flasks were rinsed with phosphate-buffered saline (PBS, Sigma-Aldrich) to remove 

nonadherent cells, and resupplied with culture medium.  
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After 7 d of culture, fibroblasts were removed from flasks with 0.25% Trypsin-EDTA 

(Sigma-Aldrich), and seeded into 3D collagen gels as previously published(Thomopoulos, 

Fomovsky, and Holmes 2005). Briefly, 0.2 M HEPES (Sigma-Aldrich), 10X MEM (Sigma-

Aldrich), 3 mg/mL type I bovine collagen (PureCol, Advanced Biomatrix, San Diego, CA) and 

cells resuspended in low-serum culture medium (1% FBS) at respective ratios of 1:1:8:2 to yield 

a final collagen concentration of 2 mg/mL and final cell concentrations of 200k cells/mL (for 

restrained gel conditions) or 133k cells/mL (for floating gel conditions). The cell+collagen gel 

mixtures were rotated in an incubator for 5 min, then pipetted into 24-well plates (1mL in each 

well).  

In order to apply a high mechanical stimulus cells were seeded into a collagen gel restrained 

at the boundary, and compared to a free-floating gel (low mechanical stimulus). Restrained gels 

were poured into non-treated wells and remained adhered to the well bottom and sides; floating 

gels were poured into wells pre-coated with bovine serum albumin (BSA, Sigma-Aldrich) by 

incubation in 2% BSA for 1 hr. After 4 hrs of incubation, the floating gels were released from the 

bottom of the wells with the addition of low-serum culture medium (1% FBS). All gels were 

then incubated for 2 d in low-serum medium. After 2 d, gels were cultured for an additional 2 d 

in one of three chemical conditions: low-serum culture medium control, TGFβ-inhibitor 

treatment (30nM of SD208, Sigma-Aldrich), or TGFβ treatment (100 ng/mL of human TGFβ1, 

Cell Signaling Technology, Danvers, MA).  

 

Gel Compaction Measurements 
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Starting immediately after floating the gels, pictures of the floating gels were taken every 24 

hrs with a handheld digital camera. Gel outlines were manually traced using ImageJ(Schneider, 

Rasband, and Eliceiri 2012), and relative gel compaction was assessed as the ratio of the area of 

each gel at a given time point to the initial area of that gel. 

 

Microscopy and Image Analysis 

After a total of 4 days of culture, gels were fixed overnight in 4% paraformaldehyde (Sigma-

Aldrich), and washed 3x with PBS; cells were then permeabilized in 0.05% TritonX (Sigma-

Aldrich) in 1% BSA overnight, stained with monoclonal anti- alpha smooth muscle actin 

(Sigma-Aldrich) overnight, washed 3x with PBS, stained with 4’,6-diamidino-2-phenylindole, 

dihydrochloride (DAPI, Life Technologies, Carlsbad, CA), and washed again 3x with PBS. PBS 

was removed and gels were imaged on an Olympus IX81 inverted microscope with a 10x 

UPlanSApo 0.40 NA objective (Olympus, Center Valley, PA) and a C9300 cooled CCD digital 

camera (Hamamatsu, Bridgewater, NJ). An 800 µm x 600 µm area in the central region of every 

gel was scanned, capturing at least 100 cells per gel.  

To quantify αSMA expression, an automated image analysis pipeline was employed in 

CellProfiler (Broad Institute)(Carpenter et al. 2006; Kamentsky et al. 2011). Fibroblast nuclei 

were identified by DAPI signal, and fibroblast boundaries corresponding to each nuclei were 

segmented based on the αSMA signal using the “propagate” algorithm. αSMA signal was 

integrated within each cell’s boundary, and then averaged across all cells in a given gel as a 

measure of average αSMA expression per cell for that particular gel condition. 
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Statistics 

Fibroblasts were isolated from 7 different rats, each isolation was divided into 18-24 gels, 

and gels were divided into six experimental groups for a total of 3-4 gels per group per rat (150 

gels total, 25 gels per experimental group). αSMA was averaged across the gels within each 

group and rat, yielding N=7 replicates (one for each rat isolation) across the six experimental 

conditions. We performed a two-way ANOVA on floating-baseline, floating-SD208, restrained-

baseline, and restrained-SD208 groups with post-hoc Bonferroni tests comparing floating-

baseline to restrained-baseline, and comparing restrained-baseline to restrained-SD. For the gel 

compaction assay, we performed a Student’s t-test between floating-control vs. floating-SD208 

and between floating-control vs. floating-TGFβ groups with Bonferroni adjustments. Statistical 

significance was set at p<0.05. 

 

2.4 Results 

2.4.1 A predictive computational model of cardiac fibroblast signaling 

A cardiac fibroblast consensus signaling network was manually reconstructed from previous 

experimental studies from the literature. Literature papers on cardiac fibroblast signaling were 

placed into distinct “model development” and “model validation” groups, depending on whether 

that paper described direct molecular interactions (e.g. smad3 binds to the collagen I promoter) 

or network input-output relationships (e.g. TGFβ induces collagen I protein expression in cardiac 

fibroblasts), respectively. The 177 papers in the “model development” literature group were used 

to define the structure of the cardiac fibroblast signaling network (Table A.1), while the 41 
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papers in the “model validation” literature group were used to validate model predictions of 

network function (Table A.2). The detailed procedure for literature review and network 

reconstruction is provided in Methods.  

This cardiac fibroblast signaling network (Fig 1) integrates ten signaling pathways previously 

shown to regulate cardiac fibroblast phenotypes and are up- or down-regulated during cardiac 

injury or heart failure. The network includes 91 nodes (mRNA, proteins, and cell processes) 

connected by 142 reactions. Full documentation of the experimental evidence supporting each 

reaction is provided in Database S1.  

The network reconstruction was then converted into a predictive computational model using 

a logic-based ordinary differential equation (ODE) approach that we described previously 

(Kraeutler, Soltis, and Saucerman 2010; Ryall et al. 2012). Briefly, the normalized activity of 

each node is modeled using ordinary differential equations, with reactions modeled using 

saturating Hill functions and continuous OR/AND logic gates. As in previous network models 

(Kraeutler, Soltis, and Saucerman 2010; Ryall et al. 2012), uniform default parameters were 

used, except that time constants (τ) were scaled to an order of magnitude appropriate for the type 

of molecule (mRNA, protein, process; see Methods). The baseline condition was defined as 25% 

signaling activity for all inputs, which represents fibroblasts cultured on a stiff substrate with 

ligands at basal constitutive levels. Given any combination of the 11 signaling inputs, the model 

can simulate the dynamic changes in activity for every node in the network. 
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Fig. 2.1: Reconstruction of the cardiac fibroblast signaling network. 

Each of the 91 nodes represents a gene product, modification of a gene product, or cell process in 

the model. Each arrow indicates a reaction based on experimental data of activation or inhibition 

from cardiac fibroblasts or a fibroblast-related cell line (142 reactions from 177 papers). Where 

shown, some reactions combine the influence of multiple reactants via AND gate logic. Multiple 

reactions affecting the same product are combined using OR gate logic.  
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Next, we predicted responses of the fibroblast signaling network to specific stimuli. These 

predictions were validated against experimental studies performed in rat or human cardiac 

fibroblasts that were independent from those studies used to reconstruct the signaling network. 

For example, the effect of a 4-day TGFβ stimulus followed by a 2-day TGFβ + forskolin 

stimulus was simulated and compared to experimental data from Lu et al (Lu et al. 2013) (Fig. 

2.2A, with full simulation in Fig. A.1). The model predicted that the addition of TGFβ initially 

increases collagen I mRNA, but forskolin treatment during the last two days partially reverses 

this increase. This prediction is qualitatively consistent with published data from rat cardiac 

fibroblasts showing that forskolin attenuates TGFβ-dependent expression of collagen I (Lu et al. 

2013) (Fig. 2.2B). 

Overall, the model was validated against 82 input-output relationships from 34 papers (see 

Methods) and accurately predicts 66 of those 82 (80%). Fig. 2.3 summarizes the predicted 

relationship of each individual input stimulus to the outputs collagen I, collagen III, αSMA, and 

the MMPs (matrix metalloproteinases) and the agreement between model predictions and 

experimental data where available (40 relationships). Validations for the other 42 input-output 

relationships are shown in Fig. A.2, with complete annotation in Database S2. The validation 

accuracy was robust to a ±50% change in the baseline input levels as shown in Fig. A.3.    
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Fig. 2.2: Example of model validation with combined stimuli. 

(A) Predicted dynamics of selected outputs in response to TGFβ, followed by a combined TGFβ 

+ forskolin stimulus. Full dynamic prediction shown in Fig. S1 (B) The model prediction is 

compared to independent experimental data from Lu et al 2013 (Lu et al. 2013), showing the 

attenuation of collagen I mRNA by forskolin treatment. The model prediction is expressed as 

percent of maximal mRNA level. Experimental collagen mRNA is relative to the initial 

measurement at day 0. 
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Fig. 2.3: Validation of network input-output relationships predicted by the model. 

The qualitative response of selected fibrosis-related outputs is shown in response to each of 11 

input stimuli. Agreement or disagreement with independent experimental data when available 

from the literature is indicated as a check or an X, respectively. The model validates 35 of the 40 

(88%) predictions shown in this Figure that have experimental data. Overall, the model 

validates 66 of 82 comparisons (80%), as shown in Figure S2 and Database S2. 
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2.4.2 Context-Dependent Roles of Cardiac Fibroblast Signaling Drivers 

Sensitivity analysis is one way to systematically characterize the functional roles of nodes in a 

signaling network. We first performed sensitivity analysis under baseline conditions (all inputs at 

25%) by simulating complete knockdown of each node in the fibroblast network and quantifying 

the change in activity of all network nodes in response to each knockdown (Fig. S4). From this 

analysis, we identified the most influential nodes as those whose knockdown produced the 

greatest summed magnitude of change in the phenotypic outputs of the network. Fig 4A shows 

how knockdown of these 10 most influential nodes affected the outputs under baseline 

conditions. For example, knockdown of interleukin 6 (IL6) was predicted to strongly suppress 

expression of pro-MMP14 and pro-MMP2, consistent with Dawn et al and Luckett et al (Dawn 

et al. 2004; Luckett and Gallucci 2007).  

As TGFβ is a well-studied growth factor that is elevated following myocardial infarction 

(Swaney et al. 2005; Lu et al. 2013), we repeated the sensitivity analysis in a high TGFβ context 

(TGFβ input weight set to 90%, all other inputs at 25%) (Fig. A.4b). The role of influential nodes 

on phenotypic outputs differed substantially between the baseline and high TGFβ contexts (Fig. 

2.4a and b). For example, in the baseline condition proMMP2 and proMMP9 are sensitive to 

knockdown of IL6 pathway members. However in the high TGFβ context, IL6 pathway 

members were predicted to regulate proMMP1 but proMMP2 or proMMP9. We also identified 

key regulators of the overall network. While knockdown of TGFβ receptor (TGFβR) and ROS 

had broad network effects in both baseline and high TGFβ conditions (Fig. S4), their influence 

on specific network nodes was highly context-dependent (Fig. 4C). For example, ROS 

knockdown decreased MMP9 expression under baseline conditions but increased MMP9 activity 

in the high TGFβ context. 
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To more fully profile the context-dependent influence of the TGFβ receptor and identify 

cross-talks between pathways, TGFβR knockdown was simulated in all 12 possible single-

stimulus signaling contexts (90% activity of each stimulus, 25% activity of all other inputs). The 

network response to TGFβR knockdown varied considerably across the 12 signaling contexts 

(Fig. 2.4D). In particular, knockdown of TGFβR decreased expression of collagen I, collagen III, 

and αSMA in all single-stimulus contexts, but to different magnitudes in each context. TGFβR 

knockdown caused increases in periostin expression in the high NE or high forskolin signaling 

contexts but decreased expression in the 10 other contexts. Together, these analyses highlight the 

ability of the model to make predictions about how the influence of regulatory nodes in a 

signaling network vary as a function of the cell’s environment.  
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Fig. 2.4: Sensitivity analysis reveals context-dependent functional roles for regulators of 

cardiac fibroblast signaling.  

Systematic knockdown (KD) simulations (see Fig. A.2) revealed that the top 10 most influential 

differed considerably between (A) baseline and (B) high TGFβ signaling contexts. At baseline all 

inputs are set to 25%, while for high TGFβ that input is further increased to 90% (see Methods). 
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(C) The response of network nodes to ROS knockdown differs substantially between baseline 

and high TGFβ contexts. Nodes are rank-ordered by change in activity in the baseline context 

(note the difference in y-axis scales in upper and lower panels). (D) The effect of TGFβ-R KD on 

fibrosis-related model outputs varies across baseline and all 11 single-input contexts. 

 

Signaling nodes that have similar function within a network are often thought to form 

modules which maintain biological robustness and allow for signaling flexibility (Hartwell et al. 

1999). Identification of network modules would allow for development of a hierarchical 

understanding of network function. To predict functional modules in the cardiac fibroblast 

network, we initially clustered network nodes based on both influence and sensitivity in the 

baseline signaling context (from Fig. A.4a) using k-means clustering. However, we found that 

clustering using sensitivity analysis from baseline conditions was highly variable due to many 

signaling nodes having relatively low influence or sensitivity. Therefore, we clustered nodes into 

functional modules based on both influence and sensitivity in the high TGFβ context (Table 2.1 

and Fig. A.5) and computed the strength of functional relationships between modules by 

summing the influence all nodes in one module had over another, as shown in Fig. 2.5a. 

Because relationships between modules can vary depending on the signaling context 

(Hartwell et al. 1999), we also computed the relationships between functional modules in a high 

mechanical stimulus context that mimics the mechanical environment during myocardial 

infarction or volume overload. Fig. 2.5 compares the relationships between functional modules 

in the high TGFβ and high mechanical stimulus contexts. This analysis indicated that in 

conditions of high TGFβ, the TGFβ module promotes and the cytokine module strongly inhibits 

activation of the fibrosis module, which contains network outputs such as expression of collagen 



 | 51 

 

I, collagen III, and αSMA. Intriguingly, the autocrine module became more influential in in the 

high mechanical stimulus context, predicting an important role for autocrine signals that amplify 

the fibrotic response to integrin stimulation. 

Module Members 

PDGF PDGF, PDGFR, TNFα, TNFαR, p38, PP1, JNK, abl, cmyc 

Autocrine ROS, ET1, ETAR, DAG, TRPC, latentTGFβ, Ca, 

calcineurin, NFAT, ERK, EDAFN, AP1, TIMP1, TIMP2 

Migration Migration, proMMP14, proMMP2, MMP2, MMP14 

Natriuretic NP, NPRA, cGMP, PKG, proliferation 

Cytokine smad7, BAMBI, IL6, gp130, STAT, IL1, IL1RI, NFκB, 

proMMP1, MMP1, fibronectin 

Mechanical PKC, mechanical stimulus, β1int, Rho, ROCK, Rac1, 

MEKK1, FAK, Factin, FA, SRF 

TGFβ ACE, NOX, TGFβ, TGFβ-R, PI3K, Akt, TRAF, ASK1, 

MKK3, MKK4 

Angiotensin AngII, AT1R, AGT, Ras, Raf, MEK1, proMMP9, MMP9 

Beta Adrenergic NE, BAR, forskolin, AC, cAMP, PKA, CREB, epac 

Fibrosis CBP, smad3, CTGF, αSMA, PAI1, periostin, CImRNA, 

CIIImRNA, CI, CIII 

Table 2.1: Model-predicted functional modules 

The members of each functional module identified using k-means clustering of the high TGFβ 

sensitivity analysis. 
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Fig. 2.5: Relationships between functional modules are context-dependent. 

Relationships between functional modules (from Table 2) were quantified by the sum of 

influence of the members of one module over another in the specified signaling context. A) In 

the high TGFβ context, the fibrosis module was positively regulated by the TGFβ module and 

negatively regulated by the cytokine module. B) In the high mechanical signaling context, the 

autocrine module became a prominent regulator of the mechanical and fibrosis modules. 

 

 

2.4.3 Relationship Between Network Structure and Function 

While the above analyses used model simulations to predict function of nodes in the 

fibroblast signaling network, an alternative approach is to estimate function based on metrics of 

network topology (Albert 2007). Highly connected nodes, as determined by the topology metrics 

defined in Table 2, are generally expected to be more influential in a network(Albert 2005; Yu et 
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al. 2007). For example the fibroblast network contains 5 network hubs, defined as nodes with 8+ 

edges: AP1, smad3, NFκB, CBP, and p38. Topological analysis has been most often applied to 

large-scale biological networks where a predictive computational model is not available(Pržulj 

2011; Albert 2005). However, the availability of this large-scale predictive signaling model 

provides a unique opportunity to examine the relationships between signaling network structure 

and function.  

Accordingly, we examined the relationship between metrics of network structure and 

function as predicted by sensitivity analysis of the model under baseline conditions (from Fig. 

A.2). These functional metrics were: 1) influence, the number of nodes with an activity change 

of greater than 25% with knockdown of node n; 2) sensitivity, the number of nodes that change 

the activity of node n by more than 25% when knocked down; 3) collagen sensitivity, the sum of 

the absolute value of the change in collagen I and collagen III with knockdown of node n; and 4) 

αSMA sensitivity, the absolute value of the change in αSMA with knockdown of node n. 

Betweenness centrality, defined as the number of shortest paths from all nodes to all other nodes 

that pass through node n, is one topological measure of connectivity. As shown in the 

comparison of betweenness centrality with influence (see Fig. 2.6a), a few nodes such as the 

TGFβR had both high topological and functional scores. Yet betweenness centrality was a poor 

predictor of influence for other nodes such as angiotensin II (underestimating influence) and 

smad3 (overestimating influence), with only moderate correlation overall (r = 0.64). A similar 

analysis was performed for all 10 topological metrics compared to influence (Fig. A.6), 

sensitivity, collagen sensitivity, and αSMA sensitivity (Fig. 2.6b). Overall, functional features 

were not strongly correlated with topological features, indicating the additional need for 

predictive signaling models as developed here. Betweenness centrality was the most useful 
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topological metric for predicting overall network influence, while measures of degree (in-degree, 

out-degree, and edge count, see Table A.1) were the most useful for predicting influence over the 

phenotypic outputs collagen and αSMA.  

 

 

Fig. 2.6: Metrics of network topology are insufficient to predict network functions. 

(A) Scatter plot showing the relationship of betweenness centrality (a metric of network 

topology) vs influence (predicted by the model). Influence is calculated by summing the absolute 

value of the changes in activity with knockdown of the target node. Several nodes of interest 

have been labeled. (B) The correlation coefficient for each topological feature vs 4 functional 

features. Sensitivity is the absolute value of the change in activity of the target node for all 

possible knockdowns. Collagen sensitivity and αSMA sensitivity are the change in collagen or 

αSMA respectively with knockdown of the target node. 
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2.4.4 Cross-Talk Between Mechanical and TGFβ Pathways 

The sensitivity and clustering analyses described above suggested substantial crosstalk 

between the mechanical stimulus pathway and the TGFβ pathway. Simulated knockdown of the 

TGFβ receptor lowered expression of αSMA, collagen I, and collagen III in conditions of high 

mechanical stimulus (Fig. 2.4d). Furthermore, at a more course-grained level, the TGFβ module 

was an important regulator of the fibrosis module (which contains important output genes such 

as collagen I, collagen III, and αSMA) in conditions of both high TGFβ and mechanical stimulus 

(Fig. 2.5). This led us to further investigate the potential role for TGFβ in integrin-mediated 

differentiation of fibroblasts to myofibroblasts. The model predicted that inhibition of the TGFβ 

receptor would have little effect on αSMA expression in baseline conditions but would attenuate 

mechanical-induced αSMA expression (Fig. 2.7a). To experimentally validate this prediction, we 

cultured rat cardiac fibroblasts in floating and mechanically restrained collagen gels, with and 

without a TGFβ receptor inhibitor, SD-208 (see Methods). The restraint boundary condition 

provides mechanical resistance to intrinsic cell contractile forces, enabling cells to produce 

higher contractile tension and higher corresponding reaction tension in the gel(John et al. 2010). 

This restraint has been shown to activate integrin pathways(Rosenfeldt 2000). TGFβ was used as 

a positive control. As shown in Fig. 2.7b-c, fibroblasts in the restrained gels had significantly 

increased αSMA expression, but SD-208 significantly attenuated the expression of αSMA in the 

restrained gels. Inhibition of the TGFβ receptor in the floating gels did not significantly reduce 

αSMA expression. Further, the expression of αSMA in floating gels strongly correlated with the 

degree of gel compaction, a functional measure of cardiac fibroblast contraction (Fig. 2.7d-e). 
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Together, these experiments semi-quantitatively validate the model prediction that the TGFβ 

receptor is an important regulator of mechanical-mediated myofibroblast differentiation. 

 

Fig. 2.7: Experimental validation of predicted role for TGFβ in mechanical-induced 

expression of αSMA. 

(A) The model predicted that high mechanical input would increase αSMA expression, but that 

this effect would be mitigated by a TGFβ-R inhibitor. TGFβ increased αSMA at both low and 

high mechanical input. (B) Experimental measurements of αSMA expression as measured by 

immunofluorescence in adult rat cardiac fibroblasts cultured in floating or restrained gels, in 

which fibroblasts experienced increased mechanical stimulation. As predicted by the model, 

restrained gels exhibited increased αSMA expression, which was mitigated by the TGFβ-R 

inhibitor (TGFβ-Ri) SD208. (C) Example images of cardiac fibroblasts cultured in restrained and 

floating gels, stained for αSMA (green) and DAPI (purple). Scale bar = 100 µm. (D) Increased 



 | 57 

 

compaction of floating gels treated with TGFβ but not with TGFβ-Ri. (E) Floating gels compact 

over time with TGFβ and become more relaxed over time after treatment with TGFβ-Ri. (F) The 

final size of floating gels was inversely correlated with αSMA expression. * indicates p<0.05, 

and ** indicates p<0.01. All error bars indicate standard error of the mean. 

 

 

2.5 Discussion 

Here we manually reconstructed a literature-based network of cardiac fibroblast signaling. 

This network was used to develop a logic-based predictive model of fibroblast signaling, which 

validated at a rate of 80% in comparison to independent, published studies in cardiac fibroblasts. 

A comprehensive sensitivity analysis revealed the context-dependent functional roles of nodes in 

the network, such as ROS and the TGFβ receptor. Betweenness centrality was the topological 

metric that was most predictive of functional influence, but overall there was a low correlation 

between topological and functional characteristics. The model predicted substantial crosstalk 

between TGFβ- and mechanical-induced myofibroblast differentiation, and this prediction was 

experimentally validated in rat cardiac fibroblasts.  

 

Model validation 

      While the model validates 80% of input-output relationships for which there is independent 

data, 16 input-output relationships were incorrectly predicted by the model. Most incorrect 

predictions were in response to 3 inputs: NP (6), NE (4), and IL1 (4). For example, the model 

predicted some responses to NP and IL1 where no change was reported experimentally. As NP 
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counteracts fibrotic stimuli, those pathways may have a lower baseline activation than modeled 

currently. For IL1, validation data exhibited changes mRNA that were either not statistically 

significant (N. a Turner et al. 2010) or did not propagate to protein expression as predicted by the 

model (van Nieuwenhoven et al.). NE and forskolin both stimulate cAMP but have distinct 

effects(Lai, Sanderson, and Yu 2009; Swaney et al. 2005), indicating cAMP-independent roles of 

NE. However these are not yet sufficiently characterized for inclusion in the model. Together, 

these incorrect predictions highlight areas for future model revision and experiments. 

 

Structure-Function Relationships in a Large Signaling Network 

There are several approaches for using biological network reconstructions to identify key 

regulators of cell signaling. One way to predict the influence of a given node is through network 

topology analysis. Generally, well-connected nodes (those with high degree or betweenness 

centrality) are more likely to be essential nodes in the network(Albert 2005; Yu et al. 2007). We 

found that, although betweenness centrality was most strongly correlated with influence, 

topological features were not strongly predictive of functional influence as determined by 

sensitivity analysis of the logic-based model. This finding is in agreement with other studies 

which found degree was not able to fully predict essentiality in signaling and metabolic 

networks(Li, Assmann, and Albert 2006; Mahadevan and Palsson 2005). Topological metrics are 

simplified measures of connectivity, whereas the model utilizes the entire network structure to 

make functional predictions. This finding argues for the need for large-scale predictive network 

models as in this study rather than relying on simplified measures of connectivity of individual 

nodes to identify potential signaling drivers and therapeutic targets.  
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Context-Dependent Roles of Signaling Molecules 

Cardiac fibroblasts play diverse functional roles in sensing and contributing to inflammation, 

remodeling extracellular matrix, and mediating wound healing. As a result their cellular 

signaling is highly context-dependent, which has implications for the effect of targeted therapy 

against fibrosis under these different signaling contexts. The large-scale model provides a unique 

opportunity to investigate context-dependent signaling roles in the cardiac fibroblast signaling 

network. TGFβ is known to be up-regulated following cardiac injury and in heart failure, and in 

vitro it has been established as a strongly pro-fibrotic stimulus on cardiac fibroblasts(Bujak and 

Frangogiannis 2007; Swaney et al. 2005; Lu et al. 2013). Anti-oxidants that suppress ROS have 

been shown to decrease fibrosis following myocardial infarction and prevent cardiac dilation (S. 

Zhou et al. 2009; Kinugawa et al. 2000). In conditions of high TGFβ, the model predicted that 

suppressing ROS would produce a larger decrease in the TGFβ and ET1 autocrine feedback 

loops than in the baseline signaling context. Additionally, simulations of ROS suppression 

predicted decreases in collagen and αSMA activity in the high TGFβ context, consistent with 

previous studies(Cucoranu et al. 2005).  Interestingly, ROS suppression in the baseline signaling 

context decreased MMP-9 activity whereas it increased MMP-9 activity in the high TGFβ 

context. This is likely due to the effect of ROS knock down on TIMP activity as MMP-9 mRNA 

levels were predicted to increase with ROS knock down regardless of the signaling context. This 

has implications for the treatment of heart failure-associated fibrosis with antioxidants as the 

model predicts antioxidants will be more effective in treating fibrosis under a high TGFβ 
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signaling context (e.g. near a myocardial infarct) than in a baseline context (e.g. in the remote 

zone). 

Additionally, the TGFβ receptor, which is directly linked to only the TGFβ pathway, was 

shown to be highly influential in both the baseline context and the high TGFβ context. For this 

reason, we investigated the role of the TGFβ receptor and, by extension, the involvement of the 

TGFβ pathway, under the baseline context and all 11 single-input contexts. We found that the 

TGFβ-R functions to increase collagen I, collagen III, and αSMA under all single-stimulus 

contexts, but the magnitude of the increase depends on the context. In contrast, the TGFβ-R was 

predicted to up- or down-regulate periostin in a context-dependent manner.  Blocking the TGFβ-

R was predicted to decrease periostin under 10 of 12 signaling contexts, but TGFβ-R knockdown 

was predicted to increase periostin expression in contexts of high β-adrenergic or high forskolin 

signaling. Together these data demonstrate how a large-scale model that incorporates multiple 

pathways can be useful for interrogating how fibroblasts respond to different signaling contexts. 

These results also have implications for how cells in different signaling environments might 

respond differently to antioxidants (above) or to TGFβ receptor inhibitors. Future studies can use 

this model to better understand how fibroblasts respond to more complex signaling contexts such 

as combinatory- or dynamic-stimulus contexts and varied doses of inputs.  

 

Cross-Talk and the Effect on Phenotype 

Hypertension is a risk factor for the development of cardiac fibrosis, and understanding how 

cross-talk between mechanical and chemical stimuli affects the development of a pro-fibrotic 

phenotype could reveal possible mechanisms of pathogenesis. The model predicted a role for the 

TGFβ-R in up-regulating collagen and αSMA under a high mechanical stimulus. Therefore we 
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tested this prediction using mechanically restrained or floating gels in order to activate the 

integrin pathway downstream of mechanical stimulus in the model(Rosenfeldt 2000). 

Experimentally, we found that the TGFβ-R inhibition abrogates mechanical-induced αSMA up-

regulation, validating the model’s prediction. To our knowledge this relationship has not been 

shown previously, reinforcing the value of large-scale modeling to elucidate novel signaling 

mechanisms via signal cross-talk. The precise mechanism by which the TGFβ pathway amplifies 

myofibroblast differentiation in response to integrin stimulation requires further investigation. 

The model predicts that an autocrine loop involving an increase in TGFβ expression is 

responsible for sensitizing the fibroblast to differentiation from multiple stimuli including 

mechanics, angiotensin II and ET1 (data not shown). However, stretch of extracellular matrix has 

also been shown to increase activation of extracellular stores of latent TGFβ(Klingberg et al. 

2014). For example, Sarrazy et al. demonstrated that integrins activate latent TGFβ(Sarrazy et al. 

2014). Both of these are testable potential mechanisms underlying this cross-talk.  

 

Limitations 

As with all modeling approaches, our logic-based ODE approach has inherent limitations. While 

this model uses default parameters, we have previously shown that this approach still exhibits 

strong predictive accuracy in comparison to a fully parametrized biochemical model (Kraeutler, 

Soltis, and Saucerman 2010). Further, the model’s validation and predictions are robust to 

parameter variation (Fig. S3). Availability of more quantitative proteomic data could increase the 

quantitative and dynamic predictive power of the model. The model structure is not fully 

comprehensive, focusing instead on the consensus cardiac fibroblast signaling network that 
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meets specified inclusion criteria. However, this provides a framework for future expansion 

based on new experimental data.  

2.6 Conclusions 

We developed a predictive model of cardiac fibroblast signaling through manual curation 

of a signaling network, combining 10 pathways that are altered during cardiac injury or heart 

failure. Sensitivity analysis identified key signaling drivers of fibroblast function, and showed 

that these drivers vary across diverse signaling contexts. Specifically, TGFβ and ROS were key 

drivers of fibrosis signaling under both the baseline and high TGFβ context, but their relative 

effect on different nodes in the network was context-specific. The model also predicted a role for 

TGFβ in amplifying myofibroblast differentiation and expression of extracellular matrix proteins 

in response to other signals such as mechanical stimulation. The role for the TGFβ-R in 

mechanical stimulation-induced αSMA expression was validated experimentally. More 

generally, we found that functional influence and topological features are not well correlated, 

revealing the limited ability of topological analysis to predict functionality within a signaling 

network. The large-scale network modeling approach utilized here enables the prediction of 

global features of signaling networks that are often non-intuitive from local topological 

connections alone. In the following chapters we will expand on this study to investigate how 

dynamic inputs or pharmacologic treatments alter fibroblast phenotype.  
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Identifying Potential Modulators of 

Adverse Remodeling Post-Myocardial 

Infarction 
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3.1 Forward 

Wound healing is a complex process that involves a dynamic interplay between inflammatory 

and proliferative signaling. Therefore, wound healing is particularly suited to a systems biology 

approach. Although the healing process follows the same general trajectory throughout the body, 

it is slightly different in end result in each organ. In the heart, injury, such as myocardial 

infarction, is particularly problematic since cardiomyocytes do not proliferate and re-populate the 

infarct area. I described the development of a cardiac fibroblast-specific computational model in 

the previous chapter. In this chapter, I outline how this model can be used to investigate 

modulators of infarct healing.  

 

3.2 Introduction 

Patients who have a myocardial infarction are at high risk for developing heart failure 

(Gottdiener et al. 2000; J. He et al. 2001) — usually due to adverse remodeling associated with 

infarct wound healing (Beltrami et al. 1994). Myocardial infarcts follow the same healing course 

that occurs in other organs (Fishbein, Maclean, and Maroko 1978; Palatinus, Rhett, and Gourdie 

2010). There is first an inflammatory phase characterized by extracellular matrix (ECM) 

breakdown and myocyte necrosis which lasts around 2 days in rats and 5 days in larger mammals 

(Virag and Murry 2003). Then, the proliferative phase lasts around 2-5 days in rats (2 weeks in 

large mammals), during which fibroblasts proliferate, migrate into the wound, differentiate into 

myofibroblasts, and generate large amounts of collagen I and III and other ECM proteins (Virag 

and Murry 2003; Chistiakov, Orekhov, and Bobryshev 2016). Ultimately, the wound matures 

into a stable scar with balanced ECM production and degradation. The heart is unique in that 
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cardiomyocytes do not proliferate and re-populate the wound, so the ultimate fate of cardiac 

tissue depends on the behavior of cardiac fibroblasts. Excessive degradation can lead to 

ventricular dilation and wall rupture due to the loss of structural integrity in the heart wall 

(Hwang et al. 2001). Conversely, excessive ECM deposition, particularly in healthy myocardium 

remote from the infarct, can lead to diastolic dysfunction (Volders PG1, Willems IE, Cleutjens 

JP, Arends JW, Havenith MG 1993; Litwin et al. 1991). Many patients with adverse remodeling 

post-MI have both dilation and fibrosis (Beltrami et al. 1994).  

A beneficial infarct healing process involves a transient burst of high collagen deposition 

that replaces lost cardiomyocytes with strong ECM without a sustained increase in ECM that 

leads to adverse remodeling (N. A. Turner and Porter 2013). This “transient fibrosis” is likely 

facilitated by many different factors including inflammatory cell phenotype and number, the pre-

infarct signaling state, the size of the infarct, and the health of the remaining cardiac vessels 

(Pfeffer and Braunwald 1990; Sun and Weber 2000). However, fibroblasts play a prominent role 

throughout the entire wound healing process, and therefore present a good system for studying 

how cells respond to the dynamic signaling environment of wound healing. Additionally, 

understanding how fibroblasts respond during the different phases of wound healing could 

identify mechanisms by which adverse healing processes develop in all organs. 

This study leverages a large-scale model of cardiac fibroblast signaling (A. C. Zeigler et 

al. 2016) to identify the key exogenous and endogenous drivers of fibroblast phenotype during 

myocardial infarct wound healing. We found that using data-derived idealized input curves to the 

model accurately predicts the dynamics of collagen expression and development of increased 

collagen area fraction in the heart. The model predicts that the timing and intensity of 

inflammatory or TGFβ signaling affects the process of wound healing. Additionally, the model 
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predicts a role for IL1 in improving ECM remodeling by increasing collagen expression early 

without inducing a prolonged increase in collagen long-term.  

 

3.3 Methods 

Model Modifications 

For this study we adapted the large-scale fibroblast model of fibroblast signaling from chapter 2 

to be more relevant for subsequent experimental study of fibroblast phenotype. The interactions 

and nodes added are shown in Fig. B.1. Specifically, the input nodes were separated from their 

associated ligands to facilitate the drug study in Chapter 4, and outputs associated with collagen 

maturation (e.g. LOX) and myofibroblast differentiation (e.g. contraction) were added.   

In addition to updating the model network, the input levels of the model that are used for 

control simulations were trained to validation data used in Chapter 2. Specifically, we trained for 

a baseline level of inputMechanical activity such that when inputTGFβ or inputIL1 activity were 

increased the predicted fold change in collagen I/III mRNA (TGFβ) or MMP9 (IL1) would be 

quantitatively as close as possible to the experimentally determined values. To identify this level 

of mechanical input, we used brute force optimization to minimize the sum of squared error 

between the model prediction and experimental data (Fig. B.2). We found that a level of 0.725 

for the inputMechanical node was the optimum control stimulus.  

 

Modeling the Dynamics of Post-MI Signaling 



 | 67 

 

To simulate a post-MI setting, we developed idealized input curves for all inputs except 

mechanical, which has been shown to remain a constant stimulation throughout the infarct 

healing time course (Fomovsky, Rouillard, and Holmes 2012). Initially data from both rat and 

mouse infarcts were combined, but the data were so inconsistent from mouse to rat, that it was 

difficult to identify a consensus to validate against. There was no published post-MI rat study 

where NE, ET1, or NP were measured at different time points, so human data was used for those 

inputs. We used post-MI data (summarized in Table B.1) to identify when each input peaked and 

to what extent. If a stimulus experimentally peaked to greater than 3 times the pre-infarct levels, 

that was defined as a “high” peak and set to a normalized input value of 0.5. If the experimental 

peak was less than 3 times pre-infarct levels, this was defined as a “low” peak and the input was 

set to a normalized value of 0.25. Production and degradation curves were defined for each input 

to peak at approximately the correct time and to the approximate height as was shown 

experimentally. The production rate is modeled as being faster than the degradation rate for all 

curves because that is most consistent with the data outlined in Table B.1. The idealized input 

curves for each output is plotted against the dynamics of expression or protein content post-MI in 

Figure B.3. 

 

Tissue-Level Model 

In addition to the previously described logic-based ODE signaling model (Chapter 2), we 

coupled an adapted model of tissue-level collagen accumulation dynamics to the signaling model 

to predict how single-cell changes in collagen expression lead to changes in percent collagen 

area fraction in the infarct scar  (Richardson WJ, Clarke SA 2016). This model incorporates an 

approximation of the MMP dynamics and fibroblast number as well as the collagen I and III 
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mRNA levels predicted by the signaling model (Figure C.4). The changes in collagen area 

fraction were defined by equation 1.  

 

Equation 1 

𝑑𝐴𝑟𝑒𝑎𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑑𝑡
= 𝑘𝑔 ∗ 𝑐𝑛 ∗ 𝑛𝑓 − 𝑘𝑑 ∗ 𝑚 ∗ 𝐴𝑟𝑒𝑎𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

 

Where kg is the collagen degradation rate (1.8 unit/day), cn is the collagen I mRNA levels 

predicted by the network model, nf is the number of fibroblasts (as shown in SF 4), kd is the 

degradation rate (0.03 unit/day), and m is the level of MMP activity (as shown in Fig. B.4).  

 

Validation of Post-MI Dynamics 

We validated model predictions of post-MI collagen dynamics against data collected in rat 

infarcts (A Deten et al. 2001; Zimmerman et al. 2001). Only rat infarct data was used to validate 

output levels, since the model and input levels were primarily based on rat data. Experimental 

expression data (Figure 3.1b) were normalized to the max value (such that the max value = 1) 

because the experimentally determined highest expression value was very different between the 

two data sources (partially because expression was measured different in the two studies). 

However, this normalization facilitates comparison of the dynamics, as time to peak height and 

time to return to baseline are the main outcomes being validated. The predictions from the tissue-

level model were validated against percent collagen area fraction measured in rat infarcts 

(Fomovsky and Holmes 2010).  
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Randomized Simulation 

In order to simulate a population of fibroblasts with random variation in expression, we 

randomly sampled ymax values (default = 1) from a normal distribution. First, we simulated 100 

randomized models where all ymax values were randomly sampled from a normal distribution 

with increasing standard deviation (data not shown). Figure 3.2a shows the comparison of 

sampling from a normal distribution with a standard deviation of 0.025 to the dynamics of 

collagen expression in rat infarcts. The variance of the randomized model predictions is smaller 

than the standard deviation of the experimental data, which justifies our use of this range for 

post-MI simulations. 

 

Correlation to Single Input 

Steady state predictions from the logic-based ODE model were compared to predictions at 

specific time points in the dynamic simulation that correspond to different phases of infarct 

healing. Specifically, a constant stimulus of each single inputs or the pairs of inputs that define 

the inflammatory or proliferative state was simulated. The predicted values of all outputs (MAP 

kinases, transcription factors, and phenotypic outputs) was correlated to the predicted values of 

all outputs at 0 day, 1 day, 7 day, or 42 days in the dynamic simulation.   

 

Screen for Modulators of Collagen 
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To screen for modulators of collagen I mRNA using the model, each node was up-regulated, and 

the simulation with up-regulation was compared to the control simulation with no up-regulation. 

In the steady state screen, the comparison was made by predicting the fold change of collagen I 

mRNA (altered simulation / control). Up-regulation was simulated by setting the 

dy/dt[upregulated node] = 0 and setting y0 = 0.6. This y0 value was chosen because it was higher 

than the high peak height in the dynamic idealized input curves, and therefore should be higher 

than the value of most nodes. Notably, this doesn’t apply to members of the mechanical pathway 

since the value of the mechanical input is 0.725. Therefore these screens show that setting 

mechanical signaling to 0.6 lowers collagen output in all contexts, and this should not be 

interpreted as a prediction mechanical stimulus down-regulating collagen mRNA.  

 

In vitro collagen production 

Human ventricular fibroblasts were purchased from PromoCell and grown on culture flasks in 

Fibroblast Growth Medium 3 (PromoCell) containing 10% fetal calf serum (except when 

indicated as serum free), 1ng/mL recombinant human basic fibroblast growth factor and 5ug/mL 

recombinant human insulin (all components from PromoCell). Cells were used within passages 

4–8.  

In order to measure collagen production, we adapted a tissue picrosirius protocol to a 2D 

in vitro setting (Kliment et al. 2011). In these experiments cells were plated on a 24 well plate 

and treated in media with 200uM ascorbic acid (3T3) or 250uM ascorbic acid and 100U/mL 

penicillin/streptomycin (human primary fibroblasts) for 72 hours. Collagen standards were made 

by plating 1, 5, 10, 20, or 50µg rat tail collagen on 96 well assay plate in triplicate and allowed to 
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dry in cell culture hood or oven. Then, cells were fixed and the cell plates and standards were 

stained with picrosirius red for 1 hour. Stained plates were washed 4 times with 5% acetic acid 

and 1 time with DIH2O, then the plates were de-stained with 200uL 0.1M NaOH for 30 minutes. 

 

3.4 Results 

3.4.1 Adapting the computational model to predict post-MI phenotype 

The previously published large-scale model of cardiac fibroblast signaling (A. C. Zeigler et al. 

2016) was adapted for use in predicting fibroblast phenotype during infarct healing (see Fig. 

B.1). This model is useful for such an application because it is capable of predicting semi-

quantitative dynamic behavior and it incorporates many of the pathways involved in infarct 

healing (IL1, IL6, TGFβ being the most prominent).  First, control levels of mechanical signaling 

were trained to in vitro data due to a lack of such fibroblast-specific data in vivo (Fig. B.2, Table 

B.1).  

Post-infarct levels of the model inputs (exogenous chemical cues) were derived from data 

collected from rat and human infarcts (Table B.1). There was no consistent measuring technique 

from the infarct vs remote zone vs whole heart. Therefore, these input curves are meant to 

convey signaling dynamics in the infarct although some values were measured outside the 

infarct. Notably, mechanical signaling remains constant throughout the healing process as was 

shown in Fomovsky et al. Fig. 3.1a shows the data-derived generated curves used to define the 

post-infarct inputs to the model. The signaling model alone predicts collagen mRNA expression 

dynamics that are comparable to rat infarct dynamics (Fig. 3.1b). Additionally, the model-

predicted collagen I and III mRNA levels were used as inputs to a tissue-level model of collagen 
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deposition, and this model predicted changes in collagen area fraction consistent with those in a 

rat infarct (Fig. 3.1c).  

 

The sensitivity of the model prediction to random variation in ymax values (which can be 

interpreted as random variation in expression) was assessed. Fig. 3.2a shows the comparison of 

500 stochastic simulations to the training data shown in Fig. B.2. In Figure 3.2b, the predicted 

collagen I mRNA activity from 100 dynamic post-MI simulations of fibroblasts with randomized 

ymax values is shown in comparison with the deterministic model prediction. This predicts that 

small, random variation in expression levels can lead to sustained collagen activation. This is 

consistent with the fact that some percentage of the fibroblast population becomes permanently 

Figure 3.1: Generation and validation of a dynamic post-MI model of cardiac fibroblast signaling. A: 

Idealized input curves for each input (excluding mechanical) based on post-MI levels. B: validation of 

the predicted timing of collagen expression post MI against data from rat infarcts. C: validation of the 

collagen area fraction predicted from the tissue level ODE.  
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differentiated into myofibroblasts and persists in remodeling the infarct long-term (Cleutjens et 

al. 1995; Willems et al. 1994; Palatinus, Rhett, and Gourdie 2010).  

 

3.4.2 Predicting the impact of variation in extracellular signaling dynamics post-MI. 

The use of idealized generated input curves allows for the model to predict how variation in 

signaling dynamics alter the collagen dynamics. TGFβ has been implicated as a driver of fibrosis 

in many signaling environments. To better clarify the role of TGFβ signaling dynamics post-MI, 

we modeled a delay in TGFβ peak signaling and an increase in the amplitude of TGFβ signaling. 

Specific TGFβ alterations are outlined in Table 3.1. As shown in Fig 3.3, the model predicts that 

delaying TGFβ signaling leads to more of an increase in collagen area fraction than increasing 

TGFβ signaling (Fig. 3.3b).  

Figure 3.2: Model prediction of the result of random expression. A: the comparison of the 

variation of model predictions using a standard deviation of  0.025 to determine the normal 

distribution from which ymax values are sampled. B: Model prediction of 100 different 

simulations with randomized ymax values sampled from a normal distribution with a 

standard deviation of 0.025.  
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Table 3.1: Input Alterations 

Alteration Name Inputs Altered Peak Height Alteration Timing Alteration 

High TGFβ TGFβ High peak height = 0.6 No change 

Late TGFβ TGFβ no change High peak at 14 days 

 

 

 

Because cell signaling is more straightforward to study in vitro, we used the model to predict 

how a single sustained stimulus, analogous to an in vitro application, related to different stages 

of dynamic input. The model-predicted phenotypic profile at different stages of post-MI healing 

was compared to the predicted phenotypic profile of a fibroblast stimulated with a constant 

Figure 3.3: Effect of altered input profiles. Shown are the effect of altered input profiles 

outlined in Table 3.1 on collagen I expression (A) and collagen area fraction (B) predicted by 

the model.  
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single input as would occur in an in vitro setting. The control (unstimulated) condition had the 

highest correlation with pre-infarct, IL1 had the highest correlation with inflammatory (1 day) 

time, and TGFβ had the highest correlation with the proliferative (7 day) time point (Fig. 3.4). 

The late (42 day) time point was well-correlated with several single stimuli and the control 

stimulus. Previous studies have shown that mouse fibroblasts at intermediate stages of MI 

healing are most similar to fibroblasts stimulated by TGFβ (Squires et al. 2005). As shown in 

Fig. 3.5, the representative single stimulus is capable of reproducing most of the qualitative 

phenotype predicted by the dynamic stimulus.  

 

Figure 3.4: Relationship between sustained, simplified inputs and select time points of the 

dynamic prediction. Shown is the sum of squared error between the predicted output levels 

at steady state with sustained stimulation of the indicated inputs and the predicted output 

levels at the indicated time point in the dynamic simulation. Blue highlights most correlated 

single inputs.  
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3.4.3 Predicting endogenous modulators of fibroblast phenotype during infarct healing. 

It is possible to interpret from the above analysis that IL1-pathway members will modulate 

fibroblast activity during early time points and TGFβ-pathway members will modulate fibroblast 

activity during late time points. However, there are many intracellular signaling proteins that 

participate in multiple pathways that might play a more central role in affecting fibroblast 

Figure 3.5: Predicted fibroblast phenotype in the dynamic and steady state simulations. 

Predicted output levels at pre (0 day), early (1 day), middle (7day), and late (42 day) time 

points in the dynamic stimulus is compared to the predicted output levels with sustained 

stimulus of representative inputs. Sustained stimuli are ordered by the time point with 

which they are most closely correlated.  
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decision-making in signaling contexts with dynamic or competing cues. In order to identify 

putative context-dependent modulators, an in silico screen was performed using the dynamic 

inputs (Fig. 3.6).  For each simulation, the generated input curves were applied to the model with 

no alteration (control) or with the indicated node up-regulated to 0.6 activity. The mechanical 

pathway is normally activated at 0.725 so this screen indicates that reducing mechanical 

signaling will inhibit collagen production during infarct healing. The qualitative effect of up-

regulation of all other nodes is indicated by the colored bar in Figure 3.6.  
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Figure 3.6: Screen for modulators of post-MI collagen. Simulations of the dynamic MI 

setting where each node (y-axis) is up-regulated to 0.6. Simulations were sorted by 

hierarchical clustering. The colored bar indicates the qualitative change in collagen predicted 

by the model. Control, smad7, PKC, and IL1RI simulations are highlighted.  
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The same screen (up-regulation to 0.6) was performed in representative single-input, steady state 

simulations with the inputs representative of inflammatory (IL1), proliferative (TGFβ), or mature 

post-infarct healing as defined above (Figure 3.7).  The predicted effect of up-regulation of many 

nodes is consistent between the two screens. Three of these inputs are highlighted: smad7, PKC, 

and IL1RI.  

 

 

The model predicted that increasing smad7 activity decreases collagen expression (Fig 3.7a), 

which is consistent with post-infarct studies showing reduced TGFβ signaling impairs wound 

Figure 3.7: Screen for collagen modulators in representative steady-state simulations. 

Shown is the predicted fold change in collagen I mRNA above the control simulations 

following a steady state stimulation with the indicated input to 0.5 activity. Predictions are 

rank-ordered by their effect in the control stimulus (data not shown). Specific predictions 

of smad7, PKC, and IL1RI are highlighted for comparison to figure 6.  
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healing (Ikeuchi et al. 2004). The model predicted a strong increase collagen expression and area 

fraction with increased PKC activity (Fig 3.7b). Increasing IL1 is predicted to improve collagen 

dynamics at moderate doses, but at high doses increases the risk for fibrosis (Fig.3.7c).   

 

 

3.4.4 IL1 and TGFβ cross talk 

Since it was shown that IL1 and TGFβ are the major input pathways for inflammatory and 

proliferative phase signaling respectively, we investigated the relationship between these two 

signaling pathways. In Figure 3.9 we show that IL1 is predicted to increase collagen expression 

in control (0.1) or low (0.4) levels of TGFβ, but that at high (0.55, higher than high peak post-

MI) levels of TGFβ, IL1 is predicted to slightly decrease collagen. We preliminarily validated 

Figure 3.8: Effect of specific modulators of collagen output. The predicted effect of 

increasing doses of smad7 (A), PKC (B), and IL1RI (C) on predicted collagen I mRNA and 

collagen area fraction. Control simulations are highlighted in blue.  
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these predictions by measuring collagen production in 2D culture of human ventricular 

fibroblasts.  

 

 

3.5 Discussion 

Not all myocardial infarctions are the same. It is difficult to predict which patients will 

have long-term remodeling which leads to heart failure and which patients will heal with no loss 

of cardiac function. Infarct size and wall stress can determine the health of the heart post-infarct 

healing (Pfeffer and Braunwald 1990). However, collagen expression dynamics can affect 

cardiac health post-MI (Dobaczewski et al. 2010; Frantz et al. 2008; Hwang et al. 2001). 

Excessive production can lead to fibrosis, which contributes to diastolic dysfunction (Volders 

Figure 3.9: Validation of interaction between IL1 and TGFβ. The model predicts that when 

TGFB levels are below peak height (as shown in Figure 1), IL1 increases collagen. However, for 

high levels of TGFB there is no further increase in collagen expression. Experimental validation 

performed in human ventricular fibroblasts is shown where collagen was measured using 

picrosirius assay. n=1 experiment with 3 wells, error bars show standard deviation 

 



 | 82 

 

PG1, Willems IE, Cleutjens JP, Arends JW, Havenith MG 1993; Litwin et al. 1991), and 

excessive degradation immediately post-MI can contribute to dilation and wall rupture (Hwang 

et al. 2001; Frantz et al. 2008).  

This study aims to predict some of the signaling characteristics both external and internal 

to cardiac fibroblasts that can affect collagen production post-MI. We predict that inflammatory 

signaling actually serves to increase collagen output in early post-MI healing and that late TGFβ 

is more pro-fibrotic than increased TGFβ signaling. Additionally, we predicted that smad7 is 

anti-fibrotic, IL1 is mildly pro-fibrotic, and PKC is strongly pro-fibrotic. Finally, the relationship 

between inflammatory (IL1) and proliferative (TGFβ) signaling was predicted by the model and 

validated in vitro using human ventricular fibroblasts.  

 

Exogenous regulators of post-MI collagen production 

It would be important to find extracellular modulators of fibroblast activity to improve 

post-MI wound healing, but also to understand how fibroblasts participate in wound healing in 

any organ. The wound healing process is stereotyped, following the same inflammatory to 

proliferative to maturation phase progression and entailing the same involvement by fibroblasts 

(Palatinus, Rhett, and Gourdie 2010). Therefore, understanding how fibroblasts respond to these 

dynamic and complex stimuli could have clues for how fibrosis and progressive remodeling 

develop. This study predicts that the intensity of inflammatory signaling and the timing of TGFβ 

signaling have implications for the dynamics of collagen production. It has been shown that 

reducing IL1 or IL6 signaling post-MI can worsen healing and increase risk for dilation, possibly 

through a reduction in collagen expression (Hwang et al. 2001).  
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Endogenous modulators of post-MI collagen production  

It is also helpful to identify the key intracellular modulators of fibroblast phenotype 

during wound healing, as these could be considered therapeutic targets against fibrosis or adverse 

remodeling. (Chapter 4 utilizes this modeling approach to predict how FDA-approved drugs 

might affect fibroblast phenotype post-MI.) This study indicates that there are several nodes and 

pathways that up-regulate collagen activity (eg: PKC, Rho, and the PDGF pathway), but that 

there are not as many nodes that down-regulate collagen (Fig. 3.6 and 3.7). Additionally, we 

predicted that even small variation in expression values can lead to sustained collagen production 

post-MI, which could be a result of randomly increased signaling in more than one pathway at 

one time. This result could be explained by the fact that the manually curated network is biased 

toward well-studied pathways (see chapter 2). Perhaps, well-studied pathways happen to be 

primarily pro-fibrotic. However, it is also possible that fibroblasts are primed to increase 

collagen production in response to stimuli. This hypothesis is supported by the fact that 

fibroblasts tend to differentiate into pro-fibrotic myofibroblasts in response to a variety of 

stressors including pro-inflammatory ones (N. A. Turner and Porter 2013; Palatinus, Rhett, and 

Gourdie 2010).  In chapter 5, we showed that human primary fibroblasts do not decrease their 

collagen production in response to any of the inflammatory stimuli (IL6, IL1, or TNFα). In fact, 

IL1 increased collagen production in ventricular fibroblasts, as is predicted by the model in this 

chapter (Fig. 3.9) and has been shown in murine infarcts (Hwang et al. 2001). That there is an 

abundance of pathways that up-regulate collagen expression has implications for potential 

therapeutics. It is possible that inhibiting multiple pro-fibrotic therapies with combined anti-

fibrotic therapies might be more successful in treating fibrosis.  
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However, this trend toward pro-fibrosis might be organ specific. This model has only 

been validated against cardiac fibroblast data, but organ-specific regulation or expression might 

drive changes in wound healing. Myofibroblasts are present in both the infarct and remote 

regions of the heart long after infarct healing (Willems et al. 1994), but this is not true in dermal 

wound healing  where the fibroblasts all apoptose following the maturation phase (Palatinus, 

Rhett, and Gourdie 2010). As shown in chapter 5, collagen production and baseline contractile 

properties are higher in human ventricular versus human dermal fibroblasts. Therefore, it is 

possible cardiac fibroblasts, specifically, are primed to be more pro-fibrotic.  

 

Limitations and future directions 

The main limitation of this study is that the model only predicts fibroblast responses to 

MI. Other cell types such as macrophage and cardiomyocytes do participate in signaling that can 

alter the remodeling process. Furthermore, events such as re-vascularization (which can improve 

infarct healing) or further cardiomyocyte injury (which can re-start or prolong wound healing 

and induce pathologic remodeling) are not captured by this model. However, this provides a first 

step toward a better understanding of both wound healing and cardiac remodeling. Further 

studies could incorporate this model into a multi-scale model that can predict the effect of cell-

cell interactions between macrophage and cardiomyocytes. Additionally, the hypotheses 

generated by this study, including the role of delayed TGFβ signaling or increased IL1 signaling 

in infarct healing will need to be validated in vivo.  
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3.6 Conclusion 

In this chapter we demonstrated the application of a logic-based ODE model to investigate 

phenotypic modulators during a dynamic signaling process. We predicted that moderate IL1 

stimulation has a beneficial effect on post-MI wound healing by increasing collagen expression 

early post-infarct without increasing expression levels in the mature infarct.  
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Chapter 4 

Developing a Pipeline for In Silico Drug 

Screening 

 

 

 

 

 

 

 

 

 

Contributing Authors: Angela Zeigler (assisted in designing pipeline and writing code, ran all 

simulations, wrote chapter), Anirudha Chandrabatla (assisted in designing pipeline and writing 

code), Matthew Sutcliffe (paper editing), Jeffrey Saucerman (designed experiments).  
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4.1 Foreword 

A better understanding of fibroblast signaling can help identify what predisposes a fibroblast 

toward a pro-fibrotic phenotype post MI (as outlined in chapter 3), but the ultimate goal is to 

identify potential therapeutics that can reduce the risk for cardiac fibrosis. In this chapter, I 

outline a novel pipeline for virtual drug screening using the fibroblast signaling model described 

in chapter 3. This method is unique among virtual drug screens in that it can predict a drug’s 

effect in different contexts such as different expression levels and signaling contexts. This 

approach can also predict how drug dose and method of action affect the outcome. The potential 

flexibility outlined in this chapter makes this method attractive as a generalizable approach for 

drug screening.  

 

4.2 Introduction  

The process for bringing a drug to FDA approval is long and expensive, often taking 8-12 years 

to have (by a conservative estimate) a success rate of one in 5000 (Lipsky and Sharp 2001). One 

study found that, even after approval, approximately 30% of new approvals are subject to a 

postmarket safety event (withdrawal, black box warning, or safety communication), and the 

median time for these events to occur is 4.2 years after approval (Downing et al. 2017). 

Therefore, there is a need for a way to quickly identify useful therapeutics early in the discovery 

process without compromising safety.  

 

The FDA has recently developed a method for using a computational model of cardiomyocyte 

electrical activity to screen for drugs that induce fatal arrhythmias (Colatsky et al. 2016). In 
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general, a growth in computational modeling and machine learning has facilitated large-scale in 

silico drug screening. If a target is known, biophysical methods like structural matching, 

chemical docking (Sohraby et al. 2017; Lavecchia and Cerchia 2016; March-Vila et al. 2017), 

and molecular networking (Quinn et al. 2017) can identify novel chemicals or off-target effects. 

Metabolic modeling can facilitate antibiotic and cancer drug discovery (Blais et al. 2017; Folger 

et al. 2011). High-throughput gene expression and proteomics datasets have allowed for 

comprehensive and unbiased target identification and adverse effect prediction (Hu and Agarwal 

2009; Guney et al. 2016; Vanhaelen et al. 2017).  

While these approaches have many benefits, with the exception of metabolic modeling, 

they cannot predict context-dependent drug action. To translate the benefits of metabolic 

modeling to other signaling pathways, it’s necessary to use a large-scale signaling model to 

predict how a drug affects the outcome of interest in the context of different stimuli.  

In this study we developed an in silico pipeline that utilizes DrugBank, a repository of 

drug target and use information, and a model of fibroblast signaling to predict how 114 drugs 

with targets in the fibroblast network affect cardiac fibroblast phenotype in a variety of disease 

contexts. Targeting fibroblast signaling is an ideal application for in silico drug screening as 

there are no current therapies specifically meant to reverse fibrosis. The development of fibrosis 

is due to the interplay between inflammatory and growth factor signaling(Wynn 2008; Murtha et 

al. 2017), so the use of a large-scale model of fibroblast signaling(A. C. Zeigler et al. 2016) 

allows for the investigation of drug action in complex signaling contexts. Therefore, we applied 

this pipeline to predict which drugs might limit or increase fibrosis development in different 

signaling contexts.  
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4.3 Methods 

Automation of pipeline 

Figure 4.1 outlines the steps in the pipeline. First, the DrugBank database of FDA-approved 

drugs was downloaded (D. S. Wishart 2006; David S. Wishart et al. 2017). Then, the targets 

within the network were identified by matching the gene name of network members to the gene 

names of drug targets from DrugBank. Where a network node was associated with multiple 

genes, the drug was modeled as targeting the same node. The drug information for all drugs with 

a target within the network was compiled for use in generating parameters.  

Figure 4.1: Drug screen pipeline schematic 
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Modeling of specific drug properties 

Whether the drug is an antagonist or agonist is pulled from the DrugBank database. A drug is 

labeled as competitive or non-competitive based on manual literature search. Biologically, drugs 

affect interactions downstream of the drug target. However, for drug simulations, the incoming 

interactions to the drug target node are modified to allow for predictions of drug target activity 

that is not muddled by cross talk that might affect nodes downstream of the target.  

The signaling model utilizes a logic-based ODE approach (Kraeutler, Soltis, and 

Saucerman 2010), where each network interaction is modeled using a normalized Hill equation. 

An example of a simple activation interaction (associated with node C in the toy model) is shown 

in equation 4.1.  

 

Equation 4.1:  

𝑑𝐶

𝑑𝑡
=  

1

𝜏𝐷
(𝑤𝐴𝐶 ∗ 𝑓𝑎𝑐𝑡(𝐴) ∗ 𝐶𝑚𝑎𝑥 − 𝐶)     

 

𝑓𝑎𝑐𝑡(𝐴) =
𝐵𝐴𝑛

𝐾𝑛 +  𝐴𝑛
             𝐵 =  

𝐸𝐶50
𝑛 − 1

2 ∗ 𝐸𝐶50
𝑛 − 1
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Drugs are simulated through modifications of the normalized hill equation as shown in equation 

4.2 (competitive) and equation 4.3 (non-competitive) for modification of the A->C interaction in 

the toy model (see Fig. 4.1). 

 

Equation 4.2: 

𝐴𝑑𝑟𝑢𝑔 = 𝐴 + 𝑠 ∗ 𝑑 

Equation 4.3: 

𝑤𝑑𝑟𝑢𝑔 = 𝑤 ∗ (1 − 𝑠 ∗ 𝑑)  

 

Where s = +1 for antagonists and s = -1 for agonists. The d variable indicates the dose of the 

drug, which must be between 0 and 0.6 for the normalized Hill equation. Unless otherwise 

indicated, the drug is classified as competitive or non-competitive based on literature curation.  

 

Modeling drug application in simple contexts 

To provide an example application of the drug simulation pipeline the fibroblast signaling model 

was used to predict candidate drug effects on fibroblast phenotype in signaling contexts 

characteristic of different cardiac stressors (MI, renal failure, heart failure). As outlined in 

chapter 3, the control input stimulation to the fibroblast model is 0.1 for all inputs except 

mechanical stimulation, which is set to 0.725. To simulate constant application of a new 
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stimulus, stimulus-associated inputs were set to 0.5. Then, each drug was simulated individually, 

with the simulation run out to steady state (t = 500 hours).  

 

Modeling drug application in dynamic wound healing 

To model how drugs would affect a dynamic wound-healing process, the same idealized input 

curves developed in chapter 3 were used.  

 

4.4 Results 

4.4.1 Simulation of competitive and non-competitive drugs in logic-based ODE 

model 

We simulated application of competitive or non-competitive drugs to different interactions in a 

toy model (Fig. 4.2) in order to demonstrate how drugs with different action can be modeled. In 

each simulation we modeled stimulation with increasing doses of activator (either A or B) for 

100 hours out to steady state. Modification of interactions with different logic is predicted to 

affect the target differently. For example, drugging a node that is part of a feed-forward (D) is 

less effective than drugging a node with a single activator (C). 
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4.4.2 Identifying drugs with targets in the fibroblast network 

The FDA-approved drug database and the drug naming database were downloaded from 

DrugBank(D. S. Wishart 2006; David S. Wishart et al. 2017). The gene names associated with 

Figure 4.2: Effect of competitive or non-competitive inhibitors on interactions of different 

topologies. The toy model (A) was used to determine the effect of the competitive and non-

competitive modeling approach on interactions with different logic. The effect of inhibiting 

the only activator of a node (B), one of two activators of a node (C) or all activators of a node 

(D). Strength of the drug simulated increases as the color goes from blue to light gray.   
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each node in fibroblast signaling network (A. C. Zeigler et al. 2016) (see Appendix A) were used 

to search for all FDA-approved drugs with targets among the network members. After these 

drugs were identified, they were classified as an agonist or antagonist using the DrugBank 

database. If this information was not available, the drug was classified as an antagonist by 

default due to the fact that a majority of drugs in the database are antagonists. Each drug was 

then classified as a “non-competitive” or “competitive” drug through manual curation. The 

unique drug-target combinations are summarized in Table 4.1.  The full list of drugs with a 

network target is shown in Table C.1.  

 

Table 4.1: Unique drug-target pairs. Example drug shown is the first drug in an alphabetic list 

of all drugs with the same target, sign and action.  
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4.4.3 Predicting the effect of drug simulation on drug target 

Each of the drugs in Table 4.1 was simulated using the fibroblast model where all inputs were set 

to 0.5. This equal stimulation of all pathways to 50% allows for the differentiation between 

agonists and antagonists. The drugs were modeled as competitive or non-competitive according 

to Table 4.1. The activity of the drug target was predicted at steady state (Fig. 4.3).  Because it 

was demonstrated in Fig 4.2 that competitive and non-competitive drugs are predicted to have a 

different effect on target activity, we show in Fig 4.4 that this is true in the context of a larger 

network.  
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Figure 4.3: Effect of increasing drug strength on activity of drug target.  Shown is the 

effect of each drug in Table 1 on the fibroblast network when all inputs are set to 0.5. For 

increasing drug dose, there is an increased effect on the drug target. In the case of multiple 

targets, one example target from each drug-target pair is shown.  
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4.4.4 Context-Dependent drug simulations 

As mentioned above, the benefit of using an in silico model for drug screening is the ability to 

quickly screen for drug efficacy in a variety of contexts. In order to investigate the context-

dependent role for the drugs in Table 4.1, we performed the drug screen in simulations with each 

single input raised to 0.5 and in simulations where inputs representative of the inflammatory 

phase post-MI (IL1+IL6) the proliferative phase post-MI (TGFβ+NP), renal failure (AngII+NP) 

and heart failure (AngII+NE) were raised to 0.5 (Herskowitz et al. 1995; A Deten et al. 2001; 

Alexander Deten et al. 2002; White et al. 2001; Haug et al. 1994; L. Zhou and Liu 2016; 

Matsubara 1998; Wei et al. 2016). The results of these simulations are shown in Figure 4.5. Both 

the drug target and collagen I mRNA have a context-dependent response to drug application.  

For example, many drugs are predicted to have the same effect on Collagen I mRNA in the 

Figure 4.4: Effect of competitive vs. non-competitive modeling of increasing drug strength 

on drug target. Simulations were performed as in Figure 3 with all drugs simulated as either 

competitive (A) or non-competitive (B). 
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context of either TGFβ or ET1 stimulation. One notable exception to this is Situximab which is 

predicted to decrease Collagen I mRNA with TGFβ stimulus and increase it with ET1 stimulus.  

 

 

 

 

These drugs were then applied to a dynamic post-MI simulation as defined in chapter 3. The 

effect of each drug on collagen I mRNA and proliferation was predicted at times representative 

of pre-infarct (0 day), inflammatory (1 day), proliferation (7 day) and mature (42 day) time 

points post-MI (Figure 4.6). Notably, some drugs have context-dependent activity such as 

canakinumab which is predicted to decrease collagen I mRNA and fibroblast proliferation only 

during early (day 1) healing. Specific drugs were predicted to increase collagen (arsenic 

trioxide), decrease collagen (anti-thymocyte globulin), and increase collagen only in the early 

phases of healing (triflusal). These drugs were then simulated in more detail. Alterations in full 

Figure 4.5: Drug effect in different contexts. Shown are the effects of simulating the drugs 

from Table 1 in the model stimulated with single or paired inputs. All drugs are modeled as 

competitive or non-competitive based on their true action.  
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collagen I mRNA dynamics in response to these drugs are shown in Figure 4.7. Then, the tissue 

level model (as described in chapter 3) was used to predict collagen area fraction. As shown in 

Figure 4.7. Arsenic trioxide is predicted to increase fibrosis, anti-thymocyte globulin is predicted 

to decrease collagen below control, and triflusal is predicted to raise collagen I area fraction 

without raising it above the range of experimental values.  

 

 

 

 

 

Figure 4.6: Post-MI dynamic drug simulations. Drug application was simulated with a 

dynamic imput profile representative of post-MI wound healing. Drug effect on collagen and 

proliferation is shown at specific time points of interest.  
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4.5 Discussion  

In this study we developed a pipeline for high-throughput in silico drug screening and applied it 

to identify potentially anti- or pro-fibrotic drugs. Specifically, we predicted the role of certain 

drugs in affecting fibroblast phenotype in different contexts including dynamic wound healing 

post-MI. We predicted two drugs would have a detrimental effect on MI wound healing (arsenic 

trioxide and antithymocyte globulin) and one drug that might improve healing (triflusal).   

 

Putative effect of drugs on cardiac fibroblast biology 

Arsenic trioxide was predicted to increase risk of fibrosis by stimulating sustained collagen I 

mRNA expression in the post-MI context. It was also predicted to be pro-fibrotic in a variety of 

sustained single-input conditions. Although arsenic trioxide was shown to have a TGFB-

blocking and anti-fibrotic effect in vitro in human pulmonary fibroblasts(Luo et al. 2014), this 

Figure 4.7: Effect of specific drugs on post-MI phenotype. The predicted dynamics of collagen I mRNA 

(A) and collagen area fraction (B) with no drug (control) or with representative drugs with post-MI 

inputs.  
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drug was shown to be pro-fibrotic in guinea pig hearts(Chu et al. 2012) and to cause QT 

prolongation (a marker of cardiac fibrosis) in cancer patients (Soignet et al. 2001; Yeh and 

Bickford 2009). This could be a prediction that is specific to cardiac fibroblasts - again 

highlighting the benefit of using a manually curated model specific to the biologic question.  

 In contrast, anti-thymocyte globulin was predicted to decrease collagen I mRNA even 

pre-infarct. Therefore, the model predicts this drug will decrease collagen area fraction in 

response to post-MI signaling, and this indicates an increased risk for dilation and wall 

rupture(Frantz et al. 2008). Anti-thymocyte globulin has successfully reduced dermal fibrosis in 

patients with systemic sclerosis(Nash et al. 2007). Future studies will be needed to determine 

whether this applies to cardiac fibroblasts as well.  

Finally, triflusal is predicted to increase the height of the transient collagen I expression 

in post-MI healing while only slightly increasing collagen area fraction. This could be an ideal 

drug for increasing the patency of a scar during healing without increasing the risk for fibrosis. 

Triflusal has been used as an anti-coagulant post-MI to prevent secondary vascular events, and 

has been shown to decrease mortality rates in that setting (Bover et al. 2009; Cruz-Fernández et 

al. 2000; J. Costa et al. 2006).  Triflusal also has been shown to inhibit pressure-induced cardiac 

hypertrophy by blocking NFKB signaling in cardiomyocytes (Planavila et al. 2006). Further 

studies will be needed to determine the effect of triflusal in cardiac fibroblasts, but the data is 

promising in that this drug could improve post-MI healing and reduce the risk of pathologic 

cardiac remodeling.  

 

Generalizable drug screening method 
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This study presents a method for high-throughput in silico drug screening with a manually 

curated signaling model. This method could be applied to any Hill ODE-based signaling model 

to determine the effect of any drug in the DrugBank database on any signaling model. Therefore, 

this method could be generalized to determine a drug’s effect on multiple organs.   

 

4.6 Conclusion 

In this chapter, I outlined a novel pipeline for incorporating drug information from DrugBank 

into a large-scale computational model of fibroblast signaling to perform an in silico screen for 

drugs that affect cardiac fibroblast phenotype. The context-dependent action of drugs was 

predicted for both drug targets and the major outcome of interest, collagen I mRNA. We 

identified two drugs that are likely to increase the risk of pathological post-MI healing (arsenic 

trioxide and anti-thymocyte globulin), and we predicted that triflusal could improve post-MI 

healing and limit the risk of both wall rupture and fibrosis. Future studies can experimentally 

validate these predictions and use this approach to predict how network topology, drug action, 

and drug dose affect drug efficacy.  
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Chapter 5 

Comparisons between cultured primary 

fibroblasts 

 

 

 

 

 

 

 

 

 

Author Contribution: Angela Zeigler, Kellen Chen (isolated adult cardiac fibroblasts), Laura 

Woo (editing text), Jeffrey Holmes (experimental design), Jennifer Munson (experimental 

design), Jeffrey Saucerman (experimental design).  
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5.1 Foreword 

In chapters 2, 3, and 4 we used a computational model of fibroblast signaling to generate testable 

hypotheses regarding the context-dependent regulation of cardiac fibroblast phenotype. We 

predicted in chapter 4 that triflusal might increase collagen I mRNA expression in IL1- or TGFβ- 

treated fibroblasts but not in untreated fibroblasts. We also predicted that IL1, like mechanical 

signaling in chapter 2, activates the TGFβ pathway and thereby induces a pro-fibrotic phenotype. 

It was my goal to validate both of these predictions using cultured rat cardiac fibroblasts or 

human cardiac fibroblasts. This project, however, faced many obstacles, as fibroblast phenotype 

is highly variable and experiment-to-experiment variability as well as challenges related to 

measuring collagen in 3D hydrogels led to many unsuccessful experiments. However, there is 

always something to be learned from experimental investigation. Therefore, in this chapter, I 

outline a few of the observations made during these preliminary experiments. To my knowledge, 

there is no previously published head-to-head comparison of cultured human dermal and human 

ventricular fibroblasts, so this study provides some unique characterization of these cells.  

 

5.2 Introduction 

Studying what modulates fibroblast phenotype is important because fibroblasts (or a fibroblast-

like cell type) are present in all organs, and these cells preserve the normal function of a tissue by 

facilitating stress sensing and response, wound healing, development, and maintenance of the 

extracellular matrix (ECM) (Squires et al. 2005; Palatinus, Rhett, and Gourdie 2010; Murtha et 

al. 2017; Rinn et al. 2006). Fibroblasts can participate in so many functions because they are a 
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highly plastic cell type, capable of adopting very different phenotypes depending on the 

signaling environment (Rinn et al. 2006). Therefore, it can be difficult to identify which 

pathways are dysregulated when fibroblasts adopt a pathological phenotype that leads to fibrosis. 

This thesis has developed a computational model of cardiac fibroblast signaling for studying 

fibroblast-specific responses to complex signaling environments with the goal of understanding 

which pathways or signaling nodes are driving fibroblast phenotype. As shown in chapters 1-4, 

this computational studies are useful for generating hypotheses that can ultimately be tested 

experimentally in cardiac fibroblasts.  

In vitro experimentation is ideal for studying cell-specific responses, as you can isolate a 

cell of interest from other cell types or environmental effects such as genetic differences or 

variance in microbiota. However, fibroblasts are notoriously difficult to study in vitro due to 

their sensitivity to mechanical stiffness, which is supra-physiological (~10,000x tissue stiffness) 

on 2D tissue culture plates (Sadeghi et al. 2017; Huan Wang et al. 2012; Benton, Fairbanks, and 

Anseth 2009; Huang et al. 2012). This study outlines some organ-specific fibroblast 

characteristics that were identified in preliminary validation studies. Specifically, we show that 

αSMA expression is more dependent on cell type and stiffness of culture substrate than on 

chemical stimuli. However, we show that other aspects of myofibroblast phenotype such as 

increased collagen production and contraction of fibroblasts are not always directly related to 

αSMA expression. Increased collagen expression and contraction are hallmarks of 

myofibroblasts in vivo (Van Den Borne et al. 2010; N. A. Turner and Porter 2013; Grinnell 

1994), and therefore should potentially be used as more reliable indicators of functional 

myofibroblast differentiation. Furthermore, we show that TGFβ-dependent increases in collagen 

production can be observed using picrosirius staining in 2D culture conditions, despite the fact 
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that the fibroblasts are likely differentiated at baseline in this condition and already producing 

high levels of collagen. Finally, we show that fibroblasts from different organs respond 

differently to the same stimuli, which is not fully captured by computational model predictions 

(chapters 2 and 3). These observations indicate further study is needed to fully understand the 

mechanism by which dermal and ventricular fibroblasts respond differently to IL1 and 

mechanical stimuli.   

 

5.3 Methods 

Adult rat cardiac fibroblasts 

Adult rat cardiac fibroblasts were isolated and cultured as previously 

published(Thomopoulos, Fomovsky, and Holmes 2005). Briefly, Sprague-Dawley rats (6 weeks 

old, ~ 200g) were sacrificed and the ventricles removed, minced into ~1 mm pieces, and digested 

using Liberase Blendzyme 3 (Roche, Indianapolis, IN). Successive digestions were centrifuged 

for 10 min at 400x g and cells were resuspended into culture medium containing Dulbecco’s 

modified Eagle medium (Sigma-Aldrich, St. Louis, MO) with 10% fetal bovine serum (FBS, 

Atlanta Biologicals, Flowery Branch, GA), 100 U/mL penicillin, 100 g/mL streptomycin, and 2 

ng/mL amphotericin B (all Sigma-Aldrich). After incubating in culture flasks for 4 hrs at 37° C 

and 5% CO2, flasks were rinsed with phosphate-buffered saline (PBS, Sigma-Aldrich) to remove 

nonadherent cells, and resupplied with culture medium.  
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Human dermal fibroblasts 

Human foreskin fibroblasts were purchased from ATCC and grown on culture flasks in dermal 

media containing Dulbecco’s modified Eagle medium (Sigma-Aldrich, St. Louis, MO) with 10% 

fetal bovine serum (FBS, Atlanta Biologicals, Flowery Branch, GA) except when indicated as 

serum free. These cells were used from passages 4-7.  

 

Human cardiac fibroblasts 

Human ventricular fibroblasts were purchased from PromoCell and grown on culture flasks in 

Fibroblast Growth Medium 3 (PromoCell) containing 10% fetal calf serum (except when 

indicated as serum free), 1ng/mL recombinant human basic fibroblast growth factor and 5ug/mL 

recombinant human insulin (all components from PromoCell). Cells were used within passages 

4-8.  

 

Treatments 

Cells are treated with 1-50ng/mL transforming growth factor beta (TGFβ, Cell Signaling 

Technology), 1-50ng/mL interleukin 1 (IL1, Cell Signaling), 1-50ng/mL interleukin 6 (IL6, Cell 

Signaling), 1-50ng/mL tumor necrosis factor alpha (TNFa, Cell Signaling).  

 

2D imaging of alpha smooth muscle actin 

In order to determine the extent of myofibroblast differentiation, alpha smooth muscle actin 

(aSMA) was measured using immunofluorescence. Cells were cultured for 2 days on 
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CellBIND® 96 well plates (Corning). Cells were fixed for 15 minutes in 4% paraformaldehyde 

(Sigma-Aldrich), and washed 3x with PBS; cells were then permeabilized in 0.05% TritonX 

(Sigma-Aldrich) in 1% BSA for 30 minutes. Then, samples were stained with monoclonal anti- 

alpha smooth muscle actin (Sigma-Aldrich) overnight at 4 degrees Celsius, washed 3x with PBS, 

stained with 4’,6-diamidino-2-phenylindole, dihydrochloride (DAPI, Life Technologies, 

Carlsbad, CA) for 10 minutes, and washed again 3x with PBS. PBS was removed and gels were 

imaged on an Olympus IX81 inverted microscope with a 10x UPlanSApo 0.40 NA objective 

(Olympus, Center Valley, PA) and a C9300 cooled CCD digital camera (Hamamatsu, 

Bridgewater, NJ). An 800 µm x 600 µm area in the central region of every gel was scanned.  

 

3D imaging of alpha smooth muscle actin in adult rat cardiac fibroblasts 

Similarly, the differentiation state of fibroblasts in 3D gels was determined by measuring 

αSMA amount using  immunofluorescence (IF). After 7 days of culture following the isolation, 

fibroblasts were removed from flasks with 0.25% Trypsin-EDTA (Sigma-Aldrich), and seeded 

into 3D collagen gels as previously published(Thomopoulos, Fomovsky, and Holmes 2005). 

Briefly, 0.2 M HEPES (Sigma-Aldrich), 10X MEM (Sigma-Aldrich), 3 mg/mL type I bovine 

collagen (PureCol, Advanced Biomatrix, San Diego, CA) and cells were resuspended in low-

serum culture medium (1% FBS) at respective ratios of 1:1:8:2 to yield a final collagen 

concentration of 2 mg/mL and final cell concentrations of 200k cells/mL. Gels were plated at 

500uL of gel per well in 48 well plate.  

Gels were fixed overnight in 4% paraformaldehyde (Sigma-Aldrich), and washed 3x with 

PBS; cells were then permeabilized overnight, stained with monoclonal anti- alpha smooth 
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muscle actin overnight, washed 3x with PBS, stained with DAPI for 20 minutes and washed 

again 3x with PBS. Then gels were imaged as described for 2D imaging.  

 

 

3D imaging of alpha smooth muscle actin in human primary fibroblasts 

Primary fibroblasts at passage 5-8 were trypsinized and seeded into 3D collagen gels with a 

final collagen concentration of 1.8 mg/mL and a final cell concentration of ~75,000 cells/well for 

human dermal and ~50,000 cells/well for human ventricular. Gels were made using 10x PBS, 

deionized sterlile water, 1N Na0H, rat tail collagen I (Corning), serum free media, matrigel at 

0.5mg/mL, and ~50k cells per gel. Gels were plated at 500uL of gel per well in 48-well tissue 

culture treated plate (Olympus Plastics) and treated for 24 hours. Gels were fixed and stained as 

described above for 3D gels. Gels were imaged on an EVOS XL cell imaging system 

(ThermoFisher).  

 

3D contraction of hydrogels 

 Another metric for determining fibroblast differentiation is to measure the contractile 

capability of a fibroblast. For these experiments primary fibroblasts were seeded into a collagen 

hydrogel as described above. The gels were treated for 24 hours in serum free media and then 

were transferred to a new 48 well plate in 10% serum media and allowed to contract for 6 hours. 

Images were taken from a set height using a ring stand. Contraction was measured in FIJI 

(Schindelin nature methods 2012) by freeform tracing the base of the well and the rim of the gel 
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in order to remove artifact from slight differences in the camera angle, and contraction was 

calculated by taking the area of the gel / area of the well.  

 

 

2D picrosirius assay 

 In order to measure collagen production, we adapted a tissue picrosirius staining protocol 

to a 2D in vitro setting. In these experiments primary human fibroblasts are plated on a 24 well 

plate and treated in media with 250uM ascorbic acid and 100U/mL penicillin/streptomycin for 

72 hours. All treatment media was serum free except for serum treatment which was 10% serum. 

Collagen standards were made by plating 1, 5, 10, 20, or 50ug rat tail collagen on 96 well assay 

plate in triplicate and allowed to dry in a cell culture hood or oven. Then, cells were fixed and 

the cell plate and standard were stained with picrosirius red for 1 hour. Stained plates were 

washed 4x with 5% acetic acid and 1x with de-ionized water to dilute any residual acid, then the 

plates were de-stained with 200uL 0.1M NaOH for 30 minutes until all stain was dissolved. De-

stained base wash was transferred to a fresh assay plate and read using a plate reader at 550nm. 

All collagen measurements are shown as fold change from control. 

 

Statistics 

All primary human fibroblasts were used from the same lot of human dermal or human 

ventricular cells, but for each measurement at least one experiment was performed with cells 

thawed from a different vial. For each experiment, the cells were divided into three gels per 



 | 111 

 

condition, and the experiments were independently performed a total of 4 times for an N = 4 

replicates across all experimental conditions. We performed a two-tailed students t-test to 

compare each condition to the untreated control. Statistical significance was set at p<0.05.  

 

 

5.4 Results 

5.4.1 Alpha smooth muscle actin levels in different cell culture conditions and 

fibroblast types 

We aimed to use αSMA levels in rat and human fibroblasts as a measure of myofibroblast 

differentiation (Willems et al. 1994; Squires et al. 2005; Huan Wang et al. 2012) in order to 

experimentally validate model predictions. As has been previously shown (Sadeghi et al. 2017; 

Huan Wang et al. 2012), culturing fibroblasts on a stiff 2D surface induces spontaneous 

differentiation (Fig. 5.1).  However, when cultured in a 3D collagen hydrogel, we observed that 

rat cardiac fibroblasts, human dermal fibroblasts, and human ventricular fibroblasts do not 

exhibit sponateous αSMA expression, which is consistent with previous findings (Huan Wang et 

al. 2012; Benton, Fairbanks, and Anseth 2009; Huang et al. 2012). Rat cardiac and human 

dermal fibroblasts have very low αSMA expression levels in untreated 3D control conditions 

(Fig. 5.1 and 5.2). Human ventricular fibroblasts have more baseline expression of αSMA (as 

shown in the untreated control in Fig. 5.2), but these levels are still lower than observed in rat 

cardiac fibroblasts in 2D culture (control condition, Fig. 5.1). Furthermore, primary fibroblasts 

cultured in 3D demonstrate no increase in αSMA expression with TGFβ or serum (positive 

control) treatment (Fig. 5.1 and 5.2).  
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Figure 5.1: αSMA expression in adult rat cardiac fibroblasts in 2D and 3D culture. Adult rat 

cardiac fibroblasts were cultured for 48 hour on a cell bind 2D plate or in a 3D collagen 

hydrogel and stained as indicated in methods. Shown are representative experiments from 

two separate isolations. 2ch merge images show just the aSMA and DAPI stain for the image 

above.   
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5.4.2 Contractile properties of different fibroblast types 

The contractile properties of human primary fibroblasts treated with TGFβ and IL1 were tested 

(Fig. 5.3). The serum condition was meant as a positive control, but, while ventricular fibroblasts 

strongly increased contraction in response to 10% serum, dermal fibroblasts did not have a 

significant increase in contraction when treated with serum. This could be because dermal 

fibroblasts were treated with a different type of serum (as was recommended by the vendor), and 

serum is a highly variable mixture of signaling proteins. Human dermal fibroblasts were more 

responsive to both TGFβ (increasing contraction) and IL1 (decreasing contraction) than the 

ventricular fibroblasts. Human ventricular fibroblasts were more contractile in the untreated 

control condition than human dermal fibroblasts (Table 5.1), which could explain the lack of a 

Figure 5.2: αSMA expression in human dermal and human ventricular fibroblasts. Human 

primary fibroblasts were cultured for 24 hours in a 3D collagen hydrogel, then allowed to 

contract for 6 hours in 10% FBS. Shown are representative images from two separate 

experiments2ch merge images show only aSMA stain for the image above.  
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response to TGFβ or IL1. Although the difference shown is not statistically significant, 

experiments with human ventricular fibroblasts were performed at a lower density of cells 

because when seeded with 75,000 (as is done for experiments with dermal fibroblasts), gels were 

contracted down to 30% well area and no further contraction with the positive control (serum) 

was observed (Data not shown). Thus, under the same experimental conditions, ventricular cells 

are more contractile.  

 

5.4.3 Collagen production from different fibroblast types 

The collagen production by primary human fibroblasts was measured using a 2D picrosirius 

assay (Fig. 5.4). Both dermal and ventricular fibroblasts increase collagen production in response 

to the serum positive control and both cells have an approximately 20% increase in collagen 

following treatment with 20ng/mL TGFβ. Previous studies have shown an ~2x increase in 

collagen protein production by ventricular fibroblasts following treatment with TGFβ as 

Figure 5.3: Contraction of human primary fibroblasts. Primary cells were seeded into a 3D 

collagen hydrogel and treated for 24 hours before being allowed to contract in full serum for 6 

hours. 1 = 1ng/mL, 20 = 20ng/mL, 50ng/mL, serum = 10% FBS, control = 0% FBS. Error bars 

indicate standard deviation. n = 3 experiments of 3 gels 
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measured by western (Kapoun et al. 2004) and H3-proline incorporation (Swaney et al. 2005). 

Ventricular fibroblasts increase collagen output in response to 20ng/mL IL1, but collagen 

production by dermal fibroblasts was not response to IL1. As with contraction, human 

ventricular fibroblasts had higher levels of collagen production in the untreated control than did 

human dermal fibroblasts (Table 5.1).  

 

 

 

 

 

 

5.5 Discussion 

Figure 5.4: Collagen production by primary human fibroblasts. Human primary fibroblasts 

were treated for 72 hours on a 2D tissue culture treated plate, and collagen was measured using 

picrosirius stain. TGFB, IL1, IL6, TNFa were used at a concentration of 20ng/mL. Error bars 

indicate standard deviation. *p<0.05, **p<0.01, n=3 experiments of 3 wells 
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Fibroblasts from different organs 

We show in this study that human dermal and ventricular fibroblasts have distinct phenotypes 

and respond differently to IL1 and TGFβ as measured by both contraction and collagen 

production. This could partially be explained by the fact that these cells come from ATCC and 

PromoCell, respectively, and therefore would likely be isolated and frozen differently. However, 

it has been shown that fibroblasts from different organs have different properties (Rinn et al. 

2006). If the results shown here are primarily due to the different source organ, then it can be 

concluded that ventricular fibroblasts express more αSMA and are more contractile at baseline. 

Furthermore, the morphology of untreated human ventricular fibroblasts has a more activated, 

“blown out”, appearance than either human dermal or rat cardiac fibroblasts; they have a larger 

cell body, higher actin content, and longer cell processes (see Fig. 5.2). Human ventricular 

fibroblasts also had higher baseline collagen production as is shown in Table 5.1. This activated 

phenotype at baseline could explain why these cells are unresponsive to further stimulation by 

TGFβ when measured by either contraction or αSMA content. 

The response to inflammatory versus growth factor stimuli is also different in human 

dermal and human ventricular fibroblasts. For example, IL1 increases collagen output in 

ventricular fibroblasts, but not in dermal fibroblasts. We previously predicted a role for IL1 in 

increasing collagen in ventricular fibroblasts (chapter 3), and IL1 has been shown to be pro-

fibrotic in a cardiovascular setting (Hwang et al. 2001). But its role in regulating dermal 

fibroblasts is less clear. In dermal fibroblasts we observed that IL1 does not affect collagen 

output, but that IL1 decreases contraction in dermal fibroblasts. IL1 has been shown to decrease 

TGFβ-induced upregulation of myofibroblast-like genes including αSMA (Koskela von Sydow 

et al. 2015),  and this could explain how IL1 reduces contractility in dermal fibroblasts. The role 
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of IL1 in regulation of collagen is not fully consistent across studies. Although one in vitro study 

showed collagen expression decreased with IL1 stimulation in dermal fibroblasts (Mauviel et al. 

1991), other studies have shown an increase in collagen expression by dermal fibroblasts when 

stimulated with IL1 (Kähäri, Heino, and Vuorio 1987; Duncan and Berman 1989; Artlett et al. 

2017). Therefore, our lack of observed response could be due to the measurement technique. The 

picrosirius assay is likely less sensitive than PCR or H3 proline measurements (which could also 

explain why our observed collagen induction by TGFβ is slightly less than has been previously 

shown). IL1 is, in general, thought to be an anti-fibrotic, anti-myofibroblast stimulus in the skin 

(Guo and Dipietro 2010; Pereira et al. 2016; Werner and Grose 2003), but one study showed that 

IL1 knock out doesn’t affect dermal wound healing (Graves et al. 2001). A lack of a strong 

response to IL1 by dermal fibroblasts could explain the general lack of consensus in the data. 

Further investigation into the organ-specific role of IL1 is needed to understand whether IL1 

inducing treatment is a viable option for prevention of cardiac fibrosis post-MI (as indicated in 

chapter 4).  

 

Fibroblasts versus Myofibroblasts 

Alpha smooth muscle actin is typically used as a marker of myofibroblast differentiation both in 

vitro and in vivo (Willems et al. 1994; Squires et al. 2005; Huan Wang et al. 2012). We have 

shown in this study that fibroblasts cultured on a 2D surface express high levels of αSMA 

without treatment, which is consistent with previous finding (Huan Wang et al. 2012; Sadeghi et 

al. 2017). Fibroblasts cultured in 3D expressed lower levels of αSMA, but we found that αSMA 

levels do not significantly increase with TGFβ or full serum treatment in 3D. Therefore, is 

unclear whether αSMA levels are the best metric to determine whether a cell is a myofibroblast. 
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Human ventricular fibroblasts are both more contractile and have higher expression levels of 

αSMA. However, dermal fibroblasts in 3D do not increase αSMA levels in response to 10% 

serum or TGFβ, but do become more contractile with those treatments. Therefore, it can be 

concluded that αSMA levels do not always correspond to a contractile phenotype in human 

primary fibroblasts. Additionally, as with rat ventricular fibroblasts (Figure 1), neither human 

dermal fibroblasts nor human ventricular fibroblasts significantly change αSMA expression in 

response to serum, TGFβ, or IL1 when cultured on a 2D substrate (data not shown), but collagen 

production is altered in response to these stimuli. Thus, we conclude that collagen expression and 

αSMA expression do not always correlate. Further study, including the identification of other 

markers of myofibroblasts, are needed to fully understand how cytoskeletal protein expression, 

matrix alteration (e.g.: changes in EDAFN or periostin expression), contraction, and collagen 

production are related in fibroblasts versus myofibroblasts.  

 

5.6 Conclusion 

In this chapter we demonstrate that cultured primary human ventricular and human dermal 

fibroblasts have distinct phenotypes. Ventricular fibroblasts appear to be more active at baseline, 

which likely contributes to their differential response to IL1, TGFβ, and serum. This study has a 

clear limitation in that these primary cells were purchased from different vendors and treated 

with different serum types. To have a more clear understanding of organ-specific differences in 

fibroblast phenotype, these experiments should be repeated with more consistent experimental 

conditions.  
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Chapter 6 

Discussion and Conclusions 
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6.1 Global Aims 

The goal of this dissertation was to understand how cardiac fibroblasts respond to complex or 

competing stimuli. In order to investigate fibroblast decision-making we aimed to use 

computational modeling and in vitro experimentation to develop testable hypotheses. In 

achieving this objective we have: 

 

 Developed and validated a large-scale manually-curated computational model of cardiac 

fibroblast signaling 

 

 Used the computational model to identify putative exogenous and endogenous regulators 

of the post-MI fibroblast phenotype.  

 

 Developed a pipeline for high-throughput in silico drug simulation.  

 

 Predicted the effect of FDA-approved drugs on fibroblast phenotype in signaling contexts 

related to cardiac diseases. 

 

 Characterized differences in fibroblast phenotype from different species and organs.  
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6.1.1 Relationship between network topology and function 

One benefit to having a large-scale computational model is that there are a variety of 

short (1-2 edge) and long (5+ edge) motifs in the signaling network. Therefore the function of a 

node within the model can be compared to the topology of the network around that node for 

many different topological characteristics. Although this manually curated network is necessarily 

smaller than many of the networks inferred from high-throughput datasets that have previously 

been used to link topology to function, this network is directed and can make predictions that are 

easier to match with a mechanistic function.  

Previous studies have shown a relationship between local or network connectivity and 

essentiality of a gene (Yu et al. 2007; Jeong et al. 2001; Hahn and Kern 2005; Yu et al. 2004; 

Batada, Hurst, and Tyers 2006) However, this connection, while statistically significant, is often 

weak, and although essential genes are more likely to have high connectivity, topological metrics 

alone have failed to predict gene essentiality (Z. Wang and Zhang 2007; Batada, Hurst, and 

Tyers 2006; L. Yang et al. 2014). Machine learning approaches have incorporated cellular 

localization, gene expression, and biological function along with topological information to 

predict gene involvement in a phenotype (Acencio and Lemke 2009; P. R. Costa, Acencio, and 

Lemke 2010; L. Yang et al. 2014), and shown that topology alone is not as predictive as 

incorporating other characteristics. As shown in chapter 2, we found that the connectivity of the 

node does not completely determine the functional influence of the node over the entire network.  

It has been hypothesized that degree correlates with essentiality due to an increased 

probability of connection to an essential gene or inclusion in a tightly connected module of 

essential genes (X. He and Zhang 2006; Zotenko et al. 2008). However, it is possible that other 

topological characteristics such as the location of a node in a pathway (upstream, cross-talk, 
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downstream), the logic of interactions upstream of a node, and the longer motifs in a pathway 

(e.g. autocrine loops) could have implications for function - especially when considering context-

dependent function. The model developed in chapter 2 would be useful with other similar models 

to further investigate the role of more complex topological motifs in determining signal outcome 

particularly in different signaling contexts.   

Beyond identifying essential nodes, this study has implications for drug efficacy. It has 

previously been shown that the topology of a pathway will determine whether knock down or 

competitive inhibition are more efficacious (Jensen, Moyer, and Janes 2016). In Chapter 4 we 

showed that in a toy model, having one versus two upstream activators changes the effect of the 

drug. Further studies will be needed to provide more comprehensive evidence of how specific 

topologies affect drug action.  

 

6.1.2 Post-MI wound healing 

As with wound healing in other organs, cardiac post-infarct healing involves the 

characteristic inflammatory, proliferative, and maturation phase. However, there is a wide 

variety in outcomes following a myocardial infarction, and some patients develop heart failure. 

Certainly, infarct size is a major predictor of pathologic remodeling (Pfeffer and Braunwald 

1990), but the wound healing process itself can affect the resulting organ function (Dobaczewski 

et al. 2010; Hwang et al. 2001). Fibroblasts play a role throughout the time course of healing, 

and therefore are ideal for investigating how the entire healing process affects tissue composition 

(Fishbein, Maclean, and Maroko 1978).  
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The design of this post-MI study led us to the question, what is the ideal fibroblast 

phenotype for optimal infarct healing? This question has not been answered in full temporal 

detail. It has been shown that infarct expansion is more likely to occur within the first 24 hours 

(Richardson and Holmes 2015). Low collagen production early can contribute to dilation and 

rupture risk as the provisional scar is too weak to hold up against the high pressure in the 

ventricle (Hwang et al. 2001; Frantz et al. 2008). However, sustained or remote collagen 

production can result in fibrosis, which leads to diastolic dysfunction (Volders PG1, Willems IE, 

Cleutjens JP, Arends JW, Havenith MG 1993; Litwin et al. 1991; Beltrami et al. 1994). It has 

been hypothesized that the timing of collagen expression is an important determinant of the 

health of post-infarct cardiac tissue (Clarke, Richardson, and Holmes 2016; Frantz et al. 2008; N. 

A. Turner and Porter 2013). Based on this, we can assume that collagen production in the early 

time points post-MI is important for structural integrity of the heart, and a return to normal 

expression levels at long-term time points prevents fibrosis. 

In chapter 3, we leveraged the dynamic properties of the large-scale model to predict how 

exogenous and endogenous signals affect the dynamics of collagen production by fibroblasts 

post-MI. As has been previously shown (K T Weber 1989; Dobaczewski et al. 2010; Frantz et al. 

2008), TGFβ is a major regulator of collagen expression dynamics and fibrosis risk, but we 

further predicted that the timing of TGFβ signaling in post-MI healing is an important 

determinant of fibrosis risk. We also predicted that random variation in ymax (expression) values 

can lead to fibroblasts that persistently expression collagen long after infarction. This indicates 

that the timing of certain signals and differences in expression are integral to healthy post-infarct 

healing. More detailed simulations followed up by in vivo experimentation can elucidate which 

dynamic signals and expression profiles are most important for determining pathologic healing. 
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The next two sections outline further conclusions that can be drawn from the post-infarct 

simulations.  

 

6.1.3 Pipeline for in silico drug screening 

Due to the high cost and long time commitment involved in FDA-approval (Lipsky and Sharp 

2001; Rouse et al. 2017), there is a clear benefit to identifying ways to screen drugs for efficacy 

and adverse side effects early in the drug discovery pipeline. It is also beneficial to identify 

currently approved drugs that could be re-purposed for use in different diseases. In vitro 

screening using tissue engineered constructs has helped, but in silico screening methods are 

faster and cheaper and could provide a useful filtering of drug structures or targets even before in 

vitro experimentation (Rouse et al. 2017; Ekins, Mestres, and Testa 2007). Additionally, in silico 

screening can be used to identify putative targets against a specific phenotype even when there is 

no drug currently known to affect that target and can provide hypotheses regarding the 

mechanism of a drug’s actions (Guney et al. 2016). For example, in Chapter 3, we used the 

fibroblast computational model to predict modulators of fibroblast activity in post-MI wound 

healing, and we identified pro-fibrotic nodes which could potentially be inhibited to attenuate the 

risk of post-MI fibrosis such as NOX and PKC. Some of these potential targets for fibrosis do 

not have current FDA-approved therapeutics against them, and therefore could be novel putative 

targets against fibrosis.  

In Chapter 4, we specifically modeled the effect of FDA-approved drugs on fibroblast 

phenotype in different disease-related signaling contexts. We identified drugs with potentially 

pro- or anti-fibrotic effects, some of which were context-dependent. In this study, we accurately 
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predicted the adverse, pro-fibrotic effect of anti-thymocyte globulin in the heart (Chu et al. 2012; 

Soignet et al. 2001; Yeh and Bickford 2009). This demonstrates the usefulness of this method in 

screening for fibrosis-related adverse side effects.  

This method is also useful for repurposing drugs as promising therapeutics. Triflusal was 

predicted to promote beneficial fibroblast activity post-MI by increasing collagen output during 

the first two weeks post-MI without increasing collagen expression long term. Triflusal is 

already used post-MI to prevent clot formation (Bover et al. 2009; Cruz-Fernández et al. 2000; J. 

Costa et al. 2006), but it is worth further investigation to determine whether this drug prevents 

adverse remodeling. In general, fibroblast signaling is an important example for drug screening 

since there are no current therapeutics designed to reverse fibrosis in any organ, and other anti-

fibrotic therapeutics do not directly target fibroblast signaling. Therefore, this method could be 

applied to predict which drugs could be used to prevent fibrosis in other contexts. Furthermore, 

this pipeline could be applied to any Hill ODE-based model to screen for therapeutic function or 

adverse effects of drugs as applied to other signaling networks.  

 

 

6.1.4 Context-dependent signaling and cell decision-making 

The main goal of this project was to determine how fibroblasts decide to adopt certain 

phenotypes. As shown in chapters 2 and 3, in different signaling contexts (input levels) some 

nodes will have a different affect on fibroblast phenotype. Drug efficacy is also dependent on the 

signaling context as is shown in chapter 4 where the change in activity in the drug target was 

dependent on the signaling context. Marimastat was even predicted to increase MMP activity in 
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some contexts but reduce it in others. This difference in effect on the drug target is translated into 

a difference in outcome (collagen I mRNA). Therefore, context-dependence is an important 

consideration when using drugs, particularly ones that would be applied to a dynamic signaling 

event such as wound healing.  

The key to cellular decision-making is cross-talk between pathways. We showed in 

chapter 2 that beta-integrin signaling recruits TGFβ signaling to induce αSMA expression. In 

chapter 3, increased inflammatory signaling post-MI, typically thought of as an anti-fibrotic 

stimulus, was predicted to ultimately increase the collagen area fraction, again through 

recruitment of the TGFβ autocrine pathway (data not shown). Additionally, all nodes that were 

predicted to reduce collagen when upregulated, directly inhibit the TGFβ pathway (see Chapter 

3). 

Together these indicate that TGFβ activation is a key determinant in myofibroblast 

differentiation and collagen production, an unsurprising finding considering TGFβ has been 

shown to be a potent pro-fibrotic stimulus (Meng, Nikolic-Paterson, and Lan 2016; Murtha et al. 

2017; Wynn 2008), and loss of TGFβ signaling limits collagen production and worsens healing 

post-MI (Ikeuchi et al. 2004; Frantz et al. 2008).  

However, the prediction that inflammatory cytokines are pro-fibrotic is less understood. 

Previous in vitro experiments in cardiac fibroblasts have had contradictory results (Siwik, Chang, 

and Colucci 2000; Peng et al. 2002; Voloshenyuk et al. 2011). It has been previously shown that 

blocking IL1 leads to adverse remodeling in the heart through loss of collagen production 

(Hwang et al. 2001), but the CANTOS trial recently showed that blocking IL1 reduced adverse 

vascular remodeling in atherosclerosis (Baylis et al. 2017; Libby 2017). Therefore, the role of 

IL1 in regulating cardiac fibroblast phenotype remains unclear. In our hands, IL1 did increase 
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collagen production in human ventricular fibroblasts but not in human dermal fibroblasts (see 

Chapter 5). As mentioned in Chapter 3, many pathways, including inflammatory ones, in the 

cardiac fibroblast network are pro-fibrotic. This could mean that the model is predicting a 

cardiac-specific pro-fibrotic bias in signaling that includes a pro-fibrotic role for IL1 in the heart. 

The organ-specificity of fibroblast signaling has not been fully investigated. It has been 

shown that pro-fibrotic myofibroblasts are still present in the heart long after infarction, but this 

does not happen during wound healing in the skin (Willems et al. 1994; Palatinus, Rhett, and 

Gourdie 2010). Fibrosis in different organs is initiated by different causes, which indicates a 

need for organ-specific response programs in fibroblasts (Zeisberg et al. 2007; Murtha et al. 

2017). It has been proposed that epigenetic signatures might underlie these differences (Zeisberg 

et al. 2007), and, in fact, Rinn et al found that fibroblasts from different anatomic sites have 

distinct expression profiles which suggest epigenetic marking during development (Rinn et al. 

2006). We showed in Chapter 5 that human ventricular fibroblasts and human dermal fibroblasts 

have different phenotypes at baseline, but it’s unclear what drives that difference. The 

computational model developed in Chapter 2 could be used to investigate differences in 

signaling between dermal and ventricular or other fibroblasts by either simulating stimulation 

with organ-specific inputs or defining ymax parameters to capture organ-specific expression 

levels.  

 

6.2 Future Directions 

Experimental hypothesis testing 
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This study has generated many testable hypotheses that will require follow-up study both in vitro 

(to validate the predicted mechanism) and in vivo (to validate wound healing responses). The 

role of inflammatory signaling in up-regulating collagen post-MI will require an in vivo infarct 

study, specifically the prediction that moderately increased IL1 signaling can improve infarct 

healing. CANTOS, the clinical trial testing the IL1-receptor inhibitor, canakinumab, has recently 

concluded, and the results of that trial may inform the role of IL1, specifically, post-MI. Also, 

the prediction that delayed TGFβ up-regulation post-infarct can exacerbate the risk for fibrosis 

should be tested with in vivo infarct experimentation.  

Finally, we predicted that arsenic trioxide and anti-thymocyte globulin can worsen post-

infarct remodeling, and this is in part supported by in vivo and clinical data (Soignet et al. 2001; 

Yeh and Bickford 2009; Chu et al. 2012; Nash et al. 2007). However, the promising prediction 

that triflusal can reduce the risk of dilation and wall rupture without increasing the risk of cardiac 

fibrosis will need to be tested in vivo and clinically.  

 

Further Modeling 

There are many ways in which the current fibroblast model can be improved. For 

example, pathways related to insulin and FGF signaling could be added to capture the 

physiology of fibroblasts in a patient with diabetes. There is an increased understanding that 

extracellular matrix plays a large role in signaling (Spinale et al. 2016). Therefore, the 

composition of the matrix is an important consideration in any study of fibrosis. Although the 

current fibroblast signaling network contains collagen I, collagen III, EDA-fibronctin, PAI-1, 

CTGF, and MMPs and TIMPS, the interactions between these proteins is not fully captures in 
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the network. Also, degradation products of collagen can be modulators of signaling. In order to 

capture these extracellular interactions more accurately, they would likely need to be modeled 

with a Michaelis Menten-based kinetic ODE in order to capture the stoichiometric dependence of 

these reactions. Overall, I hope this model serves as a first draft that can be continually improved 

and added to as more details on the mechanisms of fibroblast signaling are discovered.   

 

This model can also be used in multi-scale modeling to describe how populations of fibroblasts 

determine ECM composition at the tissue level. Already, the first draft of such a model is being 

developed in collaboration with the Holmes and Pierce labs. This multi-scale model uses the 

signaling model to inform behavior of fibroblast turtles in an agent based model of cardiac 

fibrosis. In the future this model can be used to investigate the mechanism by which changes in 

fibroblast signaling lead to tissue fibrosis in response to a variety of stressors.  

 

 

Organ-specificity 

It is possible that much of the observed difference in fibroblast phenotype from different 

organs is due to differential signaling. We have already shown in chapters 2-4 that fibroblasts 

respond to signaling in a context-dependent way. If there was data to support different input 

levels characteristic of different organs, these could be used to define organ-specific baseline 

inputs in order to use the model to make predictions about how this signaling affects baseline 

fibroblast phenotype.  
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Since organ-specificity could come from differences in baseline expression (Rinn et al. 

2006), the model developed in chapter 2 could be used to develop hypotheses about what drives 

fibroblast signaling in different organs. We showed in chapter 3 that random variation in the 

ymax parameter (analogous to expression of each node) was predicted to result in very different 

collagen expression dynamics post-MI, which indicates model sensitivity to ymax values. 

Therefore this parameter could be defined according to experimentally measured expression 

values - like those measured by Rinn et al (Rinn et al. 2006). The signaling model could then be 

used to predict organ-specific response to wound healing. Model predictions combined with 

further literature curation can determine whether expression differences alone can explain organ-

specific fibroblast phenotypes. Alternatively, organs have unique profiles of extracellular signals 

which might be creating different phenotypes in concert with genetic differences. 

 

6.3 Conclusions 

Fibrosis is a poorly-understood process that is modulated by fibroblast activity. Fibroblasts 

integrate signals during injury and adopt a variety of phenotypes that affect the wound healing 

process. In this study we developed a computational model of cardiac fibroblast signaling in 

order to investigate how fibroblasts make decisions in complex signaling contexts. We 

demonstrate the application of this model in the study of dynamic wound healing and in 

screening for potential pro- or anti-fibrotic drugs. In this study we identified two major testable 

hypotheses: IL1 is potentially a cardiac-specific pro-collagen stimulus and triflusal is possibly a 

treatment that can be protective post-MI. Ultimately, this dissertation highlights a computational 

model of cardiac fibroblast signaling as a powerful tool in studying fibrosis. The model and the 
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in silico drug screening pipeline can further increase our understanding of the mechanisms by 

which fibroblasts respond to complex signaling and contribute to the prevention or development 

of fibrosis.  

 

 

 

  



 | 133 

 

 

Appendix A 

Large-Scale Fibroblast Signaling Model 

Description 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from AC Zeigler, WJ Richardson, JW Holmes, JJ Saucerman “A computational model 

of cardiac fibroblast signaling predicts Context-Dependent Drivers of Myofibroblast 

Differentiation” Journal of Molecular and Cellular Biology Vol 94 pp 72-81 (2016), with 

permission from Elsevier 
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Table A.1 Network Description 

Here we describe the fibroblast signaling model by outlining all network species and reactions 

with supporting experimental data 

Table A1.a: Model species information.  

Species information 
      

module ID name Yinit Ymax tau type gene 

name 

g-coupled AngII angiotensin II 0 1 1 protein AGT 

g-coupled AT1R angiotensin II 

receptor type 1 

0 1 0.1 protein AGTR1;A

GTR2 

g-coupled AGT angiotensinogen 0 1 10 protein AGT 

g-coupled ACE angiotensin 

converting enzyme 

0 1 0.1 protein ACE; 

ACE2 

g-coupled NOX NAD(P)H oxidase 0 1 0.1 protein NOX4; 

NOX5 

g-coupled ROS reactive oxygen 

species 

0 1 0.1 protein 
 

g-coupled ET1 endothelin 1 0 1 1 protein EDN1 

g-coupled ETAR endothelin 1 

receptor A 

0 1 0.1 protein EDNRA 

g-coupled DAG diacyl-glycerol 0 1 0.1 small 
 

g-coupled PKC protein kinase C  0 1 0.1 protein PRKCA; 

PRKCE;  

g-coupled TRPC transient receptor 

potential canonical 

0 1 0.1 protein TRPC6;T

RPC3 

g-coupled NE norepinephrine 0 1 1 small 
 

g-coupled BAR beta adrenergic 

receptor 1 or 2 

0 1 0.1 protein ADRB1; 

ADRB2 

g-coupled Forskolin   0 1 1 small 
 

g-coupled AC adenylate cyclase 0 1 0.1 protein ADCY6 

g-coupled cAMP cyclic adenosine 

monophosphate 

0 1 0.1 small 
 

g-coupled PKA protein kinase A 0 1 0.1 protein PRKACA 

g-coupled CREB cAMP response-

element binding 

protein 

0 1 0.1 protein CREB1; 

CREB3 

g-coupled CBP CREB - binding 

protein 

0 1 0.1 protein CREBBP 

growth 

factor 

TGFB transforming 

growth factor beta 

1 

0 1 1 protein TGFB1 

growth 

factor 

TGFB1R TGFB receptor 0 1 0.1 protein TGFBR1; 

TGFBR2 
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growth 

factor 

smad3 small mothers 

against 

decapentaplegic 2 

and 3 

0 1 0.1 protein SMAD2; 

SMAD3 

growth 

factor 

smad7 
 

0 0.5 10 protein SMAD7 

growth 

factor 

latentTGFB TGFB1 with latent 

protein complex 

0 1 10 protein 
 

growth 

factor 

BAMBI BMP and activin 

bound inhibitor 

0 1 0.1 protein BAMBI 

growth 

factor 

PDGF platelet derived 

growth factor 

0 1 1 protein PDGFA; 

PDGFB; 

PDGFD 

growth 

factor 

PDGFR platelet derived 

growth factor 

receptor 

0 1 0.1 protein PDGFRA; 

PDGFRB 

stretch NP natriuretic peptide 0 1 1 protein NPPA; 

NPPB 

stretch NPRA natriuretic peptide 

receptor 

0 1 0.1 protein NPR1; 

NPR2; 

NPR3 

stretch cGMP cyclic guanosine 

monophosphate 

0 1 0.1 small 
 

stretch PKG protein kinase G 0 1 0.1 protein PRKG1 

stretch mechanical stretch 0 1 1 process 
 

stretch B1int beta 1 integrin 0 1 0.1 protein ITGB1 

stretch Rho a Rho-dependent 

GTPase  

0 1 0.1 protein RHOA 

stretch ROCK rho associated 

protein kinase 

0 1 0.1 protein ROCK1 

stretch Ca calcium 0 1 0.1 small 
 

stretch calcineurin calcineurin 0 1 0.1 protein PPP3CA; 

PPP3CB 

stretch NFAT nuclear factor of 

activated T-cells 

0 1 0.1 protein NFATC1 

cytokine IL6 interleukin-6 0 1 1 protein IL6 

cytokine gp130 IL-6 receptor 

complexed to 

gp130 for signal 

transduction 

0 1 0.1 protein IL6ST; 

IL6R 

cytokine STAT signal transducers 

and activators of 

transcription 1 and 

3 

0 1 0.1 protein STAT1; 

STAT3 

cytokine IL1 interleukin-1 alpha 

and beta 

0 1 1 protein IL1B;IL1

A 
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cytokine IL1RI IL1 receptor type I  0 1 0.1 protein IL1R1 

cytokine TNFa tissue necrosis 

factor alpha 

0 1 1 protein TNF 

cytokine TNFaR TNF alpha 

receptor 

0 1 0.1 protein TNFRSF1

A;TNFRS

F1B 

cytokine NFKB nuclear factor 

kappa-light-chain-

enhancer of 

activated B cells 

0 1 0.1 protein NFKB1 

cytokine PI3K phosphoinositide 

3-kinase 

0 1 0.1 protein PIK3CA 

cytokine Akt protein kinase B 0 1 0.1 protein AKT1; 

AKT2; 

AKT3 

MAPK p38 a MAP kinase 0 1 0.1 protein MAPK14 

MAPK TRAF tnf receptor 

associated factor 

either 2/6 

0 1 0.1 protein TRAF6 

MAPK ASK1 apoptosis signal 

related kinase 1 

0 1 0.1 protein MAP3K5 

MAPK MKK3 mitogen activated 

protein kinase 

kinase 

0 1 0.1 protein MAP2K3 

MAPK PP1 protein 

phosphatase 1 

0 1 0.1 protein PPP1CA; 

PPP1CB; 

PPP1CC 

MAPK JNK a MAP kinase 0 1 0.1 protein MAPK8 

MAPK abl abl tyrosine kinase 0 1 0.1 protein ABL1; 

ABL2 

MAPK Rac1 a Rho-dependent 

GTPase  

0 1 0.1 protein RAC1 

MAPK MEKK1 a MAP3K 

associated with 

p38 and JNK 

0 1 0.1 protein MAP3K1 

MAPK MKK4 a MAP2K 

associated with 

p38 and JNK 

0 1 0.1 protein MAP2K4 

MAPK ERK a MAP kinase 0 1 0.1 protein MAPK1; 

MAPK3 

MAPK Ras representing the 

family of GTPases 

0 1 0.1 protein KRAS 

MAPK Raf family of raf 

protein 

serine/threonine 

kinases 

0 1 0.1 protein RAF1 
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MAPK MEK1 a MAP2K mainly 

specific to ERK  

0 1 0.1 protein MAP2K1 

adhesion FAK  focal adhesion 

kinase 

0 1 0.1 protein PTK2 

adhesion epac exchange protein 

activated by cAMP 

1 

0 1 0.1 protein RAPGEF3 

adhesion Factin polymerized actin 0 1 1 
 

ACTG1 

adhesion FA formation of focal 

adhesions  

0 1 1 complex 
 

adhesion migration mobility 0 1 10 event 
 

growth cmyc myc transcription 

factor 

0 1 0.1 protein MYC 

growth CTGF connective tissue 

growth factor 

0 1 0.1 protein CTGF 

growth proliferation proliferation 0 1 10 event 
 

differentiati

on 

SRF serum response 

factor 

0 1 0.1 protein SRF 

differentiati

on 

EDAFN extra domain A of 

fibronectin 

0 1 10 protein FN1 

differentiati

on 

aSMA alpha-smooth 

muscle actin 

0 1 10 protein ACTA2 

ECM AP1  activator protein 1 0 1 0.1 protein JUN; FOS 

ECM TIMP1 tissue inhibitor of 

metalloproteinase 

1  

0 0.5 10 protein TIMP1 

ECM TIMP2 tissue inhibitor of 

metalloproteinase 

2 

0 0.5 10 protein TIMP2 

ECM PAI1 plasminogen 

activator inhibitor 

1 

0 1 10 protein SERPINE

1 

ECM proMMP14 inactive MMP14 0 1 1 protein 
 

ECM proMMP1 inactive MMP1 0 1 1 protein 
 

ECM proMMP2 inactive MMP2 0 1 1 protein 
 

ECM proMMP9 inactive MMP9 0 1 1 protein 
 

ECM MMP1 metalloproteinase-

1 

0 1 10 protein MMP1 

ECM MMP2 metalloproteinase-

2 

0 1 10 protein MMP2 

ECM MMP9 metalloproteinase-

9 

0 1 10 protein MMP9 

ECM MMP14 metalloproteinase-

14 

0 1 10 protein MMP14 

ECM fibronectin fibronectin 0 1 10 protein FN1 

ECM periostin periostin 0 1 10 protein POSTN 
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ECM CImRNA   0 1 1 transcrip

t 

 

ECM CIIImRNA   0 1 1 transcrip

t 

 

ECM CI collagen I 0 1 10 protein COL1A1 

ECM CIII collagen III 0 1 10 protein COL3A1 

        

 

 

Table A.1b: Model Reaction Information 

Reaction Information 

Rule Weight n EC50 PMID 

=> AngII 0.25 1.4 0.6 10362677 

=> TGFB 0.25 1.4 0.6 20538689 

=> mechanical 0.25 1.4 0.6 9547793 

=> IL6 0.25 1.4 0.6 19234091 

=> IL1 0.25 1.4 0.6 19631653 

=> TNFa 0.25 1.4 0.6 10591022 

=> NE 0.25 1.4 0.6 3948363 

=> PDGF 0.25 1.4 0.6 20538689 

=> ET1 0.25 1.4 0.6 12695528 

=>NP 0.25 1.4 0.6 17991884 

=> Forskolin 0.25 1.4 0.6 
 

MMP9 & latentTGFB => TGFB 1 1.4 0.6 10652271,  

12226090 

MMP2 & latentTGFB => TGFB 1 1.4 0.6 10652271, 

12226090 

ACE & AGT => AngII 1 1.4 0.6 10790312, 

13295487 

CREB + CBP => IL6 1 1.4 0.6 11597988, 

16466739, 

10405202 

NFKB => IL6 1 1.4 0.6 11597988, 

16466739 

AP1 => IL6 1 1.4 0.6 11597988, 

16466739 

AP1 => ET1 1 1.4 0.6 12695528, 

1918021 

AngII => AT1R 1 1.4 0.6 8348686, 

16024575 

AT1R => NOX 1 1.4 0.6 15106793, 

11597988 
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NOX => ROS 1 1.4 0.6 15106793, 

16531806 

IL6 => gp130 1 1.4 0.6 19234091, 

1602143 

ROS => ERK 1 1.4 0.6 11597988, 

14642698, 

2695528 

ROS => p38 1 1.4 0.6 11597988, 

24882408, 

12695528 

ROS => JNK 1 1.4 0.6 11597988, 

12695528 

IL1RI => NFKB 1 1.4 0.6 11597988, 

1906501 

B1int => Rac1 1 1.4 0.6 21131638, 

12376560 

B1int => Rho 1 1.4 0.6 21131638, 

17456553 

gp130 => STAT 1 1.4 0.6 19234091, 

9874564 

TNFaR => PI3K 1 1.4 0.6 17560598, 

17612514 

!AT1R & !JNK & p38 => AGT 1 1.4 0.6 18926830, 

21131638, 

11192370 

TGFB1R  & !PKG & !smad7 => smad3 1 1.4 0.6 17513491, 

9335507, 

9215638, 

17991884, 

17038494 

smad3 & CBP & ERK => CTGF 1 1.4 0.6 18586263, 

22749815, 

11013125, 

12368229, 

16959941 

STAT => proMMP2 1 1.4 0.6 15350851, 

24573038 

STAT => proMMP9 1 1.4 0.6 19234091, 

18258475 

smad3 & CBP => periostin 1 1.4 0.6 21367774, 

24004653, 

16959941 

CREB & CBP => periostin 1 1.4 0.6 21367774, 

24577408, 

16959941 
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ERK => NFKB 1 1.4 0.6 17921324, 

21757573 

p38 => NFKB 1 1.4 0.6 17921324, 

11259436 

NFKB & AP1 & !smad3 => proMMP1 1 1.4 0.6 17921324, 

11502752, 

12525489 

ETAR => ROS 1 1.4 0.6 12695528, 

16391241 

ERK => AP1 1 1.4 0.6 12695528, 

10862759 

AP1 => proMMP2 1 1.4 0.6 17921324, 

12371906 

AP1 & NFKB => proMMP9 1 1.4 0.6 17560598, 

975585 

AP1 => TIMP1 1 1.4 0.6 17921324, 

9182725 

AP1 => TIMP2 1 1.4 0.6 17921324, 

8112602 

PKC & mechanical => B1int 1 1.4 0.6 15949469, 

12110574, 

21131638 

cAMP => PKA 1 1.4 0.6 11054474, 

21977288 

smad3 & CBP => fibronectin 1 1.4 0.6 16707625, 

11013125 

!smad3  => CBP 1 1.4 0.6 16959941, 

10918613 

!CREB => CBP 1 1.4 0.6 16959941, 

8028671 

mechanical => B1int 1 1.4 0.6 21131638, 

15760908 

NFAT => EDAFN 1 1.4 0.6 23178899, 

23142541 

TGFB1R => ACE 1 1.4 0.6 11967821, 

18223028 

proMMP14 => MMP14 1 1.4 0.6 
 

proMMP9 & !TIMP1  => MMP9 1 1.4 0.6 7674941, 

19184368 

proMMP1 & !TIMP1  => MMP1 1 1.4 0.6 7674941, 

1311314 

proMMP9 & !TIMP2 => MMP9 1 1.4 0.6 7674941, 

19184368 

proMMP2 & MMP14 & !TIMP1 => 

MMP2 

1 1.4 0.6 7674941, 

10827175 
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proMMP2 & MMP14 => MMP2 1 1.4 0.6 7674941, 

10827175 

TGFB & !BAMBI => TGFB1R 1 1.4 0.6 22960625, 

24078695 

AP1 => proliferation 1 1.4 0.6 23500546, 

17483238 

PKA => CREB 1 1.4 0.6 11054474, 

11909979 

CREB => proliferation 1 1.4 0.6 11054474, 

17483238 

NE => BAR 1 1.4 0.6 11054474, 

7700241 

ET1 => ETAR 1 1.4 0.6 12695528, 

8313418 

CTGF  => proliferation 1 1.4 0.6 11013125, 

174832 

IL1 => IL1RI 1 1.4 0.6 8327496, 

7769098 

PKC => proliferation 1 1.4 0.6 10756114, 

17483238 

smad3 & CBP &  !epac=> CImRNA 1 1.4 0.6 17513491, 

17513491, 

11279127, 

18434542, 

23845590 

smad3 & CBP & !epac=> CIIImRNA 1 1.4 0.6 17513491, 

17513491, 

11279127, 

18434542, 

23845590 

!MMP1 & CImRNA => CI 1 1.4 0.6 8999957, 

11513874 

!MMP1 & CIIImRNA => CIII 1 1.4 0.6 8999957 

!MMP2 &CImRNA => CI 1 1.4 0.6 8999957, 

11513874 

!MMP2 & CIIImRNA => CIII 1 1.4 0.6 8999957 

AP1 => proMMP14 1 1.4 0.6 22287584, 

17348021 

PDGF => PDGFR 1 1.4 0.6 11230972, 

24427322 

BAR => AC 1 1.4 0.6 12711600, 

17934720 

BAR & AT1R => AC 1 1.4 0.6 12711600, 

1330500 

AC => cAMP 1 1.4 0.6 12711600, 

15075208 



 | 142 

 

FAK =>MEKK1 1 1.4 0.6 17409352, 

12458213, 

21131638 

AP1 => latentTGFB 1 1.4 0.6 20141610, 

21367774, 

22429882, 

19374881 

cAMP => epac 1 1.4 0.6 18434542, 

9853756 

Rho => ROCK 1 1.4 0.6 16043513, 

17456553 

MMP9 => migration 1 1.4 0.6 17560598, 

21925853 

MMP2 => migration 1 1.4 0.6 12970340, 

21385940 

TNFa => TNFaR 1 1.4 0.6 17560598, 

23337087 

NP => NPRA 1 1.4 0.6 16986166, 

11595171 

NPRA => cGMP 1 1.4 0.6 17991884, 

16986166 

cGMP => PKG 1 1.4 0.6 17991884, 

21282499 

Ras => Raf 1 1.4 0.6 9486662, 

8668210 

Raf & !ERK => MEK1 1 1.4 0.6 12388314, 

8668210, 

21943356, 

24489118 

MEK1 & !PP1=> ERK  1 1.4 0.6 12388314, 

12167697, 

11259586, 

15972258, 

25659900 

p38 => PP1 1 1.4 0.6 11259586, 

15972258, 

25659900 

MKK3 => p38 1 1.4 0.6 11259586, 

15778394 

TGFB1R => TRAF 1 1.4 0.6 22749815, 

18922473 

Rac1 => MEKK1 1 1.4 0.6 7600582, 

9674706 

MEKK1 => MKK4 1 1.4 0.6 7600582, 

12401521 
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MKK4 & !NFKB => JNK 1 1.4 0.6 7600582, 

16076903, 

11713530, 

11466617 

PDGFR => abl 1 1.4 0.6 16076903, 

10500097 

abl => Rac1 1 1.4 0.6 16076903, 

15039778 

JNK => cmyc 1 1.4 0.6 16076903, 

14523011 

cmyc => proliferation 1 1.4 0.6 16076903, 

15195135 

TNFaR => TRAF 1 1.4 0.6 9774977, 

17560598, 

10523862 

TRAF => ASK1 1 1.4 0.6 9774977, 

10523862 

ASK1 => MKK3 1 1.4 0.6 8974401, 

10912795 

ASK1 => MKK4 1 1.4 0.6 8974401, 

9774977, 

19494316 

IL1RI => ASK1 1 1.4 0.6 15778394, 

10912795 

smad3 => PAI1 1 1.4 0.6 17991884, 

11279127, 

9606191 

!PKA & epac => migration 1 1.4 0.6 18434542, 

24725364 

NFKB => proMMP14 1 1.4 0.6 11112697, 

20855151 

Ras => p38  1 1.4 0.6 21367774, 

14593117 

PI3K => Akt 1 1.4 0.6 23500546, 

21498085, 

15166238 

TGFB1R => PI3K  1 1.4 0.6 21498085, 

16288034 

PDGFR => PI3K 1 1.4 0.6 21943356, 

11230972 

FAK => PI3K 1 1.4 0.6 15166238, 

25900259 

TGFB1R => NOX 1 1.4 0.6 16179589, 

26096997, 

25858818 
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Akt => NFKB 1 1.4 0.6 18064631, 

10485711 

NFKB => fibronectin 1 1.4 0.6 18064631, 

17252537, 

23141425 

JNK => AP1 1 1.4 0.6 21757573, 

12695528 

IL1RI   & TGFB => BAMBI 1 1.4 0.6 24078695, 

23734837 

Forskolin => AC 1 1.4 0.6 12711600, 

15075208 

STAT => smad7 1 1.4 0.6 10067896, 

11927620, 

22751114 

SRF => CImRNA 1 1.4 0.6 20558820, 

24732378 

Rho & !Rac1 => p38 1 1.4 0.6 21131638, 

25007875 

MKK4 & !Rho => JNK 1 1.4 0.6 21131638, 

7600582 

ROCK => Factin 1 1.4 0.6 21385940, 

17456553 

Factin => SRF 1 1.4 0.6 24732378, 

18334560 

B1int & Factin => FA 1 1.4 0.6 
 

SRF => CIIImRNA 1 1.4 0.6 20558820, 

24732378 

SRF & asmad3 & CBP=> aSMA 0 1.4 0.6 16179589, 

20558820, 

24732378 

calcineurin => NFAT 1 1.4 0.6 22403241, 

23178899 

AT1R => Ras 1 1.4 0.6 9486662, 

21367774 

ROCK => FAK  1 1.4 0.6 203008429, 

15923313 

smad3 & CBP => aSMA 1 1.4 0.6 16179589, 

26738448 

SRF=> aSMA 1 1.4 0.6 17456553, 

15855636 

ETAR => DAG 1 1.4 0.6 1809396, 

10676846 

AT1R => DAG 1 1.4 0.6 7653525, 

17982962 
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DAG => TRPC 1 1.4 0.6 17533154, 

22992321, 

25521631 

TRPC => Ca 1 1.4 0.6 23827314, 

22992321 

Ca => calcineurin 1 1.4 0.6 26191219, 

23022034 

DAG => PKC 1 1.4 0.6 23800645, 

17071619 
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Table A.2 References for validation of the large-scale fibroblast signaling model 

Red text indicates contradicting sources. 

Input Output 'prediction' Measurement Reference Cell Type Add. Ref 

TGFB CImRNA 'Increase' Increase 23583823 human atrial cardiac 
fibroblasts 

 

TGFB CIIImRNA 'Increase' Increase 23583823 human atrial cardiac 
fibroblasts 

 

TGFB CI 'Increase' Increase 15625103 rat cardiac fibroblast 14726474, 
10864917 

TGFB CIII 'Increase' Increase 15625103 rat cardiac fibroblast 10864917 

TGFB aSMA 'Increase' Increase 15625103 rat cardiac fibroblast 14726474, 
11600408, 
23845590, 
24085841, 
23583823 

TGFB PAI1 'Increase' Increase 14726474 human primary 
cardiac fibroblasts 

10715259 

TGFB fibronectin 'Increase' Increase 11600408 adult male rat 
cardiac fibroblasts 

14726474 

TGFB MMP2 'Increase' Increase 15194465 adult rat cardiac 
fibroblast 

 

TGFB MMP14 'Increase' Increase 15194465 adult rat cardiac 
fibroblast 

 

TGFB migration 'Increase' Increase 15194465 adult rat cardiac 
fibroblast 

17706606 

TGFB CTGF 'Increase' Increase 23583823 human atrial cardiac 
fibroblasts 

14726474 

TGFB IL6 'Increase' Increase 14726474 human primary 
cardiac fibroblasts 

23583823 

TGFB TIMP2 'Increase' Increase 15194465 adult male rat 
cardiac fibroblasts 

 

TGFB latentTGFB 'Increase' Increase 10715259 disease human 
cardiac fibroblast 
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AngII CI 'Increase' Increase 23141425 adult rat cardiac 
fibroblast 

23526266, 
15625103, 
12480812, 
18278065 

AngII CIII 'Increase' Increase 23141425 adult rat cardiac 
fibroblast 

23526266, 
12480812, 
15625103, 
18278065 

AngII aSMA 'Increase' Increase 11600408 adult rat cardiac 
fibroblast 

15625103 

AngII PAI1 'Increase' Increase 18278065 neonatal rat cardiac 
fibroblast 

10715259 

AngII proliferation 'Increase' Increase 23526266 adult rat cardiac 
fibroblast 

7635942, 
10715259, 
23141425, 
21819443 

AngII ET1 'Increase' Increase 7635942 neonatal rat cardiac 
fibroblast 

 

AngII CTGF 'Increase' Increase 23141425 adult rat cardiac 
fibroblasts 

 

AngII MMP2 'Increase' Increase 23526266 rat cardiac fibroblast 
 

AngII MMP9 'Increase' Increase 23526266 rat cardiac fibroblast 
 

AngII fibronectin 'Increase' Increase 11600408 adult male rat 
cardiac fibroblasts 

10715259, 
23141425, 
18278065 

AngII latentTGFB 'Increase' Increase 18278065 neonatal rat cardiac 
fibroblast 

10715259 

stretch CI 'Increase' Increase 15254965 neonatal and adult 
rat cardiac 
fibroblasts 

17686880, 
14985070, 
2054929 

stretch CIII 'Increase' Increase 2054929  neonatal rat cardiac 
fibroblast 

17686880, 
15254965 

stretch aSMA 'Increase' Increase 12842814 rat cardiac 
fibroblasts  

 

stretch proliferation 'Decrease' Decrease 15254965 neonatal rat cardiac 
fibroblast 

 

stretch latentTGFB 'Decrease' Increase 10939632 neonatal rat cardiac 
fibroblast 

 

TNFa CI 'Increase' Increase 21893029 adult rat cardiac 
fibroblasts 

11070088, 
10864917, 
12480812 

TNFa CIII 'Increase' Increase 21893029 adult rat cardiac 
fibroblasts 

11070088, 
10864917, 
12480812 
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TNFa MMP9 'Increase' Increase 15537504 human atrial cardiac 
fibroblast 

20619343 

TNFa MMP2 'Increase' Increase 15194465 adult rat cardiac 
fibroblast 

12480812, 
20619343 

TNFa TIMP1 'Increase' Increase 12480812 neonatal rat cardiac 
fibroblast 

 

TNFa migration 'Increase' Increase 17706606 rat cardiac fibroblast 17085539, 
15537504 

TNFa latentTGFB 'Increase' Increase 21893029 adult rat cardiac 
fibroblast 

 

IL1 CImRNA 'Decrease' No Change 23583823 human atrial cardiac 
fibroblast 

20619343 

IL1 CI 'Decrease' Decrease 10864917 rat cardiac fibroblast 
 

IL1 CIII 'Decrease' Decrease 10864917 rat cardiac fibroblast 
 

IL1 aSMA 'Decrease' No Change 23583823 human atrial cardiac 
fibroblasts 

 

IL1 proliferation 'Increase' Decrease 9748252 neonatal rat cardiac 
fibroblast 

21819443 

IL1 MMP1 'Increase' Increase 20619343 human atrial cardiac 
fibroblasts 

 

IL1 MMP9 'Increase' Increase 20619343 human atrial cardiac 
fibroblast 

17706606 

IL1 MMP2 'Increase' No Change 20619343 human atrial cardiac 
fibroblast 

17706606 

IL1 IL6 'Increase' Increase 23583823 human atrial cardiac 
fibroblast 

 

IL1 CTGF 'Decrease' No Change 23583823 human atrial cardiac 
fibroblasts 

 

IL1 migration 'Increase' Increase 17706606 rat cardiac fibroblast 17085539 

Forskolin CI 'Decrease' Decrease 15625103 adult rat cardiac 
fibroblast 

23845590 

Forskolin aSMA 'Decrease' Decrease 15625103 adult rat cardiac 
fibroblast 

 

Forskolin migration 'Increase' Increase 23845590 neonatal rat CF and 
CMF 

 

Forskolin proliferation 'Increase' Decrease 12652658 rat cardiac fibroblast 11304509 

NE CI 'Decrease' Decrease 19575289 adult rat cardiac 
fibroblast 

23845590, 
20637865, 
25134464, 
22914642 

NE MMP2 'Increase' Increase 22914642 adult rat cardiac 
fibroblast 

20167215 
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NE latentTGFB 'No 
Change' 

Increase 19575289 adult rat cardiac 
fibroblast 

 

NE CImRNA 'Decrease' Increase 19575289 rat cardiac fibroblast 
 

NE CIIImRNA 'Decrease' Increase 19575289 rat cardiac fibroblast 
 

NE proliferation 'Increase' Increase 12652658 rat cardiac fibroblast 11304509, 
12619890 

NE IL6 'Increase' Increase 12619890 rat cardiac fibroblast 
 

IL6 CI 'Decrease' Decrease 10864917 neonatal and adult 
rat cardiac 
fibroblasts 

 

IL6 CIII 'Decrease' Decrease 10864917 neonatal and adult 
rat cardiac 
fibroblasts 

 

IL6 proliferation 'No 
Change' 

Increase 12619890 rat cardiac fibroblast 
 

ET1 CI 'Increase' Increase 17533154 neonatal rat cardiac 
fibroblast 

 

ET1 CIII 'Increase' Increase 17533154 neonatal rat cardiac 
fibroblast 

 

ET1 aSMA 'Increase' Increase 17533154 neonatal rat cardiac 
fibroblast 

 

ET1 proliferation 'Increase' Increase 7635942 neonatal rat cardiac 
fibroblast 

 

PDGF CI 'Increase' Increase 23585135 adult rat cardiac 
fibroblast 

25628782 

PDGF CIII 'Increase' Increase 25628782 neonatal rat CF  
 

PDGF aSMA 'Increase' Increase 23585135 adult rat cardiac 
fibroblast 

25628782, 
24427322 

PDGF proliferation 'Increase' Increase 23585135 adult rat cardiac 
fibroblast 

25628782 

PDGF MMP1 'Increase' Increase 23585135 adult rat cardiac 
fibroblast 

25628782 

PDGF latentTGFB 'Increase' Increase 23585135 adult rat cardiac 
fibroblast 

 

PDGF migration 'Increase' Increase 23585135 rat cardiac fibroblast 19136609 

NP CI 'Decrease' No Change 23526266 rat cardiac fibroblast 14726474 

NP CTGF 'Decrease' No Change 14726474 human cardiac 
fibroblast 

 

NP fibronectin 'Decrease' No Change 14726474 human cardiac 
fibroblast 

 

NP proliferation 'No 
Change' 

No Change 23526266 adult rat cardiac 
fibroblast 
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NP aSMA 'Decrease' No Change 14726474 human cardiac 
fibroblast 

 

NP IL6 'No 
Change' 

No Change 14726474 human cardiac 
fibroblast 

 

NP PAI1 'Decrease' No Change 14726474 human cardiac 
fibroblast 

 

NP CIII 'Decrease' No Change 23526266 rat cardiac fibroblast 
 

NP MMP9 'No 
Change' 

No Change 23526266 rat cardiac fibroblast 
 

NP MMP2 'No 
Change' 

No Change 23526266 rat cardiac fibroblast 
 

 

 

 

 

  



 | 151 

 

Figure  A.1: Full simulation of TGF-β versus forskolin treatment. 

Predicted dynamic activity of all nodes for 6 days of TGF-β alone (A) or for 4 days of TGF-β 

followed by 2 days of TGF-β + forskolin. The difference in activation of each node with and 

without forskolin stimulation is plotted on the network to map the specific pathways altered in 

these two conditions (C). 
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Figure A.2: Other validated relationships. 

Model prediction and comparison to experimental validation data for all relationships not 

included in the subset shown in Figure 3. Color indicates model prediction (blue for decrease, 

white for no change, red for increase) and the check indicates agreement with literature where an 

x indicates disagreement. Inputs are shown on the vertical axis and outputs are shown on the 

horizontal axis. Relationships are grouped by input.  
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Figure A.3: Robustness of validation accuracy to changes in baseline input levels. 

The baseline input levels were varied within a uniform distribution of width 5%-50% of the 

original value (25% activity). This uniform distribution was sampled 100 times, and the 

validation accuracy was calculated for each random sampling represented at a dot in the plot. 

The validation accuracy is robust to variation within 12-37% activity. 
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Figure A.4: Full sensitivity analysis. 

Results of a full sensitivity analysis where all possible knock downs (x axis) are performed under 

baseline (A), high TGFβ (B), and high mechanical stimulus (C) signaling context and the change 

in activity (knock down - control) for each output node (y axis) is measured as a change in color. 

The top 10 most influential nodes (columns) and top 10 most sensitive nodes (rows) for the 

baseline and high TGFβ are shown in Fig. 4A-B. Blue indicates a decrease in activity with knock 

down of the perturbed node and red indicates an increase in activity with knock down of the 

perturbed node.  
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Figure A.5: Clustering analysis 

(A) The full sensitivity analysis under high TGFβ signaling context ordered by cluster on both 

axes. (B) The full network with each node colored by module as labeled in A. 
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Figure A.6: Full comparison of topological features versus influence 

Each topological feature is plotted against influence. R2 values are shown. 
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Table A.3: Definitions of network topology metrics 

Each topological feature as defined by Assenov et al in the NetworkAnalyzer plugin for 

Cytoscape used for topological analysis of the network [27],[28]. 

 

 

Topology Metric Definition 

betweenness centrality 
number of shortest paths from all nodes to all others that pass 

through node n 

out-degree number of edges that exit node n 

in-degree number of edges that enter node n 

edge count total number of edges connected to node n 

eccentricity 
maximal length of a shortest path between node n and any other 

node in the network 

neighborhood 

connectivity 
average number of neighbors for all neighbors of node n 

ave shortest path 

length 
average shortest path between node n and any other node 

closeness centrality 

the reciprocal of the average shortest path length from node n 

(interpreted as a measure of how quickly information spreads from 

node n) 

clustering coefficient 
measure of the degree to which node n’s neighbors form a complete 

graph 

partner of multi-edged 

node pairs 
how many nodes is node n a partner of that has multiple edges 
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Appendix B 

Modeling the Dynamic Post-MI 

Environment 
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Table B.1: Post-Infarct Measurements of Model Inputs 

 

Color indicates whether the value at that time point is a peak. Pink indicates a low peak (<3x 

change), red indicates a high peak (>3x change), blue indicates a dip. All values obtained using 

digitize2.m (https://www.mathworks.com/matlabcentral/fileexchange/928-digitize2-m).  
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Figure B.1: Network Modifications. Network diagram of model used for post-MI studies 

(chapter 3) where green color highlights the interactions and nodes not included in the original 

model (chapter 2).  
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Figure B.2: Training mechanical input levels to validation data. The mechanical input level 

that defines the stimulus for the control model was identified by brute force optimization. A: For 

each mechanical input level, the sum of squared area from model prediction was calculated. B: 

Experimentally determined fold change in the indicated outputs following stimulation with the 

input is compared to the predicted fold change in specific outputs when the input indicated is 

added above the optimal control mechanical input.  
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Figure B.3: Inputs for Dynamic MI simulations and their relationship to data. Shown are 

idealized input curves plotted against the fold change of the levels of the indicated input in rat or 

human infarcts. Data is summarized in Table B.1    
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Figure B.4: Inputs to tissue-level model for control (pre-infarct) simulations. Shown are 

curves that input to the tissue-level model. Fibroblast number and MMP levels are defined by an 

idealized input curve based on post-MI data. Collagen I expression is the collagen I mRNA level 

predicted by the network model normalized to a max value of 1.    
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Drug Target Pairs 
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Table C.1: All drug-target pairs identified from DrugBank’s database of FDA-approved drugs 

with a known target within the fibroblast network.  

Node 

Name 

Gene 

Name 

Drug Bank 

ID 

Drug Name 

'AT1R' 'AGTR1' 'DB00177' 'Valsartan' 

'AT1R' 'AGTR1' 'DB00275' 'Olmesartan' 

'AT1R' 'AGTR1' 'DB00678' 'Losartan' 

'AT1R' 'AGTR1' 'DB00796' 'Candesartan' 

'AT1R' 'AGTR1' 'DB00876' 'Eprosartan' 

'AT1R' 'AGTR1' 'DB00966' 'Telmisartan' 

'AT1R' 'AGTR1' 'DB01029' 'Irbesartan' 

'AT1R' 'AGTR1' 'DB01342' 'Forasartan' 

'AT1R' 'AGTR1' 'DB01347' 'Saprisartan' 

'AT1R' 'AGTR1' 'DB01349' 'Tasosartan' 

'AT1R' 'AGTR1' 'DB08822' 'Azilsartan medoxomil' 

'AT1R' 'AGTR1' 'DB00177' 'Valsartan' 

'AT1R' 'AGTR1' 'DB00275' 'Olmesartan' 

'AT1R' 'AGTR1' 'DB00966' 'Telmisartan' 

'AT1R' 'AGTR1' 'DB01029' 'Irbesartan' 

'ACE' 'ACE' 'DB00178' 'Ramipril' 

'ACE' 'ACE' 'DB00492' 'Fosinopril' 

'ACE' 'ACE' 'DB00519' 'Trandolapril' 

'ACE' 'ACE' 'DB00542' 'Benazepril' 

'ACE' 'ACE' 'DB00584' 'Enalapril' 

'ACE' 'ACE' 'DB00691' 'Moexipril' 

'ACE' 'ACE' 'DB00722' 'Lisinopril' 

'ACE' 'ACE' 'DB00790' 'Perindopril' 

'ACE' 'ACE' 'DB00881' 'Quinapril' 

'ACE' 'ACE' 'DB01180' 'Rescinnamine' 

'ACE' 'ACE' 'DB01197' 'Captopril' 

'ACE' 'ACE' 'DB01340' 'Cilazapril' 

'ACE' 'ACE' 'DB01348' 'Spirapril' 

'ACE' 'ACE' 'DB00542' 'Benazepril' 

'ACE' 'ACE' 'DB00722' 'Lisinopril' 

'ACE' 'ACE' 'DB00881' 'Quinapril' 

'ACE' 'ACE2' 'DB00691' 'Moexipril' 

'ACE' 'ACE2' 'DB00722' 'Lisinopril' 

'ACE' 'ACE2' 'DB00722' 'Lisinopril' 

'ETAR' 'EDNRA' 'DB00559' 'Bosentan' 

'ETAR' 'EDNRA' 'DB06268' 'Sitaxentan' 

'ETAR' 'EDNRA' 'DB06403' 'Ambrisentan' 

'ETAR' 'EDNRA' 'DB08932' 'MACITENTAN' 
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'ETAR' 'EDNRA' 'DB00559' 'Bosentan' 

'ETAR' 'EDNRA' 'DB06268' 'Sitaxentan' 

'ETAR' 'EDNRA' 'DB06403' 'Ambrisentan' 

'BAR' 'ADRB1' 'DB00187' 'Esmolol' 

'BAR' 'ADRB1' 'DB00195' 'Betaxolol' 

'BAR' 'ADRB1' 'DB00221' 'Isoetarine' 

'BAR' 'ADRB1' 'DB00264' 'Metoprolol' 

'BAR' 'ADRB1' 'DB00335' 'Atenolol' 

'BAR' 'ADRB1' 'DB00368' 'Norepinephrine' 

'BAR' 'ADRB1' 'DB00373' 'Timolol' 

'BAR' 'ADRB1' 'DB00489' 'Sotalol' 

'BAR' 'ADRB1' 'DB00521' 'Carteolol' 

'BAR' 'ADRB1' 'DB00571' 'Propranolol' 

'BAR' 'ADRB1' 'DB00598' 'Labetalol' 

'BAR' 'ADRB1' 'DB00612' 'Bisoprolol' 

'BAR' 'ADRB1' 'DB00668' 'Epinephrine' 

'BAR' 'ADRB1' 'DB00841' 'Dobutamine' 

'BAR' 'ADRB1' 'DB00866' 'Alprenolol' 

'BAR' 'ADRB1' 'DB00960' 'Pindolol' 

'BAR' 'ADRB1' 'DB01064' 'Isoprenaline' 

'BAR' 'ADRB1' 'DB01102' 'Arbutamine' 

'BAR' 'ADRB1' 'DB01118' 'Amiodarone' 

'BAR' 'ADRB1' 'DB01136' 'Carvedilol' 

'BAR' 'ADRB1' 'DB01193' 'Acebutolol' 

'BAR' 'ADRB1' 'DB01203' 'Nadolol' 

'BAR' 'ADRB1' 'DB01210' 'Levobunolol' 

'BAR' 'ADRB1' 'DB01214' 'Metipranolol' 

'BAR' 'ADRB1' 'DB01295' 'Bevantolol' 

'BAR' 'ADRB1' 'DB01297' 'Practolol' 

'BAR' 'ADRB1' 'DB01359' 'Penbutolol' 

'BAR' 'ADRB1' 'DB01363' 'Ephedra' 

'BAR' 'ADRB1' 'DB01580' 'Oxprenolol' 

'BAR' 'ADRB1' 'DB04846' 'Celiprolol' 

'BAR' 'ADRB1' 'DB04861' 'Nebivolol' 

'BAR' 'ADRB1' 'DB06262' 'Droxidopa' 

'BAR' 'ADRB1' 'DB08807' 'Bopindolol' 

'BAR' 'ADRB1' 'DB08808' 'Bupranolol' 

'BAR' 'ADRB1' 'DB00264' 'Metoprolol' 

'BAR' 'ADRB1' 'DB00571' 'Propranolol' 

'BAR' 'ADRB1' 'DB01118' 'Amiodarone' 

'BAR' 'ADRB1' 'DB01136' 'Carvedilol' 

'BAR' 'ADRB1' 'DB01359' 'Penbutolol' 

'BAR' 'ADRB1' 'DB04846' 'Celiprolol' 
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'BAR' 'ADRB1' 'DB04861' 'Nebivolol' 

'BAR' 'ADRB1' 'DB06262' 'Droxidopa' 

'BAR' 'ADRB2' 'DB00368' 'Norepinephrine' 

'BAR' 'ADRB2' 'DB00373' 'Timolol' 

'BAR' 'ADRB2' 'DB00449' 'Dipivefrin' 

'BAR' 'ADRB2' 'DB00489' 'Sotalol' 

'BAR' 'ADRB2' 'DB00521' 'Carteolol' 

'BAR' 'ADRB2' 'DB00598' 'Labetalol' 

'BAR' 'ADRB2' 'DB00668' 'Epinephrine' 

'BAR' 'ADRB2' 'DB00816' 'Orciprenaline' 

'BAR' 'ADRB2' 'DB00866' 'Alprenolol' 

'BAR' 'ADRB2' 'DB00867' 'Ritodrine' 

'BAR' 'ADRB2' 'DB00871' 'Terbutaline' 

'BAR' 'ADRB2' 'DB00938' 'Salmeterol' 

'BAR' 'ADRB2' 'DB00983' 'Formoterol' 

'BAR' 'ADRB2' 'DB01001' 'Salbutamol' 

'BAR' 'ADRB2' 'DB01064' 'Isoprenaline' 

'BAR' 'ADRB2' 'DB01210' 'Levobunolol' 

'BAR' 'ADRB2' 'DB01214' 'Metipranolol' 

'BAR' 'ADRB2' 'DB01274' 'Arformoterol' 

'BAR' 'ADRB2' 'DB01288' 'Fenoterol' 

'BAR' 'ADRB2' 'DB01291' 'Pirbuterol' 

'BAR' 'ADRB2' 'DB01359' 'Penbutolol' 

'BAR' 'ADRB2' 'DB01363' 'Ephedra' 

'BAR' 'ADRB2' 'DB01366' 'Procaterol' 

'BAR' 'ADRB2' 'DB01407' 'Clenbuterol' 

'BAR' 'ADRB2' 'DB01408' 'Bambuterol' 

'BAR' 'ADRB2' 'DB04846' 'Celiprolol' 

'BAR' 'ADRB2' 'DB05039' 'Indacaterol' 

'BAR' 'ADRB2' 'DB06262' 'Droxidopa' 

'BAR' 'ADRB2' 'DB09080' 'Olodaterol' 

'BAR' 'ADRB2' 'DB09082' 'Vilanterol' 

'BAR' 'ADRB2' 'DB00983' 'Formoterol' 

'BAR' 'ADRB2' 'DB01274' 'Arformoterol' 

'BAR' 'ADRB2' 'DB01359' 'Penbutolol' 

'BAR' 'ADRB2' 'DB04846' 'Celiprolol' 

'BAR' 'ADRB2' 'DB06262' 'Droxidopa' 

'PDGFR' 'PDGFRA' 'DB01268' 'Sunitinib' 

'PDGFR' 'PDGFRA' 'DB06589' 'Pazopanib' 

'PDGFR' 'PDGFRA' 'DB08896' 'Regorafenib' 

'PDGFR' 'PDGFRA' 'DB01268' 'Sunitinib' 

'PDGFR' 'PDGFRB' 'DB00102' 'Becaplermin' 

'PDGFR' 'PDGFRB' 'DB00398' 'Sorafenib' 



 | 171 

 

'PDGFR' 'PDGFRB' 'DB01268' 'Sunitinib' 

'PDGFR' 'PDGFRB' 'DB06589' 'Pazopanib' 

'PDGFR' 'PDGFRB' 'DB08896' 'Regorafenib' 

'PDGFR' 'PDGFRB' 'DB00102' 'Becaplermin' 

'PDGFR' 'PDGFRB' 'DB00398' 'Sorafenib' 

'PDGFR' 'PDGFRB' 'DB01268' 'Sunitinib' 

'NPRA' 'NPR1' 'DB00325' 'Nitroprusside' 

'NPRA' 'NPR1' 'DB00727' 'Nitroglycerin' 

'NPRA' 'NPR1' 'DB00883' 'Isosorbide Dinitrate' 

'NPRA' 'NPR1' 'DB01612' 'Amyl Nitrite' 

'NPRA' 'NPR1' 'DB01613' 'Erythrityl Tetranitrate' 

'NPRA' 'NPR1' 'DB00727' 'Nitroglycerin' 

'NPRA' 'NPR2' 'DB01613' 'Erythrityl Tetranitrate' 

'B1int' 'ITGB1' 'DB00098' 'Anti-thymocyte Globulin 

(Rabbit)' 

'IL6' 'IL6' 'DB09036' 'Siltuximab' 

'gp130' 'IL6R' 'DB06273' 'Tocilizumab' 

'IL1' 'IL1B' 'DB05260' 'Gallium nitrate' 

'IL1' 'IL1B' 'DB06168' 'Canakinumab' 

'IL1' 'IL1B' 'DB05260' 'Gallium nitrate' 

'IL1' 'IL1B' 'DB06168' 'Canakinumab' 

'IL1RI' 'IL1R1' 'DB00026' 'Anakinra' 

'TNFa' 'TNF' 'DB00005' 'Etanercept' 

'TNFa' 'TNF' 'DB00051' 'Adalimumab' 

'TNFa' 'TNF' 'DB00065' 'Infliximab' 

'TNFa' 'TNF' 'DB01041' 'Thalidomide' 

'TNFa' 'TNF' 'DB06674' 'golimumab' 

'TNFa' 'TNF' 'DB08904' 'Certolizumab pegol' 

'TNFa' 'TNF' 'DB08910' 'Pomalidomide' 

'TNFa' 'TNF' 'DB00005' 'Etanercept' 

'TNFa' 'TNF' 'DB01041' 'Thalidomide' 

'NFKB' 'NFKB1' 'DB01041' 'Thalidomide' 

'NFKB' 'NFKB1' 'DB08814' 'Triflusal' 

'NFKB' 'NFKB1' 'DB01041' 'Thalidomide' 

'abl' 'ABL1' 'DB01254' 'Dasatinib' 

'abl' 'ABL1' 'DB04868' 'Nilotinib' 

'abl' 'ABL1' 'DB06616' 'Bosutinib' 

'abl' 'ABL1' 'DB08896' 'Regorafenib' 

'abl' 'ABL1' 'DB08901' 'Ponatinib' 

'abl' 'ABL1' 'DB01254' 'Dasatinib' 

'abl' 'ABL1' 'DB04868' 'Nilotinib' 

'ERK' 'MAPK1' 'DB01169' 'Arsenic trioxide' 

'ERK' 'MAPK1' 'DB01169' 'Arsenic trioxide' 
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'ERK' 'MAPK3' 'DB01169' 'Arsenic trioxide' 

'ERK' 'MAPK3' 'DB01169' 'Arsenic trioxide' 

'Raf' 'RAF1' 'DB00398' 'Sorafenib' 

'Raf' 'RAF1' 'DB08896' 'Regorafenib' 

'Raf' 'RAF1' 'DB08912' 'Dabrafenib' 

'Raf' 'RAF1' 'DB00398' 'Sorafenib' 

'MEK1' 'MAP2K1' 'DB05239' 'Cobimetinib' 

'MEK1' 'MAP2K1' 'DB08911' 'Trametinib' 

'EDAFN' 'FN1' 'DB08888' 'Ocriplasmin' 

'AP1 ' 'JUN' 'DB01169' 'Arsenic trioxide' 

'AP1 ' 'JUN' 'DB01169' 'Arsenic trioxide' 

'PAI1' 'SERPINE1' 'DB00013' 'Urokinase' 

'PAI1' 'SERPINE1' 'DB00013' 'Urokinase' 

'MMP1' 'MMP1' 'DB00786' 'Marimastat' 

'MMP1' 'MMP1' 'DB00786' 'Marimastat' 

'MMP2' 'MMP2' 'DB00786' 'Marimastat' 

'MMP2' 'MMP2' 'DB00786' 'Marimastat' 

'MMP9' 'MMP9' 'DB00786' 'Marimastat' 

'MMP9' 'MMP9' 'DB01296' 'Glucosamine' 

'MMP9' 'MMP9' 'DB00786' 'Marimastat' 

'MMP14' 'MMP14' 'DB00786' 'Marimastat' 

'MMP14' 'MMP14' 'DB00786' 'Marimastat' 
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