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Abstract 
Systemic lupus erythematosus (SLE) is an autoimmune syndrome characterized by multi-organ 
inflammation and immune dysregulation and is highly associated with the development of cardiovascular 
disease (CVD). Although studies exploring the association between SLE and premature CVD demonstrate 
that altered immune function plays a pivotal role in the increased cardiovascular morbidity and mortality 
observed in SLE patients, additional work is needed to identify critical pathways in SLE and CVD 
pathogenesis that can be used as novel points of therapeutic interventions. Here, published Immunochip 
and genome-wide association studies (GWAS) from SLE and coronary artery disease (CAD) were used to 
identify 96 overlapping SNPs significantly associated with both conditions. Variants were linked to 189 
predicted causal genes via expression quantitative trait loci (eQTL) mapping, the identification of functional 
variants in coding regions and transcription factor binding sites, as well as traditional SNP-gene annotation. 
The predicted genes were validated using numerous datasets of differential expression in SLE tissue. 118 
differentially expressed genes and their upstream regulators were used to predict biological pathways. 
Dysregulated pathways representative of both SLE and CAD centered around dysfunctional immune 
function and cell stress. Drug targets identified within the signaling pathways were matched to existing 
drugs and ranked using the Combined Lupus Treatment Scoring (CoLTs) system. Ultimately, 18 novel drug 
candidates with CoLTs scores equal to or greater than the current standard-of-care drug, belimumab, were 
identified, 8 of which are FDA-approved.  
 
Keywords:  System lupus erythematosus, cardiovascular disease, GWAS, genetic mapping, drug repurposing 

INTRODUCTION 
Systemic lupus erythematosus (SLE) is estimated to affect 
nearly 1.5 million people in the United States alone [1]. SLE 
is an autoimmune syndrome characterized by multi-organ 
inflammation and immune dysregulation and is highly 
associated with the development of cardiovascular disease 
(CVD). Compared to the general population, patients with 
SLE have a 2-10 fold increased risk of CVD. The relative 
risk for women with SLE between the ages of 35 and 45 is 
increased 50-fold [4] and the occurrence of fatal myocardial 
infarction has been reported to be 3 times greater in SLE 
patients [2]. Additionally, many SLE patients who have a 
myocardial infarction are relatively young, suggesting an 
increased risk with SLE rather than chance occurrences [2].  

The therapeutic challenge presented by SLE is 
largely due to the extensive heterogeneity of the disease. In 
general, SLE is associated with hyperactivity of the innate 
and adaptive immune system such as T and B cell 
abnormalities, overproduction of autoantibodies and 

disturbed cytokine balance. Heterogeneity of SLE includes 
differential expression of these abnormalities and clinical 
manifestations [8]. Standard-of-care treatments for SLE 
include glucocorticoids, non-steroidal anti-inflammatory 
drugs (NSAIDs), antimalarials, and immunosuppressive 
drugs [7]. These drugs only treat symptoms and control the 
progression of the disease. Recently, belimumab has been 
approved for treatment of SLE as well [8]. Belimumab was 
not only the first new drug approved for SLE in decades, it 
also is the first biological agent used for treating SLE [8]. 
Despite the moderate effectiveness, the approval of 
belimumab is revolutionary as it marks a shift in treatments 
for SLE away from symptom relieving medicine. 

Although mortality from infections and active 
disease have decreased in SLE patients, CVD-related death 
rates have not improved [5] and the standardized mortality 
ratio due to CVD has actually increased [6]. Treatment 
options remain limited as statins have little effect on 
cardiovascular outcomes in SLE populations despite their 
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effective preventative role in non-SLE patients. Recent 
studies exploring the association between SLE and 
premature CVD demonstrate that alterations of specific 
immune functions play a pivotal role in the increased 
cardiovascular morbidity and mortality observed in SLE 
patients [3]. Nonetheless, additional studies are needed to 
identify critical pathways in CVD pathogenesis in lupus that 
can be used as novel points of therapeutic intervention. 

Genetic predispositions are important risk factors 
for both SLE and CVD. The lack of a correlation between 
severity of lupus and cardiac outcomes in SLE patients [9] 
supports the hypothesis that genetic components play a role 
in lupus patients for developing CVD. Although genome-
wide association studies (GWAS) have been successful in 
mapping disease loci in both autoimmune and 
cardiovascular disease, these results have failed to impact 
clinical practice. Understanding the functional mechanisms 
of causal genetic variants underlying SLE and CVD may 
provide essential information to identify shared molecular 
pathways and therapeutic targets relevant to disease 
mechanisms. Here, we evaluate shared pathways 
underlying CVD in SLE with a focus on identifying novel 
therapeutic options. Using a comprehensive bioinformatics 
approach, existing drugs are matched to the molecular 
pathways associated with both SLE and CVD. By 
repurposing FDA-approved drugs, the process of bringing 
new therapeutic options to the market can be greatly 
expedited. 
 
RESULTS 
Identification of genetic variants linked to SLE and CAD 
Genome-Wide Association Study (GWAS) and 
Immunochip results were used to obtain SNPs associated 
with each disease (Materials). For CVD, the most recent 
trans-ancestral meta-analysis of GWAS studies for 
coronary artery disease (CAD), a large subset of CVD, was 
used. For SLE, results of multiple GWAS and Immunochip 
studies were included to account for all ancestries. Using a 
significance threshold of p-value < 1× 10-6, 7,222 and 
16,163 SNPs are significantly associated with SLE and 
CAD, respectively. 96 of these SNPs are significantly 
associated with both conditions (Figure 1.A).  

Before making gene predictions with these genetic 
variants, statistical analysis was performed to ensure that 
the observed overlap is significant, not simply a result of 
intersecting datasets of their respective sizes. The Monte 
Carlo Simulation Method was used to estimate the 
probability of observing an overlap of at least 96 between 
unrelated subsets of 7,222 and 16,163 SNPs (Methods). 
Three versions of simulations were executed to generate the 
null distributions of overlap size: 1) overlapping the 7,222 

significant SLE SNPs with random subsets of 16,163 SNPs 
(Figure 1.B), 2) overlapping the 16,163 significant CAD 
SNPs with random subsets of over 7,222 SNPs (Figure 1.C), 
and 3) overlapping random subsets of 16,163 and over 
7,222 SNPs (Figure 1.D). These null distributions were then 
used to estimate the probability that an overlap of 96 is 
obtained from intersecting random sets of over 7,222 and 
16,163 SNPs. Out of the 10,000 iterations, 0 resulted in an 
overlap of 96 SNPs or more, thus estimating a p-value less 
than 1/10,000. This was the case for all three simulation 
versions. As such, using Monte Carlo Simulations, the 

Figure 1. Significant SNPs associated with both SLE and CAD.           
(A) Venn diagram of significant SNPs (p-value < 1*10

-6
) associated with 

SLE and CAD. (B-D) Histograms of the distributions of overlap size for 
the three Monte Carlo Simulation versions. Red dotted line represents the 
96-SNP-overlap between SLE and CAD-associated SNPs. (B) 
Distribution of overlap sizes between random subsets of 16,163 SNPs and 
the 7,222 SLE-associated SNPs. (C) Distribution of overlap sizes between 
random subsets of 7,222-7,335 SNPs and the 16,163 CAD-associated 
SNPs. (D) Distribution of overlap sizes between random subsets of 7,222-
7,335 SNPs and random subsets of 16,163 SNPs. 
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probability of obtaining a 96-SNP-overlap between over 
7,222 and 16,163 random SNPs is estimated to be p-value < 
0.0001. The histograms further emphasize the unlikelihood 
that the observed 96-SNP-overlap is a trivial product of 
intersecting subsets of this size (Figure 1.B-D). 
 
Prediction and validation of genes implicated by genetic 
variants associated with both SLE and CAD 
Multiple bioinformatic-based approaches were used to 
identify the most plausible gene(s) affected by the each of 
the genetic variants significantly associated with both SLE 
and CAD. First, a number of tools were used to identify and 
classify the genomic locations of the 96 SNPs to determine 
their functional categories. The 96 SNPs were run through 
Ensembl’s Variant Effect Predictor (VEP) which provides a 
comprehensive list of genomic functions and consequences 
by including predictions made by a number of platforms. As 
VEP yields numerous predicted consequences for each 
variant, additional tools such as dbSNP and HaploReg were 
used to confirm variant locations and effects. Additionally, 
specialized databases were used to determine if SNPs are 
located within expression quantitative trait loci (eQTL) or 
regulatory regions, such as enhancers and promoters. The 
Genotype-Tissue Expression (GTEx) database identified 
SNPs located in eQTLs and Human Active Enhancers to 
Interpret Regulatory Variants (HACER) identified SNPs 
located in regulatory regions.  

The genomic databases were then used to predict 
genes with respect to the functional locations of SNPs 
(Figure 2A and Methods). SNPs located in coding regions 
of genes, exons, were mapped to 6 coding (C-) genes using 
VEP, dbSNP, and HaploReg. SNPs located within eQTLs 
were mapped to 159 expression (E-) genes using GTEx. 
SNPs located in distal and cis regulatory regions were 
mapped to 26 downstream target (T-) genes using HACER. 
Lastly, 59 proximal (P-) genes located within 5 kb of the 
SNPs were identified and confirmed using VEP, dbSNP, 
and Stanford’s Genomic Regions Enrichment of 
Annotations Tool (GREAT). In total, the 96 SNPs mapped 
to 189 genes, as SNPs mapped to multiple genes and some 

genes were predicted by various SNPs under multiple 
functional consequences (Figure 2B). One gene, MUC22 
was shared within all four groups, and limited commonality 
was observed between T-, P- and E-Genes, with only 5 
genes shared among the three groups. 

Next, the 189 predicted genes were validated using 
gene expression data to determine if they exhibited altered 
expression in SLE. We used a wide range of SLE 
differential expression datasets in various tissues, including 
whole blood, PBMCs, B cells, T cells, synovium, skin and 
kidney. Of the 189 predicted genes, 118 (62%) were 
determined to be differentially expressed genes (DEGs) in 
one or more SLE tissues (Figure S1). The 118 validated 
DEGs are used in further analysis, while the remaining 71 
genes were filtered out.  

 
Identification of molecular pathways involving predicted 
differentially expressed genes 
Pathway analysis of the predicted DEGs was performed and 
upstream regulators (UPRs) were utilized to elucidate the 
key signaling networks implicated by the genes. UPRs of 
the 118 predicted DEGs were determined by Ingenuity 
Pathway Analysis (IPA). Using a significance threshold of 
p-value < 0.05, 164 genes were determined to be UPRs of 
the expression networks significantly enriched in the set of 
predicted DEGs and are included in the construction and 
analysis of protein networks for additional representation 
and emphasis of dominant signaling networks. Next, 
protein-protein interactions were determined by the Search 
Tool for the Retrieval of Interacting Genes/Proteins 
(STRING). The protein interaction networks were then 
visualized in Cytoscape and clustered using MCODE to 
provide an additional level of function annotation (Figure 
3A and Methods). The resulting networks were further 
simplified into metaclusters defined by the number of genes 
in each cluster, the number of significant intra-cluster 
connections predicted by MCODE, and the strength of 
associations connecting members of different clusters to 
each other (Figure 3B).  

Figure 2. SNPs significantly 
associated with SLE and CAD 
predict functional genes 
associated with both conditions. 
(A) Model of approach of 
comprehensive SNP to gene 
predictions with respect to 
functional genomic mutations 
location of the variants. (B) Venn 
diagram depicting the overlap 
between the corresponding SNP-
predicted E-, T-, C- and P-Genes. 
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Figure 3. Visualization of protein interaction network and gene clusters associated with SLE and CAD. (A) Protein-protein interactions of 
predicted DE genes and their UPRs were obtained with STRING, visualized with Cytoscape for visualization and clustered using MCODE. Green 
nodes represent SNP-predicted genes; blue nodes represent UPRs. (B) MCODE clusters were further simplified into metaclusters where the size of 
each cluster represents the number of intra-cluster connections and the edge weight represents the number of inter-cluster connections. 

Table 1 of Big-C categories, immune cell types, and canonical pathways significantly associated with SLE/CAD genes in MCODE clusters. 
Significant (p-value < 0.05) Big-C categories and immune cell types were obtained using AMPEL’s in-house genomic platform. Top 5 canonical 
pathways and associated p-values were obtained from IPA variant effect analysis.  
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Finally, individual gene clusters were analyzed 
using IPA and AMPEL’s in-house genomic platform to 
characterize the pathways, molecules, and cell types 
associated with disease. Functional annotation was 
determined by AMPEL’s Biologically Informed Gene 
Clustering (BIG-C), a functional aggregation tool 
developed to understand the functional groupings of large 
gene sets. Similarly, AMPEL’s I-Scope was used to detect 
immune and inflammatory cell type signatures within large 
gene sets to identify dominant immune cell populations 
driving disease pathology. Using a significance threshold of 
p-value < 0.05, canonical pathways, functional annotations, 
and cell types enriched within the gene sets were identified 
using IPA, BIG-C, and I-Scope, respectively (Table 1 and 
methods). Clusters 1, 2, and 8 were heavily dominated by 
immune-based processes, including the TH1 and TH2 
activation pathway and SLE in B cell signaling pathway, 
whereas clusters 6 and 9 are enriched in pathways 
associated with acute inflammation (acute phase response 
signaling and complement system) and cluster 5 and 10 with 
cell stress and repair (unfolded protein response and nuclear 
excision repair pathway). I-Scope categories also reveal 
enrichment in myeloid-lineage cells and/or monocytes, in 
line with the role of these cells in the development of both 
SLE and CAD. 
 
Confirmation of immune pathways associated with CAD 
To examine the reproducibility of the predicted molecular 
pathways underlying CAD in SLE, this analysis was 
repeated using a new set of SNPs. As Illumina’s 
Immunochip contains SNPs highly associated with major 
autoimmune and inflammatory diseases, such as Crohn’s 
disease and Diabetes, the overlap between the 16,163 CAD-
associated SNPs and approximately 250,000 SNPs included 
on the Immunochip was used.  

Of the 16,163 CAD SNPs, 2,467 SNPs (~15%) are 
included on the Immunochip (Figure 4A). The Monte Carlo 
Simulation Method was used to estimate the probability of 
observing an overlap of at least 2,467 between the 
Immunochip SNPs and an unrelated set of 16,163 SNPs. 
10,000 simulations were executed to generate a null 
distribution of overlap size resulting from intersecting the 
252,969 Immunochip SNPs and a randomly generated 
subset of 16,163 SNPs from the over 7 million SNPs 
accounted for in the CAD GWAS study (Figure 4B). Out of 
the 10,000 iterations, 0 resulted in an overlap of 2,467 SNPs 
or more. As such, using Monte Carlo Simulations, the 
probability of the observed overlap between the 
Immunochip SNPs and 16,163 random SNPs is estimated to 
be p-value < 0.0001.  

The 2,467 SNPs mapped to 915 genes total, 
including coding, expression, target, and proximal genes. 
Differential gene expression in SLE tissue was not used to 
filter out genes predicted by Immunochip SNPs associated 
to CAD to preserve non-SLE-specific genes implicated in 
CAD. Using a significance threshold of p-value < 0.05, 497 
genes were determined to be UPRs of the expression 
networks significantly enriched in the set of SNP-predicted 
genes. Interactions between the 915 predicted genes and 
their 497 UPRs were identified by STRING, clustered using 
MCODE, and visualized as metaclusters in Cytoscape 
(Figure 5A). Using a significance threshold of p-value < 
0.05, canonical pathways, functional annotations, and cell 
types significantly enriched within the individual gene 
clusters were identified using IPA, BIG-C, and I-Scope, 
respectively (Table 2).  

The majority of top canonical pathways, functional 
annotations, and cell types enriched in the 
Immunochip/CAD gene clusters correspond to the analysis 
of SLE/CAD gene clusters. Furthermore, pathway analysis 
of cluster 2 mirrors that of cluster 1 from the SLE/CAD gene 
network, as both are dominated by immune-based processes 
such as TH1 and TH2 activation pathway, antigen 
presentation pathway, T helper cell differentiation, and T 
cell exhaustion signaling pathway. Similarly, cluster 3 
parallels cluster 9 from the SLE/CAD gene network, as the 
genes are both enriched in monocytes and are indicative of 

Figure 4. Immunochip SNPs significantly associated with CAD.      
(A) Venn diagram of Immunochip SNPs and SNPs significantly 

associated with CAD (p-value < 1*10
-6

). (B) Histograms of the 
distribution of overlap sizes between the 252,969 SNPs included on the 
Immunochip and 10,000 random subsets of 16,163 GWAS SNPs.  
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nuclear receptor transcription with FXR/RXR activation and 

Figure 5. Visualization of protein interaction network and gene clusters associated with CAD and major autoimmune and inflammatory 
disease. (A) Protein-protein interactions of predicted genes and their UPRs were obtained with STRING, visualized with Cytoscape for visualization 
and clustered using MCODE. Green nodes represent SNP-predicted genes; blue nodes represent UPRs. (B) MCODE clusters were further simplified 
into metaclusters where the size of each cluster represents the number of intra-cluster connections and the edge weight represents the number of inter-
cluster connections. 

Table 2 of Big-C categories, immune cell types, and canonical pathways significantly associated with Immunochip/CAD genes in MCODE 
clusters. Significant (p-value < 0.05) Big-C categories and immune cell types were obtained using AMPEL’s in-house genomic platform. Top 5 
canonical pathways and associated p-values were obtained from IPA variant effect analysis.  
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nuclear receptor transcription with FXR/RXR activation and 
LXR/RXR activation as the most significant canonical 
pathways. 
 
Potential drug targets in predicted molecular pathways 
underlying CAD in SLE 
Lastly, target identification and drug matching was 
performed on the molecular pathways associated with CAD 
in SLE. Potential therapeutic targets and drugs were 
identified within the predicted gene networks using IPA and 
AMPEL’s in-house genomic platform. The drugs matched 
to potential therapeutic targets were ranked using the 
Combined Lupus Treatment Scoring (CoLTs) system, 
which has been developed to provide a hypothesis-based 
approach to rank potential therapeutic candidates [16]. This 
system takes into account scientific rationale, experiments 
in lupus mice and human cells, and any previous clinical 
experience in autoimmunity, drug properties, and adverse 
event profile. FDA-approved drugs are ranked on a scale of 
-16 to 11 and drugs in development are ranked on a scale of 
-5 to 8. 

The current standard-of-care treatment for SLE is 
belimumab has a CoLTs score of 5. Including belimumab, 
19 candidate drugs with a score greater than or equal to 5 
were matched to the gene network associated with CAD in 
SLE (Figure 6). Of the 19 candidate drugs, 8 are already 

FDA-approved for treatment of other conditions. 
Additionally, 2 of the FDA-approved candidate drugs, 
curcumin and bortezomib, have a higher CoLTs score than 
belimumab.  

 
DISCUSSION 
Our approach comprehensively maps genetic variants to 
molecular pathways for drug discovery. Here, we mapped 
96 SNPs significantly associated with both CAD and SLE 
to genes and UPRs for protein network construction and 
drug targeting. While immune dysfunction is not currently 
considered a CVD risk factor, analysis of the SLE/CAD 
gene clusters suggest the involvement of immune pathways 
in the development of CVD. This is also supported by the 
sizable overlap of Immunochip and CAD-associated SNPs. 
Ultimately, 18 novel drug candidates with CoLTs scores 
equal to or greater than the current standard-of-care drug, 
belimumab, were identified. Furthermore, both curcumin 
and bortezomib are FDA-approved and scored above 
belimumab. Curcumin is used as a chemotherapeutic agent 
in numerous types of cancer and exhibits anti-inflammatory 
activity [17]. Bortezomib inhibits the proteasome enzyme 
complex and is also used for treatment of cancers, including 
myeloma and lymphoma [18]. Additional studies are 
needed to assess the therapeutic potential of these drugs for 
SLE.   
 While this approach has been used to determine 
ancestry-specific pathways contributing to SLE (Owen et 
al., submitted manuscript), it has not previously been used 
to investigate molecular mechanisms shared between 
associated conditions. Furthermore, our analysis has been 
improved by testing the statistical significance of the 
observed SNP overlap via Monte Carlo simulations. 
Additionally, our results using the CAD-associated 
Immunochip SNPs demonstrate that the products of this 
analysis are reproducible. Next steps for this study include 
further validation of predicted genes, pathways, and drugs, 
using different datasets. Similarly, performing the full 
analysis on randomly generated subsets of SLE or CAD-
associated SNPs can serve as a control for comparison. 
Lastly, while our current approach is exceptionally 
comprehensive in mapping SNPs to genes, genes implicated 
in both CAD and SLE via distinct genomic variants are not 
accounted for here. As such, modifying this approach by 
first mapping all significant SLE and CAD SNPs to genes, 
then overlapping both gene sets for pathway analysis and 
drug targeting, may be more robust.   
 
 
 
 

Figure 6. Visualization of existing drugs targeting potential 
therapeutic targets within SLE/CAD gene networks. Drugs targets 
(left column, yellow) were identified within the molecular pathways 
enriched in SLE/CAD genes and matched to existing compounds (right 
column, green) using AMPEL’s in-house genomic platform, including 
direct targets (solid line) and indirect targets (dashed line). Identified 
FDA-approved drugs (bright green) and drugs in development (light 
green) were ranked using the Combined Lupus Treatment Scoring 
(CoLTs) system (numbers on far right). 
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MATERIALS & METHODS 
CAD GWAS studies 

1. van der Harst, Pim, and Niek Verweij. 
"Identification of 64 novel genetic loci provides an 
expanded view on the genetic architecture of 
coronary artery disease.” (2018) 

SLE Immunochip and GWAS studies 
1. Langefeld, Carl D., et al. "Transancestral mapping 

and genetic load in systemic lupus erythematosus." 
(2017) 

2. Lessard, Christopher J., et al. "Identification of a 
systemic lupus erythematosus susceptibility locus 
at 11p13 between PDHX and CD44 in a multiethnic 
study.” (2011) 

3. Morris, David L., et al. "Genome-wide association 
meta-analysis in Chinese and European individuals 
identifies ten new loci associated with systemic 
lupus erythematosus." (2016) 

4. Sun, Celi, et al. "High-density genotyping of 
immune-related loci identifies new SLE risk 
variants in individuals with Asian ancestry." (2016) 

 
Statistical analysis of overlap between SNPs associated 
with both SLE and CAD  
Using a significance threshold of p-value < 1*10-6, 7,222 
and 16,163 SNPs significantly associated with SLE and 
CAD were identified, respectively. 96 of these SNPs were 
significantly associated with both SLE and CAD. The 
Monte Carlo Simulation method was used to estimate the 
probability of an overlap of at least 96 SNPs between 7,222 
and 16,163 unrelated SNPs. This method can be used to 
assess the significance of an outcome by simulating the 
event many times for a close approximation of the outcome 
probability.  

Implemented in MATLAB, a random subset of 
equivalent size to the set of significant SLE or CAD 
associated SNPs was selected from all SNPs tested for in 
the respective study. The random subset is then intersected 
with the significant SNPs associated to the other disease or 
another random subset of that size. This is repeated 10,000 
times to generate a null distribution of the number of SNPs 
occurring in unrelated subsets containing 7,222 and 16,163 
SNPs (Figure 1 B-D). The null distributions were then used 
to estimate the probability that an overlap of 96 SNPs is 
obtained from intersecting random sets of 7,222 and 16,163 
SNPs. The estimated probabilities were determined by 
calculating the percent of trials resulting in an overlap of 96 
or more SNPs. 

First, the likelihood of 96 SNPs overlapping the 
7,222 significant SLE SNPs and 16,163 unrelated SNPs was 
estimated by generating random subsets of 16,163 SNPs 

from the over 7 million SNPs included in the CAD GWAS 
(Figure 1B). Similarly, 838 SNPs were randomly selected 
from the Immunochip SNPs and 6,497 SNPs were randomly 
selected from the GWAS SNPs. Both random subsets were 
then overlapped with the 16,163 CAD SNPs and the total 
number of unique SNPs overlapping the CAD SNPs were 
recorded to generate a null distribution (Figure 1D). There 
were 113 SNPs determined to be significantly associated 
with SLE by both the Immunochip and GWAS results, 
hence 7,222 SNPs total. However, when 838 and 6,497 
random SNPs were separately chosen, there was rarely 
overlap, generating closer to 7,335 SNPs. The simulation 
airs on the safer side by holding the number of SNPs 
identified in each study constant as opposed to the total 
number, thus determining the overlap of CAD SNPs with 
over 7,222 SNPs. Lastly, a third simulation was performed 
in which both sets of SNPs were randomly generated as 
described for the other simulations (Figure 1C).  
 
Identification of SLE-associated SNPs and predicted 
genes 
Expression quantitative trait loci (eQTLs) were identified 
using GTEx version 68 (GTEXportal.org) (“The Genotype-
Tissue Expression (GTEx) Project” n.d.) and mapped to 
their associated eQTL expression genes (E-Genes). To find 
SNPs in enhancers and promoters, and their associated 
transcription factors and downstream target genes (T-
Genes), we queried the atlas of Human Active Enhancers to 
interpret Regulatory variants (HACER, http://bioinfo. 
vanderbilt.edu/AE/HACER) (Wang et al. 2019)).. To find 
structural SNPs in protein-coding genes (C-Genes), we 
queried the human Ensembl genome browser 
(GRCh38.p12; www.ensembl.org) and dbSNP (www.ncbi. 
nlm.nih.gov/snp). Additional databases were used to 
generate loss-of-function prediction scores, including 
SIFT4G (http://sift-dna.org/sift4g (Vaser et al. 2016; Sim et 
al. 2012)). All other SNPs were linked to the most proximal 
gene (P-Gene) or gene region as previously 
detailed(Langefeld et al. 2017). For overlap studies, Venn 
diagrams were computed and visualized using 
InteractiVenn (interactivenn.net) (Heberle et al. 2015).  
 
Genomic functional categories 
The Variant Effect Predictor (VEP) tool available on the 
Ensembl genome browser 93 (https://www.ensembl.org) 
was used for annotation information to specify SNPs 
located within non-coding regions, including micro 
(mi)RNAs, long non-coding (lnc)RNAs, introns and 
intergenic regions. Regulatory regions include transcription 
factor binding sites (TFBS), promoters, enhancers, 
repressors, promoter flanking regions and open chromatin. 
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Coding regions were broken down further and include 
5’UTRs, 3’UTRs, synonymous and nonsynonymous 
(missense and nonsense) mutations. The online resource 
tool HaploReg (version 4.1; https://pubs.broadinstitute.org/ 
mammals/haploreg/haploreg.php) (Ward and Kellis 2016) 
were also used to identify DNA features, regulatory 
elements and assess regulatory potential. The dbSNP tool 
available on the NCBI browser (https://www.ncbi.nlm. 
nih.gov/snp/) was used to confirm gene predictions. 
 
Functional gene set analysis and identification of 
upstream regulators (UPRs) 
Predicted genes were examined using Biologically 
Informed Gene Clustering (BIG-C; version 4.4.). BIG-C is 
a custom functional clustering tool developed to annotate 
the biological meaning of large lists of genes. Genes are 
sorted into 54 categories based on their most likely 
biological function and/or cellular localization based on 
information from multiple online tools and databases 
including UniProtKB/Swiss-Prot, gene ontology (GO) 
Terms, MGI database, KEGG pathways, NCBI, PubMed, 
and the Interactome, and has been previously described 
(Catalina, Bachali, et al. 2019; Catalina, Owen, et al. 2019).  

I-Scope is a custom clustering tool used to identify 
immune infiltrates in large gene datasets, and has been 
described previously (Ren et al. 2019). Briefly, I-Scope was 
created through an iterative search of more than 17,000 
genes identified in more than 50 microarray datasets.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

These genes were researched for immune cell specific 
expression in 30 hematopoietic sub-categories: T cells, 
regulatory T cells, activated T cells, anergic cells, CD4 T 
cells, CD8 T cells, gamma- delta T cells, NK/NKT cells, T 
& B cells, B cells, activated B cells, T &B & monocytes, 
monocytes & B cells, MHC Class II expressing cells, 
monocyte dendritic cells, dendritic cells, plasmacytoid 
dendritic cells, Langerhans cells, myeloid cells, plasma 
cells, erythrocytes, neutrophils, low density granulocytes, 
granulocytes, platelets, and all hematopoietic stem cells.  

Enrichment of GO Biological Processes (BP) using 
the Database for Annotation, Visualization and Integrated 
Discovery (DAVID; david.ncifcrf.gov) and the Ingenuity 
Pathway Analysis (IPA; https://www.qiagenbioinforma 
tics.com) platform provided additional genetic pathway 
identification. IPA upstream regulator (UPR) analysis was 
also used to identify potential transcription factors, 
cytokines, chemokines, etc. that can contribute to the 
observed gene expression pattern in the input dataset. 
 
Network analysis and visualization 
Visualization of protein-protein interaction and 
relationships between genes within datasets was done using 
Cytoscape (version 3.6.1) software. Briefly, STRING 
(version 1.3.2) generated networks were imported into 
Cytoscape (version 3.6.1) and partitioned with MCODE via 
the clusterMaker2 (version 1.2.1) plugin. 
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SUPPLMENTARY FIGURES  

Supplementary Figure 1. Comparison of SLE/CAD SNP-associated genes with SLE differential expression datasets. SNP-associated genes were 
matched with SLE differential expression (DE) data and organized by BIG-C category. The heatmap shows the relative average expression of 
differentially expressed genes (rows). Columns represent different differential expression datasets and are labeled by their tissue or cell type. Grey 
boxes represent insignificant differential expression.  
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