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Abstract

One breakthrough in the theory of quantum groups is the construction of the canonical

bases for quantum groups by Lusztig and Kashiwara. For type A, there is a geometric

construction for (idempotented) quantum group together with a canonical basis due

to Beilinson, Lusztig and MacPherson (BLM) using a stabilization procedure on a

family of quantum Schur algebras of type A. Two essential ingredients in their work

are a multiplication formula and a monomial basis.

In this dissertation, we provide a BLM-type construction for affine type C. We

realize the affine q-Schur algebras of type C as an endomorphism algebra of a certain

permutation module of affine Hecke algebras, and then establish a multiplication

formula on the Schur algebra level. We provide a direct construction of monomial

bases for Schur algebras, which is also adapted to produce monomial bases for affine

type A. Via a BLM-type stabilization on the Schur algebras, we construct an algebra

9Kc
n admitting canonical basis. We obtain that pKa

n,K
c
nq forms a quantum symmetric

pair in the spirit of Letzter and Kolb, where Ka
n » Uppglnq is a quantum group of

affine type A. The affine type C construction above is associated to an involution on

Dynkin diagrams of affine type A. For other three types of involutions, we construct

similar stabilization algebras admitting compatible canonical bases.
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Chapter 1

Introduction

1.1 Background

Around 1985, the quantum groups were introduced by Drinfel’d and Jimbo [Dr86,

Jim86], which have played important roles in representation theory, quantum topol-

ogy, mathematical physics and many other areas. One of the most important de-

velopments in the theory of quantum groups is the construction of the canonical

bases for quantum groups and their integrable modules by Lusztig and Kashiwara

[Lu90, Ka91], which motivated further advances including categorification.

1.1.1 BLM construction for idempotented quantum gln

In [BLM90], Beilinson, Lusztig and MacPherson developed a geometric construction

for the idempotented quantum group of type A together with its canonical basis. They

started with a geometric realization of q-Schur algebras using partial flag varieties of

type A. The standard basis of q-Schur algebra Sn,d can be parametrized by the set

of n ˆ n matrices over N whose entries add to d. Under this parametrization, a
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(Rth divided power of) Chevalley generator of the Schur algebra is associated to a

matrix A “ paijq having a unique non-zero off-diagonal entry, and the entry is either

ai,i`1 “ R or ai`1,i “ R for some 1 ď i ď n ´ 1. By deriving multiplication formulas

with Chevalley generators on the Schur algebras, they provided a construction of a

monomial basis satisfying the following properties:

(M1) A basis element is bar-invariant;

(M2) The transition matrix from this basis to the standard basis is unitriangular.

On the other hand, by showing that the structure constants in the multiplication

formulas behave well, they developed a stabilization procedure that constructs a limit

algebra, which can be identified with the modified quantum group of type A admitting

both monomial and canonical bases.

Sn,d
q-Schur algebra pdě1q

stabilization
ùñ
dÑ8

Stab
ÐÝ

pSn,dq :“ 9Kn

stabilization algebra

» 9Upglnq
idempotented
quantum group

1.1.2 BLM-type constructions for affine type A

The BLM construction has been partially generalized to affine type A by Ginzburg-

Vasserot [GV93] and by Lusztig [Lu99] via a geometric realization of affine q-Schur

algebras using affine partial flags. The standard basis for affine Schur algebras of type

A is parametrized by the set of periodic ZˆZ N-matrices with a fixed “size”. Similar

to finite type A, a (divided power of) Chevalley generator of the affine Schur algebra

is associated to a matrix A “ paijq having a unique non-zero off-diagonal entry in
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each period, and that entry in each period is either ai,i`1 or ai,i´1 for some i P Z.

A new phenomenon in affine types is that the Chevalley generators only generate a

proper subalgebra. In order to generate the full Schur algebra, one needs a larger

generating set associated to bidiagonal matrices.

Recently, Du and Fu provided another BLM-type construction [DF14, DF15] for

affine type A. Instead of the geometric realization of Schur algebras, they use an alge-

braic realization of Schur algebras as endomorphism algebras of certain permutation

modules of extended affine Hecke algebras. They further proved remarkable multi-

plication formulas with bidiagonal generators. They provided a family of monomial

bases for affine Schur algebras by adapting monomial bases for the Ringel-Hall alge-

bras of cyclic quivers due to Deng-Du-Xiao (cf. [DDX07]). The construction therein

is quite involved and it is not clear how to understand their bases along the line of

[BLM90].

1.1.3 BLM-type constructions and quantum symmetric pairs

For type B/C, Bao, Kujawa, Li and Wang [BKLW14] provided BLM-type construc-

tions using a realization of the q-Schur algebra SB
n,d as a convolution algebra via partial

flag varieties of type B/C. In this case, the standard basis of SB
n,d is parametrized by

the set of centro-symmetric n ˆ n N-matrices. By developing multiplication formu-

las with Chevalley generators, they constructed stabilization algebras 9Uı
n and 9Uȷ

n

(depending on the parity of n) admitting canonical bases. The non-idempotented
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quantum algebras Uȷ
n and Uı

n are not the Drinfel’d-Jimbo type quantum groups of

type B/C, they are coideal subalgebras of the type A quantum group Upglnq in the

sense that the comultiplication ∆ of Upglnq sends Uı to Uı b Upglnq, and sends Uȷ

to Uȷ b Upglnq. Moreover, pUpglnq,Uı
nq and pUpglnq,Uı

nq form quantum symmetric

pairs, whose theory is developed and studied in [Le02, Ko14]. Recall that a sym-

metric pair pg, gθq consists of a Lie algebra g and its fixed point subalgebra gθ for

some involution θ : g Ñ g. A quantum symmetric pair pU,Bq is a quantum analog

of a symmetric pair, in the sense that B is a special coideal subalgebra as in [Ko14,

Definition 5.1]. (See also [FL14] for a BLM-type stabilization for finite type D.)

1.1.4 The q-Schur algebras

For type A, the q-Schur algebra Salg
n,d was introduced in the work of Dipper-James

[DJ89] as an endomorphism algebra of certain module over Hecke algebra. As a

consequence of the Schur-Jimbo duality [Jim86] between the quantum group Upglnq

and the Hecke algebra of type A, it follows that Salg
n,d is a quotient of Upglnq. In

this context, Salg
n,d can be identified with the aforementioned convolution algebra Sn,d

of pairs of partial flags. Moreover, the canonical bases of Schur algebras can be

obtained either by a geometric approach [BLM90] using intersection cohomology, or

by an algebraic approach [Du92] using canonical bases for Hecke algebras.

Beyond type A, there are different notions of “q-Schur algebras” arising from

modular representations of algebraic groups or quantum groups at roots of unity
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(cf. [DDPW08] and the reference therein). We are interested in the Hecke-algebraic

approach of q-Schur algebras along the line of Dipper-James. In finite types B/C, the

convolution algebra SB
n,d constructed in [BKLW14] can also be realized algebraically

as an endomorphism algebra of certain module over Hecke algebra of type B/C. Such

an algebra is introduced by Green for even n (referred as the hyperoctahedral Schur

algebra in [Gr97]). By a Schur-type duality in [BW13], the Schur algebra SB
n,d can be

identified with a quotient of the coideal subalgebra Uı
n of Upglnq.

1.2 Main results

It is natural to ask for an affinization of the previous results on BLM-type con-

structions and q-Schur algebras. We will concentrate on affine type C, for which a

geometric approach has been developed in a joint work [FLLLW1] with Z. Fan, Y. Li,

L. Luo and W. Wang. A comprehensive treatment for the Hecke-algebraic approach

will appear in [FLLLW2]. In this dissertation we provide part of the Hecke-algebraic

approach.

Let us start with affine type A, note that the monomial bases for the affine Schur

algebra Sa
n,d used in [DF14] trace back to Hall algebras of cyclic quivers [DDX07],

while for classical types, the monomial basis elements are constructed directly by

multiplying Chevalley generators in a suitable order. We provide a direct construc-

tion [LL15] in the same spirit for monomial bases of Sa
n,d by multiplying bidiagonal

generators in a suitable order.
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Theorem A (Theorem 2.4.2, Corollary 2.4.3). Algorithm 2.4.1 produces a monomial

basis (and hence a canonical basis) for Sa
n,d.

From now on we switch to affine type C. We start with studying the affine Schur

algebra Sc
n,d as an endomorphism algebra of certain permutation modules over affine

Hecke algebras of type C (cf. (3.2.1)). In order to develop a BLM-type construction,

one needs to derive a multiplication formula with the generating elements for Sc
n,d, and

to construct a monomial basis of Sc
n,d. There are two crucial differences comparing

to the previous work:

1. The affine type C analogue of Chevalley generators or bidiagonal generators do

not form a generating set for Sc
n,d;

2. The constructions of monomial bases in previous work do not generalize naively

to a construction of a monomial basis for Sc
n,d.

Precisely speaking, the characteristic basis teAuAPΞn,d
of Sc

n,d is parametrized by the set

Ξn,d (cf. Section 3.2) of n-periodic centro-symmetric ZˆZ N-matrices with size d. In

light of the centro-symmetry condition, it is reasonable to hope that Sc
n,d is generated

by the elements parametrized by the tridiagonal matrices A “ paijq in the sense that

aij “ 0 unless |i ´ j| ď 1. Indeed, this fact follows once we obtain the corresponding

multiplication formula. One of the difficulties in deriving the multiplication formula is

the appearance of certain nontrivial structure constants for affine Hecke algebras (cf.

Remark 4.1.2). We now paraphrase the multiplication formula (cf. Theorem 4.4.7 for
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details) and the upshots below.

Theorem B. For A,B P Ξn,d with B being tridiagonal, we establish a multiplication

formula for eB ˚ eA P Sc
n,d with explicit coefficients. Moreover, the set teA | A P

Ξn,d is tridiagonalu is a generating set for the Schur algebra Sc
n,d.

We then define the standard basis element rAs by normalizing eA so that rAs “

rAs` lower terms, with respect to a partial order ďalg on Ξn,d. A key ingredient

in our construction of monomial bases is the admissible pairs. We show that (cf.

Lemma 5.2.4) if pB,Aq is an admissible pair, then the leading coefficient for the highest

term in rBs ˚ rAs is one. Using this lemma, we first construct a semi-monomial basis

tm1
AuAPΞn,d

by multiplying the tridiagonal generators in a suitable order. Another

new phenomenon for affine type C is that the generating element rBs with B being

tridiagonal is not necessarily bar-invariant. Nevertheless, the semi-monomial basis

can be adapted to a monomial basis tmAuAPΞn,d
.

Theorem C (Theorem 5.2.8, Proposition 5.2.11). The Schur algebra Sc
n,d admits

both monomial and canonical bases.

With the results on the Schur algebra level, we can now construct the stabilization

algebra 9Kc
n as outlined below:

Sc
n,d

Affine q-Schur algebra pdě1q

stabilization
ùñ
dÑ8

Stab
ÐÝ

pSc
n,dq :“

9Kc
n

stabilization algebra

Let 9Kc
n be the free Zrv, v´1s-module generated by trAsuAPrΞn

, where rΞn is adapted

from
Ť

dPN
Ξn,d by allowing diagonal entries to be negative integers. Therefore, for any
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A P rΞn, the matrix A` pI lies in Ξn,d`pn{2 for any large enough even integer p, where

I “ pδijq is the identity matrix. We show that 9Kc
n has a unique associative algebra

structure in the sense that for any B,A P rΞn, the structure constants for rBs˚rAs P 9Kc
n

are compatible with the structure constants for rB ` pIs ˚ rA ` pIs P Sc
n,d`pn{2 for

all even p that is large enough. In other words, the multiplication formula with

tridiagonal generators has an analogue on the stabilization algebra level. Therefore,

we can “lift” the monomial basis for Sc
n,d to the stabilization algebra level to construct

both monomial and canonical bases for 9Kc
n.

Theorem D (Corollary 6.1.4, Theorem 6.1.5). We have an algebra 9Kc
n arising from

stabilization on the Schur algebras Sc
n,d. Moreover, 9Kc

n admits both monomial and

canonical bases.

Moreover, by identifying 9Kc
n with a similar stabilization algebra 9Kc,geo

n in [FLLLW1],

we can relate the algebras 9Kc
n and Sc

n,d by a natural surjective map Φn,d : 9Kc
n Ñ Sc

n,d

given by

rAs ÞÑ

$

’

’

’

&

’

’

’

%

rAs if A P Ξn,d,

0 otherwise,

In [FLLLW1, 9.7] we show that Φn,d is a homomorphism that also preserves canonical

basis. It is standard that one can construct the non-idempotented stabilization alge-

bras Kc
n (resp., Ka

n) from
9Kc
n (resp., 9Ka

n) by taking certain infinite sum. We obtain

that pKa
n,K

c
nq forms a quantum symmetric pair, for which the detail will appear in

[FLLLW2].
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Note that the above construction for affine type C is associated to an involution

(of type ȷȷ) on the Dynkin diagram of affine type A depicted in Figure 1.1 below. For

Figure 1.1: Dynkin diagram of type A
p1q

2r`1 with involution of type ȷȷ ” c.

..
...0 ...1 ..¨ ¨ ¨ ...

r ´ 1
...r

. . . . . .

...
2r ` 1

...
2r

..¨ ¨ ¨ ...
r ` 2

...
r ` 1

..............

other types of involutions ȷı, ıȷ and ıı (cf. Figures 7.1, 7.2, 7.3, respectively. ), we

also construct stabilization algebras 9Kȷı
n ,

9Kıȷ
n ,

9Kıı
n together with their canonical bases.

There are subquotient relations among the four stabilization algebras which preserve

their canonical bases.

1.3 Organization

In Chapter 2, we provide a direct construction producing a monomial basis (and

hence a canonical basis) for affine Schur algebras of type A (cf. Theorem 2.4.2 and

Corollary 2.4.3).

In Chapter 3, we study the affine q-Schur algebras of type C as endomorphism

algebras. We also identify this algebraic realization with the geometric realization via

affine flag varieties as in [FLLLW1].

Chapter 4 is devoted to the proof of the multiplication formula (Theorem 4.4.7)
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for tridiagonal generators.

In Chapter 5 we adapt the construction in Chapter 2 to produce a monomial basis

(and hence a canonical basis) for affine Schur algebra of type C (cf. Theorem 5.2.8

and Proposition 5.2.11).

In Chapter 6 we construct a stabilization algebra 9Kc
n from the affine Schur algebras

of type C. We then show that 9Kc
n can be identified with a similar stabilization algebra

defined in a geometric framework (cf. [FLLLW1]), and it follows that Kc
n (resp., 9Kc

n)

is a coideal subalgebra of Ka
n (resp., 9Uppglnq).

Chapter 7 provides a formulation of three more variants of the stabilization alge-

bras for different types of involutions on the Dynkin diagram of affine type A.
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Chapter 2

Affine Schur algebras of type A

In this chapter we recall first some standard facts about the extended affine Weyl

groups of type A, the corresponding Hecke algebras, and the affine q-Schur algebras

of type A as an endomorphism algebra of certain q-permutation modules. We provide

a direct construction producing a monomial basis (and hence a canonical basis) for

the affine Schur algebra (cf. Theorem 2.4.2 and Corollary 2.4.3).

Throughout the dissertation, let N “ t0, 1, 2, . . .u be the set of natural numbers.

Denote by ra..bs, ra..bq, pa..bs and pa..bq the integer intervals for a, b P Z. Let v be an

indeterminate over Q, and let ras “ v2a´1
v2´1

for a P Z. In this chapter, let n, d be fixed

positive integers.

2.1 Affine Hecke algebras

Let W be the Weyl group of type rAd´1 generated by S “ ts1, s2, . . . , sd “ s0u.

The extended Weyl group ĂW is generated by W and π satisfying πsiπ
´1 “ si´1 for

i “ 1, . . . , d. It is well-known that ĂW can be identified as a permutation subgroup of
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Z satisfying gpi ` dq “ gpiq ` d for all i P Z, g P ĂW . In this identification each si is

mapped to the permutation
ś

kPZ
pkd` i, kd` i`1q and π is mapped to the permutation

t ÞÑ t`1 for t P Z. Denote the length function onW by ℓ. Notice that each g P ĂW can

be uniquely expressed as g “ πzw for some z P Z and w P W , so the notion of length

on W can be extended to ĂW by requiring ℓpπq “ 0, or equivalently, ℓpgq “ ℓpwq.

Lemma 2.1.1. The length of g P ĂW is given by

ℓpgq “ | tpi, jq P r1..ds ˆ Z | i ă j, gpiq ą gpjqu |.

Proof. Let g “ πzw for some z P Z and w P W . Notice that gpiq ą gpjq is equivalent

to wpiq ą wpjq and hence the lemma reduces to the case z “ 0, which follows from

[BB05, (8.30)].

Denote the set of (weak) compositions of d into n parts by

Λa
n,d “ tλ “ pλ1, . . . , λnq P Nn |

n
ř

i“1

λi “ du. (2.1.1)

Throughout this chapter we write Λ “ Λa
n,d for short. For each λ P Λ, denote by Wλ

the parabolic subgroup ofW with respect to λ generated by Sztsλ1 , sλ1`λ2 , . . . , sλ1`...`λn´1u.

For each z P Z, let λ ` z be the composition in Λ such that Wλ`z “ π´zWλπ
z.

Example 2.1.2. Let n “ 3, d “ 6, z “ 4 and λ “ p1, 2, 3q P Λ. We have Wλ “

xs2, s4, s5, s6y, Wλ`4 “ xs6, s2, s3, s4y and hence λ ` 4 “ p1, 4, 1q P Λ.

Let Dλ “ tw P ĂW | ℓpwgq “ ℓpwq ` ℓpgq for g P Wλu. Then Dλ (resp., D´1
λ ) is the

set of distinguished right (resp. left) coset representatives of Wλ in ĂW . Denote by

Dλµ “ Dλ X D´1
µ the set of distinguished double coset representatives.
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Lemma 2.1.3 (Howlett). Let λ, µ P Λ, and let g P Dλµ. Then

paq There is a unique δ “ δpλ, g, µq P Λa
n1,d for some n1 such that

Wδ “ g´1Wλg X Wµ.

pbq The mapWλˆpDδXWµq Ñ WλgWµ sending px, yq to xgy is a bijection satisfying

ℓpxgyq “ ℓpxq ` ℓpgq ` ℓpyq.

Proof. Part (a) follows from [Gr99, Lemma 2.2.2] and Part (b) is known (cf. [DDPW08,

Theorem 4.18]).

Let ď be the (strong) Bruhat order on W . Extend it to ĂW by

πz1w1 ď πz2w2 if and only if z1 “ z2, w1 ď w2. (2.1.2)

The extended affine Hecke algebra H “ HpĂW q associated to ĂW is a Zrv, v´1s-algebra

with a basis tTg | g P ĂW u (cf. e.g., [Gr99, Proposition 1.2.3]) satisfying TwTw1 “ Tww1

if ℓpwq ` ℓpw1q “ ℓpww1q and pTs ` 1qpTs ´ v2q “ 0 for s P S. For a finite subset

X Ă ĂW and for each λ P Λ, let

TX “
ÿ

wPX

Tw and xλ “ TWλ
. (2.1.3)

Following [KL79], denote by tC 1
w | w P W u the Kazhdan-Lusztig basis of the Hecke

algebra HpW q associated to W . For each w P W , we have C 1
w “ v´ℓpwq

ř

yďw

Py,wTy,

where Py,w P Zrv2s is the Kazhdan-Lusztig polynomial. Note that H “ HpĂW q con-

tains HpW q as a subalgebra, we define C 1
g “ T zπC

1
w P H for each g “ πzw P ĂW with

w P W, z P Z.
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Statements in Lemma 2.1.4 below are known for non-extended Weyl groups and

Hecke algebras (cf. [Cur85, Theorem 1.2(i)], [DDPW08, Corollary 4.19]). It seems

that the extended version is taken for granted for the experts (cf. [DF14, Lemma 7.1]),

and we provide a proof here for completeness.

Lemma 2.1.4. Let λ, µ P Λ, g “ πzw P Dλµ for some w P W and z P Z. Denote by

wν˝ the longest element in Wν for any composition ν. Then:

paq The longest element g`
λµ in WλgWµ is given by g`

λµ “ wλ˝gw
δpλ,g,µq
˝ wµ˝ . In partic-

ular,

ℓpg`
λµq “ ℓpwλ˝ q ` ℓpgq ´ ℓpwδpλ,g,µq

˝ q ` ℓpwµ˝ q.

pbq WλgWµ “ tx P ĂW | g ď x ď g`
λµu.

pcq There exists c
pλ,µq
x,g P Zrv, v´1s such that

TWλgWµ “ vℓpg
`
λµqC 1

g`
λµ

`
ÿ

xPDλµ
xăg

cpλ,µq
x,g C 1

x`
λµ
.

In particular, xµ “ vℓpw
µ
˝ qC 1

wµ
˝
.

Proof. By [DDPW08, Corollary 4.19], we have w`
λ`z,µ “ wλ`z

˝ ww
δpλ`z,w,µq
˝ wµ˝ . Note

that WλgWµ “ Wλπ
zwWµ “ πzWλ`zwWµ. Hence

g`
λµ “ πzw`

λ`z,µ “ wλ˝gw
δpλ`z,w,µq
˝ wµ˝ .

By Lemma 2.1.3(a), we have

Wδpλ`z,w,µq “ w´1Wλ`zw X Wµ “ w´1π´zWλπ
zw X Wµ “ Wδpλ,g,µq,
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which implies (a). In particular,

ℓpw`
λ`z,µq “ ℓpg`

λµq.

Again by [DDPW08, Corollary 4.19], we haveWλ`zwWµ “ ty P W | w ď y ď w`
λ`z,µu

and hence

WλgWµ “ tx “ πzy | g “ πzw ď x ď g`
λµu.

Therefore,

TWλgWµ “ T zπTWλ`zwWµ “ T zπ

´

vℓpw
`
λ`z,µqC 1

w`
λ`z,µ

`
ÿ

yăw

cpλ`z,µq
y,w C 1

y`
λ`z,µ

¯

“ vℓpg
`
λµqC 1

g`
λµ

`
ÿ

πzyăg

cpλ`z,µq
y,w T zπC

1

y`
λ`zµ

.

We are done by recognizing x “ πzy and c
pλ,µq
x,g “ c

pλ`z,µq
y,w .

2.2 Affine Schur algebras

For λ, µ P Λ and g P Dλµ, denote by ϕgλµ P HomHpxµH,Hq the right H-linear map

sending xµ to TWλgWµ . Thanks to Lemma 2.1.3(b), we have TWλgWµ “ xλTgTDδXWµ

for some δ P Λa
n1,d and hence ϕgλµ P HomHpxµH, xλHq. The affine q-Schur algebra is

defined by

Sa
n,d “ Sa

n,dpn, dq “ EndH

´

‘
λPΛ

xλH
¯

“
à

λ,µPΛ

HomHpxµH, xλHq.

There is also a geometric definition for Sa
n,d as given in [Lu99]. It is known (cf. [Gr99,

Theorem 2.2.4]) that tϕgλµ | λ, µ P Λ, g P Dλµu forms a basis of Sa
n,d.
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Let Θn “
Ť

dPN Θn,d, where Θn,d is the set of ZˆZ matrices over N in which each

element A “ paijqij satisfies the following conditions:

(T1) aij “ ai`n,j`n for all i, j P Z;

(T2)
n
ř

i“1

ř

jPZ
aij “ d.

For i, j P Z, define a matrix Eij “ pEij
xyqxy P Θn,1 by

Eij
xy “

$

’

’

’

&

’

’

’

%

1 if px, yq “ pi ` rn, j ` rnq for the same r P Z,

0 otherwise.

(2.2.1)

For each matrix T “ ptijqij P Θn, define its row sum vector roapT q “ proapT q1, . . . , roapT qnq

and its column sum vector coapT q “ pcoapT q1, . . . coapT qnq by

roapT qk “
ÿ

jPZ

tkj, coapT qk “
ÿ

iPZ

tik, k “ 1, . . . , n. (2.2.2)

For each λ P Λ and i “ 1, . . . , n, we define integral intervals with respect to λ by

Rλ
i “ p

i´1
ř

k“1

λk ..
i

ř

k“1

λks. (2.2.3)

It is known that Θn,d parametrizes a basis of Sa
n,d in [VV99, §7.4] and [DF15].

Lemma 2.2.1. The map

κ : tpλ, g, µq | λ, µ P Λ, g P Dλµu ÝÑ Θn,d

is a bijection sending pλ, g, µq to A “ paijqij where aij “ |Rλ
i X gRµ

j |.
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For A “ paijqij “ κpλ, g, µq P Θn,d, set eA “ ϕgλµ. Hence teA | A P Θdu forms a

basis of Sa
n,d. For each j “ 1, . . . , n, let pδ

pjq

1 , . . . , δ
pjq

kj
q P Λa

kj ,λj
for some kj P N be the

composition obtained from p. . . , a´1,j, a0j, a1j, . . .q by deleting all zero entries. Define

δpAq P Λa
n1,d by

δpAq “ pδ
p1q

1 , . . . , δ
p1q

k1
, δ

p2q

1 , . . . , δ
pnq

1 , . . . , δ
pnq

kn
q. (2.2.4)

Lemma 2.2.2. Let A “ κpλ, g, µq. Then WδpAq “ g´1WλgXWµ. In particular, δpAq

is equal to δpλ, g, µq described in Lemma 2.1.3.

Proof. By [BB05, Proposition 8.3.4], for each composition λ P Λa
n,d we haveWSztsλ0,iu “

Stabrλ0,i ` 1..d ` λ0,is (here are below Stab stands for stabilizer), and hence

Wλ “

n
č

i“1

Stabrλ0,i ` 1..d ` λ0,is “

n
č

i“1

Rλ
i “

č

iPZ

Rλ
i .

Therefore,

g´1Wλg X Wµ “

´

č

iPZ

Stabpg´1Rλ
i q

¯

X

´

č

jPZ

StabpRµ
j q

¯

“
č

pi,jqPZ2

Stabpg´1Rλ
i X Rµ

j q.

It then follows from definition that WδpAq “ g´1Wλg X Wµ.

Set ℓpAq “ ℓpgq for A “ κpλ, g, µq. The following lemma and a two-page proof

can be found in [DF15, Lemma 3.2(2)]. Here we provide a much shorter proof by

combining Lemma 2.1.1 and Lemma 2.2.1.

Lemma 2.2.3. Assume that A P Θn,d. Then

ℓpAq “
ÿ

iPZ
1ďjďn

ÿ

xăi
yąj

aijaxy “
ÿ

1ďiďn
jPZ

ÿ

xąi
yăj

aijaxy.
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Proof. Let A “ κpλ, g, µq for some λ, µ P Λ and g P Dλµ. By Lemma 2.2.1, for all

i, j P Z there is a natural bijection Rλ
i XgRµ

j Ø tpgpsq, sq P Rλ
i ˆRµ

j u between sets of

size aij. Note that for pgpsq, sq, pgptq, tq P Rλ
i ˆ Rµ

j , the condition s ă t is equivalent

to the condition gpsq ă gptq since g P Dλµ. Hence if ps, tq P Rµ
j ˆ Rµ

y satisfies both

s ă t and gpsq ą gptq, then j must be smaller than y.

Under these bijections, the set of pairs ps, tq P Z2 satisfying “s ă t, gpsq ą gptq

and s P r1..ds” becomes the set of quadruples pgpsq, s, gptq, tq P Rλ
i ˆ Rµ

j ˆ Rλ
x ˆ Rµ

y

satisfying “j ă y, i ą x and 1 ď j ď n”. The first assertion follows. The second

assertion follows from that ℓpgq “ ℓpg´1q and κpµ, g´1, λq “ tA.

Example 2.2.4. Let n “ 2, d “ 10 and

A “ 3E10 ` 4E12 ` E23 ` 2E24 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . . 4

1 2

3 0 4

0 0 1 2

3 4

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Θ2,10.

We have δpAq “ pa01, a02, a12, a32q “ p1, 2, 4, 3q P Λa
4,10 and ℓpAq “ 3p1 ` 2q “ 9.

For A P Θn,d, let

daA “
ÿ

1ďiďn
jPZ

ÿ

xďi
yąj

aijaxy, rAs “ v´daAeA. (2.2.5)

It is clear that trAs | A P Θn,du is a basis of Sa
n,d, which is called the standard basis (cf.

[Lu99]). The following is due to Du-Fu [DF14, Lemma 7.1], and we offer a slightly
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different argument.

Lemma 2.2.5. For A “ κpλ, g, µq P Θn,d, we have daA “ ℓpg`
λµq ´ ℓpwµ˝ q.

Proof. Let δ “ δptAq “ pδ
p1q

1 , . . . , δ
p1q

k1
, δ

p2q

1 , . . . , δ
pnq

1 , . . . , δ
pnq

kn
q as in (2.2.4). So λi “

ki
ř

j“1

δ
piq
j , Wδ » WδpAq and hence ℓpw

δpAq
˝ q “ ℓpwδ˝q. We have ℓpg`

λµq ´ ℓpwµ˝ q “ ℓpgq `

ℓpwλ˝ q ´ ℓpwδ˝q by Lemma 2.1.4(a), where

ℓpgq “
ÿ

1ďiďn
jPZ

ÿ

xăi
yąj

aijaxy,

ℓpwλ˝ q ´ ℓpwδ˝q “

n
ÿ

i“1

`

λi
2

˘

´

n1
ÿ

i“1

`

δi
2

˘

“

n
ÿ

i“1

´

`

ki
ř

j“1
δ

piq
j

2

˘

´

ki
ÿ

j“1

`

δ
piq
j

2

˘

¯

“

n
ÿ

i“1

ÿ

yąj

δ
piq
j δ

piq
y

“
ÿ

1ďiďn
jPZ

ÿ

x“i
yąj

aijaxy.

Therefore, ℓpg`
λµq ´ ℓpwµ˝ q “

ř

1ďiďn
jPZ

ř

xďi
yąj

aijaxy “ daA.

Denote the bar involution on H by ¯ : H Ñ H, v ÞÑ v´1, Tg ÞÑ T´1
g´1 . Following

[Du92, Proposition 3.2], the bar involution on Sa
n,d can be described as follows: for

each f P HomHpxµH, xλHq, let f P HomHpxµH, xλHq be the map sending v to v´1

and C 1
wµ

˝
to fpC 1

wµ
˝
q. Equivalently,

fpxµHq “ v2ℓpw
µ
˝ qfpxµqH for all H P H.

In particular, for A “ κpλ, g, µq P Θn,d, by Lemma 2.1.4 we have

eApC 1
wµ

˝
q “ vℓpg

`
λµq´ℓpwµ

˝ qC 1

g`
λµ

`
ÿ

xPDλµ
xăg

v´ℓpwµ
˝ qcpλ,µq

x,g C 1

x`
λµ
, (2.2.6)

eApC 1
wµ

˝
q “ vℓpw

µ
˝ q´ℓpg`

λµqC 1

g`
λµ

`
ÿ

xPDλµ
xăg

vℓpw
µ
˝ qc

pλ,µq
x,g C 1

x`
λµ
. (2.2.7)
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Proposition 2.2.6. Assume that A “ κpλ, g, µq P Θn,d. There exists γ
pλ,µq
x,g P

Zrv, v´1s for each x P Dλµ such that

rAs “ rAs `
ÿ

xPDλµ
xăg

γpλ,µq
x,g rκpλ, x, µqs.

Proof. By Lemma 2.2.5, Equations (2.2.6) and (2.2.7) can be rewritten as

rAspC 1
wµ

˝
q “ C 1

g`
λµ

`
ÿ

xPDλµ
xăg

v´ℓpg`
λµqcpλ,µq

x,g C 1

x`
λµ
,

rAspC 1
wµ

˝
q “ C 1

g`
λµ

`
ÿ

xPDλµ
xăg

vℓpg
`
λµqc

pλ,µq
x,g C 1

x`
λµ
.

If ℓpgq “ 0 (i.e. g “ πz for some z) then rAs “ rAs and we are done. For arbitrary g,

it follows from an easy induction on ℓpgq.

A matrix A “ paijq is called bidiagonal if either aij “ 0 for all j ‰ i, i ` 1 or

aij “ 0 for all j ‰ i, i ´ 1.

Corollary 2.2.7. ([DF14, Lemma 7.2]) If A P Θn,d is bidiagonal then rAs is bar-

invariant.

Proof. By Lemma 2.2.3, ℓpAq “ 0 for any bidiagonal matrix A and we are done.

We define a partial order ďa on Θ by A ďa B if and only if roapAq “ roapBq,

coapAq “ coapBq and σi,jpAq ď σi,jpBq for all i ‰ j where

σi,jpAq “

$

’

’

’

’

&

’

’

’

’

%

ř

xďi,yěj

axy if i ą j,

ř

xěi,yďj

axy if i ă j.



21

In the following the expression “lower terms” represents a linear combination of

smaller elements with respect to the partial order ďa. Here we provide an algebraic

proof of [BLM90, Lemma 3.6].

Lemma 2.2.8. Assume that A “ κpλ, g, µq and B “ κpλ, h, µq. If h ď g then

B ďa A.

Proof. By [BB05, Proposition 8.3.7], th condition h ď g is equivalent to that hri, js ď

gri, js for all i, j P Z, where gri, js “ |tpa, gpaqq P Zďi ˆ Zěju|. The bijections Rλ
x X

gRµ
y Ø tpgpiq, iq P Rλ

x ˆ Rµ
yu for x, y P Z give that, for i ă j,

gri, js “
ÿ

xěi
yďj

|Rλ
x X gRµ

y | “
ÿ

xěi
yďj

axy “ σijpAq. (2.2.8)

Applying (2.2.8) to tA “ κpµ, g´1, λq, we have g´1rj, is “ σijpAq for i ą j. Therefore,

the condition h ď g implies that B ďa A.

Corollary 2.2.9. For A P Θn,d, we have

rAs “ rAs ` lower terms.

Proof. It follows by combining Proposition 2.2.6 and Lemma 2.2.8.
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2.3 Multiplication formulas with bidiagonal gen-

erators

For each A P Θn, let diagpAq “ pδijaijqij P Θn and let A˘ P Θn be such that

A “ A˘ ` diagpAq. (2.3.1)

For any matrix T “ ptijqij P Θn, denote the matrix obtained by shifting every entry

of T up by one row as

pT “ pptijqij, ptij “ ti`1,j. (2.3.2)

On the other hand, denote the matrix obtained by shifting every entry of T down by

one row as

qT “ pqtijqij, qtij “ ti´1,j. (2.3.3)

For A “ paijqij, B “ pbijqij P Θn, define

„

A ` B

A

ȷ

“
ź

1ďiďn
jPZ

raij ` bijsraij ` bij ´ 1s . . . rbij ` 1s

raijsraij ´ 1s . . . r1s
.

The following remarkable multiplication formulas were due to [DF15, Proposition 3.6].

Lemma 2.3.1. Assume that A,B P Θn,d, roapAq “ coapBq and B is bidiagonal. Let

Θα “ tT P Θn | roapT q “ αu for α P Λ.

paq If B is upper triangular (i.e. B˘ “
ř

αiEi´1,i), then

rBs ˚ rAs “
ÿ

TPΘα

vβpA,T q

„

A ´ T ` pT

A ´ T

ȷ

rA ´ T ` pT s, (2.3.4)
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where

βpA, T q “
ÿ

1ďiďn

ÿ

jďy

ptijpaiy ´ tiyq ´
ÿ

1ďiďn

ÿ

jăy

tijpaiy ´ tiyq.

pbq If B is lower triangular (i.e. B˘ “
ř

αiEi`1,i), then

rBs ˚ rAs “
ÿ

TPΘα

vβ
1pA,T q

„

A ´ T ` qT

A ´ T

ȷ

rA ´ T ` qT s, (2.3.5)

where

β1pA, T q “
ÿ

1ďiďn

ÿ

jěy

qtijpaiy ´ tiyq ´
ÿ

1ďiďn

ÿ

jąy

tijpaiy ´ tiyq.

Algorithm 2.3.2. Assume that A,B P Θn,d, roapAq “ coapBq and B is bidiagonal.

We produce a matrix M P Θn,d as follows.

paq If B is upper triangular (i.e. B˘ “
ř

αiEi´1,i), then:

(1) For each row i, find the unique j such that αi P
`

ř

yąj

aiy..
ř

yěj

aiy
‰

.

(2) Construct a matrix T` “
n
ř

i“1

`

pαi ´
ř

yąj

aiyqEij `
ř

yąj

aiyEiy
˘

.

(3) Let M “ A ´ T` ` pT`.

pbq If B is lower triangular (i.e. B˘ “
ř

αiEi`1,i), then:

(1) For each row i, find the unique j such that αi P
`

ř

yăj

aiy..
ř

yďj

aiy
‰

.

(2) Construct a matrix T` “
n
ř

i“1

`

pαi ´
ř

yăj

aiyqEij `
ř

yăj

aiyEiy
˘

.

(3) Let M “ A ´ T` ` qT`.

That is, the matrix M is obtained from A by “shifting” up (or down) entries by one

row starting from the rightmost (or leftmost) nonzero entries on each row.
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Lemma 2.3.3. The highest term (with respect to ďa) in (2.3.4) or in (2.3.5) exists

and its corresponding matrix is the matrix M described in Algorithm 2.3.2.

Proof. If B is upper triangular, then each term on the right-hand side of (2.3.4) must

be of the form rA´T ` pT s for some T P Θα such that aij ´ tij `ptij ě 0 for all i, j P Z.

Note that

σijpA ´ Exy ` pExyq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

σijpAq ` 1 if j ă i “ x ´ 1, j ď y,

σijpAq ´ 1 if j ą i “ x, j ě y,

σijpAq otherwise.

It follows immediately that, for each i,

. . . ăa pA ´ Ei,´1 ` pEi,´1q ăa pA ´ Ei0 ` pEi0q ăa pA ´ Ei1 ` pEi1q ăa . . .

Therefore, for any T P Θα we have A ´ T ` pT ďa A ´ T` ` pT` “ M .

The case that B is lower triangular is similar and skipped.

Example 2.3.4. Let n “ 2, B˘ “ 2E12 ` 1E23 and A “ 2E12 ` 3E21 ` E22 ` E23,

that is,

B “

»

—

—

—

—

—

—

—

—

—

—

–

. . . 1

˚ 2

˚ 1

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, A “

»

—

—

—

—

—

—

—

—

—

—

–

. . . 1

2

3 1 1

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Then α1 “ 1 P

´

ř

yą2

a1y..
ř

yě2

a1y

ı

“ p0..2s and α2 “ 2 P

´

ř

yą2

a2y..
ř

yě2

a2y

ı

“ p1..2s.

Therefore

T` “

»

—

—

—

—

—

—

—

—

—

—

–

. . . 1

1

1 1

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, M “

»

—

—

—

—

—

—

—

—

—

—

–

. . . 0

ð

1

2
ð

1

3 0

ð

0

ð

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We call a pair pB,Aq of matrices to be admissible if either of the following condi-

tions (A1) or (A2) holds.

(A1) B˘ “
n
ř

i“1

miEi,i`1 for some mi P N, and

A˘ “
n
ř

i“1

ř

jďk

ai,i`jEi,i`j for some k P Z, where ai,i`k ě mi for all i;

(A2) ppb´i,´jqij, pa´i,´jqijq satisfies Condition (A1).

That is, if pB,Aq satisfies Condition (A1), we have

B “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

. . . mn

˚ m1

˚ m2

˚
. . .

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

. . . ˚ ` mn

. . . ˚ ˚ ` m1

. . . ˚ ˚
. . .

. . . . . . . . . . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, M “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

. . . mn

. . . ˚

ð

m1

. . . ˚ ˚

ð

. . .

. . . ˚ ˚
. . .

. . . . . . . . . . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Theorem 2.3.5. If pB,Aq is admissible then rBs ˚ rAs “ rM s ` lower terms.

Proof. We only prove when B is upper triangular since the other case is similar. Due

to Lemma 2.3.3, it remains to show that the coefficient for rM s is one. If pB,Aq is
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admissible, then T` “
n
ř

i“1

miEi,i`k and hence

„

A ´ T` ` pT`

A ´ T`

ȷ

“
ź

1ďiďn

˜

ź

jăi`k

rpA ´ T`qijs . . . r1s

rpA ´ T`qijs . . . r1s

¸

“ 1.

Note that by definition of admissible pairs we have
ř

jďy

paiy ´ tiyq “ 0 for each nonzero

ptij and
ř

jăy

paiy ´ tiyq “ 0 for each nonzero tij. Hence βpA, T`q “ 0.

2.4 Constructing monomial bases

Below we provide an algorithm that generates a monomial basis in a diagonal-by-

diagonal manner involving only admissible pairs (see also [FL14] for a diagonal-by-

diagonal construction in a finite type setting).

Algorithm 2.4.1. For each A “ paijqij P Θn,d, we construct upper bidiagonal matri-

ces Bp1q, . . . , Bpxq and lower bidiagonal matrices Bp1q, . . . , Bpyq as follows:

1. Initialization: t “ 0, U p0q “ A.

2. If U ptq is a lower triangular matrix, then go to Step (5) (denote this t by x).

Otherwise, denote the outermost nonzero upper diagonal of the matrix U ptq “

pu
ptq
ij qij by T

ptq
` “

n
ř

i“1

u
ptq
i,i`kEi,i`k for some k ą 0.

3. Define matrices

Bpt`1q “

n
ÿ

i“1

u
ptq
i,i`kEi,i`1 ` a diagonal determined by (2.4.1),

U pt`1q “ U ptq ´ T
ptq
` ` qT

ptq
` .
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4. Increase t by one and then go to Step (2).

5. Set Lp0q “ U pxq and set s “ 0.

6. If Lpsq is a lower bidiagonal matrix (denote this s by y), then set Bpyq “ Lpyq and

end the algorithm. Otherwise, denote the outermost nonzero lower diagonal of

the matrix Lpsq “ pl
psq

ij qij by T`,psq “
n
ř

i“1

l
psq

i`k,iEi`k,i for some k ą 0.

7. Define matrices

Bps`1q “

n
ÿ

i“1

l
psq

i`k,iEi`1,i ` a diagonal determined by (2.4.1),

Lps`1q “ Lpsq ´ T`,psq ` pT`,psq.

8. Increase s by one and then go back to Step (6).

Here the diagonal entries are uniquely determined by

roapB
p1qq “ roapAq, coapB

piqq “ roapB
pi`1qq for i “ 1, . . . , x ´ 1,

coapB
pxqq “ roapBp1qq, coapBpiqq “ roapBpi`1qq for i “ 1, . . . , y ´ 1.

(2.4.1)

Theorem 2.4.2. For A P Θn,d, the matrices Bp1q, . . . , Bpxq, Bp1q, . . . , Bpyq P Θn,d in

Algorithm 2.4.1 satisfy that

rBp1qs ˚ ¨ ¨ ¨ ˚ rBpxqs ˚ rBp1qs ˚ ¨ ¨ ¨ ˚ rBpyqs “ rAs ` lower terms.

Proof. For each admissible pair pY,Xq, let M be the matrix corresponding to the

highest term in rY s ˚ rXs (cf. Algorithm 2.3.2). For any matrix X 1 ăa X, let M 1 be

the matrix that corresponds to the highest term in rY s ˚ rX 1s. By construction we



28

have M 1 ăa M , and hence

rY s ˚ prXs ` lower termsq “ rM s ` lower terms.

Algorithm 2.4.1 guarantees that each pair pBpjq, U pjqq or pBpjq, L
pjqq is admissible (here

it is understood that Lpy´1q “ Bpyq and U
px´1q “ Lp0q). Hence by Theorem 2.3.5,

rBp1qs ˚ ¨ ¨ ¨ ˚ rBpx´1qs ˚ rBp1qs ˚ rBp2qs ˚ ¨ ¨ ¨ ˚
`

rBpy´1qs ˚ rBpyqs
˘

“ rBp1qs ˚ ¨ ¨ ¨ ˚ rBpx´1qs ˚ rBp1qs ˚ rBp2qs ˚ ¨ ¨ ¨ ˚ rBpy´2qs ˚
`

rLpy´2qs ` lower terms
˘

“ . . .

“ rBp1qs ˚ ¨ ¨ ¨ ˚ rBpx´1qs ˚
`

rLp0qs ` lower terms
˘

“ rBp1qs ˚ ¨ ¨ ¨ ˚ rBpx´1qs ˚
`

rU px´1qs ` lower terms
˘

“ . . .

“ rAs ` lower terms.

For each A P Θn,d, we define

mA “ rBp1qs ˚ ¨ ¨ ¨ ˚ rBpxqs ˚ rBp1qs ˚ ¨ ¨ ¨ ˚ rBpyqs. (2.4.2)

Corollary 2.4.3. The set tmA | A P Θn,du forms a basis of the Zrv, v´1s-algebra Sa
n,d

(called a monomial basis). Moreover, mA is bar invariant for each A P Θn,d.

Proof. The first assertion is clear from Theorem 2.4.2. The second assertion follows

from Corollary 2.2.7.
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Remark 2.4.4. In [DDX07], Deng, Du and Xiao constructed a family of monomial

bases for the Hall algebra of the cyclic quiver. Any such basis can be adapted to a

monomial basis for Sa
n,d using surjections from the double Hall algebra of the cyclic

quiver to Sa
n,d (cf. [DF14]). But their monomial bases are less explicit, and the

relation to our monomial basis is unclear.

Example 2.4.5. Let n “ 2, d “ 21, and let

A “ E01 ` 2E02 ` 3E03 ` 4E12 ` 5E21 ` 6E20 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

0 1 2 3

0 0 4 0

6 5 0 1

0 0 0 0

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Θ2,21.

We have rAs “ rBp1qs ˚ rU p1qs` lower terms, where

Bp1q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . . . . .

˚ 3

˚ 0

˚ 3

˚
. . .

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, U p1q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

0 1 2

0 0 4 3

ñ

6 5 0 1

0 0 0 0

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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rU p1qs “ rBp2qs ˚ rU p2qs` lower terms, where

Bp2q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . . . . .

˚ 2

˚ 3

˚ 2

˚
. . .

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, U p2q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

0 4
ñ

0 0 6

ñ

6 5 0 4

ñ

0 0 0 0

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

rU p2qs “ rBp3qs ˚ rU p3qs` lower terms, where

Bp3q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . . . . .

˚ 4

˚ 6

˚ 4

˚
. . .

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, U p3q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

6

0 4

ñ

6 5 6

ñ

0 0 0 4

ñ

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

rU p3qs “ rBp1qs ˚ rLp1qs` lower terms, where

Bp1q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

. . . ˚

6 ˚

0 ˚

6 ˚

. . . . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Lp1q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

6

6 4

ð

5 6

6 4

ð

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Hence Lp1q “ Bp2q and

rAs “ rBp1qs ˚ rBp2qs ˚ rBp3qs ˚ rBp1qs ˚ rBp2qs ` lower terms.
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Chapter 3

Affine Schur algebras of type C

In this chapter we recall some standard facts about the affine Weyl groups of type

C and the corresponding Hecke algebras. We come up with a new formulation of

length formula (cf. Lemma 3.1.1). We then study the affine q-Schur algebras of type

C as endomorphism algebras of certain q-permutation modules for Hecke algebras. In

particular, we show that the bases for Schur algebras can be parametrized by a set

of Z ˆ Z periodic centro-symmetric N-matrices.

From now on, let n “ 2r ` 2, D “ 2d ` 2 be fixed positive integers.

3.1 Affine Hecke algebras

Let W be the Weyl group of type rCd (or C
p1q

d ) generated by S “ ts0, s1, . . . , sdu with

Dynkin diagram
...
0
..

1
. . . ...

d ´ 1

..

d

. ùñ. ðù
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It is known ([BB05], [EE98]) that pW,Sq is a Coxeter group and W can be identified

as a permutation subgroup of Z satisfying

gpi ` Dq “ gpiq ` D, gp´iq “ ´gpiq for i P Z, g P W

Note that we always have, for g P W ,

gp0q “ 0 and gpd ` 1q “ d` 1.

Also, w is uniquely determined by its value on t1, 2, . . . , du, and we write

w “

¨

˚

˚

˝

1 2 . . . d

a1 a2 . . . ad

˛

‹

‹

‚

c

“ ra1, a2, . . . , adsc. (3.1.1)

to mean that wpiq “ ai for 1 ď i ď d. Here we adapt a slightly different notation

than the Weyl group rSCd in [BB05] by inserting fixed points d ` 1 ` DZ. Precisely

speaking, there is an identification rSCd Ñ W given by

g1 ÞÑ rιpg1p1qq, . . . , ιpg1pdqqsc, (3.1.2)

where ι : Z Ñ Z, i ÞÑ i `
P

i´d
D´1

T

is the bijection induced by inserting d ` 1 ` DZ. In

particular, we have

ιpg1pi ` kpD ´ 1qqq “ gpi ` kDq, ´d ď i ď d, k P Z. (3.1.3)

Denote the length function onW by ℓ. Now we give an interpretation of length under

the identification above.

Lemma 3.1.1. The length of g P W is given by

ℓpgq “
1

2
|tpi, jq P r1..ds ˆ Z |

iąj
gpiqăgpjq or

iăj
gpiqągpjqu|. (3.1.4)
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Proof. Let g1 P rSCd be the element identified with g. It is known [BB05, (8.44), (8.45)]

that

ℓpg1q “ invBpg1p1q, . . . , g1pdqq `
ÿ

1ďiďjďd

ˆZ

|g1piq ´ g1pjq|

D ´ 1

^

`

Z

|g1piq ` g1pjq|

D ´ 1

^˙

,

(3.1.5)

where by [BB05, (8.2)] we have

invBpg1p1q, . . . , g1pdqq “ |tpi, jq P r1..ds2 |
iăj

g1piqąg1pjqu| ` |tpi, jq P r1..ds2 |
iďj

g1p´iqąg1pjqu|.

(3.1.6)

Since that ι is order preserving, the statement g1piq ă g1pjq is equivalent to gpiq ă gpjq

for all i, j P Z. Hence we have

invBpg1p1q, . . . , g1pdqq “ |tpi, jq P r1..ds2 |
iăj

gpiqągpjqu| ` |tpi, jq P r1..ds2 |
iďj

gp´iqągpjqu|.

(3.1.7)

A detailed calculation shows that

invBpg1p1q, . . . , g1pdqq “
1

2
|tpi, jq P r1..ds ˆ r´d..ds |

iąj
gpiqăgpjq or

iăj
gpiqągpjqu|. (3.1.8)

Let rSN be the Weyl group of affine type A as in [BB05, Section 8.3]. It is also known

[BB05, (8.31)] that for g1 P rSCd Ă rSD´1, i, j P r1..ds, we have
Z

|g1piq ´ g1pjq|

D ´ 1

^

“ |tk P Z | g1pjq ą g1pi ` kpD ´ 1qqu|

` |tk P Z | g1piq ą g1pj ` kpD ´ 1qqu|.

(3.1.9)

Similarly, for g P W Ă rSD, we have
Z

|gpiq ´ gpjq|

D

^

“ |tk P Z | gpjq ą gpi ` kpDqqu|

` |tk P Z | gpiq ą gpj ` kpDqqu|.

(3.1.10)
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By (3.1.3), we obtain that

Z

|g1piq ´ g1pjq|

D ´ 1

^

“

Z

|gpiq ´ gpjq|

D

^

.

Another detailed calculation shows that

ř

1ďiďjďd

Y

|gpiq`gpjq|

D

]

“
ř

1ďiăjďd

`

|tk ě 1 | gpjq ą gp´i ` kDqu| ` |tk ě 1|gpiq ă gp´j ´ kDqu|
˘

`
ř

1ďiďd

`

|tk ě 1 | gpiq ą gp´i ` kDqu| ` |tk ě 1|gpiq ă gp´i ´ kDqu|
˘

“ 1
2

8
ř

k“1

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

|tpj,´i ` kDq | 1 ď i ă j ď d, gpjq ą gp´i ` kDqu|

` |tpi,´j ` kDq | 1 ď i ă j ď d, gpiq ą gp´j ` kDqu|

` |tpi,´j ´ kDq | 1 ď i ă j ď d, gpiq ă gp´j ´ kDqu|

` |tpj,´i ´ kDq | 1 ď i ă j ď d, gpjq ă gp´i ´ kDqu|

` |tpi,´i ` kDq | 1 ď i ď d, gpiq ą gp´i ` kDqu|

` |tpi, kD
2

q | 1 ď i ď d, gpiq ą gpkD
2

qu|

` |tpi,´i ´ kDq | 1 ď i ď d, gpiq ă gp´i ´ kDqu|

` |tpi,´kD
2

q | 1 ď i ď d, gpiq ă gp´kD
2

q|u

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

and

ř

1ďiďjďd

Y

|gpiq´gpjq|

D

]

“
ř

1ďiăjďd

`

|tk ě 1 | gpiq ą gpj ` kDqu| ` |tk ě 1 | gpjq ą gpi ` kDqu|
˘

“ 1
2

8
ř

k“1

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

|tpi, j ` kDq | 1 ď i ă j ď d, gpiq ą gpj ` kDqu|

` |tpj, i ´ kDq | 1 ď i ă j ď d, gpi ´ kDq ą gpjquq|

` |tpj, i ` kDq | 1 ď i ă j ď d, gpjq ą gpi ` kDqu|

` |tpi, j ´ kDq | 1 ď i ă j ď d, gpj ´ kDq ą gpiqu|q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The lemma then follows by summing them up.
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By using the convention in (3.1.1), the generators of W can be denoted by

s0 “ r´1, 2, 3, . . . , d ´ 1, dsc,

sd “ r1, 2, 3, . . . , d ´ 1, d ` 2sc,

si “ r1, . . . , i ´ 1, i ` 1, i, i ` 2, . . . , dsc for i “ 1, . . . d ´ 1.

(3.1.11)

Denote the set of (weak) compositions of d into r ` 2 parts (where “weak” means a

possible zero part is allowed) by

Λc
r,d “

#

λ “ pλ0, . . . , λr`1q P Nr`2

ˇ

ˇ

ˇ

ˇ

ˇ

r`1
ÿ

i“0

λi “ d

+

. (3.1.12)

From now on, write Λ “ Λc
r,d. For each λ P Λ, denote by Wλ the parabolic (finite)

subgroup with respect to λ generated by Sztsλ0 , sλ0,1 , . . . , sλ0,ru where λ0,i “ λ0 `

λ1 ` . . .` λi for 0 ď i ď r and λ0,0 “ λ0. We define integral intervals with respect to

λ by

Rλ
i “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

r´λ0..λ0s if i “ 0,

pλ0,i´1..λ0,is if i P r1..rs,

rd ` 1 ´ λr`1..d ` 1 ` λr`1s if i “ r ` 1,

(3.1.13)

and we extend the definition Rλ
i for all i P Z recursively by letting

Rλ
´i “ t´x | x P Rλ

i u, Rλ
i`n “ tx ` D | x P Rλ

i u. (3.1.14)

Lemma 3.1.2.

Wλ “

r`1
č

i“0

StabRλ
i .
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Proof. By [BB05, Proposition 8.4.4] we have that for each i,

WSztsλ0,iu “ Stabpr´λ0,i..λ0,isq X Stabprλ0,i ` 1..D ´ λ0,i ´ 1sq.

The lemma follows by taking the intersection Wλ “
Şr
i“0WSztsλ0,iu.

Let Dλ “ tw P W | ℓpwgq “ ℓpwq ` ℓpgq for g P Wλu. Then Dλ (resp., D´1
λ ) is

the set of distinguished right (resp. left) coset representatives of Wλ in W . Denote

by Dλµ “ Dλ X D´1
µ the set of distinguished double coset representatives.

Lemma 3.1.3. Let g P W and let λ P Λ. Then the following are equivalent:

paq g P Dλ;

pbq g´1 is order-preserving on Rλ
i , i P r0 .. r ` 1s;

pcq g´1 is order-preserving on Rλ
i , i P Z.

Proof. By the argument following [BB05, Proposition 8.4.4], we have

Dλ “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

g P W

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

g´1p0q ă . . . ă g´1pλ0q,

g´1p1 ` λ0,iq ă . . . ă g´1pλ0,i`1q,@i P r1..r ´ 1s,

g´1p1 ` λ0,rq ă . . . ă g´1pd ` 1q

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

.

Note that gp´iq “ ´gpiq and gp0q “ 0, so the condition “g´1p0q ă . . . ă g´1pλ0q”

is equivalent to g´1p´λ0q ă . . . ă g´1p0q “ 0 ă . . . ă g´1pλ0q. Similarly, we have

g´1pd`1´λr`1q ă . . . ă g´1pd`1q “ d`1 ă . . . ă g´1pd`1`λr`1q. The equivalence

of the latter two conditions follows from the periodic condition gpi ` Dq “ gpiq ` D

for all i, g.



38

Proposition 3.1.4 (Howlett). Let λ, µ P Λ, and let g P Dλµ. Then

paq There is a weak composition δ “ δpλ, g, µq P Λr1,d for some r1 such that

Wδ “ g´1Wλg X Wµ.

pbq The mapWλˆpDδXWµq Ñ WλgWµ sending px, yq to xgy is a bijection satisfying

ℓpxgyq “ ℓpxq ` ℓpgq ` ℓpyq.

pcq The map pDδ X Wµq ˆ Wδ Ñ Wµ sending px, yq to xy is a bijection satisfying

ℓpxq ` ℓpyq “ ℓpxyq.

Proof. See [DDPW08, Proposition 4.16, Lemma 4.17 and Theorem 4.18].

The Hecke algebra H “ HpW q of type rCd is a Zrv, v´1s-algebra with a basis

tTg | g P W u satisfying

TwTw1 “ Tww1 if ℓpww1q “ ℓpwq ` ℓpw1q,

pTs ` 1qpTs ´ v2q “ 0 for s P S.

For a finite subset X Ă W and for λ P Λ, set

TX “
ÿ

wPX

Tw and xλ “ TWλ
. (3.1.15)

3.2 Affine Schur algebras

For λ, µ P Λ and g P Dλµ, denote by ϕgλµ P HomHpxµH,Hq the right H-linear

map sending xµ to TWλgWµ . Thanks to Proposition 3.1.4 (b), we have TWλgWµ “
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xλTgTDδXWµ for some δ P Λr1,d and hence ϕgλµ P HomHpxµH, xλHq. The affine Schur

algebra is defined by

Sc
n,d “ EndH

´

‘
λPΛ

xλH
¯

“
à

λ,µPΛ

HomHpxµH, xλHq. (3.2.1)

It is known that tϕgλµ | λ, µ P Λ, g P Dλµu is a Zrv, v´1s-basis of Sc
n,d.

Recall that we assume throughout the dissertation that n “ 2r`2 and D “ 2d`2.

Set Ξn,d to be the subset of Θn,d (cf. Section 2.2) in which each element A “ paijq

satisfies additionally that

• a´i,´j “ aij for all i, j P Z;

• a00 and ar`1,r`1 are odd;

•
ř

1ďiďn

ř

jPZ
aij “ D.

For any T “ ptijq P Θn, set

Tθ “ ptθ,ijq, tθ,ij “ tij ` t´i,´j.

Let Ξn “
Ť

dPN
Ξn,d. For A “ paijq P Ξn, we set

a1
ij “

$

’

’

’

&

’

’

’

%

1
2
paij ´ 1q if i “ j P Zpr ` 1q,

aij otherwise.

(3.2.2)

For any A P Ξn, we define its type C row sum vector rocpAq “ procpAq0, . . . , rocpAqr`1q
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and type C column sum vector cocpAq “ pcocpAq0, . . . , cocpAqr`1q by

rocpAqk “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

ř

jě0

a1
0j if k “ 0,

ř

jďr`1

a1
r`1,j if k “ r ` 1,

roapT qk otherwise.

cocpAqk “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

ř

iě0

a1
i0 if k “ 0,

ř

iďr`1

a1
i,r`1 if k “ r ` 1,

coapAqk otherwise.

(3.2.3)

Each A P Ξn is uniquely determined by taij | pi, jq P I`u, where

I` “ pt0u ˆ Nq \ pr1..rs ˆ Zq \ ptr ` 1u ˆ Zďr`1q (3.2.4)

is the index set corresponding to the “first half-period”. On I`, let ď be the lexi-

cographical order such that pi, jq ď px, yq if and only if i ă x or (i “ x and j ď y).

With these notation, Ξn can be expressed as follows:

Ξn “ tA | A P E00 ` Er`1,r`1 `
ÿ

pi,jqPI`

NEij
θ u. (3.2.5)

We also introduce a partial order “ď” on Ξn (and on Θn) by

paijq ď pbijq ô aij ď bijp@i, jq. (3.2.6)

Next, we introduce a “higher-level” structure of Ξn, which is used in the proof of

the multiplication formula. Let ΞP
n,d be the set of Z ˆ Z matrices with entries being

subsets of Z in which each element A “ pAijq satisfies that
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(P0) For z P Z, there exists a unique pi, jq such that z P Aij;

(P1) Ai`n,j`n “ tx ` D | x P Aiju for all i, j P Z;

(P2) A´i,´j “ t´x | x P Aiju for all i, j P Z;

(P3) 0 P A00 and d ` 1 P Ar`1,r`1;

(P4)
ř

1ďiďn

ř

jPZ
|Aij| “ D.

Set ΞP
n “

Ť

dPN
ΞP
n,d. Again, each A is uniquely determined by tAij | pi, jq P I`u. Now

we define a map κ1 sending each triple pλ, g, µq P Λ ˆ W ˆ Λ to a Z ˆ Z matrix

p|Rλ
i X gRµ

j |q. It is clear that the image of κ1 lies in Ξn,d. We further define

κ : tpλ, g, µq | λ, µ P Λ, g P Dλµu ÝÑ Ξn,d (3.2.7)

by κpλ, g, µq “ κ1pλ, g, µq.

Algorithm 3.2.1. For each A “ paijq P Ξn,d, we define a matrix AP
std P ΞP

n,d by

“row-reading” as follows (see (3.2.2) for a1
ij):

1. Set pAP
stdq00 “

”

´a1
00 .. a

1
00

ı

and pAP
stdqr`1,r`1 “

”

d`1´a1
r`1,r`1 .. d`1`a1

r`1,r`1

ı

.

2. For pi, jq P I`
a , where

I`
a “ I`ztp0, 0q, pr ` 1, r ` 1qu, (3.2.8)

set

pAP
stdqij “

´

i´1
ÿ

l“0

rocpAql `
ÿ

kăj

aik ..
i´1
ÿ

l“0

rocpAql `
ÿ

kďj

aik

ı

.
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3. For pi, jq R I`, pAP
stdqij is determined by Conditions (P1) and (P2).

For any A P ΞP
n,d, it is obvious that |A| :“ p|Aij|q P Ξn,d. Moreover, |AP

std| “ A.

Algorithm 3.2.2. For any A “ pAijq P ΞP
n,d, set A “ paijq “ |A|. We define a

Weyl group element gstd “ gstdpAq P W , which sends k P Z to gstdpkq P Z, using

“column-reading” as follows:

1. For pi, jq P I` and aij ą 0, we set

Ipi,jq “

$

’

’

’

&

’

’

’

%

r´a1
ij..a

1
ijs, if pi, jq “ p0, 0q or pr ` 1, r ` 1q,

r1..aijs, otherwise.

Then set Aij “ ta
pi,jq

l | l P Ipi,jqu such that a
pi,jq

l ă a
pi,jq

l`1 for admissible l.

2. For k “ 1, . . . , d, find the unique pi, jq P I` and m P r1..a1
ijs such that

k “
ÿ

px,yqPI`,px,yqăpi,jq

a1
yx ` m,

and then set gstdpkq “ a
pj,iq
m .

3. For k R r1..ds, gstdpkq is determined recursively by

gstdpk ` Dq “ gstdpkq ` D “ ´gstdp´kq.
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Example 3.2.3. Let d “ 7, D “ 16, r “ 0, n “ 2, and let

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . . . . .

. . . 2

5 2

. . . 3 2

2 5
. . .

2 3

. . . . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ 3E00 ` 2E03
θ ` 2E1,´2

θ ` 5E11.

We have rocpAq “ cocpAq “ p3, 4q, and

AP
std “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

. . . t´14,´13u

r´10.. ´ 6s t´5,´4u

r´1..1s t2, 3u

t4, 5u r6..10s
. . .

t13, 14u r15..17s

. . . . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

On the other hand, we have gstdpAP
stdq “ r1, 20, 21,´14,´13, 6, 7sc (see (3.1.1) ).

Lemma 3.2.4. paq The map κ : tpλ, g, µq | λ, µ P Λ, g P Dλµu Ñ Ξn,d is a bijection.

pbq Let A “ κpλ, g, µq for some λ, µ P Λ, g P Dλµ. Then λ “ rocpAq, µ “ cocpAq,

and g “ gstdpAP
stdq.
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Proof. We shall show that for fixed λ, µ P Λ, the restriction of κ to Dλµ

κλµ : Dλµ ÝÑ Ξn,dpλ, µq “ tA P Ξn,d | rocpAq “ λ, cocpAq “ µu (3.2.9)

is a bijection. We start with the restriction of κ1 to W , denoted by κ1
λµ : W Ñ

Ξn,dpλ, µq. Let ΞP
n,dpλ, µq “ tA P ΞP

n,d | rocp|A|q “ λ, cocp|A|q “ µu. Note that κ1
λµ is

the composition of two maps

κPλµ : W Ñ ΞP
n,dpλ, µq and | ¨ |λµ : ΞP

n,dpλ, µq Ñ Ξn,dpλ, µq.

g ÞÑ pRλ
i X gRµ

j q A ÞÑ |A|

It is easy to check that for each A P ΞP
n,dpλ, µq, κPλµpgstdpAqq “ A and hence κPλµ is a

surjection. Furthermore, given g P pκPλµq´1pAq, by Lemma 3.1.3 we have that

g “ gstdpAq if and only if g P Dλ.

Thus the restriction κPλµ|Dλ
is a bijection. On the other hand, for each A P Ξn,dpλ, µq

we have |AP
std| “ A, and hence | ¨ |λµ is a surjection. Moreover, given A P | ¨ |´1pAq,

by Lemma 3.1.3 again, we have that

A “ AP
std if and only if gstdpAq P D´1

µ .

Therefore p| ¨ |λµ ˝ κPλµq|Dλµ
“ κλµ is a bijection, whence (a). Part (b) can be clearly

read off from the proceeding argument.

For each A “ κpλ, g, µq P Ξn,d, set

eA “ ϕgλµ. (3.2.10)
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Hence teA | A P Ξn,du forms a Zrv, v´1s-basis of Sc
n,d. For A P Ξn,d, we define

δpAq “ pδpAq0, . . . , δpAqr1`1q P Λr1,d for some r1 by the following procedure:

1. Set δ0 “ 1
2
pa00 ´ 1q (possibly zero); set pδ

p0q

1 , . . . , δ
p0q

k0
q for some k0 P N to be

the composition of cocpAq0 ´ δ0 obtained from pa10, a20, . . .q by deleting all zero

entries.

2. For each j “ 1, . . . , r, set pδ
pjq

1 , . . . , δ
pjq

kj
q P Λkj ,λj for some kj P N to be the

composition of cocpAqj obtained from p. . . , a´1,j, a0j, a1j, . . .q by deleting all

zero entries.

3. Set pδ
pr`1q

1 , . . . , δ
pr`1q

kr`1
q for some kr`1 P N to be the composition of cocpAqr`1 ´

δr1`1 obtained by deleting all zero entries from p. . . , ar´1,r`1, ar,r`1q, where

δr1`1 “ 1
2
par`1,r`1 ´ 1q (possibly zero) and r1 “ k0 ` . . . ` kr`1.

4. Finally, set

δpAq “ pδ0, δ
p0q

1 , . . . , δ
p0q

k0
, δ

p1q

1 , . . . , δ
p1q

k1
, . . . , δ

pr`1q

1 , . . . , δ
pr`1q

kr`1
, δr1`1q. (3.2.11)

Proposition 3.2.5. Let A “ κpλ, g, µq for some λ, µ P Λ, g P Dλµ. Then WδpAq “

g´1Wλg X Wµ. Namely, δpAq is one possible weak composition δ described in Propo-

sition 3.1.4.

Proof. By Lemma 3.1.2, we have

g´1Wλg X Wµ “

´

r`1
č

i“0

Stabpg´1Rλ
i q

¯

X

´

r`1
č

j“0

StabpRµ
j q

¯

“
č

pi,jqPI`

Stabpg´1Rλ
i X Rµ

j q “
č

pi,jqPI`

Stabpg´1pAP
stdqijq “ WδpAq.
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Remark 3.2.6. We can remove any zeroes that are not in the first or the last place

in a weak composition in Λ without changing the parabolic subgroup, i.e. Wp2,0,2q “

Wp2,2q. On the other hand, removing zeroes in the first or the last place changes

the parabolic subgroup. For example, Wp0,1,1,0q,Wp0,1,1q,Wp1,1,0q and Wp1,1q are four

distinct parabolic subgroups.

For T “ ptijq P Θn, define

rT s!a “

n
ź

i“1

ź

jPZ

rtijs
!
a, where rtijs

!
a “

tij
ź

k“1

rks. (3.2.12)

For A “ paijq P Ξn, define (see (3.2.2) for a1
ij)

rAs!c “
ź

pi,jqPI`

raijs
!
c, where raijs

!
c “

$

’

’

’

’

&

’

’

’

’

%

a1
ij

ś

k“1

r2ks if i “ j P Zpr ` 1, r ` 1q,

raijs
!
a otherwise.

(3.2.13)

Alternatively, we have (see (3.2.8) for I`
a ):

rAs!c “ ra00s
!
crar`1,r`1s

!
c

ź

pi,jqPI`
a

raijs
!
a. (3.2.14)

Lemma 3.2.7. For any A P Ξn, we have rAs!c “
ř

wPWδpAq

qℓpwq.

Proof. Denote the Weyl group of type Am´1 (resp. Cm) by Sm (resp. WCm). It is

well-known that the Poincare polynomial for Sm and WCm are, respectively,

ÿ

wPSm

qℓpwq “

m
ź

k“1

rks “ rms!a and
ÿ

wPWCm

qℓpwq “

m
ź

k“1

r2ks “ rms!c.
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Since WδpAq » WCδ0
ˆ Sδ1 ˆ Sδ2 ˆ ¨ ¨ ¨ ˆ Sδr1 ˆWCδ

r1`1
, we obtain

ÿ

wPWδpAq

qℓpwq “
ź

iPt0,r1`1u

´

ÿ

wPWCδi

qℓpwq
¯

r1
ź

i“1

´

ÿ

wPSδi

qℓpwq
¯

“ rAs!c.

Lemma 3.2.8. Let A “ κpλ, g, µq for some λ, µ P Λ, g P Dλµ. Then

xλTgxµ “ rAs!ceApxµq.

Proof. Let δ “ δpAq. By Proposition 3.1.4 (c), we have

xµ “
ÿ

xPWµ

Tx “
ÿ

wPDδXWµ

yPWδ

Twy “
ÿ

wPDδXWµ

Tw
ÿ

yPWδ

Ty “ TDδXWµxδ.

Note that xµTw “ qℓpwqxµ for any w P Wµ and thus xµxδ “
ř

wPWδ

qℓpwqxµ “ rAs!cxµ

since Wδ Ă Wµ. Therefore we have

xλTgxµ “ xλTgTDδXWµxδ “ eApxµqxδ “ eApxµxδq “ rAs!ceApxµq.

For each A “ κpλ, g, µq P Ξn,d, the length ℓpAq is defined to be the length ℓpgq of

the corresponding Weyl group element. By rephrasing Lemma 3.1.1, we are able to

express ℓpAq as a polynomial in the matrix elements as follows:

Proposition 3.2.9. Let A “ paijq P Ξn and a1
ij be the one in (3.2.2). Then the length

of A is given by

ℓpAq “
1

2

´

ř

pi,jqPI`

´

ř

xăi
yąj

`
ř

xąi
yăj

¯

a1
ijaxy

¯

. (3.2.15)
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3.3 A comparison with geometric realization

We now show that the Schur algebra Sc
n,d defined in Section 3.2 can be identified with

the Schur algebra in [FLLLW1] as a convolution algebra. In the following we only

provide a minimum setup. The readers may refer to [FLLLW1, Chapter 3 and 4] for

more details.

Let F “ kppϵqq be the formal Laurent series over a finite field k of q “ v2 elements,

and let SpF p2dq be the symplectic group with coefficients in F . Set

Sc,geo
n,d “ ASpF p2dqpX c

n,d ˆ X c
n,dq (3.3.1)

to be the convolution algebra, where X c
n,d is the variety of n-step flags of affine type

C (cf. [FLLLW1, Section 3.2]) in an F -vector space V of rank 2d, and A “ Zrv, v´1s.

Denote by egeoA the characteristic function on the orbit OA. It is known that the Hecke

algebra H can also be identified as a convolution algebra

H “ ASpF p2dqpY c
d ˆ Y c

dq, (3.3.2)

where Y c
d (cf. Y c in [FLLLW1, Section 3.1]) is the variety of complete flags of affine

type C in V .

Lemma 3.3.1. There is an algebra isomorphism Sc
n,d » Sc,geo

n,d .

Proof. Let ψ : Sc
n,d Ñ Sc,geo

n,d be the linear map sending eA to egeoA for all A P Ξn,d.

Since Ξn,d parameterizes the basis of both algebras, ψ is a bijection. We now show

that ψ is an algebra homomorphism. Fix A,B,C P Ξn,d, and let λ, µ, ν P Λ and
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g1, g2, g3 P W be such that

A “ κpλ, g1, µq, B “ κpµ, g2, νq, C “ κpλ, g3, νq.

Set gCABpvq P A to be such that

gCABpvq “ #
!

rL P X c
n,d

ˇ

ˇ

ˇ
pL, rLq P OA, prL,L1q P OB, pL,L

1q P OC

)

, (3.3.3)

for some fixed L,L1 P X c
n,d. Therefore,

egeoA ˚ egeoB “
ÿ

C

gCABpvq egeoC . (3.3.4)

For x, y, z P W , set Bz
xypvq P A to be such that

TxTy “
ÿ

z

Bz
xypvqTz. (3.3.5)

For g P W , let Og be the orbit Oκpω,g,ωq where ω “ p0, 1, 1, . . . , 1, 0q P Λd,d. It is

known that

Bz
xypvq “ #

!

rL P Y c
d

ˇ

ˇ

ˇ
pL, rLq P Ox, prL,L1q P Oy, pL,L

1q P Oz

)

, (3.3.6)

for some fixed L,L1 P Y c
d. Then for all z P Wλg3Wν we have

gCABpvq “ πµpvq´1
ÿ

xPWλg1Wµ

yPWµg2Wν

Bz
xypvq, (3.3.7)

where πµpvq is the cardinality of the fiber of the projection Y c
d Ñ SpF p2dqpLµq, which

is given by

πµpvq “
ÿ

xPWµ

v2ℓpxq. (3.3.8)
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Also, by direct computation, we have

x2µ “ πµxµ. (3.3.9)

Therefore,

eA ˚ eBpxνq “ eApxµqTg2TDδpBqXWν “ π´1
µ eApx2µqTg2TDδpBqXWν “ π´1

µ TWλg1WµTWµg2Wν ,

(3.3.10)

and hence

eA ˚ eBpxνq “ π´1
µ

ÿ

zPWλg3Wν

ÿ

xPWλg1Wµ

yPWµg2Wν

Bz
xyTz “

ÿ

zPWλg3Wν

gCABTz. (3.3.11)

Finally, we have eA ˚ eB “
ř

C

gCABpvq eC .
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Chapter 4

Multiplication formulas

This chapter is devoted to the multiplication formula with tridiagonal generators.

The proof is quite involved. An essential idea here is to identify the standard basis

element eA with its corresponding “higher-level” matrix with entries being subsets of

Z in light of Algorithm 3.2.1. We also provide two special cases of the multiplication

formula that are analogous to the multiplication formulas with semisimple generators

in affine type A, and with Chevalley generators as in finite type B/C.

4.1 Structure constants

From now on, fix B “ κpλ, g1, µq and A “ κpµ, g2, νq for some λ, µ, ν P Λ, g1 P Dλµ,

and g2 P Dµν . Recall eA from (3.2.10).

Lemma 4.1.1. Let δ “ δpBq (see (3.2.11)). We have

eB ˚ eApxνq “
1

rAs!c
xλTg1TpDδXWµqg2xν .
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Proof. From Lemma 3.2.8 we have

eBeApxνq “
1

rAs!c
eBpxµTg2xνq “

1

rAs!c
eBpxµqTg2xν “

1

rAs!c
xλTg1TDδXWµTg2xν .

Since g2 P D´1
µ , so TwTg2 “ Twg2 for all w P Dδ X Wµ. Therefore TDδXWµTg2 “

TpDδXWµqg2 and we are done.

Remark 4.1.2. For w P Wµ, although Tg1Tw “ Tg1w and TwTg2 “ Twg2 , it is not true

that Tg1TwTg2 “ Tg1wg2 in general. Therefore we need to write out Tg1Twg2 in order

to have a useful multiplication formula.

For w P Dδ X Wµ, let ∆pwq Ă W be the finite set such that

Tg1Twg2 “
ÿ

σP∆pwq

cpw,σqTg1σwg2 , cpw,σq P Zrqs. (4.1.1)

For σ P ∆pwq, denote the shortest representative in the double coset Wλpg1σwg2qWν

by ypw,σq P Dλν . Namely, g1σwg2 “ w
pσq

λ ypw,σqw
pσq
ν for some w

pσq

λ P Wλ, w
pσq
ν P

Wν . In particular, Tg1σwg2 “ T
w

pσq
λ
Typw,σqT

w
pσq
ν
. We further let Apw,σq “ pa

pw,σq

ij q “

κpλ, ypw,σq, νq.

Proposition 4.1.3. Let δ “ δpBq, and let cpw,σq,∆pwq be defined as in (4.1.1). Then

eB ˚ eA “
ÿ

wPDδXWµ

σP∆pwq

cpw,σqqℓpg1σwg2q´ℓpypw,σqq rApw,σqs!c

rAs!c
eApw,σq . (4.1.2)

Proof. Combining Lemma 4.1.1 and (4.1.1), we have

eB ˚ eApxνq “
1

rAs!c

ÿ

wPDδXWµ

σP∆pwq

cpw,σqxλTg1σwg2xν .
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For σ P ∆pwq, we have xλTg1σwg2xν “ qℓpw
pσq
λ q`ℓpw

pσq
ν qxλTypw,σqxν , and hence it follows

by applying Lemma 3.2.8.

For general g1, it is unlikely to obtain an explicit description for cpw,σq since it is

equivalent to obtaining explicitly the structure constants for Hecke algebras. Also, it

is not clear what are the pairs pw, σq such that Apw,σq represent the same matrix. As a

consequence, the multiplication formula above (i.e., Proposition 4.1.3) does not afford

the stabilization. In the following we discuss the special case when B is tridiagonal,

whose multiplication formula affords a stabilization that generates the desired affine

coideal subalgebra.

4.2 Shortest representatives

From now on, we assume that B “ pbijq “ κpλ, g1, µq is tridiagonal. By slightly abuse

of notations, set

δ “ pb1
00, b10, b01, b11, . . . , bi,i´1, bi´1,i, bii, . . . , bn,r`1, b

1
r`1,r`1q.

That is, unlike δpBq defined in (3.2.11), here the intermediate terms δ1, . . ., δ3r`2, δ
1
1,

. . ., δ1
3r`2 can be zero. Note that the two conventions coincide (i.e., δ “ δpBq) when

the intermediate terms are all nonzero.

Lemma 4.2.1. For all i, Rµ
i “ Rδ

3i´1 YRδ
3i YRδ

3i`1 and g´1
1 Rλ

i “ Rδ
3i´2 YRδ

3i YRδ
3i`2

.
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Proof. By construction.

Recall the partial order ď on Ξn by (3.2.6). For A,B P Ξn, we set

ΘB,A “ tT P Θn | Tθ ď A, roapT qi “ bi´1,i for all iu. (4.2.1)

We define a map φ : Dδ X Wµ Ñ ΘB,A by

φpwqij “ |Rδ
3i´1 X wg2R

ν
j |. (4.2.2)

Lemma 4.2.2. The map φ is well-defined and surjective.

Proof. For any w P Dδ X Wµ, we have

roapφpwqqi “ |Rδ
3i´1| “ bi´1,i.

Moreover, by Lemma 4.2.1 and that w´1 P Wµ, we have

φpwqθ,ij “ |Rδ
3i´1 X wg2R

ν
j | ` |Rδ

3p´iq´1 X wg2R
ν
´j|

“ |pRδ
3i´1 Y Rδ

3i`1q X wg2R
ν
j |

ď |Rµ
i X wg2R

ν
j |

“ |w´1Rµ
i X g2R

ν
j | “ |Rµ

i X g2R
ν
j | “ aij.

To show that φ is surjective, for any T P ΘB,A we construct an element wA,T P φ´1pT q

as follows. For all i, j, we set

T ´
ij “ subset of pAP

stdqij consisting of the smallest tij elements. (4.2.3)

T `
ij “ subset of pAP

stdqij consisting of the largest t´i,´j elements. (4.2.4)

T 0
ij “ pAP

stdqij ´ T `
ij ´ T ´

ij . (4.2.5)
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Note that
ř

jPZ
|T ´
ij | “ roapT qi “ |Rδ

3i´1|,
ř

jPZ
|T `
ij | “ roapT q´i “ |Rδ

3i`1|. There is a

unique wA,T “
r`1
ś

i“0

w
piq
A,T P Dδ X Wµ such that w

piq
A,T P PermpRµ

i q is determined by

w
piq
A,T pxq P

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Rδ
3i´1, if x P

Ť

j T
´
ij

Rδ
3i`1, if x P

Ť

j T
`
ij

Rδ
3i, otherwise.

(4.2.6)

The uniqueness follows from that w´1
A,T is order-preserving on eachRδ

i (c.f. Lemma 3.1.3).

Lemma 4.2.3. For T P ΘB,A, the element wA,T determined by (4.2.6) is the minimal

length element in φ´1pT q. Moreover, its length is given by

ℓpwA,T q “
ř

1ďiďr
jPZ

´

tij
ř

kăj

pA ´ T qik ` t´i,´j
ř

kąj

pA ´ Tθqikq

¯

`
ř

jď0
kăj

t0jpA ´ T q0k `
ř

ją0

t0j

´

ř

kď´j

pA ´ T q0k `
ř

|k|ăj

pA ´ Tθq0k

¯

´
ř

ją0

`

1`t0j
2

˘

`
ř

jďr`1
kăj

tr`1,jpA ´ T qr`1,k `
ř

jąr`1

tr`1,j

´

ř

kďn´j

pA ´ T qr`1,k `
ř

|k´r´1|ăj

pA ´ Tθqr`1,k

¯

´
ř

jąr`1

`

1`tr`1,j

2

˘

.

(4.2.7)

Proof. It is due to the construction of wA,T .

Lemma 4.2.4. Let T P ΘB,A, we have

ÿ

wPφ´1pT q

qℓpwq “ qℓpwA,T q rAs!c

rA ´ Tθs!crT s!a
. (4.2.8)
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Proof. For each pi, jq P I`
a , its contribution to

ř

wPφ´1pT q

qℓpwq is
raijs

!
a

rtijs!art´i,´js
!
araij ´ ptθqijs!a

.

For the pk, kq-th entry where k P t0, r ` 1u, we need the well-known q-binomial

theorem
n

ÿ

r“0

„

n

r

ȷ

q
rpr´1q

2 xr “

n
ź

k“1

p1 ` qk´1xq. (4.2.9)

Recall the notation a1
ij from (3.2.2). The contribution of pk, kq-th entry to

ř

wPφ´1pT q

qℓpwq

is given by

ÿ

x`y“tkk

„

a1
kk

x

ȷ„

a1
kk ´ x

y

ȷ

q
xpx`1q

2
`xpa1

kk´tkkq “

„

a1
kk

tkk

ȷ tkk
ÿ

x“0

„

tkk
x

ȷ

q
xpx´1q

2 pqa
1
kk`1´tkkqx

“

„

a1
kk

tkk

ȷ tkk
ź

i“1

p1 ` qi´1qa
1
kk´tkk`1q

“

„

a1
kk

tkk

ȷ tkk
ź

i“1

rakk ` 1 ´ 2is

ra1
kk ` 1 ´ is

“

tkk
ź

i“1

rakk ` 1 ´ 2is

rtkk ` 1 ´ is

“
rakks!c

rakk ´ 2tkks!crtkks!a
.

Thus

ÿ

wPφ´1pT q

qℓpwq “ qℓpwA,T q
ź

pi,jqPI`
a

raijs
!
a

rtijs!art´i,´js
!
araij ´ ptθqijs!a

ź

k“0,r`1

rakks!c

rakk ´ 2tkks!crtkks!a

“ qℓpwA,T q rAs!c

rA ´ Tθs!crT s!a
.

Example 4.2.5. Let r “ 2, n “ 6, d “ 8 andD “ 18. Let B “ E00`2
ř

1ďi,jď2

Eij
θ `E33
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and A “ E00 `
2

ř

i“1

4
ř

j“1

Eij
θ ` E33, Namely,

B “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

1

2 2

2 2

1

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

1

1 1 1 1

1 1 1 1

1

1 1
. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where the column/row surrounded by solid lines is the 0th column/row. Therefore,

λ “ µ “ p0, 4, 4, 0q, ν “ p0, 2, 4, 2q. Hence

Dδ X Wµ “ txy | x P S1, y P S2u ,

where S1 “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

r1, 2, 3, 4sc, r3, 1, 2, 4sc,

r1, 3, 2, 4sc, r3, 1, 4, 2sc,

r1, 3, 4, 2sc, r3, 4, 1, 2sc

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

and S2 “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

r5, 6, 7, 8sc, r7, 5, 6, 8sc,

r5, 7, 6, 8sc, r7, 5, 8, 6sc,

r5, 7, 8, 6sc, r7, 8, 5, 6sc

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

.

We also have

i ´2 ´1 0 1 2 3

Rδ
3i´1 ∅ r´4.. ´ 3s ∅ ∅ r5..6s ∅

and

j 0 1 2 3 4

g2R
ν
j t0u t1, 5u t2, 6, 10, 14u t3, 7, 9, 11, 15u t4, 8, 12, 16u

There are nine distinct matrices T “ φpwq P Impφq with the ´1st and 2nd rows given
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by

T´1,˚ tx P S1 | φpxyq “ T u

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

0

1 1 0 0

0

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

tr1, 2, 3, 4scu

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

0

1 0 1 0

0

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

r1, 3, 2, 4sc,

r1, 3, 4, 2sc,

r3, 1, 2, 4sc,

r3, 1, 4, 2sc

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

0

0 0 1 1

0

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

tr3, 4, 1, 2scu

T2,˚ ty P S2 | φpxyq “ T u

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

0

1 1 0 0

0

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

tr5, 6, 7, 8scu

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

0

1 0 1 0

0

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

r5, 7, 6, 8sc,

r5, 7, 8, 6sc,

r7, 5, 6, 8sc,

r7, 5, 8, 6sc

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

0

0 0 1 1

0

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

tr7, 8, 5, 6scu
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4.3 Multiplication formulas for Hecke algebras

In this section, we deal with (4.1.1) for B “ κpλ, g1, µq is tridiagonal. In this special

case, g1 is the permutation “swapping” Rδ
3i´2 and Rδ

3i´1 for any i, and hence it can

be written as g1 “
r`1
ś

i“1

g
piq
1 , where g

piq
1 P W is determined by

g
piq
1 pxq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

x ` bi´1,i if x P Rδ
3i´2 Ă Rµ

i´1,

x ´ bi,i´1 if x P Rδ
3i´1 Ă Rµ

i ,

x if x P r1..dszpRδ
3i´2 Y Rδ

3i´1q.

(4.3.1)

Lemma 4.3.1. For i “ 1, . . . , r ` 1, assume that Rδ
3i´2 “ rm ` 1..m ` αs and

Rδ
3i´1 “ rm ` α ` 1..m ` α ` βs for some m,α, β P N. Then g

piq
1 has a reduced

expression

g
piq
1 “ psm`β ¨ ¨ ¨ sm`2sm`1qpsm`β`1 ¨ ¨ ¨ sm`2q ¨ ¨ ¨ psm`β`α´1 ¨ ¨ ¨ sm`αq. (4.3.2)

Proof. By direct computation, sm`β`t´1 ¨ ¨ ¨ sm`t is the permutation on rm ` t..m `

t ` βs sending

m ` β ` t ÞÑ m ` t, m ` β ` t ´ 1 ÞÑ m ` β ` t, . . . , m ` t ÞÑ m ` t ` 1.

Lemma then follows from (4.3.1).

For any i “ 1, 2, . . . , r ` 1 and w P Dδ X Wµ, define K
piq
w to be the set in which

element is a product of disjoint transpositions such that each transposition pj, kqc

satisfies

j P Rδ
3i´2, k P Rδ

3i´1, pwg2q
´1pkq ă pwg2q

´1pjq. (4.3.3)
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We also define

Kw :“

#

r`1
ź

i“1

σpiq

ˇ

ˇ

ˇ

ˇ

ˇ

σpiq P Kpiq
w

+

. (4.3.4)

Since each elements of Kw Ă W is a product of disjoint transpositions, We note here

that σ´1 “ σ for any σ P Kw. For w P Dδ X Wµ, denote the number of disjoint

transpositions in σ P Kw by

npσq “

r`1
ÿ

i“1

si, if σ “

r`1
ź

i“1

si
ź

l“1

pj
piq
l k

piq
l qc. (4.3.5)

We also set hpw, σq “ |Hpw, σq|, where

Hpw, σq “

r`1
ď

i“1

$

’

’

&

’

’

%

pj, kq P Rδ
3i´2 ˆ Rδ

3i´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pwg2q´1σpjq ą pwg2q´1pkq,

pwg2q
´1pjq ą pwg2q

´1σpkq

,

/

/

.

/

/

-

(4.3.6)

for w P Dδ X Wµ, σ P Kw.

Lemma 4.3.2. Assume that w1, w2 P Dδ X Wµ. If φpw1q “ φpw2q, then Kw1 “ Kw2

and Hpw1, σq “ Hpw2, σq for any σ P Kw1 “ Kw2.

Proof. Since φpw1q “ φpw2q, we have that for any x P Rδ
3i´2 Y Rδ

3i´1, w
´1
1 pxq and

w´1
2 pxq lie in the same entry of AP

std. Thus for any j P Rδ
3i´2 and k P Rδ

3i´1,

g´1
2 w´1

1 pkq ă g´1
2 w´1

1 pjq if and only if g´1
2 w´1

2 pkq ă g´1
2 w´1

2 pjq. So Kw1 “ Kw2

and Hpw1, σq “ Hpw2, σq by the definition (4.3.3) and (4.3.6).

As a consequence, for T P ΘB,A, the set below is well-defined:

KpT q “ Kw for some w P φ´1pT q, (4.3.7)



61

so is

hpT, σq “ hpw, σq for some w P φ´1pT q, σ P KpT q. (4.3.8)

In below we compute the non-trivial structure constants for Hecke algebras which re-

flect the fact that the tridiagonal generator is not necessary bar-invariant (cf. Remark

5.2.10).

Theorem 4.3.3. For w P Dδ X Wµ, we have

Tg1Twg2 “
ÿ

σPKw

pq ´ 1qnpσqqhpw,σqTg1σwg2 . (4.3.9)

See (4.3.5) and (4.3.6) for npσq and hpw, σq, respectively.

Proof. It suffices to show that for all 1 ď i ď r ` 1, we have

T
g

piq
1
Twg2 “

ÿ

σPK
piq
w

pq ´ 1qnpσqqhpw,σqT
g

piq
1 σwg2

(4.3.10)

By Lemma 4.3.1, we have

T
g

piq
1

“ pTm`β ¨ ¨ ¨Tm`1qpTm`β`1 ¨ ¨ ¨Tm`2q ¨ ¨ ¨ pTm`β`α´1 ¨ ¨ ¨Tm`αq. (4.3.11)

Write g “ sm`β`α´1 ¨ ¨ ¨ sm`α and x “ wg2 for short. We start with showing

TgTwg2 “ qQpx,j,1qTgx ` pq ´ 1q
ÿ

kPRδ
3i´1

x´1pjqąx´1pkq

qQpx,j,pj,kqqTgpj,kqx, (4.3.12)

where

Qpx, j, σq “ |tk P Rδ
3i´1 | x´1pkq ă pσxq´1pjqu|

“ |tk P Rδ
3i´1 | pσxq´1pkq ă pσxq´1pjqu|,

(4.3.13)
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which counts the number of elements in Rδ
3i´1 that are to the left of j on the one-line

notation for σx. Recall first that for si P S, y P W , that ℓpsiyq “ ℓpyq´1 is equivalent

to y´1pi ` 1q ă y´1piq. So we have

TiTy “

$

’

’

’

&

’

’

’

%

Tsiy if y´1pi ` 1q ą y´1piq,

qTsiy ` pq ´ 1qTy if y´1pi ` 1q ă y´1piq.

Let km be the mth smallest number in the set tk P Rδ
3i´1 | x´1pjq ą x´1pkqu. If

this set is empty, then TgTx “ Tgx and we are done. Now we assume that this set is

non-empty. Let y “ sk1´2sk1´1 . . . sjx, we have

y´1pk1q “ x´1pk1q ă x´1pjq “ y´1pk1 ´ 1q,

and thus

Tk1´1 . . . Tj`1TjTx “ Tk1´1Tsk1´2...sjx “ qTsk1´1sk1´2...sjx ` pq ´ 1qTsk1´2...sjx.

On the other hand, by assumption x´1 is order-preserving on Rδ
3i´2 and thus each km

must be in Rδ
3i´1. Now we show that the RHS is pq ´ 1q2-free: we will show that if

the coefficient of Ty in TaTa´1 . . . TjTx is a nonzero multiple of q ´ 1, then y must be

of the form

y “ sasa´1 . . . psb . . . sjx, a ě b ě k1 ´ 1, b “ ki ´ 1 for some i.

The initial case (i.e., pq ´ 1qTsk1´1...sjx) is indeed of the form (with a “ b “ k1 ´ 1).

It suffices to show that if y is of the form, then ℓpsj`a`1yq ą ℓpyq and hence further

multiplication does not produce pq ´ 1q’s anymore.
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Note that y´1pa ` 2q “ x´1pa ` 2q and

y´1pa ` 1q “

$

’

’

’

&

’

’

’

%

x´1pa ` 1q if a “ b,

x´1pb ` 1q if a ą b.

Since a ` 2 ą a ` 1 ě b ` 1 ě k1, so these numbers all lie in Rδ
3i´1. Again by the

assumption that x´1 is order-preserving on Rδ
3i´1, we have x

´1pa` 2q ą x´1pa` 1q ě

x´1pb ` 1q and hence y´1pa ` 2q ą y´1pa ` 1q. In other words, we have

TgTx “ qQpx,j,1qTgx ` pq ´ 1q
ÿ

k“ki

qi´1Tsj`β´1...psk´1...sjx,

where sj`β´1 . . . psk´1 . . . sjx “ gsj . . . sk´2sk´1sk´2 . . . sjx “ gpj, kqx. Finally,

i ´ 1 “ #tk P Rδ
3i´1 | k ă ki, x

´1pkq ă x´1pjqu “ Qpx, j, pj, kiqq.

We repeat the procedure. Let η “ pm ` α,m ` α ` xqc, we have

tk P Rδ
3i´1|pηwg2q´1pkq ă pηwg2q

´1pm ` α ´ 1qu

“ tk P Rδ
3i´1|pwg2q

´1pkq ă pwg2q
´1pm ` α ´ 1quztm ` α ` xu

“ tk P Rδ
3i´1|pwg2q

´1pkq ă pwg2q
´1ηpm ` α ´ 1q, pwg2q

´1ηpkq ă pwg2q´1pm ` α ´ 1qu.

Hence

pTsm`β`α´2
¨ ¨ ¨Tsm`α´1qpTsm`β`α´1

¨ ¨ ¨Tsm`αqTwg2

“
ÿ

ζ

pq ´ 1qnpζqqh
1pζqTsm`β`α´2¨¨¨sm`α´1sm`β`α´1¨¨¨sm`αζwg2 .

(4.3.14)

where ζ runs over 1, pm`α´1, k1qc, pm`α, k2qc, pm`α´1, k1qcpm`α, k2qc, pk1 ‰ k2q
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with wg2
´1pm ` α ´ 1q ą wg2

´1pk1q and wg2
´1pm ` αq ą wg2

´1pk2q, and

h1pζq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

$

’

’

&

’

’

%

pj, kq P Rδ
3i´2 ˆ Rδ

3i´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j “ m ` α or m ` α ´ 1,

pwg2q
´1ζpjq ą pwg2q

´1pkq, pwg2q´1pjq ą pwg2q
´1ζpkq

,

/

/

.

/

/

-

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Equation (4.3.10) follows by repeating similar arguments several times.

With the assumption that B is tridiagonal, (4.1.1) can be written as

Tg1Twg2 “
ÿ

σPKw

pq ´ 1qnpσqqhpw,σqTg1σwg2 . (4.3.15)

Example 4.3.4. Retain the notation as in Example 4.2.5. In this section, we use a

two-by-four submatrix for short when there is no ambiguity. That is,

B “

2 2 0 0
2 2 0 0 , A “

1 1 1 1
1 1 1 1 .

Thus, g1 “ gstd
´

1234
5678

¯

“ r1, 2, 5, 6, 3, 4, 7, 8sc is obtained by column-reading

(see (3.1.1)). Also, we have

i 0 1 2 3 4 5 6 7 8 9

Rδ
i t0u r1..2s r3..4s r5..6s r7..8s t9u

That is, g1 “ g
p2q

1 “ ps4s3qps5s4q with m “ α “ β “ 2. Also, g2 “ gstd
´

1 2 3 4
5 6 7 8

¯

“

r1, 5, 2, 6, 3, 7, 4, 8sc.



65

Now write T
a b c d
e f g h

“ Tx where x “ gstd
´

a b c d
e f g h

¯

for short. We have

T4T 1 2 3 4
5 6 7 8

“ qT
1 2 3 5
4 6 7 8

` pq ´ 1qT
1 2 3 4
5 6 7 8

,

T5T4T 1 2 3 4
5 6 7 8

“ q2T
1 2 3 6
4 5 7 8

` pq ´ 1q

´

qT
1 2 3 5
4 6 7 8

` T
1 2 3 4
6 5 7 8

¯

.

Let us deal with the simplest case w “ 1 here. We have

Kp1q
w “ Kp3q

w “ t1u, Kp2q
w “ Kw “ t1, p3, 5q, p3, 6q, p4, 5q, p4, 6q, p3, 5qp4, 6q, p3, 6qp4, 5qu,

and Tg1Twg2 “
ř

pq ´ 1qnpσqqhpσqTg1σwg2 with

Tg1σwg2 σ npσq hpw, σq

T
5 6

3 4

1 0 4

T
4 6

3 5

p3, 6q 1 3

T
3 6

5 4

p3, 5q 1 2

T
5 4

3 6

p4, 6q 1 2

T
3 4

5 6

p3, 5qp4, 6q 2 1

T
5 3

6 4

p4, 5q 1 1

T
4 3

6 5

p3, 6qp4, 5q 2 0
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Lemma 4.3.5. If w P Dδ X Wµ and σ P Kw, then

ℓpg1q ` ℓpwq ` ℓpg2q “ ℓpg1σwg2q ` npσq ` 2hpw, σq. (4.3.16)

Proof. It follows from (4.3.15).

4.4 Multiplication formulas with tridiagonal gen-

erators

For any w P Dδ X Wµ and σ P Kw, denote the shortest representative in the double

coset Wλg1σwg2Wν by ypw,σq P Dλν . We further set Apw,σq “ pa
pw,σq

ij q “ κpλ, ypw,σq, νq.

Now, for each element σ “
r`1
ś

i“1

σpiq P Kw such that σpiq P K
piq
w , we fix the unique

expression σpiq “
si
ś

l“1

pj
piq
l , k

piq
l qc satisfying

j
piq
1 ă j

piq
2 ă ¨ ¨ ¨ ă jpiq

si
. (4.4.1)

We further set s´i “ si`1 for 0 ď i ď r and

j
p´iq
l “ k

pi`1q

si`1´l`1, k
p´iq
l “ j

pi`1q

si`1´l`1 for 0 ď i ď r, 1 ď l ď si. (4.4.2)

Hence the permutations σp´iq “
s´i
ś

l“1

pj
p´iq
l , k

p´iq
l qc for 0 ď i ď r satisfy (4.4.1) as well.

For w P Dδ X Wµ,we define a map ψw : Kw Ñ Θn by

ψwpσqij “ |Rδ
3i´1 X σpRδ

3i´2q X wg2R
ν
j |

“ |tk
piq
l u

si
l“1 X wg2R

ν
j |.

(4.4.3)



67

For any matrix T , recall pT from (2.3.2). Assume that S “ ψwpσq for some w P DδXWµ

and σ P Kw. By (4.4.2) we have

psij “ |tk
pi`1q

l ul X wg2R
ν
j |,

s´i,´j “ |tj
pi`1q

l ul X wg2R
ν
j |,

ppsq´i,´j “ |tj
piq
l ul X wg2R

ν
j |.

(4.4.4)

For any matrix S “ psijq, denote by S: “ ps:
ijq the matrix obtained by rotating the

matrix pS by 180 degrees and then shifting up entries by one row, namely,

s:
ij “ s1´i,´j “ ppsq´i,´j. (4.4.5)

For T P ΘB,A (cf. (4.2.1)), we set

ΓT “ tS P Θ | S ď T, roapSq “ roapS
:qu. (4.4.6)

Lemma 4.4.1. For w P Dδ XWµ, we have

ψwpKwq Ă Γφpwq.

Proof. For each σ P Kw, it follows from (4.4.2) that roapψwpσqq “ roapψwpσq:q. Also,

by Lemma 4.2.2) we have

|tk
piq
1 , k

piq
2 , . . . , k

piq
si

u X wg2R
ν
j | ď |Rδ

3i´1 X wg2R
ν
j | “ φpwqij,

and hence ψwpσq ď T .

For T P ΘB,A, S P ΓT , set

ApT,Sq “ A ´ pT ´ Sqθ ` p{T ´ Sqθ, (4.4.7)
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Lemma 4.4.2. For w P Dδ XWµ and σ P Kw, we have

Apw,σq “ ApT,Sq, (4.4.8)

where T “ φpwq (cf. (4.2.2)) and S “ ψwpσq (cf. (4.4.3)).

Proof. By the definitions (4.2.2) and (4.4.3), we have

pT ´ Sqij “ |pRδ
3i´1 ´ σpRδ

3i´2qq X wg2R
ν
j |,

pT ´ Sq´i,´j “ |pRδ
3i`1 ´ σpRδ

3i`2qq X wg2R
ν
j |,

p {T ´ Sqqij “ |pRδ
3i`2 ´ σpRδ

3i`1qq X wg2R
ν
j |,

p{T ´ Sq´i,´j “ |pRδ
3i´2 ´ σpRδ

3i´1qq X wg2R
ν
j |.

(4.4.9)

Recall from Lemma 4.2.1 that g´1
1 Rλ

i “ Rδ
3i´2 Y Rδ

3i Y Rδ
3i`2 We have

a
pw,σq

ij “ |Rλ
i X g1σwg2R

ν
j | “ |σg´1

1 Rλ
i X wg2R

ν
j |

“ |σpRδ
3i´2q X wg2R

ν
j | ` |Rδ

3i X wg2R
ν
j | ` |σpRδ

3i`2q X wg2R
ν
j |.

(4.4.10)

Again by Lemma 4.2.1, we have Rµ
i “ Rδ

3i´1 Y Rδ
3i YRδ

3i`1, and hence

aij “ |Rδ
3i´1 Y Rδ

3i Y Rδ
3i`1 X wg2R

ν
j |

“ a
pw,σq

ij ´ ppT ´ Sqθqij ` pp{T ´ Sqθqij.
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Example 4.4.3. Following Example 4.2.5, we choose T to be the matrix

T “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

0

1 1 0 0

0

1 1 0 0

0

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ E21 ` E22 ` E´1,´4 ` E´1,´3.

For any matrix M “ pmijq, we use another short-hand notation by writing

Ma “
ÿ

pi,jqPI`

mθ,ijE
ij. (4.4.11)

Therefore we have

Ta “

0 0 1 1
1 1 0 0 .

In this case we have φ´1pT q “ t1u. Moreover, by Example 4.3.4 we have

KpT q “ t1, p3, 5qc, p3, 6qc, p4, 5qc, p4, 6qc, p3, 5qcp4, 6qc, p3, 6qcp4, 5qcu.
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The complete list of S P ΓT is given by

S Sa ψ´1
w pSq

0

0 0 0 0
0 0 0 0 t1u

E´1,´3 ` E21

0 0 1 0
1 0 0 0 tp3, 5qcu

E´1,´3 ` E22

0 0 1 0
0 1 0 0 tp3, 6qcu

E´1,´4 ` E21

0 0 0 1
1 0 0 0 tp4, 5qcu

E´1,´4 ` E22

0 0 0 1
0 1 0 0 tp4, 6qcu

T

0 0 1 1
1 1 0 0 tp3, 5qcp4, 6qc, p3, 6qcp4, 5qcu

We define an element σw,S “
r`1
ś

i“1

si
ś

l“1

pj
piq
l , k

piq
l qc P ψ´1

w pSq satisfying the following

conditions.

(S1) k
piq
1 ă k

piq
2 ă ¨ ¨ ¨ ă k

piq
si for all i.

(S2) w´1ptk
piq
l ulq X g2R

ν
j consists of the largest sij elements in w´1Rδ

3i´1 X g2R
ν
j for

all i;

It follows from (4.4.1) that Conditions (S1) and (S2) together imply the condition

below:

(S3) w´1ptj
piq
l ulq X g2R

ν
j consists of the smallest sij elements in w´1Rδ

3i´2 X g2R
ν
j for

all i.
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For S P ΓT , recall S
: from (4.4.5) and set

JSK “

r`1
ź

i“1

JSKi , (4.4.12)

where

JSKi “
ź

jPZ

„

ř

kďj

pS ´ S:qik

s:
i,j`1

ȷ

a

rs:
i,j`1s

!
a. (4.4.13)

Each JSKi counts the “quantum number” of pairs px, yq in the following sense:

1. The element x contributes to the ith row of S. That is, x P tk
piq
l u

si
l“1;

2. The element y contributes to the ith row of S:. That is, y P tj
piq
l u

si
l“1;

3. The element x is “to the left” of y as elements in AP
std.

Lemma 4.4.4. Let T P ΘB,A and S P ΓT . For any w P φ´1pT q, we have

ÿ

σPψ´1
w pSq

q´hpw,σq “

„

T

S

ȷ

a

JSK q´hpw,σw,Sq (4.4.14)

Proof. Let si “ roapSqi “ roapS
:qi for all i. By definition, each σ P ψ´1

w pSq can be

reconstructed by the following steps:

1. For 1 ď i ď r ` 1, j P Z, choose s:
i,j elements from the set Rδ

3i´2 X wg2R
ν
j .

2. Let jσ “ tj
piq
1 , j

piq
2 , . . . , j

piq
si u be the set of elements chosen from

Ť

jPZ
Rδ

3i´2 Xwg2R
ν
j

such that

j
piq
1 ă j

piq
2 ă ¨ ¨ ¨ ă jpiq

si
.

3. For 1 ď i ď r ` 1, j P Z, choose si,j elements from the set Rδ
3i´1 X wg2R

ν
j .
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4. Let kσ “ tk
piq
1 , k

piq
2 , . . . , k

piq
si u be the set of elements chosen from

Ť

jPZ
Rδ

3i´1Xwg2R
ν
j

such that

pwg2q
´1pjpiq

s q ą pwg2q
´1pkpiq

s q, for s “ 1, 2, . . . , si.

Note that it is not necessary that k
piq
1 ă k

piq
2 ă ¨ ¨ ¨ ă k

piq
si .

5. Set σ “
r`1
ś

i“1

pj
piq
1 , k

piq
1 qc ¨ ¨ ¨ pj

piq
si , k

piq
si qc.

For those σ P ψ´1
w pSq having the same kσ (say kσ “ K ), we pick a representative

σ◁K “

r`1
ź

i“1

pj
piq
1 , k

piq
1 qc ¨ ¨ ¨ pjpiq

si
, kpiq

si
qc

such that k
piq
1 ă k

piq
2 ă ¨ ¨ ¨ ă k

piq
si . Hence the sum over such σ is then

ÿ

σPKw,kσ“K

q´hpw,σq “ JSK q´hpw,σ◁Kq, (4.4.15)

In other words, any σ showed up in (4.4.15) must be of the form

σ “

r`1
ź

i“1

pj
piq
1 , k

piq
ϵp1q

qc ¨ ¨ ¨ pjpiq
si
, k

piq
ϵpsiq

qc, ϵ P Ssi , pwg2q
´1pjpiq

s q ą pwg2q
´1pk

piq
ϵpsq

q,

where Ssi is the symmetric group.on si letters. By a detailed calculation, we have

ÿ

ϵ

qℓpϵq “
ź

jPZ

„

ř

lďj

pS ´ S:qil

s:
i,j`1

ȷ

a

rs:
i,j`1s

!
a.

Also, we have

ÿ

σPKw,kσ“K

q´hpw,σq “

r`1
ź

i“1

ÿ

ϵ

qℓpϵqq´hpw,σ◁Kq,

where ϵ runs over all elements in Ssi such that

pwg2q
´1pjpiq

s q ą pwg2q´1pk
piq
ϵpsq

q, for all s.
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Therefore (4.4.15) holds. By the construction of σw,S we have

ÿ

K

q´hpw,σ◁Kq “

„

T

S

ȷ

a

q´hpw,σw,Sq. (4.4.16)

The lemma folloes by combining (4.4.15) and (4.4.16).

Example 4.4.5. Following Example 4.4.3, we pick the element S “ T P ΓT . Thus

Sa “

0 0 1 1
1 1 0 0 , S:

a “

1 1 0 0
0 0 1 1 , p

ÿ

kďj

pS ´ S:qikqik “

0 1 2 1
1 2 1 0 .

Therefore

„

T

S

ȷ

a

“ 1, JSK “

»

—

—

—

—

–

1 2 1 0

0 1 1 0

fi

ffi

ffi

ffi

ffi

fl

“ r2s, hpw, σw,Sq “ 1.

On the other hand, we have ψ´1
w pSq “ tp3, 5qcp4, 6qc, p3, 6qcp4, 5qcu, and hence

LHS “ q´0 ` q´1 “ q´1r2s “ RHS.

For T P ΘB,A and S P ΓT we set

npSq “

r`1
ÿ

i“1

roapSqi, (4.4.17)

and

hpT, Sq “

r`1
ÿ

i“1

8
ÿ

j“´8

sijp
j

ÿ

k“´8

tik ´
sij ` 1

2
q

`

r`1
ÿ

i“1

8
ÿ

j“´8

pt1´i,´j ´ s1´i,´jqp

j´1
ÿ

k“´8

tik `

8
ÿ

k“j

sik ´

8
ÿ

k“j`1

s1´i,´kq.

(4.4.18)

Lemma 4.4.6. For T P ΘB,A and S P ΓT , we have npσw,Sq “ npSq and hpT, σw,Sq “

hpT, Sq.
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Proof. The first statement is obvious since npσw,Sq is the number of disjoint transposi-

tions for σw,S. To compute hpT, σw,Sq, we count the elements in HpT, σw,Sq. There are

r`1
ř

i“1

8
ř

j“´8

pt1´i,´j´s1´i,´jqp
j´1
ř

k“´8

tik`
8
ř

k“j

sik´
8
ř

k“j`1

s1´i,´kq elements pu, vq P HpT, σw,Sq

such that σw,Spuq “ u while there are
r`1
ř

i“1

8
ř

j“´8

sijp
j

ř

k“´8

tik ´
sij`1

2
q elements pu, vq P

HpT, σw,Sq such that u appears in the disjoint transpositions of σw,S.

Finally, for A,B P Ξn, T P ΘB,A and S P ΓT , we set

ℓpA,B, S, T q “ ℓpAq ` ℓpBq ´ ℓpApT,Sqq ` ℓpwA,T q. (4.4.19)

We are now in the position of proving the multiplication formula.

Theorem 4.4.7. Let A,B P Ξn,d with B being tridiagonal and rocpAq “ cocpBq. Let

JSK , npSq, ℓpA,B, S, T q, hpS, T q, ApT,Sq be defined as in (4.4.12), (4.4.17), (4.4.19),

(4.4.18), (4.4.7) respectively. We have

eB ˚ eA “
ÿ

TPΘB,A

SPΓT

pq ´ 1qnpSqqℓpA,B,S,T q´npSq´hpS,T qrA;S;T s eApT,Sq , (4.4.20)

where

rA;S;T sc “
rApT,Sqs!c

rT ´ Ss!arSs!arA ´ Tθs!c
JSK , (4.4.21)

Precisely, we have

rA;S;T s “
ź

pi,jqPI`
a

„

pA ´ Tθq ` sij ` s´i,´j ` p{T ´ Sqij ` p{T ´ Sq´i,´j

pA ´ Tθq; sij; s´i,´j; p{T ´ Sqij; p{T ´ Sq´i,´j

ȷ

¨
ź

kPt0,r`1u

¨

˚

˚

˚

˝

skk`p zT´Sqkk
ś

i“1

rakk ´ 2tkk ´ 1 ` 2is

rskks!arp
{T ´ Sqkks!a

˛

‹

‹

‹

‚

¨ JSK .
(4.4.22)
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Proof.

eB ˚ eA

“
ÿ

wPDδXWµ

σPKw

pq ´ 1qnpσqqhpw,σq`ℓpg1σwg2q´ℓpypw,σqq rApw,σqs!c

rAs!c
eApw,σq by (4.1.2), (4.3.15)

“
ÿ

wPDδXWµ

σPKw

pq ´ 1qnpσqqℓpg1q`ℓpwq`ℓpg2q´ℓpypw,σqq´npσq´hpw,σq rApw,σqs!c

rAs!c
eApw,σq by (4.3.16)

“
ÿ

TPΘB,A

SPΓT

pq ´ 1qnpSqqℓpA,B,S,T q´npSq´hpS,T qrA;S;T seApT,Sq . by (4.2.8), (4.4.14)

Finally, ApT,Sq “ A ´ pT ´ Sqθ ` p{T ´ Sqθ because of Lemma 4.4.2.

4.5 Multiplication formulas with quasi-bidiagonal

generators

For any matrix T P Θn, recall diagpT q and T˘ from (2.3.1). In this sectoin we discuss

the special case when B˘ “
r

ř

i“0

bi,i`1E
i,i`1
θ or B˘ “

r
ř

i“0

bi`1,iE
i`1,i
θ . Note that g1 “ 1
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here. Namely,

B “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

. . . ˚

b12 ˚

b01 ˚ b01

˚ b12

˚
. . .

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

or

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . . . . .

˚ b21

˚ b10

˚

b10 ˚

b21 ˚

. . . . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Below is a special case of multiplication formula (see Theorem 4.4.7), which is anal-

ogous to the multiplication formulas in affine type A.

Theorem 4.5.1. If B˘ “
r

ř

i“0

bi,i`1E
i,i`1
θ or

r
ř

i“0

bi`1,iE
i`1,i
θ and rocpAq “ cocpBq. Then

eB ˚ eA “
ÿ

TPΘB,A

qℓpwA,T q`ℓpAq´ℓpApT,0qq rApT,0qsc!

rA ´ T θsc!rT sa!
eApT,0q .

Proof. This is due to (4.4.20), where S is always the zero matrix therein.

Let ϵθij be the pi, jq-th entry of Ei,j
θ . That is,

ϵθij “

$

’

’

&

’

’

%

2 if pi, jq P Zpr ` 1, r ` 1q;

1 otherwise.

(4.5.1)

Below is a another special case with Chevalley generators, whose coefficients are

compatible with the multiplication formulas for finite type B/C.

Corollary 4.5.2. Let 0 ď h ď r.
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(a) If B˘ “ Eh,h`1
θ and rocpAq “ cocpBq, then

eB ˚ eA “
ÿ

pPZ
ah`1,pěϵθh`1,p

q

ř

jąp
ahj

rahp ` 1seA`Ehp
θ ´Eh`1,p

θ
.

(b) If B˘ “ Eh`1,h
θ and rocpAq “ cocpBq, then

eB ˚ eA “
ÿ

pPZ
ahpěϵθhp

q

ř

jăp
ah`1,j

rah`1,p ` 1seA´Ehp
θ `Eh`1,p

θ
.
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Chapter 5

Monomial bases for affine Schur
algebras of type C

In this chapter, we first define a partial order on the index set of affine q-Schur algebra

that refines the Bruhat order. Then we show that applying the bar involution on

any standard basis element rAs leads to itself plus a combination of lower terms with

respect to this partial order. We provide an elementary construction (Algorithm 5.2.7)

of a semi-monomial basis using the multiplication formula on admissible pairs (cf.

Section 5.2). We then obtain a monomial basis (Proposition 5.2.11) and a canonical

basis.

5.1 Bar involutions and standard bases

By slightly abuse of notation, let ď be the (strong) Bruhat order on W . Following

[KL79], denote by tC 1
wu the Kazhdar-Lusztig basis of the Hecke algebra H character-

ized by the following condition.

C 1
w “ v´ℓpwq

ÿ

yďw

PywTy pw P W q,
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where Pyw P Zrv2s is the Kazhdar-Lusztig polynomial.

For λ, µ P Λ, set g`
λµ to be the longest element in WλgWµ for g P Dλµ, and set

wµ˝ “ 1
`
µµ to be the longest element in the (finite) parabolic subgroup Wµ “ Wµ1Wµ.

Lemma 5.1.1. Let λ, µ P Λ, g P Dλµ, and let δ “ δpλ, g, µq (see Proposition 3.1.4).

Then:

paq g`
λµ “ wλ˝gw

δ
˝w

µ
˝ . In particular,

ℓpg`
λµq “ ℓpwλ˝ q ` ℓpgq ´ ℓpwδ˝q ` ℓpwµ˝ q.

pbq WλgWµ “ tw P W | g ď w ď g`
λµu.

pcq There exists c
pλ,µq
w,g P Zrv, v´1s such that

TWλgWµ “ vℓpg
`
λµqC 1

g`
λµ

`
ÿ

wPDλµ
wăg

cpλ,µq
w,g C

1

w`
λµ
.

In particular, xµ “ vℓpw
µ
˝ qC 1

wµ
˝
.

Proof. See [Cur85, Theorem 1.2 (ii), (1.11)] and [DDPW08, Corollary 4.19].

Denote the bar involution on H by ¯ : H Ñ H, v ÞÑ v´1, Tw ÞÑ T´1
w´1 . By [KL79,

Theorem 1.1], C 1
w is bar-invariant for w P W . Following [Du92, Proposition 3.2],

we define the bar involution on Sc
n,d as follows: for each f P HomHpxµH, xλHq, let

f P HomHpxµH, xλHq be the map sending C 1
wµ

˝
to fpC 1

wµ
˝
q. Equivalently,

fpxµHq “ v2ℓpw
µ
˝ qfpxµqH for H P H.
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In particular, for A “ κpλ, g, µq P Ξn, by Lemma 5.1.1 we have

eApC 1
wµ

˝
q “ vℓpg

`
λµq´ℓpwµ

˝ qC 1

g`
λµ

`
ÿ

wPDλµ
wăg

v´ℓpwµ
˝ qcpλ,µq

w,g C
1

w`
λµ
, (5.1.1)

eApC 1
wµ

˝
q “ vℓpw

µ
˝ q´ℓpg`

λµqC 1

g`
λµ

`
ÿ

wPDλµ
wăg

vℓpw
µ
˝ qc

pλ,µq
w,g C

1

w`
λµ
. (5.1.2)

For A P Ξn, we define a number

dA “
1

2

´

ÿ

pi,jqPI`

´

ÿ

xďi,yąj

`
ÿ

xěi,yăj

¯

a1
ijaxy

¯

. (5.1.3)

It can be checked that dA P Z. Set

rAs “ v´dAeA.

Then trAs | A P Ξn,du is a Zrv, v´1s-basis of Sc
n,d, which we call the standard basis.

Proposition 5.1.2. Assume that A “ κpλ, g, µq P Ξn. There exists γ
pλ,µq
w,g P Zrv, v´1s

for each w P Dλµ such that

rAs “ rAs `
ÿ

wPDλµ
wăg

γpλ,µq
w,g rκpλ,w, µqs.

Proof. Set δ “ δpAq, by Lemma 5.1.1(b) we have

ℓpg`
λµq ´ ℓpwµ˝ q “ ℓpgq ` ℓpwλ˝ q ´ ℓpwδ˝q.
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Here

ℓpwλ˝ q ´ ℓpwδ˝q “ λ20 `

r
ÿ

i“1

ˆ

λi
2

˙

` λ2r`1 ´

˜

pδ0q
2 `

r1
ÿ

i“1

ˆ

δi
2

˙

` pδr1`1q2

¸

“ 2
ÿ

0ďjăx

a1
0ja0x `

ÿ

ją0

ˆ

a0j ` 1

2

˙

`
ÿ

jăy
1ďiďr

aijaiy

` 2
ÿ

jăxďr`1

ar`1,ja
1
r`1,x `

ÿ

jăr`1

ˆ

ar`1,j ` 1

2

˙

“
1

2

´

ÿ

pi,jqPI`

`

ÿ

x“i
yąj

`
ÿ

x“i
yăj

˘

a1
ijaxy

¯

“ dA ´ ℓpAq.

Hence

dA “ ℓpg`
λµq ´ ℓpwµ˝ q. (5.1.4)

Therefore, Equations (5.1.1) and (5.1.2) can be rewritten as

rAspC 1
wµ

˝
q “ C 1

g`
λµ

`
ÿ

wPDλµ
wăg

v´ℓpg`
λµqcpλ,µq

w,g C
1

w`
λµ
, (5.1.5)

rAspC 1
wµ

˝
q “ C 1

g`
λµ

`
ÿ

wPDλµ
wăg

vℓpg
`
λµqc

pλ,µq
w,g C

1

w`
λµ
. (5.1.6)

If ℓpgq “ 0, then rAs “ rAs and we are done. For arbitrary g, the proposition follows

from an easy induction on ℓpgq.

Now we define a partial order ďalg on Ξn by A ďalg B if and only if rocpAq “ rocpBq,

cocpAq “ cocpBq and σi,jpAq ď σi,jpBq for all i ă j, where

σi,jpAq “
ÿ

xďi,yěj

axy. (5.1.7)
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Here the subscript “alg” stands for algebraic. In the following the expression “lower

terms” represents a linear combination of smaller elements with respect to ďalg.

Lemma 5.1.3. Assume that A “ κpλ, g, µq and B “ κpλ, h, µq. If h ď g then

B ďalg A.

Proof. By [BB05, Theorem 8.4.8], the condition h ď g is equivalent to that hrs, ts ď

grs, ts for all s, t P Z, where grs, ts “ |tpgpaq, aq P Zět ˆ Zďsu|. The bijections Rλ
x X

gRµ
y Ø tpgpaq, aq P Rλ

x ˆ Rµ
yu for x, y P Z give that, for i ă j,

σijpAq “
ÿ

xďi
yěj

axy “
ÿ

xě´i
yď´j

|Rλ
x X gRµ

y | “ grs, ts,

where s is the largest element in Rλ
´i and t is the smallest element in Rµ

´j. Therefore,

σijpBq “ hrs, ts ď grs, ts “ σijpAq.

Corollary 5.1.4. If A P Ξn, then rAs “ rAs ` lower terms.

Proof. It follows by combining Proposition 5.1.2 and Lemma 5.1.3.

In order to construct a limit algebra via the BLM stabilization procedure, one

needs to show that the coefficients in the multiplication formula “behave well”. It

is standard to put the multiplication formula in the standard basis (see [BLM90,

Lemma 3.4(a2)]). In our case, Theorem 4.4.7 can be written as

rBs ˚ rAs “
ÿ

TPΘB,A

SPΓT

vβpA,S,T qpv2 ´ 1qnpSqrA;S;T sc rApT,Sqs, (5.1.8)
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for some βpA, S, T q. What we need is an explicit formula for βpA, S, T q, which can

be derived as follows. Let γpA, S, T q to be the integer such that

rA;S;T s “ vγpA,S,T qrA;S;T s. (5.1.9)

Lemma 5.1.5. Let A P Ξn, T P ΘB,A for some tridiagonal matrix B, and S P ΓT .

Then

γpA, S, T q “ ´
ÿ

pi,jqPI`
a

psθ,ij ` p{T ´ Sqθ,ijqpsθ,ij ` p{T ´ Sqθ,ij ` 2aij ´ 2tθ,ij ´ 1q

´
ÿ

kPt0,r`1u

pakk ´ 1 ´ pT ´ Sqθ,kk ` p{T ´ Sqθ,kkqpsθ,kk ` p{T ´ Sqθ,kkq

` 2
n

ÿ

i“1

ÿ

jPZ

ˆˆ

pT ´ Sq

2

˙

`

ˆ

sij
2

˙˙

` 2
r`1
ÿ

i“1

ÿ

jPZ

s:
i,j`1ps:

i,j`1 ´
ÿ

kďj

pS ´ S:qikq ´

ˆ

s:
i,j`1

2

˙

.

(5.1.10)

In particular, by setting d1pAq “ 2ℓpAq ´ dA, we have

βpA, S, T q “ d1
B ` d1

A ´ d1
ApT,Sq ` ℓpwA,T q ` γpA, S, T q. (5.1.11)

Proof. By direct computation, we have

rAs!a “ q
´

n
ř

i“1

ř

jPZ
p
aij
2 q

rAs!a,

rAs!c “ q
´pa1

00q2´pa1
r`1,r`1q2´

ř

pi,jqPI`
a

p
aij
2 q

rAs!c,

JSK “ q

r`1
ř

i“1

ř

jPZ
s:
i,j`1ps:

i,j`1´
ř

kďj
pS´S:qikq´p

s
:
i,j`1
2

q JSK .
The lemma follows from putting them together.
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Summarizing (5.1.8) and (5.1.11), we obtain the multiplication formula with tridi-

agonal generators for standard bases of Sc
n,d.

Theorem 5.1.6. Retain the assumptions as in Theorem 4.4.7. We have

rBs ˚ rAs “
ÿ

TPΘB,A

SPΓT

vβpA,S,T qpv2 ´ 1qnpSqrA;S;T sc rApT,Sqs.

5.2 Constructing monomial bases

A pair pB,Aq of matrices in Ξ2
n is called admissible if the following conditions hold

(see (2.3.1) for the notation ˘):

1. B˘ “
n
ř

i“1

bi,i`1E
i,i`1
θ ;

2. A˘ “
k

ř

j“1

n
ř

i“1

ai,i`jE
i,i`j
θ for some k P N, where ai,i`k ě bi,i`1 for all i.

Algorithm 5.2.1. Assume that A,B P Ξn,d, ropAq “ copBq and B is tridiagonal.

We produce a matrix M “ MpB,Aq P Ξn,d as follows.

(1) For each row i, find the unique j such that bi,i`1 P
`

ř

yąj

aiy..
ř

yěj

aiy
‰

.

(2) Construct a matrix T` P Θn by

T` “

n
ÿ

i“1

`

pbi,i`1 ´
ÿ

yąj

aiyqE
ij
θ `

ÿ

yąj

aiyE
iy
θ

˘

.

(3) Set M “ ApT`q.

Lemma 5.2.2. The highest term (with respect to ďalg) in (5.1.8) exists and its cor-

responding matrix is the matrix M described in Algorithm 5.2.1.



85

Proof. Note that

σijpA
pExy ,0qq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

σijpAq ` 1 if j ă i “ x ´ 1, j ď y,

σijpAq ´ 1 if j ą i “ x, j ě y,

σijpAq otherwise.

(5.2.1)

It follows that ApEij ,0q ăalg A
pEi,j`1,0q for all i, j P Z. Therefore, for any T P ΘB,A, S P

ΓT we have ApT´Sq ďalg A
pT q ďalg A

pT`q “ M .

The corollary below is a direct consequence of (5.2.1)

Corollary 5.2.3. If A1 ăalg A, then MpB,A1q ăalg MpB,Aq.

Lemma 5.2.4. If pB,Aq is admissible, then rA; 0;T`sc “ 1.

Proof. Now T` “
n
ř

i“1

bi,i`1E
i,i`k
θ , and hence

rA; 0;T`sc “
1

rT`s!a

rA ` pT`
θ ´ T`

θ s!c

rA ´ T`
θ s!c

“
1

n
ś

i“1

rmis

¨

n
ź

i“1

rmis “ 1.

Following Lemma 5.2.4, (5.1.8) can be rewritten as

rBs ˚ rAs “ vβpA,0,T`qrM s ` lower terms. (5.2.2)

One can show that βpA, 0, T`q “ 0 by a direct but lengthy computation. Here we

present a more elegant proof via the bar involution.

Lemma 5.2.5. If B is tridiagonal, and B1 ăalg B, then B1 is also tridiagonal. More-

over, pB1q˘ ă B˘.
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Proof. Since B1 ďalg B, we have

σi,i`2pB
1q ď σi,i`2pBq “ 0 for i “ 1, . . . , n.

Therefore σi,i`2pB
1q “ 0 for all i and hence B1 is tridiagonal. Also, we have

σi,i`1pB
1q “ b1

i,i`1 ď σi,i`1pBq “ bi,i`1 for i “ 1, . . . , n.

Since B1 ‰ B, hence pB1q˘ ă B˘.

Lemma 5.2.6. If pB,Aq is admissible, then βpA, 0, T`q “ 0. In other words,

rBs ˚ rAs “ rMpB,Aqs ` lower terms.

Proof. Write M “ MpB,Aq. By taking bar on (5.2.2), we get

rBs ˚ rAs “ v´βpA,0,T`qrM s ` lower terms.

By Proposition 5.1.2, we have

´

rBs `
ÿ

B1ăalgB

γB,B1rB1s

¯

˚

´

rAs `
ÿ

A1ăalgA

γA,A1rA1s

¯

“ v´βpA,0,T`qrM s ` lower terms.

For anyB1 ăalg B, by Lemma 5.2.5 we know that pB1q˘ ă B˘, and henceMpB1, Aq ăalg

M , by construction. Also, by Corollary 5.2.3 we have

MpB1, A1q ăalg MpB1, Aq ăalg M.

Therefore,

´

rBs `
ÿ

B1ăalgB

γB,B1rB1s

¯

˚

´

rAs `
ÿ

A1ăalgA

γA,A1rA1s

¯

“ rBs ˚ rAs ` lower terms

“ vβpA,0,T`qrM s ` lower terms.

By comparing the leading coefficient, we have βpA, 0, T`q “ 0.
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Below we provide an algorithm that constructs a monomial basis in a diagonal-by-

diagonal manner involving only admissible pairs. See [LL15] for a similar algorithm.

Algorithm 5.2.7. For each A “ paijq P Ξn,d, we construct tridiagonal matrices

Bp1q, . . . , Bpxq as follows:

1. Initialization: set t “ 0, and set Ap0q “ A.

2. If Aptq is a tridiagonal matrix, then end the algorithm. Otherwise, denote the

outermost nonzero diagonal of the matrixAptq “ pa
ptq
ij q by pT`qptq “

n
ř

i“1

a
ptq
i,i`kE

i,i`k
θ

for some k ą 0.

3. Define matrices

Bpt`1q “

n
ÿ

i“1

a
ptq
i,i`kE

i,i`1
θ ` a diagonal determined by (5.2.3),

Apt`1q “ Aptq ´ pT`qptq ` p pT`qptq.

4. Increase t by one and then go to Step (2).

Here the diagonal entries are uniquely determined by

cocpB
pt´1qq “ rocpB

ptqq, t “ 1, . . . , x ´ 1. (5.2.3)

Theorem 5.2.8. For each A P Ξn,d, the matrices Bp1q, . . . , Bpxq P Ξn,d in Algo-

rithm 5.2.7 satisfy that

rBp1qs ˚ rBp2qs ˚ ¨ ¨ ¨ ˚ rBpxqs “ rAs ` lower terms.
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Proof. Algorithm 5.2.7 guarantees that each pair pBpjq, Apjqq is admissible andMpBpjq, Apjqq “

Apj´1q for j “ 1, . . . , x ´ 1. Hence by Corollary 5.2.3 and by Lemma 5.2.6, we have

rBp1qs ˚ rBp2qs ˚ ¨ ¨ ¨ ˚
`

rBpx´1qs ˚ rBpxqs
˘

“ rBp1qs ˚ rBp2qs ˚ ¨ ¨ ¨ ˚
`

rBpx´1qs ˚ rApx´1qs
˘

“ rBp1qs ˚ rBp2qs ˚ ¨ ¨ ¨ ˚ rBpx´2qs ˚
`

rApx´2qs ` lower terms
˘

“ rAs ` lower terms.

Example 5.2.9. In the followings we give an example to show how the algorithm

works. Note that by Lemma 5.2.6 the leading coefficient in each intermediate step is

indeed one. Let r “ 2, n “ 6, and

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

3

3 2 2

0 0 5 4

3 4 1 1 3

3 2 1 2 3

3 1 1 4 3

4 5 0 0

2 2 3

3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We have

rAs “ rBp1qs ˚ rAp1qs ` lower terms, where
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Bp1q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

3

˚ 2

3 ˚ 4

3 ˚ 3

3 ˚ 3

3 ˚ 3

4 ˚ 3

2 ˚

3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Ap1q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0

3 5

ð 3

0

3 0 7

ð 2

0

0

ñ 3

7 1 5

ð 4

0

0
ñ 3

5 1 5

ð 3

0

0

ñ 3

5 1 7

ð 3

0

0

ñ 4

7 0 3

ð 3

0

ñ 2

5 3

0

ñ 3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

rAp1qs “ rBp2qs ˚ rAp2qs ` lower terms, where

Bp2q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

3

˚ 5

3 ˚ 7

7 ˚ 5

5 ˚ 5

5 ˚ 7

7 ˚ 3

5 ˚

3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Ap2q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

9

ð 3

0

0

ñ 3

12

ð 5

0

0

ñ 7

13

ð 7

0

0

ñ 5

11

ð 5

0

0

ñ 5

13

ð 5

0

0

ñ 7

12

ð 7

0

0

ñ 5

9

ð 3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Finally, we have

rAs “ rBp1qs ˚ rBp2qs ` lower terms.
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For A P Ξn, we define

m1
A “ rBp1qs ˚ rBp2qs ˚ ¨ ¨ ¨ ˚ rBpxqs. (5.2.4)

It is clear that tm1
A | A P Ξn,du is also a Zrv, v´1s-basis of Sc

n,d, which we call a

semi-monomial basis.

Remark 5.2.10. In general, the elementm1
A is not bar-invariant since for an arbitrary

tridiagonal matrix B, rBs is not necessarily bar-invariant. For example, take n “

2r ` 2 “ 4. Let

B “ E00 ` 2E01
θ ` E10

θ ` E22 “ κpp2, 1, 0q, s2s1, p1, 2, 0qq.

The matrix B is not minimal with respect to the Bruhat order nor the algebraic

partial order ďalg, since we have

B1 “ κpp2, 1, 0q,1, p1, 2, 0qq “ 3E00 ` E01
θ ` E11

θ ` E22,

with 1 ă s2s1.

By a standard argument one construct a monomial basis tmA | A P Ξn,du via the

semi-monomial basis tm1
A | A P Ξn,du.

Proposition 5.2.11. There exists a Zrv, v´1s-basis tmA | A P Ξn,du of Sc
n,d satisfying

the following properties.

1. mA is bar-invariant;

2. mA “ rAs`lower terms.
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5.3 A comparison of canonical bases

By a standard argument [Lu93, 24.2], one can construct a canonical basis ttAu | A P

Ξn,du from the monomial basis tmA | A P Ξn,du as below.

Corollary 5.3.1. There exists a unique Zrv, v´1s-basis ttAu | A P Ξn,du of Sc
n,d

satisfying the following properties:

1. tAu is bar-invariant;

2. tAu “ rAs `
ř

BăalgA

πB,ArBs for πB,A P v´1Zrv´1s.

By a similar construction to [Du92], we can define another canonical basis ttAu1 |A P

Ξn,du as follows. For A “ κpλ, g, µq for some λ, µ P Λ, g P Dλµ, let d
pλ,µq
w,g be the coeffi-

cients such that

C 1

g`
λµ

“
ÿ

wPDλµ

dpλ,µq
w,g TWλwWµ . (5.3.1)

In other words, pd
pλ,µq
w,g qw,g is the inverse matrix of pc

pλ,µq
w,g qw,g. Define

tAu1 “ vℓpw
µ
˝ q

ÿ

wPDλµ

dpλ,µq
w,g eκpλ,w,µq. (5.3.2)

The set ttAu1 | A P Ξn,du is a basis by construction. Precisely, tAu1 P HomHpxµ, xλq Ă

Sc
n,d is the map sending xµ to

vℓpw
µ
˝ q

ÿ

wPDλµ

dpλ,µq
w,g TWλwWµ “ vℓpw

µ
˝ qC 1

w`
λµ
. (5.3.3)

Equivalently, we have

tAu1pC 1
wµ

˝
q “ tAu1pv´ℓpwµ

˝ qxµq “ C 1

w`
λµ
. (5.3.4)
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Hence, tAu1 is bar-invariant. By a detailed calculation we can show that the ttAu1 |A P

Ξn,du satisfies the second property in Corollary 5.3.1, and hence the two canonical

bases coincide by the uniqueness.

On the other hand, there is a canonical basis ttAugeo | A P Ξn,du for Sc,geo
n,d (cf.

[FLLLW1, (4.2.12)]) arising from intersection cohomology. Using the identification of

Schur algebras in Section 3.3, we can also show that all canonical bases coincide. We

summarize the above as a proposition.

Proposition 5.3.2. The three canonical bases ttAu | A P Ξn,du, ttAu1 | A P Ξn,du

and ttAugeo | A P Ξn,du match under the identification in Lemma 3.3.1.
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Chapter 6

Stabilization algebras of affine type
C

In this chapter we construct a stabilization algebra 9Kc
n from a family of affine Schur

algebras of type C. The idea mostly follows [BLM90]. However, there are still technical

details to be clarified for affine type C (see Propositions 6.1.1 and 6.1.2). We then show

that 9Kc
n can be identified with a similar stabilization algebra defined in a geometric

framework (cf. [FLLLW1]), and it follows that 9Kc
n is an affine coideal subalgebra of

9Uppglnq.

6.1 A BLM-type stabilization

Let rΞn be the set of Z ˆ Z matrices over Z in which each element A “ paijq satisfies

the following conditions:

(T1) aij “ an`i,n`j for all i, j;

(X1) a´i,´j “ aij for all i, j;

(X2) a00 and ar`1,r`1 are odd;
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(X4) aij P N for all i ‰ j.

For each A P rΞn and p P N, let pA “ A`pI where I is the identity matrix. Thus there

exists large enough even number p such that pA P Ξn. Let v1 be an indeterminate

(independent of v), and let R1 be the subring of Qpvqrv1s generated by

t
ź

i“1

v2pa`iqv12 ´ 1

v2i ´ 1
,

t
ź

i“1

v4pa`iqv12 ´ 1

v2i ´ 1
, and va a P Z, t P Zą0. (6.1.1)

Let R2 be the subring of Qpvqrv1, v1´1s generated by

t
ź

i“1

v2pa`iqv12 ´ 1

v2i ´ 1
,

t
ź

i“1

v4pa`iqv12 ´ 1

v2i ´ 1
,

t
ź

i“1

v´2pa`iqv1´2 ´ 1

v´2i ´ 1
,

t
ź

i“1

v´4pa`iqv1´2 ´ 1

v´2i ´ 1
, and va, a P Z, t P Zą0.

(6.1.2)

Proposition 6.1.1. Let A1, . . . , Af P rΞn be such that cocpAiq “ rocpAi`1q for all i.

Then there exists matrices Z1, . . . , Zm P rΞn and Gipv, v
1q P R1 such that for even

integer p " 0,

rpA1s ˚ rpA2s ˚ . . . ˚ rpAf s “

m
ÿ

i“1

Gipv, v
´pqrpZis. (6.1.3)

Proof. The proof follows exactly the idea as in [BLM90]. However, since the mul-

tiplication formula here is much more complicated, it is not obvious whether the

coefficients are good enough to afford a stabilization. Below we give some explicit

formulas to convince the readers that we can indeed derive a stabilization procedure.

By Theorem 5.2.8, we may assume that f “ 2, A “ A2 and B “ A1 “
ř

αiE
i,i`1
θ

is tridiagonal. For any even p making all entries in Ai positive, we can apply (5.1.8)
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and obtain

rpBs ˚ rpAs “
ÿ

TPΘB,pA

SPΓT

vβppA,S,T qpv2 ´ 1qnpSqrpA;S;T s rpA
pT qs. (6.1.4)

We shall prove that for some polynomial Gp1q,

βppA, S, T q “ βpA, S, T q ` pGp1qpbi,i˘1, aij, tijq.

Recall that βppA, S, T q “ d1ppBq`d1ppAq´d1ppA
pTθ´Sθqq`ℓpwpA,T q`γppA, S, T q. The

difference can be obtained by computing the difference for each term. We have:

d1ppBq ´ d1pBq “ ´p
2r`1
ÿ

i“0

bi,i`1,

d1ppAq ´ d1pAq “
p

2

2r`1
ÿ

i“0

´

ÿ

xăi,yăi

axy ´
ÿ

yąi

aiy

¯

`
p

2

ÿ

pi,jqPI`

´

r
ÿ

x“1

´

ÿ

iăxăj

`
ÿ

iąxąj

¯

aij ´
ÿ

i‰j

aij

¯

,

ℓpwpA,T q ´ ℓpwA,T q “ p
2r`1
ÿ

i“0

ÿ

jąi

tij,

γppA, S, T q ´ γpA, S, T q “ ´p
´

ÿ

kPt0,r`1u

pS ` pT ´ pSqθ,kk ´ 2
ÿ

pi,jqPI`
a

pS ` pT ´ pSqθ,ij

¯

.

(6.1.5)
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Combining these yields to the desirable polynomials Gp1q. On the other hand, set

a
p1q

ij “ pδij ` pA ´ Tθqij ` s´i,´j ` p{T ´ Sqij ` p{T ´ Sq´i,´j,

a
p2q

ij “ pδij ` pA ´ Tθqij ` p{T ´ Sqij ` p{T ´ Sq´i,´j,

a
p3q

ij “ pδij ` pA ´ Tθqij ` p{T ´ Sq´i,´j,

a
p4q

ij “ pδij ` pA ´ Tθqij,

a
p5q

kk “ p ` akk ´ 2tkk ´ 1 ` 2skk P 2Z,

a
p6q

kk “ p ` akk ´ 2tkk ´ 1 P 2Z.

(6.1.6)

We have

rpA;S;T s “
ź

pi,jqPI`
a

´

sij
ź

l“1

ra
p1q

ij ` ls

rls

s´i,´j
ź

l“1

ra
p2q

ij ` ls

rls

p zT´Sqij
ź

l“1

ra
p3q

ij ` ls

rls

p zT´Sq´i,´j
ź

l“1

ra
p4q

ij ` ls

rls

¯

¨
ź

kPt0,r`1u

¨

˝

p zT´Sqkk
ź

l“1

ra
p5q

kk ` 2ls

rls

skk
ź

l“1

ra
p6q

kk ` 2ls

rls

˛

‚¨ JSK
(6.1.7)

The “type-A quantum binomials” are of the form

t
ź

i“1

ra ` i ` ps

ris
“

t
ź

i“1

v2pa`iqv2p ´ 1

v2i ´ 1
, a P Z, t P Zą0,

while the “type-C quantum binomials” are of the form

t
ź

i“1

r2pa ` iq ` pqs

ris
“

t
ź

i“1

v4pa`iqv2p ´ 1

v2i ´ 1
, a P Z, t P Zą0.

They are indeed of the form Gpv, v´pq for some Gpv, v1q P R1.

Proposition 6.1.2. Let A P rΞn. Then there exists matrices T1, . . . , Tm P rΞn and

Hipv, v
1q P R2 such that for even integer p " 0,

rpAs “

m
ÿ

i“1

Hipv, v
´pqrpTis. (6.1.8)
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Proof. By Proposition 5.1.2, taking bar on rpBs ˚ rpAs “ rpM s `
ř

i

Gipv, v
´pqrpZis

leads to

rpBs ˚ rpAs ` lower terms “ rpM s `
ÿ

i

Gipv, v´pq ˚
`

rpZis ` lower terms
˘

, (6.1.9)

Following the idea of [BLM90, Proposition 4.3], one can show by induction that the

coefficients showing up are indeed of the form Hpv, v´pq for some Hpv, v1q P R2 as

long as the initial case holds. Hence it suffices to prove the case when A “ paijq is

tridiagonal. We shall prove this by another induction on ℓpgq, for which the initial

case is trivial since rAs is bar-invariant. Assume now that ℓpgq ą 0.

Assume that A “ κpλ, g, µq for some λ, µ P Λr,d, g P Dλµ. Then pA “ κppλ, pg, pµq

where

pλ “

´

λ0`
p

2
, λ1`p, . . . , λr`p, λr`1`

p

2

¯

, pµ “

´

µ0`
p

2
, µ1`p, . . . , µr`p, µr`1`

p

2

¯

,

(6.1.10)

and pg “
r

ś

i“0
pgi such that each pgi swaps ppi´ 1

2
q `Rδ

3i`1 and ppi´ 1
2
q `Rδ

3i`2 for any

i. That is, for 1 ď x ď d ` rp,

pgipxq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

x ` ai´1,i if x ´ ppi ´ 1
2
q P Rδ

3i`1,

x ´ ai,i´1 if x ´ ppi ´ 1
2
q P Rδ

3i`2,

x otherwise.

(6.1.11)

Denote by pg
`
λµ the longest element in Wpλ ¨ pg ¨ Wpµ. By Lemma 5.1.1, we have

TWpλ¨pg¨Wpµ
“ vℓppg

`
λµqC 1

pg
`
λµ

`
ÿ

wPDpλ,pµ
wăpg

cppλ,pµq
w,pg C 1

w`

pλ,pµ
. (6.1.12)
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For any w P Dpλ,pµ, we set Aw “ κppλ,w, pµq. By Lemma 5.2.5 we know that

Aw ďalg pA, and hence pAwq˘ ďalg pA
˘ “ A˘. There is a unique tridiagonal matrix

κpλ, x, µq such that pκpλ, x, µq “ Aw. That is, w “ px for some x P Dλµ such that

x ă g. Therefore, (6.1.12) can be written as

TWpλ¨pg¨Wpµ
“ vℓppg

`
λµqC 1

pg
`
λµ

`
ÿ

xPDλµ
xăg

cppλ,pµq
px,pg C 1

px
`
λµ
. (6.1.13)

In particular, TWpµ1Wpµ
“ xpµ “ vℓpw

pµ
˝ qC 1

wpµ
˝
, where

ℓpwpµ
˝ q “ ℓpwµ˝ q `

´

µ0 `
p

2

¯2

´ µ2
0 `

r
ÿ

i“1

´

ˆ

µi ` p

2

˙

´

ˆ

µi
2

˙

¯

`

´

µr`1 `
p

2

¯2

´ µ2
r`1

“ ℓpwµ˝ q ` pµ0 `
p2

4
`

r
ÿ

i“1

pµi ` r

ˆ

p

2

˙

` pµr`1 `
p2

4

“ ℓpwµ˝ q `
p

2

´

2d ´ r ` ppr ` 1q

¯

.

(6.1.14)

Therefore, by Lemma 5.1.1 again, for any x P Dλµ such that x ď g with Ax “

κpλ, x, µq, we have

ℓppx
`
λµq ´ ℓpx`

λµq “

´

ℓpwpλ
˝ q ´ ℓpwλ˝ q

¯

` ℓppxq ´ ℓpgq

´

´

ℓpw
δppAxq
˝ q ´ ℓpwδpAq

˝ q

¯

`

´

ℓpwpµ
˝ q ´ ℓpwµ˝ q

¯

“
p

2

´

2pd ` |A˘
x |q ´ r ` ppr ` 1q

¯

,

(6.1.15)

Here |A˘
x | is the sum of off-diagonal entries of Ax over I`

a . In particular, the leading

coefficient (=vℓpg
`
λµq) in TWλgWµ is good enough to afford stablization. Moreover, by

construction we know that the Kazhdan-Lusztig polynomial Ppx,pg is equal to Px,g for

any even integer p. A similar argument shows that c
ppλ,pµq
px,pg is a product of c

pλ,µq
x,g and a



99

v-power in terms of ℓppy
`
λµq ´ ℓpy`

λµq for x ď y ď g. Hence, by (6.1.15), all coefficients

in TWλgWµ are good enough to afford stablization.

On the other hand, we can derive from (6.1.13) that

´

rpAs ´ rpAs

¯

pC 1

wpµ
˝

q “
ÿ

xPDλµ
xăg

´

v
ℓp

p
g`
λµq
cppλ,pµq
px,pg ´ v

´ℓp
p
g`
λµq
cppλ,pµq
px,pg

¯

C 1

px
`
λµ

(6.1.16)

Combining (6.1.14), (6.1.15) and the inductive hypothesis, we have shown the exis-

tence of Hipv, v
1q P R2 for tridiagonal A.

Proposition 6.1.3. Retain the same notation for Proposition 6.1.1. We have:

paq Let K1 be the free R1-module with basis tA | A P rΞnu. Then K1 has a unique

associative R1-algebra structure in which the multiplication ˚ is given by

A1 ˚ ¨ ¨ ¨ ˚ Af “

$

’

’

’

’

&

’

’

’

’

%

m
ř

i“1

Gipv, v
1qZi if cocpAiq “ rocpAi`1q for all i,

0 otherwise.

pbq Let K2 be the same algebra with scalar extended to R2. Then the map ¯ : K2 Ñ

K2 given by

rpv, v1qA “ rpv´1, v1´1q

m
ÿ

i“1

Hipv, v
1qTi, rpv, v1q P R2,

is an involution.

Let 9Kc
n be the free Zrv, v´1s-module with basis trAs | A P rΞnu.
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Corollary 6.1.4. 9Kc
n has a unique associative Zrv, v´1s-algebra structure in which

the multiplication ˚ is given by

rA1s ˚ ¨ ¨ ¨ ˚ rAf s “

$

’

’

’

’

&

’

’

’

’

%

m
ř

i“1

Gipv, 1qrZis if cocpAiq “ rocpAi`1q for all i,

0 otherwise.

(6.1.17)

Also, the map ¯ : 9Kc
n Ñ 9Kc

n given by rAs “
m
ř

i“1

Hipv, 1qrTis is an involution.

Following a standard argument (cf. [Lu93, 24.2.1]), we have the following:

Theorem 6.1.5. Let A P rΞn. There is a unique bar-invariant element

tAu “ rAs `
ÿ

A1ăalgA

πA1,ArA1s P 9Kc
n

such that πA1,A P v´1Zrv´1s.

The elements ttAu | A P rΞnu form an Zrv, v´1s-basis of 9Kc
n, which we call the

canonical basis.

Remark 6.1.6. By the affine type A counterpart of Proposition 6.1.1, one can con-

struct a stabilization algebra 9Ka
n in a similar way thanks to the multiplication for-

mulas (cf. Lemma 2.3.1) and monomial bases (cf. Theorem 2.4.2). The algebra 9Ka
n

is first introduced in [DF14] and it is shown that 9Ka
n is isomorphic to 9Uppglnq, the

idempotented quantum affine gln.
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6.2 Quantum symmetric pairs

We now show that the stabilization algebra 9Kc
n defined in Section 6.1 is indeed a

coideal subalgebra of 9Uppglnq.

Let 9Kc,geo
n be the stabilization algebra in [FLLLW1, Section 9.4], which has the

same underlying vector space as 9Kc
n, while the multiplication structure constants are

defined in a seemingly different way than (6.1.17) as below.

rA1s ˚ ¨ ¨ ¨ ˚ rAf s “

$

’

’

’

’

&

’

’

’

’

%

m
ř

i“1

G1
ipv, 1qrZis if cocpAiq “ rocpAi`1q for all i,

0 otherwise,

(6.2.1)

where G1
i are two-parameter polynomials (cf. [FLLLW1, (9.4.1)]) arising from struc-

ture constants for the Schur algebras Sc,geo
n,d as a convolution algebra for affine flag

varieties.

Lemma 6.2.1. There is an identification 9Kc
n “ 9Kc,geo

n as associate algebras.

Proof. It suffices to show that the two algebras have the same structure constants,

which can be reduced to showing that

Gipv, v
pq “ G1

ipv, v
pq, p " 0. (6.2.2)

For large enough p, Gipv, v
pq and G1

ipv, v
pq are the structure constants for the Schur

algebras Sc
n,d`pn and Sc,geo

n,d`pn, respectively. We are done due to the identification (cf.

Lemma 3.3.1) on the Schur algebra level.
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As a consequence, the stabilization algebra 9Kc
n admits a coassociative comultipli-

cation inherited from the comultiplication on 9Kc,geo
n .

Corollary 6.2.2. The stablization algebras for an (idempotented) quantum symmetric

pair p 9Ka
n,

9Kc
nq.

Proof. This is due to [FLLLW1, Proposition 9.5.3].

Now we set

Zc
n “ tλ “ pλiqi P ZZ | λ0, λr`1 P p2Z ` 1q, λi “ λn`i “ λ´iu. (6.2.3)

We define a completion pKc
n of 9Kc

n to be the Qpvq-vector space of all formal linear

combinations
ř

APrΞn

ξArAs pξA P Qpvq, rAs P 9Kc
nq such that for any λ P Zc

n, the sets

tA P rΘn | ξA ‰ 0, roapAq “ λu and tA P rΘn | ξA ‰ 0, coapAq “ λu are finite. The

multiplication on pKc
n given by

´

ÿ

A

ξArAs

¯

¨

´

ÿ

B

ηBrBs

¯

“
ÿ

A,B

ξAηBprAs ˚ rBsq,

defines an algebra structure on pKc
n, where rAs ˚ rBs is the product in 9Kc

n. Let Ξ0
n

be the subset of Ξn in which the diagonal entries are all zero for each element. For

α P Zc
n we associate a diagonal matrix

Dα “ pδijαiqij. (6.2.4)

For each j “ pj0, . . . , jr`1q P Nr`2, A P Ξ0
n, we define

Apjq “
ÿ

αPZc
n

vj¨αrA ` Dαs P pKc
n. (6.2.5)
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LetKc
n be the Qpvq-subspace of pKc

n spanned by tApjq | A P Ξ0
n, j P Nr`2u. The detailed

proof for the proposition below will appear in [FLLLW2].

Proposition 6.2.3. Kc
n is a subalgebra of pKc

n generated by

Apjq, 0pjq pA P Ξ0
n is tridiagonal, j P Nr`2q.

Moreover, Kc
n is a coideal subalgebra of Ka

n.
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Chapter 7

Stabilization algebras arising from
different involutions

In this chapter we provide a formulation of three more variants of the stabilization

algebras for different types of involutions on the Dynkin diagram of affine type A.

We will present more details for the type ıȷ. We will merely formulating the main

statements for types ȷı and ıı.

7.1 Affine Schur algebras of type ıȷ

In the following we deal with the variant of affine q-Schur algebra of type ıȷ corre-

sponding to the involution as depicted below. Let Ξıȷn,d be the subset of Ξn,d in which

Figure 7.1: Dynkin diagram of type A
p1q

2r with involution of type ıȷ.

..
. ...1 ..¨ ¨ ¨ ...

r ´ 1
...r

...0 . . . . .

. ...
2r

..¨ ¨ ¨ ...
r ` 2

...
r ` 1

.............
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each element A satisfies additionally that

(X4) rocpAq0 “ 0 “ rocpAq0.

Let Λıȷ be the subset of Λ “ Λr,d in which each element λ “ pλiq satisfies additionally

that λ0 “ 0. Recall from Lemma 3.2.4 that κ : tpλ, g, µq | λ, µ P Λ, g P Dλµu Ñ Ξn,d

is a bijection. Similar argument leads to that

Lemma 7.1.1. The restriction of κ´1 on Ξıȷn,d is a bijection. In particular, the map

κıȷ : tpλ, g, µq | λ, µ P Λıȷ, g P Dλµu Ñ Ξıȷn,d

give by sending pλ, g, µq to p|Rλ
i X gRµ

j |q is a bijection.

Now we denote the affine q-Schur algebra of type ıȷ by

Sıȷn,d “ EndH

´

‘
λPΛıȷ

xλH
¯

(7.1.1)

It is clear that Sȷın,d is naturally a subalgebra of Sc
n,d. Moreover, both teA | A P Ξıȷn,du

and trAs | A P Ξıȷn,du are bases of Sȷın,d as a free Zrv, v´1s-module. Note that although

Algorithm 5.2.7 applies to arbitrary A P Ξıȷn,d, the matrices produced does not lie in

Ξıȷn,d in general. In order to define a monomial basis for Sȷın,d, we need a modified

matrix interpretation by collapsing those dummy rows and columns. Let Zıȷ “ ZznZ,

and let qΞıȷn,d be the set of Zıȷ ˆ Zıȷ matrices with entries in N in which each element

A “ paijqsatisfies that:

(T1) aij “ ai`n,j`n for all i, j P Zıȷ.
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(X1) a´i,´j “ aij for all i, j P Zıȷ.

(X2’) ar`1,r`1 is odd.

(X3’)
n´1
ř

i“1

ř

jPZıȷ

aij “ D ´ 1.

Let f ıȷc : Ξıȷn,d Ñ qΞıȷn,d be the obvious collapsing map, and let f ıȷe : qΞıȷn,d Ñ Ξıȷn,d be the

expanding map that inserts suitable columns/rows making its image in Ξıȷn,d. It is

clear that f ıȷc and f ıȷe are bijections and they are inverse maps to each other.

Example 7.1.2. Let r “ 2, n “ 6, and

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

3

˚ 4

3 ˚ 5

2 ˚ 0 1

0 1 0

1 0 ˚ 2

5 ˚ 3

4 ˚

3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

That is, A˘ “ E1,´1
θ ` 2E12

θ ` 3E23
θ ` 4E32

θ ` 5E21
θ . Applying Algorithm 5.2.7, we get

rBp1qs ˚ rBp2qs ˚ rdiags “ rAs ` lower terms P Sc
n,d,
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where

Bp1q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

˚

˚

˚ 1

1

1 ˚

˚

˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Bp2q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

3

˚ 4

3 ˚ 5

2 ˚ 0

1 1 1

0 ˚ 2

5 ˚ 3

4 ˚

3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Note that here Bp2q R Sıȷn,d. On the other hand, we have

f ıȷc pAq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

3

˚ 4

3 ˚ 5

2 ˚ 1

1 ˚ 2

5 ˚ 3

4 ˚

3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Here the central solid lines represents the result of collapsing the stripes bounded by

the central dashed lines. We have f ıȷc pAq˘ “ E1,´1
θ ` 2E12

θ ` 3E23
θ ` 4E32

θ ` 5E21
θ .
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We claim that in Sıȷn,d, matrices of this form behave like the tridiagonal ones in Sc
n,d.

In the followings we demonstrate another algorithm that generates rAs for arbitrary

A P Ξıȷn,d bypassing elements in qΞıȷn,d:

Algorithm 7.1.3. For each element A P Ξıȷn,d, we define matrices ıBpjq as follows:

1. Apply a variant of Algorithm 5.2.7 on f ıȷc pAq and obtain matrices Bpjq P Ξıȷn,d.

2. Let ıBpjq “ f ıȷe pBpjqq for all j.

Theorem 7.1.4. For each A P Ξıȷn,d, the matrices ıBpjq, j “ 1, . . . , x, in Ξıȷn,d produced

by Algorithm 7.1.3 satisfy that

rıBp1qs ˚ rıBp2qs ˚ ¨ ¨ ¨ ˚ rıBpxqs “ rAs ` lower terms P Sıȷn,d.

Proof. It remains to show that each lower term rCs occurred lies in Sıȷn,d. By definition

of multiplication on Sıȷn,d we have rocpCq “ rocpAq and cocpCq “ cocpAq. In particular,

rocpCq0 “ rocpAq0 “ 0 and cocpCq0 “ cocpAq0 “ 0 since A P Ξıȷn,d. Therefore C P Ξıȷn,d

and rCs P Sıȷn,d.

7.2 Stabilization algebras of type ıȷ

Recall rΞn from Section 6.1. We define

rΞă
n “ tA P rΞn | a00 ă 0u, rΞą

n “ tA P rΞn | a00 ą 0u. (7.2.1)

For any matrix A P rΞn and p P Z, we set

p̆A “ A ` ppdiagp0, 1, 1, . . . , 1, 0qq. (7.2.2)
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Lemma 7.2.1. For A1, A2, . . . , Af P rΞą
n , there exists Zi P rΞą

n and Gipv, v
1q P Qpvqrv1, v1´1s

(i “ 1, . . . ,m for some m) such that

rp̆A1s ˚ rp̆A2s ˚ . . . ˚ rp̆Af s “

m
ÿ

i“1

Gipv, v
´pqrp̆Zis, for all even integers p P Z.

Proof. It is similar to the proof of Proposition 6.1.1. See [BKLW14, Lemma A.1] for

some details that replacing p by p̆ does not cause problems.

As a corollary, the Zrv, v´1s-subspace 9Kc
n

ą of 9Kc
n spanned by rAs for A P rΞą

n is a

stabilization algebra whose multiplicative structure is given by

rA1s ¨ rA2s ¨ . . . ¨ rAf s “

$

’

’

’

’

&

’

’

’

’

%

m
ř

i“1

Gipv, 1qrZis if cocpAiq “ rocpAi`1q for all i,

0 otherwise.

(7.2.3)

It is routine to show that 9Kc
n

ą has a monomial basis tmA | A P rΞą
n u. By a similar

argument to Proposition 6.1.2, it can be shown that 9Kc
n

ą admits a compatible bar-

involution. A standard argument then shows that 9Kc
n

ą has a canonical basis (cf.

[LW15]).

Let 9Kıȷ
n be the Zrv, v´1s-submodule of 9Kc

n
ą generated by rAs for A P rΞıȷn , where

rΞıȷn “ tA “ paijq P rΞn | a0i “ ai0 “ δ0iu

“ tA P rΞą
n | cocpAq0 “ rocpAq0 “ 0u.

(7.2.4)

Since that the bar-involution on 9Kc
n

ą restricts to an involution on 9Kıȷ
n ,

9Kc
n

ą and 9Kıȷ
n

have compatible canonical bases.

Remark 7.2.2. The submodule of 9Kc
n spanned by rAs for A P rΞıȷn is not a subalgebra.
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Now we realize 9Kıȷ
n as a subquotient of 9Kc

n. Define Jă to be the Zrv, v´1s-

submodule of 9Kc
n spanned by rAs for all A P rΞă

n .

Lemma 7.2.3. The submodule Jă is a two-sided ideal of 9Kc
n

Proof. It suffices to show that rBs ¨ rAs P Jă for arbitrary A P rΞă
n and tridiagonal

B P rΞn. By the multiplication formula, the matrices corresponding to the terms

showing up in rBs ¨ rAs must be of the form

ApT´Sq “ A ´ pT ´ Sqθ ` p{T ´ Sqθ, T P ΘB,A, S P ΓT .

Suppose that the p0, 0q-entry a00 ´ 2pt00 ´ s00q ` 2p{T ´ Sq00 is positive. Note that we

have

rA;S;T s “
ź

pi,jqPI`
a

„

pA ´ Tθq ` sij ` s´i,´j ` p{T ´ Sq ` p{T ´ Sq´i,´j

pA ´ Tθq; sij; s´i,´j; p{T ´ Sq; p{T ´ Sq´i,´j

ȷ

¨
ź

kPt0,r`1u

¨

˚

˚

˚

˝

skk`p zT´Sqkk
ś

i“1

rakk ´ 2tkk ´ 1 ` 2is

rskks!arp
{T ´ Sqkks!a

˛

‹

‹

‹

‚

¨ JSK .
Therefore rA;S;T s “ 0 and hence rApT´Sqs P Jă.

Finally, we realize 9Kıȷ
n as a subquotient (details omitted) by following [BKLW14]

(see also [FL14]), where an algebra Uı is realized as a subquotient of an algebra Uȷ

with compatible canonical bases.

Proposition 7.2.4. As an Zrv, v´1s-algebra, 9Kıȷ
n is naturally isomorphic to a sub-

quotient of 9Kc
n, with compatible standard, monomial, and canonical bases.
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7.3 Stabilization algebras of type ȷı

In the following we deal with the variant of affine q-Schur algebra of type ȷı corre-

sponding to the involution as depicted below. Let Ξȷın,d be the subset of Ξn,d in which

Figure 7.2: Dynkin diagram of type A
p1q

2r with involution of type ȷı.

..
...0 ...1 ..¨ ¨ ¨ ...

r ´ 1

. . . . ...r

...
2r

...
2r ´ 1

..¨ ¨ ¨ ...
r ` 1

.............

each element A satisfies additionally that

(X5) rocpAqr`1 “ 0 “ rocpAqr`1.

Let Λȷı be the subset of Λ “ Λr,d in which each element λ “ pλiq satisfies additionally

that λr`1 “ 0.

Lemma 7.3.1. The restriction of κ´1 on Ξȷın,d is a bijection. In particular, the map

κȷı : tpλ, g, µq | λ, µ P Λȷı, g P Dλµu Ñ Ξȷın,d

give by sending pλ, g, µq to p|Rλ
i X gRµ

j |q is a bijection.

Now we denote the affine q-Schur algebra of type ȷı by

Sȷın,d “ EndH

´

‘
λPΛıȷ

xλH
¯

(7.3.1)

Sȷın,d is also a subalgebra of S
c
n,d, admitting compatible standard, monomial and canon-

ical bases.
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By repeating the process of the ıȷ version. We construct an associative algebra

9Kȷı
n with a basis rAs parametrized by

rΞȷın “ tA “ paijq P rΞn | ar`1,i “ ai,r`1 “ δr`1,iu

“ tA P rΞą
n | cocpAqr`1 “ rocpAqr`1 “ 0u.

(7.3.2)

All results for 9Kıȷ
n admit counterparts for 9Kȷı

n .

Proposition 7.3.2.

(a) The algebra 9Kȷı
n admits a standard basis, a monomial basis, and a canonical

basis.

(b) 9Kȷı
n is a subquotient of 9Kc

n with compatible canonical bases.

7.4 Stabilization algebras of type ıı

In the following we deal with the variant of affine q-Schur algebra of type ıı corre-

sponding to the involution as depicted below. Let Ξıın,d “ Ξıȷn,d X Ξȷın,d,Λ
ıı “ Λȷı X Λıȷ.

Figure 7.3: Dynkin diagram of type A
p1q

2r´1 with involution of type ıı.

..
. ...1 ..¨ ¨ ¨ ...

r ´ 1

...0 . . . ...r

. ...
2r ´ 1

..¨ ¨ ¨ ...
r ` 1

............
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Lemma 7.4.1. The restriction of κ´1 on Ξıın,d is a bijection. In particular, the map

κıı : tpλ, g, µq | λ, µ P Λıı, g P Dλµu Ñ Ξıın,d

give by sending pλ, g, µq to p|Rλ
i X gRµ

j |q is a bijection.

Now we denote the affine q-Schur algebra of type ıı by

Sıın,d “ EndH

´

‘
λPΛıı

xλH
¯

(7.4.1)

Sıın,d is naturally a subalgebra of Sıȷn,d,S
ȷı
n,d and Sc

n,d, admitting compatible standard,

monomial and canonical bases. By a similar process, we construct an associative

algebra 9Kȷı
n with a basis rAs parametrized by

rΞıın “ rΞıȷn X rΞȷın . (7.4.2)

We collect the main results for in the following. The proofs are very similar to the

previous cases, and so we shall skip them to avoid redundancy.

Proposition 7.4.2.

(a) The algebra 9Kıı
n admits a standard basis, a monomial basis, and a canonical

basis.

(b) 9Kıı
n is a subquotient of 9Kȷı

n and 9Kıȷ
n , with compatible canonical bases.

The interrelation among the four types can be summarized below. On the Schur

algebra level, we have the following commuting diagram for inclusions of Schur alge-
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bras:
Sc
n,d

Sıȷn,d
Ă

-

Sȷın,d

�

Ą

Sıın,d
Ă

-
�

Ą

(7.4.3)

On the stabilization algebra level, we have the following diagram of subquotients:

9Kc
n

9Kıȷ
n

sq
--

9Kȷı
n

��
sq

9Kıı
n

sq
--

��
sq

(7.4.4)

where the notation K1

sq
↠ K2 stands for the statement that K2 is a subquotient of

K1. All the subquotients between various pairs of algebras preserve the canonical

bases.
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