
Lancium Compute: Green-Powered Cloud

A Technical Report submitted to the department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Samuel McBroom

April 20, 2021

Technical Project Team Members

Courtney Jacobs

On my honor as a University student, I have neither given nor received aid on this as-

signment as defined by the Honor Guidelines for Thesis-Related Assignments.

signed: ______________________________________	 date: ___________

	 	 Samuel McBroom

signed: ______________________________________	 date: ___________

	 	 Dr. Andrew Grimshaw, Department of Computer Science 

Lancium Compute: Green-Powered Cloud 

Sam McBroom

sammcb@virginia.edu

Courtney Jacobs

cj5he@virginia.edu 

Abstract

Lancium offers affordable access to a cloud computing grid
powered by renewable energy and designed specifically for
High Throughput Computing jobs. While Lancium offers
comprehensive tools for interfacing with their grid, such as a
command line interface (CLI) and programming language
APIs, these require a high degree of technical knowledge
and the installation of external software to provide access.
Web applications provide the solution to this, as they provide
a user-friendly interface and can be accessed from any de-
vice with an internet connection. Lancium offered a web
application, though it lacked many of the features the other
tools provided. Due to its design, the web app could not be
easily extended to achieve feature parity with the application
programming interface (API). The new web interface en-
hances the web experience for users, reduces technical main-
tenance, and adds new functionality by leveraging the power
of the existing API.

1	 Introduction

The rise of cloud computing services such as Amazon Web
Services and Google Cloud has allowed users to access
powerful computing resources without the cost of acquiring
and maintaining local servers. Specifically, these cloud
providers build massive data centers and rent processing
power to businesses and individuals. Data centers are cur-
rently estimated to use about 1% of the world’s electricity
[1]. Lancium is an affordable, green cloud provider that
sources power from renewables, avoids the use of refriger-
ants, and reduces e-waste. Thus, our goal was to try and
increase Lancium’s user base to build awareness of and en-
tice users towards clean computing options. To this end, we
aimed to redesign the web interface to make it more user-

friendly easier to support and maintain by connecting to
Lancium’s existing API.

	 Our development team consisted of Samuel McBroom
and Courtney Jacobs. This system is our Fourth Year Engi-
neering Research Capstone project. Our new web app was
built using Vue 3, JavaScript, and Ruby. Lancium plans to
switch to our new web interface sometime in the future after
complete feature parity is achieved with the API.

2	 Existing Access Options

In building this web app, we analyzed Lancium’s existing
grid access technologies to build an understanding of the
features the new web app would need to support. We then
determined the features and limitations of the old web inter-
face to design an initial architecture for our new web inter-
face design.

2.1	 Command Line Tool & Language API

Lancium offers a command line tool, which is an executable
that can be installed and includes commands that can be run
to perform different actions on the grid. In addition, Lanci-
um also provides an API that can be accessed from programs
written in a variety of languages. These tools give complete
coverage of the API functionality, but require more work on
the users’ end. To effectively connect to Lancium’s grid,
users need to manage authentication. This process involves
generating a token via the web interface, securely storing
that token, and then passing the key into every command
executed. A web interface, by nature of its design, is able to
handle all the authentication flows for the user after they log
in. The command line interface does offer the ability to cre-
ate automation scripts to manage compute jobs but requires a
significant amount of technical knowledge to implement. We
recognized that technical users would likely prefer to use the
command line tool if possible. Thus, our goal for the website

Figure 1: Lancium logo

was to provide convenience functionality aimed at a user
running one-off commands and providing a clear interface
for checking the status of submitted jobs.

2.2	 Web Interface

At the time we joined the project, Lancium already provided
a web interface though it had significant drawbacks com-
pared to the CLI. Firstly, it only allowed users to submit,
check the status of, and delete jobs. Secondly, the web inter-
face provided its own implementations for API functionality
which increased developer maintenance, as two code bases
needed to be maintained. Thirdly, due to its duplicate code
base, new code needed to be written for the web interface to
match new API functionality, leading to the web interface
lagging significantly behind the API. However, the web in-
terface offered many conveniences. A price calculator was
shown on the create page, and while it does not currently
function because Lancium Compute is still in their beta test-
ing period, it will be especially convenient for users to see a
live price estimate as they select the configuration for their
job. In addition, the web interface could provide live updates
on job statuses without the need to refresh the page.

3	 System Design

Lancium has a robust API covering three primary areas:
managing compute jobs, managing images, and managing
data. For our capstone, our scope mainly focused on cover-
ing the majority of the job API in our new web app, as con-
figuring and running jobs are the main actions performed by
Lancium users.

3.1	 Single Page Application

When it was first developed, the primary function of the
internet was mainly to act as a cross-computer file browser.
Today, one of the most noticeable remaining artifacts of this
design are page reload to retrieve new information. These
can disrupt the flow of a web application and can be frustrat-
ing to the user. Many modern web frameworks now support
the ability to create single page applications (SPAs). Single
page applications are entirely loaded onto a users computer
when they navigate to the website URL and when the move
to new pages, the website performs an Ajax request that up-
dates the page without the user creating a new page network
request. The result is a web app that feels like a native desk-
top application and allows for convenience features like live
page updates without the need to repeatedly refresh the page.
We chose to use Vue to build the new web app, as this
framework offers excellent SPA support and reduced the

amount of boilerplate code compared to similar JavaScript-
based web frameworks, such as React.

3.2	 Efficient Networking

When building a scalable web app, a primary concern is
limiting unnecessary requests to the underlying API. This
allows the web app to support more concurrent users while
reducing server load. To achieve this, we used a state man-
agement library called Vuex, which caches information on
the users local computer to populate page information. We
implemented a background task that automatically refreshed
job information every five minutes to make sure the user
never had to worry about viewing outdated data. In addition,
users could reload the page manually to force an update.
This system effectively balanced limiting the number of ex-
traneous requests to the server while also providing up-to-
date data to the user.

3.3	 Drafts

A unique feature we decided to implement on the web inter-
face was the ability to save job submission drafts. Similar to
email drafts, this allowed a user to begin creating a job, and
then to save their current configuration to submit later for
any reason. This system is a unique benefit of the web appli-
cation system as a job created with the CLI cannot be sub-
mitted without fully specifying its configuration options.
Eventually, it is planned to expand this to a template system
so web users can quickly create multiple jobs with the same
configuration which CLI users accomplish with scripts.

3.4	 File Uploads

By far the most technically difficult portion of the web app
development was enabling non-blocking file uploads for
jobs. Traditionally, due to JavaScript limitations, when up-
loading a file to the old website it would block the user from
interacting with the website until the file finished uploading
or the user cancelled the upload. Recently, JavaScript has
added support for worker scripts which we leveraged to pro-
vide file uploading without blocking the user from accessing
the rest of our web app. Implementing the file uploading
came with other difficulties, as many situations had to be
considered: if the user closed the site while they were up-
loading a file, if the user lost internet connection while up-
loading a file, and any other possible reason that might cause
the file upload to partially or completely fail. This is espe-
cially significant for Lancium as their typical user might be
uploading files several tens of gigabytes in size. We created
a safe solution by notifying the user if their job failed to up-
load, alerting the user if they tried to close the page while

their file was uploading, and allowing the user to resume
uploading disrupted file uploads.

3.5	 Status Feedback

Finally, we built a page to list all the users jobs, which
would update every five minutes showing the status of the
job as it moved through the grid queue. Another important
aspect of status feedback was alerting the user if a job failed
or successfully submitted or if a file upload failed. To supply
notifications to every page of the application, we used a toast
library (a toast is a popup notification), and added a custom
section to our datastore to track where to the display the
notification.

4	 Procedure

The new web app was designed to be both powerful and
intuitive. Here we will discuss the general flow a user might
take though the application and how our design enables and
enhances this flow.

4.1	 Authentication

A major downside to using the CLI is the need to manually
and securely manage authentication tokens. Our web app
design automatically fetches a token for the user after they
log in to their account. In addition, to reduce any possible
friction, our system automatically refreshes an expired token
if the user is still logged in when any request is made to the
server. This abstracts any authentication handling away from
the user and creates a simple login experience.

4.2	 Create Job

The first thing a user might do when logging into the site is
to create a job to run on the grid. They can supply a number
of configuration options, including a job name, preconfig-
ured operating system, specs, input files, and output files.
Our web app improves on the old site by allowing the user to
either save the job and submit it later or submit the job im-

mediately. When a job is saved the user is automatically tak-
en to the generated detail view for their job with the option
to further edit, submit, or delete their job. If the job is sub-
mitted, the user is taken to the jobs overview page to view
the status of their job. They can then cancel the job or wait
for completion and view the results in the provided output
files on the details page. These options significantly improve
upon the old site, which only allowed users to submit, view
the status of, and cancel jobs.

4.3	 Upload Files

Before submitting a job, a user might choose to upload input
files. These are usually massive data files, on the order of
tens of gigabytes in size. As discussed above, using Java-
Script workers allows file uploading to take place in the
background and lets the user continue to navigate to other
pages, submit more jobs, and check the details of other jobs
while their files upload. This is significantly more user-
friendly than the old site, where the user would have to wait
until the files finished uploading to interact with any other
areas of the site. In addition, we designed the file upload
system so users could get immediate feedback on the
progress and status of their upload and resume an upload
from a partially uploaded state if needed.

4.4	 Submit Job

Submitting a job was another area we focused heavily on,
because providing immediate feedback to the user if a job
configuration was complete is critical in allowing the user to
quickly debug issues with their submission. We chose to
duplicate some of the API validation checks on the client-
side, and while this results in minor amounts of duplicate
code, it drastically reduces the number of network requests
to the server. This both allows instant user feedback as no
network requests are needed and potentially allows many

Figure 2: Login page

Figure 3: Create job page

users to be interfacing with the web app simultaneously
without overburdening the server.

4.5	 Jobs Overview

When a user first enters the web app they are taken to the job
overview page. This page displays a list of all the user’s jobs
and allows them to quickly view the details of or delete any
compute job. The original job overview page (seen in Figure
4) displayed three lists for each stage of the job submission.
This could make it difficult to find a job as it could be in any
of the three sections. The old page also had basic search
functionality where a user could enter a search term and
would filter all lists to only display jobs with names match-
ing or containing the term.

	 When designing the new web app, we chose to condense
the jobs into one list and include a “status” column. This is
more consistent with traditional list pages. To allow users to
quickly find jobs by name and status, we reimplemented the
basic search box but also created a new status filter, whereby
users could search for all jobs with a certain status. In addi-
tion, we removed pagination, as this just resulted in more
clicks for the user when searching through their jobs. We
also added sort functionality, so users could choose in what
order jobs are displayed, with the most recently created jobs
appearing at the top of the list by default. These changes,
combined with automatic background refreshing and clearer
styling makes this page much more convenient for both CLI
users quickly checking job statues and web interface users.

4.6	 Delete Job

Finally, the end of a typical workflow might consist of a user
deleting their job. This might be a job draft or a submitted
job. When the user deletes a job draft, the results are imme-
diate. The user is taken to the overview page if they were on
another page, the job is immediately removed from their list,
and request is sent to the server to delete the draft. If the user
cancels a submitted job, it might take time for the grid to
perform the cleanup. By interfacing directly with the API to
retrieve job statues, our job overview page automatically
marked the job as cancelled and removed it from the list
when the server performed the cleanup.

5	 Results

At the end of the semester, we presented our redesigned web
application to our project supervisor, Cushing Whitney, and
our capstone professor, Andrew Grimshaw. They were both
pleased with the results, and approved the level of feature
parity we achieved with the API. We were able to compre-
hensively cover nearly all of the job and file upload APIs,
including proper handling of both success and all possible
error resolutions.

	 Most importantly however, we laid the groundwork for a
fully feature-rich web interface. With the removal of the
duplicate logic, we not only made the code base easier to
maintain but also provided most of the logic necessary to
make future API support significantly simpler. We hope that
a more intuitive and powerful web interface will help Lanci-
um attract more customers and introduce them to clean and
sustainable solutions Lancium’s Clean Compute Centers
offer.

6	 References

(1) Masanet, E., Shehabi, A., Lei, N., Smith, S., & Koomey,

J. (2020, February 28). Recalibrating global data center
energy-use estimates. Science, 367 (6481), 984–986.

(2) Lancium (2021). Lancium Compute Documentation -
Concepts and Usage. https://lancium.github.io/compute-
api-docs/lancium_cli.html#lancium-compute-api

Figure 4: Old jobs overview page

Figure 5: New jobs overview page

https://lancium.github.io/compute-api-docs/lancium_cli.html#lancium-compute-api
https://lancium.github.io/compute-api-docs/lancium_cli.html#lancium-compute-api
https://lancium.github.io/compute-api-docs/lancium_cli.html#lancium-compute-api

