




 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@ Copyright by 

 

Akilah L. Hugine- Elmore 

 

All rights reserved 

 

May 2013 

 



iv 

 

 

ABSTRACT 

Visualizations of large data sets provide insight to features of the data, improve 

the accuracy of mental models of the information, and locate data regions of particular 

interest. A visualization technique that has gained popularity is the treemap. The treemap 

uses a recursive algorithm to display a hierarchical data set in the form of nested 

rectangles of varying size, orientation, aspect ratio, relative placement, and color to 

represent selected aspects of the data.  This dissertation extends previous work on human 

perception and rectangular relative area judgments to determine how these display 

features affect judgments that are supported by treemap visualizations.  The effort 

includes a novel treemap generation algorithm, which utilizes lexicographical order 

theory to generate treemaps that group like data elements together, to support human 

gestalt perception capabilities and the results of an experiment comparing this alternative 

approach to the current, squarified algorithm that is a current practice. A final experiment 

explores the use of treemaps for supporting decision making in a specific application area 

-- review and interpretation of surgical quality data -- and further characterizes the 

performance of decision makers to correctly interpret data displayed in alternative 

treemap formats.  The combined effort thus improves on current knowledge of the 

capacities of individuals to make relative and proportional judgments in hierarchical 

visualizations, with an innovative method for visualizing hierarchically structured 

information in treemaps. 
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CHAPTER 1.  INTRODUCTION 

 Large, complex datasets have some of the following properties: A large number 

of records, many variables, complex data structures, and intricate patterns and 

dependencies in the data that require complex models and methods of analysis.  Analysts 

are faced with the task of interpreting these large data sets for exploration to identify 

correlations and meaningful trends.  These enormous datasets are classified as “big data”, 

which is defined as massive amounts of data collected over time that are difficult to 

analyze and handle using common database management tools [1]. Big Data includes 

business transactions, healthcare information, surveillance videos, and activity logs [2].  

The issue of big data has come to the forefront of many research organizations.  In 
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particular the National Science Foundation (NSF) and the National Institutes of Health 

(NIH) launched a “big data” research program that aimed to:     

 

 “Advance the core scientific and technological means of managing, analyzing, 

 visualizing and extracting information from large, diverse, distributed, and 

 heterogeneous data sets in order to accelerate progress in science and engineering 

 research. [3]” 

 

As a result of these “big data” analytics initiatives, the demand for data visualization 

tools is rising sharply. Visualizing these large data sets can help users gain insight into 

relevant features of the data, locate regions of particular interest, construct accurate 

mental models of the information, and leverage parallelism in visual processing.  Data 

visualizations range from basic charts, such as line, bar, area and pie charts, status 

indicators for sets of data, to more complex visualizations, such as, scatter graphs, bubble 

charts, and spark line charts.  Data visualization is only successful to the degree that it 

encodes information in a manner that our eyes can discern and our brains can understand 

[4], which is more a science achieved by studying human perception and understanding 

how humans interpret data visualizations. The goal is to translate abstract information 

into visual representations that can be easily, efficiently, accurately, and meaningfully 

decoded.  

 To examine this notion further of human perception and accurate interpretation of 

data visualizations, we investigate a relatively new data visualization solution, called a 

treemap, that has been gaining popularity as a means to visualize large hierarchical data 



3 

 

 

sets.  Treemaps are space-constrained visualizations that display multidimensional data as 

sets of nested rectangles with area proportional to a specified dimension on the data [5] 

(Figure 1).  The visualization combines features of multivariate coding and display layout 

to present hierarchies in a rich visual environment that fosters relative comparisons of 

structures in the hierarchy. One common layout employs a recursive “squarified” 

algorithm that avoids high aspect ratio rectangles and rotates the direction of each 

successive subdivision (horizontally and vertically) [6]. 

 Researchers and analyst have used treemaps to visualize data sets in various 

domains: education and legal [7], stock market [8], air traffic flow management (ATFM) 

[9], and network traffic [10].  Figure 1 depicts a treemap visualization of the stock market 

through the Wall Street Journal website, SmartMoney [8].  Stocks are categorized by 

industry area (e.g. technology, health care, financial, and energy) and the size of each 

industry block illustrates the activity of stocks in these areas. The activity of each stock is 

indicated by rectangle size and the direction of change is shown through color (red=loss, 

green=gain). 

 While the treemap has utility in data analyses, several questions arise as to 

whether users of treemaps can  purposefully and reliably interpret the information being 

displayed, particularly when comparing two specific nodes or comparing subsets of data.  

For example, when making singular comparisons where the area of two rectangles 

(length x width) is being used to represent a value of interest, the aspect ratio, distance, 

and offset angle of those rectangles can vary.  Thus, it is possible that in one treemap, the 

same data values could be represented in multiple ways.  Can people judge such varying 

examples as being the same area? Given a 2:3 rectangle and a 3:2 rectangle, can people 
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accurately judge which one is bigger, and correctly estimate the difference in areas? Will 

such comparisons of the size of two rectangles be as accurate with, for example, a 

comparison between a 2:3 rectangle and a 1:1 square?  Furthermore, are judgments 

affected when those rectangles are neither co-located nor aligned along the same 

horizontal, central, or vertical axis? 
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Figure 1.  Treemap Visualization of Financial Data [8] 
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 There are also human perceptual issues that arise when assessing proportional 

judgments of treemap.  For instance in Figure 1, a shade of green represents an increase 

in stock value as opposed to a shade of red representing a decrease in stock value.  With 

this visualization and coding, the user at a quick glance can see that many of the health 

care sector stocks increased for the day.  However, how accurately can the user judge the 

percentage of health care stocks that increased for the day, compared to the percentage of 

energy stocks that increased for the day?  The seemingly random placement of the nodes 

by size from the squarified treemap algorithm makes this proportional area judgment 

relatively difficult. The user potentially would have to cognitively group or count all of 

the green colored nodes together for stocks that had a gain and group the red colored 

nodes for stocks that had a loss for the day in order to come up with an assessment. 

Implications of human perception research suggest that utilizing alternative layout 

algorithms might help eliminate some of the information processing steps needed to make 

this type of judgment.  An alternative algorithm could potentially group like nodes 

together utilizing Gestalt laws of perceptual organization [11].  The close proximity could 

be better suited for making relative magnitude comparisons among users.  

 In visualization, treemaps have value because they are able to display multiple 

variables in one display for a large number of data values.  However, there are limitations 

with treemaps due to the perceptual nature needed to assess the visualization and we do 

not fully understand the precision with which people can make accurate assessments. 

Research has shown that humans generally have biases when making rectangular area 

judgments, which could potentially hinder the effectiveness of treemap visualizations 

[12] since area judging is a key aspect that is required when interpreting them.  In order 
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for a data visualization to be effective it must reinforce the human cognition of 

individuals who are interpreting the visualization for decision making.   

 The purpose of this dissertation is to characterize perceptual issues that affect the 

ability of individuals to interpret treemap visualizations and to develop and evaluate a 

new design feature of treemaps that could help with these interpretations by adding the 

ability to perceptually group like nodes together.  The research focuses on relative area 

and proportional perception judgments.  Relative judgments are ones that are made when 

there is an opportunity to compare two or more stimuli and judge the relative position of 

one compared with other along the same dimension, such as judging the area or 

magnitude between two figures.  Insights from this research give a fundamental 

understanding of relative judgments in hierarchical data visualizations and in turn 

validate the effectiveness of these types of visualizations.   

 This dissertation is organized into six chapters, which is further conceptualized in 

the work flow diagram in Appendix A.  

Chapter 1 provides the introduction, purpose, scope, and organization of the 

dissertation.   

Chapter 2 provides a review of related literature.  The chapter begins with a 

background into graphical perception, detailing common perceptual issues that occur 

when analyzing data graphically that affects human judgment abilities.  The chapter ends 

with a review of data visualizations that are used to display hierarchical data.   

 Chapter 3 provides a review of treemap visualizations.  The chapter begins with a 

conceptual background about treemap visualizations, including the algorithms and 

theories utilized to develop the visualization.  Also covered are the shortcomings of 
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existing treemap techniques, and the benefits of the treemap approach as well as its 

applicability. 

 Chapter 4 describes an experiment conducted as part of the dissertation to help us 

understand human perception issues related to making relative rectangular area 

judgments.  The chapter explores the ability of decision makers to judge the percent 

difference in the area of two rectangles when the basic parameters that make up those two 

rectangles vary: relative placement, aspect ratio, and true percentage difference.   

 Chapter 5 introduces an alternative treemap algorithm.  The algorithm is a 

recursive attribute grouping algorithm for treemaps that clusters like attributes together.  

The chapter also explores the ability of decision makers to make relative proportion 

judgments, i.e., how well individuals judge the proportion of rectangles within a set of 

nested rectangles that are of one color when the rest are in a second color.  A human 

subjects experiment is discussed in detail that gauges the impact that the alternative 

attribute grouping display layout will have on interpreting proportional judgments. 

 Chapter 6 investigates the application of hierarchical data visualizations to 

surgical quality data to help clinicians make judgments about their patients.  Surgery data 

from the American College of Surgeons National Surgical Quality Improvement Program 

(ACS NSQIP) database is mapped to both the squarified treemap layout and the 

alternative attribute grouping algorithm introduced in this dissertation to evaluate which 

layout produces better judgment accuracy and faster judgment times and further 

examines how well proportional judgments can be made with treemaps.   

 Chapter 7 presents the conclusions and summarizes the perceptual issues of 

humans making relative area and proportion judgments utilizing data visualizations.  
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Furthermore, the chapter summarizes the benefits and utility of the treemap concept for 

relative judgments of large hierarchical data sets.  The chapter describes several future 

directions that have been suggested by this dissertation research.       
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CHAPTER  2. CONCEPTUAL BACKGROUND 

 

2.1  Human Perception of Data Visualizations 

 Data visualization is effective because it shifts the balance between perception 

and cognition to take full advantage of the pattern recognition abilities of the brain.  

Visual perception is extremely fast and efficient compared to cognition, which is much 

slower and less efficient for comprehension.  Data visualization shifts the balance toward 

greater use of visual perception. 

 One of the earliest contributions to the science of perception was the Gestalt 

principles of perception [13].  The intent of the principles is to uncover how humans 

perceive pattern, form, and organization of visualizations.  Table 1 shows a few of the 

principles that can inform data visualization efforts.  For the law of proximity, objects 

that are close together are perceived as a group.  For the law of similarity, objects that 

share similar attributes (e.g., color or shape) are perceived as a group.    For the law of 

good continuation, objects that are aligned together or appear to be a continuation of one 
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another are perceived as a group.  Lastly, for the law of closure, open structures are 

perceived as closed or complete.       

 Wickens and Andre expanded on the human perception concept in terms of 

proximity, developing the proximity compatibly principle (PCP) to emphasize that there 

is a relationship between different types of displays and the way the information from the 

displays has to be used [14].  The principle asserts that tasks in which “close mental 

proximity” is required will be best served by more proximate (close) displays.  PCP may 

then be understood as a set of principles that incorporates a variety of psychological 

mechanisms, such as attention, object perception, and working memory, to link the visual 

processing of display characteristics to the cognitive processing of decision task 

characteristics.       
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Table 1.  Gestalt Principles of Visual Perception

Law of Proximity 

 

 

Law of Similarity 

 

 

Law of Good Continuation 

 

Law of Closure 
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2.1.1 Graphical Perception 

 Researchers have investigated how visual variables such as position, length, area, 

shape, and color, impact the effectiveness of data visualizations [15].  Each variable plays 

a role in “graphical perception”, which is the ability for the viewer to decode and 

interpret information displayed in a visualization.  Graphical perception is a term coined 

by Cleveland and McGill who ran a set of experiments to determine the elementary 

perceptual processes subjects utilize when decoding different types of graphs (scatter 

plot, bar charts, pie charts, maps, stacked charts, and bubbles).  Their work was an 

extension of Stevens Power Law [16], which served as a way to estimate magnitudes.         

                                   

Stevens Power Law          

                                                               

                                                                

                               

                                                                              

 

The exponent n is determined by the type of stimulus and the value of the number has an 

effect on how individuals perceive the stimulus.  For instance if the stimulus is brightness 

(n=0.5), where n < 1, individuals will underestimate the perceived stimulus value.  On 

the other hand if n > 1 (e.g. Heaviness (n=1.1)) people have a tendency to overestimate 

the perceived stimulus value.  Stevens Power Law indicates a description of how people 

perceive values through a number of encodings, including length, area, and volume.  It 
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was found that on average people underestimate area with a range of   from 0.6-0.9 and 

are better at judging length with a range of    from 0.9-1.1. 

 Cleveland and McGill extended this work by investigating how individual 

perceptual tasks relate to each other.  In other words which elementary perceptual tasks 

are easier or harder to judge?  Cleveland and McGill conducted an experiment using 7 

graphical encodings, and for each encoding subjects had to judge relative magnitudes.  

For each graph, subjects were asked to compare a standard and test stimuli, and to judge 

what percentage the test stimuli was of the standard.  The results of the experiment were 

assessed using log absolute error measure of accuracy:    

 

                                          
 

 
                       

 

From the results it was found that encoding values by angle, slope, or area produces 

significantly larger errors than position along aligned or non-aligned scales or length.  

Cleveland and McGill produced an ordering of perception task from easiest to hardest 

(Figure 2).  From the ordering it is inferred that when developing a data visualization, it is 

preferable to use an encoding scheme which leads to a decoding task as high up the 

Cleveland and McGill ordering as possible.  
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1. Position on a common scale 

2. Position along identical, non-aligned scales 

3. Length 

4. Angle 

5. Area 

6. Volume 

7. Color (hue, saturation, brightness) 

 

Figure 2.  Cleveland and McGill Perception Ordering 

 

 

 

 

 

 

 

 

Accuracy 
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In order to decode a treemap a number of these perceptual tasks are needed from 

Cleveland and McGill list.  The tasks most relevant to treemaps are: position of non-

aligned scales, length, area, shading, and color saturation.  Two of the most important 

elements for treemap interpretation (area and color) are ranked low for accuracy on the 

“elementary perceptual task” list.        

2.1.2 Perception of Simple Figures 

 There have been numerous research studies that have investigated a decision 

makers ability to judge spatial properties of simple figures [17-19].  Regan & Hamstra 

[20] conducted an experiment to measure the accuracy with which subjects judge that a 

square rectangle is perfectly symmetrical.  In other words, that the aspect ratio (a/b) is 

equal (a and b are vertical and horizontal dimensions, respectively).  The authors used a 

two alternative forced-choice paradigm and subjects were required to discriminate 

between a reference stimulus and a test stimulus. According to Regan & Hamstra, in the 

visual pathway there are aspect ratio-sensitive neurons, functionally organized into two 

pools. One of the pools is sensitive to the vertical extent of a stimulus, while the other is 

to the horizontal one.    Regan & Hamstra found that observers are highly sensitive to 

small deviations from perfect symmetry.   

 Morgan [21] extended the research of Regan & Hamstra by making the 

hypothesis that noisy estimates of width and height are in fact the basis of judgments 

about aspect ratio as well as area. Morgan required subjects to compare the areas of two 

shapes with randomly-differing widths and heights. One shape, the standard, always had 

the same area, but its width was a random variable.  The test had a different width and 



8 

 

 

area from the standard. The observer had to decide whether the test shape had a larger or 

smaller area than the standard.    Morgan reported that accuracy of area judgments tends 

to be higher on trials where height and width of the comparison and test stimuli differ in 

the same direction, rather than in the opposite direction.  He found that area 

discrimination is consistently worse than aspect ratio or height discrimination.  For 

ellipses, accuracy for aspect ratio was higher than predicted by the combination of noisy 

width and height signals; for rectangles it was worse.  He concluded that observers have 

no access to high-precision codes for 2-D area and that they base their decisions on a 

variety of heuristics derived from 1-D codes. One is that observers use a variety of 

heuristics for combining width and height estimates into an estimate of area (i.e. If the 

width is greater but the height smaller, a decision could be reached by deciding which 

difference from the standard is greater). 

 Nachmias [22] disproved Morgan’s hypothesis by conducting a study measuring 

discrimination for height, aspect ratio, and area of ovals and rectangles.  Subjects were 

given a test and stimulus and asked to judge one of the three properties.  Random jittering 

of the orthogonal property (width, aspect ratio, and area) in the figure shown to the 

participant was used to control the criterion of the observer (Figure 3).  He found that 

judgments about aspect ratio are far more reliable than those about total area, which 

correspond with the conclusion reached by Regan & Hamstra.  Nachmias stated that we 

can clearly reject the hypothesis that people judge aspect ratio by using linear 

combinations of noisy estimates of height and width, since the Weber fraction for aspect 

ratio are lower than predicted by the hypothesis.    
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Figure 3.  Standard Stimuli Used in Experiments: Black Square in the Center of a 

Circular Gray Window and a Black Oval in the Center of a Square Gray Window 

[22] 
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2.2 Hierarchical Data Visualizations 

 One of the most challenging types of data to convert into a chart or visualization 

is also one of the most common: multi-level or hierarchical data.  Hierarchical data is 

usually associated with categorical data.  A categorical variable describes a particular 

quality or characteristic.  Categorical data consists of variables whose values comprise a 

set of discrete categories.  Such data require different statistical and graphical methods 

from those commonly used for quantitative data.  Categorical data dimensions appear in 

many real-world data sets, but few visualization methods exist that properly deal with 

them [23].  Datasets with many categories are often organized hierarchically: split one 

piece of information between several questions or ask the same question several times for 

cross-checking [24].  For instance, bank accounts are classified in several ways that will 

often involve hierarchical categorizations (Figure 4).  Using these hierarchies for 

visualization is helpful for the analyst, because they provide a natural way of collecting 

and abstracting data.  
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Figure 4.  Classification Hierarchy of Bank Accounts  
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 Interaction is also required, because the user will want to have the capability of 

switching between a more detailed investigation compared to a general search of the 

hierarchies.    Data analysts would like to be able to explore data thoroughly, look for 

patterns and relationships, confirm or disprove the expected, and discover new 

phenomena. An important element of a successful graphical display is flexibility, both in 

tailoring the analysis to the structure of the data and in responding to patterns that 

successive steps of analysis uncover.  For instance, a health care administrator may be 

interested in a general query such as how many patients received colorectal surgery 

compared to a physician who might be interested in assessing the patients they performed 

the surgery on, their complications, adverse events, or length of stay.      

 In these cases, every category of data is composed of sub-categories.  Also, a 

change in one data point has a major effect on the surrounding data.  With the inherent 

nature of hierarchical data there are certain limitations that arise when displaying this 

information.  Singer & Feinstein presented the issues in displaying hierarchical data [23].  

The issues are broken up into two categories focusing on visualizing the data and 

displaying the data.  Visualizing the data refers to finding a way to actually display the 

data, identifying the best representation to infer the meaning of the data (i.e. displaying 

rank for nominal data).  Displaying the data refers to the visual aspects of the data once 

displayed (i.e. arbitrary spacing on a bar chart), the output.         

 There is a need to have an effective visualization that makes hierarchical data 

intuitive and understandable.  A number of researchers have developed various visual 

graphics to aid in displaying hierarchical data [25-30].  A few of these alternative 
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displays are described in the sections below, broken up into three categories: traditional 

charts; relational data; and nested categories.   

2.2.1 Traditional Charts 

 

 Traditional charts such as stacked bar charts and shapes allow for visualizing 

relational hierarchical data, but have limitations that affect the effectiveness of the 

display.  

 

Stacked Bar 

 Probably the simplest and most familiar traditional chart types are stacked bar 

charts (Figure 5).  Most common charting packages offer stacked bar charts, including 

Excel.  At a glance this chart only allows two “levels” of depth, (parent category (Bar), 

and parent percentage (Inner bar)).  Interactive versions of the stacked bar allow the user 

to click on a bar or bar component and “zoom” to see categories that make up that bar. 

 This chart is useful for comparing simple, broad categories with few constituents, 

and benefits from general familiarity, but fails to impart more than two levels of depth at 

a glance. 
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Figure 5.  Stacked Bar Chart of World Fuel Consumption [23] 
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Stacked Areas/Shapes 

 Similar to stacked bar charts, an alternative chart type is stacked Area or Shape 

(Pyramid, Cylinder, etc) charts (Figure 6).  Although these can be useful (particularly the 

pyramid chart, when one or two options in each “bar” take up an overwhelming percent 

of the total, but the lower percents must still be visible), they suffer from the pitfalls of 

stacked bar charts of only allowing only two levels of depth.  Also, the added difficulty of 

perceiving the relative sizes of 3D objects is difficult for users to interpret.  Often times 

relative proportions that are intuitive in rectangular dimensions (“This box is twice the 

area of that box”) are lost in other shapes or in 3D (“How much more volume is in 

the bottom half of the pyramid than the top half?”). 
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Figure 6.  Multi-Series Stacked Pyramid Chart [23] 
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Dot Plots 

 Dot plot is an effective alternative to the bar graph data visualization in cases 

where the data contains groupings with similar values (Figure 7).  The visualization is 

especially effective as a presentation tool to help people understand comparisons between 

grouped hierarchies of data.  Menon and Nerella thought that dot plots are a good 

alternative to traditional displays (bar and pie charts), because in the dot plot the 

categories are listed vertically, thus attenuating the connotation of ranked categories, and 

the associated magnitudes are shown horizontally offering a preferred axis of display 

[24].   

 The dot plots are used to make inferences and also can be used to compare 

groups.  The dot plot in Figure 7 not only shows the ranking of symptoms among patients 

and the percentages, but also shows that people have multiple symptoms since the total is 

greater than 100%.  Adding interactivity also aids in making comparisons between 

grouped hierarchies in dot plots.  For instance the brushing technique can be used to 

highlight relationships across the display.  Brushing is a process in which a user can 

highlight, select, or delete a subset of elements being graphically displayed [31].  Using 

Figure 7, a user could highlight the headache row and see the number of associated 

symptoms in the other rows highlighted automatically.    

 .  
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Figure 7.  Dot Plot Representing Percentage of Patients with a Particular Symptom 

[25] 
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   2.2.2 Relational Data 

 

 Sometimes data in hierarchies takes a more abstract form, where each element 

influences one or more elements, or just overlaps multiple categories.  These types of 

data sets tend to provide an additional challenge to visualize, since laying them out 

optimally involves some extra computation [32].  

 

Node-Link Diagrams 

  

 Node-Link visualizations have a statistical framework, these diagrams offer 

different takes on data that is highly interrelated: one element may link to hundreds (or 

thousands) of additional data points, or none at all (Figure 8).  Node-Link charts (also 

called Network Diagrams) are best employed when data are related, but not necessarily in 

a clear hierarchy.  Different dimensions of data can be shown by the size of each node, 

color, or even position.  Many of the node-link publications deal with layout techniques 

complying with aesthetic rules such as minimizing the number of edge-crossings, 

minimizing the ratio between the longest edge and the shortest edge, and revealing 

symmetries [33].  Some visualization toolkits allow the links in the visualization to be 

different lengths, thicknesses, or colors to show an additional dimension of how two 

points are related. 
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Figure 8.  Node-Link Diagram of all  Files in a System Directory [33] 
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Parallel Sets 

  

 Kosara et al. developed the concept of using parallel sets to visualize hierarchical 

data [26].  They developed the parallel set as a way of interacting and dealing with 

complex data sets.  The method is based on the axis layout of parallel coordinates with 

the boxes representing the categories and parallelograms between the axes showing 

relationship of categories (Figure 9). 

 The basic building block of Parallel Sets is a box that represents the size of a 

category on one axis relative to all the data samples. Parallelograms connect categories to 

show how many data points are in any of the combinations between two or more 

categories. The color component is used to differentiate the categories and to make the 

connections between them easier to visualize. 

 Limitations of parallel sets are: 1) when there are many categories of different 

sizes, it can be hard to see and compare them and 2) there is a high learning curve.     
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Figure 9.  Parallel Set Grouping Categories of Class, Sex, and Survival Rate [26] 
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2.2.3 Nested Data 

 

 In general, something that is nested is fully contained within something else of the 

same kind.  In data structures, data variables that are separately identifiable but also part 

of a larger data variable component are said to be nested within the larger.  A nested 

hierarchy is a hierarchical ordering of nested sets [34].  There are a number of 

visualizations that are utilized to display nested data. 

 

Tree/Flow Diagram 

 The simplest visualization to display hierarchical data is a tree diagram (Figure 

10).  A tree diagram is a representation of a tree structure, a way of representing the 

hierarchical nature of a data structure in a graphical form.  The tree diagram starts with 

one item that branches into two or more, each of which branch into two or more, and so 

on.  The visualization is used to break down broad categories into finer and finer levels of 

detail. Developing the tree diagram aids users in thinking about the data step by step from 

generalities to specifics.    

 Similar to tree diagrams, flow diagrams depict data in a hierarchical manner.  

Figure 11 shows the flow of patients through a study.  The flow diagram starts from the 

inception of the study to a more detailed breakdown. Flow diagrams for large studies can 

become cumbersome, difficult to translate and read, and be time consuming in 

construction.  
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Figure 10.  Tree Diagram of Coin Toss with Outcomes 

       

   

 

 

Figure 11.  Flow Diagram of Pancreatic Cancer Experimental Study [29] 
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Multi-Level Pie 

 The multi-level pie chart is a data visualization format that is used for displaying 

hierarchical relationships. The visualization is useful when the data categories are more 

concise and defined.  As the concentric rings go “out”, each item is sized with respect to 

its contribution to the inner parent category, allowing for deep hierarchies to be 

understood at a glance.   

 Figure 12 is an example of a multi-level pie chart that breaks down passenger 

information from the Titanic, and includes a record for each person on board, their class 

(First, Second, Third, Crew), gender (Male, Female), age (Adult, Child), and whether 

they survived (Yes, No) [35].  The idea can be extended to as many levels as desired.  

However the downfall of this layout is readability.  As the number of levels increase, 

many of the ”slices” will be thin and difficult to clearly read and label. 
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Figure 12.  Multi-Level Pie Chart of Titanic Passenger Information [35] 
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Bubble Charts 

 A bubble chart displays a set of numeric values as circles (Figure 13).  The 

visualization is useful for data sets with dozens to hundreds of values, or with values that 

differ by several orders of magnitude.  Bubble charts are generally used to show multi-

dimensional data (x, y, size, color).  Each entity with associated data (v1, v2, v3) is plotted 

as a disk that expresses two of the vi values through the xy location of the disk and the 

third through its size [36].  Bubble charts can be considered a variation of the scatter plot, 

in which the data points are replaced with bubbles.  The circles in a bubble chart 

represent different data values, with the area of a circle corresponding to the value.  
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Figure 13.  Bubble Chart of Burglaries and Murders for each State in the U.S. [36] 
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Treemaps 

 Treemap visualizations are widely used to display hierarchical data (Figure 1).  In 

a treemap visualization, each category is sized according to what percent of the total it 

takes up, and child categories can be placed inside parents in a similar manner.  The 

visualization allows aggregate categories to show through without losing the smaller 

constituent data.  Interactive versions of the treemap allow for “drilling down” deeper 

into the data by clicking on a category to see the hierarchy on the entire screen. 

 Treemaps seem to work best when the total number of categories at each level of 

the hierarchy are finite (otherwise the hundreds or thousands of categories become tiny, 

undifferentiated squares) and each item fits neatly into a single sub-category.  Since 

treemaps have been found to be useful for visualizing large hierarchical data sets [37-40], 

we chose to examine this visualization technique further, to test the validity and 

effectiveness of treemaps for relative area and proportional judgments.  The next chapter 

discusses treemap visualizations in more detail.        

 

 

 

 

 

 

 

 

 



30 

 

 

 

 

 

 

 

 

CHAPTER 3. TREEMAPS 

3.1 Origins of Treemaps 

Treemaps were designed by Ben Shneiderman during the 1990s in response to the 

problem of finding a way of producing a compact visualization of directory tree 

structures for a filled hard disk [37].  He created the treemap as a way for users to find 

large files that could be deleted, and to determine which users consumed the largest 

shares of disk space.  Treemaps are a unique method for visualizing data in a two-

dimensional display. Treemap presentations attempt to shift mental workload from the 

cognitive to the perceptual systems, taking advantage of the human visual processing 

system to increase the bandwidth of the human-computer interface [38].  A treemap data 

visualization uses 100% of the available display space by mapping the hierarchy onto a 

rectangular region. 
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Figure 14.  Principle of Treemap Visualization (a) Node-link Representation of Tree 

(b) Corresponding Treemap [40] 
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Treemaps have been described as “effectively combing aspects of a Venn diagram 

and a pie chart” [39].  The user interface for a treemap organizes hierarchical data as 

nodes, giving more space to nodes that are more relevant or important.  Figure 14, 

demonstrates the principle of treemap visualizations from a traditional node-link tree 

diagram to the corresponding treemap visualization [40].  The treemap starts with a 

rectangular space and subdivides it recursively.  The initial rectangle represents the root 

node of the tree. That space is divided into a number of horizontally aligned sub-

rectangles, each representing a child of the root node. On each recursive call, the 

direction of subdivision is rotated: horizontal, then vertical, then horizontal [38].  

Attributes of leaf nodes are represented using size and color coding.   

 

3.2 Benefits of Treemaps 

Treemaps were designed with four objects in mind: efficient space utilization, 

interactivity, aesthetics, and comprehension [41].  The visualization is used extensively in 

a wide variety of applications from railway monitoring [42] to Newsmap [43], which is 

an application that visually reflects the constantly changing landscape of the Google news 

aggregator.  Treemap visualization is becoming increasingly popular having been 

featured on the TV series 24; the Smithsonian Institution’s HistoryWired; and the New 

York Times [44].  Any data that are hierarchical in format can be visualized with treemaps 

for analysts to make a quick judgment about the data set.  Table 2 illustrates some 

examples from various domains and how the data variables can be extrapolated for use in 

a treemap [41].     
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Table 2.  Mapping Various Domain Data to Treemap Visualizations 

 

 

 

 

Domain Hierarchy Size Measures Color Measures 

Financial Cost Centers   

line items 

Amount Year-over-year change 

Project Management Projects  Components 

  

Tickets 

Time spent, budget Ahead/behind schedule, 

Over/Under budget 

Blog, social sites, news Content type   

stories 

Popularity, comments Recent change in 

popularity 

Student performance Subjects  

 units  

 lessons 

Classroom Time Grade 

US economy Sector  

 subsectors   

business types 

Sales, employment Change over time 
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There is an important aspect to compare various characteristics of treemap visualizations 

with traditional visualization techniques.  Table 3 summarizes a comparison of treemaps 

to several common chart types.  The ability for a treemap to represent a hierarchy of data 

within a restrained and rectangular space makes the visualization both efficient and 

effective [45].  While a dataset hierarchy can be represented in the traditional form of a 

network tree, there is a great deal of unused space in the visualization.  The treemap fills 

the display space in its entirety and aesthetically, while still showing the entire structure 

of the data.  One of the most significant features of the treemap is the ability to represent 

large datasets.   
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Table 3.  Comparison of Visualization Techniques [45] 
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3.3 Treemap Algorithms 

There are a number of existing treemap algorithms [37-38, 46-47]. Traditionally, 

treemap algorithms exhibit a tradeoff between readability (optimizing aspect ratio) and 

ordered layout.  The two most common algorithms are “squarified” and “slice and dice” 

[37-38].  Treemap algorithms vary in terms of layout stability, preservation of data order, 

and aspect ratio.  Layout stability refers to the change in rectangle arrangements when 

there is a change in the data.  An algorithm that depicts low stability indicates that the 

placement of the rectangles may be drastically repositioned even after a small change in 

the underlying data.  This is the opposite result with an algorithm with high layout 

stability where the rectangle position would relatively stay the same even after changes to 

the underlying data.  Preservation of data order is how well the layout algorithm 

maintains the order of the underlying data in the visualization.  The treemap aspect ratio 

refers to the average ratio between the height and width of the rectangles.  In general 

rectangles with lower aspect ratios (closer to squares) are favored in treemaps.           

3.3.1 Squarified 

 The “squarified” (Figure 15) treemap algorithm divides the rectangular space into 

regions having an aspect ratio close to one [37]: 
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Frames are placed around the nodes as a way to enhance the structure of the treemap. 

This helps to provide cues for identifying sibling relationships.  The squarified algorithm 

starts with an initial rectangle of a certain height and width, the rectangle is split by two 

conditions: horizontal subdivision if the original rectangle is wider than high, vertical 

subdivision if the original rectangle is higher than wide.  The left half is filled by adding 

rectangles until optimum aspect ratio is reached.  The process is applied recursively to fill 

in the remaining portions of the rectangle.   “Squarified” treemaps use approximately 

square rectangles, which offer better readability and size estimation than naive “slice-

and-dice” subdivision.   

 To illustrate an example, Figure 15 shows the hierarchy of a surgery department 

starting with the type of surgery highlighted at the top in blue as colorectal surgery.  The 

treemap then displays the next level of the hierarchy using the surgeon ID number of 

each surgeon who performed a colorectal surgery on a patient.  Then under each surgeon 

ID is each patient for that particular surgeon.  Within the treemap, hospital length of stay 

(LOS) and outcomes are represented by size and color, respectively.  The size of the 

rectangles represents the LOS days for the patients.  For example, we can see for Surgeon 

25 in the colorectal group, patient 848 has the largest LOS days.  The shading (color) of 

each leaf node is used to represent the outcome (1- Death (Red); 2- Alive (Green) of each 

patient.   The treemap allows a quick visual representation of the percentage of patients 

with certain outcomes for each surgeon.   A shortcoming of squarified treemaps is that 

the rectangles displayed are sorted by size rather than numerically.  Many data sets 

contain ordering information that is helpful for seeing patterns or for locating objects in 
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the map, which is difficult when utilizing the squarified algorithm where the original 

order is not preserved. 
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Figure 15.  Squarified Algorithm of Surgery Hierarchy 
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 3.3.2 Slice and Dice 

The slice and dice algorithm (Figure 16) uses parallel lines to divide a rectangle 

representing an item into smaller rectangles representing its children. At each level of 

hierarchy the orientation of the lines (vertical or horizontal) is switched.  The strengths of 

the algorithm are found in the change and readability measures [38].  Being an ordered 

treemap algorithm, it is particularly predictable in its placement of the rectangles, and 

hence it is easy to find a certain item among the rectangles.  Though simple to implement 

and preserve the natural order of the data set, the “slice and dice” layout creates layouts 

that contain many rectangles with a high aspect ratio, this leads to long thin rectangles 

that can be hard to see, compare in size, and label. 
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Figure 16.  Slice and Dice Treemap Algorithm of Surgery Hierarchy 

 



42 

 

 

3.3.3 Strip 

 The strip treemap algorithm is a modification of the squarified treemap algorithm 

[46].   The algorithm works by processing input rectangles in order, and laying them out 

in horizontal (or vertical) strips of varying thicknesses (Figure 17).  It is efficient in that 

it only looks at rectangles within the strip currently being processed and produces a 

layout with significantly better readability than the basic slice and dice treemap 

algorithm, and has comparable aspect ratios, and stability.  

 In the strip algorithm the inputs are a rectangle R to be subdivided and a list of 

items that are ordered by an index with given areas.  The current strip is maintained and 

for each rectangle, there is a check to see if adding the rectangle to the current strip will 

increase or decrease the average aspect ratio of all the rectangles in the strip.  If the 

average aspect ratio decreases (or stays the same), the new rectangle is added.  If it 

increases, a new strip is started within the rectangle. 
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Figure 17.  Strip Treemap Algorithm of Surgery Hierarchy 
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3.3.4 Cushion 

 Cushion treemaps are an extension of traditional treemap methods for visualizing 

hierarchical information.  The standard treemap algorithms can have elongated rectangles 

as found in the slice and dice and strip layouts.  As a result it can be difficult to compare 

nodes.  Cushion Treemaps developed by van Wijk and van de Wetering try to alleviate 

that problem by applying a texture to the rectangles that make them appear like shiny 

cushions (Figure 18) [47]. The image shows a computer file system, with the color 

indicating the file type and the area the file size. 

 Due to the perceived discontinuity in texture between nodes, lines are no longer 

necessary to separate nodes, so more of the space can be used for the actual node display, 

and much smaller nodes can be shown than in a flat treemap.  In the cushion treemap 

algorithm, shading is used to provide insight into the hierarchical structure.  During the 

subdivision phase ridges are added per rectangle, which are rendered with a simple 

shading model. The result is a surface that consists of recursive cushions.  For example, 

from the file directory in Figure 18, the larger the ridges or the more depth of the ridges 

shows higher level file directories.    
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Figure 18.  Cushion Treemap Algorithm of a File Structure [47] 
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3.4 Treemap Area Perception 

  

 To date only two researchers have examined area perception judgments within 

treemaps [48-49].  Heer and Bostock studied rectangular area judgment following the 

methodology of the Cleveland and McGill study.  In the study, subjects were asked to 

identify which of two rectangles (marked A or B) was smaller and then estimate the 

percentage the smaller was of the larger making a “quick visual judgment”.  The 

experimental design of the study included a 2 (Display) x 9 (Aspect Ratio) factorial 

design.  In the first display condition, subjects were shown two rectangles with 

horizontally aligned centers (Figure 19a).  The second display depicted a treemap with 24 

values, in which two rectangles were marked with A and B (Figure 19b).  The aspect 

ratios were determined by the cross-product of the set   
 
    

 
  . 

Results from the study were analyzed using Cleveland and McGills log absolute 

error measure (Equation 2).  There was a significant effect found in terms of aspect ratio 

on judgment accuracy.  The comparison of rectangles with aspect ratio 1 exhibited the 

worst performance across both display conditions.  There was no significant difference 

between the rectangle and treemap display conditions.  The Heer and Bostock study has 

provided insight into rectangular judgment pertaining to treemap visualization, 

particularly that aspect ratio affects judgment when the ratio is close to one.  However, 

there are several perceptual tasks involved in interpreting a treemap that may affect 

judgment.  In essence there is a question of how luminance, area, orientation, distance, 

and time of judgment will affect performance.   
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Figure 19. (a) Center Aligned Rectangles (Left); (b) 24 Value Treemap (Right) [48]          
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Kong, Heer, and Agrawala conducted a series of experiments to examine the 

effect of aspect ratio, color, and orientation on rectangular judgment [49].  In a pilot 

study, Kong et al. investigated the effect of luminance on the accuracy of proportion 

judgments.  In the study, subjects were shown a 24 value treemap similar to that of Figure 

19B.  In each case two rectangles were marked A and B, in which subjects had to 

indentify which rectangle was smaller and what percent the smaller was of the larger.  In 

each trial, the luminance of each cell was varied on a CIE L*a*b* color space according 

to a uniform distribution on a gray scale [51]. Results from the study concluded that there 

was not a significant effect on judgment accuracy due to luminance. 

In a following study, subjects compared rectangular areas of varying size, aspect 

ratio, and orientation.  Subjects were shown two center-aligned rectangles (similar to 

Figure 19A) and asked to identify the smaller rectangle and make a quick visual 

judgment on the percentage smaller.  The experimental design consisted of a 4 (True 

Percentage) x 6 (Aspect Ratio) x 2 (Orientation).  The percentages were varied between 

32%, 48%, 58%, or 72%.  The aspect ratios were determined by the cross-product of the 

set   
 
     

 
    

 
  
 
 .  The relative orientation was indicated by the rectangles having identical 

  
 
   

 
  or different   

 
   

 
  orientations.  Results from the study found that there was not a 

main effect of orientation on judgment accuracy.  There was a significant interaction 

effect between orientation and aspect ratio.  Error increased when orientations differed 

and aspect ratios were extreme at   
 
 .  They also found, similar to the Herr & Bostock 

study, that comparing squares leads to more error. 

Both studies [48-49] explored rectangular judgments pertaining to perceptual 

tasks needed to interpret a treemap visualization.  Insights rendered from the studies are: 
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 An aspect ratio of 1 exhibits the worst performance of judgment 

accuracy 

 Luminance of rectangles does not affect judgment accuracy 

 Conditions where orientation is different and aspect ratio close to 1 

renders the worst performance 

 Comparing diverse aspect ratios improves accuracy but can become 

difficult at extreme aspect ratios 

 

3.5 Conclusions 

  

 This chapter has reviewed the origins of treemaps, described several alternative 

treemap generation algorithms, and introduced human perception research related to 

interpreting data elements commonly found in treemaps.  The next chapter further 

explores characteristics of treemaps that affect human judgment and describes a human 

subjects experiment that was conducted to investigate these characteristics.  
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CHAPTER  4. STUDY 1: UNDERSTANDING HUMAN PERCEPTION OF RECTANGULAR 

AREA JUDGMENTS 

 This chapter explores the impact of treemap characteristics on the ability of a 

decision maker to interpret information displayed this way, by systematically varying 

treemap display variables and measuring the ability for a viewer to judge the percent 

difference in area depending on how and where the rectangles being judged are located in 

the treemap, extending the work of Heer and colleagues.     

4.1 Introduction  

 With treemaps, analysts may have to compare non-contiguous rectangular cells of 

varying aspect ratio, area difference, and orientation displaced with respect to horizontal 

and vertical distance. Previous research has shown that, in general, when making area 

perception judgments of geometric stimuli, people tend to underestimate area differences 

[53-55]. In addition, relative area judgment accuracy decreases when area differences are 
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closer to the middle of the scale (with worst performance peaking at a true difference of 

~60%) [53,55]. Furthermore, human judgment performance is improved when items are 

closer and aligned along the same vertical scale, as translation and rotation create 

additional cognitive tasks. [56-59]  Because rectangles in treemaps can be placed at any 

location on the two-dimensional treemap display, the offset angle between the 

longitudinal axis of one rectangle and a line connecting the two may also affect human 

judgment performance (Figure 20) but no previous research has systematically studied 

the potential effect of offset angle. 

However even with aligned and similarly oriented rectangles, previous research 

has shown that aspect ratio can impact judgment performance.  Both [48] and [49] 

examined relative rectangular area judgments for two center-aligned rectangles with 

varying aspect ratios.  More square-like aspect ratios reduce performance, hypothesized 

due to use of one dimensional (1D) length comparisons to help estimate area [49].  [48] 

found that trials with the extreme aspect ratio pairs (9:2x9:2) also exhibited higher 

judgment errors and hypothesized that diverse but not extreme aspect ratio pairs would be 

preferred.   
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Figure 20.  Geometry of Relative Rectangular Area Judgments   
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Complicating the analysis of human performance implications for relative 

rectangular area judgments is that the combination of area difference and aspect ratio 

creates an emergent geometric property: Whether rotated or not, either one rectangle can 

be contained inside the other (observable fit) or not (observable non-fit) (Figure 21). 

Individuals may be more accurate and make judgments more quickly when one rectangle 

fits within the other as mental translation can support such judgments [60].  Cave and 

Kosslyn [61] varied the sizes of geometric stimuli, and found that more time was required 

when a stimulus appeared at a different size.  Anderson [62] found that when making 

judgment about area, humans use cognitive algebra using height and width to make a 

judgment.  In the case of non-fit, whereby the length or width of the smaller rectangle is 

greater than the length or width of the larger rectangle, these cognitive algebra rules are 

harder for the observer to use.  

ai = hi + wi (height + width rule)   

ai = hi x wi (height × width rule)   

Previous research on rectangular area judgments has not explicitly addressed this concept 

of fit.  
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Figure 21.  (a) Smaller Rectangle Does Not “Fit” within Larger Rectangle (Aspect 

Ratio Pair: 2:3x1:1 and Area Difference of 75%); (b) Smaller Rectangle Does not 

“Fit” within Larger Rectangle (Aspect Ratio Pair: 3:2x1:1 and Area Difference of 

75%) (c) Smaller Rectangle “Fits” within the other Rectangle (Aspect Ratio Pair: 

2:3x1:1 and Area Difference of 45%)  
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4.1.1 Objectives and Hypotheses 

 This study investigates the effect of geometric features of pairs of rectangles (in 

terms of true area difference, aspect ratios, horizontal distance apart and vertical offset 

angle) on the decision makers ability to judge the true difference in area between two 

rectangular stimuli. To validate the prior research and to extend it to systematically 

consider new features (offset angles and observable fit), we evaluate the following 

hypotheses: 

 

Hypothesis 1: Decision makers will be less accurate (a) and will take longer (b) when 

making rectangular area judgments comparing square aspect ratio pairs as compared to 

non-square aspect ratio pairs.   

Hypothesis 2: Decision makers will be less accurate (a) and will take longer (b) when 

making rectangular area judgments as offset angle increases. 

Hypothesis 3: Decision makers will be less accurate (a) and will take longer (b) when 

making rectangular area judgments as horizontal distance increases. 

Hypothesis 4:  Decision makers will be less accurate (a) and will take longer (b) when 

making rectangular area judgments when the smaller rectangle does not fit within the 

larger.  

Hypothesis 5:  Decision makers will tend to underestimate rectangular area differences.  
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4.2 Methods 

4.2.1 Participants 

 Thirty undergraduate and graduate science and engineering students participated 

in the study (n=15 males, n=15 females).  The average age for participants was 23.3 years 

(SD = 3.14).  They were each paid $10 for their participation.  A protocol for this study 

was submitted and approved by the IRB for Social and Behavioral Sciences at the 

University of Virginia (#2011-0013-00). 

4.2.2 Independent Variables 

4.2.2.1 Within-Subject Variables 

 

Four within-subjects independent variables were used to design the geometry of the area 

judgment trials: aspect ratio pairs, horizontal distance, offset angle, and true area 

difference (Table 4). 

Aspect Ratio Pairs 

Nine aspect ratios pairs were developed using all combinations of 2:3, 1:1, and 3:2 

(average aspect ratio =1.04; standard deviation = 0.28).  The aspect ratios used fall within 

2 standard deviations of the Bruls et al. layout [6].   

Horizontal Distance 

Measured by projecting the centers of the rectangles to the x-axis, five horizontal 

distances (200, 300, 400, 500, and 600 pixels) led to trials where the centers were 2-6 

inches apart (Figure 20).  The horizontal position of the left rectangular stimuli was held 

constant; the horizontal position of the right rectangular stimuli varied in distance.   
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Table 4.  Independent Variable Used to Create Trials 

 

Independent Variable Levels 

Aspect ratio pairs 

 
 
 

 
 

 

 
 
  

 
  
 

 
 
  

 
 
 

 
 
  

 

 
 

 
  

 
  
 

 
 
  

 
 
 

 
 
  

  
 
 

 
 

 

Horizontal Distance 
200, 300, 400, 500, 600 pixels 

 

Offset angle 
15, 30, 45 degrees 

 

Area difference 
45, 60, 75 percent 
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Offset Angle 

The offset angle represents the minimum angle between a line connecting the centers of 

the two rectangular stimuli and a line projected parallel to the x-axis of the viewing 

window (Figure 20). The values for the offset angles were 15, 30, and 45 degrees.  The 

vertical position of the left rectangular stimuli was held constant; the vertical position of 

the right rectangular stimuli varied counterclockwise.   

True Area Difference 

The true area difference denotes the actual (physical) percentage difference the smaller 

rectangle is of the larger.  The values used were 45%, 60%, and 75%. 

Observable Fit 

By combining the area differences and aspect ratio pairs, an emergent attribute with two 

levels, Fit and Non-Fit, was determined based on whether one rectangle (rotated or not) 

could fit inside the other. Non-fit trials were those with true area difference of 75% 

combined with aspect ratio pairs of 2:3x1:1 and 3:2x1:1. All others were fit trials. 

4.2.2.2 Between-Subject Variables 

There were two between-participant independent variables: gender and block order.  

Gender 

Gender was modeled to account for potential differences associated with the spatial 

ability task of judging area between rectangular stimuli [63].  

Block order 

To account for potential order effects, trials were grouped into five equal-sized blocks.  

Each participant experienced one of five possible block orders designed using a Latin 
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square randomization approach (Table 5).   

4.2.3 Dependent Variables 

Dependent variable measures for the study were log absolute error and completion time.   

Log absolute error 

Log absolute error measured the accuracy of the judged difference between the two 

rectangular stimuli [53]:   

log2(|judged percent - true percent| + 1) 

 

Completion time  

The completion time was measured from the time a question appeared on the display to 

the time that the participant pressed the Enter key.   

4.2.4 Procedure  

 Each session consisted of a short briefing, spatial ability assessment, training 

trials, and experimental trials, lasting a total of less than 1 hour. 

Spatial Ability Assessment 

Paper-based spatial ability assessments derived from the Newton and Bristoll Spatial 

Ability-Practice Test [64] assessed the  spatial ability of each participant (Appendix B). 

The first two parts included rotation tasks where participants were presented with a figure 

and were asked to find the two-dimensional rotation. The third part was a 25 question 

shape-matching task where participants were asked to match the 25 shapes found in one 
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panel with the 25 rotated shapes in the other.  New participants would be recruited to 

replace anyone with an assessment score below 80%. 

Relative Rectangular Area Judgment  

Participants completed the area judgment portion of the study using a custom web 

application.  Participants entered demographic information and then completed two area 

judgment training trials.  For these trials, participants were provided with feedback on the 

accuracy of their judgments.  The participants then completed 270 area judgment trials 

(see Figure 22) without feedback in blocks of 54 with breaks between blocks.  In each 

trial, participants viewed a 1024 x 768 pixel image containing two rectangles and then 

identified which of the rectangles (A or B) was smaller and estimated the percentage the 

smaller was of the larger. Participants were encouraged to work quickly and to make 

“quick visual judgments.”   
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Table 5.  Latin Square Design for Group Trials 

Block Order Order of blocks 

1 A B C D E 

2 B C D E A 

3 C D E A B 

4 D E A B C 

5 E A B C D 

 

 

 

Figure 22.  Example Trial: Aspect Ratio Pair 2:3x2:3; Area Difference 60%; Offset 

Angle 45 Degrees; Distance 400 Pixels  
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4.2.5 Experimental Design & Analysis  

Spatial Ability Assessment 

The percentage of correct responses out of the 27 total was calculated to assess the spatial 

ability assessment score.  

Statistics Used 

This study employed a repeated measures design with aspect ratio pairs, horizontal 

distance, offset angle, and area difference as within-subject factors and gender and block 

order as between-subject factors.  Each of the 30 participants completed 270 trials. 54 

trials were assigned to each of the five blocks.  Six participants (3 female; 3 male) were 

randomly assigned to each block order.   

 Data were analyzed using repeated measures MANOVA with Wilks lambda.  

Effects found to be significant in the MANOVA were analyzed using repeated measures 

ANOVA for each dependent measure.  For the significant effects, Bonferroni-adjusted 

post-hoc analysis was used to determine which levels were significantly different from 

the others.   

 To address the observable fit, repeated measures MANOVAs with Wilks lambda 

were conducted with the independent variables: fit, distance, and offset angle.   

Binary logistic regression was used to evaluate the tendency for participants to 

overestimate or underestimate the judged area difference compared to the actual 

difference.  Results are reported using α = 0.05 for significance and 0.10 for trends.   
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4.3 Results 

 The MANOVA results revealed that there were no significant main effects for 

gender, Λ = 0.88, p = 0.525 or block order, Λ = 0.65, p = 0.730. Therefore the between-

subject variables were not included in subsequent repeated measures ANOVA.  

4.3.1 Spatial Ability Assessment 

 All participants met the inclusion criterion of scoring higher than 80% on the 

spatial ability assessment. There was no significant difference between males (M = 95.5, 

SD = 5.28) and females (M = 95.7, SD = 5.33), t(28) = –0.1246, p = 0.901.  

4.3.2 Log Absolute Error 

 All participants correctly assessed which rectangle was smaller than the other for 

all trials. However, based on the log absolute error, judging the relative area between two 

rectangular stimuli with varying parameters proved to be a difficult human perception 

task (M = 3.30, SD = 1.42).  This is approximately a difference of 10 in absolute error 

when judging relative area difference.   

 Table 6 shows the ANOVA results for absolute log error as a function of aspect 

ratio pair, horizontal distance, offset angle and area difference and Figure 23 shows the 

main and two-way interaction effects. The main effect of aspect ratio pairs was 

significant for relative area judgment.  Aspect ratio pairs 1:1x1:1 (M = 3.37, SD = 1.42) 

significantly decreased accuracy more than pairs 2:3x2:3 (M = 3.22, SD = 1.42) and 
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2:3x3:2 (M = 3.22, SD = 1.42).  Results also indicated a main effect for offset angle, such 

that the 45 degree offset angle (M = 3.34, SD = 1.43) decreased accuracy more than the 

15 degree offset angle (M = 3.18, SD = 1.43) and the 30 degree offset angle (M = 3.21, 

SD = 1.43).  These main effects were qualified by a significant interaction between aspect 

ratio pairs and offset angle.  Figure 23 illustrates that while the accuracy is better at 30 

degrees than at 45 degrees for all tested aspect ratios, there was no such consistent pattern 

for 15 degrees, where the accuracy varies depending on aspect ratio.  
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Table 6.  Repeated Measures ANOVA for Log Absolute Error and Time as a 

Function of Aspect Ratio (AR) Pair, Horizontal Distance (Distance), Offset Angle 

(Angle) and Area Difference 

 

Effects Log Error Time(sec) 

AR Pair F(5,145)=2.25; p=.050 F(5,145)=3.06; p=.017 

Distance F(4,116)=1.60; p=.108 F(4,116)=1.09; p=.210 

Angle F(2,58)=12.01; p=.002 F(2,58)=2.98;  p=.018 

Area Difference F(2,58)=1.04; p=.262 F(2,58)=2.05; p=.090 

AR Pair x Distance  F(20,580)=.903; p=.322 F(20,580)=1.17; p=.232 

AR Pair x Angle F(10,290)=2.15; p=.009 F(10,290)=2.82; p=.005 

AR Pair x Area Difference F(10,290)=2.86; p=.005 F(10,290)=2.21; p=.010 

Distance x Angle F(8,232)=2.13; p=.015 F(8,232)=1.27; p=.204 

Distance x Area Difference F(8,232)=1.31; p=.238 F(8,232)=1.07; p=.310 

Angle x Area Difference F(4,116)=2.75; p=.020 F(4,116)=1.15; p=.239 
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Figure 23.  Main effects and Two-way Interaction Effects for Log Error as a Function of Aspect Ratio (AR) Pair, 

Horizontal Distance (Distance), Offset Angle (Angle) and Area Difference
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 Aspect Ratio Pairs × Area Difference, Offset Angle × Distance, and Offset Angle 

× Area Difference also had significant interaction effects for relative area judgment.  

Post-hoc analyses revealed that, for the Aspect Ratio Pairs × Area Difference interaction, 

accuracy decreases for squares (1:1x1:1) when the true difference is smaller (45% or 

60%) but this degradation in accuracy goes away when the true area difference is larger 

(75%).  For the Offset Angle × Distance interaction, area judgment error trends higher as 

the distance increases for offset angle 45, but trends lower as the distance increases for 

offset angles 15 and 30 (except at the extreme distance of 600 pixels).  The Offset Angle 

× Area Difference interaction revealed that the two extreme areas (45% and 75%) are 

easier to judge than the middle area difference (60%) for offset angles 15 and 45 degrees, 

but at 30 degrees, we see a linear trend of accuracy decreasing as area difference 

increases. In general, looking at the related interaction plots in Figure 24, we can see that 

relative area judgment accuracy tends to decrease significantly when offset angle is 45 

degrees as compared to 15 and 30 degrees.   

 A separate ANOVA analysis investigated the effect on log absolute error as a 

function of horizontal distance, offset angle and observable fit (Table 7).  There was a 

main effect for Offset Angle and Observable Fit, with a trend towards significance for 

Distance.  Post-hoc tests revealed that the 45 degree offset angle (M = 3.53, SD = 1.41) 

decreased accuracy more than the 15 degree offset angle (M = 3.20, SD = 1.41) and the 

30 degree offset angle (M = 3.23, SD = 1.41).  Non-fit (M = 3.43, SD = 1.41) trials 

decreased accuracy more than fit (M = 3.24, SD = 1.41) trials.  The only significant 

interaction was for Offset Angle x Distance (see Figure 24). 
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Table 7.  Repeated Measures ANOVA for Log Absolute Error and Time as a 

Function of Horizontal Distance (Distance), Offset Angle (Angle) and Observable 

Fit (Fit) 

 

 

 

 

 

 

 

 

 

 

Effects Log Error Time(sec) 

Distance F(4,80)=1.96; p=.097 F(4,80)=1.08; p=.364 

Angle F(2,40)=13.78; p=.001 F(2,40)=5.21; p=.020 

Fit F(1,20)=9.64; p=.002 F(1,20)=.767; p=.410 

Distance x Angle F(8,160)=2.06; p=.035 F(8,160)=1.88; p=.123 

Distance x Fit F(4,80)=.857; p=.488 F(4,80)=.856; p=.489 

Angle x Fit F(2,40)=.027; p=.972 F(2,40)=2.63; p=.071 
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Figure 24.  Main effects and Two-way interaction Effects for Log Error as a 

Function of Horizontal Distance (Distance), Offset Angle (Angle) and Observable 

Fit (Fit) 
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4.3.3 Judgment Time 

 

 Participants on average took 6.22sec, (SD = 6.39sec) to process relative area 

judgments of two rectangular stimuli with varying parameters.  Results from the repeated 

measures ANOVA reveal that the main effect of aspect ratio pairs was significant for 

relative area judgment time.  Aspect ratio pairs 2:3x2:3 (M = 6.70sec, SD = 6.39sec) 

significantly increased judgment time more than pairs 3:2x3:2 (M=5.92sec, SD=6.39sec) 

and 1:1x3:2 (M = 5.90sec, SD = 6.39sec).  Offset angle was also a significant main effect 

for judgment time, such that the 45 degree offset angle (M = 6.34sec, SD = 6.39sec) 

increased judgment time more than the 15 degree offset angle (M = 6.13sec, SD = 

6.39sec) and the 30 degree offset angle (M = 6.17sec, SD = 6.39sec). There was a linear 

trend in that as the offset angle increased from 15 degrees to 45 degrees, so did the 

judgment time (see Figure 25).  Examining the interaction effects revealed significant 

two-way interactions for Aspect Ratio Pairs x Offset Angle and Aspect Ratio Pairs x Area 

Difference (Table 7 and Figure 25).  
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Figure 25.  Main Effects and Two-way Interaction Effects for Time as a Function of 

Aspect Ratio (AR) Pair, Horizontal Distance (Distance), Offset Angle (Angle) and 

Area Difference 
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 A separate analysis for judgment time was conducted using repeated measures 

ANOVA that included the independent variables of Distance, Offset Angle, and 

Observable Fit.  Results of repeated measures ANOVA showed a significant main effect 

for offset angle (Table 7).  From post-hoc analysis the 45 degree offset angle (M=6.34sec, 

SD=6.39sec) increased time more than the 15 degree offset angle (M=6.13sec, 

SD=6.39sec) and the 30 degree offset angle (M=6.17sec, SD=6.39sec), p < .001.  The 

interaction effect Offset Angle x Observable Fit approaches significance.  Figure 26 

illustrates that Non-fit trials took longer to judge over the fit trials for the 30
0
 and 45

0
 

offset angles, but this result was reversed at the smaller offset angle (15
0
). 

4.3.4 Judgment Bias 

 On average, participants underestimated area differences between the two 

rectangles (Figure 27).  Cross tabulations on each independent variable show that 

participants had a higher percentage of underestimates for each level of the variables.  

Results from the logistic regression revealed that aspect ratio pairs (p = .001), distance (p 

= .011), and area difference (p = .001) were all significant main effects.  The tendency to 

underestimate is more prevalent in trials where the rectangular stimuli judgments have a 

closer relative placement (Distance = 200 pixels and Offset Angle =15
0
).  
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Figure 26.  Main Effects and Two-Way Interaction Effects for Time as a Function of 

Horizontal Distance (Distance), Offset Angle (Angle) and Observable Fit (Fit) 
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Figure 27.  Cross Tabulations of Responses for Each Independent Variable 

 

 

 

 

 

4.3.5 Results by Hypothesis 

Hypothesis 1a: The square aspect ratio pair {1:1x1:1} yielded the highest error rate 

Aspect Ratio Pairs Distance Offset Angle Area Difference 
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among participants (M=3.37, SD=1.39).  Post hoc tests revealed that aspect ratio pair 

{1:1x1:1} was significantly different from other pairs.  This result indicates that 

comparison of squares hinder judgment accuracy, consistent with Hypothesis 1a.   

 

Hypothesis 1b: We hypothesized that square aspect ratio pairs {1:1x1:1} would result in 

longer judgment times. However, aspect ratio pair {2:3x2:3} had the longest judgment 

time (M=6.7sec, SD=6.39).  Post hoc tests revealed that aspect ratio pair comparisons that 

included the 2:3 aspect ratio increased judgment time more than other rectangular area 

comparisons including aspect ratio 1:1 and 3:2. 

   

Hypothesis 2a: There was a linear effect in that as the offset angle increased from 15 

degrees to 45 degrees, so did degree of error, consistent with Hypothesis 2a. 

 

Hypothesis 2b: We hypothesized that higher offset angles would increase judgment time. 

There was a significant linear trend for offset angle as the angle increases from 15 to 45 

degrees, participants had longer judgment times.  This confirms Hypothesis 2b.   

 

Hypothesis 3a: We hypothesized that as distance increased, accuracy would decrease.   

Results from our study found that distance did not have a significant effect on the 

accuracy of area judgments by itself.  However, the two-way interaction between distance 

and offset angle was significant in the repeated measurers ANOVA model.  For offset 

angle 45 degrees, as distance increases so does log absolute error.  This result implies that 

relative placement negatively effects area judgment accuracy, specifically large distances 
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(600 pixels) and offset angles (45 degrees).   

 

Hypothesis 3b: We hypothesized that as distance increases participants would have 

longer judgment times.  The main effect of distance on judgment time was found not to 

be significant.  This result is not consistent with Hypothesis 3b.     

 

Hypothesis 4a: Consistent with Hypothesis 4a, participants made significantly smaller 

judgment errors for the fit (M = 3.23, SD = 1.41) trials than for the non-fit (M = 3.43, SD 

= 1.41) trials.   

 

Hypothesis 4b: There was no significant difference in judgment time for fit vs. non-fit 

trials, which indicates a lack of support for the hypothesis.  However, there was a trend 

towards significance for the interaction Offset Angle x Observable Fit.  Non-fit trials took 

longer to judge over the fit trials for larger offset angles, than for the smaller offset 

angles. 

 

Hypothesis 5:  Participants underestimated area 52% of the time when making 

rectangular area judgments, consistent with our hypothesis that participants would have a 

tendency to underestimate perceived area.  
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4.4 Discussion 

 The above experiments have investigated how geometric properties (aspect ratio 

pairs, true area difference, distance, and offset angle) influence area judgments when 

comparing rectangular stimuli.  The study also investigated the perception of observable 

non-fit and observable fit trials.  Results from the study are consistent with other studies 

assessing relative area magnitude judgments of rectangular stimuli that square aspect 

ratios are perceptually harder to judge [48,49] suggesting that the squarified treemap 

algorithm could potentially benefit from eliminating square aspect ratios.  Surprisingly, 

square aspect ratios did not have the longest judgment time. Our study found that trials 

that included a rectangle with a 2:3 aspect ratio led to the longest judgment times.  The 

study conducted by Heer and Bostock[48], on rectangular area judgments did not assess 

judgment time, but their results also found that trials that included a rectangle with a 2:3 

aspect ratio led to higher error.  It is not clear whether the vertical orientation of the 

aspect ratio may have attributed to longer judgment time as compared to trials that only 

included the 3:2 and 1:1 aspect ratios.  Future studies could help to explain what heuristic 

is utilized when making the relative area comparison for a specific aspect ratio.   

    Our work further investigated how relative placement (horizontal distance and offset 

angle) impacts area judgment.  The horizontal distances between graphical elements seem 

to bear no relationship to how accurately relative area is judged.  Offset angle has an 

impact on rectangular area judgment both standalone and interacting with horizontal 

distance in terms of relative placement.  An increase in offset angle size resulted in larger 

errors and longer judgment time.  This coincides with related research that investigated 

the impact that angles have on proportion comparisons between geometric figures [65].  
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 For both the proportion judgments and our relative area magnitude judgments, 

angle judgments were less accurate and took the most time to judge.  This effect is 

compounded when examining the interaction of horizontal distance and offset angle.  At 

the 45 degree angle error increased as the horizontal distance increased.  Far distance and 

large acute angles lead to more difficult cognitive processing than linear aspects.  Prior 

research [15] confirms that non-aligned geometric objects are perceptually harder to 

compare.   

 Our results suggest that participants were more accurate when the compared 

rectangles had observable fit versus observable non-fit.  This was also directly correlated 

with relative placement (horizontal distance and offset angle).  For the non-fit trials at the 

maximum horizontal distance and offset angle, participants had a higher error and longer 

judgment times.  An empirical explanation of why participants have a difficult time 

judging non-fit trials can be implied from prior research [58] on cognitive stages humans 

use when comparing geometric objects.  Johnson [59] developed cognitive processing 

steps that individuals make during perceptual comparison task.  In the instance of making 

observable non-fit comparisons that are far in proximity, extra cognitive stages may 

potentially be added after the individuals rotate the two rectangular stimuli where there is 

a step of cognitively sliding the geometric stimuli to be closer in proximity and then 

deciding whether the rectangles fit or not.  With the additional cognitive steps, we would 

expect individuals to take a longer time and have a harder time when making rectangular 

area judgments where the smaller does not fit within the larger (Figure 28). However, 

there was no significant difference in time found.  Additional experimentation is needed 

to form a more accurate and complete perceptual model.   



79 

 

 

 

 

 

 

Figure 28.  Rules for Area Judgment Heuristic in Observable Fit Case   



80 

 

 

 

 Our study implies that geometric properties that systematically vary when 

representing key information in treemaps (the aspect ratio, true size difference, and 

relative distance and offset angle of the rectangles being displayed) as well as observable 

non-fit adversely affect judgment accuracy of rectangular area comparisons.  These 

properties have more of a negative impact on rectangular area judgment and judgment 

time when there is an interaction between two of the properties.  Participants on average 

differed in absolute error greater than 10 and the variance in estimates were large, 

indicating that this was a difficult perceptual task that will lead to decreased accuracy.  

For rectangular area judgment the geometric features of rectangle placement in squarified 

treemaps require consideration of relative distance and offset angle.  It is sometimes 

necessary for users of treemaps to make such rectangular area comparisons to gain 

insight into relevant features of the data, construct accurate mental models of the 

information, and leverage parallelism in visual processing.   

   There remains a challenge of how to make individuals better at these rectangular 

area comparisons or whether we can adjust the algorithms or provide additional cues to 

help users, such as making such judgments automatically if there is an easy way for users 

to highlight the relative variables of interest.  Implications from our study on rectangular 

area judgments suggest that utilizing alternative layout algorithms can help eliminate 

some of the information processing steps needed to make this type of judgment.  The 

algorithm could potentially group like nodes together utilizing Gestalt laws of perceptual 

organization [11].  The close proximity could be better suited for making relative 

magnitude comparisons among users.  For follow-on work, discussed in the next chapter, 
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we implement a treemap system that contains a grouping algorithm to help in examining 

the intrinsic details of rectangular area comparisons and compare it to a traditional 

system.  An alternative solution to aid the user in making such judgments would be to 

develop mechanisms for users to select subsets of the data of interest and to create 

specialized support displays to better enable users to make comparisons of selected 

features of the dataset being viewed. 

 There are certain limitations in the work presented.  We conducted our experiment 

with participants examining two standalone rectangles instead of within a treemap.  A 

previous study [48] demonstrated no significant difference between standalone 

rectangular area judgment tasks and rectangular area judgment tasks conducted within 

nodes of a treemap.  We also did not vary the luminance of the rectangles, as is common 

in treemap layouts, but a previous study [49] demonstrated no significant difference 

depending on the luminance of the rectangles being compared. 

 Based on these results, we find that particular geometries of rectangular stimuli in 

area judgment result in people making systematic judgment errors.  In general, relative 

area judgments of rectangular area comparisons result in low accuracy and do not support 

fast judgments.  We can conclude that size difference (aspect ratio and area difference) 

and relative placement (distance between rectangles and offset angle) impact the decision 

makers ability to make relative rectangular area judgments.  While utilizing treemaps to 

analyze large hierarchical data can help support fast characterization of the data, they 

may not be well-suited to making inferences on subsets of the data that require highly 

accurate rectangular area comparisons.   

 



82 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5. STUDY 2: DESIGN AND VALIDATION OF AN ATTRIBUTE GROUPING 

TREEMAP ALGORITHM 

 This chapter describes a novel attribute grouping algorithm that was created as an 

alternative treemap layout to help support proportional area judgments.  The attribute 

grouping algorithm was used in a human subjects experiment to validate the effectiveness 

of the algorithm.     

5.1 Introduction 

 Many tasks performed by a human require the viewing of graphically displayed 

data.  Individuals frequently study graphical visualizations to get a "feel" for their data. 
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Managers and economists study plots of various indices of production, employment, etc. 

Investors plot stock market averages and medical personnel plot outcomes and patients 

vital signs.  An individuals real-time perception of the properties of graphically displayed 

data can influence his or her decision-making behavior [66].  This applies to human 

interpretation of the data displayed by treemap visualizations. We refer back to Figure 1, 

which depicts a treemap visualization of the United States S&P 500 stock market [8].  

Stocks are categorized by industry area (e.g. technology, health care, financial, and 

energy) and the size of each industry block illustrates the activity of stocks in these areas. 

The activity of each stock is indicated by rectangle size (larger rectangles represent a 

stock that had higher trading than smaller rectangles) and the direction of price change 

for the stock is shown through color (red=loss, green=gain) with the brightness 

representing the amount of change (bright red or green means a bigger loss or gain, 

respectively, than dark red or green). 

 As with most treemaps in use today, the one shown in Figure 1 was generated by 

a “squarified” algorithm. Such an algorithm generates a treemap that avoids high aspect 

ratio rectangles (e.g., very narrow rectangles, where the length and width are quite 

different from each other), forcing the nodes to have aspect ratios closer to a square [6], 

since visually judging the area of rectangles with high aspect ratios is difficult [49]. 

 When evaluating a treemap visualization, at a lower level, interpretation depends 

on the decision makers ability to perceive area, aspect ratio, luminance, and shading.  On 

a higher level, an individual must be able to interpret how the variables fit within the 

nested hierarchies, in order to estimate the percentage that a variable corresponds to the 

whole hierarchy.  For instance from Figure 1, the user at a quick glance can see that many 
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of the health care sector stocks increased for the day (they are displayed in a shade of 

green, meaning their value went up, as opposed to a shade of red, meaning that their 

value went down).  However, it remains a question how accurately can the user judge the 

percentage of health care stocks that increased for the day, compared to the percentage of 

energy stocks that increased for the day.  The random placement of the nodes by size 

from the squarified treemap algorithm makes this proportional area judgment more 

difficult.  The user potentially would have to cognitively group or count all of the green 

colored nodes together for stocks that had a gain and group the red colored nodes for 

stocks that had a loss for the day in order to come up with an assessment.   

 Perceptual principles identify ways that people quantify and estimate items.  

Goldstone [67] conducted a study where subjects were asked to estimate the percentage 

of display items that had a particular feature.  Features were either randomly distributed 

or spatially clustered so that the features of the same type tend to be close.  It was found 

that subjects overestimated randomly clustered figures.  Numerosity research has 

identified ways that people quantify items.  For up to six items, people can accurately and 

nearly instantaneously quantify the items [68].  This ability is called subitization.   

Subitizing is "instantly seeing how many", which is attributed to the recognition of 

patterns [69].  Individuals can also keep a running count while enumerating each item. 

Counting can theoretically quantify any number of items, but can be time consuming with 

larger sets.  There is a thought that people can estimate or count the number of items in a 

particular region and then extrapolate. This method requires less effort than counting, 

especially when regions are small and easily identifiable, but still requires attentional 

focus and nontrivial calculations.  Research also supports the notion that individuals use 
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area occupied by items as a cue for the total quantity [70].  Our intuition is that the 

perceived estimation of rectangles occupying an area depends on how people 

perceptually group items and the strategies used to arrive at the grouping.     

 These implications suggest that utilizing alternative treemap layout algorithms 

can help eliminate some of the information processing steps needed to make proportional 

judgments.  In this research we explore an alternative treemap algorithm that we call 

“attribute grouping” that groups like color nodes together, generating a treemap utilizing 

Gestalt laws of perceptual organization and Wicken’s proximity compatibility principle 

(PCP) [11, 71].  Gestalt laws account for the observation that humans naturally perceive 

objects as organized patterns and objects.  The principle of proximity states that, all else 

being equal, perception tends to group stimuli that are close together as part of the same 

object, and stimuli that are far apart as two separate objects [11].  Wicken’s PCP 

indicates that in a display relevant items should be rendered close together in perceptual 

space (close display proximity).  The proximity referred to in the principle is perceptual 

and spatial.  Perceptual proximity refers to the perceptual similarity between different 

components of a display.  This includes distance, color, shape, and physical dimensions.  

Spatial proximity refers to the distance between the items of the displays.             

 We might expect that due to the clustering nature of the new attribute grouping 

layout, judging total percentage across continuous rectangles of a certain color will result 

in decreased error and time.  The close proximity would be better suited for making 

relative magnitude comparisons among users.  A human subjects experiment was 

conducted to compare the new attribute grouping algorithm to the existing squarified 

treemap algorithm.     
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5.2 Attribute Grouping Treemap Algorithm Theory  

 Insights from aforementioned studies [66-70] indicates that grouping items with 

like attributes aids in successful completion of perceptual grouping and proportion task, 

compared to completing the task when attributes are dispersed randomly.  Our intuition is 

that creating an attribute grouping algorithm for treemaps that groups same color nodes 

together, but still keeps the area dimensionality will improve on proportional area 

judgments.  Previous treemap algorithms have proposed creating more useful displays by 

controlling the aspect ratios of the rectangles that make up a treemap and preserving the 

order of the underlying data mapped to how the nodes are placed on the treemap.  While 

these algorithms do improve visibility of small items in a single layout, they do not look 

at improving the clustering of a subset of the data that is colored.     

 The attribute grouping algorithm creates rectangles in a visual order that match 

the input to the treemap algorithm, specifically creating a layout in which attributes that 

are represented by the same or similar color in the data input are adjacent in the treemap.  

On the front end of the algorithm the colors are first ordered by hue (h), saturation (s), 

and brightness (b) utilizing a concept similar to lexicographic ordering [72].  

 

 

Given two partially ordered sets A and B, then the lexicographical order on the Cartesian 

product of A x B is defined by [72]:  

 

(a,b) ≤ (a′,b′) if and only if a < a′ or (a = a′ and b ≤ b′). 
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The function derives from the order used in a dictionary, where strings are compared in 

alphabetical order, from left to right.   

 The colors are compared using the precedence of h > s > b, to return the color 

order.  Once the order is determined a built-in function is used to convert the resulting (H, 

S, B) to RGB values for actual colors.  The RGB gives the amount of each red, green, and 

blue primary stimulus in the color.  The transformation from HSB to RGB coordinates is 

a transformation from a Cartesian coordinate system to a cylindrical coordinate system 

[73-74].  To convert from HSB to RGB, the steps as well as the equations are shown in 

Table 8 followed by the code for this conversion concept in Figure 29. We then utilize 

the resulting RGB answer to sort the data by color and then size.  The algorithm concept 

is depicted in java code in Figure 30.  This code is provided in full in Appendix C.   
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Table 8.  Equation and Steps for Converting HSB to RGB 

                  

 

 

  

 

 

 

 

1. Compute chroma, by 

multiplying saturation by 

the maximum chroma for a 

given brightness. 

 

 

2.  Find the point on one of 

the bottom three faces of 

the RGB cube, which has 

the same hue and chroma 

as our color. 

 

3.  Add equal amounts of 

R, G, and B to reach the 

proper lightness or value. 
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Figure 29.  Conversion Code of HSB to RGB 

 

 

/** 

 * Converts an HSB color value to RGB.  

 * Assumes h, s, and b are contained in the set [0, 1] and 

 * returns r, g, and b in the set [0, 255]. 

 * 

 * Number  h  Hue 

 * Number  s  Saturation 

 * Number  l  Brightness 

 * @return  Array  RGB representation 

 */ 

function hsbToRgb(h, s, l){ 

    var r, g, b; 

 

    if(s == 0){ 

        r = g = b = l; // achromatic 

    }else{ 

        function hue2rgb(p, q, t){ 

            if(t < 0) t += 1; 

            if(t > 1) t -= 1; 

            if(t < 1/6) return p + (q - p) * 6 * t; 

            if(t < 1/2) return q; 

            if(t < 2/3) return p + (q - p) * (2/3 - t) * 6; 

            return p; 

        } 

 

        var q = l < 0.5 ? l * (1 + s) : l + s - l * s; 

        var p = 2 * l - q; 

        r = hue2rgb(p, q, h + 1/3); 

        g = hue2rgb(p, q, h); 

        b = hue2rgb(p, q, h - 1/3); 

    } 

 

    return [r * 255, g * 255, b * 255]; 
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Figure 30.  Attribute Grouping Algorithm Components 
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 The squarified treemap algorithm is then used to determine the proportion size of 

the nested rectangle.  The algorithm starts with a rectangular space and subdivides it 

recursively.  On each recursive call, the direction of subdivision is rotated: alternating 

horizontally and vertically [75].  For instance if the given data has areas of 6, 6, 4, 3, 2, 2, 

and 1 that need to be visualized in a treemap, the initial rectangle would need to be 

subdivided into seven rectangles in order to achieve this task.  The first step of the 

algorithm is to split the original rectangle either horizontally or vertically.  In this case 

horizontal subdivision is chosen.  The left half is filled in first, since the biggest real 

estate area is given to the highest area (Figure 31).  The first rectangle has an aspect ratio 

of 8:3, the second rectangle is placed on top of the first and the aspect ratio improves to 

3:2.  Next, the rectangle with area 4 is added above the original rectangles and the aspect 

ratio is worse at 4:1.  The optimum real estate space for the left side of the rectangle is 

achieved when this rectangle is added, therefore the rectangle is processed on the right 

half of the total area.  In this case, vertical subdivision is chosen since the rectangle has a 

greater length in height than it does width.  In step 4, the rectangle with area 4 is added 

followed by the rectangle with area 3, which results in a decrease in aspect ratio.  Adding 

the next area of 2, still does not improve the aspect ratio so it is assumed that the 

optimum real estate is realized and top right of the partition will be filled.  A horizontal 

subdivision is used to add the area 2 rectangle, followed by the second rectangle with 

area 2.  Once the last rectangle (area 1) is added the aspect ratio decreases, therefore the 

subdivision is changed to a vertical subdivision to maximize the real estate space.  In the 

algorithm the steps are repeated until all of the rectangles are processed.  The algorithm 

lays out rectangles in horizontal and vertical rows.  Each time a rectangle is placed, the 
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algorithm goes through a 2 choice decision paradigm.  Either the rectangle is added to the 

current row or the current row is fixed and a new row is started in the remaining 

subrectangle.      

 After this component of the algorithm is completed, the resulting attribute 

grouping algorithm renders a layout where similar color nodes are grouped together 

keeping the aspect ratio values (Figure 32a) generated by a squarified treemap algorithm.   

Compared to the squarified treemap layout (Figure 32b) the layout groups the nodes 

together to hopefully decrease the cognitive steps needed for individuals to make 

proportional judgments from the treemap.  
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Figure 31.  Example of  Subdivision Treemap Algorithm  
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(a) 

 

(b) 

Figure 32.  (a) Attribute Grouping Layout (b) Squarified Layout 
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5.3 Methods 

 To test the effectiveness of the attribute grouping layout we conducted a within-

subjects experiment to compare the new layout to the common squarified treemap layout.  

Each participant performed a proportional judgment task using both layouts.  

Specifically, they were shown either a squarified or grouped treemap similar to those 

shown in Figures 33 and 34 respectively, and asked, “What percentage of the highlighted 

area is red?”   Participants were encouraged to work quickly and to make “quick visual 

judgments.” This task was chosen as a representative sampling of the types of perceptual 

problems a user might run up against when analyzing the data. To reduce learning effects 

we utilized different order groupings for subjects (where subjects completed the first set 

of trials using the either the squarified or grouped treemap before moving on to the other 

half of the trials).   

5.3.1 Participants 

 Sixty undergraduate and graduate science and engineering students from the 

University of Virginia volunteered for the study (n=28 males, n=32 females).  The 

average age for participants was 22.2 (SD = 5.10).  They were each given a $5 gift card 

for their participation.  Subjects were randomly assigned to one of two conditions: 

Attribute Grouping Layout first or Squarified layout first, with half of the subjects 

performing each of these conditions.  None of the participants had previous experience 

with the concept of treemaps.  A protocol for this study was submitted and approved by 
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the IRB for Social and Behavioral Sciences at the University of Virginia (#2011-0013-

00). 

5.3.2 Apparatus 

 A computer-based color blind assessment derived from Ishihara Color Test 

assessed the  red-green color deficiencies of each participant (Appendix D) [76].  

Participants performed the experiment on a workstation with a 22 inch flat panel monitor 

set to a 1024 x 768 pixel resolution, using a web-based custom apparatus utilizing a 

password protected server.   Each of the responses for the participants were recorded 

using a MySQL database. 

5.3.3 Procedure 

 Each session lasted 30 minutes or less.   After a briefing and informed consent 

process, each used the computer apparatus to enter demographic information and 

complete a color blind test.  The color blind assessment was used to ensure that the 

participants did not have any visual color deficiencies. Participants could not proceed 

with the study if they answered 2 or more questions incorrectly.  Then each participant 

completed two training trials, the first using a squarified treemap (Figure 33) and the 

second using a perceptually grouped treemap (Figure 34).  For these trials, participants 

were given feedback regarding the accuracy of their judgments.  Participants then 

completed 50 experimental trials without feedback.  Participants assigned to Order 1 saw 



97 

 

 

the 25 squarified layout trials first followed by the 25 perceptually grouped trials and vice 

versa for participants assigned to Order 2.    

 Absolute error and completion times were recorded for each trial.  The absolute 

error measure of accuracy is represented by:  

|judged percent - true percent| 

The completion time was measured from the time a question appeared on the screen to 

the time the subject pressed Enter on the keyboard.  

5.3.4 Statistical Analysis  

We utilized a within-subjects repeated measures design with a total of 50 trials per 

subject (n=60) for a total of 3,000 responses. Descriptive statistics were used to report 

measures of central tendency and variability for error and time on each independent 

variable. Main and interaction effects of the independent variables (order, layout, gender, 

and classification (undergraduate or graduate)) on the dependent measures (time and 

absolute error) were assessed using repeated measure multivariate analysis ANOVA. 

Tukey HSD post-hoc analysis was used to identify significant differences between the 

levels of the effects.  Results for the main and interaction effects are reported using α = 

.05 for significance. 
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Figure 33.  Squarified Treemap Layout for Experiment Trials  
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Figure 34.  Attribute Grouping Layout for Experiment Trials 
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5.4 Results 

 The average completion time was M = 7.99 sec, (SD = 6.28 sec).   Overall the 

mean absolute error for judgment was 8.1 (SD = 6.22).  The significant main effects are 

shown in Table 9. None of the 2-way or 3-way interactions were significant. 

The main effect of order was found to be significant for both absolute error and 

time.  Order 2 (M = 7.61, SD = 7.67) yielded better judgment results than Order 1 (M = 

8.53, SD = 8.71).  Participants also recorded faster completion times for Order 2 (M = 

7.61 sec, SD = 8.71 sec) than that of Order 1 (M = 8.37 sec, SD = 9.86 sec). The main 

effect of layout was also significant for absolute error.  Participants made more accurate 

judgments for the attribute grouping layout (M = 7.57, SD = 7.33) compared to the 

squarified layout (M = 8.57, SD = 8.99).  The impact of the main effects order and layout 

on absolute error are further examined in Figure 35, which plots the estimates as a 

function of answer for both variables.   
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Table 9.  ANOVA Table of Absolute Error and Time  Note: Significant at the p<0.05 

Level in Bold. 

 

 

 

Figure 35.  Estimate as a Function of Answer for Layout and Order    

Effects            Df 

Error 

Sig. (p =) 

Time (sec) 

Sig. (p =) 

Order             1 0.0020509 0.0107948 

Layout             1 0.0008405 0.8880012 

Sex             1 0.9099979 2.176e-05 

Classification             1 0.4081782 9.061e-07 
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 Figure 35 shows graphically that for both orders, participants are better able to 

estimate the correct answer when viewing grouped treemaps. (“Grouped” estimates are 

more aligned with the correct answer, represented by the diagonal dashed line, labeled as 

“Actual” in the figure).  With the squarified layout there is a tendency for participants to 

overestimate the percentages.  This overestimation increases when the actual answer 

increases in value (Answer > 40).  For the squarified layout when the answer is greater 

than 40, the average absolute error for participants is 13.19 (SD = 8.22).   For Order 1, 

there is more deviation from the correct answer line, compared to Order 2.  Post hoc tests 

showed that Order 1 produced statistically significantly higher absolute error results than 

Order 2, p=0.002337.  

There was not a significant effect of layout on the dependent variable time.  

However, there was a significant effect of gender and classification on time.  Females (M 

= 7.34 sec, SD = 6.56 sec) were significantly faster than males (M = 8.74 sec, SD = 9.79 

sec) and undergraduates (M = 7.12 sec, SD = 5.63 sec) were significantly faster than 

graduates (M = 8.98 sec, SD = 10.40 sec).   

5.5 Discussion 

This chapter has introduced an attribute grouping treemap layout algorithm that 

clusters nodes by color in order to aid users when making proportional judgments when 

examining treemaps.  To validate the effectiveness of this algorithm we conducted a user 

study to compare the attribute grouping layout to that of the squarified layout.  We found 

that the attribute grouping layout led to significantly better proportional judgment results 
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than the squarified layout.  This aligns with perceptual research that found that elements 

that are in closer proximity instead of randomly distributed clusters are easier to judge the 

total percentage of that particular element [11, 71].   

It was also found that individuals tend to overestimate percentages for the 

squarified layout compared to the attribute grouping layout.  This tendency increased for 

percentages that were greater than 40%.  The results of overestimating for the squarified 

layout coincides with research by Goldstone [67] who conducted a study where subjects 

were asked to estimate the percentage of display items that had a particular feature.  

Features were either randomly distributed or spatially clustered so that the features of the 

same type tend to be close.  Results from the study found that the subjects systematically 

overestimated the prevalence of features in randomly clustered displays.      

 Relative to the order in which participants saw the experiment trials, surprisingly 

we found that order had an impact on the absolute error and completion time.  

Participants who were given Order 2, where they saw the attribute grouping layout first 

followed by the squarified layout had better proportional judgments and faster times.  The 

pattern of results is best explained by a training mechanism for proportional judgments.  

 Since the attribute grouping algorithm renders better proportional judgments, 

when seeing these trials first the like color nodes are already grouped together so the user 

does not have to cognitively group the colors together.  It is reasonable that this helps 

train individuals, once they see the squarified layout they are accustomed to seeing the 

layout grouped together by color and are able to make a better judgment estimate 

compared to when individuals examine the squarified layout first they have to mentally 

group all the like colors together before making a judgment, which takes up more 
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information processing steps and can lead to incorrect proportional judgments that carry 

over when examining the attribute grouping layout.  

 In general, proportional percentage judgments while examining treemaps are a 

difficult task and can lead to low accuracy.  We can conclude that having alternative 

treemap layouts can impact ability of decision makers to make relative proportional 

judgments.  While utilizing treemaps to analyze large hierarchical data can help support 

fast characterization of the data, they may not be well-suited to making inferences on 

proportional judgments utilizing traditional layouts.  The use of an attribute grouping 

layout that clusters like nodes together enable more reliable and accurate judgments of 

the proportion of rectangles within a set of nested rectangles.
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CHAPTER 6. STUDY 3: USING TREEMAPS TO VISUALIZE HEALTHCARE QUALITY 

DATA 

 This chapter describes applying treemap visualizations to real world data to test 

the effectiveness of utilizing this data visualization to analyze a large hierarchical data 

set.   One area where treemaps can be useful in displaying information is in the medical 

arena.  This concept of representing medical data using treemaps has not been widely 

explored.  Baehrecke et al., utilized treemaps to visualize microarray and gene ontology 

data [77].  With the recent trend of employing electronic medical records (EMRs) for 

patient information, treemaps are potentially useful for health care professionals to assess 

trends amongst large populations of patients. Traditional visualizations used to display 

medical data such as bar charts, histograms, pie charts, and box plots are limited when 

displaying large quantities of data with several variables. If there is an outlier in the data 

or large variance, proportions can be thrown off in these displays.  These visualizations 

are often inadequate when there is a need to display multiple variables and observe the 

interactions between the variables, and there is often not enough space to display relevant 

information.   
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 In order to gauge whether treemap displays would be more beneficial, we 

investigated whether the visualization can help surgeons and other health personnel make 

assessments about their patients.  A human subjects experiment was conducted applying 

both the traditional (“squarified”) treemap layout and the novel attribute grouping layout 

discussed in Chapter 5 to surgical quality data to validate the usefulness of using treemap 

to interpret these type of data.     

6.1 Introduction 

 Quality in healthcare has come to the forefront in recent years as an essential 

concept in providing adequate and efficient healthcare for patients.  The Institute of 

Medicine (IOM) has defined quality of healthcare as “the degree to which health services 

for individuals and populations increase the likelihood of desired health outcomes and are 

consistent with current professional knowledge” [78].  An important aspect of measuring 

quality in healthcare is directly attributed to healthcare data.  For healthcare 

organizations, data is central to both effective healthcare and to financial survival.  Data 

about the effectiveness of treatment, accuracy of diagnoses, and practices of healthcare 

providers is crucial to maintain and improve healthcare delivery.  High quality data 

effectively satisfies its intended use in decision making and planning.   

 In maintaining the standard for effective data quality in healthcare, the American 

College of Surgeons created the National Surgical Quality Improvement Program (ACS 

NSQIP) database to help with quality data reviews.  The program employs a prospective, 

validated database to quantify 30-day risk-adjusted surgical outcomes to measure and 

improve the quality of surgical care, which allows valid comparison of outcomes among 
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hospitals [79].  ACS NSQIP collects data on 136 variables, including preoperative risk 

factors, intraoperative variables, and outcomes for patients undergoing major surgical 

procedures in both the inpatient and outpatient setting.  Hospitals utilize the NSQIP 

database for continuing education, quality improvement, and research.  The semi-annual 

summaries, provided by the ACS, assist in targeting problematic surgical outcomes. 

 Even though the NSQIP database is very effective, it is challenging to review vast 

amounts of quality data.  Surgeons can be presented with individual, sectional, divisional 

and departmental level data so it may be difficult to quickly determine where the priority 

clinical issues exist.   The current output for the database is in the form of traditional 

summary graphs that often have multiple pages of information.  Clinicians have limited 

time to spend reviewing quality data, therefore they could use some means to visualize 

the entire data set to quickly get an overview of what is going on, with access to details as 

needed, without having to query the system repeatedly, similar to having a dashboard 

system that can quickly relay key information.  Data visualization can meet the need of 

optimizing the ability of a clinician to summarize, synthesize and prioritize the large 

amounts of data available to them.   

  

6.2 NSQIP Data and Treemaps 

  The goal of this research is to map data from the NSQIP database to treemaps to 

test the validity of using this visualization to analyze data quickly and efficiently.  There 

are several healthcare quality questions that surgeons and health personnel utilize the 

NSQIP data to answer, that would translate to potentially being visualized with treemaps.  
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Table 10 gives an example of these use case questions for surgery data.  The table also 

illustrates the type of data explored in each use case [80].    The questions range from 

simple monitoring and search questions to more intensive analysis questions involving 

prediction and finding new phenomena.        
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Table 10.   NSQIP Database Use Cases; (LOS) = Length of Stay in the Hospital (Measured in Days)         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use Case Data Type(s) 

Search and compare patterns of outcomes and LOS by treatment method for certain patient 

populations. 

Nominal; Ordinal 

Search and compare patterns of LOS and adverse events to confirm or disprove expected 

outcome 

Nominal 

Search and compare patterns of outcomes, frequency, and discharge status  Nominal; Ordinal 

Discover new phenomena, e.g., predict outcome of patients given their history and planned 

intervention. 

Nominal; Ordinal; Ratio 

Analyze the structure of the data, e.g.,  effect of missing values on efficacy of analyses  

Look for trends in the data such as the clustering, or distribution of data or case load 

comparison across surgeons 

Nominal; Ordinal; Interval 

Search for patients with abnormal labs to give a pre-operative intervention. Interval 

Compare patterns of performance and outcomes by surgeon (e.g., length of case and outcomes 

of surgeries) 

Nominal; Ordinal 

Search by surgeon or surgery type and compare LOS and outcomes.  Nominal; Ordinal 
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 The last use case is a way for surgeons to compare their performance to their 

counterparts by looking at outcomes for each of the surgeons’ patients based on their 

length of stay (LOS) days by surgeon group.  To illustrate an example of how treemaps 

can visualize this particular question, Figure 36 shows a hierarchy of a surgery 

department.  Within the surgery department, various types of surgeries are performed by 

different physicians on each patient.  Each patient will have a multitude of attributes and 

information recorded during their surgery process, i.e. length of stay (LOS) (measured in 

days in the hospital) and outcomes.   

The treemap visualization in Figure 37 shows the hierarchy starting with the type 

of the surgery highlighted at the top as Colorectal surgery, followed by the surgeon ID for 

each surgeon who performed colorectal surgeries, followed by the patients who received 

colorectal surgeries by that surgeon. Each rectangle thus represents a patient, with the 

size of the rectangles representing the LOS days for the patient and the color representing 

the outcome for the patient (green = survival, red = death).  Thus, when LOS is encoded 

in this way, the treemap gives the surgeon with the largest total LOS for his set of 

patients the most visual real estate. 
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Figure 36.  Hierarchy of Surgery Department, including Surgery Type, Surgeon, 

and Patient 
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Figure 37.  Treemap Example of Surgery Hierarchy, including Surgery Type, 

Surgeon, and Patient 
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 From Figure 37, we can see how many deaths occurred compared to survivors for 

each surgeon who performed colorectal surgeries.  The question is how well an individual 

can estimate this percentage and how does this relate to the whole hierarchy.  For 

instance how well can an individual estimate the percentage of red rectangles (deaths) 

that occurred in the colorectal group and for Surgeon 22 how much larger is their death 

percentage compared to other surgeons in the colorectal group?  Being able to accurately 

judge these percentages or estimates is essential to help individuals analyze and interpret 

the data rendered.   In this example, it is worth noting that the percentage of deaths 

indicates the number of squares of one color vs. another color, independent of the size of 

the squares, since the area (size) of the square represents length of stay.  Thus, it is 

possible that one surgeon has a patient with a long length of stay who died, but who has a 

much smaller percentage of deaths (e.g., 1 out of 100 patients) than another surgeon who 

had several patients die (e.g., 5 out of 20 patients) but for those 5 patients, their lengths of 

stay were short, thus the total percent area painted red is smaller. 

 Previous research studies [81-83] evaluating the effectiveness of utilizing 

treemaps to visualize large data sets have consisted of subjects completing a series of 

tasks.  In general the studies found that treemaps were easier to use and more effective to 

analyze and compare information when used in hierarchy exploration compared to other 

visualization tools. Examples of the tasks are shown in (Table 11). 

 Most of the tasks examined how well people could find extreme values in the 

hierarchy for a single data element.  The tasks did not address how well people can 

understand and estimate the percentage the variable represents of the whole hierarchy, 

e.g. what percentage of colorectal surgeries result in death, to compare or find the 
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extreme values for such percentages within the hierarchy, e.g., across multiple surgeons 

or surgery types.    

 The purpose of this study was to examine how viable treemap visualizations are 

in helping people analyze and interpret data when comparing groups of data elements to 

each other, comparing typical search and analysis tasks of the NSQIP database using 

alternative types of treemap visualizations.   
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Table 11.  Prior Treemap Evaluation Tasks 

 

Reference Question 

User Experiments with Tree Visualization Systems 

[81] 

 

 Find the name of the parent directory of the 

directory "BMW” 

 Which directory has the greatest number of 

immediate subdirectories? 

 Locate the file labeled 1990.htm. 

 What is the name of the largest file in the eBay 

items hierarchy? 

Extending Tree-Maps to Three Dimensions: A 

Comparative Study [82] 

 Locate the largest file 

 Locate the largest file of a certain type 

 Locate the directory furthest down in the 

hierarchy structure 

 Name the most common file type 

Usability Evaluation Method Applying AHP and 

Treemap Techniques [83] 

 

 What is the most significant category? 

 Select all viewpoints in which system A total 

score is higher than that of B. 

 What is the most important check item? 
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6.3 Methods 

6.3.1 Participants 

  One hundred twenty (120) undergraduate and graduate students of the University 

of Virginia volunteered for the study (n=56 males, n=64 females).  The average age for 

participants was 23.6 (SD = 5.02).  A protocol for this study was submitted and approved 

by the IRB for Social and Behavioral Sciences at the University of Virginia (# 2012-

0422-00). 

6.3.2 Apparatus 

 A computer-based color blind assessment derived from Ishihara Color Test 

assessed the red-green color deficiencies of each participant (Appendix D) [76].  Each 

participant performed the area judgments on a computer set to a 1024 x 768 pixel 

resolution.  Participants completed the training and the experimental trials using a web-

based custom apparatus utilizing a password protected server.   Each of the responses for 

the participants were recorded using a MySQL database.  The schema utilized to setup up 

the HTML script to the SQL database can be found in Appendix E.  

6.3.3 Procedure 

 Each session lasted 20 minutes or less.  After a briefing, each participant 

completed a test for color blindness (see Appendix D).  The color blind assessment was 
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used to ensure that the participants did not have any visual color deficiencies.  

Participants could not proceed with the study if they answered two or more questions 

incorrectly.  Then each participant completed web-based judgment training and 

experimental trials.   

 Participants entered demographic information and then completed two 

proportional judgment training trials.  For these trials, participants were given feedback 

regarding the accuracy of their judgments.  The participants then completed 20 judgment 

task questions without feedback.  Participants were encouraged to work quickly and to 

make “quick visual judgments.”  In each trial, participants viewed a 1024 x 768 pixel 

image of a treemap layout that represented a subset of data from the NSQIP surgical 

database.  The mapping of the variable to the NSQIP database can be found in Appendix 

F.   

The surgeon hierarchy in the treemap starts with the surgeon groups (Bariatric, 

Colorectal, Hepatobiliary, and Vascular)  surgeon  patient. The color correlates to 

the outcome for each patient, where Red=Death and Green=Alive. The image contained 

either a squarified or grouped treemap layout.  The grouped layout places rectangles of 

the same or a similar color adjacent to each other within each nested hierarchy in the 

treemap to help with making proportional judgments compared to the squarified layout 

(where nodes are ordered along some other dimension, such as patient ID).  
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Figure 38.  Squarified Treemap Layout Surgeon Hierarchy with Varied Node Size 
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Figure 39. Grouped Treemap Layout Surgeon Hierarchy with Varied Nod Size 
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Figure 40.  Squarified Treemap Layout Surgeon Hierarchy with Equal Node Size 

Represented 
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Figure 41.  Grouped Treemap Layout Surgeon Hierarchy with Equal Node Size 

Represented 
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Table 12.  Judgment Task for Surgery Data Experiment 

 

Surgery Judgment Task 

1. Which surgeon in the 2-Bariatric Group has the largest percentage of deaths?  

2. Which surgeon in the 1-Colorectal Group has the largest percentage of deaths?  

3. Which surgeon in the 3-Hepatobiliary Group has the largest percentage of deaths?  

4. Which surgeon in the 4-Vascular Group has the largest percentage of deaths?  

5. Does Surgeon 1 (“SURG 1”) have a larger percentage of deaths in the 2-Bariatric or 1-

Colorectal Group?  

6. Does Surgeon 10 (“SURG 10”) have a larger percentage of deaths in the 3-Hepatobiliary 

or 4-Vascular Group?   

7. Does Surgeon 3 (“SURG 3”) have a larger percentage of deaths in the 2-Bariatric or 4-

Vascular Group?  

8. Does Surgeon 7 (“SURG 7”) have a larger percentage of deaths in the 1-Colorectal or 3-

Hepatobiliary Group?  

9. Does Surgeon 8 (“SURG 8”) have a larger percentage of deaths in the 1-Colorectal or 4-

Vascular Group?  

10. Which surgical group has the largest percentage of deaths? 
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 The tasks completed in the experiment are shown in Table 12.  Each task question 

was repeated for both layouts.  The tasks were chosen as a representative sampling of the 

types of perceptual questions a user might encounter when analyzing the data. For all 

questions, the generic treemap interpretation required is to judge the total number of 

squares in one subsection that are of one color compared to the other color. This is a 

novel task compared to the tasks tested in previous treemap usability evaluations (Table 

11).  In this case, varying the size of the rectangles based on some attribute (in this case, 

LOS), is hypothesized to impede performance since it is systematically altering the total 

area seen of particular colors. We thus compared treemaps where the node size was 

varied (representing the changes in LOS) to those where the node size was equal (all sub-

rectangles were of constant size). 

 The orders of the visualizations were counterbalanced, where participants were 

randomly assigned to two question orders.  Half of the participants completed all of the 

squarified and grouped layouts with varied node size (Figures 38 & 39).  The other half 

of the participants completed the trials with squarified and grouped layouts where node 

size was equal (Figures 40 & 41).  All 120 participants completed 20 trial questions.  

Error and completion time was recorded for each trial.  The error is coded as 0 if the 

question was answered incorrectly and 1 if the question was answered correctly.  The 

completion time was measured from the time a question appeared on the screen to the 

time the subject pressed Enter on the keyboard.   
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6.3.4 Statistical analysis 

 All statistical analyses were performed using R version 2.15.2 [84].  Descriptive 

statistics were used to report measures of central tendency and variability for error and 

time on each independent variable.  Main and interaction effects of the independent 

variables on the dependent measures were assessed.  The effects of these within-subject 

and between-subject factors on the dependent measures were assessed using a 

generalized linear model (GLM) with the binomial variance function.  There were a total 

of 20 trials per subject (n=120) for a total of 2,400 responses.  Post-hoc analysis was used 

to identify significant differences between the levels of the effects. Results for the main 

and interaction effects are reported using α = .05 for significance. 

 

6.4 Results 

 Overall the average completion time per question was M = 24 sec, (SD = 17.7 

sec).  The main effects and the error percentages for correct responses and average 

completion for the different independent variables are shown in Table 13 and Table 14, 

respectively. 
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Table 13.  ANOVA Table of Absolute Error and Time for Surgery Experiment Note: 

Significant at the p<0.05 Level in Bold. 

 

Table 14.  Error Percentages and Average Completion Time for Independent 

Variables 

 

 

Effects           Df 
Error 

Sig. (p =) 

Time (sec) 

Sig. (p =) 

Sex            1 0.1287 0.68479 

Classifications            1 0.7139 0.19244 

Order            1 0.2850 0.46578 

Layout            1 0.0505 0.75087 

Node Size            1 0.0185 0.02445 

 

Squarified Grouped 

 

Varied Node Size  Equal Node Size Varied Node Size Equal Node Size 

Variable % Correct 

Time 

(µ,sec) 

 

% Correct 

Time 

(µ,sec) % Correct 

Time 

(µ,sec) % Correct 

Time 

(µ,sec) 

Male 36% 24.1  55% 21.6 43% 26.1 66% 22.1 

Female 36% 25.8  53% 21.4 47% 26.5 67% 21.8 

Undergraduate 33% 26.8  49% 19.4 49% 27.4 67% 18.6 

Graduate 39% 25.8  55% 23.2 41% 25.1 66% 22.4 

Order 1 35% 24.8  45% 24.2 52% 25.5 65% 19.8 

Order 2 33% 25.9  44% 26.1 50% 27.2 68% 20.1 

Mean 35% 25.5  50% 22.7 47% 26.3 67% 20.8 
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 The main effect of layout was found to be significant for absolute error, p<0.0505.  

The grouped layout (M = 57%) yielded better judgment results than the squarified layout 

(M = 43%).  The main effect of node size was also significant for absolute error as well 

as time, p<0.0185 and p<0.02445, respectively.  Participants made more accurate 

judgments for the equal node size layout (M = 59%) compared to the varied node size 

layout (M = 41%).  Participants also recorded faster completion times for the equal node 

size layout (M = 21.75 sec, SD = 17.5 sec) than that of the varied node size layout (M = 

25.9 sec, SD = 17.9 sec).  No other main effects or interaction effects were significant on 

error and completion time.  The trials which included the combination of the grouped 

layout and equal node size display overall had the highest judgment percentage and 

fastest completion time among all other combinations.       

 The analysis also investigated the error percentages for each task question.  Table 

14, includes the correct response percentages for all 20 task questions divided by the 

grouped and squarified layout.  For the grouped layout participants had an average 

percentage of correctness over 58%.  Participants had better judgment percentages for 

task questions examining one surgeon group and finding which surgeon had the largest 

percentage of deaths.  For the squarified layout participants had lower judgment accuracy 

overall.  For the squarified layout there was lower accuracy for trial questions that 

involved the participants comparing the percentage of deaths for a particular surgeon 

between surgeon groups.  For both layouts, participants had better judgment accuracy for 

displays with equal node size compared to when the rectangle size was varied.  The 

highest judgment accuracy was the combination of the grouped layout with the equal 

node size display, which produced an accuracy percentage as high as 78%.           
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Table 15.  Error Percentages for Each Trial Question 

 

 

 

 

Squarified  Grouped 

 

Varied 

Node Size 

Equal 

Node Size 

Varied 

Node Size 

Equal 

Node Size 

Questions % Correct % Correct % Correct % Correct 

1.      Which surgeon in the 2-Bariatric Group 

has the largest percentage of deaths?  12% 18% 53% 72% 

2.      Which surgeon in the 1-Colorectal Group 

has the largest percentage of deaths?  49% 35% 69% 75% 

3.      Which surgeon in the 3-Hepatobiliary 

Group has the largest percentage of 

deaths?  8% 70% 63% 52% 

4.      Which surgeon in the 4-Vascular Group 

has the largest percentage of deaths?  44% 75% 69% 70% 

5.      Does Surgeon 1 (“SURG 1”) have a larger 

percentage of deaths in the 2-Bariatric or 

1-Colorectal Group?  59% 32% 29% 75% 

6.      Does Surgeon 10 (“SURG 10”) have a 

larger percentage of deaths in the 3-

Hepatobiliary or 4-Vascular Group?   61% 72% 36% 67% 

7.      Does Surgeon 3 (“SURG 3”) have a larger 

percentage of deaths in the 2-Bariatric or 

4-Vascular Group?  46% 77% 36% 48% 

8.      Does Surgeon 7 (“SURG 7”) have a larger 

percentage of deaths in the 1-Colorectal or 

3-Hepatobiliary Group?  22% 75% 61% 78% 

9.      Does Surgeon 8 (“SURG 8”) have a larger 

percentage of deaths in the 1-Colorectal or 

4-Vascular Group?  20% 62% 34% 68% 

10.   Which surgical group has the largest 

percentage of deaths? 10% 37% 27% 70% 

Mean (M) 33% 55% 48% 68% 

Standard Deviation (SD) 0.21 0.22 0.17 0.10 
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6.5 Discussion 

   

 This chapter explored the use of treemap visualizations to help analyze NSQIP 

quality data. Although the final target audience would be surgeons or hospital quality 

personnel, this study utilized students as test subjects as it was a preliminary study that 

required a large group of subjects.  It is presumed that knowledge of the domain is not a 

dominant requirement when making perceptual judgments as required by the 

experimental tasks.  The study found that factors about the layout design affect judgment 

performance.  One would typically think that mapping LOS to the size of the rectangles 

would be a logical approach when mapping surgery data characteristics onto the features 

of a treemap display, but this actually hindered performance when making other 

judgments where the size of the rectangles distort the visual perspective of how many 

people had a good or poor surgical outcome.  When the areas are held constant, 

individuals can make a more accurate assessment of the data.  Grouping nodes by color 

also helped improve accuracy.  However, even utilizing these two features of treemap 

data, accuracy varied depending on question type and was not consistently high.  The 

average judgment time to complete a task question was 24 seconds with an accuracy rate 

of approximately 68%.  These findings imply that treemap visualizations may not be the 

most useful method to analyze surgical quality data or, more generically, the kinds of 

questions that require proportion judgments of the type studied here. 

 To date there are not any studies that have investigated utilizing treemaps to 

examine large surgical data sets as those found in the NSQIP database.  This study served 

as a proof of concept to determine if treemaps could be beneficial in assessing surgical 

data retrospectively by allowing surgeons and healthcare administrators to make quick 
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visual judgments.  The treemap could be incorporated into a dashboard system that links 

key surgical data within the visualizations.  Healthcare organizations are increasingly 

using dashboards to provide at-a-glance views of quality performance and decision-

making [8].  Implementing the treemap within a dashboard system may improve upon 

judgment accuracy for quality questions in that the treemap would not have to be a silo 

system and can be part of an integrated system.  This aspect is beneficial in that if a user 

finds a significant result from the treemap system they can utilize the integrated system to 

further investigate the phenomenon that was found. 

 Surgeons have a limited amount of time to spend reviewing data. Insights from 

our study illustrates that our application of treemap visualization may not be the right 

approach for a surgeons ability to summarize, synthesize, and prioritize large amounts of 

data available to them in a timely manner for questions involving comparing proportional 

data.  Further research is required to find the optimal use cases that would benefit from 

treemap visualizations.  
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CHAPTER 7.  CONCLUSIONS 

 The usefulness of data visualizations depend on the decision makers’ ability to 

comprehend and interpret what information is being displayed graphically.  In order for a 

data visualization to be effective developers must follow design principles that are 

derived from an understanding of human perception.  This dissertation extends the 

literature on human perception and visualizations by investigating the impact of relative 

area and proportional judgments on hierarchical data visualizations.           

 The first aim of this study was to investigate relative rectangular area judgments.  

A comparative study experiment was conducted that investigated the effect of relative 

size difference (aspect ratio and area difference) and relative placement (distance 

between rectangles and offset angle) on the speed and accuracy of rectangular area 

judgments.  It also considered the effect of combinations of aspect ratio and area 

difference where rectangles are contained within each other (observable fit) as compared 

to cases where rectangles do not fit (observable non-fit).   



131 

 

 

 Contribution 1. Area judgments. In terms of relative size difference, the results 

validated prior perceptual research [48-49] that comparing 1:1 aspect ratio squares results 

in higher error and that people tend to underestimate area differences.  Results from this 

study provide new insights that in rectangular area judgments, size (area difference) and 

location (offset angle) of rectangular stimuli affect judgment accuracy and speed.  The 

results also suggest that the lowest error and shortest judgment time occurs for comparing 

pairs of rectangles when the smaller rectangle fits inside the larger.     

 Contribution 2. New factors to consider. Based on these results, we find that 

particular geometries of rectangular stimuli in area judgment result in people making 

systematic judgment errors.  In general, relative area judgments of rectangular area 

comparisons result in low accuracy and do not support fast judgments.  Results from this 

research give the visualization community additional factors to consider in designing 

treemap visualization to account for human perception issues.  When creating 

visualizations where the user has to judge the area between two rectangular stimuli, the 

stimuli being compared must have a close spatial proximity, in terms of relative size and 

relative placement. 

 Contribution 3. Display groupings. Another finding of this research was exploring 

what type of display layout works best for making relative proportional judgments in 

hierarchical data visualizations.  From the results, we can infer that the layout would be 

most effective if the stimuli being compared would have close spatial proximity.  To 

ascertain whether this proposition improved visualization, a recursive attribute grouping 

algorithm based on lexicographical theory was developed, that clusters like attribute 

together in a treemap display to test this theory.  An analysis was conducted to assess the 
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impact of the attribute grouping layout to the traditional “squarified” treemap layout 

when making proportional judgments.  The results showed that the attribute grouping 

layout increased accuracy and judgment time compared to the squarified layout.  As such, 

the results support insights from human perceptual research that indicate that grouping 

items with like attributes aid in successful completion of perceptual grouping and 

proportion tasks in hierarchical data visualizations and provides a technical solution to 

provide such visualizations.   

 Contribution 4. Application to healthcare. Given the improved results from 

utilizing the grouping algorithm in accuracy and time among individuals in making 

relative proportional judgments, the alternative layout was applied to healthcare data to 

validate the effectiveness of the layout when making assessments about real world data.  

A controlled human subjects experiment was conducted to assess the ability of decision 

makers to make quick and accurate judgments on surgery data by visualizing a squarified 

treemap and attribute grouping treemap, with data hierarchically displayed by surgeon 

group, surgeon, and patient comparing each surgeons group of patients based on 

outcomes (dead or alive) and length of stay (LOS) days.   

Contribution 5. Implications for surgery application. Judgment accuracy was not 

as high as expected, but was higher for the attribute grouping treemap compared to the 

traditional (“squarified”) layout.  Performance was found to be impeded when utilizing 

the space-varying capability of treemaps when the size of large sub-rectangles impeded 

the ability to accurately judge the total percentage of rectangles of a certain attribute 

(represented by its color). This type of proportional judgment task is not restricted to 
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surgery applications, and is likely a general problem with treemap interpretations, that 

they are not well-suited for this type of proportional judgment task.     

 The results suggest several avenues of future effort as follows. 

1. Developing a perceptual model of the cognitive steps individuals utilize when 

making rectangular area judgments, including the heuristics people use when 

comparing two geometric stimuli that do not fit within each other.    

2. Examining relative proportional judgments of hierarchical data sets using 

dynamic treemaps that include features such as drill down capabilities, 

corresponding detail displays, and the utilization of tool tips to help with 

accuracy of the proportional judgments.     

3. Designing alternative hierarchical data visualizations that better support the 

types of proportional judgment tasks examined here. 
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Appendix A. Conceptual Approach to Assessing Hierarchical Visualizations and 

Human Judgment 
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Appendix B. Spatial Ability Assessment 

 

Instructions:  Please complete each question to the best of your ability.   
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Appendix C. Attribute Grouping Code Scheme 

 
 <fx:Script> 
  <![CDATA[ 
   import com.ruwan.data.xml.TreemapLeafDO; 
   import com.ruwan.data.xml.XMLLoader; 
   import com.ruwan.data.xml.XMLProcessor; 
   import com.ruwan.event.CustomItemEvent; 
   import com.ruwan.treemap.AbstractDataFromatter; 
   import com.ruwan.treemap.NoGroupDataFormatter; 
   import com.ruwan.treemap.SingaleGroupDataFormatter; 
   import com.ruwan.treemap.TreeMap; 
   import com.ruwan.treemap.TreeMapItem; 
   import com.ruwan.treemap.TwoGroupDataFormatter; 
   import com.ruwan.treemap.interfaces.IDataFormatter; 
    
   import customitems.ToolTipComp; 
    
   import mx.collections.ArrayCollection; 
   import mx.controls.Alert; 
   import mx.core.FlexGlobals; 
   import mx.events.FlexEvent; 
    
   import spark.events.IndexChangeEvent; 
    
   private   var map:TreeMap;    
       //Parent of all Nodes 
   private   var dataTooltip:ToolTipComp ;  
      //Data Tooltip 
    
   public static  var  GRADIENT_ENABLED:Boolean  =  
   false;    //Gradient 
   public static  var  SHOW_LABELS:Boolean =   
   false;    //Gradient 
   public static  var  NUMBER_OF_GROUPS:int = 2;  
   //Number of Hierarchy Level 
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   public static  const  LAYOUT_SQUARIFIED:String  =  
    'layoutSquarified'; //Layout Algorithm, Squarified  
   or Slice and Dice 
   public static  var  GROUP1:String    
    = 'surgeonGroups';  //Hierarchi level 1, Can  
   set to any field 
   public static  var  GROUP2:String    
    = 'surgeonId';  //Hierarchi level 2, Can  
   set to any field 
   public static  var  WEIGHT:String    
    = 'los';    //Weight Field,  
   Must be a Numeric field 
   public static  var  CURRENT_LAYOUT:String   
    = 'layoutSquarified'; //Current Active Layout 
   public static  var   COLOR_FIELD:String    
    = 'outcome';   //Filed name use to define 
   the color 
   public static  var  SORT_ON:String    
    = 'sortOn1';   //Field name use to define 
   the Sorting order 
   public static  var  ELEMENT_DICT:Dictionary; 
    
    
    
   protected function creationComplete(event:FlexEvent):void 
   { 
    ELEMENT_DICT    = new Dictionary() 
    dataTooltip    =  new ToolTipComp(); 
    dataTooltip.visible  = false; 
    var xmlLoader:XMLLoader = new XMLLoader(); 
     
    cmbLayout.dataProvider  = new ArrayCollection([ 
     {label:'Square',   data:'sortOn1'},  
     {label:'Clustered',  data:'sortOn2'} 
    ]) 
    cmbHierarchy.dataProvider = new ArrayCollection([ 
     {label:'Surg. Group->Surg.ID', data:2},  
     {label:'Surg. Group',  data:1},  
     {label:'No Hierarchy', data:0} 
    ]); 
     
    cmbColorField.dataProvider = new ArrayCollection([ 
     {label:'Outcome',   data:'outcome'},  
     {label:'Sex',    data:'sex'},  
     {label:'State',   data:'state'} 
    ]); 
     
    cmbLayout.selectedIndex  = 0; 
    cmbHierarchy.selectedIndex  = 0; 
    cmbColorField.selectedIndex = 0; 
     
    xmlLoader.load('data.xml', dataHandler);  
     // Data Loading; 
    labelHolder2.addElement(dataTooltip);   
     // Add Tooltip 
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    FlexGlobals.topLevelApplication.addEventListener(  
     MouseEvent.MOUSE_MOVE, mouseHandler, false ); 
    this.addEventListener('CUSTOM_ITEM_ADDED',   
     customItemAdded); 
   } 
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Appendix D. Color Blind Assessment 
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Appendix E. Schema for Experimentation Apparatus 
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Appendix F. NSQIP Data Tables 

 

Variable Classification in NSQIP Database 

Case number/Patient Number Studies Table  CASENUM 

Length of Stay (LOS) Studies Table  Discharge_Date-Admit_Date 

Outcomes PostOcc Table  OutCome 

Complications 

PostOcc Table  Occurrence 

* Focusing on occurrence 27 (SUPERFICIAL INCISIONAL SSI) 

and 30(URINARY TRACT INFECTION) 

Surgeons NCOP Table  Surgeon_ID 

Surgery Type 

Studies Table  CPT 

 

Surgery Group CPT Codes 

Vascular 34001-35907 

Hepatobiliary/Pancreas Liver: 47120-47130 

Pancreas: 48105-48999 

Endocrine 60210; 60220-60650 

Bariatric 43644; 43770; 43846; 

43847; 43775 

Colorectal 44204, 44205, 44206, 

44207, 44208, 44210 

;44140-44160 

* Do not include 44125 or 

44130 
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Appendix G. Related Scholarly Activities 

 

Below is a synopsis of research projects and experiences that I was involved in during my 

graduate school tenure.   

 

Usability Testing for a Compact Epinephrine Auto-Injector 

 One of my past research foci examines human factors and medical devices.  

Medical device misuse is an important cause of medical error and therefore, 

incorporating human factors methodology into the design of medical devices has 

assumed an important role in ensuring patient safety.  The research involved usability 

testing of an FDA investigational epinephrine auto-injector sponsored by Intelliject, LLC.  

The goal of the research was to measure the usability and user-based assessment in a 

head-to-head comparison between two different versions of the investigational product 

and competing devices; EpiPen® & TwinJect®.  This was part of an FDA Clinical Trial 

that evaluated the disparities between epinephrine auto-injector products and received 

feedback on the usability and design characteristics of the products using a scenario-

based usability test.  Two research publications resulted from this work: 

Guerlain, S., Wang, L., Hugine, A. (2010) Intelliject’s novel epinephrine 

autoinjector: sharps injury prevention validation and comparable analysis with 



145 

 

 

EpiPen and Twinject. Annals of Allergy, Asthma & Immunology , 105:6, 480-484. 

PMID: 21130387 

 

Guerlain, S., Hugine, A., Wang, L. (2010) A comparison of 4 epinephrine 

autoinjector delivery systems: usability and patient preference. Annals of Allergy, 

Asthma & Immunology, 104: 2, 172-177. PMID: 20306821 

 

 

Institute for Collaborative Innovation (ICI) 

 The Institute for Collaborative Innovation (ICI) is a consortium of researchers that 

pools expertise in cognitive systems engineering, political science, design, cognitive 

science, field research, perception, and computer science to solve problems.  I had the 

opportunity to participate in this externship opportunity which was sponsored by the 

Cognitive Systems Engineering Laboratory at Ohio State University in Columbus, OH.  

The research team that I was involved in focused on uncertainty and predictive analysis.  

Specifically, my focus was on visualizing and representing uncertainty in disaster relief 

efforts.  During the summer, I developed design seeds to help visualize task reallocation 

with the emergence of side effects (unanticipated or unwarranted events) in disaster relief 

efforts. Also, I created tools and approaches that aid analysts in evaluating the uncertainty 

associated with multiple sources of data, including instituting a Ranking, Assessment, & 

Confidence (RAC) framework to help analyst visualize uncertainty in sources.  This work 

was presented at the Converging Perspectives on Data (CPoD) consortium at the Ohio 

State University. 
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Usability Analysis of an Innovative Digital Reading Room 

 Reading room designs can have a major impact on radiologists’ health, 

productivity and accuracy in reading. Several factors must be taken into account in order 

to optimize the work environment for radiologist.  This research evaluated alternative 

workstations in a real-world testbed space, using qualitative data (users’ perspectives) 

and quantitative (musculoskeletal perspective) data to measure satisfaction with the 

lighting, ergonomics, furniture, collaborative spaces, and radiologist workstations. In 

addition, we investigate the impact that the added collaboration components of the future 

reading room design, has on increasing team communication and coordination efforts in 

the reading room environment.  By evaluating a fully functional testbed, health care 

administrators can examine potential problems with the testbed design before actually 

implementing the designs on a larger planning infrastructure.  Results of this work led to 

conference presentations as well as a journal publication: 

 

Hugine, A., Guerlain, S. (2011) User evaluation of an innovative digital reading 

room. SIIM Conference, Washington, DC. 

Hugine, A. (2010). Usability Evaluation of Reading  Room Testbed. Radiology 

QA Meeting, University of Virginia Health Systems, Charlottesville, VA. 

Hugine, A., Guerlain, S., Hedge, A. (2011) User evaluation of an innovative 

digital reading room. Journal of Digital Imaging, PMID: 22080291. 
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