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ABSTRACT 

Organisms require genetic variation in order to evolve, and balancing selection is one 

way by which genetic variation is maintained in genomes. Adaptation to temporally 

varying selection is a mechanism of balancing selection that is not well characterized in 

natural populations. In my dissertation, I utilize the fruit fly Drosophila melanogaster, 

which adapts to seasonally varying selection, to better understand balancing selection 

through adaptation to temporally varying selection. In Chapter 1, I utilize frequent 

sampling across three years to identify the kinds of loci involved in adaptation to seasonal 

selection as well as the environmental drivers of selection. I find that coding loci and 

previously identified seasonally adaptive loci are involved in adaptive differentiation 

through time. I also identify extreme hot and extreme cold temperatures to have the 

strongest selective force on allele frequency changes through time. In Chapter 2, I 

investigate the concept that spatial population structure can bolster the ability of 

temporally varying selection to maintain large amounts of genetic variation across long 

periods of time by asking if natural populations of fruit flies have population structure. I 

identify signals of population structure in natural fruit fly populations, which contradicts 

long standing assumptions about fruit fly migration behavior. In Chapter 3, I ask if 

seasonal adaptation is a unique phenomenon, or if other species of fruit flies also exhibit 

signals of adaptation to seasonally varying selection. I find that other species of fruit flies 

look like established, overwintering populations, indicating that they are likely also 

adapting to seasonal change. Overall, my dissertation deepens our understanding of this 

model system of balancing selection.  
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 1 
INTRODUCTION 

 
All organisms require genetic variation in order for evolution to take place. 

Balancing selection is any selection that maintains genetic variation, and can occur via 

several different mechanisms. One of the mechanisms of balancing selection is adaptation 

in response to temporal heterogeneity in selection pressures. Specifically, this adaptation 

must include changes in allele frequencies through time to track the shifting phenotypic 

optima, also known as adaptive tracking. In some theoretical work, adaptive tracking of 

temporally heterogeneous selection is predicted to not maintain genetic variation at a 

large scale in the genome or for long periods of time (Cvijović, Good, Jerison, & Desai, 

2015; Ewing, 1979; Hedrick, Ginevan, & Ewing, 1976). However, newer theoretical 

frameworks (Bertram & Masel, 2019; Botero, Weissing, Wright, & Rubenstein, 2015; 

Wittmann, Bergland, Feldman, Schmidt, & Petrov, 2017) and observations of natural 

populations (Bergland, Behrman, O’Brien, Schmidt, & Petrov, 2014; Chakraborty & Fry, 

2016; Ghosh, Andersen, Shapiro, Gerke, & Kruglyak, 2012; Mojica, Lee, Willis, & 

Kelly, 2012; Rodríguez-Trelles, Alvarez, & Zapata, 1996; Rodríguez-Trelles, Tarrío, & 

Santos, 2013) show that adaptive tracking of temporal heterogeneity can lead to the 

maintenance of genetic variation. Despite this newer evidence, we lack detailed 

understanding of how balancing selection through adaptive tracking to temporal 

heterogeneity occurs in natural populations, what selective agents lead to the maintenance 

of functionally important genetic variation, and what other demographic processes also 

play a role.  

Examples of balancing selection in response to temporal heterogeneity are few, 

partially because it can be difficult to identify the type of balancing selection (i.e. 
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adaptation to temporal or spatial heterogeneity, heterozygote advantage, negative 

frequency dependent selection, etc.; Spurgin & Richardson, 2010). There are organisms 

where adaptation to temporal heterogeneity is the theorized reason for the maintenance of 

genetic variation (Hawley & Fleischer, 2012; Pespeni, Chan, Menge, & Palumbi, 2013; 

Pespeni & Palumbi, 2013) but few where the connection between genetic variation and 

temporally varying selection is clear (Bergland et al., 2014; Chakraborty & Fry, 2016; 

Ghosh et al., 2012; Mojica et al., 2012; Rodríguez-Trelles et al., 1996; Rodriguez-Trelles, 

Tarrio, & Santos, 2013). Most organisms that exhibit balancing selection do not represent 

predictable or repeatable systems of adaptation to temporal heterogeneity where changes 

in the direction of selection within an ecological timescale are guaranteed, making them 

non-ideal systems to study the details of balancing selection due to temporally varying 

selection. An ideal system to better understand the details of balancing selection through 

adaptation to temporal heterogeneity would be an organism with repeatable responses to 

changing selection, results generalizable beyond the population studied, and detectable 

changes on an ecological timescale.  

One study system used to better understand adaptive tracking in response to 

temporally varying selection is the fruit fly Drosophila melanogaster. Temperate 

populations of D. melanogaster experience temporal heterogeneity in the form of 

seasonally varying selection. Each year, D. melanogaster is estimated to undergo 

approximately 10 generations in summer conditions and 1-2 generations in winter 

conditions. Observations of phenotypic variation (Ives, 1970) and genotypic variation 

(Machado et al., 2016) indicate that D. melanogaster is a species that overwinters. These 

overwintering individuals then re-initiate natural populations when resources become 
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more abundant in the spring, though there is little known about how fruit flies overwinter 

and survive the harsh winter months. Because D. melanogaster undergoes multiple 

generations across similar seasonal conditions where selection can result in changed 

allele frequencies, and they experience repeated seasonal cycles, fruit flies are an ideal 

model system in which to observe adaptive tracking to temporally varying selection. 

Many phenotypes change in response to temporally variable selection in fruit 

flies. In experimental evolution regimes, flies evolved a reduced tolerance to extreme hot 

and cold temperatures after adaptation to a fluctuating temperature environment relative 

to populations evolved under constant extreme temperatures (Condon et al., 2015). Wild-

caught flies, or close descendants, show a range of phenotypes that change depending on 

the season flies are collected. Flies collected closer to winter environmental conditions 

show increased desiccation tolerance in males (Rajpurohit et al., 2018), increased cold 

tolerance (Stone, Erickson, & Bergland, 2020), greater propensity to enter diapause 

(Schmidt & Conde, 2006), increased innate immunity (Behrman et al., 2018), altered 

cuticular hydrocarbon composition (Rajpurohit et al., 2017), and higher stress tolerance 

(Behrman, Watson, O’Brien, Heschel, & Schmidt, 2015) than flies collected after 

summer environmental conditions.  

Many of the phenotypes that change in D. melanogaster in response to temporally 

varying selection are quantitative traits with many underlying loci contributing to 

changing trait values. We observe hundreds of SNPs that oscillate in allele frequency in 

seasonal end-point sampling across multiple years in one population (Bergland et al., 

2014) and across globally collected seasonal samples (Machado et al., 2021). D. 
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melanogaster presents an ideal system in which to track somewhat repeatable and 

predictable adaptive tracking to temporal heterogeneity on a manageable time scale. 

While D. melanogaster is an ideal study system in which to study adaptation to 

temporal heterogeneity, there is still much we do not understand about this system and 

how balancing selection is acting to maintain genetic variation. We do not know what 

environmental factors are driving temporal shifts in allele frequencies in natural 

populations. Additionally, while we have learned much using allele frequencies, there is 

other information to be gained if genotypes of individuals can be obtained, such as 

changes in genotype frequencies and tests of Hardy-Weinberg Equilibrium. Finally, 

seasonal adaptation in D. melanogaster has been shown to be a global phenomenon, but it 

is less certain how generalizable this work is to other species, including other species of 

Drosophila.  

With my dissertation, I aim to increase our fine-grain understanding of adaptive 

tracking to seasonally varying selection in Drosophila melanogaster. I chose a local 

peach and apple orchard to be the focal orchard for my dissertation. Across three years, 

2016-2018, I collected samples of Drosophilids from Carter Mountain Orchard in central 

Virginia, USA (37.99N, 78.47W) on at least a bi-weekly basis starting in mid-late June 

and ending in late November to early December. For each collection I brought wild 

Drosophilids into the lab, separated out D. melanogaster, and placed single wild-caught 

females into isolated vials in order to start isofemale lines. The offspring from these lines 

were then sequenced with two different strategies and those results form the first two 

chapters of my dissertation. In 2017 and 2018 I identified and collected the many 

different Drosophilids found in my samples, then characterized the variability in species 
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composition and sequenced wild-caught individuals to look for signals of established 

populations in Drosophilids that are not D. melanogaster. Overall, these different 

sequencing projects address three sets of questions found in the three chapters of my 

dissertation.  

In my first chapter, I leverage the three years of dense sampling in a pooled 

sequencing project to gather fine-scale observations of allele frequency changes. I find 

genetic differentiation through time within my samples that point to year-to-year 

population turnover and provide insight into overwintering dynamics. Additionally, I 

identify outliers for adaptive differentiation through time that are enriched for coding loci 

and previously identified seasonally oscillating loci. This points to functional relevance 

and validation of the outliers found within the data. Finally, I find that the proportion of 

extreme hot days and the proportion of extreme cold days prior to collection are the most 

important selective agents associated with temporal changes in allele frequencies out of 

the abiotic environmental factors tested. This chapter expands our understanding of the 

model system of balancing selection as a consequence of adaptively tracking seasonally 

varying selection in D. melanogaster.  

In my second chapter, I perform individual sequencing on male offspring of 

isofemale lines from each collection time point in 2016 to gather genotypic information 

rather than allele frequency estimates. Using genotypes, I identify an excess of 

homozygosity in the data. This observation could be the result of one, or all, of the 

following processes: artifacts of low read depth, selection, and cryptic population 

structure. I perform simulations to assess the potential artifactual increase in 

homozygosity and find that the data show an excess of homozygosity beyond the null 
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expectation generated by simulations. I then perform a sliding window analysis on 

elevated homozygosity across the genome to delineate between selection and cryptic 

population structure as drivers of elevated homozygosity. I find that some time points 

show signals of cryptic population structure while others do not. This suggests that there 

may be stochastic cryptic population structure within a year in a single orchard. 

Observing cryptic population structure in a highly mobile insect typically assumed to be 

locally panmictic could have implications for the potential of population structure in 

other insect species. Additionally, the interplay between population structure and 

temporal heterogeneity has been previously theorized to bolster the maintenance of 

genetic variation in systems of adaptation to temporal heterogeneity. Thus, the presence 

of cryptic population structure in D. melanogaster, which contradicts assumptions made 

about local panmixia, adds insight to the fruit fly model system of balancing selection 

under seasonal variability.  

In my third chapter, I do pooled sequencing on a subset of Drosophilid species 

collected in 2017 and 2018 to compare observations in other Drosophilids to known 

seasonal patterns in D. melanogaster. I find that the species composition and abundance 

of different Drosophilids dramatically change within and between years. As species 

composition changes in the community, there is potential for alterations in interspecific 

competition to be a temporally varying driver of selection, thus pointing to the 

importance of measuring interspecific competitors when addressing adaptation to 

temporal heterogeneity. With the sequencing performed, I identify one species, D. 

simulans, that shows strong signals of population turnover while the others do not. D. 

simulans is known to die out in the winter and is recolonized by mass migration in the 
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following summers. The species without strong signals of population turnover are on a 

spectrum from known established populations to predicted to be extirpated and 

recolonized each year. My observations point to new understanding of overwintering 

behavior, which has downstream implications in the potential for seasonal adaptation, in 

other Drosophilid species.  

Overall, my dissertation contributes to our understanding of adaptive tracking to 

temporally varying selection in Drosophila melanogaster, which in turn contributes to 

our understanding about the mechanisms and targets of balancing selection in a natural 

population. In identifying particular environmental factors driving temporal shifts in 

allele frequency, we can then follow how specific loci respond to those environmental 

drivers and their evolutionary trajectories. By also starting to dig in to the functional 

relevance to specific environmental drivers we have the starting point to identify which 

loci are the biologically relevant loci versus what loci might be oscillating in frequency as 

a result of genetic draft. The potential presence of cryptic population structure within a 

single orchard not only contradicts long-standing assumptions about fruit fly population 

dynamics, but it also points to a potential interaction between adaptation to temporal 

heterogeneity and spatial heterogeneity. Theoretical work predicts that alleles that may be 

lost in a subset of subpopulations through successive rounds of adaptation to temporal 

heterogeneity, like in the summer months for fruit flies, may be rescued through migrants 

from other subpopulations where those alleles have not been lost (Ewing, 1979). This 

interplay between temporal heterogeneity and population structure is thought to increase 

the likelihood that adaptation to temporal heterogeneity can maintain genetic variation in 

the longer term. Finally, by showing that there are other species that are established 
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populations like D. melanogaster, we can start expanding observations in fruit flies out to 

other important insect species. In this dissertation, I further develop the model system of 

balancing selection in response to temporal heterogeneity in Drosophila melanogaster.     
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CHAPTER ONE 

 
Dense temporal sampling identifies yearly population turnover and confirms that 

temperature is an important driver of seasonal adaptive tracking in D. melanogaster  
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Abstract 

The adaptive strategy taken to survive temporal environmental heterogeneity depends on 

the life history of the organism in relation to the duration and predictability of 

environmental change. Adaptive tracking, where changes in allele frequency change to 

better match the shifting optimal phenotype, is a strategy that when employed in response 

to temporal heterogeneity can lead to balancing selection. The fruit fly Drosophila 

melanogaster is a model system in which to study adaptive tracking and balancing 

selection in response to seasonally oscillating selective pressures. Using novel bi-weekly 

sampling across three years and pooled sequencing of a single D. melanogaster orchard 

population, I ask a series of questions to better understand fine-scale patterns of 

population differentiation, what type of loci are involved in seasonal adaptation, and what 

are some of the specific environmental selective agents. I find population turnover from 

year to year that points to severe overwintering bottlenecks. Adaptively differentiated 

outlier SNPs are enriched for coding loci and previously identified seasonally varying 

loci. I also see that the proportion of extremely hot and extremely cold days prior to 

collection are dominant selective agents. With my findings we better understand some of 

the dominant forces at play in the system of balancing selection in response to seasonally 

varying selection in D. melanogaster.  
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Introduction 

Temporal environmental heterogeneity is a common condition that most 

organisms experience, whether it takes the form of wet and dry seasons or temperate 

climate seasonality. There are several strategies employed by organisms experiencing 

temporal environmental heterogeneity in order to survive changing conditions: plasticity, 

bet-hedging, and adaptive tracking. Adaptive tracking, or changes in allele frequency 

from one generation to the next to track the changing phenotypic optimum, will occur 

when enough generations pass under similar environmental conditions (Botero, Weissing, 

Wright, & Rubenstein, 2015). Investigations into rapid adaptation that tracks temporal 

environmental heterogeneity have become more frequent in the past two decades, but we 

know little about the loci that underlie such adaptation and the abiotic factors that drive 

rapid adaptive changes in allele frequency.  

Adaptive tracking has been observed in several organisms. Long-term 

observations of Darwin’s Finches show repeated phenotypic shifts in response to 

changing environmental conditions that alter the available food supply in the highly 

heritable traits of beak and body morphology (Gibbs & Grant, 1987; Grant & Grant, 

1993; Grant & Grant, 2002; Price, Grant, Gibbs, & Boag, 1984). In stick insects, Timema 

cristinae, the melanistic morphs increase in frequency in response to several selective 

agents, including warm spring temperatures (Nosil et al., 2018). In wild populations of 

Drosophila pseudoobscura, large chromosomal inversions changed in frequency across 

seasons (Dobzhansky, 1948). Rapid adaptive tracking to fluctuating selection pressures is 

one way by which balancing selection can act in a population to maintain genetic 

variation (Gillespie, 1973). Some theoretical work on balancing selection through 
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adaptation to temporally fluctuating selection concluded that such forces would not be 

able to maintain large amounts of genetic variation under certain biological 

circumstances (Cvijović, Good, Jerison, & Desai, 2015; Ewing, 1979; Hedrick, Ginevan, 

& Ewing, 1976). However, more recent theoretical work (Bertram & Masel, 2019; Botero 

et al., 2015; Wittmann, Bergland, Feldman, Schmidt, & Petrov, 2017) and observations 

of natural populations (Bergland, Behrman, O’Brien, Schmidt, & Petrov, 2014; 

Chakraborty & Fry, 2016; Ghosh, Andersen, Shapiro, Gerke, & Kruglyak, 2012; Mojica, 

Lee, Willis, & Kelly, 2012; Rodríguez-Trelles, Alvarez, & Zapata, 1996; Rodriguez-

Trelles, Tarrio, & Santos, 2013) show that early theoretical work did not capture what 

occurs in nature in response to temporal heterogeneity in selection. Adaptive tracking to 

temporal heterogeneity has the potential to result in balancing selection at many loci 

throughout a genome, thus impacting overall evolutionary patterns.  

Drosophila melanogaster is an excellent model in which to study these processes 

as it undergoes several generations within a single season and across seasonal transitions, 

indicating it could adaptively track environmental changes. Fruit flies exhibit many 

heritable phenotypic changes that appear to repeatedly track seasonal change. When flies 

collected at different seasonal time points are tested in a lab common garden environment 

they show several phenotypes that track seasonal changes. For example, wild-caught flies 

or their descendants collected closer to the winter exhibit altered cuticular hydrocarbon 

(Rajpurohit et al., 2017), a slight increase in desiccation tolerance in males (Rajpurohit et 

al., 2018), greater propensity to enter diapause (Schmidt & Conde, 2006), higher stress 

tolerance (Behrman, Watson, O’Brien, Heschel, & Schmidt, 2015), and increased innate 

immunity (Behrman et al., 2018) when compared to flies collected shortly after or during 
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the summer. In addition to seasonal changes in phenotypes, D. melanogaster shows 

repeated oscillations in the allele frequencies of hundreds of SNPs in the genome when 

assessing spring and fall samples across multiple years in wild populations (Bergland et 

al., 2014). Globally collected spring and fall seasonal samples of D. melanogaster show 

that there is some predictability in which loci appear to oscillate with seasonal change 

(Machado et al., 2021). Other work has identified specific functional loci that oscillate 

seasonally (Cogni et al., 2014; Cogni et al., 2013; Paaby, Bergland, Behrman, & Schmidt, 

2014). While we observe somewhat predictable seasonal oscillations in allele frequency 

globally in D. melanogaster, we know little about the functional relevance of these 

seasonally oscillating loci or the speed at which these loci track unknown specific 

selective pressures. 

All the previous genetic work in D. melanogaster seasonal evolution focuses on 

seasonal end points (Bergland et al., 2014; Machado et al., 2021). These seasonal end 

points aim to include a single sample as early as can be collected and then a single 

sample before temperatures start to drop in the fall (but see frost samples in Bergland et 

al., 2014). While these samples provide insight into broad seasonal evolutionary 

dynamics, they can be somewhat misleading. It has been observed that early samples can 

appear more summer-adapted if they are collected following a very warm spring and 

early onset of summer while late samples can appear more winter-adapted if collected 

following sharp downturns in temperature (frost samples in Bergland et al., 2014; flipped 

model in Machado et al., 2021). This indicates that while seasonal end points serve an 

important function and purpose in looking at broad signals of seasonal evolution, they 

can show somewhat contrary signals that are potentially an artifact of the environmental 
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conditions prior to collection. To overcome the limitations of seasonal end-points, a set of 

more dense temporal collections could be informative of the important environmental 

cues that drive patterns of seasonal evolution.  

Tying driving environmental factors to loci with seasonally varying allele 

frequencies is an important goal in understanding how rapid adaptation to fluctuating 

selection works to maintain genetic variation and impact broad patterns of evolution. 

Genotype-environment association (GEA) models that tie changes in allele frequencies to 

driving environmental factors (Coop, Witonsky, Rienzo, & Pritchard, 2010; Frichot, 

Schoville, Bouchard, & François, 2013; Gautier, 2015; Gompert, 2015; Günther & Coop, 

2013) have been used to link abiotic factors like temperature, wind, and rainfall to 

differences in allele frequency across the globe in D. melanogaster populations 

(Bogaerts-Márquez, Guirao-Rico, Gautier, & González, 2020). Using GEA models for 

dense temporal sampling of a single population could allow us to associate seasonal 

changes in allele frequency to abiotic factors that drive adaptive tracking in seasonal 

evolution.  

Here, I harness bi-weekly sampling of a single, wild D. melanogaster population 

across three years to further investigate questions of seasonal adaptation: (1) What are the 

whole-genome patterns of population differentiation through time? (2) What are the 

characteristics of functional loci that are differentiated through time? (3) Can I connect 

environmental selective agents with temporal shifts in allele frequency? I find that there 

are several clusters of loci within the genome that show signals of adaptive differentiation 

through time, and that this adaptive differentiation shows patterns in year-to-year 

turnover that may provide further insight into poorly understood overwintering dynamics. 
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I show that some of these adaptively differentiated loci are driven by temperature 

extremes experienced by flies prior to collection. I also present a dataset that can be 

utilized to address further questions in the context of global seasonal sampling efforts of 

D. melanogaster. 

 

 

Methods 

Sample Collection 

Approximately every other week I collected a variety of Drosophilids from a local 

peach and apple orchard near Charlottesville, Virginia, USA (Carter Mountain, 37.99N, 

78.47W). I began collections when peaches came into season in mid-late June where fruit 

flies have emerged from overwintering and are colonizing early ripening fruit, then ended 

collections when the orchard closed in late November to mid-December. Orchard closure 

corresponded with freezing temperatures and approximately a month without new apple 

varieties coming into season. These collections started in June 2016 and finished in 

November 2018 totaling 37 collections. See Table 1 for a summary of collections and 

Figure 3 for a temporal spread of sampling.  

Samples collected in the orchard were brought to the lab in vials containing 

cornmeal-molasses food. After sitting in the lab for roughly 24 hours, wild-caught 

Drosophilids were sorted by species. I set isofemale lines using all wild-caught females 

identified as either Drosophila melanogaster or its visibly indistinguishable sister-species 

Drosophila simulans. After the offspring of isofemale lines reached adulthood, I used the 

genitalia of male offspring to distinguish species identity between D. melanogaster and 
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D. simulans. The first-generation offspring of the D. melanogaster isofemale lines were 

split by sex and then frozen in ethanol and stored at -20°C. 

 

Sample Preparation & Sequencing  

Pooled samples per collection time point were made with one randomly selected 

male offspring from every D. melanogaster isofemale line (see Table 1 for counts of flies 

per pool). I performed DNA extractions on pools using the extraction protocol outlined in 

Bergland et al., 2014. Extracted DNA was diluted in a 1:1 DNA:water mixture, then 

sonically sheared to create fragments 500 bp in length using a Covaris sonicator. 

Libraries were prepared with a NEBNext Ultra II kit using dual indices and following the 

manufacturer’s protocol, using 8 cycles of PCR in the final PCR enrichment step. 

Following library preparation, we quantified the concentration of each library, and all 

libraries were pooled in equal concentrations. After pooling all libraries, we size-selected 

the pooled library on a Pippen for DNA in the 600-750 bp range. The sequencing library 

was sequenced on a NovaSeq using 2x150 paired-end reads. 

 

Dataset Filtering & Preparation 

Sequencing data was mapped and filtered for contamination following steps found 

in Machado et al., 2021. In brief: I filtered raw sequencing data for adaptor sequences 

using cutAdapt (Martin, 2011), followed by mapping with BWA-mem (Li & Durbin, 

2010; Li, 2013) to the D. melanogaster 6.12 release genome assembly (Hoskins et al., 

2015). Because of the high phenotypic similarity between D. melanogaster and D. 

simulans males, I removed any reads that appeared to be sequence contamination by D. 



 22 
simulans individuals. To do that, high quality reads were reformatted into a raw fastq file 

and then were competitively mapped, again using BWA-mem (Li & Durbin, 2010; Li, 

2013), to a D. melanogaster-D. simulans (Hu, Eisen, Thornton, & Andolfatto, 2013) 

combined genome to remove any reads that map preferentially to D. simulans. After 

mapping and decontamination, samples were run through samtools mpileup. I identified 

variable sites using the mpileup file as input for VarScan v2.3.9 (Koboldt et al., 2012) 

which generated a VCF file.  

I filtered the VCF file following steps in Machado et al., 2021 to obtain a set of 

high confidence SNPs and allele frequencies. In short, I removed: sites +/- 10 bp of 

VarScan-identified indels, known repetitive element regions listed in a RepeatMasker bed 

file (A.F.A. Smit, R. Hubley & P. Green; RepeatMasker at http://repeatmasker.org), sites 

in regions of zero recombination (Comeron, Ratnappan, & Bailin, 2012), and non-

biallelic sites. Following these filtering steps, I removed any SNPs in the upper 5% 

quantile of read depths at the site (summed across all 37 samples). Next, within each 

sample, any SNPs with a read depth in the upper 5% quantile were turned into missing 

data. Any sites with an average minor allele frequency (MAF) below 0.05 were removed 

from the dataset. Finally, large portions of heterochromatic and repetitive regions were 

added to chromosomal ends in the updated dm6 genome assembly (Hoskins et al., 2015); 

I removed variants in those regions from the dataset.  

After the SNP-level filtering was completed, I looked at pool-level summaries of 

sequencing quality to determine if any of the pools were clearly of poor quality relative to 

the other pools. A plot of effective coverage (EC = (number of chromosomes * read 

depth)/(number of chromosomes + read depth)) (Bergland et al., 2014; Kolaczkowski, 
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Kern, Holloway, & Begun, 2011; Machado et al., 2021; Machado et al., 2016) versus 

missing data rate (Figure 1) showed three visible outliers with high rates of missing data 

and low effective coverage. I removed those three pools (2016_0624, 2016_1003, and 

2018_0628) from the analysis. This final VCF was annotated with SnpEff (Cingolani et 

al., 2012). 

 

 

Figure 1: The missing data rate and effective coverage relationship 
indicates three clear outliers of poor quality. Missing data rate was 
calculated as the proportion of sites that do not have data after all rounds 
of filtering. The pooled samples are color coded by if they were included 
(red) or excluded from the analysis (blue). 

 

Principal Components Analysis 

I performed a principal components analysis on the allele frequency estimates of 

the samples to look for broad patterns of clustering due to genetic similarity. Principal 

components analyses were conducted on the SNPs in each autosomal arm individually 

and across all four autosomal arms combined (referred to as all autosomes) using the R 

package LEA (Frichot & François, 2015). Initial PCA indicated that samples with low 
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effective coverage were stark outliers and drowned out any discernible patterns. I 

therefore conducted the PCA and subsequent analysis on the PCs using only samples 

with higher effective coverage (mean + 1 standard deviation > 50; sample is above and/or 

crosses the dashed line in Figure 3B).  

Following the PCA, I performed ANOVAs or linear models on PC loading values 

to test which principal components are associated with biological explanatory factors or 

artifactual drivers of clustering. I looked at the following possible biological explanatory 

values: year of collection, month of collection, and average inversion status. Average 

inversion status was calculated by using inversion-specific SNPs previously identified 

(Corbett-Detig & Hartl, 2012) and calculating the mean allele frequency of inversion-

specific alleles (coordinates from Corbett-Detig & Hartl 2012 are in dm3, and were lifted 

over to dm6 using the UCSC browser tool). I also looked at the following artifactual 

explanatory factors: DNA extraction batch (there were two separate “batches'' of DNA 

extractions done about a month apart), and row and column in the plate when building 

libraries.  

 

Genetic Differentiation Through Time: Pairwise FST Calculations 

I wanted to investigate patterns of genetic differentiation through time using FST, 

both within a single year and between years, including older collections to get a longer-

term view of genetic differentiation. I took the filtered samples described above and 

added spring and fall samples of pooled sequencing data from the same focal population 

collected in 2012, 2014, and 2015 (Machado et al., 2021). I applied a simpler filtering 

approach to this dataset, retaining all sites that were retained in the 2016-2018-only 
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dataset; the more complex steps of converting high coverage sites into missing data were 

not applied to this larger dataset. This combined VCF was run through the R package 

poolfstat (Hivert, Leblois, Petit, Gautier, & Vitalis, 2018) using the 

computePairwiseFSTmatrix() command to calculate FST between every pairwise 

combination of samples. In displaying the data, spring and fall collection designations 

were kept for the 2012, 2014, and 2015 data, while the 2016-2018 data were classified as 

bi-weekly based on their collection strategy. 

 

Genotype-Environment Associations 

Environmental Data Gathering 

In order to test putative associations between allele frequencies and environmental 

factors, I obtained climate data collected at or near the focal orchard. Climate data was 

gathered from Weather Underground weather stations. For the majority of the field 

season, data was available from weather stations located at or near the orchard the 

collections came from (Carters Mountain (CM) - KVACHARL73; Daniel Morris Lane 

(DML) - KVACHARL33). Whenever possible, I used data from the station at the orchard 

(CM), but when data was missing from the CM station, I estimated data based on DML 

station. DML weather data was tightly correlated with CM weather data (adjusted R2 

from a linear model of DML predicting CM weather data ranging from 0.7297 to 

0.9810), so it was reasonable to fill in the gaps using a predictive linear regression.  

I used measures of temperature and humidity as the environmental covariates, 

estimated across 14, 21, and 28 days prior to collection date. The 14, 21, and 28-day 

estimations were all calculated to capture different temperature-dependent lengths of D. 
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melanogaster development (Powsner, 1935). I investigated average temperatures 

(averages of low, average, and high temperatures), a proportion of the days preceding 

collections below or above approximate thermal limits for D. melanogaster (Chown, 

Jumbam, Sørensen, & Terblanche, 2009; Garcia, Littler, Sriram, & Teets, 2020; Lecheta, 

2020; Overgaard, Hoffmann, & Kristensen, 2011; Petavy, David, Gibert, & Moreteau, 

2001; Ransberry, MacMillan, & Sinclair, 2011), the average range of temperatures, and 

average relative humidity. I initially ran the model (described below) using conservative 

thermal limits (lower limit, 5°C; upper limit, 32°C) when calculating the proportion of 

extreme hot and extreme cold days, but this produced an inflation in the model output 

values. Therefore, I adjusted the thermal limits (lower limit, 8°C; upper limit, 30°C) in 

order to reduce the number of zeroes in the model environmental covariate inputs. I used 

my own records about what fruit variety the flies were collected from (Table 1). Fruit 

type was encoded as 1 for peaches, 2 for apples, and 1.5 for collections done on both 

peaches and apples. I used year and Julian date as covariates.  

 

BayPass 

BayPass v2.2 takes pooled sequencing data and uses a scaled genetic covariance 

matrix and Bayesian modeling to assess adaptive differentiation and association with 

environmental covariates (Gautier, 2015). Prior to running BayPass, the VCF datafile was 

converted to the BayPass format using R package poolfstat (Hivert et al., 2018). The core 

model, which generates the genetic covariance matrix, was run on autosomal SNPs (2L, 

2R, 3L, 3R) using default settings (Figure 2). The output genetic covariance (relatedness 

matrix) file from the core model was used in the AUX covariate model, which identifies 
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Figure 2: Workflow for BayPass analysis. The blue represents the 
analysis on the environmental covariate model output and the purple 
represents the analysis on XtX statistics. Circles represent outputs and 
rectangles represent modeling or analysis steps. BF=Bayes Factor. 

 

connections between allele frequency changes in SNPs to each environmental covariates 

independently while taking into account the genetic covariance between samples. The 

AUX covariate model was run three times (set seed manually to 1,2,3 for the 

corresponding run) using the default settings.  

I also ran the AUX covariate model with permutations of the environmental 

covariates in order to obtain a null distribution. Ten permutations were run for the 

covariate model by shuffling the environmental data and re-running the AUX covariate 

model with the permuted environmental data. The permutations of the environmental data 

were done by taking all the environmental data points from a collection and shuffling 
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them together as a block to maintain the correlation structure within a single time point 

for the various factors. Environmental data was shuffled within each year (e.g. 2016 

environmental data was shuffled and assigned to new 2016 time points). However, year 

of collection was shuffled completely between all samples. Following the environmental 

data shuffling, and to reduce computational burden, I randomly selected one subset of 

SNPs per autosome arm (1/25th of the SNPs on a given chromosomal arm). Each 

permutation was run with three random seeds, comparable to how the data was modeled. 

An additional ten permutations were run on all SNPs using the same model structure but 

with a subset of six covariates that stood out in the data: the proportion of extreme hot 

days and proportion of extreme cold days across 14, 21, and 28 days. 

 

Analysis of BayPass XtX Output 

XtX statistics are designed to measure the degree of differentiation between 

populations that are due to non-demographic processes. Large XtX values, which 

correspond to a greater degree of adaptive differentiation (Gautier, 2015; Günther & 

Coop, 2013) were used to identify outlier SNPs that represent SNPs undergoing adaptive 

differentiation across time. I used two different outlier thresholds (Figure 2). The more 

conservative threshold was calculated as the top 0.1% of SNPs (99.9th percentile; 

XtX>104.7178). The second threshold was based on pseudo-observed data sets (PODs) 

simulated using the simulate.baypass() command in R. PODs are generated and analyzed 

with the simulate.baypass() command by randomly sampling SNPs from the dataset that 

will maintain overall data parameters calculated by the BayPass core model (Gautier, 

2015). Simulations were run on 10,000 SNPs using actual read depth data from the 
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pooled sequencing data. After analyzing the PODs with BayPass, the top 0.1% of POD 

SNPs (99.9th percentile) equaled a threshold at XtX>48.17961.  

To characterize XtX outliers, I assessed levels of enrichment (i.e. odds ratios) 

across different loci categories: coding vs. non-coding, nonsynonymous vs. synonymous, 

globally seasonal vs. all other SNPs, and tandem repeat rich regions vs. the rest of the 

genome. Using the two different outlier thresholds, I looked for enrichments among the 

XtX outliers vs. 100 random samples of matched controls. Matched controls were 

identified by choosing random SNPs matched for chromosome, average minor allele 

frequency, and total SNP read depth. Global seasonality was categorized by using 

previously identified globally seasonal SNPs (Machado et al., 2021) at different 

significance thresholds. Because I observed an enrichment of tandem repeats in the XtX 

outliers, I re-ran the enrichment tests after excluding tandem repeat regions based on the 

simple repeat information from the UCSC genome browser (https://genome.ucsc.edu/cgi-

bin/hgTables; D. melanogaster dm6, Variation & Repeats; Simple Repeats).  

 

Analysis of BayPass Covariate Model Output  

I assessed the output of the covariate model to identify genome-wide patterns of 

association with environmental covariates and to identify outliers and what 

environmental covariates they are associated with. After the covariate models on the data 

and permutations were completed, Bayes Factors for each environmental factor per SNP 

were averaged across the three BayPass runs. To assess which environmental factors 

appear to be the most important to temporal shifts in allele frequencies, I calculated the 

99.5% quantile of Bayes Factors across all SNPs and environmental factors. Using the 
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99.5% quantile threshold, I calculated the proportion of SNPs for both the data and 

permutations that was above this threshold per environmental factor. This was done for 

the downsampled permutations initially, and then again for the full permutations of the 

14-, 21-, and 28- day proportion of extreme hot and extreme cold days environmental 

factors.  

To assess the distribution of outliers in the Bayes Factors with the 6 

environmental factors I identified as being most tied with shifts in allele frequencies, I 

checked for overdispersion. Outliers were defined as a Bayes Factor above the 99.5 

percentile for that dataset, whether it was the data or one of the ten full permutations. The 

overdispersion model looked at 1000-SNP windows with a 500-SNP step and counted up 

how many SNPs were above the outlier threshold of Bayes Factors either for the data, or 

for that permutation depending on what was being assessed. Following the counting of 

outliers, each window was compared to an expected even distribution of outliers using a 

one-tailed binomial test in R. P-values from this assessment of windows were then 

adjusted for multiple testing using R function p.adjust() with the default settings, the 

Holm correction (Holm, 1979). 

 

 

Results 

Basic dataset quality and description 

From 2016 to 2018, I conducted 37 different sampling efforts at a local peach and 

apple orchard in central Virginia, US (37.99°N, 78.47°W), yielding approximately 2,700 

D. melanogaster isofemale lines. From these flies, I selected male offspring for pooled 
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sequencing. The number of flies entering each pool was variable given the fluctuations in 

D. melanogaster density over the field season and from year to year (Figure 3A) and 

ranged from 10 to 150 individuals in the different time-point sample pools. The effective 

coverage, which accounts for the size of the pool, of most samples was either above or 

within one standard deviation the target effective coverage of 50. A few samples did not 

reach the target effective coverage due to a low number of flies included in the pool 

(Figure 3B). After removing pools with insufficient effective coverage (see methods), I 

retained 34 pooled samples containing 1,333,338 autosomal SNPs.  

 

Figure 3: A basic description of the dataset used in the analysis. A) The 
number of male flies pooled into each sequenced time point sample. B) 
The effective coverage of each pooled sample. The point is the mean 
effective coverage across all autosomal SNPs included in the analysis and 
the line represents one standard deviation away from the mean. The 
dashed line represents the target effective coverage. 
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Whole genome patterns of differentiation 

Principal components analysis (PCA) on autosomal allele frequencies revealed 

that both the year of the collection and the estimated Inv(2L)t inversion frequency 

separate the collections along principal components 1-3. Chromosomes 2R, 3L, 3R show 

samples clustering by year while 2L and the combination of all autosomes show samples 

clustering by Inv(2L)t inversion frequency (Figure 4). An ANOVA conducted on the PC 

loadings indicate that other potential confounding factors (position in the library making 

plate, DNA extraction batch, etc.) were not significantly associated with any other PCs 

(Bonferroni a<0.05). 

 

Figure 4: The principle components analysis show that year of 
collection and frequency of Inv(2L)t unique SNPs are the dominant 
explanatory factors for PC loading values. A) PC1 vs. PC2 for three main 
autosomal arms separately, colored by year. B) PC1 vs. PC2 for 2L and 
All Autosomes, colored by average estimated inversion status of Inv(2L)t.  
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Pairwise FST through time appears to plateau when comparing samples collected 

during different years, no matter what year the oldest sample in the pairwise comparison 

comes from (Figure 5). However, there is also a general increase through time (Mantel 

test, P-value=0.001).  

 

Figure 5: FST through time appears to plateau after one year. Pairwise 
FST between 2016-2018 samples and other data from 2012, 2014, and 
2015. Data points are sorted into facets by the year of the oldest sample in 
the pairwise comparison. Similarly, the fall, spring, and bi-weekly 
collection categorization is based on the oldest sample in the pairwise 
comparison. ∆ Time is measured in the days between the oldest and 
youngest sample in the pairwise comparison. The dashed vertical lines 
align with every 365 days.  

 

Demographic modeling of population turnover 

To test hypotheses of the cause of population turnover being due to either severe 

bottlenecks or complete extirpation and recolonization, we conducted simple 
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demographic model simulations (Bangerter, Nunez, & Bergland, 2021). In brief, we 

performed forward simulations using SLiM 3.0 (Haller & Messer, 2019) of three 

demographic situations: constant population size, cyclical bottlenecks, and cyclical 

extirpation followed by recolonization from a source population. Only a cyclical 

bottleneck to 2% of the maximum population size somewhat recapitulates the PCA 

results of samples clustering by year of collection (Bangerter, Nunez, & Bergland, in 

prep.). 

 

Adaptive outlier characterization 

The XtX statistic identifies outlier loci that exhibit allele frequency changes 

different from expectations based on demography alone. With the XtX statistic, I found 

several outlier loci that are candidates of adaptive differentiation across the temporal 

samples (Figure 6B). I investigated XtX outliers using two different thresholds of 

significance: the top 0.1% of XtX values in the data (XtX>104.7178; 613 SNPs), and the 

top 0.1% of SNPs from simulated data (XtX>48.17961; 98,144 SNPs; PODS, see 

methods; Figure 2). XtX outliers at both thresholds are enriched for previously identified 

seasonal loci (Machado et al., 2021), when compared to randomly chosen matched 

control SNPs (Figure 6A). The top 0.1% of XtX values in the data have a median 4.15-

fold enrichment for coding loci (p=7.91x10-29), a median 2.08-fold enrichment for 

nonsynonymous loci (p=0.0072), and a median 2.89-fold nonsignificant enrichment for 

seasonal loci (p=0.235; seasonal threshold of p=0.001). I also see a median 94.1-fold 

enrichment for tandem repeats (p=3.57x10-65). When looking at the less conservative set 

of XtX outliers, top 0.1% of XtX values in the simulated data, I see a median 1.1-fold 
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enrichment for coding loci (p=1.82x10-13), a median 1.2-fold enrichment for seasonal loci 

(p=3.19x10-7; seasonal threshold of p=0.005), and a 2.1-fold enrichment for tandem 

repeats (p=9.36x10-34). No enrichment for nonsynonymous loci was observed (p=0.225) 

at the less conservative outlier threshold. 

The patterns of enrichment persist for some categories after removing loci that are 

tandem repeats, though all were reduced. After the removal of tandem repeats, in the XtX 

outliers in the top 0.1% of XtX values in the data showed no significant enrichments for 

coding loci (p=0.10), nonsynonymous loci, or seasonal loci (p=0.44; seasonal threshold 

of p=0.001). In the less conservative set of XtX outliers, top 0.1% of XtX values in the 

simulated data, I see a slight median 1.08-fold enrichment for coding loci (p=2.03x10-8) 

and a slight median-1.29 fold enrichment for seasonal loci (p=0.0019; seasonal threshold 

of p=0.001). There was no enrichment of nonsynonymous loci (p=0.68). Given the 

change in enrichment patterns after the removal of tandem repeats, the enrichment in 

coding and nonsynonymous loci appear to be driven by variants in tandem repeat-rich 

genes for the more conservative outlier threshold, though they are not the sole driver of 

enrichment for the less conservative outlier threshold. 
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Figure 6: XtX outliers within the genome show varying degrees of 
enrichment of coding, non-synonymous, tandem repeat, and seasonal 
SNPs. A) The log2 transformed odds ratio of the enrichment of XtX 
outliers vs. matched control SNPs for a variety of types of loci for two 
different thresholds. B) Manhattan plot of XtX values, where the points 
with “negative” XtX values are SNPs within tandem repeat regions. The 
green dashed line indicates the threshold for POD-based simulated 99.9% 
threshold of significance. The purple dashed line indicates the top 99.9% 
of XtX values of the data. 

 

Connecting allele frequency changes to environmental factors  

I used BayPass to test associations between shifts in allele frequencies and a range 

of environmental factors: low temperatures, average temperatures, high temperatures, 

temperature range, humidity, year of collection, day of the year, fruit variety that the flies 

were collected off of, as well as the number of extreme hot days and extreme cold days. 

The tests were conducted using values estimated across 14, 21, and 28 days prior to 

collection. Initial analysis of the BayPass AUX model and down-sampled permutations 

showed that most environmental factors show very few associated outlier SNPs (Figure 

7A). The average temperature measures, relative humidity, temperature ranges, year, and 
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date all showed a small proportion of SNPs that are outliers (range of proportions: 

1.21x10-6 to 0.0009). Fruit type and the proportion of extreme hot and extreme cold days 

showed an order of magnitude greater proportion of outlier SNPs relative to the other 

factors (range of proportions: 0.004-0.04). 

I chose to focus on the measures of the proportion of extreme hot and extreme 

cold days as fruit type may have been associated with population turnover through time 

rather than being a response to specific selection pressures by the fruit variety. The 14-, 

21-, and 28-day proportion of extreme hot and extreme cold days prior to collection did 

have a large number of associated outlier SNPs, however permutations also showed an 

elevated number of outliers (range of proportions: 0.002-0.03). To investigate outlier 

signals associated with the 14-, 21-, and 28-day proportion of extreme hot and extreme 

cold days, I performed permutations of the full genome rather than a down-sampled set of 

SNPs. When comparing the data with the full permutations, I observed that the number of 

outliers associated with the 14- and 28-day proportion of extreme hot days and 28-day 

proportion extreme cold days was still beyond the null expectation produced by the 

permutations (Figure 7B). The 28-day proportion of extreme cold days prior to collection 

and the 14- and 28-day proportion of extreme hot days prior to collection showed 1.78, 

2.21, and 1.46 times the proportion of outlier SNPs beyond the mean of the permutations, 

respectively. The 14- and 21-day proportion of extreme cold days prior to collection and 

the 21-day proportion of extreme hot days prior to collection showed that the proportion 

of outlier SNPs in the data was squarely in the distribution of proportion of outlier SNPs 

in the permutations.  
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Figure 7: The proportion of hot and cold extreme days are the dominant 
environmental factors associated with shifts in allele frequencies. A) The 
proportion of SNPs assessed using down-sampled permutations (green) 
compared to the data (purple) that have a greater Bayes Factor value than 
the 99.5% percentile of all Bayes Factor values from the data. B) The 
proportion of SNPs assessed using the full permutations of the proportion 
of hot and cold extreme days (green) compared to the data (purple) that 
have a greater Bayes Factor value than the 99.5% percentile of Bayes 
Factor values from the extreme hot and extreme cold data. 
 

I assessed the dispersion of BayPass outliers throughout the genome using a 

sliding window analysis. The purpose of the sliding window analysis was to understand 

how outliers are distributed across the genome and to compare to the same kind of outlier 
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distribution in the full permutations. I observed clustering throughout the genome in the 

data when compared to the expectation of an even dispersal of outliers (Figure 8A). I also 

observed a much larger number of significantly clustered windows in the data than in the 

permutations (Figure 8B). 

 

Figure 8: The proportion of hot and cold days have many more clustered 
windows of the genome significantly associated with allele frequency 
shifts than permutations. A) The -log2(adjusted p-value) for 1000 SNP 
windows and a 500 SNP step across the autosomes for three 
environmental factors tested. B) For a p-value threshold of p<0.001, the 
count of the number of windows that deviate from expectation for both the 
data (purple) and permutations (green). 
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Discussion 

I generated then analyzed a novel, finely-sampled dataset of a focal wild 

Drosophila melanogaster population and outline three findings. Genome-wide patterns of 

differentiation indicate signals of potential year-to-year population turnover that appear to 

be a consequence of severe winter bottlenecks. I identify outliers of adaptive 

differentiation through time that exhibit enrichments for different coding regions, 

previously identified seasonally oscillating SNPs, and other categories of loci. Finally, I 

find that the proportion of extreme hot and extreme cold days prior to collection are 

associated with shifts in allele frequencies through time. 

 

Patterns of differentiation point to population turnover and winter bottlenecks 

The degree of differentiation between samples through time can provide insight 

into the rate of population turnover. Samples cluster by year of collection in the PCA and 

whole genome pairwise FST estimates asymptote with time. These results suggest that the 

focal D. melanogaster orchard population experiences population turnover each year. 

This could be driven by either winter bottlenecks or complete extirpation and 

recolonization by a genetically different source of local migrants each year. The focal 

orchard does not have clear places of refugia (e.g. large compost piles that retain warmth 

through decomposition) where adults could overwinter safely, though little is understood 

about overwintering behavior in D. melanogaster; the focal orchard also is a part of a 

network of orchards within central Virginia that experience regular transport of fruit and 

other produce between locations. Observations of the focal orchard population and the 
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lack of understanding of overwintering behavior do not make it clear if the focal 

population undergoes winter bottlenecks or is extirpated and recolonized every year.  

The simple demographic models we performed imply that the focal population 

has some mechanism of overwintering and recolonization despite the lack of obvious 

overwintering sites. I conclude based on the demographic modeling that the signal of 

population turnover is the result of bottlenecks over the winter rather than complete 

extirpation and recolonization. More modeling work would be needed to reach 

conclusions about estimated overwintering population sizes. 

 

Adaptive outlier enriched for coding and previously identified seasonal loci 

To assess broad patterns of adaptive differentiation in the samples, I used the XtX 

statistic to identify outliers that represent loci that are adaptively differentiating through 

time. The enrichment of coding loci indicates that outliers for adaptive differentiation 

may be functional, something not certain in previous work assessing seasonal samples of 

D. melanogaster (Bergland et al., 2014; Machado et al., 2021). The enrichment of 

previously identified seasonally oscillating loci (Machado et al., 2021) suggests that 

while the XtX statistic is not specifically designed to assess temporal fluctuations in 

adaptive differentiation, the results are verified and therefore valid. Adaptively 

differentiating outliers appear to be both functional and globally seasonal, which is a first 

step in providing evidence that seasonally oscillating SNPs are functional. 
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Extreme temperatures, not other environmental variables, are associated with 

temporal shifts in allele frequencies 

The observation that the proportion of extreme hot and extreme cold days prior to 

collection has the strongest association with temporally changing allele frequencies is 

consistent with the known biology of D. melanogaster. For example, thermal extremes 

predict species distributions in Australian Drosophilids (Overgaard, Kearney, & 

Hoffmann, 2014) and models show that thermal extremes are more influential on the 

evolution of thermal performance curves than thermal means in temperate Drosophila 

populations (Buckley & Huey, 2016). Additionally, average air temperatures are not 

always a good proxy for either body or microhabitat temperature (Bakken, 1992; 

Helmuth et al., 2010; Sears, Raskin, & Angilletta, 2011) which may explain why they do 

not appear to be drivers of temporally changing allele frequencies. Temperature extremes 

being more associated with changing allele frequencies than temperature averages 

confirm expectations based on previous work.  

The different time periods across which I estimated the environmental factors 

provide potential insight into the developmental biology of wild D. melanogaster. We see 

that the 14- and 28-day proportion of hot extremes prior to collection as well as the 28-

day proportion of extreme cold days prior to collection drive the most outlier SNPs, 

relative to null expectations. At colder temperatures, D. melanogaster develops more 

slowly (Powsner, 1935). Therefore, it is reasonable that a 28-day estimation of the 

proportion of extreme cold days is a dominant environmental selective pressure during 

the colder months. Conversely, at warmer, but non-lethal, temperatures D. melanogaster 

develops more quickly (Powsner, 1935), therefore the 14-day proportion of extreme hot 
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days being dominant is reasonable as the typical egg-to-adult life cycle for D. 

melanogaster is 10 days. The less intuitive dominance of the 28-day proportion of 

extreme hot days prior to collection may be explained by an additive effect of two 

generations in a row of directional selection as 28 days can capture at least two 

generations of adaptation if there is a long period of extreme heat. While we know that 

temperature impacts developmental timing (Powsner, 1935) and the factors most 

associated with temporal changes in allele frequencies seem to reflect that, more 

experimental methods may be needed to make this link more explicit.  

While fruit type did appear to be an environmental factor with a strong 

association with temporally changing allele frequencies, fruit type might be a proxy for 

evolution across the year. Sample collections always began on peaches and then 

transitioned to apples mid-season. However, a closer investigation of the fruit variety 

from which flies are collected may be of interest as peaches and apples clearly have a 

different makeup, and different varieties of apples have different sugar content (Hecke et 

al., 2006) and sugar consumption can impact several fitness related traits in D. 

melanogaster (Chng, Hietakangas, & Lemaitre, 2017). During sample collection, I also 

observed that fruit flies do not colonize certain apple varieties. Fruit type may be an 

important selective factor, but the way the data was collected cannot accurately determine 

the relative contribution of fruit type to seasonal adaptation. 

 

Caveats and future lines of inquiry 

There are some caveats to the interpretation and analysis of the data with 

BayPass. Based on the observations of the raw data, I speculate that because the 



 44 
proportion of days with temperature extremes had many zeroes, I am limited in the 

interpretation of the specific identities of outliers as the outlier signals appeared 

somewhat artificially inflated. Additionally, while there is a history of substituting space 

for time (Blois, Williams, Fitzpatrick, Jackson, & Ferrier, 2013; Srivathsa, Puri, Kumar, 

Jathanna, & Karanth, 2018), BayPass is not explicitly built to assess time-series data. I 

admit this is a limitation, but I do not think that it takes away from the broad conclusions 

as I looked at general patterns rather than specific outlier loci. As a final caveat to the 

data analysis with BayPass, I did not assess any biotic factors. Particularly, we know that 

the Drosophilid species distributions change within years and between years (Gleason, 

Roy, Everman, Gleason, & Morgan, 2019) and that variation in the microbiomes of D. 

melanogaster may be an agent of selection (Rudman et al., 2019). Given the broad 

interpretation of the BayPass analysis and the use of permutations, I posit that the 

conclusions are still robust. 

This dataset is a unique tool to investigate the details of seasonal evolution. Such 

fine-scale sampling and sequencing of a single population of Drosophila has not been 

previously done. Global efforts to capture spring and fall samples of wild D. 

melanogaster populations (Kapun et al., in prep.) have shown some limitations derived 

from how fluctuations in the environment prior to collections may have a greater impact 

on the seasonal patterns observed (Machado et al., 2021). Fine temporal sampling 

provides a closer perspective of environmental selective pressures that can be tied to and 

investigated in global seasonal collections (Kapun et al., in prep.). The sampling effort of 

wild-caught Drosophilids described exceeds the sequencing effort described. Further uses 

of the sampling can be tracking genotypic changes rather than pooled allele frequency 
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estimates, sequencing individuals at the end and start of seasons to more closely 

investigate overwintering dynamics, and investigate the dynamics of other Drosophilid 

species or Drosophila commensals. Also, the focal orchard is part of a network of nearby 

orchards and vineyards and perhaps spatial sampling can provide insight into migration 

dynamics on a local scale tied with changes in allele frequencies in the focal population. 

With the dataset generated here, the sampling conducted, and the focal orchard connected 

to a network of orchards, I have found an ideal population in which to study many 

questions related to balancing selection in response to seasonally oscillating selection. 

 

Conclusion 

Overall, I have laid out evidence to support three findings. First, the patterns of 

genome-wide differentiation through time indicate year-to-year population turnover. 

Through straightforward demographic models of winter bottlenecks, we can generate 

patterns of clustering by year that mimic what we observe in the natural population 

suggesting that winter bottlenecks are sufficient to generate year-to-year population 

turnover. Second, the outliers of adaptive differentiation are enriched for coding regions 

and previously identified seasonally oscillating SNPs, which adds more confirmation that 

seasonally varying selection is repeatable globally and acts through biologically relevant 

loci. Third, the proportion of extreme hot and cold days prior to collections are the 

dominant environmental factors that are associated with temporally changing allele 

frequencies. In particular, the days across which the proportions were taken (14- and 28-

day windows) align with expectations according to developmental timing. This shows 

that thermal extremes play an important role in seasonal adaptation in addition to limiting 



 46 
broad patterns of species distributions. With these three claims, I have extended our 

understanding of seasonal evolution in D. melanogaster, thus allowing us to better 

understand this model system of balancing selection through adaptively tracking seasonal 

change. 

 

 

Data Availability  

All scripts can be found at https://github.com/abangerter/3yr_Dmel_poolseq  

 

All raw sequencing data can be found under NCBI SRA BioProject ID PRJNA728438. 

Data is embargoed until peer-reviewed publication.  

 

 

Tables  

Table 1: Metadata for the samples.  

Sample ID Collection 
Date 

(MM/DD/YY) 

SRA # Fruit 
Collected 

From 

Number of 
Sequenced 

Flies 
TYS_2016_0624 6/24/16 SRR14475045 peaches 37 
TYS_2016_0708 7/8/16 SRR14475044 peaches 36 
TYS_2016_0722 7/22/16 SRR14475033 peaches 22 
TYS_2016_0819 8/19/16 SRR14475022 peaches 23 
TYS_2016_0902 9/2/16 SRR14475014 peaches & 

apples 
146 

TYS_2016_0916 9/16/16 SRR14475013 apples 113 
TYS_2016_1003 10/3/16 SRR14475012 apples 40 
TYS_2016_1014 10/14/16 SRR14475011 apples 150 
TYS_2016_1028 10/28/16 SRR14475010 apples 118 
TYS_2016_1111 11/11/16 SRR14475009 apples 86 



 47 
TYS_2016_1203 12/3/16 SRR14475043 apples 70 
TYS_2017_0622 6/22/17 SRR14475042 peaches 39 
TYS_2017_0707 7/7/17 SRR14475041 peaches 45 
TYS_2017_0720 7/20/17 SRR14475040 peaches 69 
TYS_2017_0803 8/3/17 SRR14475039 peaches & 

apples 
29 

TYS_2017_0817 8/17/17 SRR14475038 peaches & 
apples 

32 

TYS_2017_0831 8/31/17 SRR14475037 peaches & 
apples 

87 

TYS_2017_0914 9/14/17 SRR14475036 apples 92 
TYS_2017_0928 9/28/17 SRR14475035 apples 136 
TYS_2017_1012 10/12/17 SRR14475034 apples 107 
TYS_2017_1026 10/26/17 SRR14475032 apples 120 
TYS_2017_1109 11/9/17 SRR14475031 apples 122 
TYS_2017_1124 11/24/17 SRR14475030 apples 21 
TYS_2017_1207 12/7/17 SRR14475029 apples 24 
TYS_2018_0628 6/28/18 SRR14475028 peaches 10 
TYS_2018_0705 7/5/18 SRR14475027 peaches 26 
TYS_2018_0712 7/12/18 SRR14475026 peaches 58 
TYS_2018_0726 7/26/18 SRR14475025 peaches 70 
TYS_2018_0809 8/9/18 SRR14475024 peaches 84 
TYS_2018_0823 8/23/18 SRR14475023 peaches & 

apples 
69 

TYS_2018_0906 9/6/18 SRR14475021 peaches & 
apples 

60 

TYS_2018_0920 9/20/18 SRR14475020 apples 77 
TYS_2018_1004 10/4/18 SRR14475019 apples 108 
TYS_2018_1018 10/18/18 SRR14475018 apples 136 
TYS_2018_1025 10/25/18 SRR14475017 apples 122 
TYS_2018_1101 11/1/18 SRR14475016 apples 103 
TYS_2018_1129 11/29/18 SRR14475015 apples 16 
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CHAPTER TWO 

 
Individual whole genome sequencing of a single orchard population of D. melanogaster 

shows stochastic population structure throughout a single year 
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Abstract 

The degree of population structure, in the form of genetic differentiation between 

subpopulations or isolation by distance, can impact the potential for local adaptation to 

occur. In many species, the capability of long-distance dispersal leads to assumptions that 

only large-scale patterns like latitudinal clines will emerge and that local population 

structure will not be observed. Local panmixia has been a long-standing assumption in 

Drosophila melanogaster. However, there is evidence that dispersal rates in D. 

melanogaster may be resource-dependent, leading to questions about whether population 

structure can arise in a well-resourced, natural orchard population. I ask: does a temperate 

orchard population of D. melanogaster exhibit signs of population structure, and does any 

observed structure vary through time? Using bi-weekly sampling from a local fruit 

orchard, I performed whole-genome sequencing of individual male offspring of wild-

caught isofemale lines. I observed an excess of homozygosity, as measured by FIS, 

relative to simulated expectations. Positive FIS beyond the simulated expectation was 

observed genome-wide in a subset of time points. The temporally inconsistent elevated 

genome-wide positive FIS is indicative of stochastic shifts between cryptic population 

structure and panmixia in the focal orchard population. The presence of stochastic 

population structure in wild D. melanogaster populations has implications for the 

understanding of evolution in short-lived, mobile organisms and provides a rich model 

system in which to study rapidly changing metapopulation dynamics.   
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Introduction 

In nature, population substructure, population size, and migration rates of many 

organisms are dynamic through time. The short-term demographics of a population can 

impact patterns of genetic diversity and therefore differentiation (Ellegren & Galtier, 

2016). In addition, many populations experience spatial structuring into smaller clusters 

of individuals called subpopulations. Structuring of a population is considered a 

metapopulation if it includes dynamics of migration between subpopulations as well as 

extinction and recolonization of subpopulations (Hanski, 1994, 1999). Metapopulation 

structure can also impact measures of genetic diversity and differentiation while 

providing important insight into the evolution of natural populations (Pannell & 

Charlesworth, 2000).  

For metapopulations where migration rates are high, it is expected that genetic 

differentiation between subpopulations (hereafter referred to as population structure) will 

decline due to high gene flow. In metapopulations, the degree of observed population 

structure depends on the degree of migration. For example, the degree of genetic 

differentiation between subpopulations in the butterfly Parnassius mnemosyne is 

dependent upon the connectivity of patches, determined by the spatial distribution of 

habitat types. Higher connectivity between the subpopulation patches leads to more 

migration that results in measurable gene flow and a lowered measure of genetic 

differentiation between patches (Keyghobadi, Roland, & Strobeck, 2005). In the moth 

Cydia pomonella, genetic differentiation between subpopulations found in different 

orchards within the same valley is minimal, but at a regional scale genetic differentiation 

between subpopulations is observed, consistent with understanding of flight capability of 
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the moths (Chen & Dorn, 2010). Dispersal events in bed bugs are mediated through 

human movement resulting in strong founder effects in newly recolonized infestations. 

These strong founder effects result in different infestations, or subpopulations, exhibiting 

high levels of differentiation (Fountain, Duvaux, Horsburgh, Reinhardt, & Butlin, 2014). 

While some species do exhibit clear, observable spatial delineation between 

subpopulations with measurable population structure between them, there are other 

instances where the existence of subpopulations is not clear.  

Natural populations where there are no apparent spatial divisions may still have 

genetically distinct subpopulations, also known as cryptic population structure. One way 

to identify cryptic population structure is by looking for genome-wide positive FIS. FIS, 

the inbreeding coefficient, is often calculated using the number of observed heterozygotes 

versus the expected number of heterozygotes based on allele frequencies. More positive 

values of FIS point to a more inbred population. Due to both selection and neutral 

processes, allele frequencies will be different between subpopulations when gene flow is 

not high. When two or more subpopulations are collected and treated as a single 

population (i.e. cryptic population structure), genome-wide positive FIS would be 

produced from an excess of homozygotes. This excess of homozygotes would strongly 

deviate from Hardy-Weinberg as there would be fewer heterozygotes than expected 

based on combined allele frequencies. Positive FIS because of cryptic population structure 

is also called a Wahlund effect (Wahlund, 1928). Observing a Wahlund effect in samples 

from natural populations can signal the presence of cryptic population structure. 

There is a broad assumption that the fruit fly Drosophila melanogaster is a 

panmictic species on a moderately local level (e.g. an orchard) with no fine-scale 
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population structure, but this assumption might be flawed. The assumptions of general 

panmixia in D. melanogaster are based on observations of dispersal up to 25 km (Coyne 

& Milstead, 1987), but migration distances may be fewer than 5 m in the presence of 

readily available food (Wallace, 1970). Other Drosophilids support resource-dependent 

migration rates: where resources are abundant, flies remain on those local food sources 

over their lifetime, but where food resources are lacking, flies tend to migrate at high 

rates (Coyne & Milstead, 1987; Dubinin & Tiniakov, 1946; Johnston & Heed, 1975; 

Markow & Castrezana, 2000). These observations on differing migration rates could 

imply that after reaching adulthood, D. melanogaster individuals rarely leave that 

microhabitat if resources are plenty. Fruit fly offspring eclosing from a single fruit likely 

descend from two-three females ovipositing successfully on the fruit (Hoffmann & 

Nielson, 1985; Jaenike & Selander, 1979). There is a possibility that in a well-resourced 

environment D. melanogaster may not disperse far before reproduction, and given the 

localized nature of oviposition behavior, the flies in one region that then mate with each 

other may be related to one another. Therefore, despite long-held assumptions, population 

structure may exist within a single fruit orchard as a result of local inbreeding of close 

relatives on small patches of fruit. 

Resource abundance changes throughout a growing season in a fruit orchard, 

potentially altering dispersal and population structure over time within a single orchard. 

A metapopulation model was developed (Shpak, Wakeley, Garrigan, & Lewontin, 2010) 

based upon seasonal observations of a single D. melanogaster population made by Ives 

and colleagues (Band & Ives, 1961, 1963; Ives, 1945, 1954, 1970; Ives & Band, 1986). 

This model posits that metapopulation structure and dynamics would change with 
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seasonal change (Shpak, Wakeley, Garrigan, & Lewontin, 2010). The model begins with 

subpopulations, also called demes, recolonized by few individuals in the spring, that 

reproduce and grow in size and migration rates between demes increase until they 

overlap and the metapopulation collapses into a single panmictic population. However, 

aside from the initial studies done by Ives and colleagues, we have few natural 

observations of how population structure may change with seasonal change in D. 

melanogaster. With limited and contradictory evidence for migration distances and 

untested models of how population structure in D. melanogaster may vary seasonally, 

this presents a set of questions ripe for the harvest.   

Looking for cryptic, seasonally variable population structure in wild D. 

melanogaster populations would be impossible to do with available data despite having 

years of seasonal samples (Machado et al., 2021) and broad global sampling (Huang et 

al., 2014; Lack, Lange, Tang, Corbett-Detig, & Pool, 2016; Mackay et al., 2012). The 

available seasonal sampling of wild D. melanogaster is in the form of pooled sequencing 

data that offers allele frequency estimates of seasonal end-points, however, genotypes are 

needed to ask questions of fine-scale population structure. Here, I conduct biweekly 

sampling across a single fruit orchard and then perform whole genome sequencing on the 

offspring of sampled individuals. With these data I ask: (1) Do we observe cryptic 

population structure within a single temperate orchard? (2) If so, does that population 

structure begin to collapse over time? I observe positive FIS greater than the null 

expectations. In some cases, the signal of positive FIS is elevated genome wide, indicating 

stochastic population structure rather than a collapse in structure over time.  
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Methods 

Sample Collection 

In 2016, I collected samples of assorted Drosophilids on an approximately bi-

weekly basis from Carter Mountain, a peach and apple orchard near Charlottesville, VA, 

USA (37.99°N, 78.47°W). Collections began June 24th, the start of peach season, and 

continued until December 16th, far past the end of apple season. See Table 1 for a 

summary of collections. Flies were caught across a variety of fruit types (early to late 

season peaches and an assortment of apple varieties) as different sections of the orchards 

opened for harvest in a scattered manner across the orchard.  

Upon collection, wild-caught samples were deposited into vials containing 

cornmeal-molasses food in the field. Vials containing the wild-caught flies were brought 

back to the lab and held for about 24 hours to increase the probability that all females had 

mated. Wild-caught females that appeared to be either Drosophila melanogaster or 

Drosophila simulans were used to set isofemale lines. Male offspring of isofemale lines 

were used to distinguish between D. melanogaster and D. simulans. Male and female 

offspring of the D. melanogaster isofemale lines were placed in 70% ethanol and stored 

at -20°C until sequencing. 

 

Table 1: Summary of all the collections done in 2016 and the number of D. 
melanogaster isofemale lines set. The number of individuals in the analysis dataset is the 
count of sequenced individuals kept after filtering of poor-quality individuals was 
complete. I sequenced 266 individuals and retained 119 individuals after filtering. 

Collection Date 
(2016) 

Number of 
Isofemale Lines 

Set 

Number 
Individuals 
sequenced 

Number 
Individuals in 

analysis dataset 
June 24th 37 25 17 
July 8th 39 25 8 
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July 22nd 23 23 8 
August 9th 6 0 0 
August 19th 23 22 13 
September 2nd 147 24 9 
September 16th 115 24 14 
October 3rd 41 25 12 
October 14th 157 24 9 
October 28th 120 24 8 
November 11th 91 23 11 
December 3rd 70 25 10 
December 16th 2 2 0 

 

Sample Preparation & Sequencing 

DNA was extracted from individual male offspring from a random subset of 

isofemale lines for every collection time point using an Agencourt DNAdvance kit 

(Beckman-Coulter A48705). Sequencing libraries were constructed using a scaled-down 

Nextera kit (Illumina FC-131-1024; Baym et al., 2015) through the help of a liquid 

handling robot. Unique index sequences were generated (Meyer & Kircher, 2010) so that 

each library was tagged with a single unique index. Libraries of the individual flies were 

pooled into a single sequencing library which was sequenced on a full flowcell of 

Illumina HiSeqX with a target of 10X coverage for each sample library.  

 

Dataset Filtering & Preparation 

Prior to alignment, index sequences were trimmed using trimmomatic v0.36 

(Bolger, Lohse, & Usadel, 2014) followed by merging of overlapping reads with PEAR 

version 0.9.11 (Zhang et al., 2014). Sequencing reads were aligned to a dm6 Drosophila 

melanogaster reference genome using BWA-mem (Li & Durbin, 2010; Li, 2013). 

Following alignment, PCR duplicates were marked using Picardtools version 2.20.4 
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(http://broadinstitute.github.io/picard). GATK v3.8-0 was used to call variants (McKenna 

et al., 2010). HaplotypeCaller generated GVCF files for each individual. CombineGVCF 

followed by GenotypeGVCF generated a VCF file of all individuals. A random subset of 

DGRP SNPs (Mackay et al., 2012) were used to calibrate the SNP calls with 

VariantRecalibrator and ApplyRecalibration.  

Following mapping, I used a rigorous and conservative set of filtering steps to 

generate a set of SNPs with high confidence. Initial filtering of sites in the VCF file 

included removing SNPs that did not pass quality filters, removal of indels, and removing 

any SNPs +/-50 base pairs of any identified indels. Repetitive DNA regions were 

removed using regions identified by RepeatMasker (Smit, Hubley, & Green, 2013; 

RepeatMasker at http://repeatmasker.org). Low read depth individuals were eliminated 

from the dataset if the median read depth of every autosome for that individual was less 

than 4. Sites were eliminated from the dataset if they were in the bottom or top 1.5% 

quantile of total site read depth across all samples. Then, each individual sample was 

assessed to identify SNPs in the upper and lower 1% quantile of read depth for that 

individual. SNPs were eliminated if more than 20 samples at that site failed the 

individual-based 1% quantile threshold. Any other SNPs above or below the individual 

1% read depth cut-off were turned into missing data for the individual that failed the 

threshold cut-off.  Structural variants were detected in samples using Manta v1.4.0 (Chen 

et al., 2016). All deletions, insertions, and duplications that passed internal Manta scoring 

were accumulated into a list of structural variants used for filtering. Structural variants 

that were at or below 10000 bp in length or were identified in at least 15 individual 

samples were used to filter SNPs from the dataset. Any SNPs within +/- 50bp of the start 
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and stop positions of these structural variants were removed from the dataset using R 

package valR (Riemondy et al., 2017) and vcftools v0.1.15 (Danecek et al., 2011).  

Finally, individuals were removed from the dataset if they exhibited unusual 

patterns relative to the rest of the data. Two individuals were identified as females due to 

having roughly equal coverage on the X and autosomes, and therefore were removed 

from the dataset (Figure 1A). Another individual had roughly 1.5X the level of 

heterozygosity than all the other samples relative to read depth and I speculate that the 

sample was contaminated with an unintended second fly during DNA extraction and 

therefore it was removed from the dataset (Figure 1B). Lastly, I noticed that many 

samples had non-zero heterozygosity on the X chromosome, which is unexpected given 

the individuals sequenced are male. I inferred there might be some low level of 

contamination in those individuals with high X heterozygosity, therefore I removed any 

individuals that had more than 1000 heterozygous sites on the X chromosome (Figure 

1C). This resulted in a set of 119 individuals in the final analysis dataset. Most filtering 

thresholds were determined using R v3.5.1 with packages SeqArray (Zheng et al., 2012, 

2017) and valr (Riemondy et al., 2017). For some analyses, an LD-pruned set of SNPs 

were selected using R package SNPRelate (Zheng et al., 2012; parameters of 

slide.max.bp=1000, maf=0.05, ld.threshold=0.3). A summary of how the filtering and 

LD-pruning altered the size of the dataset can be found in Table 2.  

 

 

Table 2: The number of sequenced individuals and SNPs remaining after each 
filtering step was completed. NAs are listed for the number of SNPs remaining in the 
first two rows as up until that point, the total number of variable sites included indels.  



 69 

Filtering step N individuals 
remaining 

N SNPs 
remaining 

Raw Sequencing 263 NA 
Raw VCF 263 NA 
Indel removal 263 4031781 
Remove non-passing SNPS (post VQSR) 263 3138621 
Indels +/- 50 bp removal 263 1546027 
Repetitive regions removal 263 1464685 
Read-based individual filtering 156 1464685 
Total read depth 1.5% and 98.5% quantile 156 1421388 
Individual RD 1% & 99% quantile pass/fail 156 1176009 
Only biallelic sites 156 1155082 
CNV-based filtering  156 1067960 
Last check for outlier individuals 119 1067960 
LD pruned SNP set for analysis 119 165518 
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Figure 1: Filtering steps. A) Read depth on the X chromosome vs. each 
autosomal arm. Two putatively female samples fall along the 1:1 (red) line 
instead of the 2:1 (blue) line and were removed from the analysis. B) The 
log of the median read depth vs. the number of heterozygous sites of the 
different chromosomes. One outlier individual was removed from the 
analysis due to much higher levels of heterozygosity (blue) compared to 
the rest of the individuals (red) across all chromosomes. C) The median 
read depth of X chromosome per individual vs. the number of 
heterozygous sites on a log10 scale. Individuals with more than 1000 
heterozygous sites on the X chromosome (dashed line) were excluded 
from the analysis.  

 

Identifying Inversions 

D. melanogaster has many known large cosmopolitan inversions. Using inversion 

specific SNPs (Corbett-Detig & Hartl, 2012), I determined whether inversion alleles were 

present in the samples. For each sample, I calculated the probability that the sample was 

in a standard, heterozygous, or homozygous-inverted state for each main inversion. If 

there was missing data at these inversion-specific SNPs, this reduced the ability to 

confidently call inversion status. After generating a probabilistic call of inversion status 

for each sample, I validated inversion status with a principal components analysis. Initial 

probabilistic calls reliably identified the presence of Inv(2L)t, but did not detect the 

presence of any other known inversions (Corbett-Detig & Hartl, 2012). Using R package 

LEA (Frichot & François, 2015), I ran a PCA on the LD pruned set of SNPs from 

chromosome 2L. After running the PCA (Figure 2) I labelled three samples 

(CM.025.0722, CM.017.0819, CM.029,0819) as inversion homozygotes despite one 

being called an inversion heterozygote by the probabilistic method.  
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Figure 2: Identifying inversion status on chromosome 2L. A principal 
components analysis of LD-pruned SNPs on chromosome 2L, colored by 
the inversion status assigned probabilistically. One individual 
probabilistically called as a Inv(2L)t heterozygote clearly clusters with 
probabilistically called Inv(2L)t homozygotes.  
 

Simulations  

The data had several samples with low to moderate read depth, which can lead to 

heterozygous sites being called as homozygous when binomial sampling of chromosomes 

during sequencing and library preparation results in missing one chromosome entirely. 

Additionally, GATK uses likelihoods to call genotypes, therefore it occasionally calls 

homozygous genotypes despite reads that potentially support a heterozygous call. 

Because both could impact the genotype calls, I wanted to ensure that any patterns in 

summary statistics and analyses were not being driven by low read depth and genotype 

caller biases. To do that, I ran simulations to get a null expectation of how low read depth 

and genotype caller biases would impact baseline estimates of summary statistics.  
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I simulated genotypes using information about read depth as well as the 

distribution of genotype-calling probabilities to obtain null expectations. Simulations 

were run using the LD pruned set of SNPs to reduce computation time and to reduce 

signal inflation from linkage blocks. Prior to running the simulations, I assembled 

summary information from the data to use as input. Using the R package SeqArray 

(Zheng et al., 2017), I generated a table of read depths for every individual at every SNP 

and a table of reference allele frequencies at every SNP calculated for both all the 

individuals together and for each collection date. To account for the biases of the 

genotype caller in these simulations, I generated a probability table of reference and 

alternate read depths and the observed probability of which genotypes were called based 

on that set of read depths. To make this table, I grouped the data according to different 

combinations of reference and alternate allele read depths (i.e. ref=1 & alt=1; ref=2 & 

alt=1, ref=1 & alt=2, etc.) and then calculated the observed frequency of the three 

different genotypes for each observed combination of reference and alternate allele read 

depths. For each pair of reference and alternate read depths observed, there is an 

associated set of probabilities to observe each of the homozygotes (reference or alternate) 

and a heterozygote (Figure 3).  

Simulated data included the generation of a simulated true genotype and a 

subsequently simulated observed genotype. The simulated true genotypes were generated 

using the allele frequencies from the data. Simulated observed genotypes were generated 

based on the simulated true genotype, using read depths from the data and the genotype 

probability table (Figure 4). If the simulated true genotype was homozygous, the depth of 

the allele it was homozygous for was set to the total read depth. If the simulated true 
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genotype was heterozygous, allele read depths were generated as a random draw of the 

two different alleles with the number of draws being equivalent to the read depth. The 

allele read depths were then used to generate the simulated observed genotype by using 

the genotype probability table previously described.  

 

 

Figure 3: Visualization of the probability table used in the simulations. 
The panels show the reference allele read depth on the X and the alternate 
allele read depth on the Y, with the color scale inside each combination 
filled according to A) the probability of being called a reference-allele 
homozygote (RR), B) the probability of being called a heterozygote, and 
C) the probability of being called an alternate-allele homozygote (AA).  
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At the end of a simulation, I had a simulated true genotype and a simulated 

observed genotype for each SNP for each individual. Simulations were split into 2 

different categories: all individuals (treating all 119 individuals as if they were one 

population) and by-population (treating each collection time-point as a single 

population). Each simulation was run 1000 times for every iteration to generate a null 

expectation based on read depth and genotype calling errors. 

 

Figure 4: Walk through of the simulations. A) Flowchart of the steps of 
the simulations. Steps within the green box are repeated for every 
individual in a population per SNP. B) A toy example of a single iteration 
of a simulation where for all individuals in that population, a simulated 
true genotype is generated from the population allele frequency in the 
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data. Then reference (ref) and alternate (alt) allele read depths (RD=read 
depth) are generated as described in the text. The simulated reference and 
alternate allele depths are then used to pull probabilities of different 
genotypes from the probability table. Once simulated observed genotypes 
are generated, they are then used in calculations of FIS.  

 

FIS Analysis 

Nei’s FIS (Nei & Chesser, 1983) was calculated for every SNP in both the data 

and in the simulations to assess levels of homozygosity. Equation 1 was applied to each 

SNP (Nhet is the number of heterozygotes in the population, Ntotal is the total number of 

individuals in the population), treating different groups as the population: each time point 

as a population and then all the samples as a whole population (referred to as “all 

individuals”). Following the per-SNP Nei’s FIS calculation, I obtained an average FIS by 

calculating the mean FIS across the LD pruned set of SNPs for each population. Mean FIS 

was calculated for both the data and the simulations. For the simulations, mean Nei’s FIS 

was calculated for each population per each simulation both for the simulated observed 

genotypes and the simulated true genotypes. To get a relative difference estimate of the 

difference between the data and the simulations, I used Equation 2 and calculated the 

difference between the empirical dataset and the simulated data relative to the simulations 

for all 1000 simulations.  

(𝐸𝑞. 1)										𝑁𝑒𝑖,𝑠	𝐹/0 = 	1 −
𝑁345

𝑁67589:

(𝑁67589 𝑁67589 − 1: ) ∗ (2𝑝𝑞 −
𝑁345

𝑁67589:
2 ∗ 𝑁67589

)

 

 

(𝐸𝑞. 2)			𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙	𝑚𝑒𝑎𝑛	𝐹/0 − 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑚𝑒𝑎𝑛	𝐹/0

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑚𝑒𝑎𝑛	𝐹/0
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A jackknife analysis was performed for each collection time point; Nei’s FIS was 

calculated per SNP then averaged across the whole genome, dropping each individual 

once. The jackknife Nei’s FIS calculation was also done on a random set of 10 

simulations to reduce the computational burden of doing the jackknife Nei’s FIS 

calculation on all 1000 simulations. The relative difference calculation was performed 

similarly as described above, but again only using the random set of 10 simulations.  

I also investigated whether individuals that were homozygous for Inv(2L)t were 

the sole drivers of the patterns of FIS. Inv(2L)t was the only large cosmopolitan inversion 

detected in the samples, which could generate homozygosity across large stretches of 

chromosomes. I performed the same relative difference of Nei’s FIS described above 

between the empirical and simulated FIS after removing the 3 individuals that were 

identified as homozygous for Inv(2L)t using inversion specific SNPs (Corbett-Detig et 

al., 2012) and the PCA.  

 

Relatedness Analysis 

To assess the relatedness of the individuals in the sample, I used the 

snpgdsIBDKING() function in the SNPRelate R package (Zheng et al., 2012). This 

function calculates both the KING estimate of kinship (Manichaikul et al., 2010) as well 

as proportion of sites that are identical-by-state 0 (IBS0). A site is IBS0 when the two 

individuals being compared share zero alleles that are identical by state (i.e. the two 

individuals are homozygous for opposite alleles). Plotting the proportion of sites that are 

IBS0 versus the KING estimate of kinship is one way to identify clusters of individuals 

that belong to specific classes of relatedness (Manichaikul et al., 2010).  
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After obtaining estimates of KING kinship, I also wanted to compare values of 

kinship for comparisons of individuals from the same time point (within) vs. in different 

time points (between). I tested whether individuals within a time point may be more 

related than individuals between time points using a t-test to compare the means of the 

two different distributions using the R function t.test().  

 

Sliding Window Analysis 

I used a sliding window analysis to assess fine-scale patterns of mean FIS across 

smaller windows of the genome. I used a window size of 1000 SNPs and a step size of 

500. Using the LD pruned set of SNPs, I calculated the mean FIS per window for each 

population and each chromosome for both the empirical data and the 1000 simulated 

observed genotypes.  

I then compared the empirical estimates of window mean FIS to the window mean 

FIS estimates of the 1000 simulations to understand how the data compared to the null 

expectations. For each window, I determined the quantile rank of the observed FIS 

relative to the simulated FIS values. I then determined the mean and standard deviation of 

this ranking for each chromosome and population, allowing us to determine whether 

signals of positive FIS beyond null expectation are genome-wide, or in clustered peaks.  
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Results 

Dataset description and quality 

I imposed strict and conservative filtering on the dataset to ensure that I obtained 

a set of high-quality SNPs. I began with 263 individuals, and after filtering I retained 119 

individuals and 1,067,960 SNPs (Table 1; Table 2). In the LD-pruned dataset, I retained 

165,518 SNPs across the autosomes (Table 2). Among the samples, I only detected 

heterozygotes and homozygotes for the known cosmopolitan inversion Inv(2L)t. In initial 

data exploration, I observed an excess of homozygosity among the genotypes in the 

samples. 

 

Measuring FIS to characterize excess homozygosity relative to a simulated null 

expectation 

To quantify patterns of excess homozygosity, I obtained estimates of mean FIS by 

averaging SNP-level estimates of FIS across the whole genome. When treating all 

individuals as a single population, we see positive FIS relative to the null expectation, 

which is expected as the population is evolving across the season and allele frequencies 

are changing due to both selection and neutral processes. We observe that for each 

individual time point, mean FIS of the empirical data is greater than zero (Figure 5) which 

points to an excess of homozygosity in the samples. A mean FIS greater than zero could 

be indicative of cryptic population structure (i.e. a Wahlund effect), strong selection 

within the focal orchard, or other biases. 

I used a measure of FIS that is designed to correct for the small sample sizes (Nei 

& Chesser, 1983) on the empirical dataset, simulated true genotypes, and simulated 
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observed genotypes (see methods for description of simulations). The simulated true 

genotypes should have a mean FIS of zero given that genotypes were randomly assigned 

based on average allele frequencies within each time point. We see that estimates of 

mean FIS for the simulated true genotypes is near zero for all time points indicating that 

the estimator of FIS is unbiased (Figure 5A).  

To eliminate some of the potential artifactual drivers of positive FIS, I performed 

simulations to generate null expectations. I simulated observed genotypes where inflation 

of FIS values may be driven by low read depth or improper genotype calls made by the 

genotype calling algorithm. To determine if the signal of positive FIS in the data was 

greater than what we would expect due to artifactual homozygosity from read depth and 

genotype caller issues, I compared estimates of mean FIS in the data to mean FIS estimates 

from 1000 simulations. We observe that while FIS is positive in the simulated observed 

genotypes (Figure 5A), the actual data mean FIS is always more positive (Figure 5B). 

Specific time points show greater differences compared to the null expectation generated 

by the simulations. For instance, collections from August 19th and October 14th show the 

greatest deviations from null expectation, while the collection from June 24th shows the 

smallest deviation from null expectation (Figure 5B).  
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Figure 5: Mean FIS in the data is more positive than the null 
expectation. A) Mean FIS (calculated as the mean of FIS across all SNPs 
using Nei’s FIS estimator) calculated for the data (purple), simulated 
observed genotypes (teal), and the simulated true genotypes (green). Each 
violin in the plot represents the distribution of 1000 simulations. B) The 
relative difference between the data mean FIS and the individual 
simulation mean FIS calculated by equation 2. Each violin in the plot 
represents the distribution of 1000 simulations. 

 

I then assessed whether certain individuals in a time point drove patterns of 

positive FIS since the focal orchard is part of a network of orchards and capturing 

migrants could result in positive FIS. I performed a jackknife analysis calculating FIS for 

each time point after dropping each individual one at a time. This analysis showed that 

for each time point, no single individual alone drives the patterns of positive FIS (Figure 

6).  

Additionally, I tested whether individuals homozygous for the known large 

cosmopolitan inversion Inv(2L)t drove patterns of positive FIS. Inversion homozygotes 
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were only found in two time points, July 22nd and August 19th. I performed the same 

assessment of FIS in the data vs. simulations after removing Inv(2L)t homozygotes and 

found that Inv(2L)t homozygotes do not alter any of the general positive FIS patterns 

where the data is greater than the simulated mean FIS. Though there is a reduction in the 

relative difference of mean FIS (Figure 7). 

 

 

Figure 6: Jackknife analysis of mean FIS shows that no single individual 
within a time point drives mean FIS patterns. A) mean FIS for the data 
(purple) and a subset of 10 simulations (teal) where each cluster of points 
along the x-axis corresponds to dropping the same sample. Samples are 
ordered by the empirical mean FIS. B) The relative difference between the 
data and the 10 random simulations calculated by equation 2, where again 
each cluster of points corresponds to the same sample being dropped from 
the analysis, again ordered by the empirical mean FIS. 
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Figure 7: Inversion homozygotes do not drive mean FIS patterns, but do 
accentuate them. Mean FIS values were re-calculated for the time points 
that contained individuals homozygous for Inv(2L)t after removing the 
homozygotes. The relative difference between the data and the 10 random 
simulations calculated by equation 2, (A) before and (B) after removing 
Inv(2L)t homozygotes from the dataset. Each violin represents the 
distribution of 1000 simulations. 

 

Assessing kinship to determine whether highly related individuals influence FIS 

estimates 

To assess whether the pattern of positive FIS was driven by the presence of highly 

related individuals, I looked at patterns of relatedness with KING estimate of kinship 

(Manichaikul et al., 2010) and IBS0. I find that based on both values of KING kinship 

and IBS0, there are no closely related individuals, per criteria laid out by Manichaukul et 

al. (Figure 8A). We observe many strong negative values of kinship, which can be 

indicative of population structure (Manichaikul et al., 2010). The distribution of the 

estimates of kinship are not significantly different for estimates calculated within and 

between timepoints (Figure 8B; p=0.15). This is contrary to the intuitive assumption that 
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individuals within a single time point would be more closely related than individuals 

between time points. When split into individual time points, most distributions of kinship 

within versus between time points were not significantly different from each other. A few 

time points did show significant differences: July 22nd (p=0.03), September 2nd 

(p=1.22x10-6), September 16th (p=2.23x10-5), and October 28th (p<0.008). 

 

 

Figure 8: Kinship analysis shows that there are no closely related 
individuals in the sample, either within or between time points. A) 
Identity by state 0 vs. the KING estimates of kinship for all pairwise 
individual comparisons where each point is the estimate for a comparison 
between two individuals. B) Boxplots of the KING estimate of kinship for 
within- (green) or between-time (purple) point comparisons. C) Boxplots 
of KING estimates of kinship for within- (green) and between-time 
(purple) point comparisons, split into each time point.  
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Genome-wide distribution of FIS to assess population structure vs. selection as 

drivers of FIS 

After eliminating potential artifactual drivers of positive FIS, I wanted to know 

whether the pattern of positive FIS beyond the null expectation is the product of cryptic 

population structure (i.e. a Wahlund effect) or selection. Genome-wide elevation of FIS 

would point to a Wahlund effect, while sharper peaks of positive FIS would point to 

selection. To test these two options, I assessed mean FIS across the different chromosome 

arms for each time point using a sliding window (Figure 9). After getting sliding-

window-based mean FIS estimates, I assessed the quantile rank of the empirical FIS 

relative to the simulations. For every chromosome and population, I calculated the mean 

and standard deviation of that rank across all windows for each chromosome separately. 

We observe that when treating all individuals as one population and some chromosomes 

from different time-point populations, the empirical window mean FIS is consistently 

greater than 50% of the simulations, indicative of cryptic population structure driving 

positive FIS patterns. Other populations show short windows of high empirical FIS relative 

to simulations, indicative of selection driving positive FIS patterns. This could imply that 

different processes of population structure or selection may be dominant forces at 

different sampling time points.  
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Figure 9: Sliding window analysis shows variability between populations 
that imply differences in demography and selection. A) For each 
population, the mean and +/- 1 standard deviation of the proportion of 
simulations where the empirical window mean FIS (purple in panel B) is 
greater than the simulation window mean FIS (green in panel B). The 
dashed line is set at 0.5, where the empirical data would equal the median 
simulated estimate of window mean FIS. B) Sliding window means of FIS 
for three representative samples. The three sliding windows show the 
empirical estimates (purple) and the 1000 simulation estimates (green). 
The representative samples of the sliding window include all individuals 
being treated as one population on chromosome 2L, a population (October 
28th, chromosome 3L) showing whole-chromosome positive FIS indicative 
of population structure, and a population (June 24th, chromosome 2R) 
lacking chromosome-wide positive FIS indicating selection as the driver of 
positive FIS. 
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Discussion 

Here I asked whether a natural orchard population of Drosophila melanogaster 

exhibited signs of population structure and if the presence of population structure varied 

through time. To do this, I conducted whole-genome individual sequencing of the male 

offspring of isofemale lines caught on an approximately bi-weekly basis. When compared 

to a null expectation generated by simulations, I observe positive FIS greater than the null 

expectation, which is indicative of the presence of cryptic population structure (i.e. a 

Wahlund effect). Genome-wide elevation of FIS is observed when I treat all temporally 

spaced samples as if they were collected at one time, demonstrative of a temporal 

Wahlund effect as the population evolves over time. However, genome-wide signals of 

positive FIS are not observed at all time points. The results suggest that there are 

stochastic shifts in the degree of population structure and panmixia through time within a 

single, seasonally-evolving orchard population of D. melanogaster.  

The observation of stochastic shifts in the degree of structure do not match 

predictions based on prior work and contradicts long-standing assumptions that single 

populations of D. melanogaster will be panmictic at the local level because of long-

distance dispersal capabilities (Coyne & Milstead, 1987). The results support older 

observations of population structure in naturally occurring wild populations of D. 

melanogaster (Band & Ives, 1961, 1963; Ives, 1945, 1954, 1970; Ives & Band, 1986). 

Shpak et al. (2010) quantified the observations of Ives and colleagues into a model where 

the early emergence of D. melanogaster starts with the establishment of few demes by 

few founders in the early spring. Based on this model, one prediction could be that 

population structure would be observed in the early season, and then would collapse into 
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panmixia as resources become more abundant and population sizes increase. However, 

this is not what I observe in the orchard population. I instead observe stochastic shifts 

between population structure and panmixia throughout the entire growing season. 

However, the sampling I performed was not on a fine spatial scale and therefore cannot 

outright reject predictions based on the Shpak and Ives model of population structure in 

wild D. melanogaster populations.  

This raises the question: is population structure constantly shifting along a 

spectrum of genetically structured to local panmixia or is this stochasticity due to the 

sampling method? Stochasticity in population structure is not a new phenomenon, and 

has been observed in different organisms. In black bears, observations across several 

years identified a Wahlund effect in a year with limited food resources while other years 

did not show a Wahlund effect (McCall et al., 2013). In the cotton bollworm, temporal 

shifts in genetic differentiation between subpopulations and changes in the genetic 

structuring within populations occur and are predicted to track changes in crop host 

availability (Behere, Tay, Russell, Kranthi, & Batterham, 2013). In both these organisms, 

the shifts in population structure through time is correlated with shifts in important 

resource availability, something that also true in determining the rates of dispersal and 

migration, therefore impacting potential population structure, in D. melanogaster 

(Dubinin & Tiniakov, 1946; Johnston & Heed, 1975; Markow & Castrezana, 2000; 

Wallace, 1970).  

The sampling scheme I performed did not cover the whole orchard and cannot 

directly test for the details of metapopulation structure and dynamics through time. I 

sampled from the varieties of fruit that were made open to the public a week or so before 
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the collections as those areas of the orchard had enough flies. As we entered the late fall, 

only one easily accessible sector of the orchard had appreciable numbers of flies to 

provide a large enough sample. Sampling of different small sectors of the orchard every 

collection could have resulted in stochastic sampling of any potential group structure. 

Sampling across a whole orchard for the entire season would be the best sampling 

scheme to address this question of stochasticity of population structure vs. sampling 

strategy. Until this question is answered though, those doing sampling of wild 

Drosophilids ought to take caution in how they collect their samples in order to capture a 

truly representative sample as panmixia may not always be the state of an orchard D. 

melanogaster population. One suggestion to obtain a representative sample of an orchard 

population would be to sample systematically across the entirety of an orchard and 

making certain all sampling does not come from a small subsample of closely related 

individuals (Hoffmann & Nielson, 1985; Jaenike & Selander, 1979). Though, 

interpretation of population level-statistics should be cautious until the degree of structure 

in temperate D. melanogaster populations is further investigated. 

One question that arises is: at what level is a local deme? A deme could be a 

single tree, a cluster of trees or gradation across a single orchard, or it could be at the 

whole orchard level. Different degrees of spatial sampling have been performed to 

identify the level of a deme in many species, including in coral (Costantini, Fauvelot, & 

Abbiati, 2007), domesticated chickens (Wilkinson, Wiener, Teverson, Haley, & Hocking, 

2012), and trees (Morand, Brachet, Rossignol, Dufour, & Frascaria-Lacoste, 2002). The 

orchard I sampled from is part of a network of interconnected orchards with frequent 

transport of produce between them. While I did not see any obvious signals of migrants 
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from other orchards as I did not observe any outlier individuals in the jackknife FIS 

calculations, I cannot exclude the possibility that some of these signals are due to large 

amounts of migration between orchards. However, in terms of the extinction and 

recolonization of demes, individual trees or rows of similar fruit varieties that come into 

season at the same time may be the level at which distinct demes can be measured. 

Detailed spatial sampling through time both within an orchard and at multiple connected 

orchards would be required to explore the stochasticity of population structure and level 

of demes in D. melanogaster.  

Population structure on a small, local level in wild populations of D. 

melanogaster could have broader implications for the evolutionary history of D. 

melanogaster. Many assumptions about the potential for evolution in natural populations 

of D. melanogaster rely on very large estimates of Ne in a panmictic population. 

However, population subdivision with even modest levels of migration between demes 

can impact both estimates of Ne, genetic diversity, and evolutionary potential (Pannell & 

Charlesworth, 2000).  

If the presence of population structure can be confirmed and the scale of demes 

quantified in wild populations of D. melanogaster, we could use fruit flies as a model 

system to study rapid changes in metapopulation structure and how shifts in 

metapopulation dynamics impact population genetic diversity and differentiation. 

Additionally, the seasonal dynamics in temperate populations of fruit flies are repeated 

from year to year (Bergland, Behrman, O’Brien, Schmidt, & Petrov, 2014), leading to the 

potential to study how predictable the consequences and outcomes may be of 

metapopulation dynamics or how different ecological selective forces, such as species 
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competition or temperature, might alter those metapopulation dynamics of a single 

species. We observe that the community composition of other Drosophila species 

changes within a year and between years dramatically (Gleason, Roy, Everman, Gleason, 

& Morgan, 2019; chapter 3), thus changing degrees of interspecific competition may 

impact metapopulation dynamics. With confirmation and quantification of the presence 

and degree of population structure, temperate populations of D. melanogaster could be a 

new system of studying metapopulation dynamics on ecological time scales. 

I have shown that D. melanogaster populations may not always be as panmictic as 

previously assumed. The signal of population structure was stochastic over time, contrary 

to the predictions based on the Ives & Shpak model of fly population temporal dynamics 

(Shpak et al., 2010). The signal of stochastic population structure could be a consequence 

of the sampling strategy, and thus those performing sampling of wild populations of D. 

melanogaster should take caution in how they perform samples if they want a true 

representative sample of an orchard population. Further detailed sampling within 

orchards and at connected orchards may elucidate metapopulation dynamics and at what 

level demes arise in natural D. melanogaster populations. Additionally, the observation 

of stochastic population structure can have broader implications for how we interpret the 

evolutionary history of D. melanogaster as well as could provide a new system to study 

rapid changes in metapopulations across ecological time scales.  
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Data Availability 

 

All scripts and some information tables can be found at 

https://github.com/abangerter/individualWGS_wildDmel  

 

All raw sequencing data can be found under NCBI SRA BioProject ID PRJNA727484. 

Data is embargoed until peer-reviewed publication.  
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CHAPTER THREE 

 
A natural community of multiple Drosophilid species shows changes in species 

abundance and different degrees of genetic turnover 
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Abstract 

Species composition and abundances in a community can rapidly fluctuate within a year 

and vary between years. Fluctuations in composition and abundance can provide insight 

into the biology and ecology of the species in a community, particularly when paired with 

genetic data. I observed and recorded species composition and abundance for multiple 

Drosophilid species in a single orchard community across two years on at least a bi-

weekly basis. Additionally, I perform pooled sequencing of a subset of collections and 

species from the orchard community. I focused on three cosmopolitan Drosophilid 

species (Drosophila melanogaster, D. simulans, and D. hydei) and two recent invasive 

species (D. suzukii and Zaprionus indianus). Drosophilid species composition and 

abundance dramatically fluctuate within and between years. With the pooled sequencing 

data, I find differences in population turnover that may point to differences in 

overwintering and migratory behavior. Relatively few SNPs oscillated in frequency 

depending on the season of collection, likely due to reduced power from small sample 

sizes. I find that most species of fruit fly tested, with the exception of D. simulans, show 

signals of overwintering and therefore have the potential to be adapting to seasonally 

varying selection pressures.  
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Introduction 

In a community, species composition may fluctuate across time. These 

fluctuations can be a result of both abiotic factors and biotic factors. One concept of 

community assembly posits that a single community is composed of a subset of species 

from the surrounding region that can survive the abiotic conditions in that community 

environment with further “filtering” of species based on biotic interactions and niche 

filling (Weiher et al., 2011). There is a lack of predictability in species composition 

because of the many different factors and assumptions in models of community assembly 

(Ozinga et al., 2005). Changes in species composition and abundance over time can 

reflect their degree of adaptation to their current environment, priority effects, biotic 

interactions with other species, rates of extirpation and recolonization versus established 

populations, and many other factors (Weiher et al., 2011). 

Shifts in species composition can influence the evolutionary trajectory of 

established populations (Dieckmann & Doebeli, 1999) and can drive rapid evolution 

(Grant & Grant, 2006; Hart, Turcotte, & Levine, 2019) in response to interspecific 

competition. For example, experimental evolution of Colpoda, a ciliated protozoan, 

found that interspecific competition resulted in smaller cell sizes and higher population 

growth rates (TerHorst, 2011). Across several generations of competition between 

Drosophila melanogaster and D. simulans on food with different concentrations of 

ethanol, D. simulans increased in competitive ability through adaptation to the ethanol-

rich environment (Joshi & Thompson, 1995). Experimental outdoor cages of D. 

melanogaster showed that competition with Zaprionus indianus during summer months 

influenced the later evolution of a variety of traits during the onset of winter (Grainger, 
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Rudman, Schmidt, & Levine, 2021). Community composition can be a source of 

selection that is temporally variable, similar to abiotic factors like temperature. 

One model system for understanding the response to temporal variability is 

seasonal adaptation in the fruit fly, Drosophila melanogaster (Bergland, Behrman, 

O’Brien, Schmidt, & Petrov, 2014; Machado et al., 2021). In fruit flies, aside from 

findings that innate immunity changes seasonally (Behrman et al., 2018), the biotic 

agents of selection are not well characterized (Rudman et al., 2019). Different natural 

environments put D. melanogaster in contact with a variety of Drosophilid species and 

community composition that can change from month to month, likely in response to 

thermal limits of different Drosophilids (Gleason, Roy, Everman, Gleason, & Morgan, 

2019). Previous studies show that species composition can change depending on the year 

of observation (Yoshimoto, 1952). However, many of these observations that span across 

decades do not follow a single population in consecutive years, do not include recent 

invasive species, and do not indicate how recent invaders may impact abundance. 

Some of the species that coexist and compete with D. melanogaster have limited 

investigations into their ecology and whether they are likely similar to D. melanogaster, 

which adapts to seasonally varying selection and overwinters. Among these species are 

Drosophila simulans, D. hydei, D. suzukii, and Zaprionus indianus. We know that D. 

melanogaster shows seasonal genetic changes that are replicated globally (Bergland et 

al., 2014; Machado et al., 2021; Chapter 1) and has established populations that do not 

experience total extirpation and recolonization every year (Ives, 1970; Machado et al., 

2016). Conversely, D. simulans shows a lack of a stable genetic latitudinal cline from 

year to year and a weak isolation by distance pattern along the North American east coast 
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that is indicative of the lack of established populations, lower winter survival or complete 

extirpation, and a recurrent northward migration to recolonize northern populations 

(Machado et al., 2016).  

D. hydei is considered a cosmopolitan Drosophilid like D. melanogaster and D. 

simulans; it is not native to North America, but have spread across the globe and are now 

well established in most continents (Atkinson & Shorrocks, 1977). D. hydei is known for 

its large sperm and unique mating patterns (Markow, 1985; Pitnick, Markow, & Spicer, 

1995), but also exhibits high temperature tolerance (Mitchell & Hoffmann, 2010; 

Overgaard, Kristensen, Mitchell, & Hoffmann, 2011), cold temperature tolerance 

(Overgaard, Kristensen, et al., 2011), and fast chill coma recovery times (Gibert, 

Moreteau, Ptavy, Karan, & David, 2001) relative to many other Drosophila species.  

Z. indianus is a recent invasive species that was first observed in North America 

in 2005 (Linde et al., 2006), and is considered to be an agricultural pest, particularly in 

fig crops. Despite being invasive and experiencing the expected reduction in genetic 

diversity in invasive populations, Z. indianus still has high levels of genetic diversity 

(Comeault et al., 2020). When comparing invasive populations of Z. indianus to native 

populations, there was no significant reduction in performance across a breadth of 

thermal environments (Comeault et al., 2020). It is believed that Z. indianus does not 

establish populations and overwinter because samples from temperate populations in 

North America do not reproduce at lower temperatures (Comeault et al., 2020). There is 

also evidence that Z. indianus might die during winter conditions as it disappears from 

abundance estimates in colder fall and winter months (Gleason et al., 2019; Joshi, 

Biddinger, Demchak, & Deppen, 2014).  
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D. suzukii is also a recent invasive species first observed in North America in 

2008 (Bolda, Goodhue, & Zalom, 2009; Goodhue, Bolda, Farnsworth, Williams, & 

Zalom, 2011), and first observed on the east coast of North America in Florida in 2009 

(Iglesias, Price, Roubos, Renkema, & Liburd, 2016). Across the globe, D. suzukii has 

become a major agricultural pest to soft fruits and thin-skinned berries because females 

have a serrated ovipositor that facilitates the laying of eggs into soft fruits. The thermal 

limits of D. suzukii are comparable to the thermal limits of D. melanogaster, though tests 

of mortality at extreme temperatures are contradictory (Asplen et al., 2015). They appear 

to have a female reproductive diapause in winter conditions (Wallingford & Loeb, 2016; 

Zhai et al., 2016), have a winter morph that is phenotypically distinct from summer 

populations (Shearer et al., 2016), and may overwinter in leaf litter in woodland habitats 

(Pelton et al., 2016), thus potentially facilitating winter survival and established 

populations. 

Here, I track species abundance and composition shifts across two years in a 

single orchard community. For the species described above, I perform pooled sequencing 

across time in two years. I find that the distribution of species present dramatically 

fluctuates within a single year, but also between years. Using temporal pooled sequencing 

data, I also find that different species exhibit different degrees of population turnover. 

The differing degree of population turnover can provide insight into overwintering and 

migratory patterns of these species. 
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Materials and Methods 

Sample Collection 

Roughly bi-weekly sampling in 2017 and weekly sampling in 2018 was 

conducted at a peach and apple orchard near Charlottesville, VA (Carter Mountain; 

37.99°N, 78.47°W). In 2017, the number of Zaprionus indianus collected exceeded the 

time and ability to record, and therefore not all individuals were counted and collected. 

Thus, the 2017 counts of Z. indianus are an underestimate of their abundance, and 

therefore all other species abundances are an overestimate. The weekly sampling in 2018 

varied in effort; every other week I did a large collection and in the off weeks I did a 

smaller collection, which is reflected in the number of individuals collected 

(Supplemental Table 1). I conclusively identified 8 common species in the collections 

and also identified up to 5 other species that are grouped together as “unknown” 

(Supplemental Table1). Species identification was done by consulting Drosophilids of the 

Midwest and Northeast (Werner & Jaenike, 2017). After sorting, flies were preserved in 

ethanol at -20°C in species-specific vials. 

 

Species Selection 

From the different species of Drosophilids that I found in the collection, I chose to 

sequence temporal samples from 5 species. Species were selected to be sequenced 

depending on the availability of a reference genome so that the dataset preparation 

pipeline could be uniform. I selected Drosophila melanogaster, Drosophila simulans, 

Drosophila hydei, Drosophila suzukii, and Zaprionus indianus.  
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Sample Preparation & Sequencing 

Spring and fall pooled sequencing samples for 2017 and 2018 were selected so 

that samples from the different species were collected around the same time. Spring 

samples were selected from approximately the first month of collections in June or July. 

Fall samples were selected from mid-late fall months, prior to the first frost and the first 

night below freezing temperatures. DNA extractions were done on all flies of that species 

that were collected at the selected time point (Table 1).  

We performed DNA extractions using the extraction protocol outlined in 

Bergland et al., 2014 and followed the library preparation protocol described in Chapter 

1. We diluted the extracted DNA with water in a 1:1 ratio prior to shearing with a Covaris 

sonicator to create fragments of 500 bp in length. Using the NEBNext Ultra II kit and 

dual indices following manufacturer protocols, we made libraries for each sample with 8 

cycles of PCR during the PCR enrichment step. We quantified the concentration of each 

library and then pooled the libraries in equal concentrations. After pooling all libraries, 

we used a Pippen to size-select the DNA in the 600-750 bp range. We then sequenced the 

pooled library on a NovaSeq with 2x150 paired-end reads.  

 
Table 1: Metadata for sequenced samples. 

Species Season Year Date 
Collected 
(MM/DD) 

N Flies in 
Sequencing 

Pool 

SRA 
Accession 

D. melanogaster spring 2017 07/20 120 SRR14476487 
D. suzukii spring 2017 07/20 36 SRR14476475 
Z. indianus spring 2017 08/03 189 SRR14476482 
D. suzukii fall 2017 09/28 37 SRR14476474 
D. melanogaster fall 2017 10/26 299 SRR14476486 
Z. indianus fall 2017 10/26 126 SRR14476481 
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D. simulans fall 2017 10/26 65 SRR14476478 
D. hydei fall 2017 11/09 21 SRR14476485 
D. hydei spring 2018 07/05 64 SRR14476484 
D. simulans spring 2018 07/05 82 SRR14476477 
D. suzukii spring 2018 07/19 32 SRR14476473 
D. suzukii fall 2018 09/06 46 SRR14476472 
D. hydei fall 2018 09/20 50 SRR14476483 
D. melanogaster fall 2018 10/11 81 SRR14476479 
D. simulans fall 2018 10/11 303 SRR14476476 
Z. indianus fall 2018 10/11 372 SRR14476480 

 

Dataset Preparation & Filtering  

Raw fastq files went through a mapping pipeline comparable to Machado et al., 

2018 and Chapter 1, but modified to work for non-D. melanogaster species. I removed 

adaptor sequences from the raw sequencing data using cutAdapt (Martin, 2011) and then 

mapped to the appropriate reference genome (Table 2) with BWA-mem (Li & Durbin, 

2010; Li, 2013). I removed contaminating reads by competitively mapping each species 

with the speculated most likely contaminants (Table 2). Any reads that mapped to the 

potential contaminating species were removed from the sample. After mapping and 

removal of potential contaminants, I then ran bam files through samtools mpileup for 

each cluster of species samples. The mpileup files were then used to call variants into the 

VCF file with VarScan v2.3.9 (Koboldt et al., 2012). 

The VCF files for each species were then filtered in similar fashion, though 

independently for each species. VarScan v2.3.9 was used to call de novo indel variants 

using default parameters (Koboldt et al., 2012). I then filtered out any SNP variants that 

were within +/- 10 bp of de novo indels. I removed repetitive regions identified by repeat 

masker (Smit, Hubley & Green; RepeatMasker at http://repeatmasker.org) and then 
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removed non-biallelic sites. After this, in the final filtering step I removed any SNPs that 

had a total read depth across all samples above the 99th percentile in order to remove 

potential copy number variants or remnant repetitive regions. Effective coverage of 

samples was calculated as (number of chromosomes * read depth)/(number of 

chromosomes + read depth) (Bergland et al., 2014; Kolaczkowski, Kern, Holloway, & 

Begun, 2011; Machado et al., 2021; Machado et al., 2016). Effective coverages of sex-

linked SNPs were adjusted on the X chromosome for D. melanogaster, D. simulans, and 

D. suzukii where the identities of X chromosome scaffolds are known. 

 
Table 2: Reference genomes used and species used in competitive mapping. Species 
selected for competitive mapping were selected based on either phenotypic similarity or 
abundance in the sample. D. melanogaster and D. simulans are phenotypically similar 
sister species. For the other species that are more phenotypically distinct I selected D. 
melanogaster and D. simulans as they were among the most abundant species present and 
therefore more likely to contaminate other samples.   

Species Competitively 
mapped against 

Reference genome Citation or NCBI 
accession for 

genome 
D. melanogaster D. simulans dm6.12 Hoskins et al., 

2015 
D. simulans D. melanogaster Prin_Dsim_3.0 PRJNA377886 
D. suzukii D. melanogaster 

& D. simulans 
Dsuz-WT3_v1.0 Paris et al., 2020 

D. hydei D. melanogaster 
& D. simulans 

DhydRS2 PRJNA475270 

Z. indianus D. melanogaster 
& D. simulans 

z_indianus_16GNV01_v02 Comeault et al., 
2020 

 

Analysis 

To estimate genetic differentiation through time, I used R package poolfstat 

(Hivert, Leblois, Petit, Gautier, & Vitalis, 2018) to obtain a whole genome estimate of 

pairwise FST for each sample within species. To identify seasonally oscillating SNPs 
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(Bergland et al., 2014) I ran a linear model on effective-coverage corrected allele 

frequencies. I only ran the linear model on SNPs with a minimum of 3 samples with 

allele frequency estimates and removed SNPs with a corrected allele frequency below 0.1 

in any time point. Using R function glm(), I ran a generalized linear model of allele 

frequency on season weighted by effective coverage for each SNP. Following the linear 

model, I performed Bonferroni and false discovery rate P-value corrections.  

 

 

Results 

Species distribution through time  

In the bi-weekly collections in 2017 and weekly collections in 2018, I observed 

dramatic changes in species distributions (Figure 1). In 2017, I observed Drosophila 

melanogaster and Drosophila tripunctata (Supplemental Table 1) starting the season as 

dominant species. By mid-summer 2017, Zaprionus indianus was the dominant species, 

despite the undercount (see Materials & Methods). By the end of fall 2017, D. 

melanogaster and D. simulans were the dominant species. In contrast, D. simulans was 

dominant at all time points in 2018 with the exception of the first collection of the year, 

while D. melanogaster did not reach appreciable frequencies until late fall. I also saw 

greater proportions of D. hydei in 2018 than I did in 2017. D. suzukii appears to drop off 

in collections at the onset of fall in both 2017 and 2018.  
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Figure 1: Species distributions change within and between years. The 
collections of multiple species for 2017 and 2018 show that the proportion 
of species change through time, collection date referring to the day of 
year. Note that the proportions of Zaprionus indianus in 2017 are an 
undercount.  
 

Sequencing data quality  

After filtering, most of the samples reach or exceed the target effective coverage 

of 50 (Figure 2A). Most samples that did not reach the target effective coverage had low 

sample size (Table 1). After filtering I retained 1,722,778 SNPs for D. melanogaster, 

3,548,696 SNPs for D. simulans, 8,195,100 SNPs for D. suzukii, 2,294,055 SNPs for D. 

hydei, and 4,376,346 SNPs for Z. indianous (Figure 2B).  
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Figure 2: Samples are scattered across the four time points with good 
coverage and number of SNPs retained post-filtering. A) Each point 
represents the mean and +/- 1 standard deviation of effective coverage 
across all SNPs per sample. Colors demarcate the species. The target 
effective coverage was 50 (dashed line). B) The number of SNPs removed 
(blue) and retained (red) for the final datasets during filtering. 

 

FST through time  

Whole-genome estimates of pairwise FST over time show a sharp divide between 

species (Figure 3). D. simulans shows a relatively large estimate of FST between samples 

collected in different years, while within-year FST is low. The other four species show a 
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very different pattern with no large increase in FST going from within-year to between-

year comparisons.  

 

Figure 3: Pairwise FST may reflect the degree of population turnover 
from year to year. Whole genome estimates of pairwise FST between 
samples are plotted against the number of days between sampling time 
points. Samples are color-coded to indicate if the pair of samples being 
collected were collected in the same year (blue) or in different years (red). 

 

Identifying seasonally oscillating SNPs 

I conducted a general linear model of effective coverage corrected allele 

frequencies per SNP on season of collection (spring vs. fall) for all species where season 

was encoded as a 0 for spring and a 1 for fall. I identified a subset of SNPs for each 

species where changes in allele frequencies are significantly associated with season 

(Table 3; Figure 4). However, following two different multiple-test corrections on the p-

values (FDR and Bonferroni) most SNPs were no longer statistically significant (Table 

3). 
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Table 3: Counts of SNPs where allele frequency changes are significantly associated 
with season at different significance thresholds. 

Species Total 
Number 

Tested SNPs 

N SNPs 
p<0.05 

N SNPs 
FDR<0.05 

N SNPs 
FDR<0.1 

N SNPs 
Bonferroni 
a<0.05 

D. melanogaster 1169311 72040 0 0 0 
D. simulans 2345168 247340 415 2837 6 
D. suzukii 4528392 224524 2 2 1 
D. hydei 1510790 88323 8 10 5 
Z. indianus 3588541 287021 29 111 6 

 
 
 

 

Figure 4: Changes in allele frequency in the most significantly 
seasonally oscillating loci. Each panel shows the 500 most significant 
seasonally oscillating SNPs for that species, prior to any p-value 
corrections. A single line is a single SNP.   
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Discussion 

Through dense temporal sampling across two years, I find that the composition 

and relative abundance of Drosophilid species vary dramatically both within and between 

years. Additionally, I see through pooled sequencing that different species display 

different degrees of population turnover pointing to some species more likely to be 

established populations rather than extirpated and recolonized by migrants each year. 

Finally, while I lacked power to detect seasonal oscillations in allele frequencies with 

confidence, there was still a signal that seasonal oscillations in allele frequencies may be 

present in species other than Drosophila melanogaster. 

Approximately bi-weekly sampling in 2017 and weekly sampling in 2018 showed 

dramatic shifts in which Drosophilids were abundant within a single year and between 

years. Interestingly, Zaprionus indianus was dominant for a large portion of 2017 and 

Drosophila simulans was dominant for almost all of 2018. These dramatic shifts in 

species composition are consistent with expectations from community ecology where the 

species composition of a community is not predictable (Ozinga et al., 2005). 

Additionally, the sampling was not evenly distributed across the whole orchard, so a lack 

of capture does not mean zero abundance in the orchard community of Drosophilid 

species (MacKenzie, 2005). Some of the species I focused on are considered broad 

generalists, especially Drosophila suzukii which is a harmful agricultural pest that can 

survive on many different substrates and therefore can escape pesticide usage by 

colonizing other nearby resources when conditions within an orchard become less ideal 

(Asplen et al., 2015). While the observations of within and between year shifts in species 

composition and abundance are dramatic, it is not necessarily unexpected. 
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The observed changes in species composition and abundance could potentially 

alter the degree of interspecific competition from month to month and from year to year. 

Interspecific competition in D. melanogaster has been previously shown to impact the 

evolutionary trajectory of several traits, including those important to survival in winter 

conditions (Grainger et al., 2021). The changing biotic environment due to changing 

interspecific competitive dynamics could influence the shape and trajectory of many 

functional loci within a year and between years, contributing to patterns of seasonal 

adaptation and balancing selection. In future studies trying to identify drivers of 

seasonality in D. melanogaster, it may be important to ensure broad sampling of all 

present Drosophilid species to be able to understand the competitive environment and tie 

present species to loci under selection. 

In the pooled sequencing performed, I showed that different species exhibit 

differing degrees of population turnover using pairwise FST through time. For D. 

melanogaster and D. simulans, the observations align with what is known about the 

different species. D. melanogaster is known to have established populations along the 

entire North American east coast, and therefore large degrees of population turnover are 

not expected between years. In contrast, D. simulans is known to be extirpated in the 

winter and then recolonized through mass northward migration each year, which is 

reflected in the sharp jump in FST when looking at between-year sample comparisons 

(Machado et al., 2016). D. hydei is known to have good thermal performance at both low 

and high temperatures (Gibert, Moreteau, & David, 2000; Mitchell & Hoffmann, 2010; 

Overgaard, Hoffmann, & Kristensen, 2011; Overgaard, Kristensen, et al., 2011), which 

could be indicative of the ability to persist as an established population. D. suzukii, is also 
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expected to overwinter and have established populations as they exhibit comparable 

thermal limits to D. melanogaster (Asplen et al., 2015), have a female reproductive 

diapause in winter conditions (Wallingford & Loeb, 2016; Zhai et al., 2016), and are 

believed to have the ability to overwinter in woodland leaf litter (Pelton et al., 2016). In 

contrast, Z. indianus is expected to be extirpated and recolonized every year similar to D. 

simulans, but here it lacks a strong signal of population turnover. The evidence for the 

predicted extirpation and recolonization in Z. indianus is limited, but rooted in limited 

adaptation to cooler temperate environments and species abundance observations that 

show it disappearing from Drosophilid collections at the onset of fall and winter 

(Comeault et al., 2020; Gleason et al., 2019; Joshi et al., 2014). However, none of the 

existing evidence can rule out any overwintering strategy or recent adaptation. Z. 

indianus is a recent invasive species in North America with an abundance genetic 

variation (Comeault et al., 2020), so I cannot rule out that it has started to establish more 

permanent refugia or populations further north. This evidence of the lack of population 

turnover in some Drosophilid species adds evidence for the overwintering and 

establishment in temperature environments, which is important knowledge to have for 

agricultural pests and how these invasive species are adapting to a new temperate 

environment.  

Due to low sample sizes and therefore low power, I was unable to confidently 

identify seasonally oscillating SNPs. I did see some moderate signal with some species 

showing in the range of single-digit to thousands of significantly seasonally oscillating 

SNPs. Given the limited sampling, more sampling and sequencing would need to be done 

to obtain enough power to detect high-confidence seasonally oscillating SNPs 
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comparable to Bergland et al., 2014. Given that many of these species appear to be 

established populations like D. melanogaster, these other species may also respond to 

changing abiotic factors. Adaptation to changing abiotic conditions can occur through 

plasticity rather than adaptive tracking. Lab-based studies into how seasonal traits like 

chill coma recovery or body size could determine how many survival-related traits 

change plastically versus through fixed differences in seasonally spaced samples, if they 

change at all, in these other species.  

In D. melanogaster, hundreds of loci change in allele frequency corresponding 

with the seasonal change (Bergland et al., 2014). D. simulans, while not established as 

permanent populations in northeast North America, still shows clinal variation in SNPs 

that also vary clinally in D. melanogaster (Machado et al., 2016). Similar patterns might 

exist in seasonal samples of D. simulans where SNPs found to oscillate seasonally in D. 

melanogaster may oscillate seasonally despite not experiencing the same balancing 

selection that D. melanogaster experiences through a continually evolving population 

that overwinters. Cold temperatures and a winter photoperiod can plastically induce a 

winter morph in D. suzukii in lab experiments. The D. suzukii winter morph confers 

greater cold temperature tolerance (Shearer et al., 2016), signaling that perhaps plasticity 

might drive adaptation to temperate environments for this invasive species. With the 

other species, only lab tests of thermal limits have been done, and not enough is known 

about if any potential adaptation to temperate environments could be driven by plasticity 

or facilitated by adaptive tracking (but see Comeault et al., 2020).  

Overall, I have found that the species composition of the focal orchard 

community dramatically changes through time, thus providing insight into a potential 
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biotic driver of selection that also varies temporally for D. melanogaster. The observation 

that most species appear to lack the dramatic population turnover found in a species that 

is extirpated and recolonized each year indicates that Drosophilid species other than D. 

melanogaster may overwinter and continually adapt to seasonally varying selection. 

However, I cannot know for certain if adaptation to seasonality in other Drosophilid 

species acts through plasticity or adaptive tracking without further sampling and 

experimentation.  

 

 

Data Availability 

All scripts and some information tables can be found at 

https://github.com/abangerter/multiSpecies_seasonality 

 

All raw sequencing data can be found under NCBI SRA BioProject ID PRJNA728438. 

Data is embargoed until published through peer-review.  
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Supplemental Tables 

Supplemental Table 1: Counts of how many individuals of different species were 
collected on each sampling date. Counts of D. melanogaster and D. simulans only 
include male individuals while the counts for other species include both male and female 
individuals.  
 

Species Year Collection Date (MM/DD) Total Count 
Zaprionus indianus 2017 06/15 1 
Chymomyza amoena 2017 06/15 5 
Drosophila melanogaster 2017 06/15 7 
unknown 2017 06/15 7 
Drosophila tripunctata 2017 06/15 1 
Drosophila suzukii 2017 06/22 65 
Drosophila immigrans 2017 06/22 124 
unknown 2017 06/22 50 
Drosophila hydei 2017 06/22 18 
Zaprionus indianus 2017 06/22 7 
Drosophila tripunctata 2017 06/22 68 
Chymomyza amoena 2017 06/22 37 
Drosophila melanogaster 2017 06/22 80 
Chymomyza amoena 2017 07/07 3 
Drosophila tripunctata 2017 07/07 60 
Drosophila hydei 2017 07/07 71 
unknown 2017 07/07 30 
Zaprionus indianus 2017 07/07 15 
Drosophila immigrans 2017 07/07 223 
Drosophila suzukii 2017 07/07 123 
Drosophila melanogaster 2017 07/07 145 
Drosophila suzukii 2017 07/20 105 
Zaprionus indianus 2017 07/20 88 
Drosophila immigrans 2017 07/20 191 
Drosophila hydei 2017 07/20 76 
Chymomyza amoena 2017 07/20 3 
Drosophila tripunctata 2017 07/20 7 
unknown 2017 07/20 8 
Drosophila simulans 2017 07/20 5 
Drosophila melanogaster 2017 07/20 133 
Zaprionus indianus 2017 08/03 191 
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Drosophila suzukii 2017 08/03 289 
Drosophila immigrans 2017 08/03 79 
Drosophila hydei 2017 08/03 9 
Drosophila tripunctata 2017 08/03 1 
Chymomyza amoena 2017 08/03 24 
unknown 2017 08/03 28 
Drosophila simulans 2017 08/03 6 
Drosophila melanogaster 2017 08/03 53 
Zaprionus indianus 2017 08/17 425 
Drosophila immigrans 2017 08/17 95 
Drosophila suzukii 2017 08/17 227 
unknown 2017 08/17 57 
Drosophila tripunctata 2017 08/17 8 
Chymomyza amoena 2017 08/17 44 
Drosophila hydei 2017 08/17 12 
Drosophila simulans 2017 08/17 13 
Drosophila melanogaster 2017 08/17 86 
unknown 2017 08/31 38 
Drosophila suzukii 2017 08/31 158 
Drosophila immigrans 2017 08/31 12 
Drosophila tripunctata 2017 08/31 7 
Drosophila hydei 2017 08/31 19 
Zaprionus indianus 2017 08/31 680 
Drosophila simulans 2017 08/31 27 
Drosophila melanogaster 2017 08/31 125 
Chymomyza amoena 2017 08/31 13 
Zaprionus indianus 2017 09/14 565 
Drosophila suzukii 2017 09/14 217 
Chymomyza amoena 2017 09/14 18 
Drosophila immigrans 2017 09/14 2 
Drosophila hydei 2017 09/14 17 
Drosophila tripunctata 2017 09/14 4 
unknown 2017 09/14 50 
Drosophila simulans 2017 09/14 27 
Drosophila melanogaster 2017 09/14 94 
Zaprionus indianus 2017 09/28 269 
Drosophila immigrans 2017 09/28 2 
Drosophila suzukii 2017 09/28 36 
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Drosophila hydei 2017 09/28 8 
unknown 2017 09/28 4 
Chymomyza amoena 2017 09/28 1 
Drosophila simulans 2017 09/28 24 
Drosophila melanogaster 2017 09/28 204 
Zaprionus indianus 2017 10/12 444 
Drosophila suzukii 2017 10/12 114 
unknown 2017 10/12 7 
Drosophila hydei 2017 10/12 10 
Drosophila simulans 2017 10/12 26 
Drosophila melanogaster 2017 10/12 193 
Drosophila immigrans 2017 10/12 2 
Zaprionus indianus 2017 10/26 126 
Drosophila hydei 2017 10/26 39 
Drosophila suzukii 2017 10/26 3 
Drosophila simulans 2017 10/26 67 
Drosophila melanogaster 2017 10/26 333 
unknown 2017 10/26 6 
Zaprionus indianus 2017 11/09 35 
Drosophila hydei 2017 11/09 21 
Drosophila melanogaster 2017 11/09 230 
Drosophila simulans 2017 11/09 117 
Drosophila hydei 2017 11/24 10 
Drosophila immigrans 2017 11/24 3 
Drosophila suzukii 2017 11/24 3 
Chymomyza amoena 2017 11/24 1 
Drosophila melanogaster 2017 11/24 28 
Drosophila simulans 2017 11/24 10 
Drosophila tripunctata 2017 11/24 1 
Drosophila suzukii 2017 12/07 1 
Drosophila hydei 2017 12/07 1 
Drosophila melanogaster 2017 12/07 12 
Drosophila simulans 2017 12/07 9 
Chymomyza amoena 2018 06/28 12 
Drosophila immigrans 2018 06/28 16 
Drosophila hydei 2018 06/28 95 
Drosophila suzukii 2018 06/28 1 
Drosophila tripunctata 2018 06/28 1 
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Drosophila simulans 2018 06/28 5 
Drosophila melanogaster 2018 06/28 10 
Drosophila hydei 2018 07/05 64 
Drosophila immigrans 2018 07/05 27 
Drosophila tripunctata 2018 07/05 24 
Drosophila suzukii 2018 07/05 5 
Chymomyza amoena 2018 07/05 7 
Drosophila simulans 2018 07/05 92 
Zaprionus indianus 2018 07/05 2 
Drosophila hydei 2018 07/12 199 
Drosophila immigrans 2018 07/12 107 
Drosophila tripunctata 2018 07/12 21 
Drosophila suzukii 2018 07/12 55 
Chymomyza amoena 2018 07/12 5 
Drosophila simulans 2018 07/12 220 
Zaprionus indianus 2018 07/12 1 
Drosophila suzukii 2018 07/19 32 
Drosophila immigrans 2018 07/19 19 
Drosophila hydei 2018 07/19 407 
Drosophila simulans 2018 07/19 210 
Chymomyza amoena 2018 07/19 3 
Zaprionus indianus 2018 07/19 1 
Drosophila suzukii 2018 07/26 126 
Drosophila immigrans 2018 07/26 72 
Drosophila hydei 2018 07/26 198 
Chymomyza amoena 2018 07/26 11 
Drosophila tripunctata 2018 07/26 10 
Zaprionus indianus 2018 07/26 3 
Drosophila simulans 2018 07/26 585 
Drosophila melanogaster 2018 07/26 83 
Drosophila simulans 2018 08/02 356 
Drosophila hydei 2018 08/02 86 
Zaprionus indianus 2018 08/02 1 
Drosophila suzukii 2018 08/02 22 
Drosophila immigrans 2018 08/02 27 
Drosophila melanogaster 2018 08/02 55 
Drosophila simulans 2018 08/09 1298 
Drosophila tripunctata 2018 08/09 1 
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Drosophila suzukii 2018 08/09 67 
Drosophila immigrans 2018 08/09 247 
Drosophila hydei 2018 08/09 342 
Zaprionus indianus 2018 08/09 48 
Drosophila melanogaster 2018 08/09 248 
Drosophila simulans 2018 08/16 728 
Drosophila immigrans 2018 08/16 111 
Drosophila hydei 2018 08/16 90 
Drosophila suzukii 2018 08/16 29 
Drosophila tripunctata 2018 08/16 3 
Zaprionus indianus 2018 08/16 42 
Drosophila melanogaster 2018 08/16 78 
Drosophila immigrans 2018 08/23 53 
Drosophila suzukii 2018 08/23 56 
Drosophila hydei 2018 08/23 218 
Drosophila simulans 2018 08/23 451 
Zaprionus indianus 2018 08/23 58 
Drosophila melanogaster 2018 08/23 123 
Chymomyza amoena 2018 08/23 20 
Drosophila hydei 2018 08/30 52 
Zaprionus indianus 2018 08/30 100 
Drosophila immigrans 2018 08/30 36 
Drosophila simulans 2018 08/30 178 
Drosophila melanogaster 2018 08/30 48 
Drosophila suzukii 2018 08/30 20 
Drosophila hydei 2018 09/06 158 
Drosophila immigrans 2018 09/06 76 
Chymomyza amoena 2018 09/06 2 
Drosophila suzukii 2018 09/06 47 
Zaprionus indianus 2018 09/06 190 
Drosophila simulans 2018 09/06 555 
Drosophila melanogaster 2018 09/06 64 
Zaprionus indianus 2018 09/13 83 
Drosophila hydei 2018 09/13 76 
Drosophila suzukii 2018 09/13 17 
Drosophila immigrans 2018 09/13 13 
Chymomyza amoena 2018 09/13 14 
Drosophila tripunctata 2018 09/13 6 
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Drosophila simulans 2018 09/13 76 
Drosophila melanogaster 2018 09/13 47 
Drosophila hydei 2018 09/20 50 
Zaprionus indianus 2018 09/20 131 
Drosophila tripunctata 2018 09/20 2 
Chymomyza amoena 2018 09/20 7 
Drosophila immigrans 2018 09/20 2 
Drosophila suzukii 2018 09/20 6 
Drosophila simulans 2018 0920 239 
Drosophila melanogaster 2018 09/20 161 
Drosophila hydei 2018 09/27 36 
Zaprionus indianus 2018 09/27 84 
Drosophila immigrans 2018 09/27 2 
Chymomyza amoena 2018 09/27 2 
Drosophila simulans 2018 09/27 178 
Drosophila melanogaster 2018 09/27 49 
Drosophila hydei 2018 10/04 57 
Chymomyza amoena 2018 10/04 2 
Drosophila immigrans 2018 10/04 5 
Drosophila suzukii 2018 10/04 6 
Zaprionus indianus 2018 10/04 342 
Drosophila simulans 2018 10/04 440 
Drosophila melanogaster 2018 10/04 141 
Drosophila tripunctata 2018 10/04 2 
Zaprionus indianus 2018 10/11 379 
Drosophila hydei 2018 10/11 5 
Drosophila tripunctata 2018 10/11 1 
Drosophila suzukii 2018 10/11 3 
Chymomyza amoena 2018 10/11 1 
Drosophila simulans 2018 10/11 327 
Drosophila melanogaster 2018 10/11 89 
Zaprionus indianus 2018 10/18 20 
Chymomyza amoena 2018 10/18 1 
Drosophila hydei 2018 10/18 13 
Drosophila immigrans 2018 10/18 1 
Drosophila simulans 2018 10/18 721 
Drosophila melanogaster 2018 10/18 203 
Drosophila hydei 2018 10/25 60 
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Zaprionus indianus 2018 10/25 53 
Drosophila suzukii 2018 10/25 1 
Drosophila immigrans 2018 10/25 3 
Drosophila simulans 2018 10/25 507 
Drosophila melanogaster 2018 10/25 180 
Zaprionus indianus 2018 11/01 263 
Drosophila immigrans 2018 11/01 15 
Drosophila hydei 2018 11/01 10 
Drosophila suzukii 2018 11/01 10 
Drosophila simulans 2018 11/01 460 
Drosophila melanogaster 2018 11/01 192 
unknown 2018 11/17 2 
Drosophila hydei 2018 11/17 69 
Drosophila immigrans 2018 11/17 5 
Chymomyza amoena 2018 11/17 1 
Zaprionus indianus 2018 11/17 6 
Drosophila suzukii 2018 11/17 1 
Drosophila melanogaster 2018 11/17 170 
Drosophila simulans 2018 11/17 237 
Chymomyza amoena 2018 11/29 1 
Drosophila melanogaster 2018 11/29 27 
Drosophila simulans 2018 11/29 25 
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