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Abstract

One breakthrough in the theory of quantum groups is the construction of the canonical
bases for quantum groups by Lusztig and Kashiwara. For type A, there is a geometric
construction for (idempotented) quantum group together with a canonical basis due
to Beilinson, Lusztig and MacPherson (BLM) using a stabilization procedure on a
family of quantum Schur algebras of type A. Two essential ingredients in their work
are a multiplication formula and a monomial basis.

In this dissertation, we provide a BLM-type construction for affine type C. We
realize the affine ¢-Schur algebras of type C as an endomorphism algebra of a certain
permutation module of affine Hecke algebras, and then establish a multiplication
formula on the Schur algebra level. We provide a direct construction of monomial
bases for Schur algebras, which is also adapted to produce monomial bases for affine
type A. Via a BLM-type stabilization on the Schur algebras, we construct an algebra
K¢ admitting canonical basis. We obtain that (K%, K¢ ) forms a quantum symmetric
pair in the spirit of Letzter and Kolb, where K¢ ~ U(g[n) is a quantum group of
affine type A. The affine type C construction above is associated to an involution on
Dynkin diagrams of affine type A. For other three types of involutions, we construct

similar stabilization algebras admitting compatible canonical bases.
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Chapter 1

Introduction

1.1 Background

Around 1985, the quantum groups were introduced by Drinfel’d and Jimbo [Dr&8,
JIim86], which have played important roles in representation theory, quantum topol-
ogy, mathematical physics and many other areas. One of the most important de-
velopments in the theory of quantum groups is the construction of the canonical
bases for quantum groups and their integrable modules by Lusztig and Kashiwara

[Cn90, Ka971], which motivated further advances including categorification.

1.1.1 BLM construction for idempotented quantum gl

In [BLM90], Beilinson, Lusztig and MacPherson developed a geometric construction
for the idempotented quantum group of type A together with its canonical basis. They
started with a geometric realization of ¢-Schur algebras using partial flag varieties of
type A. The standard basis of ¢g-Schur algebra S,, ; can be parametrized by the set

of n x m matrices over N whose entries add to d. Under this parametrization, a



(Rth divided power of) Chevalley generator of the Schur algebra is associated to a
matrix A = (a;;) having a unique non-zero off-diagonal entry, and the entry is either
a;i+1 = R or a;41; = R for some 1 <7 <n — 1. By deriving multiplication formulas
with Chevalley generators on the Schur algebras, they provided a construction of a

monomial basis satisfying the following properties:
(M1) A basis element is bar-invariant;
(M2) The transition matrix from this basis to the standard basis is unitriangular.

On the other hand, by showing that the structure constants in the multiplication
formulas behave well, they developed a stabilization procedure that constructs a limit
algebra, which can be identified with the modified quantum group of type A admitting
both monomial and canonical bases.

stabilization : :

Sy T Stab(Sna) = K, ~ Ulgl)

d—0 ;
- > dempotented
g-Schur algebra (d>1) stabilization algebra qluagtlgm gli"oup

1.1.2 BLM-type constructions for affine type A

The BLM construction has been partially generalized to affine type A by Ginzburg-
Vasserot [GVY3] and by Lusztig [Lu99] via a geometric realization of affine ¢-Schur
algebras using affine partial flags. The standard basis for affine Schur algebras of type
A is parametrized by the set of periodic Z x Z N-matrices with a fixed “size”. Similar
to finite type A, a (divided power of) Chevalley generator of the affine Schur algebra

is associated to a matrix A = (a;;) having a unique non-zero off-diagonal entry in



each period, and that entry in each period is either a;;;1 or a;;—; for some i € Z.
A new phenomenon in affine types is that the Chevalley generators only generate a
proper subalgebra. In order to generate the full Schur algebra, one needs a larger
generating set associated to bidiagonal matrices.

Recently, Du and Fu provided another BLM-type construction [DFT4, DETH] for
affine type A. Instead of the geometric realization of Schur algebras, they use an alge-
braic realization of Schur algebras as endomorphism algebras of certain permutation
modules of extended affine Hecke algebras. They further proved remarkable multi-
plication formulas with bidiagonal generators. They provided a family of monomial
bases for affine Schur algebras by adapting monomial bases for the Ringel-Hall alge-
bras of cyclic quivers due to Deng-Du-Xiao (cf. [DDX07]). The construction therein
is quite involved and it is not clear how to understand their bases along the line of
[BL

AT 1],

1.1.3 BLM-type constructions and quantum symmetric pairs

For type B/C, Bao, Kujawa, Li and Wang [BKLWT4] provided BLM-type construc-
tions using a realization of the g-Schur algebra SS’ 4 @s a convolution algebra via partial
flag varieties of type B/C. In this case, the standard basis of Sgd is parametrized by
the set of centro-symmetric n x n N-matrices. By developing multiplication formu-
las with Chevalley generators, they constructed stabilization algebras U;L and U{I

(depending on the parity of n) admitting canonical bases. The non-idempotented



quantum algebras U’ and U! are not the Drinfel’d-Jimbo type quantum groups of
type B/C, they are coideal subalgebras of the type A quantum group U(gl,,) in the
sense that the comultiplication A of U(gl,,) sends U’ to U’ ® U(gl,,), and sends U’
to U?® U(gl,,). Moreover, (U(gl,),U%) and (U(gl,), U?) form quantum symmetric
pairs, whose theory is developed and studied in [Le02, KaT4]. Recall that a sym-
metric pair (g, g?) consists of a Lie algebra g and its fixed point subalgebra g’ for
some involution 6 : g — g. A quantum symmetric pair (U, B) is a quantum analog

of a symmetric pair, in the sense that B is a special coideal subalgebra as in [Kol4,

Definition 5.1]. (See also [FLT4] for a BLM-type stabilization for finite type D.)

1.1.4 The ¢-Schur algebras

For type A, the ¢-Schur algebra Szlfi was introduced in the work of Dipper-James

[DJ8Y] as an endomorphism algebra of certain module over Hecke algebra. As a
consequence of the Schur-Jimbo duality [lim&6] between the quantum group U(gl,,)
and the Hecke algebra of type A, it follows that Szlfi is a quotient of U(gl,). In
this context, Szlfj can be identified with the aforementioned convolution algebra S,, 4
of pairs of partial flags. Moreover, the canonical bases of Schur algebras can be
obtained either by a geometric approach [BLMY0] using intersection cohomology, or
by an algebraic approach [Du92] using canonical bases for Hecke algebras.

Beyond type A, there are different notions of “¢-Schur algebras” arising from

modular representations of algebraic groups or quantum groups at roots of unity



(cf. [DDPWOR] and the reference therein). We are interested in the Hecke-algebraic
approach of g-Schur algebras along the line of Dipper-James. In finite types B/C, the
convolution algebra S ; constructed in [BKTWT4] can also be realized algebraically
as an endomorphism algebra of certain module over Hecke algebra of type B/C. Such
an algebra is introduced by Green for even n (referred as the hyperoctahedral Schur

algebra in [GrY7]). By a Schur-type duality in [RWT3], the Schur algebra S} ; can be

identified with a quotient of the coideal subalgebra U?, of U(gl,).

1.2 Main results

It is natural to ask for an affinization of the previous results on BLM-type con-
structions and ¢-Schur algebras. We will concentrate on affine type C, for which a
geometric approach has been developed in a joint work [FLLLWT] with Z. Fan, Y. Li,
L. Luo and W. Wang. A comprehensive treatment for the Hecke-algebraic approach
will appear in [FLLEWY]. In this dissertation we provide part of the Hecke-algebraic
approach.

Let us start with affine type A, note that the monomial bases for the affine Schur
algebra Sj, ; used in [DET4] trace back to Hall algebras of cyclic quivers [DDX07],
while for classical types, the monomial basis elements are constructed directly by
multiplying Chevalley generators in a suitable order. We provide a direct construc-

tion [LLTH] in the same spirit for monomial bases of S}, ; by multiplying bidiagonal

generators in a suitable order.



Theorem A (Theorem P42, Corollary 2273). Algorithm P21 produces a monomial

basis (and hence a canonical basis) for S¢ .

From now on we switch to affine type C. We start with studying the affine Schur
algebra S;, ; as an endomorphism algebra of certain permutation modules over affine
Hecke algebras of type C (cf. (832211)). In order to develop a BLM-type construction,
one needs to derive a multiplication formula with the generating elements for S;, ;, and
to construct a monomial basis of Sj, ;. There are two crucial differences comparing

to the previous work:

1. The affine type C analogue of Chevalley generators or bidiagonal generators do

not form a generating set for S;Ld;

2. The constructions of monomial bases in previous work do not generalize naively

to a construction of a monomial basis for S, ,.

Precisely speaking, the characteristic basis {€4} aez, , of S}, ; is parametrized by the set
En.a (cf. Section B2) of n-periodic centro-symmetric Z x Z N-matrices with size d. In
light of the centro-symmetry condition, it is reasonable to hope that Sj, ; is generated
by the elements parametrized by the tridiagonal matrices A = (a;;) in the sense that
a;; = 0 unless |i — j| < 1. Indeed, this fact follows once we obtain the corresponding
multiplication formula. One of the difficulties in deriving the multiplication formula is
the appearance of certain nontrivial structure constants for affine Hecke algebras (cf.

Remark BT2). We now paraphrase the multiplication formula (cf. Theorem E-477 for



details) and the upshots below.

Theorem B. For A, B € =, ; with B being tridiagonal, we establish a multiplication
formula for e = e4 € S;,d with explicit coefficients. Moreover, the set {es | A €

En,q is tridiagonal} is a generating set for the Schur algebra S; ;.

We then define the standard basis element [A] by normalizing e4 so that [A] =
[A]+ lower terms, with respect to a partial order <, on Z,,4. A key ingredient
in our construction of monomial bases is the admissible pairs. We show that (cf.
Lemmab™4) if (B, A) is an admissible pair, then the leading coefficient for the highest
term in [B] = [A] is one. Using this lemma, we first construct a semi-monomial basis
{m/s} ac=,, , by multiplying the tridiagonal generators in a suitable order. Another
new phenomenon for affine type C is that the generating element [B] with B being
tridiagonal is not necessarily bar-invariant. Nevertheless, the semi-monomial basis

can be adapted to a monomial basis {m4} A€E, q-

Theorem C (Theorem BZ2H, Proposition b2211). The Schur algebra S;,.q admits

both monomial and canonical bases.

With the results on the Schur algebra level, we can now construct the stabilization

algebra K% as outlined below:

stabilization :
;L,d - S(t_ab( Z,d) = Kj,

—0
Affine g-Schur algebra (d>1) stabilization algebra

Let K¢ be the free Z[v, v ]-module generated by {[A]} Aes,» Where =, is adapted

from |J Z,,4 by allowing diagonal entries to be negative integers. Therefore, for any
deN



Ae En, the matrix A + pI lies in =, 44,,/2 for any large enough even integer p, where
I = (0;5) is the identity matrix. We show that K;L has a unique associative algebra
structure in the sense that for any B, A € Z,,, the structure constants for [B]+[A4] € K¢,

are compatible with the structure constants for [B + pI]| « [A + pI] € S for

:L,d+pn/2
all even p that is large enough. In other words, the multiplication formula with
tridiagonal generators has an analogue on the stabilization algebra level. Therefore,

we can “lift” the monomial basis for S;, ; to the stabilization algebra level to construct

both monomial and canonical bases for K.

Theorem D (Corollary EI4, Theorem EIH). We have an algebra K¢ arising from
stabilization on the Schur algebras Sj ;. Moreover, Kf1 admits both monomial and

canonical bases.

Moreover, by identifying K; with a similar stabilization algebra Kggeo in [FLLTWII),

we can relate the algebras K¢, and S;,.q by a natural surjective map ®,, 4 : K¢ — S;.d

given by
[A] if Ae En,da
[A] =
0 otherwise,
In [FLLLWT, 9.7] we show that ®,, ; is a homomorphism that also preserves canonical

basis. It is standard that one can construct the non-idempotented stabilization alge-
bras K¢ (resp., K®) from K¢ (resp., K®) by taking certain infinite sum. We obtain
that (K%, K¢ ) forms a quantum symmetric pair, for which the detail will appear in

[FLLLWY).



Note that the above construction for affine type C is associated to an involution

(of type 77) on the Dynkin diagram of affine type A depicted in Figure I below. For

Figure 1.1: Dynkin diagram of type A;{rl with involution of type j7 = ¢.

0 1 r—1 r
¢ oO— - o) o)
) ) @ (|
¢ oO— - o) o)
2r +1 2r r+2 r+1

other types of involutions 7,17 and w (cf. Figures [, A, [3, respectively. ), we
also construct stabilization algebras K{f, Kj{, Kﬁf together with their canonical bases.
There are subquotient relations among the four stabilization algebras which preserve

their canonical bases.

1.3 Organization

In Chapter 2, we provide a direct construction producing a monomial basis (and
hence a canonical basis) for affine Schur algebras of type A (cf. Theorem P24 and
Corollary 2473).

In Chapter 3, we study the affine ¢g-Schur algebras of type C as endomorphism
algebras. We also identify this algebraic realization with the geometric realization via

affine flag varieties as in [FLLLWII).

Chapter 4 is devoted to the proof of the multiplication formula (Theorem A=272)
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for tridiagonal generators.

In Chapter 5 we adapt the construction in Chapter 2 to produce a monomial basis
(and hence a canonical basis) for affine Schur algebra of type C (cf. Theorem B2
and Proposition b27TT).

In Chapter 6 we construct a stabilization algebra K;L from the affine Schur algebras
of type C. We then show that K¢ can be identified with a similar stabilization algebra
defined in a geometric framework (cf. [FLLLWT]), and it follows that K¢ (resp., K<)
is a coideal subalgebra of K¢ (resp., U(gA[n))

Chapter 7 provides a formulation of three more variants of the stabilization alge-

bras for different types of involutions on the Dynkin diagram of affine type A.
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Chapter 2
Affine Schur algebras of type A

In this chapter we recall first some standard facts about the extended affine Weyl
groups of type A, the corresponding Hecke algebras, and the affine ¢-Schur algebras
of type A as an endomorphism algebra of certain g-permutation modules. We provide
a direct construction producing a monomial basis (and hence a canonical basis) for
the affine Schur algebra (cf. Theorem 2472 and Corollary PZ273).

Throughout the dissertation, let N = {0, 1,2,...} be the set of natural numbers.
Denote by [a..b], [a..b), (a..b] and (a..b) the integer intervals for a,b € Z. Let v be an

indeterminate over Q, and let [a] = 1;2;_’11 for a € Z. In this chapter, let n, d be fixed

positive integers.

2.1 Affine Hecke algebras

Let W be the Weyl group of type Ay, generated by S = {s1,82,...,54 = So}-
The extended Weyl group W is generated by W and = satisfying ws;7~t = s;_; for

1 =1,...,d. It is well-known that W can be identified as a permutation subgroup of
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Z satistying g(i +d) = g(i) + d for all i € Z, g € W. In this identification each s; is

mapped to the permutation [ [(kd+i,kd+i+1) and 7 is mapped to the permutation
keZ

t — t+1 for t € Z. Denote the length function on W by ¢. Notice that each g € W can
be uniquely expressed as g = 7*w for some z € Z and w € W, so the notion of length

on W can be extended to W by requiring {(m) = 0, or equivalently, ¢(g) = ¢(w).

Lemma 2.1.1. The length of g € W is given by

l(g) = {(i,g) e [L.d] x Z | i < j,9() > g(j)} |
Proof. Let g = m*w for some z € Z and w € W. Notice that g(i) > g(j) is equivalent

to w(i) > w(j) and hence the lemma reduces to the case z = 0, which follows from

[BBO3, (8.30)]. O
Denote the set of (weak) compositions of d into n parts by
ALa={A=0,.. ., A) eN" | YN =d}. (2.1.1)
i=1

Throughout this chapter we write A = AJ ; for short. For each A € A, denote by W
the parabolic subgroup of W with respect to A generated by S\{Sx;, Sx;+xgs - -« s SA1 4ot An_i }-

For each z € Z, let A + z be the composition in A such that Wy, , = 7~ *W,n?.
Example 2.1.2. Let n = 3,d = 6,z = 4 and A\ = (1,2,3) € A. We have W) =
(89, S4, S5, 86, Wxia = (S, S, 3,54y and hence A +4 = (1,4,1) € A,

Let Dy = {we W | £(wg) = £(w) + {(g) for g € Wy}. Then Dj (resp., Dy ') is the
set of distinguished right (resp. left) coset representatives of W) in W. Denote by

Dy, =Dy n D;l the set of distinguished double coset representatives.
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Lemma 2.1.3 (Howlett). Let A\, u € A, and let g € Dy,. Then

(a) There is a unique § = 6(A, g, p) € Ay, 4 for some n” such that

Wy = g’1W,\g N W,.

(b) The map Wxx(DsnW,) — WxgW, sending (x,y) to xgy is a bijection satisfying

U(zgy) = L(z) + L(g) + L(y).

Proof. Part (a) follows from [Gr99, Lemma 2.2.2] and Part (b) is known (cf. [DDPWOR

Theorem 4.18]). O
Let < be the (strong) Bruhat order on W. Extend it to W by
7wy < 2wy if and only if 21 = 2, w; < wo. (2.1.2)

The extended affine Hecke algebra H = ’H(W) associated to W is a Z[v,v~!]-algebra
with a basis {1, | g € W} (cf. e.g., [Gr99, Proposition 1.2.3]) satistying T\, Ty = Ty
if ((w) + l(w') = l(ww') and (T + 1)(Ty — v?) = 0 for s € S. For a finite subset

X < W and for each \ € A, let

Tx = ). T, and z\=Ty,. (2.1.3)

weX

Following [KL7Y], denote by {C!, | w € W} the Kazhdan-Lusztig basis of the Hecke

algebra H (W) associated to W. For each w € W, we have C!, = v=®) ¥ p, T,

y<w
~

where P,,, € Z[v?] is the Kazhdan-Lusztig polynomial. Note that H = H (W) con-
tains H(W) as a subalgebra, we define C; = TZC,, € H for each g = 7w € W with

weW, zelZ.
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Statements in Lemma P24 below are known for non-extended Weyl groups and
Hecke algebras (cf. [Cur85, Theorem 1.2(i)], [DDPWOR, Corollary 4.19]). It seems
that the extended version is taken for granted for the experts (cf. [DET4, Lemma 7.1]),

and we provide a proof here for completeness.

Lemma 2.1.4. Let \,p € A, g = m°w € Dy, for some we W and z € Z. Denote by

wY the longest element in W, for any composition v. Then:

(Asg:1)

a) The longest element g5 in WygW, is given by g5 = wg\gwg wk. In partic-
Al Y Al

ular,

Ugy,) = Lw?) + €g) — L(wd™#) + E(wh).
(b) WagWy = {w e W | g < < g}
(¢) There exists ) e Zlv,v™] such that

T, gw, = L gm ’+ + 2 (>\ “)C"

336./)\#
z<g
In particular, x, = ve(wg)C’{Ug.
Proof. By [DDPWIOR, Corollary 4.19], we have wy, . , = W wwd AT i Note

that WygW, = W\m*wW, = m*W, . wW,. Hence

+ o ozt — oA a0 A zaw, ) )
Gry = T Wy, , = WSGW; w

By Lemma PZ13(a), we have

-1 —1,_—=z z
W(S()\+z,w,u) =w W,\+zw M WH =w T W)\Tl' w M WM = W(g()\%u),
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which implies (a). In particular,

g(w;\‘r—i-z,u) = g(gj\_u)

Again by [DDPWOR, Corollary 4.19], we have Wy, wW, ={ye W |w <y < wMZM}
and hence

WigW, ={z =7y | g =mw < x < gfu}.
Therefore,

— TZ _ gz, lwf 2 )\+zu
TW)\ng, - TWTW)\+szM - T7T< A ll« + + Z y)\+z P«>

)\+z n
y<w

— ,UZ(QAH)C/ 4 Z C )\Jrz ,u)Tzcv/

/\+zu
TEYy<g

We are done by recognizing x = 7%y and c;?f ) = C?SAJ h) O

2.2 Affine Schur algebras

For A\, € A and g € D, denote by ¢S, € Homy(z,H,H) the right H-linear map
sending z,, to Ty, gw,. Thanks to Lemma 2T23(b), we have Ty, qw, = 22\T,Tg;~w,
for some ¢ € A, ; and hence ¢, € Homy (2, H, 2 H). The affine g-Schur algebra is

defined by

S, = 2 (n,d) = EndH<)\6€BA :cm) — @ Homy(z,H, 23 H).
A HEA

There is also a geometric definition for Sj, ; as given in [Ln99]. It is known (cf. [Gr49,

Theorem 2.2.4]) that {¢5, | A\, € A, g € Dy} forms a basis of S}, .
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Let ©,, = Uy ©n,a; where O, 4 is the set of Z x Z matrices over N in which each

element A = (a;;);; satisfies the following conditions:
(T].) Qjj = QAjtn j+n for all Z,j € Z,

(T2) >

Z Q5 = d.
JEZ

For i,j € Z, define a matrix EY = (EY, )., € On1 by

B 1 if (z,y) = (¢ + rn, j + rn) for the same r € Z,
EY - (2.2.1)

0 otherwise.

For each matrix T' = (t;);; € ©,,, define its row sum vector ro,(71") = (r04(T)1, ... ,104(T),)
and its column sum vector co,(7") = (cou(T)1, . .. coa(T),) by
104(1) = Ztkj, cog(T)y, = Zt“‘“ k=1,...,n. (2.2.2)
JEZ €7
For each A e A and 7 = 1,...,n, we define integral intervals with respect to A by
N i
k=1 k=1

It is known that ©,, 4 parametrizes a basis of Sy, ; in [VV99, §7.4] and [DETH].

Lemma 2.2.1. The map
K {()‘ag>ﬂ) ‘ )‘nu € Aag € D)\u} - @n,d

is a bijection sending (X, g, 1) to A = (ai;)i; where a; = |R} n gRY].
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g
s

For A = (a;)i; = k(X, g, 11) € Opg, set eq4 = Hence {es | A € ©4} forms a
basis of S}, ;. For each j =1,...,n, let (6@, . ,5,(%)) € A%j)\j for some k; € N be the
composition obtained from (..., a_1j, agj, aij,...) by deleting all zero entries. Define
6(A) € Ay, 4 by

5(A) = (0, 00 0P e, ). (2.2.4)

Lemma 2.2.2. Let A = (X, g, ). Then Wsiay = g 'Wig n W, In particular, §(A)

is equal to §(\, g, p) described in Lemma [Z1-3.

Proof. By [BBOS, Proposition 8.3.4], for each composition A € Af, ; we have We\sy, .} =

Stab[Ao; + 1..d + X ;] (here are below Stab stands for stabilizer), and hence

Wy = ﬁ Stab[Ag; + 1..d + A\g;] = ﬁnj =R
=1

i=1 €L

Therefore,

g Wagn W, = <ﬂStab(g_1Rf‘)> N (ﬂ Stab(R?)) ﬂ Stab(g™ 'R} RY).

i€z JEZ (4,5)€Z?
It then follows from definition that W4y = g tWyg N W,. O
Set ((A) = £(g) for A = k(A g,1). The following lemma and a two-page proof

can be found in [DFT5, Lemma 3.2(2)]. Here we provide a much shorter proof by

combining Lemma 2171 and Lemma 2221

Lemma 2.2.3. Assume that A€ ©,, 4. Then

(A) = Z Zaijamy: Z Zaijaxy'

€L xT<i 1<isn >4
1<j<ny>j jeT y<j
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Proof. Let A = k(\, g, ) for some A\, u € A and g € Dy,. By Lemma P21, for all
i, j € Z there is a natural bijection R} n gRY < {(g(s), s) € R} x R)} between sets of
size a;;. Note that for (g(s), s), (9(t),t) € R} x RY, the condition s < t is equivalent
to the condition g(s) < g(t) since g € Dy,. Hence if (s,t) € R} x RY satisfies both
s < tand g(s) > g(t), then j must be smaller than y.

Under these bijections, the set of pairs (s,t) € Z? satisfying “s < t,g(s) > g(t)
and s € [1..d]” becomes the set of quadruples (g(s), s, g(t),t) € R} x R} x R} x Rl

7

satisfying “7 < y,i > v and 1 < j < n”. The first assertion follows. The second

assertion follows from that £(g) = £(g~!) and x(pu, g~1, ) = "A. O

Example 2.2.4. Let n = 2,d = 10 and

_ ‘ ‘ _
4 I
| |
| |
12
,,,,, o]
310 4
A=3E10+4E12+EQ3+2EQ4= : : 662710.
00,1 2
,,,,, o]
31 4
| |
| |
| |

We have 5(14) = ((101, o2, G412, agg) = (1, 2,4, 3) € AZ,IO and E(A) = 3(1 + 2) =0.

For Ae ©,,4, let

d5 = Z Z WOy, [A] = v %ey. (2.2.5)
1<isn z<i

JEL y>j

It is clear that {[A] | A € ©,,4} is a basis of S}, ;, which is called the standard basis (cf.

[E199]). The following is due to Du-Fu [DET4, Lemma 7.1], and we offer a slightly
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different argument.

Lemma 2.2.5. For A = (), g, it) € O 4, we have dy = {(gy,) — {(

wh).

Proof. Let § = 6(*A) = (5?)7 5O 5@ (n)

RN T S ) 7"'751(;)) as in (Z24). So \; =
ki .

'21 6;1), Ws ~ Wsay and hence 0(wd™) = ¢(w®). We have Ugy,) — L(wh) = L(g) +
iz

{(w}) — £(w?) by Lemma 2T4(a), where

PIDILE

1<isn <t

JGZ y>J
u O %) S V) NN 50
A 6 1) ¢(7
) - ) =Y (% )= 0) NG (5)) =2 2875
=1 =1 =1 7j=1 i=1y>j
Z Z AijQzy-
1<isn z=1
JEZ y>j
Therefore, £(gy,) — L(wh) = X1 3 ijamy = di. O
1<isn <
JEZ y>j
Denote the bar involutionon Hby - H —>H, ve—ov ! T,— Tg__ll. Following

[Dn92, Proposition 3.2], the bar involution on Sy, ; can be described as follows: for

each f € Homy (2, H, 2 \H), let f € Homy(x,H,x\H) be the map sending v to v~

and C! . to f(C! ). Equivalently,

Fla,H) = v @) f(x,)H for all HeH.

In particular, for A = k(\, g, ) € O,,4, by Lemma ZT4 we have

ea(Cly) =)= Co + D1 pTte) Mc; (2.2.6)
CEE'DAH
r<g

a(c;ug) = Ue( g)‘“)cl+ + Z vf(wo C;(vg )C;Jr . (227)

Ap
(EGD)\M
r<g
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Proposition 2.2.6. Assume that A = k(\,g,p) € O,4. There exists V(A’“) €

.9

Z[v,v!] for each x € Dy, such that

[A] = [AT+ D) 29 [s(h o, ).

Z‘ED)\M
r<g

Proof. By Lemma P23, Equations (2228) and (22270) can be rewritten as

[A](C{Ug) :C”+ + Z U_Z(g;“)cg;f\g}u)cl+,

Ix Tx
# ZBED)\H "
r<g
/ / 2t ) (A /
[A(Crp) =Ch + 3] U(gku)cg,g“)C’x;.
" xE'D,\H .
r<g

If /(9) =0 (i.e. g = =7 for some z) then [A] = [A] and we are done. For arbitrary g,

it follows from an easy induction on ¢(g). O

A matrix A = (a;5) is called bidiagonal if either a;; = 0 for all j # ¢,i + 1 or

a;; = 0 forall j #4,i— 1.

Corollary 2.2.7. ([DF1j, Lemma 7.2]) If A € ©,.4 is bidiagonal then [A] is bar-

mvartant.
Proof. By Lemma 723, /(A) = 0 for any bidiagonal matrix A and we are done. [

We define a partial order <, on © by A <, B if and only if ro,(A) = ro4(B),

coq(A) = coq(B) and 0, ;(A) < 0, ;(B) for all i # j where
S ay, ifi> )

> ag, ifi<y.



21

In the following the expression “lower terms” represents a linear combination of
smaller elements with respect to the partial order <,. Here we provide an algebraic

proof of [BLMYU, Lemma 3.6].

Lemma 2.2.8. Assume that A = k(\,g,p) and B = k(A h,u). If h < g then

B <, A.

Proof. By [BBUOH, Proposition 8.3.7], th condition h < g is equivalent to that hli, j] <
gli, 7] for all i, j € Z, where g[i,j] = |{(a,g(a)) € Z<; x Z=;}|. The bijections R} N

. . >\ . . .
gRY < {(g(7),7) e R} x RZ} for x,y € Z give that, for i < j,

gli. 5] = D2 IRy n gRE| = ) any = 075(A). (2.2.8)
et et

Applying (Z2Z38) to ‘A = k(u, g7, A), we have g~1[j,i] = 0;(A) for i > j. Therefore,

the condition h < g implies that B <, A. ]

Corollary 2.2.9. For A€ 0,4, we have

[A] = [A] + lower terms.

Proof. 1t follows by combining Proposition 2228 and Lemma 2=2S. [
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2.3 Multiplication formulas with bidiagonal gen-

erators
For each A € O, let diag(A) = (d;;a:;)i; € O, and let AT € ©,, be such that
A= A* + diag(A). (2.3.1)

For any matrix T' = (¢;;);; € ©,, denote the matrix obtained by shifting every entry

of T up by one row as

~

T = (tij)ij, tAij =tit1,5- (2.3.2)

On the other hand, denote the matrix obtained by shifting every entry of T" down by

one row as

~

T= (tij)ij» tvij =1i—1;. (2.3.3)

For A = (CLW) B = (bU)U S @n, define

7R

A+ B - [aij +bij][aij+bij - 1][b1]+ 1]
[ A ] B Agn laijl[ai; — 1] ... [1] '

JEZ

The following remarkable multiplication formulas were due to [DETA, Proposition 3.6].

Lemma 2.3.1. Assume that A, B € ©,,4, 10,(A) = co.(B) and B is bidiagonal. Let

O, ={T €0, | r04(T) = a} for a € A.

(a) If B is upper triangular (i.e. B* =Y, ;E;_1;), then

[B]+[4] = Y, o/

[A —T+T
TeOy

AT ][A—T+f], (2.3.4)
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where

/B(A7T) = %\z azy zy Z Etzg Ay — zy

1<i<n j<y 1<i<n j<y

(b) If B is lower triangular (i.e. BT = Y «;F;y1;), then

oam [A=T+T .
Ap:Zzﬁ%ﬂ[A_; hA—T+ﬂ, (2.3.5)
TeOq

where

( -
B4 L 2Ty =) = D D tyla — ta)
1<i<n j>y

1<isn j>y

Algorithm 2.3.2. Assume that A, B € 0,4, 10,(A) = co.(B) and B is bidiagonal.

We produce a matrix M € ©,, 4 as follows.
(a) If B is upper triangular (i.e. B¥ =Y a;F;_1;), then:

(1) For each row 4, find the unique j such that o; € ('Y azy.. D) ay].

y>Jj Y=g
n
(2) Construct a matrix 7 = >, (o — Y, aiy)Eij + D) ayyBy).
i=1 y>J y>Jj

(3) Let M = A—T, +T..
(b) If B is lower triangular (i.e. B =Y a;F;1,), then:

(1) For each row 4, find the unique j such that oy € (1Y azy.. D) az].

y<j y<y
n
(2) Construct a matrix T4 = Y, ((as — X ay)Eij + Y, ayEiy).
i=1 y<j y<j

(3) Lete M = A—T, +T,.

That is, the matrix M is obtained from A by “shifting” up (or down) entries by one

row starting from the rightmost (or leftmost) nonzero entries on each row.
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Lemma 2.3.3. The highest term (with respect to <,) in (Z234) or in (Z233) ewxists

and its corresponding matriz is the matriz M described in Algorithm EZ32.

Proof. 1f B is upper triangular, then each term on the right-hand side of (E234) must
be of the form [A—T + f] for some T" € O, such that a;; —t;; + tAij >0 for all 4, j € Z.

Note that
.

ij (A= Ery + Euy) = Y 0,.(A) =1 ifj>i=2,j>vy,

0ij(A) otherwise.

\

It follows immediately that, for each 4,
e <a (A — Ei,fl + E17,1> <a (A — E’L’O + Elo) <a (A — Eil + Ezl) <g .-
Therefore, for any T € ©, we have A — T + T < A-T, + ﬁr =M.
The case that B is lower triangular is similar and skipped. O

Example 2.3.4. Let n = 2, BJ—r = 2E12 + 1E23 and A = 2E12 + 3E21 + EQQ + E23,

that is,
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Then oy = 1 € < D Gy D, aly] = (0.2] and ap = 2 € ( D) Gy ) agy} = (1..2].

y>2 y=2 y>2 y=2
Therefore - L B ~
1 o) 1
| | | |
T T T T ] T T ]
1 2l
T, = ! ! , M= ! \
| | | |
11 '3 0)10)
| | | |
| | | |

We call a pair (B, A) of matrices to be admissible if either of the following condi-

tions (A1) or (A2) holds.

n
(A1) B* =Y m;E; ;4 for some m; € N, and
i=1
n
AT =3 a;it+;jE;iv; for some k € Z, where a; ;1 = m, for all ;

1
L
<.
A
ol

(AZ) ((b,L,]’)i]’, (a,iﬁj)ij) satisfies Condition (Al)

That is, if (B, A) satisfies Condition (A1), we have

My oox4+my, ) m
B = , A= , M =
Mo ® * 4 1My ® *j

|
|
|
|
|
|
|
e o
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Theorem 2.3.5. If (B, A) is admissible then [B] = [A] = [M] + lower terms.

Proof. We only prove when B is upper triangular since the other case is similar. Due

to Lemma 22373, it remains to show that the coefficient for [M] is one. If (B, A) is
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admissible, then T, = >’ m;E; ;+; and hence

=1
A=T 4T A-T),)... [
[ + + +]:n n[( Wil - [1] 1
A-T, 1<isn \j<i+k [(A— T+)¢j] 1]
Note that by definition of admissible pairs we have ) (a;, —t;,) = 0 for each nonzero
J=y
tAij and Y, (aiy — tiy) = 0 for each nonzero t¢;;. Hence B(A,T,) = 0. 0

J<y

2.4 Constructing monomial bases

Below we provide an algorithm that generates a monomial basis in a diagonal-by-
diagonal manner involving only admissible pairs (see also [FL14] for a diagonal-by-

diagonal construction in a finite type setting).

Algorithm 2.4.1. For each A = (a;;)i; € ©,,4, We construct upper bidiagonal matri-

ces BY ..., B® and lower bidiagonal matrices By, ..., By as follows:
1. Initialization: t = 0, U = A,

2. If U® is a lower triangular matrix, then go to Step (5) (denote this ¢ by z).
Otherwise, denote the outermost nonzero upper diagonal of the matrix U® =
(u(t-))-~ by T = i u) B ix for some k > 0

ij )] + = ii+k itk :
3. Define matrices
B+ — Z “z('i') i Pii+1 + a diagonal determined by (2Z21),

i=1

Ut =y® — 1 4 7.
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4. Increase t by one and then go to Step (2).
5. Set LO) = U® and set s = 0.

6. If L®) is a lower bidiagonal matrix (denote this s by ), then set B = LW and
end the algorithm. Otherwise, denote the outermost nonzero lower diagonal of
the matrix L) = (lZJ )ij by T (s Z ll(ikz i+k for some k > 0.

7. Define matrices

n

Bst1) Z irriPiv1i +a diagonal determined by (2471),

L(s+1) = L(S) — T—h(s) + f+7(s).

8. Increase s by one and then go back to Step (6).

Here the diagonal entries are uniquely determined by
104(BW) =104(A),  coa(BD) =10,(BY) fori=1,...,2 —1,
coa(B@®) =104(B1)), c0a(Bgi)) =104(Bir1y) fori=1,...,y—1.
Theorem 2.4.2. For A € ©,,4, the matrices BY,... . B® By,...,By) € ©,4 in

Algorithm 241 satisfy that
[BW] s« [B®]+[Buy] -+ -+ [Byy)] = [A] + lower terms.

Proof. For each admissible pair (Y, X), let M be the matrix corresponding to the
highest term in [Y] * [X] (cf. Algorithm 2Z32). For any matrix X’ <, X, let M’ be

the matrix that corresponds to the highest term in [Y] = [X’]. By construction we
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have M’ <, M, and hence
[Y] = ([X] + lower terms) = [M] + lower terms.

Algorithm P70 guarantees that each pair (BY, UW) or (B;), L") is admissible (here

it is understood that L&~V = B, and U®Y = L)), Hence by Theorem PZ3H,

[BW] s -« [B@ V]« [By] # [By] * -+ * ([By-1)] * [Bw)))

= [BW] s« -+« [BE D]« [Buy] # [Bay] # - -+ * [Biy—2)] * ([L¥"?] + lower terms)

= [BW]« ..« [BEV] « ([L(O)] + lower terms)

= [BW] « -+« [BE D]« ([UE] + lower terms)

= [A] + lower terms.

For each A € ©,, 4, we define
ma = [3(1)] Ko [B(x)] " [3(1)] £ [B(y)]. (2.4.2)

Corollary 2.4.3. The set {ma | A € ©,4} forms a basis of the Z[v,v™"]-algebra S ,

(called a monomial basis). Moreover, my is bar invariant for each A € ©,, 4.

Proof. The first assertion is clear from Theorem 24, The second assertion follows

from Corollary 2-274. O
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Remark 2.4.4. In [DDX07], Deng, Du and Xiao constructed a family of monomial
bases for the Hall algebra of the cyclic quiver. Any such basis can be adapted to a
monomial basis for S} ; using surjections from the double Hall algebra of the cyclic
quiver to Sj ,; (cf. [DET4]). But their monomial bases are less explicit, and the

relation to our monomial basis is unclear.

Example 2.4.5. Let n = 2,d = 21, and let

_ ‘ ‘ -
| |
l l
0'1 2'3
,,,,, oo -]
010 410
A=E()l+2E02+3E03+4E12+5E21—|—6E20: : : 662,21.
6'5 0'1
,,,,, el ]
| |
O:O O:O
| |
We have [A] = [BV] « [UD]+ lower terms, where
i ‘ ‘ i [ l l i
1 1 1 1
| | | |
£ '3 0'1 2!
777777 - = - - == — R e
| | | |
k0 010 4131
B = : : ) v = : :
L3 6'5 01
—————— - — - =t = - = = - - - =k == == = — = — 1
l P 00 010
l l l l
| | | |
| | | |
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[BP] « [U]+ lower terms, where

o)

[U(2)] - [3(3)] * [U(B)]+ lower terms, where

B® —

[U®] = [Bu)] » [LW]+ lower terms, where




Hence L) = By and

Al = (BT [B®7 4 [BE
[A] = [BW] « [B®] « [B®] « [Byy] * [By] + lower terms.

31
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Chapter 3
Affine Schur algebras of type C

In this chapter we recall some standard facts about the affine Weyl groups of type
C and the corresponding Hecke algebras. We come up with a new formulation of
length formula (cf. Lemma BT). We then study the affine g-Schur algebras of type
C as endomorphism algebras of certain ¢g-permutation modules for Hecke algebras. In
particular, we show that the bases for Schur algebras can be parametrized by a set
of Z x 7 periodic centro-symmetric N-matrices.

From now on, let n = 2r + 2, D = 2d + 2 be fixed positive integers.

3.1 Affine Hecke algebras

Let W be the Weyl group of type Cy (or C(gl)) generated by S = {sg, s1,...,Sq} with

Dynkin diagram
= Q0 — . —— 0O <<= 0
1

d—1 d

(e=N@)
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It is known ([BBOA], [EE9R]) that (¥, S) is a Coxeter group and W can be identified

as a permutation subgroup of Z satisfying
gli+ D) =g(i)+ D,g(—i) = —g(i) for i€Z,geW
Note that we always have, for g € W,

g(0)=0 and g(d+1)=d+1.

Also, w is uniquely determined by its value on {1,2,...,d}, and we write
1 2 ... d
w = = a1, aq, ..., a4 (3.1.1)
ay a2 ... Qg

¢

to mean that w(i) = a; for 1 < i < d. Here we adapt a slightly different notation
than the Weyl group §dc in [BBOA] by inserting fixed points d + 1 + DZ. Precisely

speaking, there is an identification gdc — W given by

g = [Ug' @), g ()], (3.1.2)

where v : Z — Z,1 — i + [é__dl] is the bijection induced by inserting d + 1 + DZ. In

particular, we have
gt +k(D—-1)))=g(i+ kD), —-d<i<dkelZ. (3.1.3)

Denote the length function on W by ¢. Now we give an interpretation of length under

the identification above.

Lemma 3.1.1. The length of g € W s given by

1, »
g(g) = 5’{@7]) [1 d] X Z | g(z <g(j or g(z)i?](])” (314>



34

Proof. Let ¢’ € S be the element identified with g. It is known [BBOS, (8.44), (8.45)]

that

) =mvalg (), @)+ 3 (| | )

where by [BB0H, (8.2)] we have

invg(g'(1),....¢'(d) = [{(i,4) € [L.dl” | poZyoll + H(E5) € [Ld® | gy}
(3.1.6)
Since that ¢ is order preserving, the statement ¢'(i) < ¢'(j) is equivalent to g(i) < g(7)

for all 7,7 € Z. Hence we have

invp(g'(1), ..., ¢'(d) = [{(i,5) € [1.d* | joZhH + [{(5) € [1.d® | iy
(3.1.7)

A detailed calculation shows that

) ... i<j
invp(g'(1),...,9'(d) = §|{(Z,J) € [L.d] x [=d.d] | 220 OF girsantl.  (3.1.8)
Let Sy be the Weyl group of affine type A as in [BBOS, Section 8.3]. It is also known

[BRO5, (8.31)] that for ¢’ € S¢ < Sp_1, 4, j € [1..d], we have

Vg’(i) —4'(7)|

LU ez g > g+ HD - 1)

(3.1.9)
+{keZ|g'(i)>g'(j+k(D-1))}
Similarly, for ge W < S p, we have
OS2 ke z 1 ) > ofi-+ WO
(3.1.10)

+{keZ]g(i)> g0+ k(D))}
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By (BT33), we obtain that

{\g’(il))—_gl’(j)lJ _ {\g(i) 1_)g<j)|J'

Another detailed calculation shows that

1<§<d {—'g(i)?(j)‘J = 1<Z,<d ({k =11 9(j) > g(—i + kD)} + [{k = 1|g(s) < g(—j — kD)}|)
+ 3 (k= 1190) > g(=i + kD)}| + I{k > 1g(0) < g(~i = D)}

{(j,—i+ kD) | 1<i<j<dg(j) > g(—i+kD)}|
+ {(,—j+kD) | 1<i<j<dg(i)>g(—j+kD)}
+ |{(i,—j — kD) | 1 <i<j<d,g(i)<g(—j—kD)}|

+ U —1—kD) | 1<i<j<dg(j) <g(=i—kD)}

= + |{(i,—i+kD) | 1 <i<d g(i)> g(—i+kD)} |
£ H{6,2) |1 <i<d,g(i) > g(D)}]
+ (@, —i— kD) | 1<i<dg(i) < g(—i—kD)}|
F =52 |1 << dgli) < g(-"P)]}
and
LE | = 8 (W= 1196) > 96 + D)+ Ik > 11 9) > gli + KD)Y)
{(i,j+ kD) | 1<i<j<dgli)>g(j+kD)}
g | NGk TS i<g < dgli— kD) > )
U+ {Gi+ kD) | 1<i<j<d g(j) > gli + kD)}|
+ [{(i,j—kD) | 1<i<j<dg(j—kD)> g(i)})

The lemma then follows by summing them up. m
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By using the convention in (B), the generators of W can be denoted by
so=1[-1,2,3,...,d—1,d],
sq=[1,2,3,...,d—1,d+2]., (3.1.11)
si=[1,...,i—1,i+1,4,i+2,...,d] for i=1,...d—1.

Denote the set of (weak) compositions of d into r + 2 parts (where “weak” means a

possible zero part is allowed) by

ALy = {A = (Aoy- -+, Arpr) € N7F2

S‘jxi - d}. (3.1.12)

i=0
From now on, write A = A; ;. For each A € A, denote by W) the parabolic (finite)
subgroup with respect to A generated by S\{sx,,5x1,---,5x,} where Ag; = Ao +
A+ .o+ A for 0<e<rand A\gp = \g. We define integral intervals with respect to

A by

[—Xo.- o] if i =0,
Rl)\ = ()\071’_1..)\07%‘] ifi e [1..7’], (3113>

[d+1—=XNp1.d+1+Nyq] ifi=r+1,

\

and we extend the definition R} for all i € Z recursively by letting
R, ={-z|zeR), R),={x+D|zeR)} (3.1.14)

Lemma 3.1.2.
r+1
Wy = ) StabR,.

=0
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Proof. By [BBOA, Proposition 8.4.4] we have that for each i,
Wt (ery .} = Stab([~Ao--hoa]) A Stab([Aos + 1..D — Aoz — 1]).
The lemma follows by taking the intersection Wy = (1);_, W\ (s .} O

Let 2\ = {w e W | {(wg) = l(w) + {(g) for g € Wy}. Then Py (resp., Z5 ') is
the set of distinguished right (resp. left) coset representatives of W) in W. Denote

by Doy =92, L the set of distinguished double coset representatives.

Lemma 3.1.3. Let ge W and let A € A. Then the following are equivalent:
(a) g€ Dy,

(b) g~' is order-preserving on R}i€ [0 .. r + 1];

(c) g7' is order-preserving on R},i € Z.

Proof. By the argument following [BB0OS, Proposition 8.4.4], we have

( A

g H0) < ... < g (),

D

I
A

g€ W 971(1 + /\0,i> <... < gil()\o,“_l),V’L’ € [17" — 1], ;-

g1+ Xoy) < ... <g Hd+1)

\ J

Note that g(—i) = —g(i) and g(0) = 0, so the condition “g=(0) < ... < g~ }(\g)”

is equivalent to g7 (=Xg) < ... < g7 10) =0 < ... < g"*(\g). Similarly, we have
g d+1-Ny1) <...<g Yd+1)=d+1<... < g Yd+1+Xy1). The equivalence
of the latter two conditions follows from the periodic condition g(i + D) = g(i) + D

for all 7, g. m



38
Proposition 3.1.4 (Howlett). Let A\, pn€ A, and let g € Dy,. Then

(a) There is a weak composition 6 = 6(X, g, i) € Ay g for some 1" such that

W5 = g_IW,\g N WM'

b) The map Wy x(ZsnW,) — WigW, sending (x,y) to xqgy is a bijection satisfying
p p

l(zgy) = l(x) + L(g) + L(y).
(¢) The map (Zs nW,) x Ws — W, sending (x,y) to xy is a bijection satisfying
U(x) + L(y) = l(zy).

Proof. See [DDPWOS, Proposition 4.16, Lemma 4.17 and Theorem 4.18]. [

The Hecke algebra H = H(W) of type Cy is a Z[v, v ]-algebra with a basis

{T, | g € W} satisfying

TwTw = Tww if l(ww') = L(w) + L(w'),
(Ts + 1)(Ty —v?) =0 for seS.

For a finite subset X < W and for A € A, set

Tx = Y, T, and =Ty, (3.1.15)

weX

3.2 Affine Schur algebras

For \,u € A and g € %,,, denote by ¢§u e Homg(z,H,H) the right H-linear

map sending xz, to Ty, ,w,. Thanks to Proposition B4 (b), we have Ty, v, =
g Ty AIWy N
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27 TgT9;~w, for some 0 € A, 4 and hence qﬁi’u € Homy(z,H, z\H). The affine Schur

algebra is defined by

nd = EndH<A®Ax,\H> = (—B Hompy (z,H, 2 H). (3.2.1)
€

A UEA
It is known that {¢S, | A, € A, g € Dy} is a Z[v,v™"]-basis of S, .
Recall that we assume throughout the dissertation that n = 2r+2 and D = 2d+2.
Set =, 4 to be the subset of O, 4 (cf. Section Z2) in which each element A = (a;;)

satisfies additionally that
® G_;_; = Q for all Z,j € Z,
® ap and a,41,41 are odd;

e > > a;=D.

1<i<n jez

For any T' = (t;;) € O,, set
Ty = (tosj), toi; =ty +1t_i_;.

Let =, = |J Ena. For A = (a;5) € Z,, we set
deN

s(a;—1) ifi=jeZ(r+1),
d. — (3.2.2)

;j otherwise.

For any A € =, we define its type C row sum vector ro.(A) = (ro.(A)o, - .., 10c(A);41)
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and type C column sum vector co.(A) = (co.(A)g, ..., co(A)r+1) by

>0
roc(A)r = 4 > oany,,; ifk=r+1,

Jj<r+1

104(T ) otherwise.

e (3.2.3)
i>0

ol A=y S a ., ifk=r+l,
i<r+1
coq(A)y otherwise.
\
Each A € =, is uniquely determined by {a;; | (¢,j) € I*}, where
I"T={0} xN)u ([l.r] x Z) u ({r + 1} X Zgyy1) (3.2.4)

is the index set corresponding to the “first half-period”. On I", let < be the lexi-

cographical order such that (i,j) < (z,y) if and only if i < x or (i = z and j < y)

With these notation, =, can be expressed as follows:

En={A|Ae P + Er*irtly N NEJY.

(3.2.5)
(i,9)el*
We also introduce a partial order “<” on =, (and on ©,,) by
(aij) < (bij) = ay < by (Vi, j). (3.2.6)

Next, we introduce a “higher-level” structure of =,,, which is used in the proof of

the multiplication formula. Let =7, be the set of Z x Z matrices with entries being

subsets of Z in which each element A = (A;;) satisfies that
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(PO) For z € Z, there exists a unique (7, j) such that z € A;j;
(P1) Aisnjin ={x+ D |xe Ay} foralli,jeZ;
(P2) A_;_j ={—x | ze A} forallijeZ
(P3) 0e App and d+ 1 € Ariq41;

(P4) > X A5l =D.

1<i<n jeZ

Set 27 = |J 27 ;. Again, each A is uniquely determined by {A;; | (i,7) € I*}. Now
deN

we define a map «’ sending each triple (A, g, ) € A x W x A to a Z x Z matrix

(IR} n gRY|). Tt is clear that the image of & lies in Z,, 4. We further define
K:i{(A\g,pu) |\ pelhge D} — Ena (3.2.7)

by £(A, g, 1) = K'(X, g, ).
Algorithm 3.2.1. For each A = (a;) € E,4, we define a matrix AL, € ZF, by
“row-reading” as follows (see (B222) for aj;):
1. Set (A% )oo = [—ago . ago] and (A% i1 = [d+1—a;+1ﬂ,+1 .. d—i—l—i—a;H’rH].
2. For (i,j) € I}, where

IF =T17\{(0,0),(r +1,r + 1)}, (3.2.8)

set
i—1

(AL )i = (Z ro.(A); + Z Qi - 21‘0((14); + Z aik].
1=0

1=0 k<j k<)
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3. For (i,7) ¢ I'", (AL,):; is determined by Conditions (P1) and (P2).
For any A€ 27, it is obvious that [A| := (|Ajj]) € 2. Moreover, |AZ,| = A.

Algorithm 3.2.2. For any A = (A;) € E],, set A = (a;) = |A]. We define a
Weyl group element ¢4 = ¢**4(A) € W, which sends k € Z to ¢**(k) € Z, using

“column-reading” as follows:
1. For (i,j) € I'* and a;; > 0, we set
[—a...a;], if (¢,7) = (0,0) or (r + 1,7 + 1),
[1..a;], otherwise.

Then set A;; = {a\" | I € 16:)} such that o\ < a7 for admissible I.

2. For k=1,...,d, find the unique (i,7) € I and m € [1..aj;] such that

k= Z Ay + M,
(zy)el*,(z,y)<(i.j)
and then set ¢*d(k) = a”.

3. For k ¢ [1..d], ¢°*4(k) is determined recursively by

gk + D) = (k) + D = —g" ()



Example 3.2.3.

Let d=7,D =16,r = 0,n = 2, and let

_ - _
| |
o
L2
| |
511 2
| |
,,,,,,,, S
A= 3 2 = 3E% + 2E)° + 2E,7° + 5E".
,,,,,,,, L
| |
2 5
| |
21 1 3
o
L : : —
We have ro.(A) = co.(A) = (3,4), and
_ ; ; .
| |
| |
| {—14,-13}
| |
| |
[—10.. — 6] | | {-5, -4}
,,,,,,,,,,,,, R s A
Alq = [-1.1] (2,3}
7777777777777 e
| |
{4,5} | . [6..10]
| |
(13,14} l [15..17]
| |
| |
| |
| |

On the other hand, we have ¢**4(A” ) = [1,20,21, —14,—13,6, 7], (see (BIT) ).

Lemma 3.2.4.
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(@) The map k: {(A, g, 1) | \,pp€ A, g€ Dr,} — Epa is a bijection.

(b) Let A = k(X g,p) for some N\, pp € N,ge Dy,. Then X\ = ro.(A), p = co(A),

and g = g*4(A%,).
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Proof. We shall show that for fixed X, € A, the restriction of x to %,
Kap : Doy — Ena( A ) = {A e Z,q | 1o (A) = A, co(A) = p} (3.2.9)

is a bijection. We start with the restriction of £’ to W, denoted by x}, : W —
End(A p). Let 22,0 p) = {A € Z0, | roc(JA]) = A coe(|A]) = p}. Note that ), is
the composition of two maps
K W= Ea(p) and |-y ERi(ANp) = Ena(dp).
g = (R}ngR)) A=A

It is easy to check that for each A € ZF ,(\, p), k5,(g**(A)) = A and hence %, is a

surjection. Furthermore, given ¢ € (/@f#)_l(A), by Lemma B3 we have that

g = gStd(A) if and only if g € Z,.

Thus the restriction /iz\’u| 2, 1s a bijection. On the other hand, for each A € =, 4(\, u)
we have |AT;| = A, and hence |- |, is a surjection. Moreover, given A € | - |[71(A),

by Lemma again, we have that
A = AL, if and only if ¢"Y(A) € 7, .

Therefore (| - |y, © k5,)2,, = Fau is a bijection, whence (a). Part (b) can be clearly

read off from the proceeding argument. O]

For each A = k(\, g, 1) € =, 4, set

ea = 5, (3.2.10)
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Hence {es | A € 2,4} forms a Z[v,v"]-basis of S, ;. For A € E,4, we define

3(A) = (0(A)o,-..,0(A)41) € Ay g for some 7" by the following procedure:

1. Set 0y = 1(ago — 1) (possibly zero); set (5@, . 751(;;)) for some ky € N to be
the composition of co(A)g — dg obtained from (ayg, ag, - ..) by deleting all zero

entries.

2. For each 7 = 1,...,r, set ((59),...,5,&?) € Ay, for some k; € N to be the
composition of co(A); obtained from (..., a_y;,apj,a;,...) by deleting all

zero entries.

3. Set (5Y+1), . ,51(6:111)) for some k.1 € N to be the composition of co.(A),41 —

041 obtained by deleting all zero entries from (...,a,—1 41,0 ,41), Where

Opry1 = %(ar-&-l,r-&-l — 1) (possibly zero) and r' = ko + ... + kq11.
4. Finally, set
5(A) = (d0,01", ... o0 o), o e e ). (3.2.10)

Proposition 3.2.5. Let A = k(A g, 1) for some A\, u € N,g € Dy,. Then Wsay =
g 'Wig n W,. Namely, 6(A) is one possible weak composition § described in Propo-

sition [F.1.4.

Proof. By Lemma BT, we have

r+1 r+1

g Wagn W, = <O Stab(g_lR;\)> N <ﬂ Stab(Ré-‘))

J=0

= ﬂ Stab(g 'R} n RY!) = ﬂ Stab(g~ ! (AZ4)ij) = Wia).-

(i,5)el* (ig)el*
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]

Remark 3.2.6. We can remove any zeroes that are not in the first or the last place
in a weak composition in A without changing the parabolic subgroup, i.e. W2y =
Wi,2). On the other hand, removing zeroes in the first or the last place changes
the parabolic subgroup. For example, W 11,0y, Wo,1,1), W(1,1,0) and Wy 1) are four

distinct parabolic subgroups.

For T' = (t;;) € ©,,, define

[mzﬂnmhxmmﬁﬁ: [%]. (3.2.12)
For A = (a;;) € Z,, define (see (B22) for a;;)

T2k ifi=jeZr+1,r+1),
k=1

[Als= [T layli, where [ay]: = (3.2.13)

(ig)el+ v :
[aij]; otherwise.

Alternatively, we have (see (B22R) for I,):
[A]L = [Cloo]!c[arﬂ,rﬂ]!c H [aij]!a- (3.2.14)
(i.5)eld

Lemma 3.2.7. For any A € Z,,, we have [A]L = Y. ¢ ®.
w€W5(A)

Proof. Denote the Weyl group of type A,,—1 (resp. Cp,) by Sy (resp. We, ). It is
well-known that the Poincare polynomial for S, and W are, respectively,

S TR =l and Y g = ] (28] = [m].

WESm k=1 weWe,, k=1
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Since W4y ~ WCJO x Ss; X Sgy X =0+ X Ss , X Wcérlﬂ, we obtain

> o= T (X ¢)II( X «)=1a

weWs(a) i€{0r/+1}  weWey i=1  weS;,

Lemma 3.2.8. Let A = k(\, g, i) for some A\,pue A, g € Dy,. Then
wxTyx, = [Aleea(a,).

Proof. Let 6 = 6(A). By Proposition BT (c), we have

vp= Y To= > Tu= > Ty > T,=Torw,as.

zeWy, we_@gvr[;WM wePsnW,, yeWs
YeWs

Note that z,T, = ¢"®z, for any w € W, and thus z,2; = >, ¢"Wz, = [A]'z,

C
w€W5

since W5 < W,,. Therefore we have
o\Tyr, = 23T Tgs~w, x5 = ea(r,)rs = ea(w,2s) = [A]!ceA(a:u).
]

For each A = k(\, g, 1) € 2,4, the length ¢(A) is defined to be the length ¢(g) of
the corresponding Weyl group element. By rephrasing Lemma BT, we are able to

express ((A) as a polynomial in the matrix elements as follows:

Proposition 3.2.9. Let A = (a;;) € 2, and aj; be the one in (B=22). Then the length

of A is given by

(=3( 3 (Z+3 )asem) (32.15)

r<i T>1
Y>3 Y<J
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3.3 A comparison with geometric realization

We now show that the Schur algebra S;, ; defined in Section B2 can be identified with
the Schur algebra in [FLLLWT] as a convolution algebra. In the following we only
provide a minimum setup. The readers may refer to [ELLLWT, Chapter 3 and 4] for
more details.

Let F' = k((¢)) be the formal Laurent series over a finite field k of ¢ = v? elements,

and let Spp(2d) be the symplectic group with coefficients in F'. Set
St = Asppa) (Xn g X X5 4) (3.3.1)

to be the convolution algebra, where X7 ; is the variety of n-step flags of affine type
C (cf. [ELLLWT, Section 3.2]) in an F-vector space V of rank 2d, and A = Z[v,v™].
Denote by €% the characteristic function on the orbit Q4. It is known that the Hecke

algebra H can also be identified as a convolution algebra
H = Agp,20) (Vg x V3), (3.3.2)

where Y9 (cf. V¢ in [FLLIWI, Section 3.1]) is the variety of complete flags of affine

type C in V.

Lemma 3.3.1. There is an algebra isomorphism Sy, ; ~ S"%°.

Proof. Let ¢ : S5, ; — S.%° be the linear map sending e, to €% for all A € =, 4.

Since =, 4 parameterizes the basis of both algebras, 1 is a bijection. We now show

that ¢ is an algebra homomorphism. Fix A, B,C € E,, 4, and let A\, p,v € A and
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g1, 92, g3 € W be such that
A=kr(Ng,p), B=r(pg,v), C=r(\gsv).
Set g§p(v) € A to be such that
gzxw::#{zeﬁid‘u;z)eOm(LlﬁeC%%ugﬂ)eOc}, (3.3.3)
for some fixed L, L’ € &; ;. Therefore,
2w e = 3 g5 0) e (3:3.4)
C
For x,y,2 € W, set B, (v) € A to be such that
T,T, = B, (v)T.. (3.3.5)

For g € W, let O, be the orbit O, 4.m) Where w = (0,1,1,...,1,0) € Agq. It is

known that

B;,(v) = #{Le Vs

(L, D) e, (L L)eO, (L L) e OZ} , (3.3.6)
for some fixed L, L' € V5. Then for all z € Wyg3W, we have

95s() = mu(v)"" >, B), (3.3.7)
zeWrg1 Wy
yEW,LLQQWu

where 7, (v) is the cardinality of the fiber of the projection Y — Spp(2d)(L,,), which
is given by

mu(v) = Z 2@ (3.3.8)
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Also, by direct computation, we have
22 = ma,. (3.3.9)
Therefore,

-1 2 —1
€A * GB(ZITV) = eA(Iu)ngT% W, = Ty, eA(x,u)TmT@s W, = Ty, TW,\91W;LTW;¢92WV>
(B) (B)

(3.3.10)
and hence
eaxep(x,) = 7T;1 Z Z BT, = Z 955T-. (3.3.11)
2eWyxg3sWy xeWyg1 W, 2e€WxgsWy
yGWMQQWV

Finally, we have e *ep = Y. ¢55(v) ec. O
c
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Chapter 4
Multiplication formulas

This chapter is devoted to the multiplication formula with tridiagonal generators.
The proof is quite involved. An essential idea here is to identify the standard basis
element ey with its corresponding “higher-level” matrix with entries being subsets of
Z in light of Algorithm B=Z1. We also provide two special cases of the multiplication
formula that are analogous to the multiplication formulas with semisimple generators

in affine type A, and with Chevalley generators as in finite type B/C.

4.1 Structure constants

From now on, fix B = k(X, g1, 1) and A = k(u, g2, v) for some A\, i, v € A, g1 € Dy,

and g, € Z,,. Recall ey from (B210).

Lemma 4.1.1. Let 0 = 0(B) (see (B2Z11)). We have

8 + €a(2) = WZEATQT(%HW;L)gsz'
C
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Proof. From Lemma B=28 we have

_
Al

C

ep(xuTg,ay) = ep () Lo,y T g Trseaw, Ty, Ty

1
[A]

egea(x,) = [ ]

AT

Since gy € ", s0 TyTy, = Tug, for all w € D5 0 W,. Therefore Ty, w,T,, =

T(95~w,)g. and we are done. O

Remark 4.1.2. For w € W, although T, T,, = T,,,, and T,,T;, = T\,, it is not true
that Ty, T\,T,, = Ty wg, in general. Therefore we need to write out 7,,7,,, in order

to have a useful multiplication formula.

For we Z5s n W, let A(w) < W be the finite set such that

Tg,Twg, = Z C(wJ)Tglawgza C(w’U)EZ[Q]- (4.1.1)
oeA(w)

For 0 € A(w), denote the shortest representative in the double coset Wy (g1owgs)W,

(o) (o)

(o) (wvg)wl(,o-) for some N € W)\awV €

by y(wp) € 9\,. Namely, giowgy, = wy 'Yy

wao T . We further let Alwo) — (a(»l.”’o)) =

ij

W,. In particular, Ty 509, = T 7T,

wy )

k(A y@o) v).

Proposition 4.1.3. Let 6 = 6(B), and let ¢ A(w) be defined as in (BT). Then

e [AC5)]]
EB * €y = Z C(wvo-)qz(glo—wQZ)_g(y( ’ ))%BA(’LU,U)- (412)
’LUG@gﬁWH ¢
oeA(w)

Proof. Combining Lemma BT and (A1), we have

w,o
ep *ea(t,) = ! Z ! )ajx\Tgwwgsz'
¢ wePsnWy
oeA(w)
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() (@) .
For 0 € A(w), we have 22Ty gwe Ty = ¢"@x T ) e T v x,. and hence it follows
’ g1 g2 q Yy )

by applying Lemma B™XS. O]

For general ¢, it is unlikely to obtain an explicit description for ¢(*?) since it is
equivalent to obtaining explicitly the structure constants for Hecke algebras. Also, it
is not clear what are the pairs (w, o) such that A®:9) represent the same matrix. As a
consequence, the multiplication formula above (i.e., Proposition B123) does not afford
the stabilization. In the following we discuss the special case when B is tridiagonal,

whose multiplication formula affords a stabilization that generates the desired affine

coideal subalgebra.

4.2 Shortest representatives

From now on, we assume that B = (b;;) = (A, g1, ) is tridiagonal. By slightly abuse

of notations, set

/ /
5 = (b007 blOa bOla blla ceey bi,i—lv bi—l,i) biia oo 7bn,’r‘+1a 7‘+1,7‘+1)‘

That is, unlike §(B) defined in (B=2—1T), here the intermediate terms 0y, . . ., 03,12, ],
..., 04, can be zero. Note that the two conventions coincide (i.e., 6 = §(B)) when

the intermediate terms are all nonzero.
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Proof. By construction. m
Recall the partial order < on =, by (B2Z8). For A, B € =,,, we set
Opa={T€0O, | Ty < Ar0o,(T); = bi_y,; for all i}. (4.2.1)
We define a map ¢ : s n W, — Op 4 by
p(w)ij = Ry wgo I . (4.2.2)
Lemma 4.2.2. The map ¢ is well-defined and surjective.
Proof. For any w e 95 nW,, we have
roa(p(w))i = |Rg;i_| = bi-1.
Moreover, by Lemma 21 and that w™! € W, we have
p(w)o,ij = |R§i—1 N w92RgV'| + |Rg(—i)—1 a w92R1j|
= |(Rgi71 Y RgiJrl) M w92R}/’
< R nwgaRY|
= |w 'Rl N 9:RY| = |R} 0 g2 RY| = ay.

To show that ¢ is surjective, for any 7" € © 5 4 we construct an element wy 7 € o YT

as follows. For all 7, j, we set

T.; = subset of (AL,);; consisting of the smallest ¢;; elements. (4.2.3)

~
+
l

subset of (AZ,);; consisting of the largest t_; _; elements. (4.2.4)

ij = (AL —Tof =Ty - (4.2.5)

v )
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Note that Z T | = roa(T); = |RS;_ |, Z| F = 104(T)—; = |R};.1|. There is a
r+1 . 0)
unique war = [ ] wﬁl)T € 95 n W, such that wy’; € Perm(R;’) is determined by
=0
.
R3z 1 if e U] i
(@)
Wy () € 4 RS, ifze U, 7/ (4.2.6)
RS, otherwise.
\

The uniqueness follows from that wZ}T is order-preserving on each R? (c.f. Lemma B13).

]

Lemma 4.2.3. For T € Op 4, the element wa r determined by (E=28) is the minimal

length element in @~ 1(T). Moreover, its length is given by

lwar) = 2] <ti]~ DA=T)ip+t 5 2 (A- Te)ik))
1§i§r k<j k>j
je

+ > to;(A—=T)ox + 2, t0j< 2 A=T)p+ > (A- To)ok) -2 (H;Oj)
iio Jj>0 k<—j |k| <3 7>0
j

+ % teai(A- Tt 8 s 8 A-Thust 5 (A= Tohirg)

j<r+1 Jj>r+1 <n—j |k—r—1|<j
k<j
o 14+tr41,5
j>§+1 ( 2 )
(4.2.7)
Proof. It is due to the construction of w4 . O
Lemma 4.2.4. Let T' € Op 4, we have
Z qé( ) _ qf( AT) —_[ ]" R (4.2.8)
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. . - _ [ai;],
Proof. For each (i,7) € I, its contributionto > ¢/ ™) is ! :
’ wep—(T) [tis)alt—i—ilalai; — (to)is]a

For the (k, k)-th entry where k € {0,7 + 1}, we need the well-known ¢-binomial

theorem

2[ ] e lf[l(l—i—qklx). (4.2.9)

Recall the notation a;; from (8222). The contribution of (k, k)-th entry to S gt

wep™1(T)
is given by
-, 9t
Z [a;ck] |fl;€k — $—|qx(oc2+1)+x(a;€ktkk) _ a;k i ltkk]qw(r21) (qa;ck+17tkk)m
t x
T+y=trk . Yy LRk 2o
_azk_ 0 i—1 _al, —tpp+1
— 1 + qZ_ qakk_ kk
o] ﬁ [+ 1 — 21
B H akk +1-— 22
i1 tkk: +1-— ’L
_ [an ]
[akke — 2tpr]t[trn]s
Thus
Z qf(w _ JAwar) 1_[ [CL”]! 1_[ [akk]!
wep—1(T) ()t [tislalt—i—slalais — (to)isla oy [ame = 2tunlcltnnld

sy 1AL
B Ve e

O

Example 4.2.5. Let r =2,n =6,d =8and D = 18. Let B = E®+2 Y EJ+E%

1<i,5<2
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2 4 .
and A=E"+ % > EJ + E* Namely,

i=1j=1
[ | | ] [ | | ]
| | | |
— —
1 o 1 o
o ]
2 20 1 1711
B = L and A= L ;
2 2: : 1 1:1: 1
-k -4 -- i el I I I
| | | |
1 1
JE R L L JE I L L
| | | |
I Co ] I 1oLy

where the column/row surrounded by solid lines is the Oth column/row. Therefore,

A=pu=(0,4,4,0),v = (0,2,4,2). Hence

Ds "W, ={xy | x e S,ye S},

( A ( A

[1727374]C7 [3717274]C7 [5767 77 8](7 [7757678]C7

where Sy = § [1,3,2,4].,, [3,1,4,2],, ¢ and S2 = § [5,7,6,8],, [7,5,8,6]., [ -

[1,3,4,2],, [3,4,1,2], L[5’7’8’6]°’ [7,8,5,6]
\ J J
We also have
) —2 -1 0 1 2 3
R, | @ [-4.-3] @ @ [5.6] @
and
j 0 1 2 3 4
g2 {0} {1,5} {2,6,10,14} {3,7,9,11,15} {4,8,12,16}

There are nine distinct matrices 7' = p(w) € Im(p) with the —1st and 2nd rows given
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o8

by

e - i)
_ —~— - - - —~—
— © o o o © hd
D ) © © w © (=)
/w I~ =) o0 =) 0 10O
_ © I N Y-l L 0
oA L w, w, = L =
— —
w “ ~ _
2
I ! 1 ! ! 1 I ! ! 1
SR SR =
i il Bl T om - il ittt Bl el ---- i il Bl T om -
S 2 — 9 — 9
B et e Mt el Il e e At Bl Bt it Bl At Bt
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4.3 Multiplication formulas for Hecke algebras

In this section, we deal with (B for B = k(\, g1, ) is tridiagonal. In this special

case, g is the permutation “swapping” RS, , and RS, ; for any i, and hence it can

r+1

be written as g1 = [] g%i), where gy) e W is determined by
i=1
.
r+b_1; ifwe Rgi—Q < R,
ggﬂ(l‘) =3 T — bm‘,l ifre Rgi—l C Rf, (431)
x if e [1.d\(RS_5u RS ).

\

Lemma 4.3.1. For i = 1,...,7 + 1, assume that R},_, = [m + 1.m + a] and
R, |, =[m+a+1l.m+a+ 3] for some m,a,3 € N. Then ggi) has a reduced

eTpression
gY) = (3m+,8 T 3m+25m+1)(3m+ﬁ+1 ce 3m+2) te (3m+[3+a—1 T 5m+a>~ (4-3-2)
Proof. By direct computation, S,,454¢—1 - Smtt 1S the permutation on [m + t.m +
t + (] sending
m+p+t—m+t, m+pB+t—1—>m+pB+t, ..., m+t—>m+it+1

Lemma then follows from (B=3). O

For any ¢« = 1,2,...,7 + 1 and w € &5 n W, define K to be the set in which
element is a product of disjoint transpositions such that each transposition (7, k).

satisfies

JERS 5 keRy .y, (wge) (k) < (wg2)”'(j). (4.3.3)
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We also define

w

r+1
K, = {H o
i=1

Since each elements of K,, © W is a product of disjoint transpositions, We note here

o) e K@} . (4.3.4)

that o=! = o for any o € K,,. For w € Z5 n W, denote the number of disjoint

transpositions in o € K,, by

r+1 r+1 s; ) )
n(o)=>si, it o=]][]G"&"). (4.3.5)
i=1 i=1 1=1
We also set h(w, o) = |H(w, )|, where
i (wg2)~to(j) > (wga) " (k),
H(w,o) = U (4, k) € R3;_p % Ry (4.3.6)
= (wg2) "' (j) > (wg2)to (k)

forwe IsnW,, 0 e K,.

Lemma 4.3.2. Assume that wy,we € D5 0 W,. If p(wy) = p(ws), then K, = K.,

and H(wy,0) = H(wy,0) for any o € Ky, = Ky,.

Proof. Since ¢(w;) = (wy), we have that for any z € R}, , U RS, ;, w;'(z) and
w; '(z) lie in the same entry of AL,. Thus for any j € R}, , and k € R}, ,,
g2 wi (k) < gy twi'(j) if and only if gy twy (k) < gy wy(j). So Ku, = K,

and H(wy,0) = H(wq, o) by the definition (A2333) and (B=31). O
As a consequence, for T' € Op 4, the set below is well-defined:

K(T) =K, forsome wep *(T), (4.3.7)
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So 18

h(T,o) = h(w,0) for some we ¢ *(T),0e K(T). (4.3.8)

In below we compute the non-trivial structure constants for Hecke algebras which re-
flect the fact that the tridiagonal generator is not necessary bar-invariant (cf. Remark

F2Im).

Theorem 4.3.3. For w e Z5 n W, we have

Tngw92 = 2 (q - 1)n(g)qh(w7U)Tg1awg2~ (439)

oeKy

See (B233H) and (B=31) for n(o) and h(w, o), respectively.

Proof. 1t suffices to show that for all 1 < i < r + 1, we have

T ) Tugy = (g =1 (4.3.10)

g, owg2
UEKI(;)

By Lemma B=371, we have

ngi) = (Tm-‘rﬁ T Tm+1)(Tm+B+1 e 'Tm+2) T (Tm-i-ﬁ-‘roc—l T Tm+a)~ (4311)

Write g = Sy 18+a—1" " Sm+a and x = wgy for short. We start with showing

TyTug = 2T + (= 1) Y. Q@i G (4.3.12)

keR,
a1 (G)>z (k)

where

Q(z,j,0) = [{k € Rg;_y | 7 (k) < (o) (5)}]
(4.3.13)

= [{k e Ry, | (o)™} (k) < (o2)~ ()},
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which counts the number of elements in R3; , that are to the left of j on the one-line
notation for oz. Recall first that for s; € S,y € W, that £(s;y) = £(y) — 1 is equivalent

toy (i +1) <y '(i). So we have

Ts.y ify t(i+1)>y'(4),

ﬂTy =
qTsy+ (¢ — 1T, ify(i+1) <y ().
Let k,, be the mth smallest number in the set {k € R}, | | 71(j) > =1 (k)}. If

this set is empty, then T,T, = T,, and we are done. Now we assume that this set is

non-empty. Let y = s, 25k, -1...5;2, we have
y (k) = a7 (k) <a7'(g) =y (k- 1),
and thus
i1 Ty TiTe = Ty 1Ty o os0 = AT sy, nsje + (@ — DT, s

On the other hand, by assumption x~! is order-preserving on RS, , and thus each k,,
must be in RS, ;. Now we show that the RHS is (¢ — 1)2-free: we will show that if
the coefficient of T}, in T, T, ... T;T, is a nonzero multiple of ¢ — 1, then y must be

of the form
Y= S45g-1-.-5p...5;x, a=b=k —1,b=k; —1 for some i.

The initial case (i.e., (¢ — 1)T, _,. s;) is indeed of the form (with a = b = k; — 1).
It suffices to show that if y is of the form, then ¢(s;4,11y) > ¢(y) and hence further

multiplication does not produce (¢ — 1)’s anymore.
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Note that y~'(a + 2) = z7*(a + 2) and

rHa+1) ifa=0,
y Ha+1)=

' (b+1) ifa>b.

Since a +2 > a+ 1> b+ 1 > ki, so these numbers all lie in RS, ;. Again by the

1

assumption that 27! is order-preserving on R3; ;, we have 7} (a +2) > 27 a+ 1) =

2 Yb+ 1) and hence y~!(a + 2) > y~*(a + 1). In other words, we have

T,y = g% Ty + (= 1) > ¢ Ty
k=k;

where $;45-1...8k-1...5;C = gSj...Sk—25k—15k—2 - - . $; = ¢(J, k)x. Finally,
i—1=H#{keR} || k<k,z '(k)<z7'()} =Qz,7,(j, k).
We repeat the procedure. Let n = (m + a,m + o + x)., we have

{k € Ry 4|(nwg2) "' (k) < (nwgs) ™" (m + o — 1)}
= {keRy_|(wg) (k) < (wgo) "(m+a— 1)\ {m+a+a}

= (ke Ry [(wg2) ' (k) < (wga) 'n(m + a = 1), (wga) "'n(k) < (wg)~'(m + = 1)}.
Hence

T

(T 3m+a71>(Tsm+ﬁ+a71 T Tsm+a)Tw92

Sm4B+a—2

(4.3.14)
n I
= 2((]_ 1) (C)q (C)T5m+ﬁ+a72"'sm+a71sm+6+a71"'5m+a<w92‘
¢

where ¢ runs over 1, (m+a—1,k;), (m+a, ka)e, (m+a—1,k1)(m+a, ks)e, (k1 # ko)
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with wgo ™ (m + a — 1) > wgo " (k) and wgs ™t (m + a) > wgy ' (ks), and

R'(C) = |4 (4,k) € Rgz;z % Rgi—l j=m+aorm+a—1,
(wgz)—lC(j) > (wgg)—l(/g)7 (w92)_1(j) < (wgz)_lg“(k:)

Equation (E=310) follows by repeating similar arguments several times.

With the assumption that B is tridiagonal, (E2I-1) can be written as

Ty Twgs = Z (¢ — 1)n(0)qh(w,a)Tglgw92. (4.3.15)
geKy,

Example 4.3.4. Retain the notation as in Example EZ275. In this section, we use a

two-by-four submatrix for short when there is no ambiguity. That is,

212/0]0 17111
B=1212/0/0 A=1/1]1]1},

I

12(34
Thus, g1 = gStd<5678 ) = [1,2,5,6,3,4,7,8]; is obtained by column-reading

(see (BI)). Also, we have

¢t | 0 1 2 3 4 5 6 78 9

R? | {0} [1..2] [3.4] [5..6] [7..8] {9}

That is, g; = g%z) = (8483)(8584) with m = o = 5 = 2. Also, go = gStd<

—_
)
w
W

~—

[1,5,2,6,3,7,4,8]..
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. _ _ std abcd)
Now write Ta bTeld =T, where x = g (e Flglh for short. We have
elflglh
LT 7ar3T4 = 1273751+ (€~ VT T27374)
51678 1678 50678
_ 2 o
LI T973721 = ¢ 1127376 T @ 1)<‘JT1235+T1234>
50678 4578 16|78 6578

Let us deal with the simplest case w = 1 here. We have

Kz(ul) = Kq(ug) = {1}7 K = Ky, = {]17 (375)7 (376)’ (47 5)7 (476)7 (3’ 5)(47 6)7 (3’6>(47 5)}7

w

and Ty, Ty, = D3(q — 1)"(U)qh(")Tglgw92 with

Tg10wgs o n(o) h(w,o)

Tt 576 1 0 4
314

1) (3.6 1 3
315

576 (35 1 2
5]4] | |

T rerq (46) 1 2
316

T35 (3.5)(4,6) 2 1
516

T 1575 (45) 1 1
64

T (3.0)45) 2 0
6|5
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Lemma 4.3.5. Ifwe s n W, and o0 € K,,, then
Ug1) + L(w) + £(g2) = L(growgs) + n(o) + 2h(w, o). (4.3.16)

Proof. 1t follows from (EZ313). O

4.4 Multiplication formulas with tridiagonal gen-

erators

For any w € Y5 n W, and o € K,,, denote the shortest representative in the double

coset WigrowgaW,, by 4y e 9y,. We further set A7) = (ag-”’a)) = k(A y@2) V).

Now, for each element ¢ = [[ 0¥ € K, such that ¢® e Kl(,f), we fix the unique
i=1

expression o) = ]_Z[(jl(i) , k:l(i))c satisfying
i=1
G <G << (4.4.1)

We further set s_; = s;,1 for 0 < i < r and

jl(_i) = kéijll)—lw kl(_i) = js(f;lllﬂ for O<is<rls<is<s. (44.2)

Hence the permutations o(=%) = l:l(jl(_i), l{:l(_i))c for 0 < i < r satisfy (B20) as well.
=1

For w € 95 n W,,we define a map v, : K,, = ©,, by

ww(a)ij = |Rgi71 a U(Rgiﬁ) M wQZR;‘/‘
(4.4.3)

= [{k"}5, A wgaRY|.
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For any matrix T, recall ' from (2232). Assume that S = (o) for some w € Z;nW),

and o € K,,. By (E432) we have
S = k" A wgsRY),
S_i_j= |{jl(z'+1)}l N wga Y|, (4.4.4)

()15 = [ h 0 wo k)
For any matrix S = (s;;), denote by ST = (SZT.j) the matrix obtained by rotating the

matrix S by 180 degrees and then shifting up entries by one row, namely,
sh=s1mi—j = (8)-iy. (4.4.5)
For T € ©p 4 (cf. (B220)), we set
I ={SeO |8 <T, ro,(S) = rog(S")}. (4.4.6)
Lemma 4.4.1. For we %5 n W, we have

1/}10(Kw) - F(p(w) .

Proof. For each o € K,, it follows from (E2=2) that ro, (1), (0)) = ro.(¢,(0)1). Also,

by Lemma B=2Z2) we have
(R K7 kDY wgaRY| <[RSy 0 wgaRY| = p(w),
and hence 1,,(0) < T. O
For '€ ©Op 4,5 € I'r, set

ATS) — A (T — )y + (T = 8)o, (4.4.7)



Lemma 4.4.2. Forwe Y5 n W, and o € K,,, we have

A(w,a) _ A(T’S),

where T' = p(w) (cf. (B222)) and S = (o) (cf. (E23)).

Proof. By the definitions (2232) and (E233), we have

(T — S)ij = |(Rgi—1 - U(Rgi—Z)) N wg?R;"

(T — S)—i,—j = |(Rgi+1 - U(Rgz‘Jrz)) M wggRﬂ,

(T - S))z‘j = |(Rgi+2 - U(Rgi—i-l)) M w92RyV‘|v

(T = 8) iy = |(Ris — 0(R3,_1)) N wg2 R

Recall from Lemma I that g; 'R} = RS, , U R3, U R},,, We have

(w,o)

= |R} n growgsRY| = |ogy ' R} nwgs RY|

4

= ’U(Rgi72> M w92R?| + ’Rgi M w92R;‘/’ + |U(R3i+2) M w92R§/’-

Again by Lemma B2, we have R = RS, _; U R}, U R3,. 1, and hence

_pd 5 5 v
aij = Ry U Ry U Ry y 0 wgeRY|

=a

(w,)
]

— (T = 8)e)ij + (T = 8)s)ys.
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(4.4.8)

(4.4.9)

(4.4.10)
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Example 4.4.3. Following Example =23, we choose T' to be the matrix

=B+ E?+ Bty B

1 100

For any matrix M = (m;;), we use another short-hand notation by writing

My= ) mg,EY. (4.4.11)
(i,j)el+
Therefore we have
00|11
T,=1/1]0]0]

In this case we have ¢~ !(T') = {1}. Moreover, by Example B34 we have

K(T) = {1,(3,5)c, (3,6)c; (4,5)c, (4,6)c; (3,5)e(4, 6)c, (3,6)c(4,5)c}-
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The complete list of S € 'y is given by

S Sa ¥yt (S)
0l0lo]0
0 0/0/0]0 (1}
olol1]0
E71,73+E21 1 0 0 () {(375)c}
0lo[1]0
E_17_3+E22 0111010 {(376)c}
0/0/0]1
E-b4 4 g2 | [110]0]0 {(4,5)}
0/0/0]1
E-L*4+ E2|[0]1]0]0 {(4,6)}
0l0[1]1
T LILIOTOTT{(3,5)c(4,6)c, (3,6)c(4,5)c}

r+1 s;

We define an element o, 6 = ] l_[(jl(i), lcl(i))C € ¥, (S) satisfying the following

conditions.

i=11=1

(S1) kY < k) <o < kY for all 4.

(S2) w‘l({k:l(i)}l) N gaRY consists of the largest s;; elements in w™'Ry;_; N g2 RY for

all 4;

It follows from (EZ) that Conditions (S1) and (S2) together imply the condition

below:

(S3) w ({5 }) A g2RY consists of the smallest s;; elements in w™' R}, _, N g RY for

all 7.
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For S € Ty, recall ST from (B23) and set

r+1

151 = [ 151 (4.4.12)

where

[[S]]i = H

JEL

lk§j<ST_ ST)ik] [k (4.4.13)

Sij+1 a

Each [S], counts the “quantum number” of pairs (z,y) in the following sense:
1. The element = contributes to the ith row of S. That is, = € {kl(l) o1
2. The element y contributes to the ith row of ST. That is, y € { jl(i)}lsil;
3. The element x is “to the left” of y as elements in A%,.

Lemma 4.4.4. Let T € ©p 4 and S € T'r. For any w € o (T, we have

T
2 g o) = [S] [] g Mw:ow,s) (4.4.14)

oePy ' (S)

Proof. Let s; = 104(S); = ro,(S"); for all i. By definition, each o € ¥1(S) can be

reconstructed by the following steps:
1. For 1 <i<r+1,j€Z, choose s;j elements from the set RS, , N wga R

2. Let j, = {jp,jgi), . ,jg)} be the set of elements chosen from J R}, _, nwg,RY
JEZ

such that

i< << .

3. For 1 <i<r+1,j€Z,choose s;; elements from the set RS, ; N wgs RY.
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4. Let k, = {k:y), k:g), . ,kéz)} be the set of elements chosen from | J R}, _; nwgsRY
JEZ

such that
(w92)71(js(i)> > (U)Qz)fl(kgi))y for s=1,2,...,s;.

Note that it is not necessary that kf) < k;gi) << k;ﬁ”

) .6 i)
. SetO':H(jl ’kl) (]5171{:82)'

i=1
For those o € v,'(S) having the same k, (say k, = K ), we pick a representative
r+1 ) ] ' '
o = TG e G KD
i=1
such that ky) < k:g) <. < k:g? Hence the sum over such o is then
D g M) = [S] g meen), (4.4.15)
ceKy,ke=K
In other words, any o showed up in (E4T3) must be of the form
r+1 ‘ )
o =0 B e G EL e €€ Say (wga) () > (wga) 1 (K,
i=1

where S, is the symmetric group.on s; letters. By a detailed calculation, we have

(S — ST
!
Zq H lKJ ] (57 j+1]a-
€ ]EZ S’L J+1 a
Also, we have

r+1

Z —h(w o) H Z qﬁ(e ), —h(w, U<‘K)
ceEKy,ko=K i=1 €

where € runs over all elements in S, such that

(wg2) " (5) > (wgo) (k). forall s.
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Therefore (B24T3) holds. By the construction of oy, ¢ we have

< T
Zq—h(w,a Ky _ |:S:| q—h(w,oms)‘ (4416)
K a
The lemma folloes by combining (A21H) and (EZ11). O

Example 4.4.5. Following Example B2273, we pick the element S =T € I'y. Thus

olol1]1 1[1]0T0 01121
Sy =1111]0]0] st —[0]0]1]1] (Z(S_ST)M)M:1210_
k<j
Therefore
- 112100
[5] ~1, 18] - — 2], B, 0us) = 1.
) 0l1/1]0

On the other hand, we have ¥, *(S) = {(3,5).(4,6)., (3,6).(4,5).}, and hence
LHS =q°+q'=q'[2] = RHS.

For T'e ©p 4 and S € I'r we set

iroa (4.4.17)
and
r+1
i i SZ] Z tzk_sw_'_l
. (4.4.18)
r+1 o0
+Z Z (t1—i—j — S1-i,—5) Z tzk+25m— Z S1—i—k)-
i=1j=—00 k——oo k=j+1

Lemma 4.4.6. For T € ©p 4 and S € I'r, we have n(oy.s) = n(S) and W(T,0y.5) =

h(T,S).
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Proof. The first statement is obvious since n(oy, s) is the number of disjoint transposi-

tions for o,, 5. To compute h(T, 0, 5), we count the elements in H (T, 0,, 5). There are
r+1 oo j—1 0 0
Z Z (tl—i,—j _Sl—i,—j)( Z tzk+ Z Sik — Z Sl—i,—k) elements (u, ’U) € H(T, Uw,S)
i=1 j=—00 k=—00 k=j k=j+1
r+1 oo J 11
such that o, ¢(u) = u while there are >, >} s;;( > ti — “5—) elements (u,v) €
i=1j=—00 k=—0

H(T,o,.s) such that u appears in the disjoint transpositions of oy, s. O
Finally, for A, Be 5,,T € ©p 4 and S € 'y, we set
((A,B,S,T) = ((A) + {(B) — L(AT9) + L(war). (4.4.19)
We are now in the position of proving the multiplication formula.

Theorem 4.4.7. Let A, B € =, 4 with B being tridiagonal and ro.(A) = co.(B). Let

[S1.n(S), €(A, B, S, T), h(S, T), AT be defined as in (ET2), (IT3), (ET9),

(A4IR), (B470) respectively. We have

eg* ey = 2 (q— 1)”(S)qE(A’B’S’T)’"(S)’h(S’T)[A; S;T) egms), (4.4.20)
TeOp. 4
SEFT
where
[A(T,S)]!
A;S:T|. = ‘£ ST, 4.4.21
ST e oy a2

Precisely, we have

[(A=Ty) +sij+ 51+ (T =8y + (T = 8)_i_
sy = [ | S |
(A—=Tp);sij:5—i—j; (T = 5)ij; (T — 8)—i—;

(ig)eld -

[are — 2tpe — 1+ 26] (4.4.22)

11 = -[s1-

ke{0,r+1} [sielal(T — S)uxls
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Proof.
€Ep * €4
w,o A(w’o) !
= Z (q — 1)n(0)qh(w,0)+f(910w92)—f(y< ; ))%emw’g) by (4.1.2), (4.3.15)
wePsnWy, c
oeKy
. Ao
= 2 (¢ — 1)n(a)q€(91)+€(w)+£(92)—€(y( ; ))—n(a)—h(w,a)%emwﬂ) by (4.3.16)
wegsnWy, [ ]c
oeKy
= > (qg—1)rEgHABSDITEMED [ A: G Tle ya.s). by (4.2.8), (4.4.14)
TeOp, a
SEFT
Finally, AT = A — (T — S)y + (T/—\S)g because of Lemma B2, O

4.5 Multiplication formulas with quasi-bidiagonal

generators

For any matrix T € ©,, recall diag(7') and T* from (E23T). In this sectoin we discuss

the special case when B = 3 b, Ey or BY = ) b1 By Note that g, = 1

=0 =0
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here. Namely,

b01 or

Below is a special case of multiplication formula (see Theorem E71), which is anal-

ogous to the multiplication formulas in affine type A.

Theorem 4.5.1. If B* = > bi7i+1E§’i+1 or >, b,-+17iEé+1’i and ro.(A) = co(B). Then
i=0 i=0

AT,
[A—T9]T].!

ep ey = Z g (@A) HA)—LAT)

TG@ByA

€ A(T,0) -

Proof. This is due to (B22=20), where S is always the zero matrix therein. O
Let €/, be the (4, j)-th entry of E,’. That is,

2 if (4,j) € Z(r + 1,7 + 1);
el = (4.5.1)
1 otherwise.

Below is a another special case with Chevalley generators, whose coefficients are

compatible with the multiplication formulas for finite type B/C.

Corollary 4.5.2. Let 0 < h <.



(a) If BY = E}"™" and ro (A) = co.(B), then

.Z QAhj
ep * ey = Z q’=" [ahp + 1]6A+EQP7E£L+1,;7.

peZ
o
Ah+1,pZ€h 41 p

(b) If B = E}™" and ro.(A) = co.(B), then

_2 Ah+1,5
ep * ey = Z q’ =P [ahH,p + 1]6A_Egp+Eg+1,p.

PEL
ahP 2621)

7
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Chapter 5

Monomial bases for affine Schur
algebras of type C

In this chapter, we first define a partial order on the index set of affine ¢-Schur algebra
that refines the Bruhat order. Then we show that applying the bar involution on
any standard basis element [A] leads to itself plus a combination of lower terms with
respect to this partial order. We provide an elementary construction (Algorithm b277)
of a semi-monomial basis using the multiplication formula on admissible pairs (cf.
Section 52). We then obtain a monomial basis (Proposition B21T) and a canonical

basis.

5.1 Bar involutions and standard bases

By slightly abuse of notation, let < be the (strong) Bruhat order on W. Following
[KL79], denote by {C!,} the Kazhdar-Lusztig basis of the Hecke algebra H character-

ized by the following condition.
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where P,,, € Z[v?] is the Kazhdar-Lusztig polynomial.
For A\, € A, set g;\“u to be the longest element in WygW, for g € Z,,, and set

wh =1, to be the longest element in the (finite) parabolic subgroup W, = W, 1W,,.

Lemma 5.1.1. Let \,u€ A, ge Dy, and let 6 = 6(\, g, 1) (see Proposition [3.1.4).

Then:

(a) g;\ru = wquwlw”. In particular,
Ug,) = Cw?) + Ug) — £(w?) + E(wh).

(b) WagW, ={weW | g<w<gj{ﬂ}.

(¢) There exists ci(j\,f) € Z[v,v'] such that

£( ! >\
Twygw, = Gl + + Z

wEQAH
w<g

In particular, x, = vf(wg)C{Ug.
Proof.  See [Cur85, Theorem 1.2 (ii), (1.11)] and [DDPWOR, Corollary 4.19]. O

Denote the bar involution on H by ": H — H, v — v, T,, — T_',. By [KL79
Theorem 1.1], C} is bar-invariant for w € W. Following [Du92, Proposition 3.2],
we define the bar involution on S ; as follows: for each f € Homu(z,H,z\H), let

f € Homy (2, H, z,H) be the map sending C’, to f(C",). Equivalently,

flz, H) = v*@f(z,) )H for HeH.
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In particular, for A = k(\, g, ) € =, by Lemma BT we have

ea(Cly) = w'n)- wO>c' o+ D v temer (5.1.1)
U)G.l)\y‘ Aw
w<g

ea(Cly) = WO’ o+ diw wt) Q0 ‘L (5.1.2)
'LUG]AH A
w<g

For A € =, we define a number

( 52N ) (5.1.3)

(i,7)elt  z<i,y>5 x=2L,y<j

It can be checked that d4 € Z. Set
[A] = v %ey.

Then {[A] | A€ 2,4} is a Z[v,v™"]-basis of S}, ;, which we call the standard basis.

Proposition 5.1.2. Assume that A = k(X g, 1) € Z,. There exists *yq(;\,’g“) € Z[v, v

for each w e Py, such that

+ >0 AR w, )]

we@w
w<g

Proof. Set § = 6(A), by Lemma BT11(b) we have

Ug3,) — L(wh) = Ug) + L(w)) — £(w?).
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Here
r! (51
Uw)) = £(w?) = A + Z ( ) A1 — ((50)2 + ; (2) + (5r’+1)2)
1
=9 Z aoja()x + Z (aoj u > + Z Qi Qiy
0<j<x >0 i<y
I<i<r
- +1
+2 Z ar+1jar+1z~l— Z (aHJ )
j<x<r+l j<r+1
- ( Z Z azyary)
RS
=ds—l(A).
Hence
da = U(g5,,) — Llwt). (5.1.4)

Therefore, Equations (A1) and (B12) can be rewritten as

[A)(Cl) = Cpy + vt cW)C’ (5.1.5)
wE])\M
w<g

[AJ(C) = Cpe + S wften) P, (5.1.6)
wE])\H A
w<g

If £(g) = 0, then [A] = [A] and we are done. For arbitrary g, the proposition follows

from an easy induction on ¢(g). O

Now we define a partial order <., on =, by A <., B if and only if ro.(A) = ro.(B),

co(A) = co(B) and 0, j(A) < 0, ;(B) for all i < j, where

gij(A) = D aay (5.1.7)

T<i,y=g
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Here the subscript “alg” stands for algebraic. In the following the expression “lower

terms” represents a linear combination of smaller elements with respect to <.

Lemma 5.1.3. Assume that A = k(\,g, ) and B = k(X h,u). If h < g then

B <3 A.

Proof. By [BBUOA, Theorem 8.4.8], the condition h < g is equivalent to that h[s,t] <
g[s,t] for all s,t € Z, where g[s,t] = [{(g(a),a) € Zs; x Z<,}|. The bijections R} N
gR! < {(g(a),a) € R} x Ri} for x,y € Z give that, for i < j,

0ij(A) = Y amy = Y, |R) ngRY| = g[s,1],

Tt T=—1
y=j Yys—J

where s is the largest element in R*, and ¢ is the smallest element in R* ;- Therefore,
0ij(B) = h[s,t] < g[s,t] = 0:;(A). O

Corollary 5.1.4. If A€ £, then [A] = [A] + lower terms.
Proof. 1t follows by combining Proposition BT and Lemma BT73. m

In order to construct a limit algebra via the BLM stabilization procedure, one

needs to show that the coefficients in the multiplication formula “behave well”. It

is standard to put the multiplication formula in the standard basis (see [BLMYO,
Lemma 3.4(a2)]). In our case, Theorem B4~ can be written as

[B]«[A] = ) v*@SD (@ — 1)"O[A; 5 T], [AT], (5.1.8)

TeOp 4
SGFT
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for some (A, S,T). What we need is an explicit formula for (A, S, T), which can

be derived as follows. Let (A, S,T') to be the integer such that
[A;S;T] = v ST A; ST, (5.1.9)
Lemma 5.1.5. Let A € =Z,,T € Op 4 for some tridiagonal matriz B, and S € I'r.

Then

’}/(A, S, T) = — Z (Se,ij + (’11/—\5)971']‘)(897Z'j + (T‘I—\S)@ﬂ'j + 2(11']' — 2t9,ij — 1)
(i.4)eld

— Z (age — 1 — (T — S)oxk + (T/—\S)e,kk)(sakk =+ (T/_\S)Okk:)

ke{0,r+1}

223((".7)+ (7))

r+1 t
si N
+2 Z Z Sz,j+1(3£j+1 - Z(S —SNi) — ( ’jQH)-

i=1 jez k<j
(5.1.10)
In particular, by setting d'(A) = 20(A) — da, we have
B(A, S, T)=dy+dy —dyrs +Uwar) +~v(AST). (5.1.11)

Proof. By direct computation, we have

-5 s (y
[Al; = HA )[A]’a,
—(%0)2—(“2+1,r+1)2— % (aéj)
[Al: = ¢ s [ALL
r41 St o, _31’,'
T g Bl B () o

The lemma follows from putting them together. O]
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Summarizing (61R) and (B11), we obtain the multiplication formula with tridi-

agonal generators for standard bases of S;, ;.

Theorem 5.1.6. Retain the assumptions as in Theorem [.Z.71. We have

[B]«[A] = D oP@SD(? — 1)"O[A; ST, [ATH)].

TG@BJ;
SEFT

5.2 Constructing monomial bases

A pair (B, A) of matrices in =2 is called admissible if the following conditions hold

(see (22X) for the notation +):

k n L
2. A* = 3 Y a;;;F,"" for some k € N, where a; ;44 = b; ;41 for all i.

Algorithm 5.2.1. Assume that A, B € =, 4, ro(A) = co(B) and B is tridiagonal.

We produce a matrix M = M (B, A) € 2,4 as follows.

(1) For each row 4, find the unique j such that b; ;1 € ( D Gy D, aiy].

y>J y=j

(2) Construct a matrix T* € ©,, by

3

T = (b = D an) By + ) an Ey).
1

y>j y>j

i

(3) Set M = AT,

Lemma 5.2.2. The highest term (with respect to <uz) in (BIR) exists and its cor-

responding matriz is the matrix M described in Algorithm BZZ.
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Proof. Note that

-

o (A)+1 ifj<i=z—1,j<uy,

E*Y.0)\ __
7ij (A U—<amAy4,ﬁj>¢=%j>y, (5.2.1)

0i;(A) otherwise.
It follows that AE7:0) <alg AETTL0) for all i,7 € Z. Therefore, for any T'€ Op 4,5 €

' we have AT—9) <alg AT <alg AT = M. O
The corollary below is a direct consequence of (5=21)

Corollary 5.2.3. If A’ <., A, then M(B,A’) <uy M(B,A).

Lemma 5.2.4. If (B, A) is admissible, then [A;0;T*], = 1.

Proof. Now T" = )] bi,HlEé’Hk, and hence

=1

1 [A+T, — T 1 n
[4;0;T"] = 0 L ] =1
TE AT Py L
i=1
[
Following Lemma 624, (5-I8) can be rewritten as
[B] * [A] = v®@OT[M] + lower terms. (5.2.2)

One can show that S(A,0,7%) = 0 by a direct but lengthy computation. Here we

present a more elegant proof via the bar involution.

Lemma 5.2.5. If B is tridiagonal, and B' <ug B, then B’ is also tridiagonal. More-

over, (B')* < B*.
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Proof. Since B’ <, B, we have
0iira(B') < 0i42(B) =0 for i=1,...,n.
Therefore o, ;.2(B’) = 0 for all 7 and hence B’ is tridiagonal. Also, we have
oiit1(B') = b;,i+1 < 0ii41(B) = b1 for i=1,...,n.

Since B’ # B, hence (B')* < B*. O
Lemma 5.2.6. [If (B, A) is admissible, then S(A,0,T") = 0. In other words,

[B] = [A] = [M(B,A)] + lower terms.
Proof. Write M = M (B, A). By taking bar on (E-Z3), we get

[B] = [A] = U_B(A’O’Tﬂm + lower terms.

By Proposition b2, we have

([B] + Z ’yB,B/[B’]) * ([A] + Z YA, [A’]) — v PALTIIM] + lower terms.

B’<a1gB A’<a1gA

For any B’ <, B, by Lemma 523 we know that (B')* < B*, and hence M (B’, A) <.

M, by construction. Also, by Corollary 6223 we have
M(B/, Al> <alg M(B/, A) <alg M.
Therefore,

([B]+ ,Z WB,B,[B']) " ([A]+ ,Z VA,A/[A’]) — [B] * [A] + lower terms

— PAOTI[M] + lower terms.

By comparing the leading coefficient, we have 3(A,0,7") = 0. ]
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Below we provide an algorithm that constructs a monomial basis in a diagonal-by-

diagonal manner involving only admissible pairs. See [LLI3] for a similar algorithm.
Algorithm 5.2.7. For each A = (a;;) € Z,,4, we construct tridiagonal matrices
BW ... B®@ as follows:

1. Initialization: set t = 0, and set A® = A,

2. If A® is a tridiagonal matrix, then end the algorithm. Otherwise, denote the

outermost nonzero diagonal of the matrix A® = (az(;)) by (T)® = ; af? GETTE

for some k£ > 0.

3. Define matrices

n

B = Z aEfBME;}i“ + a diagonal determined by (E23),
i=1
AGED — A0 _()®) 4 (TH)®,

4. Increase t by one and then go to Step (2).

Here the diagonal entries are uniquely determined by
co (BE V) =r0(BY), t=1,...,2—1. (5.2.3)

Theorem 5.2.8. For each A € =, 4, the matrices BW .. B® ¢ End in Algo-

rithm B.2.7 satisfy that

[BW] « [BP] « ...« [B@] = [A] + lower terms.
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Proof. Algorithm 5277 guarantees that each pair (BY), A9)) is admissible and M (B, AW) =
AU=Y for j =1,...,x — 1. Hence by Corollary 523 and by Lemma EZ8, we have

[B(l)] * [3(2)] R, ([B(xfl)] * [B(’“")])

— [BO]« [B?] + -« ([BED] « [ACD])

= [BW] % [B@] %« [BE2] « ([A(”_Q)] + lower terms)

= [A] + lower terms.

[]

Example 5.2.9. In the followings we give an example to show how the algorithm
works. Note that by Lemma B=2@ the leading coefficient in each intermediate step is

indeed one. Let r = 2, n = 6, and

We have

[A] = [BW] « [AD] + lower terms, where
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[BW] « [B@] + lower terms.

[A]

Finally, we h
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For A € =, we define
m'y = [BY]« [B®]« -« [B@]. (5.2.4)

It is clear that {m/ | A € 2,4} is also a Z[v,v™']-basis of S, ;, which we call a

semi-monomial basis.

Remark 5.2.10. In general, the element m’, is not bar-invariant since for an arbitrary
tridiagonal matrix B, [B] is not necessarily bar-invariant. For example, take n =

2r +2 =4. Let
B =EY" + 2B + E;° + E* = £((2,1,0), 5951, (1,2,0)).

The matrix B is not minimal with respect to the Bruhat order nor the algebraic

partial order <., since we have
B’ =k((2,1,0),1,(1,2,0)) = 3E™ + E)' + E;' + E*?,

with 1 < S981.

By a standard argument one construct a monomial basis {m, | A € =, 4} via the

semi-monomial basis {m/y | A € =, 4}.

Proposition 5.2.11. There exists a Z[v,v]-basis {ma | A€ E,.4} of S;,.4 satisfying

the following properties.
1. my is bar-invariant;

2. my = [A]+lower terms.
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5.3 A comparison of canonical bases

By a standard argument [[1193, 24.2], one can construct a canonical basis {{A} | A€

En.a) from the monomial basis {m4 | A€ E, 4} as below.

Corollary 5.3.1. There exists a unique Z[v,v™"|-basis {{A} | A € Z,4} of S 4

satisfying the following properties:
1. {A} is bar-invariant;

2. {A}y = [A]l+ 3. wpa[B] for mpacvZ[v].

B<algA
By a similar construction to [Du92], we can define another canonical basis {{A}' | A €
End} as follows. For A = (A, g, 1) for some A\, € A, g € Dy, let dgu)‘,;,“) be the coeffi-

cients such that

= > dO T ww,- (5.3.1)

we@w

In other words, (d5"),., is the inverse matrix of (c4”), 4. Define

{AY =0 @ X3 Al e, 0. (5.3.2)

’LUG@A#

The set {{A}' | A€ Z, 4} is a basis by construction. Precisely, {A}' € Hompg/(z,,z\)

S}, 4 is the map sending z,, to

v Z dgj\ TWAwWH = 'UE( M)C;Jr . (533)
wE.@)\M A
Equivalently, we have
{AY (Clp) = {AY (v "D z,) = Cl s (5.3.4)

wy,
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Hence, {A}' is bar-invariant. By a detailed calculation we can show that the {{A} | A €
En.a) satisfies the second property in Corollary b23, and hence the two canonical
bases coincide by the uniqueness.

On the other hand, there is a canonical basis {{A}5* | A € =, 4} for S/%° (cf.
[FLLLWT, (4.2.12)]) arising from intersection cohomology. Using the identification of
Schur algebras in Section BZ3, we can also show that all canonical bases coincide. We

summarize the above as a proposition.

Proposition 5.3.2. The three canonical bases {{A} | A € =, 4}, {{A} | A € Z,.4}

and {{A}**° | A€ =, 4} match under the identification in Lemma B=31.
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Chapter 6

Stabilization algebras of affine type
C

In this chapter we construct a stabilization algebra K¢ from a family of affine Schur
algebras of type C. The idea mostly follows [BLMY0]. However, there are still technical
details to be clarified for affine type C (see Propositions 61 and B1T-2). We then show
that K;L can be identified with a similar stabilization algebra defined in a geometric

framework (cf. [FLLLWT]), and it follows that K¢ is an affine coideal subalgebra of

U(g[n).

6.1 A BLM-type stabilization

Let =, be the set of Z x Z matrices over Z in which each element A = (a;j) satisfies

the following conditions:

(T1) a;j = antins; for all i, 7;
(X1) a—;_j = a;j for all 4, j;

(X2) ago and a,11,41 are odd;



94
(X4) a;; € Nfor all i # j.

For each A € =, and pe N, let ,A = A+pl where I is the identity matrix. Thus there
exists large enough even number p such that ,A € Z,,. Let v' be an indeterminate
(independent of v), and let Ry be the subring of Q(v)[v’] generated by

t i t ;
UQ(G-H)U/Q -1 U4(a+z)vl2 -1

23 _ ’ 21 _
i=1 v 1 i=1 v 1

, and v*  a € Z,t € Zy. (6.1.1)

Let Ry be the subring of Q(v)[v,v'~] generated by

t ,UQ(a+i)v/2 -1 t v4(a+i)vl2 -1
H v¥—1 7 H vi—1 7
e . e . (6.1.2)
U—2(a+z)v/—2 -1 U—4(a+z)vl—2 -1 .
T , 1_[ T , and v, a€Z,t € L.

i=1 i=1
Proposition 6.1.1. Let A;,...,Af € =, be such that coc(A;) = ro (A1) for all i.
Then there exists matrices Zy,..., 2, € in and Gi(v,v") € Ry such that for even
integer p > 0,

[pA]_] * [pAQ] * L0k [pAf] = A Gi(v,v_p)[pZi]. (613)

~
Il
—

Proof. The proof follows exactly the idea as in [BLM90]. However, since the mul-
tiplication formula here is much more complicated, it is not obvious whether the
coefficients are good enough to afford a stabilization. Below we give some explicit
formulas to convince the readers that we can indeed derive a stabilization procedure.
By Theorem B8, we may assume that f = 2, A = Ay and B = Ay = Za,-E;’iH

is tridiagonal. For any even p making all entries in A; positive, we can apply (BL3)
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and obtain
LB« [pAl = ), oA — 1) A S T [,AD)]. (6.1.4)
TE@B,pA
SGFT

We shall prove that for some polynomial G
B(A, S, T) = B(A,S,T) + pGV (b 11, aij, ;).

Recall that B(,4,S,T) = d'(,B) +d'(,A) —d' (,AT=5)) + t(w, 4 1) +7(,A, S, T). The

difference can be obtained by computing the difference for each term. We have:

2r+1
d/(pB) - d/(B) =D Z biit1,
D 27‘-‘:1
o) =d) =53 (Y an—Yau)
=0 r<i,y<i y>1
PS5+ % Ja D)
(z])eﬁ =1 i<z<j i>x>j i#j
2r+1
g(wAT>_‘€wAT pzztma
1=0 j>1
YA ST) = AAST) = —p( Y, (S+T=om-2 Y (8 M),
ke{0,r+1} (i,§)eld
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Combining these yields to the desirable polynomials G™). On the other hand, set
ay) = pdi; + (A—Tp)ij + 54— + (T =)y + (T = 8) iy,
aEf-) = Oy + (A= Tp)ij + (T = S)yy + (T — )iy,

aff) = pdi; + (A= Tp)yy + (T = §)_iy,
(6.1.6)

ag;l) = péij + (A — Tg)w‘,

al(jc) =p+ agp — 2tg — 1 + 25 € 2Z,

CLI(SC) =p+ agx — thk — 1€ 2Z.

We have

54 S_i—j (T=8) i, a®
A5 T] = H( +l +l H +l] H ﬂ)

(ig)elf 1= =1 =1 i (/]

M (Tl‘—sf’“’“ (@ 4 21] 2% [al©) + 21 -
ke{0,r+1} =1 [l] 1=1 [l]
(6.1.7)

The “type-A quantum binomials” are of the form

13 t o 2(a+i),2p _
1—[ a+z+p Hv v 1
i=1 i=17’2i—_1’ e bte o

while the “type-C quantum binomials” are of the form

a+Z 1

t
1_[ a+l HU , a€l,te L.

i=1 =1

They are indeed of the form G(v,v™?) for some G(v,v’) € R;. O

Proposition 6.1.2. Let A € En. Then there exists matrices T4,...,T,, € in and

H;(v,v") € Ry such that for even integer p » 0,

in ). (6.1.8)

i=1
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Proof. By Proposition b2, taking bar on [,B] = [,A] = [,M] + > Gi(v,v™P)[,Z]

leads to
[,B] = [,A] + lower terms = [,M] + ZGZ'<U, v=P) * ([,Z;] + lower terms), (6.1.9)

Following the idea of [BLMYU, Proposition 4.3], one can show by induction that the
coefficients showing up are indeed of the form H(v,v™?) for some H(v,v’) € Ry as
long as the initial case holds. Hence it suffices to prove the case when A = (a;;) is
tridiagonal. We shall prove this by another induction on ¢(g), for which the initial
case is trivial since [A] is bar-invariant. Assume now that £(g) > 0.

Assume that A = k(\, g, p) for some A\, pp € A, 4, g € Dyy. Then A = k(A 9, i)

where

P)‘ = <)‘0+§7/\1+p7 co A, )‘T+1+§)a b = <l’[’0+g7:ul+p7 - aMr+P7Mr+1+§>,

(6.1.10)

r

and ,g = [ ,¢; such that each ,g; swaps p(i — 3)+ R}, and p(i — 3) + R}, ,, for any

=0
1. That is, for 1 < x < d + rp,

(

. . 1 6
r+ai_1,; itz —p(i — 5) € Ry 1,

pgi(m) = 1 T — Q-1 it x —p(i - l) € R§i+27

! (6.1.11)

T otherwise.

\

Denote by ng the longest element in W \ - g - W, ,. By Lemma BT, we have

> dpraemer (6.1.12)

(9%,
= PIAL
TWpA'pg'Wpu (% C + T+ W,pg wh

pgA#
we@pk,p#
w<pg
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For any w € Z,5,,, we set A, = k(pA, w,,pu). By Lemma BZ3 we know that
Ay <ag pA, and hence (A4,)F <ug pAT = A*. There is a unique tridiagonal matrix
(A, @, ) such that k(A x,u) = A,. That is, w = ,z for some x € P, such that

x < g. Therefore, (E112) can be written as

¢
TW Npg Wy = U (pgA“)Cp j\—# + E ,(,pm ;Z“)C;mj\.#. (6113)
JZGQA#
r<g

Wo

. . 0 pH /
In particular, TWpﬂWw =T, = ( )ng“’ where

te) = 60+ (o= ) =+ 2 ((57) = (5)) + (o +5) =

p? p p
= ((wh) + ppo + " +;pm +r<2> +Phrs1 +

=€(w§)+]—9<2d—7’+p(7’+1)>.

2
(6.1.14)

Therefore, by Lemma BT again, for any € %, such that x < g with A, =

k(A z, 1), we have

Upat,) = Cs,) = (Cws®) = ) + ) — Ulg)
— (™) = i) + () = ) (6.1.15)

= L(20@+ 142D —r +p(r + 1)),
Here |AE| is the sum of off-diagonal entries of A, over I7. In particular, the leading
coefficient (:vé(giu)) in Ty, gw, is good enough to afford stablization. Moreover, by
construction we know that the Kazhdan-Lusztig polynomial P, , is equal to P, , for

any even integer p. A similar argument shows that ci’; o Vis a product of o o ) and a
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v-power in terms of £(,yy,) — £(yy,) for x <y < g. Hence, by (E113), all coefficients
in Ty, gw, are good enough to afford stablization.

On the other hand, we can derive from (E113) that

— o gt ) _ —0( gt
(AT~ LA (Ol = 3 (el o W) or (6116)
"y

Combining (B114), (E113) and the inductive hypothesis, we have shown the exis-

tence of H;(v,v") € Ry for tridiagonal A. O
Proposition 6.1.3. Retain the same notation for Proposition B211. We have:

(a) Let Ky be the free Ry-module with basis {A | A € Z,}. Then Ky has a unique

associative Ri-algebra structure in which the multiplication = is given by

NgE

Gi(U, U/)ZZ‘ if COC(Ai) = rOc(Ai+1> for all 7:,

1

0 otherwise.

(b) Let Ko be the same algebra with scalar extended to Re. Then the map = : Ko —

Ko given by

r(v,v)A =r(v v ZHi(v,v’)Ti, r(v,v") € Ra,

m
=1

18 an tnvolution.

Let K¢ be the free Z[v,v']-module with basis {[A] | A € E,}.
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Corollary 6.1.4. K;L has a unique associative Z[v,v=]-algebra structure in which

the multiplication = is given by

> Gi(v, )[Zi]  if coc(4;) = roc(Aisr) for all 4,
[Ai] o [Af] = {7 (6.1.17)
0 otherwise.
Also, the map ~: K&, — K¢ given by [A] = . Hy(v,1)[T}] is an involution.

I
—

(2

Following a standard argument (cf. [Lu93, 24.2.1]), we have the following:

Theorem 6.1.5. Let A € in There is a unique bar-invariant element
(A} = [Al+ )] maalA]eK;
A<y A

such that ma 4 € v Z[v7!].

The elements {{A} | A € =,} form an Z[v,v']-basis of K¢, which we call the

n’

canonical basis.

Remark 6.1.6. By the affine type A counterpart of Proposition 611, one can con-
struct a stabilization algebra Kf; in a similar way thanks to the multiplication for-
mulas (cf. Lemma P230) and monomial bases (cf. Theorem EZA2). The algebra K¢
is first introduced in [DET4] and it is shown that K is isomorphic to U(gA[n), the

idempotented quantum affine gl,,.
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6.2 Quantum symmetric pairs

We now show that the stabilization algebra K; defined in Section B is indeed a
coideal subalgebra of U(g[n)

Let K55 be the stabilization algebra in [FLLIWT, Section 9.4], which has the
same underlying vector space as K;l, while the multiplication structure constants are

defined in a seemingly different way than (6-1-L7) as below.

3

Gi(v,1)[Z;] if co(A;) = roc(A;qq) for all 4,

[A] %« [Af] = { =1 (6.2.1)
0 otherwise,
where G are two-parameter polynomials (cf. [FLLLEWT, (9.4.1)]) arising from struc-

ture constants for the Schur algebras S7% as a convolution algebra for affine flag

varieties.

Lemma 6.2.1. There is an identification K; = K;;geo as assoctate algebras.

Proof. 1t suffices to show that the two algebras have the same structure constants,

which can be reduced to showing that
Gi(v,0?) = Gi(v,vP), p>» 0. (6.2.2)

For large enough p, G;(v,v?) and G}(v,v?) are the structure constants for the Schur

[

¢,geo
n,d+pn S

and ot pn

algebras S respectively. We are done due to the identification (cf.

Lemma BZ3T) on the Schur algebra level. O
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As a consequence, the stabilization algebra K; admits a coassociative comultipli-

cation inherited from the comultiplication on Kﬁ;geo.

Corollary 6.2.2. The stablization algebras for an (idempotented) quantum symmetric

pair (K3, K,).

Proof. This is due to [FLLLWI, Proposition 9.5.3]. O
Now we set
Z:l = {)\ = ()\Z)Z € ZZ ’ )\0, )\7’+1 € (QZ + ].), )\Z = )‘n+i = )\—z} (623)

We define a completion IA(§I of K:Z to be the Q(v)-vector space of all formal linear

combinations Y €4[A] (€4 € Q(v),[A] € K¢ such that for any A\ € Z¢, the sets

Ae=,

{Ae®, | & # 0,10,(A) = A} and {A € O, | €4 # 0,coa(A) = A} are finite. The
multiplication on IA(; given by
(Xealal) - (X mslBl) = 3 cans(lA] + [B)),
A B AB
defines an algebra structure on K¢, where [A] + [B] is the product in K¢. Let Z°

be the subset of =, in which the diagonal entries are all zero for each element. For

a € Z;, we associate a diagonal matrix

Da = (67;]'0[2‘)2‘]‘. (624)
For each j = (Jo, ..., Jr+1) € N'T2 A € 20 we define
A(j) = D) v [A+ Do) € K5, (6.2.5)

a€eZs,
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Let K¢ be the Q(v)-subspace of K¢ spanned by {A(j) | A € 2, j € N"+2}. The detailed

proof for the proposition below will appear in [FLLEW?].

Proposition 6.2.3. K, is a subalgebra of IA(f1 generated by
A(),0(G) (AeZ? is tridiagonal, j € N™2).

Moreover, K¢ is a coideal subalgebra of K.
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Chapter 7

Stabilization algebras arising from
different involutions

In this chapter we provide a formulation of three more variants of the stabilization
algebras for different types of involutions on the Dynkin diagram of affine type A.
We will present more details for the type 15. We will merely formulating the main

statements for types 7 and 2.

7.1 Affine Schur algebras of type 1)

In the following we deal with the variant of affine ¢g-Schur algebra of type 2y corre-

sponding to the involution as depicted below. Let Ezf 4 be the subset of =, ; in which

Figure 7.1: Dynkin diagram of type A;lr) with involution of type 2.

1 r—1 r

0 O o o
30

\05--- go go

2r r+2 r+1
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each element A satisfies additionally that
(X4) ro(A)g = 0 =ro(A)o.

Let A¥ be the subset of A = A, 4 in which each element A\ = ();) satisfies additionally
that Ao = 0. Recall from Lemma B4 that x : {(A\,g,p) | \,pe N,ge D} — Zna

is a bijection. Similar argument leads to that

1 J

Lemma 7.1.1. The restriction of k= on E;,d 18 a byjection. In particular, the map

7 (N g ) | A pe A . ge D — 22,

giwe by sending (X, g, ) to (|R} 0 gRY|) is a bijection.

Now we denote the affine g-Schur algebra of type 2y by

v
Sn,d = EndH</\S%” QTAH> (711)

It is clear that S; ; is naturally a subalgebra of Sj, ;. Moreover, both {ea | A€ Z,

and {[A] | A€ = ,} are bases of S]) ; as a free Z[v,v~']-module. Note that although
Algorithm B=277 applies to arbitrary A € Efj 4> the matrices produced does not lie in
E;{d in general. In order to define a monomial basis for Sﬁd, we need a modified
matrix interpretation by collapsing those dummy rows and columns. Let Z" = Z\nZ,

and let éfj 4 be the set of ZY x Z" matrices with entries in N in which each element

A = (a;j)satisfies that:

(Tl) Aij = Qjtn j+n for all Z,j e Zv.
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(Xl) A—j—j5 = Qjj for all Z,j e ZY.
(X2') ayy1,041 s odd.

(X3) 'S S @y = D 1.

i=1 jezw

Let f¥: =/, — £/, be the obvious collapsing map, and let f3’ : =, — =, be the

\_l’fL,

=4

expanding map that inserts suitable columns/rows making its image in =7 ,. It is

clear that f¥ and f¥ are bijections and they are inverse maps to each other.

Example 7.1.2. Let r =2, n = 6, and

[ o ]
31 roo [
I L
i I i
w04
e
ST
| o |
12 «10,1
S T N DU S
I Lo |
A=1 01170
il il el el
: 1:0:* 2:
| o |
l C 0 3
e e e
| Lo |
| I 4 %
S
i o i
EEEEEY

That is, A* = E;’_l +2E}? + 3EP + 4E3? + 5E%'. Applying Algorithm 5272, we get

[BW] + [BP] « [diag] = [A] + lower terms € Sy
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, , , , (o B T S B ')
e e - -F-=-==--= [ Bl
| | | N * 0 <
| | | | | |
T O B S N S
| [ i i [ |
, | ., -, < | ,
| S e 1o | | |
, , , , , ,
o<t s ay | | | |
P T R B

Mm% M | | | |
| L |
I
a
| ' ' 1
| | | | %
e e - === -= [ B
I I I I * I
| | | | | |
S I L B R R
L - L
I R N N
| | | | | |
| I % | | | |
P T R B
o | | | |
| L L |
I
S

where

Note that here B®

Here the central solid lines represents the result of collapsing the stripes bounded by

+ 2B + 3E3° + 4E;* + 5E;.

1,—1
* :EG’

the central dashed lines. We have f7(A)
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We claim that in S:f’ 4 matrices of this form behave like the tridiagonal ones in S7, ;.
In the followings we demonstrate another algorithm that generates [A] for arbitrary

A€ E], bypassing elements in éln] 4

Algorithm 7.1.3. For each element A € E;ﬂ 4 we define matrices *BY) as follows:
1. Apply a variant of Algorithm 5277 on f?(A) and obtain matrices BYW € 27 .
2. Let ‘BU) = f49(BW) for all j.

Theorem 7.1.4. For each A € = ;, the matrices ‘B, j=1,...,z,in =, 4 produced

by Algorithm [7.1.3 satisfy that
[[BW]« ['BP] « .-« ['BW] = [A] + lower terms € S 4

Proof. It remains to show that each lower term [C] occurred lies in S:f’ 4- By definition
of multiplication on S}/ ; we have ro.(C) = ro.(A) and co.(C') = co.(A). In particular,
10.(C)o = 10 (A)o = 0 and co(C')g = coc(A)y = 0 since A e = ;. Therefore C' € =7,

and [C] € S}/ ;. O

7.2 Stabilization algebras of type 1)

Recall én from Section 6. We define
E<—{A€Z, | ap <0}, EZ>={A€Z,|ap >0} (7.2.1)
For any matrix A € én and p € Z, we set

SA = A+ p(diag(0,1,1,...,1,0)). (7.2.2)
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Lemma 7.2.1. For Ay, A,,..., As e => | there exists Z; € =2 and G;(v,v') € Q(u)[v/, v/~

(i=1,...,m for some m) such that

[5A1] * [3A2] * [;Ar] = 2 57, for all even integers p € Z.
Proof. Tt is similar to the proof of Proposition EI1. See [BKLWI4, Lemma A.1] for
some details that replacing p by p does not cause problems. O

As a corollary, the Z[v, v~']-subspace K¢ of K¢ spanned by [A] for A€ Z> is a

stabilization algebra whose multiplicative structure is given by

rzn] Gi(v,1)[Z;] if co(A;) = roc(A;4q) for all 4,
[A1] - [As] ... - [Af] =< =L (7.2.3)

0 otherwise.
It is routine to show that K> has a monomial basis {m, | A € ii }. By a similar
argument to Proposition 172, it can be shown that Kfﬁ admits a compatible bar-
involution. A standard argument then shows that K:ﬁ has a canonical basis (cf.
[CWTH]).

Let K% be the Z[v, v=*]-submodule of K¢ > generated by [A] for A € =4, where

=Y ={A= (aij) € En | aoi = aip = doi}
(7.2.4)
={Ae€ éi | coc(A)g = ro(A)y = 0}.

Since that the bar-involution on K:ﬁ restricts to an involution on Kﬁ{, K:ﬁ and KV

have compatible canonical bases.

Remark 7.2.2. The submodule of K¢ spanned by [A] for A € Z¥ is not a subalgebra.
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Now we realize K as a subquotient of K¢. Define J_ to be the Z[v,v |-

submodule of K¢ spanned by [A] for all A € E=.

Lemma 7.2.3. The submodule J_ is a two-sided ideal of K¢,

Proof. 1t suffices to show that [B] - [A] € J_ for arbitrary A € == and tridiagonal

n

B e =,. By the multiplication formula, the matrices corresponding to the terms

showing up in [B] - [A] must be of the form
A(T_S) =A—(T—S)9+(ﬁ)9, TE@BVA,SGFT.

Suppose that the (0,0)-entry ago — 2(to0 — Soo0) + Q(T/—\S)OO is positive. Note that we

have
[A;S;T] = [(A=To) + 55+ 505 +g\_ 5) 1(1_ S)i’j]
(el © (A - Te); Sijy S—i,—j5 (T - S)J (T - S)—i,—j
5kk+(T/_\S)kk
H [akk — 2tkk —1 + 22]
' H = T/ ¢ | ' HS]] ’
ke{0,r+1} [sur ]l (T — S)rrlh

Therefore [A; S;T] = 0 and hence [AT=5] e J_. O

Finally, we realize K as a subquotient (details omitted) by following [RKTWT4]
(see also [FLI4]), where an algebra U’ is realized as a subquotient of an algebra U’

with compatible canonical bases.

Proposition 7.2.4. As an Z[v,v™!]-algebra, Kf;f s naturally isomorphic to a sub-

quotient of K* , with compatible standard, monomial, and canonical bases.

n’
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7.3 Stabilization algebras of type i

In the following we deal with the variant of affine ¢-Schur algebra of type 7 corre-

sponding to the involution as depicted below. Let =", be the subset of =, ; in which

Figure 7.2: Dynkin diagram of type AS) with involution of type j.

0 1 r—1
o o e —— O
~_r
b
-
2r 2r—1 r—+1

each element A satisfies additionally that
(X5) 10:(A)rs1 =0 =10(A)r41.

Let A7 be the subset of A = A, 4 in which each element A = (\;) satisfies additionally

that AT-‘,—I = 0

1

Lemma 7.3.1. The restriction of k= on Efid 1s a bijection. In particular, the map

K {(Aagnu) | >\71u € Aﬂ7g € -@Au} - Eﬁ,d
give by sending (X, g, i) to (|[R} n gRY|) is a bijection.
Now we denote the affine g-Schur algebra of type n by

S, = EndH( @ m{) (7.3.1)

e
Sif, 4 18 also a subalgebra of S} ;, admitting compatible standard, monomial and canon-

ical bases.
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By repeating the process of the 1 version. We construct an associative algebra

K7 with a basis [A] parametrized by
Er = {A = (aij> € in | Ary1i = Qipy1 = r+1,i}
(7.3.2)
={AeZ | co(A)rs1 =10.(A)r11 = 0}.

All results for K% admit counterparts for K.

Proposition 7.3.2.

(a) The algebra Kﬁf admits a standard basis, a monomial basis, and a canonical

basis.

(b) Kﬁf 15 a subquotient of K; with compatible canonical bases.

7.4 Stabilization algebras of type u

In the following we deal with the variant of affine ¢-Schur algebra of type u corre-

. . . . p:q _ ;:l] ;:]’[/ o
sponding to the involution as depicted below. Let =3 ; = =/, n = | A" = A7 n AY.

Figure 7.3: Dynkin diagram of type Aé}?_ , with involution of type 2.

1 r—1
0 o} O\T
Go<o§ EO/OZD
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Lemma 7.4.1. The restriction of k=% on Ena s a byection. In particular, the map
AN g, ) | Ape N ge Dy — E0

give by sending (X, g, i) to (|[R} n gRY|) is a bijection.

Now we denote the affine ¢-Schur algebra of type 2 by

St — EndH< D a:AH) (7.4.1)

AeA®

w3 %) Jr ¢ 1443 3
S, 1s naturally a subalgebra of S/ ;,S; ; and S] ;, admitting compatible standard,
monomial and canonical bases. By a similar process, we construct an associative

algebra K7 with a basis [A] parametrized by

S C RN (7.4.2)

We collect the main results for in the following. The proofs are very similar to the

previous cases, and so we shall skip them to avoid redundancy.

Proposition 7.4.2.

(a) The algebra Kfj admits a standard basis, a monomial basis, and a canonical

basis.

(b) Kﬁf is a subquotient of K{f and KY, with compatible canonical bases.

n’

The interrelation among the four types can be summarized below. On the Schur

algebra level, we have the following commuting diagram for inclusions of Schur alge-
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bras: c

n,d

N
/

s, s (7.4.3)

) )

/
N

n
n,d

On the stabilization algebra level, we have the following diagram of subquotients:

K,

KY K7 (7.4.4)

‘s\
>
/ \
Y
5
>
\ %

where the notation K B K stands for the statement that Ky is a subquotient of
K. All the subquotients between various pairs of algebras preserve the canonical

bases.



115

Bibliography

[BBO5]

[BLM90]

[BKLW14]

[BW13]

[Cur85]

[DDF12]

A. Bjorner and F. Brenti, Combinatorics of Coxeter groups, Graduate

Texts in Mathematics 231, Springer, New York, 2005.

A. Beilinson, G. Lusztig and R. McPherson, A geometric setting for the

quantum deformation of G L,,, Duke Math. J., 61 (1990), 655—677.

H. Bao, J. Kujawa, Y. Li, and W. Wang, Geometric Schur duality of

classical type, arXiv:1404.4000v3.

H. Bao and W. Wang, A new approach to Kazhdan-Lusztig theory of

type B via quantum symmetric pairs, arXiv:1310.0103.

C. Curtis, On Lusztig’s isomorphism theorem for Hecke algebras, J.

Algebra 92 (1985), 348-365.

B. Deng, J. Du and Q. Fu, A double Hall algebra approach to
affine quantum Schur-Weyl theory. London Mathematical Society Lec-
ture Note Series, 401. Cambridge University Press, Cambridge, 2012.

viii+207 pp.



[DDX07]

[DDPWOS]

[DF14]

[DF15]

[DJ8Y)]

(D098

[Dr86]

[Du92]

[EE9S)]

116

B. Deng, J. Du, and J. Xiao, Generic extensions and canonical bases

for cyclic quivers, Canad. J. Math. 59 (2007), no. 6, 1260—1283.

B. Deng, J. Du, B. Parshall, and J. Wang. Finite dimensional alge-
bras and quantum groups, Mathematical Surveys and Monographs 150.

American Mathematical Society, Providence, RI, 2008.

J. Du and Q. Fu, The integral quantum loop algebra of gl,,

arXiv:1404.5679 (2014).

J. Du and Q. Fu, Quantum affine gl,, via Hecke algebras, Adv. Math.,

282 (2015), 23-46.

R. Dipper and G. James, The g-Schur algebra, Proc. London Math. Soc.

59 (1989), 23 50,

S. Donkin, The q-Schur algebra, London Math. Soc. Lecture Note Ser.,

vol. 253, Cambridge Univ. Press (1998).

V. Drinfeld, Quantum groups, Proc. Int. Congr. Math. Berkeley 1986,

vol. 1, Amer. Math. Soc. 1988, 798-820.

J. Du, Kazhdan-Lusztig bases and isomorphism theorems for q-Schur

algebras, Contemp. Math. 139 (1992), 121-140.

H. Eriksson and K. Eriksson. Affine Weyl groups as infinite permuta-

tions, Electron. J. Combin. 5 (1998), Research Paper 18, 32 pp.



[FL14]

[FL15]

[FLLLW1]

[FLLLW2]

[Gr97]

[Gr99]

[GLY2]

(GVO3]

117

Z. Fan, Y. Li, Geometric Schur duality of classical type, II, Trans. Amer.

Math. Soc. to appear.

Z. Fan and Y. Li, Positivity of canonical basis under comultiplication,

preprint.

Z. Fan, C. Lai, Y. Li, L. Luo and W. Wang, Affine flag varieties and

quantum symmetric pairs, arXiv:1602.04383.

Z. Fan, C. Lai, Y. Li, L. Luo and W. Wang, Affine Hecke algebras and

quantum symmetric pairs, preprint.

R. Green, Hyperoctahedral Schur algebras, J. Algebra 192 (1997), 418

438.

R. M. Green, The affine q-Schur algebra, J. Algebra 215 (1999), no. 2,

379-411.

I. Grojnowski and G. Lusztig, On bases of irreducible representations of
quantum G L,,. In: Kazhdan-Lusztig theory and related topics (Chicago,
IL, 1989), 167-174, Contemp. Math. 139, Amer. Math. Soc., Provi-

dence, RI, 1992.

V. Ginzburg and E. Vasserot, Langlands reciprocity for affine quantum

groups of type A,, Internat. Math. Res. Notices 3 (1993), 67-85.



[Jim86]

[Ka91]

[Kol4]

[KL79]

[Le02]

[LL15]

[Lu90]

[Lu93]

[Lu99]

118

M. Jimbo, A g-analogue of U(gl(N + 1)), Hecke algebra, and the Yang-

Baxter equation, Lett. Math. Phys. 11 (1986), 247-252.

M. Kashiwara, On crystal bases of the QQ-analogue of universal envelop-

ing algebras, Duke Math. J. 63 (1991), 456-516.

S. Kolb, Quantum symmetric Kac-Moody pairs, Adv. in Math. 267

(2014), 395-469.

D. Kazhdan and G. Lusztig, Representations of Cozeter groups and

Hecke algebras, Invent. Math. 53 (1979),165-184.

G. Letzter, Coideal subalgebras and quantum symmetric pairs, New di-
rections in Hopf algebras (Cambridge), MSRI publications, vol. 43,

Cambridge Univ. Press, 2002, pp. 117-166.

C. Lai, L. Luo, An elementary construction of monomial bases of quan-

tum affine gl,,, arXiv:1506.07263.

G. Lusztig, Canonical bases arising from quantized enveloping algebras,

J. Amer. Math. Soc. 3 (1990), 447-498.

G. Lusztig, Introduction to quantum groups, Progress in Mathematics

10, Birkh&user Boston, Inc., Boston, MA, 1993.

G. Lusztig, Aperiodicity in quantum affine gl,,, Asian J. Math. 3 (1999),

147-177.



[Lu00]

[LW15]

[Mc12]

[SV00]

VV99]

119

G. Lusztig, Transfer maps for quantum affine sl,,, in “Representations
and quantizations”, (ed. J. Wang et. al.), China Higher Education Press

and Springer Verlag 2000, 341-356.

Y. Li and W. Wang, Positivity vs negativity of canonical basis,

arXiv:1501.00688v2.

K. McGerty, On the geometric realization of the inner product and

canonical basis for quantum affine sl,, Alg. and Number Theory 6

(2012), 1097-1131.

O. Schiffmann and E. Vasserot, Geometric construction of the global
base of the quantum modified algebra of é\[n, Transform. Groups 5

(2000), 351-360.

M. Varagnolo and E. Vasserot, On the decomposition matrices of the

quantized Schur algebra, Duke Math. J. 100 (1999), 267-297.



	Introduction
	Background
	Main results
	Organization

	Affine Schur algebras of type A
	Affine Hecke algebras
	Affine Schur algebras
	Multiplication formulas with bidiagonal generators
	Constructing monomial bases

	Affine Schur algebras of type C
	Affine Hecke algebras
	Affine Schur algebras
	A comparison with geometric realization

	Multiplication formulas
	Structure constants
	Shortest representatives
	Multiplication formulas for Hecke algebras
	Multiplication formulas with tridiagonal generators
	Multiplication formulas with quasi-bidiagonal generators

	Monomial bases for affine Schur algebras of type C
	Bar involutions and standard bases
	Constructing monomial bases
	A comparison of canonical bases

	Stabilization algebras of affine type C
	A BLM-type stabilization
	Quantum symmetric pairs

	Stabilization algebras arising from different involutions
	Affine Schur algebras of type  
	Stabilization algebras of type 
	Stabilization algebras of type  
	Stabilization algebras of type  


