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Abstract 

Magnetic resonance imaging (MRI) is a non-invasive medical imaging modality. It offers the 

capability to produce high-quality multi-contrast diagnostic images without the use of ionizing 

radiation. The resulting images not only provide detailed anatomical information but also capture 

functional process, making MRI invaluable for clinical diagnosis, treatment planning, and 

biomedical research. However, the full potential of MRI remains partially obscured by persistent 

challenges, notably the presence of imaging artifacts that compromise the quality of acquired 

images. The advent of potent graphics processing unit (GPU)-based computational platforms and 

the availability of open-access datasets provide previously unachievable opportunities to address 

these issues through deep learning methods. 

 For the signal-to-noise ratio (SNR) issues, a complex-valued convolutional network (CNN) 

incorporating the noise level map (non-blind ℂ nnCNN) was trained with ground truth and 

simulated noise-corrupted image pairs. The network was validated using both simulated and in 

vivo data collected from low-field scanners. The non-blind ℂnnCNN showed superior quantitative 

metrics and significantly improved the SNR and visual quality of the image. By incorporating the 

noise level map, the method showed better performance on dealing with spatially varying parallel 

imaging noise. 

 For the motion artifacts, a multi-task conditional generative adversarial network (MT-

cGAN) was developed for simultaneous motion detection and compensation. The training images 

were generated with a realistic artifact simulation process, incorporating comprehensive rigid 

motion profiles, noise addition, and parallel imaging acquisitions. Performance was evaluated 

using both simulated and real in-vivo data. For the motion detection task, MT-cGAN achieved the 
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best classification accuracy on simulated and real in-vivo dataset. For the motion compensation 

task, the outputs of MT-cGAN showed less visual blurring, fewer residual artifacts, and better 

preservation of fine structures compared to other models. 

 For off-resonance artifacts, a deep-learning-based method (AutofocusNet) was developed 

to correct both field inhomogeneities and concomitant files in spiral MRI. By training the network 

using images with simulated field inhomogeneity and concomitant field effect, AutofocusNet 

showed superior performance compared to the conventional autofocus method. It offers a practical 

and effective solution for off-resonance correction in spiral MRI without using the field map or 

computing the concomitant fields during the reconstruction. 

 For undersampled cardiac MRI reconstruction, a novel complex-valued cascading cross-

domain CNN was proposed, named C3-Net, for improved balance between computation demands 

and image quality for accelerated CMR. C3-Net outperformed other comparison methods, 

especially at high acceleration rates (> 8). The short-axis results from C3-Net showed reduced 

residual artifact and improved temporal fidelity of cardiac motion. 
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Chapter 1: Introduction 

1.1 MRI Overview 

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality that enables visualization 

of anatomical information or monitoring of physiological functions without ionizing radiation. 

This attribute makes MRI a widely utilized technology for disease detection, diagnosis, and 

treatment planning. By adjusting the scan parameters, MRI provides the ability to produce multi-

contrast images that highlight different tissue properties. Compared to other imaging modalities, 

such as X-ray or computed tomography (CT), MRI offers superior contrast for soft tissues. Since 

its first clinical application in 1980, MRI has become a powerful clinical tool in brain, 

musculoskeletal, abdominal, and cardiac imaging. 

MRI scan involves a complex assembly of components, each serving an essential role in 

generating and manipulating the signal. The MRI scanner generates a strong magnetic field (𝐵0), 

typically through a superconducting magnet. This static field aligns the magnetic moments of 

protons (spins) in the body, creating a net magnetic moment along the direction of 𝐵0 . The 

radiofrequency (RF) pulse is applied to tip the aligned spins away from the 𝐵0 field direction and 

generate a detectable MR signal. Spatial localization is achieved by applying controlled gradient 

magnetic fields along the 𝑥, 𝑦, and 𝑧 axes, which enable the slice selection, phase encoding, and 

frequency encoding during the image acquisition. 

For 2n imaging, the total received MRI signal, ignoring relaxation terms, can be written 

as: 

𝑠(𝑡) = ∫ ∫ 𝑚(𝑥, 𝑦)𝑒−𝑖𝛾[(∫ 𝐺𝑥(𝜏)𝑑𝜏
𝑡

0 )𝑥+(∫ 𝐺𝑦(𝜏)𝑑𝜏
𝑡

0 )𝑦]𝑑𝑥
𝑦

𝑑𝑦
𝑥

(1-1) 
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where 𝑚(𝑥, 𝑦) is the object distribution, 𝐺𝑥(𝑡) and 𝐺𝑦(𝑡) are the applied gradients, and 𝛾 is the 

gyromagnetic ratio. From a frequency domain perspective, the signal can be rewritten as: 

𝑠(𝑘𝑥, 𝑘𝑦) = ∫ ∫ 𝑚(𝑥, 𝑦)𝑒−𝑖2𝜋(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥
𝑦

𝑑𝑦
𝑥

(1-2) 

where 𝑘𝑥(𝑡) =
𝛾

2𝜋
∫ 𝐺𝑥(𝜏)𝑑𝜏

𝑡

0
 and 𝑘𝑦(𝑡) =

𝛾

2𝜋
∫ 𝐺𝑦(𝜏)𝑑𝜏

𝑡

0
 are spatial frequencies in k-space. The 

k-space can be filled using different trajectories by controlling the encoding gradients. Common 

trajectories used in MRI include Cartesian, echo planar imaging (EPI), radial, and spiral, as shown 

in Figure 1-1. Once the k-space data is acquired, the MR image can be reconstructed by a fast 

Fourier transform (FFT) for Cartesian sampling, or a nonuniform FFT (NUFFT)1 for non-Cartesian 

sampling. 

 

Figure 1-1: Commonly used trajectories in MRI. 

One major disadvantage of MRI is the relatively slow imaging speed, since it acquires data 

in the frequency domain, rather than the image domain like optical imaging. Recent development 

of advanced acquisition and reconstruction methods dramatically accelerate the MRI scan. Parallel 

imaging techniques, such as SENSE2 and GRAPPA3, reduce the imaging time by undersampling 

k-space data and leveraging information from multiple coils to remove the aliasing artifacts. On 

the other hand, compressed sensing techniques4,5 exploit mathematical sparsity, incoherent 

sampling, and nonlinear reconstruction to shorten the scan time. 



3 

 

1.2 MRI Artifacts 

Like other imaging modalities, MRI is vulnerable to artifacts, affecting the image quality and 

diagnostic value. These artifacts can arise from various sources, including hardware limitations, 

imaging techniques, physiological motion, and tissue characteristics. Here, several common 

artifacts were introduced, focusing on signal-to-noise ratio (SNR) issues, motion artifacts, residual 

artifacts from parallel imaging, and off-resonance artifacts. 

 

Figure 1-2: Improvement of SNR by increasing NA. 

SNR is an important metric for image quality evaluation. SNR is proportional to spin 

polarization, which varies linearly with 𝐵0 . At a fixed 𝐵0 , the relationship between imaging 

parameters and SNR can be expressed as: 

SNR ∝ Δ𝑥Δ𝑦Δ𝑧√total readout interval (1-3) 

where Δ𝑥, Δ𝑦, and Δ𝑧 is the spatial resolution along 𝑥, 𝑦, and 𝑧 direction. This equation explains 

the trade-off between SNR, spatial resolution, and scan time. It is impossible to achieve high SNR 

while also maintain the resolution and scan time. To assess the SNR, region-of-interest (ROI) 

measurements are commonly performed on magnitude images by calculating the mean within a 

signal ROI, calculating the standard deviation in a background ROI, and applying a correction for 
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the Rayleigh distribution in the background6. In clinical practice, SNR can be improved by 

increasing the number of averages (NA), as shown in Figure 1-2. However, this results in a 

prolonged scan time, which may cause increased patient discomfort and higher burden on 

radiologists. 

 

Figure 1-3: Motion artifacts in MRI. 

Compared to other imaging modalities, such as CT or ultrasound, subject motion is a more 

challenging issue in MRI due to its relatively long scan time. nuring the data acquisition, subject 

movement causes inconsistencies in k-space data, leading to motion artifacts on the reconstructed 

image. Many different types of motion can degrade the image quality, including involuntary 

motion, such as cardiac or respiratory motion and vessel pulsation, or voluntary motion, such as 

swallowing or yawing. The appearance of motion artifacts is affected by the type of motion, the k-

space trajectory, and the specifics of MR sequence. Common manifestations of motion artifacts 

include ghosting, blurring, and signal loss, as shown in Figure 1-3. Various strategies have been 

developed for motion prevention and compensation. Motion prevention methods include patient 

training, the use of foam restraints, and in some cases, sedation, which help to minimize voluntary 

motion during scanning7–10. Triggering and gating techniques are commonly used for cardiac and 

abdominal imaging, allowing to only collect data in specified low-motion intervals11,12. nuring the 
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scan, the subject motion can be tracked by external sensors, such as optical cameras13,14, or be 

estimated by the application of MR navigators15–20. Motion information obtained from sensors or 

navigators can then be applied for either prospectively to adjust the scan21 or retrospectively to 

correct the motion artifacts22. 

 In clinical settings, parallel imaging is a powerful technique that enables faster data 

acquisition and reduced examination time. Accelerated scans are achieved by undersampling the 

k-space data and utilizing the spatial sensitivity information from multiple coils for image 

reconstruction. However, acquiring fewer data points in k-space results in a SNR loss by a factor 

of the square root of the undersampling ratio (𝑅 ). The noise is further amplified by the coil 

geometry factor (g-factor). The g-factor is spatially variant and relates to geometry of surface coils. 

Figure 1-4 shows an example of SENSE reconstruction results with different undersampling ratios. 

Various methods to estimate or quantify the noise for parallel imaging have been developed to 

better evaluate different reconstruction strategies23–25. 

 

Figure 1-4: SENSE reconstruction results with different undersampling ratios. Adapted from Questions and Answers 

in MRI Website. 

https://mriquestions.com/index.html
https://mriquestions.com/index.html
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 Off-resonance artifacts in MRI primarily result from inhomogeneities in the 𝐵0  field, 

causing different precession frequencies at different locations. The field inhomogeneities can arise 

from various sources, including magnetic susceptibility, chemical shift, and metal implants26. Off-

resonance artifacts typically manifest as signal loss, geometric distortions, and blurring in the 

resulted images, and are particularly problematic in sequences with long readouts, such as EPI and 

spiral. For most of existing off-resonance correction methods, it is necessary to acquire a field map. 

A common way measuring the field map is to acquire two images at different echo times and 

calculate the phase difference between them. This phase difference is used to estimate the off-

resonance frequency at each voxel: 

Δ𝜔0(𝑥, 𝑦) =
∠{𝑚1

∗(𝑥, 𝑦)𝑚2(𝑥, 𝑦)}

ΔTE
(1-4) 

where the image 𝑚1(𝑥, 𝑦)  is acquired at TE1 , image 𝑚2(𝑥, 𝑦)  is acquired at TE2 , and ΔTE =

TE2 − TE1. After getting the field map, the conjugate phase reconstruction (CPR) can be applied 

to correct the off-resonance artifacts. However, exact CPR is extremely slow, and multiple efficient 

implementations have been developed to approximate the exponential term: 

𝑒𝑖Δ𝜔0(𝑥,𝑦)𝑡 ≈ ∑ 𝑏𝑙(𝑡)𝑐𝑙(𝑥, 𝑦)

𝐿

𝑙

(1-5) 

where 𝑏𝑙 and 𝑐𝑙 are the basis functions in k-space and image domain. According to the choice of 

𝑏𝑙 and 𝑐𝑙, these algorithms can be roughly categorized into time-segmented approximation27,28 and 

frequency-segmented approximation29. Figure 1-5 shows an example of a blurred phantom image 

in spiral imaging reconstructed with multifrequency interpolation (MFI). One major limitation of 

CPR and its approximations is the assumption of a smooth field map. Iterative conjugate gradient 

reconstruction28,30 shows better performance in dealing with abrupt variations of Δ𝜔0 in the field 

map. The automatic deblurring method (autofocus)31,32 offers an alternative for off-resonance 
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correction without requiring a field map. Autofocus can estimate a field map based on the blurred 

image by examining some image features, such as the imaginary component of the image. 

 

Figure 1-5: Blurred phantom image reconstructed with MFI. 

 Concomitant fields are another source of off-resonance artifacts. As implied by Maxwell’s 

equations, any applied linear gradients during the scan induces additional spatially varying 

magnetic fields. Failing to correct the phase accumulation caused by concomitant fields can lead 

to inadequate off-resonance correction. As described by Bernstein et al33, the concomitant field to 

the lowest order can be calculated by: 

𝐵𝑐 ≈ (
𝐺𝑧

2

8𝐵0
) (𝑋2 + 𝑌2) + (

𝐺𝑥
2 + 𝐺𝑦

2

2𝐵0
) 𝑍2 − (

𝐺𝑥𝐺𝑧

2𝐵0
) 𝑋𝑍 − (

𝐺𝑦𝐺𝑧

2𝐵0
) 𝑌𝑍 (1-6) 

where 𝐺𝑥 , 𝐺𝑦 , and 𝐺𝑧  are the time-dependent gradients, and 𝑋 , 𝑌 , and 𝑍  are the scanner spatial 

coordinates. After calculating the concomitant fields, the 𝐵0 inhomogeneity correction algorithms 

can also be extended for correcting concomitant fields. 

1.3 Deep Learning Overview 

neep learning is a branch of artificial intelligence and machine learning. neep learning focuses on 

training artificial neural networks with multiple layers to extract features and generate output based 
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on large datasets. The neural networks are typically trained through backpropagation, where the 

model iteratively adjusts its parameters to minimize some objective function. In recent years, 

different network architectures have been proposed and optimized for various data types and 

applications. Convolutional neural networks (CNNs) are widely used in computer vision and 

image processing due to their ability to learn spatial hierarchies of features in data. Unlike 

traditional fully-connected networks, CNNs are highly efficient, as they reduce the number of 

parameters by sharing weights through the convolution operation. A CNN typically consists of 

dozens or hundreds of convolutional layers, depending on the complexity of the intended purpose. 

By combining convolutional layers with other building blocks, such as nonlinear activation 

functions, pooling layers, and fully-connected layers, the model is able to both detect low-level 

image features, such as edges and shapes, and extract more abstract high-level features that are 

more abstract and task-specific. 

 Generative adversarial networks (GANs)34 are a class of deep learning models that are 

originally proposed for generating new data that closely resemble training data. GANs consist of 

two neural networks, where the generator network aims to produce realistic high-quality data that 

can “fool” the discriminator, and the discriminator network is trained to maximize its ability to 

distinguish between real and synthetic data. The training of GANs involves alternating between 

training the generator and discriminator in an adversarial setup. Conditional GAN (cGAN)35 is a 

variant of GAN that takes advantage of an additional conditioning input. By incorporating the 

conditional information, cGANs provide controlled data generation, which is particularly useful 

in image-to-image translation tasks, like super-resolution and image restoration36. 

 Recently, Transformers have become one of the most influential architectures in deep 

learning, significantly advancing natural language process. The core idea behind Transformers is 
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the self-attention mechanism37, which allows the model to capture long-distance contextual 

relationships. Transformers have also been extended to the computer vision field by dividing the 

images into patches and treating all patches as a sequence38. 

The deep learning techniques have also gained significant traction in MRI image 

processing, bringing advancements across a wide range of tasks. The deep-learning-based image 

reconstruction methods drastically reduce the reconstruction time leveraging the implicit priors 

learned from the training data39–41. The deep learning models have also been applied to MRI super-

resolutions42–44, which reconstruct high-resolution images from low-resolution inputs. By training 

neural networks with multi-contrast MRI images, the models show impressive performance on 

synthesizing missing contrasts without extra acquisitions45–47. Additionally, deep learning offers 

efficient and effective solutions to reduce or correct the artifacts in MR images26,48–50. 

1.4 Dissertation Outline 

This dissertation includes six chapters. Chapter 1 presents an overview of MRI and deep learning. 

It first describes the principles of MRI and its acquisition and reconstruction, leading to a 

discussion of common artifacts encountered in MRI. A brief introduction to deep learning and its 

applications in MRI is then followed. 

 Chapter 2 introduces a non-blind deep complex-valued convolutional neural network 

(ℂnnCNN) for denoising MRI images. The network is trained to boost the SNR of MRI images 

and address spatially varying noise, especially significant for low-field MRI applications, where 

SNR is a primary limitation. This chapter covers the complex-valued operations, network 

architecture, training strategies, and performance evaluation on simulated and in vivo datasets, 

showing that ℂnnCNN provides superior denoising performance over other comparison methods. 
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 Chapter 3 presents a multi-task conditional GAN (MT-cGAN) designed for simultaneous 

motion detection and correction. The model uses multi-task learning to leverage shared 

representations for motion detection and compensation tasks, enhancing its robustness and 

performance compared to single-task models. This chapter covers the comprehensive simulation 

process to emulate motion artifacts under realistic clinical settings, multi-task framework, 

combined objective function, and evaluation on simulated and in vivo datasets. 

 Chapter 4 covers a deep-learning-based method for correcting both field inhomogeneity 

and concomitant field artifacts without requiring the field map acquisition or concomitant field 

computation. The network is trained using synthetic data with simulated off-resonance artifacts. 

The evaluation results demonstrate that the proposed method improve the image quality and reduce 

the off-resonance artifacts on both simulated and in vivo data. 

 Chapter 5 is focused on developing a complex-valued cascading cross-domain network 

(C3-Net) for reconstructing undersampled cardiac MRI. C3-Net utilizes the unrolled network 

structure, alternating between cross-domain learning and data consistency steps. netailed 

descriptions of network architecture, training strategies, and experimental results are covered. 

 Chapter 6 summarizes the work of this dissertation and provides some potential directions 

for future research, including integrating these models within MRI reconstruction systems for real-

time processing, non-rigid motion compensation, exploring novel deep learning architectures for 

enhanced performance, and developing explainable and robust models. 
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Chapter 2: MRI Denoising with a Non-Blind Deep 

Complex-Valued Convolutional Neural Network 

2.1 Introduction 

SNR is crucial for MR image analysis. High-SNR images enable better visualization of small 

structures, which not only facilitates the human interpretation, but also benefits subsequent 

processing techniques such as registration and segmentation. The SNR is intricately linked to 

various imaging conditions, including field strength, image resolution, and number of averages 

(NA). The application of parallel imaging and innovative reconstruction techniques can also 

impact the spatial distribution of noise. Increasing NA is a common method to boost the SNR, but 

it results in a longer scan time. On the other hand, low-field MRI has grown in popularity in recent 

years51–54 due to advancements in hardware techniques and acquisition strategies. Because low-

field MRI scanners are substantially less expensive to purchase and install, they enable MRI to 

reach underserved populations worldwide. However, images acquired on low-field scanners 

inherently have low SNR due to the low Boltzmann polarization, which hinders their clinical 

application. Therefore, efficient and effective denoising is important for increasing MRI 

availability in the clinical setting. 

The noise in a complex MR image is typically modeled as a complex additive white 

Gaussian noise (AWGN), with zero mean and equal variance for real and imaginary parts. Thus, 

the pixel intensity in the noise-corrupted magnitude image follows the Rician distribution55,56. 

Numerous MRI denoising methods have been proposed based on decades of research. The non-

local means (NLM) algorithm relies on the non-local similarity to remove Gaussian noise57–59. 
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Wiest-naesslé et al60 adapted the NLM algorithm for Rician noise and applied it to diffusion tensor 

MRI. Coupé et al61 reduced the time complexity of NLM through blockwise implementation and 

parallel computation. The block-matching and 3n filtering (BM3n) takes advantage of the 

enhanced sparsity in the transform domain and uses collaborative filtering to remove noise62–64. In 

recent years, deep-learning-based approaches have shown great success in image denoising. A 

convolutional neural network (CNN) learns to restore the clean image by training it with a large 

number of noise-corrupted and ground-truth image pairs. Zhang et al65 combined residual learning 

and batch normalization in their nnCNN model for Gaussian denoising with unknown noise level 

(i.e., blind denoising). Later, Zhang et al66 demonstrated that incorporating the noise level 

information into the network (i.e., non-blind denoising) increased its generalizability. Quan et al67 

investigated the potentials of complex-valued CNNs for natural image denoising. Manjón et al68 

proposed a two-stage method that combines blind CNN denoising with the NLM algorithm. 

Tripathi et al69 employed encoder-decoder structure and residual learning scheme for removing 

Rician noise from magnitude MR images.  Li et al70 used a progressive learning strategy, cascading 

two sub-networks for crude and refinement noise estimation, respectively. Tian et al71 developed 

an MRI denoising method based on the conditional generative adversarial network (GAN). 

Koonjoo et al72 presented an end-to-end nL-based noise-robust reconstruction method for low-

field MRI data. 

However, the vast majority of existing MRI denoising methods do not fully exploit the 

complex-valued feature of MRI data. The input and output of conventional model-based 

approaches, such as NLM and BM3n, are both magnitude images, and phase information is 

ignored. CNN-based approaches typically treat the real and imaginary parts as two separate real-

valued channels, similar to the RGB channels of a color image, which may limit the network’s 
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ability to extract features from complex-valued data. Recently, complex-valued CNNs have 

received increased attention. Complex-valued CNNs have several advantages over real-valued 

CNNs, including easier optimization, faster learning, and richer representational capacity73–76. 

Wang et al77 used the residual learning strategy to accelerate the convergence of their complex-

valued CNN. El-Rewaidy et al78 applied a complex-valued CNN to reconstruct highly under-

sampled cardiac MRI data. Cole et al79 evaluated the performance of complex-valued CNNs on 

phase-related MRI applications by systematically analyzing the impact of different model design 

choices. All of these works concentrated on the MRI reconstruction task, and to the best of our 

knowledge, no previous work attempted to use complex-valued CNN in the MRI denoising task. 

Therefore, in this chapter, we designed and implemented non-blind ℂnnCNN, a complex-

valued CNN for non-blind MRI denoising. The noise level map was estimated from the noise-

corrupted image and fed into the network. Complex-valued building blocks were used throughout 

the network. We trained the network on simulated data and tested it on both simulated and in vivo 

data. We compared our method to several other denoising algorithms, both quantitatively and 

qualitatively. In the comparison, both magnitude and phase performance were evaluated. We also 

investigated the role of the noise level map in dealing with parallel imaging noise that varies 

spatially. 

2.2 Methods 

2.2.1 Training datasets 

For supervised neural network training, ground truth images are required. Assuming a noise-free 

image 𝑚(𝐱) , we generated the noise-corrupted image 𝑚′(𝐱)  by applying random, complex 

AWGN to 𝑚(𝐱): 
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𝑚′(𝐱) = 𝑚(𝐱) + 𝑛(𝐱; 𝜎2) (2-1) 

where 𝑛(𝐱; 𝜎2) = 𝑛𝑟(𝐱; 𝜎2) + 𝑗 ⋅ 𝑛𝑖(𝐱; 𝜎2)  is random, complex AWGN with zero mean and 

variance 𝜎2. However, ideal noise-free images do not exist. The training and validation datasets 

used in this work were built from the fastMRI brain dataset (https://fastmri.med.nyu.edu/)80. The 

raw fastMRI dataset contains nearly 7000 fully sampled multi-coil brain MRIs obtained on 1.5T 

or 3T scanners, comprising axial T1-weighted, post-contrast T1-weighted, T2-weighted and 

FLAIR images. netailed descriptions can be found on the project website. A reference study has 

indicated that the SNR at 0.55T low-field scanners is approximately 70% of that at 1.5T scanners81. 

We randomly selected 2000 T2-weighted imaging volumes for training the model and selecting 

model hyperparameters. We strategically reversed the other three modalities for testing the 

denoising performance across a diverse range of imaging conditions and contrasts. Single-coil data 

was reconstructed from multi-coil data through the use of an adaptive combination method82, in 

which the complex-valued coil sensitivities were estimated from a local matched filter. The 

adaptive combination method achieved near optimal SNR while retaining the phase information. 

The reconstructed images were then center cropped to have matrix size 320 × 320. nuring the 

noise simulation, each image was normalized to have its magnitude between 0 to 1 and its phase 

unchanged. The noise standard deviation 𝜎 was sampled from a uniform distribution between 0 to 

0.1. 

2.2.2 Network architecture 

A nnCNN65 was used as our backbone network structure. The original nnCNN model was 

proposed for blind Gaussian denoising of natural images and achieved state-of-the-art performance. 

The network was designed to use complex-valued operations rather than splitting the real and 

imaginary components into two separate channels. Figure 2-1 shows the proposed non-blind 
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ℂ nnCNN for MRI denoising. The input to the network is a 2n complex-valued MR image 

concatenated with a tunable complex-valued noise level map. The non-blind ℂnnCNN consists of 

a series of complex-valued convolution blocks. Three types of operations were adopted in each 

block: complex-valued convolution (ℂ Conv), radial batch normalization (BN), and complex-

valued rectified linear unit (ℂReLU). The ℂConv operation between the input 𝐝 = 𝐚 + 𝑗 ⋅ 𝐛 and 

filter 𝐰 = 𝐱 + 𝑗 ⋅ 𝐲 can be accomplished by four real-valued convolutions30: 

𝐰 ⊛ 𝐝 = (𝐱 ⊛ 𝐚 − 𝐲 ⊛ 𝐛) + 𝑗 ⋅ (𝐲 ⊛ 𝐚 + 𝐱 ⊛ 𝐛) (2-2) 

where ⊛ represents the convolution operation. Batch normalization is an important operation to 

expedite training and stabilize model performance83. We adopted radial BN, which maintains the 

phase information while scaling the magnitude78: 

𝐦BN = (
𝐦 − 𝜇𝐦

√𝜎𝐦
2

) 𝛾 + 𝛽 + 𝜏 (2-3) 

𝐝BN = 𝐦BN𝑒𝑗𝛉 (2-4) 

where 𝐝 = 𝐦𝑒𝑗𝛉 is the input expressed in its polar form, 𝜇𝐦 and 𝜎𝐦
2  are the mean and variance of 

𝐦 , 𝛽  and 𝛾  are trainable parameters, and 𝜏  is a constant to ensure that the normalized 𝐦BN  is 

positive (empirically set to 1). The ℂReLU function separately activates the real and imaginary 

components of the input76: 

ℂReLU(𝐝) = ReLU(𝐚) + 𝑗 ⋅ ReLU(𝐛) (2-5) 

The first block of the network is composed of a ℂ Conv and a ℂ ReLU, the middle blocks are 

composed of a ℂConv, a radial BN and a ℂReLU, and the last block is composed of a ℂConv to 

produce the output image. In order to balance the denoising performance and computational 

efficiency, all of the ℂConv kernels have a size of 3 × 3 and a number of channels of 64, and the 
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network has 20 convolution blocks. The effect of network depth on denoising performance was 

explored. 

The network was implemented in the open-source machine learning library PyTorch84 and 

trained with an L1 loss: 

ℒ(Θ) =
1

𝑁
∑ |ℂDnCNN(𝑚′(𝐱𝑖); Θ) − 𝑚(𝐱𝑖)|

𝑁

𝑖=1
(2-6) 

where 𝑚′(𝐱𝑖) is the noise-corrupted image, 𝑚(𝐱𝑖) is the ground truth image, 𝑁 is the total number 

of training pairs, and Θ  represents trainable parameters in the network. The optimization was 

carried out by an Adam optimizer85 with an initial learning rate of 0.0001 and momentum 

parameters 𝛽1 = 0.9 and 𝛽2 = 0.999. The training batch size was fixed to 32. Random flips and 

random cropping were employed as training augmentation to reduce the possibility of overfitting 

and improve the model robustness. 

 

Figure 2-1: Architecture of the non-blind ℂnnCNN for MRI denoising. The input is the complex-valued noisy image 

concatenated with the complex-valued noise level map, and the output is the complex-valued denoised image. The 

network consists of twelve 3 × 3 ℂConv. Each ℂConv is followed by a radial BN and a ℂReLU except for the first and 

last. 
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2.2.3 Noise level map 

To cope with images at different noise levels, specifying the noise standard deviation 𝜎 is required 

for most conventional model-based denoising techniques, such as NLM and BM3n. In practice, 

the noise standard deviation 𝜎̂ can be estimated from the k-space or image data. We adopted a 

commonly-used wavelet-based approach86 in this work. Specifically, we used the estimate_sigma 

function from the scikit-image Python package87. In order to incorporate this information into our 

ℂnnCNN for MRI denoising, we built a complex-valued noise level map with its size matching 

the input MR image and concatenated it with the input image. All pixels in the noise level map 

were set to 𝜎̂avg + 𝑗 ⋅ 𝜎̂avg , where 𝜎̂avg  was the average of 𝜎̂ ’s estimated from the real and 

imaginary parts of the input image: 

𝜎̂avg =
estimate_sigma(Real{𝑚′(𝐱)}) + estimate_sigma(Imag{𝑚′(𝐱)})

2
(2-7) 

Since ℂnnCNN is fully convolutional, it inherently provides the flexibility to deal with 

spatially non-uniform noise. For parallel MRI, such as sensitivity encoding (SENSE)2 and 

generalized autocalibrating partially parallel acquisitions (GRAPPA)3, the noise is amplified by 

the geometry factor (g-factor). The g-factor is determined by the coil geometry and changes across 

the image. By weighting the uniform noise level map with a g-factor map, the network is capable 

of handling the spatially varying noise. 

2.2.4 Evaluation 

We first created a simulated testing dataset from the fastMRI brain dataset to evaluate the 

performance of the proposed denoising method. To avoid overlap between the training and testing 

subsets, another 200 T2-weighted imaging volumes were chosen at random. Simulated complex 
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AWGN with zero mean and standard deviation between 0 to 0.1 was added to the testing data. We 

compared our method to other denoising algorithms including NLM, BM3n 

(https://webpages.tuni.fi/foi/GCF-BM3n/), real-valued nnCNN, ℂ nnCNN without noise level 

map (blind). The NLM and BM3n algorithms operated on the magnitude images, while the 

ℂnnCNN and non-blind ℂnnCNN operated on the complex-valued images, and the real-valued 

nnCNN treated the real and imaginary components as two separate channels. For quantitative 

assessment, the normalized root-mean-square error (NRMSE), peak signal-to-noise ratio (PSNR), 

and structural similarity index (SSIM)88 of the magnitude images were calculated. In the following 

definitions, 𝑥 denotes the output image with size 𝑚 × 𝑛, 𝑦 denotes the reference image with the 

same size, and |⋅| means taking the magnitude. 

NRMSE(|𝑥|, |𝑦|) = √
MSE(|𝑥|, |𝑦|)

MSE(|𝑦|, 0)
(2-8) 

PSNR(|𝑥|, |𝑦|) = 20 log10 (
max(|𝑥|)

√MSE(|𝑥|, |𝑦|)
) (2-9) 

SSIM(|𝑥|, |𝑦|) =
(2𝜇|𝑥|𝜇|𝑦| + 𝑐1)(2𝜎|𝑥||𝑦| + 𝑐2)

(𝜇|𝑥|
2 + 𝜇|𝑦|

2 + 𝑐1)(𝜎|𝑥|
2 + 𝜎|𝑦|

2 + 𝑐2)
(2-10) 

where MSE(|𝑥|, |𝑦|) =
∑ ∑ (|𝑥𝑖𝑗|−|𝑦𝑖𝑗|)

2𝑛−1
𝑗=0

𝑚−1
𝑖=0

𝑚𝑛
  is the mean-square error between |𝑥|  and |𝑦| , 𝜇|𝑥| 

and 𝜇|𝑦|  are the means of |𝑥|  and |𝑦| , 𝜎|𝑥|
2   and 𝜎|𝑦|

2   are the variances of |𝑥|  and |𝑦| , 𝜎|𝑥||𝑦|
2   is the 

cross-correlation of |𝑥|  and |𝑦| , and 𝑐1 = 0.01  and 𝑐2 = 0.03  are regularization constants. Both 

|𝑥| and |𝑦| were normalized with respect to |𝑦| before metric calculation. For three CNN-based 

methods generating complex-valued output images, the absolute difference (ABSn) of the phase 

images was also calculated to test whether the phase information was altered: 

ABSD(∠𝑥, ∠𝑦) =
∑ ∑ |∠𝑥𝑖𝑗 − ∠𝑦𝑖𝑗|𝑛−1

𝑗=0
𝑚−1
𝑖=0

𝑚𝑛
(2-11) 
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where ∠ ⋅ means taking the phase. For a fair comparison between different CNN-based methods, 

all CNNs had the same number of trainable parameters. Manual tuning was performed to determine 

the optimal combination of hyperparameters for each model. 

The role of the noise level map in dealing with spatially non-uniform parallel imaging noise 

was also explored. We first utilized the fully sampled multi-coil k-space data from the raw fastMRI 

dataset to generate the coil sensitivity map for g-factor calculation. Complex AWGN was then 

added to each coil. We assume, for simplicity, that the standard deviation of Gaussian noise at each 

coil has the same value and there is no correlation across coils24. The noise-corrupted k-space data 

was subsampled and reconstructed using SENSE. To address the spatially varying noise, the 

uniform noise level map was weighted by the g-factor map. In practice, the coil sensitivity map 

and g-factor map can be acquired during the preparation phase with no additional scan time cost. 

To test the generalizability of non-blind ℂnnCNN, its performance on different contrasts 

and anatomies was also assessed. T1-weighted and FLAIR brain images and proton density (Pn) 

weighted knee images from the fastMRI dataset were randomly selected to form a testing dataset 

out of the training distribution. Additionally, the network was applied to the low-field M4Raw 

dataset89 and local in vivo data collected on a prototype 0.55 T MR scanner with high-performance 

gradients (ramped-down MAGNETOM Aera, Siemens Healthcare, Erlangen, Germany). The 

M4Raw dataset contains multi-contrast and multi-coil MRI data collected using as 0.3 T MR 

system. netailed description can be found on the project website 

(https://github.com/mylyu/M4Raw). We randomly selected 5 T2-weighted volumes from the 

dataset for testing the network performance. We also applied retrospective undersampling and 

SENSE reconstruction on the multi-coil data to test the network performance on spatially varying 

noise. The local in vivo data was acquired with a SPRING-RIO TSE sequence90 with TR/TEeff, 
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3000/105 ms; echo train length, 9; FOV, 230 × 230 mm2
; voxel size, 0.70 × 0.70 × 4 mm3. Written 

informed consent from all subjects were given. To evaluate the image quality without reference, 

the SNR for white matter (WM) and gray matter (GM) were computed based on manually defined 

regions of interest (ROIs): 

SNR = 0.66 ×
𝜇ROI

𝜎air

(2-12) 

where 𝜇ROI is the mean intensity of the ROI, 𝜎air is the standard deviation of the air region, and 

0.66 is the correction factor for the Rayleigh distribution of the noise in the magnitude image6. 

 

Figure 2-2: (A) Performance of different denoising methods on the simulated testing dataset at different noise levels. 

The average NRMSE, PSNR, and SSIM were evaluated for each method. (B) Representative magnitude image results 

of different denoising methods. Top left is the ground truth image, and bottom left is the simulated noise-corrupted 

image with a noise standard deviation of 0.06. The output of ℂnnCNN and non-blind ℂnnCNN showed reduced noise 

and less visual blurring compared to other methods. 
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Figure 2-3: (A) Phase difference of nnCNN, ℂnnCNN, and non-blind ℂnnCNN on the simulated testing dataset at 

different noise levels. The average phase ABSn was evaluated for each network. (B) Procedures for generating the 

brain mask to eliminate the impact of background random phase in metric calculation. (C) Representative phase 

image results of different methods. Top left is the ground truth image, and top center is the simulated noise-

corrupted image with a noise standard deviation of 0.06. Bottom row is the output of nnCNN, ℂnnCNN, and non-

blind ℂnnCNN, from left to right. The complex-valued models preserved the phase information better than the real-

valued model. 

2.3 Results 

Figure 2-2A shows the performance of different denoising algorithms on the simulated noise-

corrupted dataset at different noise levels. When the noise standard deviation 𝜎 was larger than 

0.04, three CNN-based algorithms outperformed NLM and BM3n. Compared to real-valued 

nnCNN with two-channel input, the output of ℂnnCNN and non-blind ℂnnCNN showed superior 

NRMSE, PSNR and SSIM over the entire range of 0 to 0.1. Representative images are displayed 

in Figure 2-2B. Compared to other methods, the output of ℂ nnCNN and non-blind ℂ nnCNN 
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showed reduced noise and less visual blurring. Figure 2-3A shows the phase difference for CNN-

based methods. To eliminate the impact of random phase in the background, a mask covering the 

brain region was generated from the reference magnitude image using Otsu’s thresholding91 and 

convex hull operation, as shown in Figure 2-3B. Representative phase images are displayed in 

Figure 2-3C. The phase of the output images did not deviate significantly from the reference phase. 

ℂnnCNN and non-blind ℂnnCNN showed comparable performance and outperformed the real-

valued nnCNN in terms of preserving the phase information. 

 

Figure 2-4: Example of non-blind ℂnnCNN on spatially varying parallel imaging artifacts. Top left is the ground 

truth image. Top center is the simulated noise-corrupted image reconstructed by SENSE with a subsampling ratio of 

4. Top right is the g-factor map from the SENSE reconstruction. Bottom left is the output of ℂnnCNN without noise 

level map. Bottom center is the output of non-blind ℂnnCNN with a uniform noise level map. Bottom right is the 

output of non-blind ℂnnCNN with the scaled g-factor map as the noise level map. The non-blind ℂnnCNN with the 

scaled g-factor map successfully reduced the noise at the center regions with large g-factor. 
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Figure 2-5: Performance of non-blind ℂnnCNN on modalities or anatomies out of the training distribution. The top 

row is a T1-weighted brain image, the middle row is a FLAIR brain image, and the bottom row is a Pn-weighted knee 

image. From left to right, each column is the ground truth image, the simulated noise-corrupted image, and the output 

of non-blind ℂnnCNN, respectively. 

Figure 2-4 gives an example showing the network performance on spatially varying 

parallel imaging artifacts. The raw k-space data from 16 coils was retrospectively undersampled 

by a factor of 4. The noise in the SENSE reconstructed image was amplified by the g-factor due 
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to the coil geometry. With scaled g-factor map as the noise level map, non-blind ℂ nnCNN 

successfully reduced the noise and showed the greatest image quality, whereas other methods 

failed at the center regions with large g-factor. 

 

Figure 2-6: Performance of non-blind ℂnnCNN on images with pathology. The top row is a FLAIR brain image with 

a white matter lesion (yellow arrow), and the bottom row is a knee image with bone lesion (yellow arrow). From left 

to right, each column is the ground truth image, the simulated noise-corrupted image, and the output of non-blind 

ℂnnCNN, respectively. 

Figure 2-5 shows the generalizability of non-blind ℂnnCNN on data out of the training 

distribution. The testing images had contrasts and anatomies that were different from the training 

dataset. The output images were less noisy and showed superior metrics, demonstrating that the 

model was able to generalize under these circumstances and did not overfit to the training data. To 

further test the generalizability of non-blind ℂnnCNN, we used the pathology annotations from 

the fastMRI+ dataset. Figure 2-6 shows the network performance on images with lesion. The 

proposed method effectively reduced the noise without compromising the structural details in 
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small pathological regions. The output images showed superior metrics compared to the input 

images. 

 

Figure 2-7: (A) Performance of different denoising methods on the low-field M4Raw dataset. The average WM and 

GM SNRs of each testing volume were evaluated for each method. (B) Representative image results of different 

denoising methods. The output of ℂ nnCNN and non-blind ℂ nnCNN showed clear structures and better noise 

reduction compared to other methods. The asterisks indicate statistically significant differences between the methods 

(p < 0.05). 

Figure 2-7 shows the performance of different denoising methods on the low-field dataset 

M4Raw. The blind ℂ nnCNN and non-blind ℂ nnCNN showed better SNRs for WM and GM 

compared to other methods. Figure 2-8 gives an example from the M4Raw dataset showing the 
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network performance on spatially varying parallel imaging artifacts. The 4-coil data was 

undersampled by a factor of 2 and reconstructed by SENSE. The noise in the SENSE reconstructed 

image was amplified compared to the fully-sampled reconstruction. The non-blind ℂnnCNN with 

the scaled g-factor map showed the best denoising performance at regions with large g-factor, 

demonstrating its generalizability in different coil geometry. 

 

Figure 2-8: Example from the M4Raw dataset of non-blind ℂnnCNN on spatially varying parallel imaging artifacts. 

Top left is the fully-sampled image. Top center is the undersampled image reconstructed by SENSE with a 

subsampling ratio of 2. Top right is the g-factor map from the SENSE reconstruction. Bottom left is the output of 

ℂnnCNN without noise level map. Bottom center is the output of non-blind ℂnnCNN with a uniform noise level map. 

Bottom right is the output of non-blind ℂnnCNN with the scaled g-factor map as the noise level map. The non-blind 

ℂnnCNN with scaled g-factor map showed the best denoising performance at regions with large g-factor. 

To evaluate the denoising performance on in vivo data without reference, we calculated the 

SNR for WM and GM. Figure 2-9 shows an example of the manually defined ROIs. We listed the 
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mean intensity and standard deviation of each ROI. Figure 2-10A shows the performance of 

different denoising methods on local in vivo data collected from a 0.55 T low-field scanner. It can 

be observed that all methods reduced the noise and increased the SNRs for WM and GM. The 

blind ℂnnCNN and non-blind ℂnnCNN showed superior performance compared to other methods. 

Representative images are displayed in Figure 2-10B. The output of ℂ nnCNN and non-blind 

ℂnnCNN showed sharper structures and less noise. Figure 2-11 shows the output of non-blind 

ℂnnCNN with different NAs. The network showed its generalizability as it was able to enhance 

the overall image quality at different noise levels. When NA increased, small brain structures 

became more observable in the output image. 

 

Figure 2-9: Example of the manually defined ROIs for SNR calculation (white rectangles for air regions, cyan 

rectangles for GM regions, and yellow rectangles for WM regions) and the mean intensity and standard deviation of 

each ROI. 
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Figure 2-10: (A) Performance of different denoising methods on in vivo images collected from a low-field scanner 

with different NAs. The average WM and GM SNRs were evaluated for each method. (B) Representative image results 

of different denoising methods. Top left is the original noisy image acquired with NA of 3. The output of ℂnnCNN 

and non-blind ℂnnCNN showed sharper structures and less noise compared to other methods. 

The total training time for non-blind ℂnnCNN on a system with a NVInIA Titan Xp GPU, 

an Intel Xeon 3.3 GHz CPU, and 128 GB RAM was roughly 42 hours. We measured the 

computational cost of different algorithms on the same system. Table 2-1 summarizes the inference 

time and memory required for denoising one slice with size 320 × 320. Note that the time for 

estimating the noise standard deviation was also counted, and NLM and BM3n were only tested 
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on CPU. The non-blind ℂnnCNN was able to process one slice in less than 1.5 seconds on CPU. 

The inference time could be significantly shortened with GPU acceleration. 

 

Figure 2-11: Performance of non-blind ℂnnCNN at different noise levels. Top row is the original noisy image, and 

each column was acquired with NA of 1, 2, 3, 4, and 5, from left to right. Bottom row is the output of ℂnnCNN. The 

small structures (yellow and cyan arrows) became sharp and visible as NA increased. 

2.4 Discussion 

In this chapter, we presented non-blind ℂnnCNN, a network for MRI denoising that leverages 

complex-valued building blocks and noise level information to improve denoising performance in 

various settings. The proposed method achieved superior performance on both simulated and in 

vivo testing data compared to other algorithms. 

The utilization of complex-valued operations allows the network to better exploit the 

complex-valued MRI data and preserve the phase information. For NLM and BM3n, the denoising 

is directly performed on the magnitude image. The phase information is lost and cannot be 

recovered after denoising. Thus, the phase performance for these approaches was not examined. 

For real-valued CNNs, the input image is split into real and imaginary channels, and real-valued 

operations are then applied on these channels. The output image is obtained by combining the two 



30 

 

separate output channels, and the reconstructed phase may be changed. For complex-valued CNNs, 

the input/output, learned convolutional kernels, and latent features are all in complex-valued 

representations, enabling the network to make use of the valuable information contained in the 

phase map. The superior metrics achieved by complex-valued CNNs demonstrate that integrating 

the phase information is beneficial for the denoising process. 

 

Table 2-1: Computational cost of different algorithms for denoising one slice with size 320 × 320. 

The nnCNN network architecture is used in this work, since the original nnCNN model 

attained remarkable performance on Gaussian denoising. We defined network depth as the number 

of convolution blocks in a nnCNN model. We varied the number of trainable parameters by 

training real-valued nnCNN, blind ℂ nnCNN, and non-blind ℂ nnCNN with different network 

depths. At each network depth level, we ensured that each model has approximately the same 

number of trainable parameters. Our goal was to investigate whether the difference in denoising 

performance of real-valued, blind complex-valued, and non-blind complex-valued models 

narrowed as the number of parameters increased. Figure 2-12 shows the performance of the models 

as a function of network depth on the simulated testing dataset. The output of ℂnnCNN and non-

blind ℂnnCNN showed superior NRMSE, PSNR, and SSIM. With an increase in network depth, 

all models exhibited enhanced performance. The difference in denoising performance among 

different models remained relatively consistent as the network depth increased. 

 

 inference time 

/ slice (GPU) 

inference time 

/ slice (CPU) 

memory 

usage 

NLM - 456 ms 85 MB 

BM3D - 2562 ms 188 MB 

DnCNN  27 ms 303 ms 288 MB 

ℂDnCNN  79 ms 1297 ms 302 MB 

non-blind ℂDnCNN  154 ms 1472 ms 305 MB 
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Figure 2-12: Performance of nnCNN, ℂnnCNN, and non-blind ℂnnCNN as a function of network depth on the 

simulated testing dataset at different noise levels. The average NRMSE, PSNR, and SSIM were evaluated for each 

method. The performance of all networks improved with an increase in network depth. 

Recently, the U-Net architecture92 is of growing interest in solving problems like medical 

image segmentation and reconstruction78,79,93–95. The downscaling/upscaling blocks in the U-Net-

based model effectively increase the network receptive field and allow the network to utilize both 

global and regional features.  We extended our investigations beyond nnCNN architecture to 

include U-Net-based networks. Specifically, we trained and evaluated the denoising performance 

of real-valued U-Net, blind complex-valued U-Net (ℂU-Net), and non-blind ℂU-Net. Our goal was 

to investigate whether the utilization of complex-valued operations can improve the denoising 

performance on other network architectures. As shown in Figure 2-13, the denoising performance 

from blind ℂU-Net and non-blind ℂU-Net improved compared to the real-valued U-Net. 
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Figure 2-13: Performance of U-Net, ℂU-Net, and non-blind ℂU-Net on the simulated testing dataset at different noise 

levels. The average NRMSE, PSNR, and SSIM were evaluated for each method. 

One major concern about CNN-based denoising techniques is the blurring effect introduced 

by the network. To mitigate this drawback, we chose L1 loss instead of L2 loss, because previous 

studies have shown that using L2 loss is prone to produce over-smoothed restored images96–98. 

Incorporating the noise level into the network provides the possibility to control the balance 

between noise suppression and detail retention. However, in our experience, it is still challenging 

to balance the trade-off by simply adjust the estimated noise standard deviation. In the future work, 

more advanced methods, such as using attention mechanisms99 to better integrate the noise level 

map, could be explored to achieve this goal. The spatially non-uniform noise level map allows the 

network to remove the spatially dependent parallel imaging noise. This advantage improves its 

clinical feasibility since parallel imaging is frequently used to accelerate scans. In our experiment, 

we used a wavelet-based method to estimate the noise level for real and imaginary parts separately, 

and adopted naïve averaging to get the final estimation of 𝜎̂. To address parallel imaging noise, we 

weighted the uniform noise level map with the g-factor map. There exist numerous MRI noise 

estimation schemes relying on wavelet domain analysis, local mutual information, or median 

absolute deviation estimator100–102. We expect that applying these techniques will give a more 

accurate noise level map and further improve the network performance. Training the non-blind 



33 

 

ℂnnCNN with GAN103,104 is an alternative way to reduce blurring in the network output. However, 

a GAN scheme for complex-valued networks remains to be investigated. 

Overfitting is another issue for supervised learning models. nue to the limited size of the 

training set, the model might fit too closely to the training data. In such situation, the network 

begins to memorize irrelevant information, e.g., the brain anatomy or image contrast, instead of 

finding a general strategy for denoising. This is a critical problem for medical image processing 

since the spurious structures or subtle artifacts created by the network can severely affect the 

diagnosis. To alleviate overfitting, image augmentations were employed to increase the diversity 

of the training set. The validation loss was also monitored after each epoch during the training 

stage. Additional tests on data out of the training distribution showed that the method is 

generalizable. The network also showed promising results on in vivo data acquired on a low-field 

scanner, demonstrating its ability to boost the SNR of low-field MR images and its potential to 

reduce the acquisition time of low-field MRI. However, more in vivo experiments on the low-field 

scanner are needed to validate the network robustness on images of different body regions with 

different scan parameters. 

One potential limitation in our approach is that the current methodology focuses on 

employing deep learning solely for denoising after reconstructing the MR images. Several studies 

have tried to mitigate noise during the reconstruction to improve the reconstructed image 

quality105,106. These methods naturally embed the phase modulation and may better exploit the raw 

complex-valued imaging data. The integration of denoising within the reconstruction process 

could be investigated to further enhance the overall imaging pipeline for future work. 
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2.5 Conclusion 

We have shown that the proposed ℂnnCNN has superior denoising performance compared to the 

real-valued nnCNN and several other algorithms. The addition of noise level map provides it the 

ability to remove spatially varying parallel imaging noise. It offers rapid and significant SNR 

improvements, which is useful for low-field MRI. 
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Chapter 3: Multi-Task Learning for Simultaneous 

Motion Detection and Compensation in Brain Imaging 

3.1 Introduction 

As introduced in Chapter 1, motion artifacts caused by patient movement during the scan remain 

a significant challenge, particularly for brain MRI, which often requires long acquisition times. 

Motion artifacts can severely degrade image quality by introducing ghosting and blurring, leading 

to non-diagnostic images. Such artifacts are especially problematic in pediatric, elderly, and 

neurologically impaired patients who may have difficulty remaining still during the acquisition107. 

A recent study reported that approximately 20% of clinical MR examinations are affected by 

patient motion and require a rescan108. 

Various methods have been developed to address motion artifacts in brain MRI. These 

approaches can be categorized broadly into prospective and retrospective techniques. Prospective 

methods involve motion tracking systems, such as optical cameras13,14, or navigator sequences15–

20, that monitor patient movement during the scan and adjust the acquisition in real-time. However, 

most of these techniques require extra monitoring devices or modifications to pulse sequences, 

limiting their clinical applicability. On the other hand, retrospective methods attempt to 

compensate motion artifacts after image acquisition. Traditional retrospective methods often rely 

on model-based techniques and iterative reconstruction109,110, which are computation-demanding 

and time-consuming. 

In recent years, deep-learning-based methods have emerged as a promising solution for 

motion compensation in brain MRI. These methods leverage convolutional neural networks 
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(CNNs) or generative adversarial networks (GANs) to transform motion-corrupted images into 

motion-free images. Johnson and nrangova111 implemented a pix2pix-based network to correct for 

3n rigid-body motion. Küstner et al112 investigated the influence of network architecture and 

introduced their MedGAN architecture with style transfer loss. Lee et al113 combined a registration 

network and a multi-input, multi-output network to perform motion compensation for multi-

contrast MRI. Pawar et al114 used a multi-resolution network architecture for motion artifact 

suppression. Hewlett et al115 investigated the incorporation of multi-coil MRI data in deep-

learning-based motion correction approaches. These deep learning models provide several 

advantages, including the ability to generalize across different motion types and imaging contrasts. 

Additionally, they are typically applied retrospectively without the need for hardware or sequence 

modifications, making them suitable for routine clinical practice. In addition to motion 

compensation, deep-learning-based motion detection techniques are receiving increasing attention. 

Vakli et al116 developed an effective end-to-end lightweight network for motion detection. Fantini 

et al117 utilized transfer learning to rate motion artifacts in neuroimaging. By learning to classify 

images as usable or requiring motion compensation, these methods help optimize the quality 

control process in clinical settings and reduce the burden on radiologists. 

Multi-task learning (MTL) has gained attention in the field of medical imaging as a way to 

simultaneously learn multiple related tasks118,119. Compared to single-task learning (STL), where 

models are trained independently for each task, MTL provides several advantages. First, MTL 

enables more efficient data utilization by leveraging shared features across multiple tasks, reducing 

the need for large task-specific datasets. Additionally, MTL models are less prone to overfitting, 

as they learn from a more diverse set of tasks, improving their generalizability on different types 

of data. Finally, MTL can accelerate the learning process by leveraging auxiliary tasks that improve 
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the model's ability to learn relationships between tasks120,121. For example, the motion 

compensation task can benefit from the motion detection task by focusing on relevant features 

associated with motion artifacts. 

In this chapter, we proposed a novel multi-task conditional GAN (MT-cGAN) for 

simultaneous motion detection and compensation in brain MRI. Rigid motion artifacts under 

realistic clinical settings were simulated on brain images. The network was trained to detect 

whether the image is motion-corrupted and learn the mapping between motion-corrupted and 

motion-free images. The proposed method was evaluated with both simulated and in vivo testing 

data sets and compared with STL models. 

3.2 Methods 

3.2.1 Motion simulation 

It is difficult to get a large number of matched motion-free and motion-corrupted image pairs for 

supervised network training. Therefore, images with intershot rigid motion artifacts were 

simulated from motion-free images. The fastMRI dataset is an extensive open-source collection of 

multi-coil MRI raw data designed to advance MRI reconstruction techniques80. It includes multi-

coil k-space data for T1-weighted, T2-weighted, FLAIR, and post-contrast T1-weighted images. 

These modalities are commonly used in clinical brain MRI. netailed imaging parameters can be 

found on the project website (https://fastmri.med.nyu.edu/). From the fastMRI dataset, we 

randomly selected 250 volumes from each of the four modalities, yielding a total of 1000 volumes 

for model training and validation. In addition, 200 more volumes (50 from each modality) were 

set aside for testing the model on simulated data. Prior to motion simulation, any volumes that 

exhibit apparent motion artifacts were manually excluded to ensure the quality of the data. 
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Figure 3-1: Training data simulation process. (A) Motion profiles were generated to simulate realistic movement 

artifacts commonly observed in brain MRI, including periodic, linear, sudden motions, and random perturbations. (B) 

Spatial transformations were applied to the motion-free image according to the generated motion profile. The phase 

encoding lines corresponding to different motion states were combined to form the motion-corrupted k-space data. 

The motion-corrupted image was obtained by an inverse FFT. (C) To simulate real clinical MRI conditions, complex-

valued AWGN was added, and k-space undersampling and parallel imaging reconstruction were applied. The ground 

truth image was obtained by the sum-of-squares reconstruction. 

To generate realistic motion artifacts, we first implemented a motion profile generation 

process. Our motion simulation model combines several types of motion commonly observed 

during brain MRI scans122. These include periodic motion, which typically corresponds to 

physiological movements such as respiration or cardiac cycles, linear motion, which simulates 

gradual shifts or rotations due to unintentional movements, and sudden motion, which represents 

abrupt actions like yawing or sneezing, mimicking the irregular and unpredictable nature of patient 

movement. Additionally, random perturbations were added to introduce variability. As shown in 

Figure 3-1A, the final motion profile was constructed by combining these components. The motion 

was simulated as 3n translations and rotations, allowing for a comprehensive representation of 
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head motion. netailed parameters for generating motion profiles are listed in Table 3-1. This 

approach enabled us to create realistic and diverse motion-corrupted images for training and testing 

the network, ensuring the model's robustness in handling a wide range of motion artifacts 

commonly encountered in clinical brain MRI. 

Assume an ideal motion-free image 𝐱0, then the motion-corrupted k-space data 𝐲 can be 

written as: 

𝐲 = ∑ 𝐒𝑛𝐅𝐔𝑛𝐱0

𝑁

𝑛=1

(3-1) 

where 𝐔𝑛 is the spatial transformation matrix for phase encoding line 𝑛, which operates in the 

image domain to move pixel values from one location to another123, 𝐅 represents the fast Fourier 

transform (FFT), 𝐒𝑛 extracts the corresponding phase encoding line. As shown in Figure 3-1B, we 

can reconstruct the motion-corrupted image by applying an inverse FFT to the motion-corrupted 

k-space data. 

In addition to reconstruction from fully sampled k-space data, in clinical settings, brain 

MRI scans are often accelerated using parallel imaging techniques such as Sensitivity Encoding 

(SENSE)2 or Generalized Autocalibrating Partial Parallel Acquisition (GRAPPA)3. These 

acceleration methods, while reducing the scan time by undersampling the k-space lines, can lower 

the signal-to-noise ratio (SNR). To simulate such real-world scenarios and improve the robustness 

of our model, we incorporated these factors into our simulation pipeline. Specifically, we first 

added complex-valued additive white Gaussian noise (AWGN) to the multi-coil raw k-space data 

to simulate the typical SNR limitations encountered in MRI acquisitions. After simulating the 

motion artifacts, the multi-coil k-space data was then undersampled with an equispaced sampling 

mask, where the central 24 phase-encoding lines were kept. netailed parameters of the added noise 
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and undersampling ratio used in the training are also listed in Table 3-1. Finally, the undersampled 

k-space data was reconstructed through SENSE or GRAPPA. For SENSE reconstruction, the coil 

sensitivity maps were estimated from the central 24 phase-encoding lines using the ESPIRiT 

algorithm124. For GRAPPA reconstruction, the central lines constituted the autocalibration signal 

(ACS) region, allowing the algorithm to estimate missing k-space points from adjacent lines. This 

process, shown in Figure 3-1C, ensured that the simulation reflected realistic MRI acquisition 

conditions, enhancing the model's ability to generalize to real clinical data. 

 

Table 3-1: nescription of the parameters used in the motion simulation. 

3.2.2 Network architecture 

We implemented a MT-cGAN for the simultaneous detection and compensation of motion artifacts 

in brain MRI scans. The architecture consists of two primary components: a generator and a 

discriminator. The generator is based on an adaptation of the U-Net architecture92, while the 

discriminator is designed as a simple CNN aimed at distinguishing between real motion-free 

images and generated motion-compensated images. 
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Figure 3-2: Network Architecture of MT-cGAN. The network consists of a generator based on a modified U-Net and 

a discriminator. The generator includes an encoder-decoder structure to reconstruct the output image, and a 

classification branch at the bottleneck to predict whether the input image is motion-corrupted. The discriminator is a 

simple CNN. 

The generator follows a U-Net structure, which is well-suited for image restoration by 

utilizing skip connections between the encoding and decoding blocks. The encoder comprises three 

encoding blocks, each of which includes two convolutional layers with 3 × 3 × 3 kernels, batch 

normalization (BN)83, and leaky rectified linear units (LReLU) for non-linearity125. Each encoding 

block is followed by a max-pooling layer with a 2 × 2 × 2 stride that reduces the spatial dimensions 

of the feature maps, while the number of feature channels is increased from 64 to 256. The decoder 

mirrors the encoder, consisting of three decoding blocks. Each decoding block includes an up-

sampling layer (implemented with a transposed convolution with a stride of 2 × 2 × 2) and two 

convolutional layers followed by BN and LReLU. Skip connections are employed between 

corresponding encoding and decoding blocks, allowing original feature maps from the encoder to 

be merged with up-sampled feature maps in the decoder. The output of the decoder is passed 

through a final 1 × 1 × 1 convolutional layer to generate the corrected image. In addition to the 
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main encoder-decoder structure, a classification branch was added at the bottleneck of the U-Net. 

At this point, the feature maps are flattened and passed through two fully connected layers with 

LReLU activations, producing a binary output representing whether the input image is motion-free 

or motion-corrupted. This multi-task approach allows the generator to perform both motion 

detection and compensation tasks simultaneously, as shown in Figure 3-2. 

The discriminator is designed to classify images as either real (truly motion-free) or fake 

(motion-compensated). It consists of three convolutional layers, each with a stride of 2, followed 

by LReLU activations. The number of feature channels increases from 64 to 256 across these layers. 

After the final convolutional layer, the feature maps are flattened, and a fully connected layer is 

used to produce a single output, which indicates the probability that the input image is either a real 

motion-free image or a motion-compensated image generated by the generator. 

To effectively train the MT-cGAN model, we incorporated three different loss functions: 

an image restoration loss, a classification loss, and a GAN loss. For the image restoration task, we 

used a combined L1 loss and multi-scale structural similarity (MS-SSIM) loss. The L1 loss 

encourages pixel-level accuracy by minimizing the absolute differences between the corrected and 

ground-truth images. Meanwhile, the MS-SSIM loss captures structural information at different 

scales, enhancing the model’s ability to preserve textural details and improve perceptual quality. 

This approach follows the work of Zhao et al96 and Pezzotti et al126, who demonstrated that the 

combined loss yields superior performance for image restoration. Mathematically, the image 

restoration loss ℒimg is defined as: 

ℒimg = ‖𝐱GT − 𝐱̂‖1 + 𝛼(1 − MS-SSIM(𝐱GT, 𝐱̂)) (3-2) 

where 𝐱GT represents the ground truth motion-free image, 𝐱̂ represents the output image from the 

generator, and 𝛼 is a hyper-parameter empirically set to 0.84. For the classification branch, the 
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widely used binary cross-entropy loss is employed to penalize misclassifications. The 

classification loss ℒcls is given by: 

ℒcls = −𝑐GT log(𝑐̂) − (1 − 𝑐GT) log(1 − 𝑐̂) (3-3) 

where 𝑐GT  is the ground truth label of the input image (0 for motion-free, and 1 for motion-

corrupted), and 𝑐̂ is the predicted probability from the generator. To train a generator producing 

realistic motion-compensated images, we also used a GAN loss. The discriminator aims to 

distinguish between real motion-free and generated motion-compensated images, while the 

generator seeks to produce images that the discriminator cannot differentiate from real ones. This 

adversarial learning process is characterized by: 

ℒGAN = 𝔼[log(𝐷(𝐱, 𝐱GT))] + 𝔼[log(1 − 𝐷(𝐱, 𝐱̂))] (3-4) 

where 𝐺  denotes the generator, 𝐷  denotes the discriminator, 𝐱  denotes the input image, and 𝔼 

denotes the expectation operator. These components are combined in the final weighted objective 

function as follows: 

ℒ = 𝜆imgℒimg + 𝜆clsℒcls + 𝜆GANℒGAN (3-5) 

where 𝜆img, 𝜆cls, and 𝜆GAN are regularization parameters optimized through grid search. 

3.2.3 Evaluation 

For the motion detection task, we compared our MT-cGAN with two other classifiers: a 

conventional classifier and a CNN. The first conventional classifier utilized an extreme gradient 

boosting (XGBoost) approach127 trained on image quality metrics calculated using the MRIQC 

toolbox128. This classifier leverages pre-calculated metrics, such as SNR, contrast, and blurriness, 

to assess the presence of motion artifacts. The second model was a single-task CNN (ST-Net) 

adapted from our generator architecture. Specifically, the ST-Net retained only the encoder and 
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classification components from the MT-cGAN generator, excluding the decoder branch 

responsible for motion compensation. For each model, performance was evaluated through various 

classification metrics, including confusion matrix, classification accuracy, sensitivity, specificity, 

receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC).  

For the motion compensation task, our MT-cGAN model was compared with two other 

models. Both of these models follow the same network structure as the MT-cGAN, but without the 

classification branch dedicated to the motion detection task. The first comparison model, referred 

to as the baseline model, was trained on a dataset containing only simulated motion artifacts, 

excluding additional elements such as AWGN, k-space undersampling, and parallel imaging 

reconstruction. The second comparison model, named the ST-cGAN model, was trained on data 

that underwent the full simulation process. By comparing these two models, we can determine the 

impact of including AWGN and parallel imaging simulation on the model's robustness, especially 

when applied to real clinical data. For a quantitative evaluation of motion compensation 

performance, we used three metrics: normalized root-mean-square error (NRMSE), peak signal-

to-noise ratio (PSNR), and structural similarity index measure (SSIM). 

For the XGBoost classifier, we used the Python xgboost package127. All networks were 

implemented in PyTorch84 and trained using the Adam optimizer85 with a learning rate of 0.0001 

and momentum parameters 𝛽1 = 0.9 and 𝛽2 = 0.999. nue to the limit of GPU memory, a batch size 

of 1 was used throughout training. The evaluation was first performed on a test dataset generated 

using the same simulation process as the training data, but without AWGN and with an 

undersampling ratio set to 2. Half of the test images contained simulated motion artifacts, while 

the remaining half were kept as motion-free, allowing the assessment of the model’s motion 

detection accuracy. 
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Table 3-2: MR acquisition parameters of local in-vivo T1-weighted and T2-weighted images. 

To further assess the model's generalizability to real clinical data, we used the MR-ART 

dataset129. This dataset comprises T1-weighted brain MRI scans from 148 healthy adults, collected 

using the magnetization-prepared rapid gradient echo (MPRAGE) sequence and 2-fold GRAPPA 

acceleration. The images are scored by expert neuroradiologists on a three-point scale, where 

images scored as 1 are considered motion-free, and those scored as 2 or 3 are labeled as motion-

corrupted. Although the MR-ART dataset offers matched motion-free and motion-corrupted scans 

per participant, there is minor misalignment between the image pairs, preventing the use of 

reference-based metrics like NRMSE, PSNR, and SSIM. Therefore, we evaluated motion 

compensation performance on this dataset using three reference-free image quality metrics 

computed with the MRIQC toolbox: total SNR, entropy focus criterion (EFC)109, and coefficient 

of joint variation (CJV)130. These metrics correlate with head motion effects and allow assessment 

of motion compensation performance without a ground truth image. 

Lastly, we validated the models on local in vivo T1-weighted and T2-weighted scans 

collected from six subjects. The scans were performed on a 3T scanner (MAGNETOM Prisma; 

 T1-weighted T2-weighted 

Sequence 3D MPRAGE 2D TSE 

Voxel size [mm] 1.0 × 1.0 × 1.0 0.5 × 0.5 × 5.0 

Repetition time [ms] 2100 4500 

Echo time [ms] 3 100 

Flip angle [°] 10 90 

Orientation Sagittal Sagittal 

Phase encoding direction Anterior‐posterior Anterior‐posterior 

Acceleration factor 2 2 

Acquisition time [min:s] 5:23 3:17 
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Siemens Healthcare; Erlangen, Germany). Imaging studies was performed under institutional 

review board-approved protocols, and written informed consent from all subjects were given. For 

each subject, motion-free images were first acquired while the participant remained still in the 

scanner. Subsequently, motion-corrupted images were obtained by instructing the participant to 

nod their head during the scan. netailed imaging parameters for these acquisitions were listed in 

Table 3-2. 

 

Figure 3-3: Confusion matrices and ROC curves for the motion detection task on the simulated test dataset. The AUC 

for XGBoost, ST-Net, and MT-cGAN is 0.8375, 0.9114, and 0.9247, respectively. The MT-cGAN outperformed the 

other two models. 

3.3 Results 

On the simulated test dataset, for the motion detection task, the XGBoost classifier achieved an 

accuracy of 83.00%, with a sensitivity of 88.00% and specificity of 79.00%. The AUC for 

XGBoost is 0.8375. The ST-Net outperformed XGBoost, reaching an accuracy of 90.00%, with a 

sensitivity of 92.00% and specificity of 87.00%. The AUC for ST-Net was 0.9114. Overall, MT-

cGAN achieved the highest performance among the three models, with an accuracy of 91.00%, a 

sensitivity of 94.00%, a specificity of 88.00%, and an AUC of 0.9247, demonstrating that the 

shared features between motion detection and compensation tasks enhance the model’s robustness 

in detecting motion artifacts. The confusion matrices and ROC curves were shown in Figure 3-3. 

For the motion compensation task, all models demonstrated improvement in the image quality of 
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motion-corrupted images. MT-cGAN achieved the best performance across the quantitative 

metrics of NRMSE, PSNR, and SSIM, as shown in Figure 3-4A. Representative images from each 

model's output were shown in Figure 3-4B. The baseline model exhibited more visible blurring 

and residual artifacts, suggesting that including AWGN and parallel imaging during the simulation 

process is beneficial for enhancing model robustness and performance. Compared to the baseline 

and ST-cGAN models, MT-cGAN provided superior artifact reduction and better preservation of 

fine structures, such as cortical folds and small vessels, as indicated by red arrows. 

 

Figure 3-4: Quantitative evaluation results and representative images for the motion compensation task on the 

simulated test dataset. (A) MT-cGAN achieved the best NRMSE, PSNR, and SSIM on motion-compensated images. 

Asterisks indicate a significant difference (p < 0.05). (B) MT-cGAN showed fewer residual artifacts and better fine 

structural preservation (marked by red arrows). 
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Figure 3-5: Confusion matrices and ROC curves for the motion detection task on the MR-ART dataset. The AUC for 

XGBoost, ST-Net, and MT-cGAN is 0.7761,0.8578, and 0.9090, respectively. The MT-cGAN achieved the highest 

performance. 

On the MR-ART dataset, MT-cGAN achieved the highest performance in the motion 

detection task, with an accuracy of 90.14%, sensitivity of 90.88%, and specificity of 88.37%. This 

outperformed both XGBoost, with an accuracy of 79.59%, sensitivity of 82.08%, and specificity 

of 73.64%, and ST-Net, with an accuracy of 85.78%, sensitivity of 86.97%, and specificity of 

82.95%. The confusion matrices and ROC curves were shown in Figure 3-5. As indicated by the 

ROC curves, MT-cGAN achieved the highest AUC at 0.9090, compared to 0.8578 for ST-Net and 

0.7761 for XGBoost. For motion compensation, all models showed improved metrics on motion-

corrupted images. MT-cGAN achieved the lowest EFC and CJV on motion-corrected images. 

Figure 3-6A provided the quantitative evaluation results, and Figure 3-6B provided representative 

images from each model. The output of MT-cGAN showed fewer residual artifacts than the 

baseline and ST-cGAN models, as indicated by red arrows.  

The local in-vivo data consists of 24 imaging volumes (T1-weighted and T2-weighted, 

both motion-free and motion-corrupted) from six subjects. nue to the small dataset size, the 

evaluation results serve as an indicative comparison rather than a comprehensive performance 

assessment. For the motion detection task, both ST-Net and MT-cGAN achieved an accuracy of 

83.33%, outperforming the XGBoost classifier, which achieved an accuracy of 70.83%. For the 

motion compensation task, MT-cGAN demonstrated the best performance across three quantitative 
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metrics. As shown in Figure 3-7A, MT-cGAN achieved the lowest NRMSE and the highest PSNR 

and SSIM on the motion-corrected images. Representative images were shown in Figure 3-7B. 

The MT-cGAN outputs showed reduced visual blurring and better preservation of fine structural 

details compared to the baseline and ST-cGAN models. 

 

Figure 3-6: Quantitative evaluation results and representative images for the motion compensation task on the MR-

ART dataset. (A) For compensation of images with motion artifacts, MT-cGAN achieved the lowest EFC and CJV, 

while the baseline model attained the highest SNR. Asterisks indicate a significant difference (p < 0.05). (B) The 

output of MT-cGAN exhibit minimal residual artifacts as indicated by red arrows. 

The computational efficiency of MT-cGAN was evaluated in terms of training and 

inference time. Training MT-cGAN for 50 epochs on a system equipped with two NVInIA Titan 

Xp GPUs took approximately 63 hours. For deployment, MT-cGAN can process one volume of 

size 320 × 320 × 8 in approximately 1.2 seconds on the same system. 

3.4 Discussion 

In this chapter, we developed and evaluated a MT-cGAN framework for simultaneous motion 

detection and compensation in brain MRI. Our MT-cGAN model demonstrated high efficacy in 
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reducing motion artifacts and accurately detecting motion-corrupted images. By leveraging MTL 

and including AWGN and parallel imaging schemes in the training data simulation, MT-cGAN 

shows promising advantages over STL models and conventional methods in both tasks. This 

outcome highlights the potential of our approach to provide automatic motion detection and 

compensation in real clinical settings. 

 

Figure 3-7: Quantitative evaluation results and representative images for the motion compensation task on the local 

in-vivo data. (A) MT-cGAN achieved the best NRMSE, PSRN, and SSIM on compensating motion-corrupted images. 

Asterisks indicate a significant difference (p < 0.05). (B) Compared to the baseline model and ST-cGAN, the outputs 

of MT-cGAN showed reduced visual blurring and superior preservation of fine structures (marked by red arrows). 

Our training data generation included a comprehensive motion simulation process. We 

incorporated periodic, linear, and sudden motion, capturing a wide spectrum of potential subject 

movements in brain MRI. This diversity in motion simulation ensured that the model learned to 

generalize across different types of motions. Prior studies have often used a simpler motion 

simulation strategy by combining k-space segments at different motion states, which may limit the 

model's adaptability to real brain MRI data. Another key feature of our simulation process was the 
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inclusion of AWGN and parallel imaging schemes. These additions provided the model with 

realistic training data that more closely resembles clinical conditions. These augmentations were 

proved beneficial for improving the model’s robustness in clinical applications, where MRI scans 

are often affected by noise and residual parallel imaging artifacts131,132. However, the current 

motion simulation process was restricted to rigid motion. Non-rigid motion is also present in 

clinical MRI, especially for cardiac or abdominal imaging133. Handling non-rigid motion would 

be a valuable step in making the model more clinically useful and extending its potential to other 

body parts. 

The conditional GAN architecture was chosen due to its ability to generate high-fidelity 

images, as demonstrated in previous studies111,112,115. Compared to traditional CNNs trained with 

L2 loss, the combined L1+MS-SSIM and adversarial loss helps the generator to produce sharp and 

realistic images, addressing the common problem of blurriness often observed in the image 

restoration96,126,134. Recently, attention-based architectures have shown promise in various imaging 

tasks135–138. Future work includes exploring alternative architectures like transformers, as they 

provide the ability to capture long-range dependencies and spatial hierarchies, which may further 

enhance the model’s performance. 

The superior performance of MT-cGAN on both tasks demonstrated the effectiveness of 

MTL framework. Unlike STL models, which independently handle either motion detection or 

compensation, MTL captures the complementary nature of two tasks, as they both focus on 

identifying and addressing motion artifacts. This approach helped the encoder to learn motion-

related feature maps in the latent space and reduced the potential for overfitting. One crucial issue 

in MTL is balancing the loss functions for different tasks. In this study, we optimized static 
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regularization parameters through grid search, but advanced approaches, such as adaptive 

weighting139 or an uncertainty-based method140 may yield improved results. 

One notable limitation for current study is the relatively small size of the local in-vivo test 

dataset. A more diverse dataset from multiple institutions with different scanning parameters and 

different pre-processing procedures should help to validate the generalizability of the model. 

Additionally, as phase information is crucial in MRI, incorporating phase data into the network 

may improve artifact characterization. However, few existing motion datasets provide raw phase 

information, underscoring the need for datasets with both magnitude and phase data for more 

comprehensive training. 

3.5 Conclusion 

The MT-cGAN model presented a robust approach for simultaneous motion detection and 

compensation in brain MRI. By combining realistic data simulation and MTL framework, MT-

cGAN showed its potential to improve diagnostic image quality and reduce rescan rates, 

contributing to more efficient and accurate brain MRI. 
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Chapter 4: Convolutional Neural Network for Field 

Inhomogeneity and Concomitant Gradient Field 

Correction in Spiral Imaging 

4.1 Introduction 

Compared to Cartesian imaging, spiral imaging offers the advantages in motion robustness and 

shorter scan time due to its efficient coverage of k-space and natural oversampling of central k-

space141–144, making it an excellent alternative scheme for k-space sampling. However, spiral 

imaging is particularly susceptible to off-resonance effects, leading to blurring and geometric 

distortions in the acquired images26. Off-resonance effects in MRI arise from several sources, 

including field inhomogeneities and concomitant fields33. Field inhomogeneities typically result 

from imperfections in the main magnetic field 𝐵0, subject-induced susceptibility variations, and 

eddy currents. These inhomogeneities introduce spatially varying frequency shifts, especially in 

regions near tissue-air interfaces, leading to a cumulative phase error during the long spiral readout. 

Concomitant fields, on the other hand, are induced by the applied gradients according to Maxwell’s 

equations. Although the concomitant fields are generally weaker than the primary gradients, their 

effects can become noticeable in low-field, high-gradient systems if uncorrected145. 

Over the years, various methods have been developed to address off-resonance artifacts. 

Field map-based methods involve acquiring a map that characterizes off-resonance frequencies 

across the image, which is then used to apply corrections through conjugate phase reconstruction 

(CPR). However, exact CPR is very time consuming and several approximation methods have 

been proposed. Noll et al27 introduced an efficient correction scheme by segmenting the collected 
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data based on collection time. Irarrazabal et al146 proposed to use an estimated linear field map for 

inhomogeneity correction requiring little extra computation time. Man et al29 utilized 

multifrequency interpolation (MFI) to reduce computational demands. Schomberg147 compared 

several CPR approximation methods in terms of their speed and accuracy.  Sutton et al28 described 

an iterative reconstruction algorithm based on the min-max time interpolation. 

Automatic deblurring methods try to reduce the image blurring by optimizing some 

objective function, which do not require the filed map. Noll et al31 developed the original autofocus 

method by minimizing the image imaginary part. Man et al32 and Moriguchi et al148 introduced 

multi-stage and block-by-block correction strategies to improve computational efficiency. More 

recently, deep learning techniques have demonstrated potential in automatic deblurring. Zeng et 

al149 implemented a deep residual network for off-resonance correction in 3n cone scans. Lim et 

al150 applied convolutional neural networks (CNNs) to reduce blurring in spiral real-time speech 

MRI. 

However, most of these works focused primarily on correcting field inhomogeneity. In this 

study, we proposed a CNN to simultaneously correct field inhomogeneity and concomitant field 

effects in spiral MRI. The proposed method does not require the field map acquisition or 

concomitant field estimation. We synthesized off-resonance artifacts based on simulated field 

maps and concomitant fields and used the synthesized images for network training. The network 

performance was evaluated on both synthetic and in-vivo data. 
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4.2 Methods 

4.2.1 Training data generation 

We used the fastMRI database80 to create a dataset for training our CNN. The fastMRI dataset 

provides raw k-space data that includes the phase information, which is essential for simulating 

off-resonance artifacts. We randomly selected 1000 volumes (500 T1-weighted and 500 T2-

weighted) as the training dataset. Another 200 volumes were randomly chosen as the testing dataset. 

 

Figure 4-1: Off-resonance artifacts simulation process. The field map was simulated by combining random 

polynomial and Gaussian functions, and the concomitant field map was calculated based on the scan parameters. The 

k-space trajectory and corresponding gradient waveforms were generated and used for computing the time maps. 

Least-squares fitting was adopted to estimate the parameters in mapping the time maps to a quadratic function. The 

final blurred image with off-resonance artifacts was obtained by MFI. 
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To simulate off-resonance artifacts in spiral MRI, we first generated field maps by 

combining random polynomials and several Gaussian functions. For concomitant field simulation, 

we utilized the simplified equations described in King et al19, ignoring the third and higher order 

terms: 

Δ𝜔𝑐(𝐱) ≈
𝛾𝑔𝑚

2

4𝐵0

(𝐹1𝑥2 + 𝐹2𝑦2 + 𝐹3𝑧2 + 𝐹4𝑦𝑧 + 𝐹5𝑥𝑧 + 𝐹6𝑥𝑦) (4-1) 

where 𝐱 = [𝑥, 𝑦, 𝑧]𝐓 are the logical image coordinates, 𝐵0 is the main magnetic field strength, 𝑔𝑚 

is the maximal readout gradient amplitude. The values of 𝐹𝑛 are defined in King et al151 and depend 

on the elements in the rotation matrix 𝐀 between the actual scanner coordinates and the logical 

image coordinates, where 

𝐀 = [

𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6

𝑎7 𝑎8 𝑎9

] (4-2) 

The MR signal equation for an object 𝑚(𝐱) in the presence of 𝐵0 inhomogeneity and concomitant 

fields can be written as: 

𝑠(𝑡) = ∫ 𝑚(𝐱)𝑒−𝑖2𝜋𝐤(𝑡)⋅𝐱𝑒−𝑖Δ𝜔(𝐱)𝑡𝑒−𝑖𝛷𝑐(𝐱,𝑡)𝑑𝐱

𝐱

(4-3) 

where 𝐤(𝑡) =
𝛾

2𝜋
∫ 𝑔(𝜏)𝑑𝜏

𝑡

0
  is the k-space trajectory, 𝑔2(𝑡) = 𝑔𝑥

2(𝑡) + 𝑔𝑦
2(𝑡) , 𝑔𝑥(𝑡)  and 𝑔𝑦(𝑡) 

are the readout gradients in the logical image coordinates, Δ𝜔(𝐱)  is the angular off-resonance 

frequency of 𝐵0 inhomogeneity, and 𝛷𝑐(𝐱, 𝑡) is the additional phase accrual due to concomitant 

fields. According to Equation 4-1, 𝛷𝑐(𝐱, 𝑡) can be expressed as: 

𝛷𝑐(𝐱, 𝑡) = Δ𝜔𝑐(𝐱)𝑡𝑐(𝑡) (4-4) 
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where 𝑡𝑐(𝑡) =
1

𝑔𝑚
2 ∫ 𝑔2(𝜏)𝑑𝜏

𝑡

0
. As proposed by Ahunbay et al152 and Cheng et al153, since both 𝑡 

and 𝑡𝑐(𝑡) can be approximated with a quadratic function 𝑘𝑥
2 + 𝑘𝑦

2, the total off-resonance phase 

can be written as: 

𝛷(𝐱, 𝑡) = 𝑝𝑐1Δ𝜔𝑐(𝐱) + (𝑝1Δ𝜔(𝐱) + 𝑝𝑐2Δ𝜔𝑐(𝒙))(𝑘𝑥
2 + 𝑘𝑦

2) (4-5) 

where 𝑝1, 𝑝𝑐1, and 𝑝𝑐2 are constants obtained by least-squares fitting. 

We generated a spiral trajectory based on the image field of view (FOV) and resolution and 

calculated the corresponding spiral gradients. Based on these components, we simulated the 

blurred image by applying MFI on the ground truth, as shown in Figure 4-1. This approach allows 

for simultaneous simulation of 𝐵0  inhomogeneity and concomitant field effect. netailed 

parameters used in the simulation were listed in Table 4-1. 

 

Table 4-1: nescription of the parameters used in the off-resonance simulation. 

4.2.2 Network architecture 

Inspired by the autofocus method for off-resonance correction31, we implemented a AutofocusNet 

that operates on multiple demodulated images. The blurred input image was first demodulated at 

M different frequencies, where M is a hyperparameter set to 21 to provide a sufficient range for 
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capturing off-resonance effects. This produced a series of 21 complex-valued images, which were 

then concatenated to form the input for the network. 

The architecture of our network consists of three residual blocks, each designed to handle 

complex-valued data. Within each residual block, there are two 3 × 3 complex-valued 

convolutional layers (ℂConv)76, each with a depth of 128 filters. These convolutional layers are 

followed by complex-valued rectified linear unit (ℂReLU)76 activations to introduce nonlinearity. 

A skip connection is added between the input and output of each residual block, enabling the 

network to learn residual mappings, which improves its stability and convergence154. The final 

deblurred image is generated by a 1 × 1 ℂConv, which combines the outputs from the residual 

blocks into a single corrected image, as shown in Figure 4-2. This architecture was designed to 

balance complexity with computational efficiency, leveraging complex-valued operations to 

exploit the phase information in off-resonance correction. 

 

Figure 4-2: Architecture for AutofocusNet. The input blurred image is demodulated at multiple frequencies to produce 

a series of images, which are concatenated and fed into the network. The network consists of three residual blocks. 

The final layer is a 1 × 1 ℂConv to generate the deblurred output image. 

The entire network was implemented in PyTorch84 and optimized using an L1 loss function, 

measuring the difference between the network output and the ground truth. The Adam optimizer85 

was employed with a learning rate of 0.0001 and momentum parameters 𝛽1 = 0.9 and 𝛽2 = 0.999. 

We trained the network for 200 epochs with roughly 30 hours on a NVInIA Titan Xp GPU. 
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4.2.3 Evaluation 

The performance of our AutofocusNet model was evaluated on both simulated and real phantom 

and in vivo data. For the simulated testing data, we used the same process described in the Training 

data generation Section to produce images off-resonance artifacts. We compared our method to the 

autofocus method, which does not require field map acquisition or concomitant field calculation. 

To ensure a fair comparison, the autofocus method also used demodulated images at M = 21 

different frequencies, matching our preprocessing in AutofocusNet. Quantitative evaluation 

metrics, including normalized root-mean-squared error (NRMSE), peak signal-to-noise ratio 

(PSNR), and structural similarity index (SSIM) were computed to assess the performance across 

methods. 

For real data validation, we acquired phantom and in vivo data on a Siemens 1.5 T Avanto 

scanner with spiral trajectories. We compared our method to the autofocus method and the 

Chebyshev approximation-based semiautomatic method developed by Chen et al155. The 

semiautomatic method requires knowledge of the field map and concomitant fields. For each scan, 

two single-shot spirals with an echo delay of 1 ms were first acquired, allowing the computation 

of a low-resolution field map. The concomitant fields can be calculated from theory based on the 

applied spiral gradients. 

4.3 Results 

On the simulated testing dataset, AutofocusNet outperformed the conventional autofocus method 

across all quantitative evaluation metrics. Specifically, AutofocusNet achieved an NRMSE of 

0.0343, PSNR of 36.99, and SSIM of 0.9520, whereas the autofocus method achieved an NRMSE 

of 0.0596, PSNR of 32.62, and SSIM of 0.9284, as shown in the Figure 4-3A. Representative 
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images were shown in Figure 4-3B. The output of the autofocus method still showed residual 

blurring and off-resonance artifacts, particularly in regions with high off-resonance frequency. The 

output of AutofocusNet showed sharper anatomical structures and higher image quality. 

 

Figure 4-3: Quantitative evaluation results and representative images on the simulated test dataset. (A) AutofocusNet 

achieved the better NRMSE, PSNR, and SSIM. Asterisks indicate a significant difference (p < 0.05). (B) The output 

of the autofocus method still showed blurring and artifacts in regions with high off-resonance frequencies, while the 

output of AutofocusNet showed sharper structures with reduced artifacts (marked by red arrows). 

The performance of proposed method was further evaluated using phantom and in vivo 

data, with representative images shown in Figure 4-4. These data were acquired using spiral 

trajectories with the readout length ranging from 8 ms to 16 ms, and the imaging slice off-center 

distance ranging from 3 cm to 8 cm along the transverse direction. The autofocus method showed 

residual blurring and artifacts. In certain regions, the output appeared even more degraded, likely 

due to the algorithm encountering spurious minima during optimizing the objective function156. 

Compared to the autofocus method, AutofocusNet produced images with sharper structures and 

reduced artifacts. AutofocusNet achieved comparable results to the semiautomatic method without 
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using the field map or computing the concomitant field, making it a more efficient option for off-

resonance correction. 

 

Figure 4-4: Comparison of model performance on phantom and in vivo data. Top-to-bottom rows: phantom image, 

in vivo head image with tagging lines to aid visualization of blurring, T1-weighted head image, T2-weighted head 

image. The autofocus method showed residual blurring and artifacts (marked by red arrows). The AutofocusNet 

achieved comparable results to the semiautomatic method. 

4.4 Discussion 

Off-resonance artifacts present a significant challenge in spiral MRI. In this study, we introduced 

AutofocusNet, a deep-learning-based approach for correcting off-resonance artifacts in spiral MRI 

without requiring a field map or concomitant field computation. No literature to date has discussed 
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simultaneous field inhomogeneity and concomitant field correction with CNNs. This model 

provides a practical and efficient alternative to conventional off-resonance correction methods. 

On the simulated testing dataset, AutofocusNet outperformed the conventional autofocus 

method, achieving lower NRMSE, higher PSNR, and higher SSIM. On phantom and in vivo data, 

AutofocusNet maintained its performance and generated images with less blurring and fewer 

residual artifacts. The autofocus method relies on optimizing an objective function to minimize 

blurring. However, this process is sensitive to the choice of the objective function and can easily 

get trapped in spurious minima. AutofocusNet addressed this issue by training the network to learn 

the mapping between the demodulated blurred images and the clean image. 

While AutofocusNet showed promising results, there are several areas for potential 

improvement and further exploration. First, the network architecture could be further optimized. 

Lim et al157 showed that as incorporating depthwise separable convolutional layers can enhance 

the model’s ability to capture relationships across channels and improve the deblurring 

performance. Second, integrating AutofocusNet within an iterative reconstruction framework may 

offer further benefits, as iterative methods could refine the correction process by leveraging 

AutofocusNet as a prior. This approach could be useful in cases with extreme field map variations, 

where a single correction might be insufficient. Another area for future work is to test 

AutofocusNet on low-field data, since Concomitant field effects are more pronounced in low-field 

MRI. Evaluating the model’s performance on low-field data would help in assessing its robustness 

and effectiveness across different imaging conditions. 

4.5 Conclusion 

In conclusion, AutofocusNet offers a practical and effective solution for off-resonance correction 

in spiral MRI without using the field map or computing the concomitant fields during the 
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reconstruction. By training the model using synthetic data with simulated field inhomogeneity and 

concomitant field effects, our approach has demonstrated improved off-resonance correction than 

the conventional autofocus method. 
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Chapter 5: Complex Valued Cascading Cross-Domain 

Convolutional Neural Network for Reconstructing 

Undersampled CMR Images 

5.1 Introduction 

Cardiac magnetic resonance imaging (CMR) has emerged as an important tool for non-invasively 

evaluating cardiovascular diseases, offering unique insights into cardiac anatomy, function, tissue 

composition, and blood flow dynamics. Unlike other imaging modalities, CMR provides high-

resolution images of the heart and surrounding vasculature without ionizing radiation, making it 

safer for repeated examinations158. This characteristic, along with CMR’s exceptional soft-tissue 

contrast, allows for detailed visualization of myocardial tissue properties and detection of subtle 

pathological changes. CMR is widely recommended for various clinical applications, including 

evaluating left ventricular ejection fraction, detecting diffuse myocardial fibrosis, and analyzing 

myocardial perfusion159. The European Society of Cardiology recognizes CMR as the gold 

standard for the left ventricle ejection fraction measurement160. 

 CMR encompasses a range of specialized imaging techniques for different clinical needs, 

allowing comprehensive cardiac assessments. Cine MRI provides real-time visualization of 

cardiac motion, which is essential for morphologic assessment of heart and valves161. Myocardial 

perfusion imaging evaluates the blood flow through the heart muscle, helping to detect ischemic 

areas indicative of coronary artery disease162. Late Gadolinium Enhancement imaging is widely 

used to identify myocardial scarring and fibrosis by visualizing pathologic areas where the contrast 

agents are retained163. T1 and T2 mapping techniques quantify the characteristics of myocardial 
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tissue, allowing for early detection of pathological changes in the myocardium that may not be 

visible with other imaging methods164.  

nespite its comprehensive capabilities, CMR is inherently constrained by its slow 

acquisition speed due to the complicated imaging operations (e.g., breath-hold) and reliance on 

gated acquisition methods, where the data acquisition is synchronized with cardiac and respiratory 

cycles to minimize motion artifacts159. The prolonged scan time leads to patient discomfort and 

compromised image quality, impacting diagnostic accuracy and limiting CMR's applicability in 

routine clinical settings. Consequently, accelerating CMR acquisition and reconstruction has 

become a primary research focus, aiming to make CMR more accessible and practical for both 

patients and clinicians. 

Various advanced techniques have been developed to accelerate CMR acquisition by 

undersampling the k-space data, effectively reducing the scan time while retaining the image 

quality. Parallel imaging (PI) leverages multi-coil receiver arrays to acquire undersampled k-space 

data and exploit the data redundancy from the multi-coil acquisition. While PI techniques, like 

SENSE2 and GRAPPA3, allows for substantial acceleration, they are often limited by noise 

amplification, particularly with higher acceleration ratios (𝑅 )165. Compressed sensing (CS)5 is 

based on the assumption that MRI data is sparse or compressible in certain domains, such as 

wavelet or total variation domains. By enforcing sparsity constraints during the nonlinear 

reconstruction, CS can achieve high acceleration rates by recovering the image from incoherent 

aliasing artifacts. Moreover, the combination of PI and CS, known as PICS, has been developed 

to harness the strengths of both techniques166. This hybrid approach achieves faster acquisition 

speeds by nearly two-fold than PI or CS alone. To date, these conventional methods have been 

investigated in several applications, for their ability to achieve good image quality with high 
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acceleration rates. However, the sophisticated reconstruction algorithms require extensive 

computational resources. Offline image reconstructions are typically performed within several 

minutes, thus limiting the clinical application of low latency real-time imaging. 

In last ten years, various deep-learning-based methods have been developed for MR image 

reconstruction. neep-learning-based methods show exceptional potential in undersampled CMR 

data reconstruction, offering superior image quality and significantly reducing reconstruction 

times. nifferent network architectures have been designed and adapted for CMR applications. 

Convolutional neural networks (CNNs) are widely applied in accelerated CMR 

reconstruction167,168. By learning the mapping between undersampled images and fully-sampled 

images through the training data, CNNs have shown improved quality in reducing the aliasing 

artifacts. Generative adversarial networks (GANs) have also been employed in synthesizing high-

fidelity CMR images169,170. By utilizing the adversarial framework, GANs can achieve high-

quality reconstructions that closely resemble fully sampled images. Recently, unrolled networks 

have gained increasing attention. These models mimic traditional iterative reconstruction 

algorithms by alternating between the networks and data consistency. For example, a combination 

of ESPIRiT reconstruction and a CNN that handles complex-valued data as separate channels was 

proposed and evaluated on retrospective 12× undersampled datasets171. However, the inherent 

interrelationship between the components of the complex k-space values has not been fully 

exploited. Thus, an improved complex-valued cascading network architecture has been introduced, 

where the architectural paradigm exhibited better performance compared to CS-based approaches, 

as demonstrated on the prospective undersampled datasets172. However, both the features of 

cascading and 4n require considerable computational demands, which may potentially exceed the 

resource constraints of commonplace server configurations. 
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In this work, we proposed a novel complex-valued cascading cross-domain convolutional 

neural network, termed as C3-Net, for an improved balance between computation demands and 

image quality on accelerated CMR datasets. The proposed network was first trained with fully and 

undersampled datasets and then compared to the results from other networks and against the fully 

sampled images as the reference. 

5.2 Methods 

5.2.1 Network architecture 

Let 𝐱 represents a 2n complex-valued cardiac cine slice. Our purpose is to reconstruct 𝐱 from the 

multi-coil undersampled k-space 𝐲u, such that: 

𝐲u = 𝐮𝐅𝐒𝐱 (5-1) 

where 𝐮 is the binary k-space undersampling mask, 𝐅 is the Fourier transform (FT), and 𝐒 is the 

sensitivity maps, which can be derived from the fully sampled calibration region through 

ESPIRiT124. 

When dealing with data acquired with an undersampling ratio beyond the capability of the 

coil hardware, Equation 5-1 is underdetermined. To tackle the ill-posed inversion problem, we 

propose a cascading convolutional neural network (CNN), which resembles a classical iterative 

algorithm with a fixed number of iterations. The proposed C3-Net alternates between the 

restoration step and the data consistency (nC) step, as shown in Figure 5-1. The restoration part 

consists of two major components: k-space subnetwork (K-Net) and image subnetwork (I-Net). At 

the 𝑖-th iteration, the K-Net generates an estimation of the true k-space: 

𝐲knet = 𝑓knet(𝐲in|𝛉knet) (5-2) 
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where 𝑓knet is the forward mapping of the K-Net parameterized by 𝛉knet, and 𝐲in is the input k-

space, of which 𝐲u is at the first iteration. Then, the output k-space 𝐲knet is transformed into the 

image domain and combined by the sensitivity maps 𝐱in = 𝐒𝐻𝐅𝐻𝐲knet, where 𝐻 represents the 

conjugate transpose. The I-Net generates an estimation of the true image: 

𝐱inet = 𝑓inet(𝐱in|𝛉inet) (5-3) 

where 𝑓inet is the forward mapping of the I-Net parameterized by 𝛉inet. To incorporate the data 

consistency, for k-space entries that are initially missing, we use the predicted values from the I-

Net; for the k-space entries that are initially sampled, we simply replace the predicted values with 

the original values:  

𝐲dc = {
𝐅𝐒𝐱inet, 𝐮𝑖 = 0
𝐲u, 𝐮𝑖 = 1

(5-4) 

Both the K-Net and I-Net use a U-Net92 as the backbone network structure. The complex 

U-Net (ℂU-Net) consists of a series of encoding and decoding blocks. Each encoding or decoding 

block consists of two complex-valued convolutional layers (ℂConv)76 with kernel size 3 × 3. Each 

convolutional layer is followed by a radial instance normalization (IN)173 and a complex-valued 

rectified linear unit (ℂReLU)76. The radial IN scales the magnitude while maintaining the phase 

information, and the  ℂReLU function activates the real and imaginary parts, separately. A 2 × 2 

average pooling is applied at the end of each encoding block, while a 2 × 2 upsampling is 

performed at the start of each decoding block. The skip connections between the encoding block 

and the corresponding decoding block are important to expedite training and avoid vanishing 

gradients. The final output is generated using a ℂConv with kernel size 1 × 1. The number of filters 

𝑛𝑓 of the first ℂConv is set to 8, and the number of iterations 𝐾 is set to 2 in this work due to the 

limit of GPU memory. 
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Figure 5-1: Illustration of the proposed framework for undersampled CMR image reconstruction. The C3-Net 

alternates between the restoration step and nC step. The restoration part consists of k-space subnetwork and image 

subnetwork, which use complex U-Net as the backbone network architecture. 

5.2.2 Training 

The training, validation, and testing datasets used in this work were built from the CMRxRecon 

challenge dataset (https://cmrxrecon.github.io/). The raw CMRxRecon training dataset includes 

120 fully sampled multi-coil cine MRIs obtained on 3T scanners174. netailed descriptions can be 

found on the project website. We randomly divided the dataset into training (90 subjects), 

validation (10 subjects), and testing (20 subjects) subsets. For training, a total of 15192 2n slices 

were generated by splitting up each 4n sample (matrix size in readout direction, matrix size in 
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phase encoding direction, slice number, time frame). Random flipping along readout and phase 

encoding directions was employed as training augmentation to further expand the size of training 

dataset. The raw k-space data for each 2n slice was scaled to have its magnitude between 0 to 1. 

nuring training, the undersampling ratio 𝑅  was randomly selected between 4 to 12 and the 

equispaced undersampling mask was generated on-the-fly for each 2n slice. The central 24 phase 

encoding lines were always fully sampled as the autocalibration signal (ACS) region. The 

sensitivity maps were pre-computed from the time-averaged ACS using ESPIRiT. 

The C3-Net was implemented in the open-source machine learning library PyTorch84. All 

subnetworks in the reconstruction pipeline were jointly trained in an end-to-end manner using a 

mixed L1 and structural similarity index (SSIM) loss96: 

ℒ =
1

𝑁
∑|𝐱c3net − 𝐱ref| + 𝛼(1 − SSIM(|𝐱c3net|, |𝐱ref|))

𝑁

𝑖=1

(5-5) 

where 𝐱c3net is the complex-valued output of C3-Net, 𝐱ref is the complex-valued reference image 

reconstructed from the fully sampled k-space data, 𝑁 is the total number of training pairs, and 𝛼 is 

the weight parameter (empirically set to 1). Training was carried out with an Adam optimizer85 for 

50 epochs with a learning rate of 0.0001, 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜀 = 10-8. nue to the limit of 

GPU memory, the training batch size was set to 1. 

5.2.3 Evaluation 

To evaluate C3-Net performance compared to other deep learning methods, a baseline U-Net and 

a real-valued cascading cross-domain CNN, termed as C2-Net, were trained with the same training 

setup. The proposed C3-Net was also compared against the L1-ESPIRiT reconstruction using the 

code provided by the CMRxRecon organizers. For quantitative assessment, the peak signal-to-
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noise ratio (PSNR), SSIM, and normalized mean squared error (NMSE) of the magnitude images 

were calculated. 

5.3 Results 

The comparison results of all methods are reported in Table 5-1. using quantitative metrics (PSNR, 

SSIM, and NMSE) across different acceleration ratios (𝑅 = 4, 8, and 10). The proposed C3-Net 

almost yields the best image quality over ESPIRiT, U-Net, and C2-Net, especially at higher 

acceleration ratios, as indicated by the bold fonts which show the best reconstruction performance. 

The visualization results of one short-axis and three long-axis views of cardiac MR images 

are depicted in Figure 5-2 and Figure 5-3, respectively. In Figure 5-2, ESPIRiT shows good image 

performance at 𝑅  = 4 with less artifacts, because the acceleration ratio is far smaller than the 

number of coils used for data acquisition. As the acceleration ratio increases (e.g., 8 and 10), 

images reconstructed from ESPIRiT degrades, with noticeable residual aliasing artifacts. By 

contrast, the proposed method presents the best results in both spatial and temporal dimension, as 

can be clearly seen from the difference images with much reduced aliasing artifacts and from x-t 

profiles where the cardiac motion is well preserved along temporal domain. Figure 5-3 provides 

examples of reconstruction results from 2-, 3-, and 4-chamber views at an acceleration ratio of 10. 

Our model excels, particularly on 2- and 4-chambers datasets, where the artifacts surrounding the 

heart wall and adipose regions are notably mitigated. The factors underpinning the suboptimal 

performance which were observed in 3-chamber images for both deep-learning-based methods 

will be discussed in the following section. 
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Table 5-1: Quantitative assessment of reconstruction performance on the CMRxRecon dataset. 



73 

 

 

Figure 5-2: Comparison of one short-axis slice (end-diastole frame) generated using five reconstruction methods, 

from datasets retrospectively undersampled with accelerated ratios of 4 and 10. From left to right are images 

reconstructed from fully-sampled k-space as the reference, zero-filling, L1-ESPIRiT, U-Net, C2-Net and C3-Net, 

respectively. From top to bottom are magnitude image (top), absolute difference image relative to the fully sampled 

reference (middle), and x-t plots below the white lines (bottom). The error maps are windowed by scaling the image 

intensity by a factor of 5. The red arrows point to structures that show fine papillary muscles in ventricles and the blue 

arrows indicate preserved temporal fidelity. 
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5.4 Discussion 

In this study, we designed and implemented a cascading network that operates in both the k-space 

domain and the image domain. The K-Net estimates the missing k-space values utilizing the 

information from neighboring sampled points. The I-Net reduces the residual aliasing artifacts and 

further improves the image quality. The nC layer ensures that the already acquired k-space 

samples remain unchanged and enhances the output image fidelity. Compared to the U-Net acting 

in the image domain without the nC layer, the cross-domain cascading networks (C2-Net and C3-

Net) showed superior performance on the testing dataset and were less prone to generate unrealistic 

small structures on the output images. Also, all operations used in C3-Net were complex-valued, 

enabling the network to fully exploit the complex-valued input data76. Compared to C2-Net which 

performs operations on the real and imaginary channels separately, C3-Net achieved better metrics 

and generated output with less residual artifacts. 

For the nC layer, we employed a simple but effective operation in our study: replacing the 

predicted values with the original values for sampled k-space points. However, if nonnegligible 

noise exists in the acquisition, this method may fail, as shown in the 3-chamber view in Figure 5-3. 

Utilizing a linear combination of the predicted values and the original values weighted by a fixed 

or trainable parameter175,176 is expected to improve the network performance on noisy data. 

The sampling pattern may play an important role in the performance of image 

reconstruction. Although in this work the same sampling mask was used for retrospective 

undersampled datasets, using a variable sampling pattern, such as Cartesian Poisson sampling, 

could potentially improve the de-aliasing performance when using CS- or nL-based approaches. 

Also, non-Cartesian sampling patterns, such as radial or spiral sampling, have been demonstrated 

to provide advantages of shorter scan time and higher motion insensitivity141,177 than Cartesian 
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acquisitions, which are critical for dynamic imaging. An approach to apply the proposed C3-Net 

to non-Cartesian scenarios involves pre-gridding the radial or spiral k-space data onto a Cartesian 

grid178,179 prior to inputting it into the K-Net. Subsequently, the training procedure remains 

consistent with that of the Cartesian case. 

 

Figure 5-3: Comparison of long-axis cardiac images from 2-chamber (top), 3-chamber (middle), and 4-chamber views 

(bottom), reconstructed using fully-sampled k-space as the reference, zero-filling, L1-ESPIRiT, U-Net, C2-Net, and 

C3-Net, respectively. Absolute difference images relative to the fully sampled reference are shown for performance 

comparison, as well. The error maps are windowed by scaling the image intensity by a factor of 5. 

5.5 Conclusion 

The proposed C3-Net integrates both the complex-value of MR data and the coupled domain 

information (k-space domain and image domain) in the CNN model, providing a significant 
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improvement of image quality at high acceleration rates in comparison with the state-of-the-art 

methods (L1-ESPIRiT, U-Net, and C2-Net). 
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Chapter 6: Conclusions and Future Directions 

6.1 Conclusions 

This dissertation presents a series of deep learning models designed to address significant 

challenges in MRI, such as SNR issues, motion artifacts, off-resonance artifacts, and undersampled 

image reconstruction. These challenges often degrade MRI image quality and impact diagnostic 

accuracy, limiting its clinical potential. The proposed deep learning methods demonstrate 

improved performance over comparison methods in enhancing image quality and artifact reduction. 

Key contributions include the introduction of a complex-valued denoising convolutional 

neural network (ℂnnCNN), which utilizes the complex nature of MRI data and integrates noise 

level information in the model to improve denoising performance in low-field MRI and address 

the spatially variant noise. A multi-task conditional GAN (MT-cGAN) is presented for 

simultaneous motion detection and compensation in brain MRI, leveraging multi-task learning 

framework to improve model robustness and performance on both tasks. For field inhomogeneity 

and concomitant field, a deep-learning-based method is presented to correct the off-resonance 

artifacts arising from both sources, without requiring field map acquisition or concomitant filed 

calculation. Finally, the complex-valued cascading cross-domain network (C3-Net) demonstrates 

effective and efficient reconstruction for undersampled cardiac MRI, which can achieve higher 

acceleration rates than parallel imaging and compressed sensing while maintain image quality. 

Together, these contributions show the potential of deep learning in MRI image processing 

and artifact reduction. The outcomes of this work, including the development of advanced models, 

training data simulation strategies, and streamlined deployment workflows, help to overcome 
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existing MRI shortcomings, offer more accurate and reliable diagnostic information, and broaden 

the application scope of MRI. 

6.2 Future Directions 

6.2.1 Inline implementations 

Inline implementations of deep learning models can significantly expand its applicability in MRI 

scans. By integrating the models into existing scan workflows, they can process the data from the 

scanner in near real-time, bridging the gap between the data acquisition and image generation. This 

is crucial for dynamic imaging, such as cardiac MRI, where immediate visualization aids in 

diagnostic decisions. Inline implementations also allow dynamic adjustment based on the network 

output, such as performing a rescan if motion artifacts are detected on the images. There exist some 

examples of inline frameworks, like Gadgetron180, Berkeley Advanced Reconstruction Toolbox – 

BART (https://mrirecon.github.io/bart/), and Siemens Framework for Image Reconstruction 

Environments (FIRE), enabling iterative reconstruction algorithms and deep learning models to be 

integrated into the scan workflow. While inline implementations offer numerous advantages, they 

also present challenges, such as the computational demands of real-time processing and the 

integration of advanced algorithms into existing old hardware. 

6.2.2 Nonrigid motion compensation 

In Chapter 3, a multi-task conditional GAN for motion detection and compensation is introduced, 

where the main focus is to address the rigid motion in brain imaging. However, nonrigid motion 

also presents a significant challenge in MRI, especially in dynamic imaging applications, such as 

cardiac and abdominal imaging. Unlike rigid motion, where the movement involves global 
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translation or rotation of an object, nonrigid motion refers to local deformation and displacement 

within the imaging field, resulting in more complex artifacts appearance. For example, abdominal 

MRI is often affected by respiratory motion, which introduces nonrigid deformation in organs such 

as liver, kidneys, and pancreas. 

 Simulating nonrigid motion is critical for developing and testing motion compensation 

models. Potential methods include modeling the motion by mathematical expressions, using 

motion fields from real patient data, or generating synthetic deformation fields. Figure 6-1 shows 

an example of applying synthetic global affine transformation and B-spline-based local 

deformation to an abdominal image. However, compared to rigid motion simulation, the 

computational demand for nonrigid motion simulation is much higher, particularly for 3n motion. 

Generating sufficient realistic data for training the deep-learning-based methods is a major 

bottleneck. 

 

Figure 6-1: Nonrigid motion simulation with global affine transformation and local deformation. 

6.2.3 Novel network architectures 

Vision Transformers (ViTs)38 have emerged as a powerful alternative to convolutional neural 

networks (CNNs) in image processing tasks. ViTs adapt the Transformer architecture, which is 

first developed for natural language processing, to image analysis. Unlike CNNs, which rely on 

convolutions to capture local spatial relationships, ViTs use self-attention mechanisms to model 
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both local and global dependencies, allowing them to excel in tasks requiring long-range context. 

The core a ViT is the self-attention, which enables the network to focus on different parts of the 

input image based on their relevance to the task. The self-attention mechanism calculates 

relationships between every pair of input tokens, capturing both local and long-range dependencies. 

In ViTs, the input image is divided into non-overlapping patches, which are flattened and 

embedded into a sequence of tokens. These tokens are then passed through the ViTs’ layers, where 

the self-attention operation is applied. 

 Compared to CNNs, ViTs provide several benefits. CNNs inherently focus on local features 

due to the limited receptive field of convolutional filters. While deeper layers capture broader 

context, this hierarchical approach can lose finer details. On the other hand, ViTs use self-attention 

to model relationships across the entire image at every layer, making them well-suited for tasks 

requiring holistic understanding. ViTs also scale effectively with larger datasets and higher 

computational resources. CNNs typically require architectural modifications for scalability (e.g., 

skip connections), ViTs maintain a consistent structure and can achieve improved performance 

simply by increasing the model size and training data. 

 In the context of MRI, where data often includes complex spatial and frequency 

relationships, ViTs present an exciting opportunity to overcome some limitations of CNNs. Their 

ability to model global relationships and process global context makes them a promising tool for 

tasks like image reconstruction and artifact correction. One major challenge for their application 

is that ViTs typically require large datasets for training to achieve optimal performance, which can 

be difficult in the field of MRI. 
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First Author Manuscripts 

1. Dou Q, Yan K, Chen S, Wang Z, Feng X, Meyer CH. C3-Net: Complex-Valued Cascading 

Cross-nomain Convolutional Neural Network for Reconstructing Undersampled CMR Images. 

International Workshop on Statistical Atlases and Computational Models of the Heart (pp. 

390-399). Cham: Springer Nature Switzerland, 2023. 

2. Dou Q, Wang Z, Feng X, Campbell-Washburn AE, Mugler JP III, Meyer CH. MRI denoising 

with a non-blind deep complex-valued convolutional neural network. NMR in Biomedicine. 

2024;e5291. 

3. Dou Q, Feng X, Meyer CH. Multi-Task Learning for Simultaneous Motion netection and 

Compensation in Brain Imaging. In preparation (Target: Magn Reson Med). 

Other Manuscripts 

1. Feng X, Dou Q, Tustison N, Meyer CH. Brain tumor segmentation with uncertainty estimation 

and overall survival prediction. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic 

Brain Injuries: 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 

2019, Revised Selected Papers, Part I 5 (pp. 304-314). Springer International Publishing, 2010. 

Conference Abstracts 

1. Dou Q, Feng X, Wang Z, Weller nS, Meyer CH. neep learning motion compensation for 

Cartesian and spiral trajectories. ISMRM Scientific Meeting & Exhibition (Vol. 4447). 2019. 
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3. Dou Q, Wang Z, Feng X, Mugler JP III, Meyer CH. Retrospective motion compensation for 
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Exhibition (Vol. 1359). 2021. 

4. Dou Q, Feng X, Patel SH, Meyer CH. Prognostic value of MR imaging features derived from 

automatic segmentation in glioblastoma. ISMRM Scientific Meeting & Exhibition (Vol. 3259). 

2021. 

5. Dou Q, Chen Q, Rong Y, Feng X. Patch-Based nCNN Method for CBCT Image Enhancement. 

International Journal of Radiation Oncology, Biology, Physics. 2021;111(3): e90-e91. 

6. Dou Q, Wang Z, Feng X, Ramasawmy R, Mugler JP, Campbell-Washburn AE, Meyer CH. 

Low-field MRI denoising with a deep complex-valued convolutional neural network. ISMRM 

Workshop on: Low Field MRI. 2022. 

7. Yan K, Wang Z, Dou Q, Chen S, Meyer CH. Applying advanced denoisers to enhance highly 

undersampled MRI reconstruction under plug-and-play AnMM framework. ISMRM Scientific 

Meeting & Exhibition (Vol. 1163). 2022. 

8. Dou Q, Feng X, Meyer CH. neep learning-based brain MRI reconstruction with realistic noise. 

ISMRM Scientific Meeting & Exhibition (Vol. 3470). 2022. 

9. Dou Q, Wang Z, Feng X, Meyer CH. Automatic Off-Resonance Correction for Spiral Imaging 

with a Convolutional Neural Network. ISMRM Scientific Meeting & Exhibition (Vol. 5022). 

2022. 
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Invention Disclosures 
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U.S. Patent Application No. 17/733,967. 
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