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Abstract

Quantum computing promises exponential speedup for particular computational

tasks, such as integer factoring [1], which bears importance for encryption technology,

and quantum simulation [2], which holds vast scientific potential. Comparing with

the traditional circuit-based quantum computers, one-way quantum computers are

experimentally appealing because it requires only local measurements on an entan-

gled resource called a cluster state [3]. In this thesis, I first review the fundamental

theory of one-way quantum computing and its experimental implementation using the

quantum optical frequency comb. After that, I present two novel schemes for gener-

ating ultra-scalable cluster states with rich structures that can be used for universal

quantum computing [4, 5].
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Chapter 1

Introduction

Quantum computing (and quantum information) is an interdisciplinary research

field where physics, engineering and computer science converge [1, 2]. This field is

developing rapidly and is attracting large amount of attention, both in academia and

in industry [6].

What is quantum computing? A short definition of quantum computing is: com-

puting by using the laws of quantum mechanics. The concept of quantum computing

was first introduced by Richard Feynman [2]. In 1982, Feynman proposed building a

computer to simulate the evolution of a quantum system, where the computer itself

follows laws of quantum mechanics and tracks the system naturally, so it can simu-

late the system exponentially faster 1 than using a classical computer. For example,

a lattice of N spins has 2N possible states, the problem size for a classical computer

is 2N , but only N for a quantum computer because the quantum evolution of the N

spins can be captured directly.

1This is a vague term, when people say “A is exponentially faster than B”, usually it mean B
takes exponential time (O(2N )) of N , while A only takes polynomial time (O(Nk)). The Big O
notation O(f(N)) indicates the asymptotic upper bound of computational complexity.

1



CHAPTER 1. INTRODUCTION 2

In 1994, Peter Shor demonstrated that quantum computers can factorize integers

exponentially faster than classical computers [1]. This attracted attention beyond

academia, because the most widely used encryption method, known as RSA [7], is

based the fact that factorizing large integers is very hard 2. A quantum computer

can factorize integers efficiently, so the currently encrypted information won’t be

safe anymore once quantum computers have been built. The discovery opened a

new research area in cryptography. Besides Shor’s discovery, a few other quantum

algorithms were also demonstrated [8].

Due to the impact on both fundamental physics, computer science, and practical

applications, and the progress in experimental technologies, quantum computing has

been a very active and expanding research field.

With enough motivation, we now look at how a quantum computer works. Like

classical computers, a quantum computer needs to have information units and per-

form operations over the units. For a certain computing task, it takes the input

information, performs logic operations on the input, and collects the output informa-

tion as the result. The information units are known as quantum bits, or qubits for

short, as opposed to classical bits. The operations are known as quantum logic gates,

as opposed to classical logic gates. There are several different ways of implementing

the information units and the operations.

The information units can be discrete variables (DV) or continuous variables

(CV). If the unit is a qubit, i.e., a two-level system, then it’s of the DV kind. In clas-

2No algorithm that has been published can factor all integers in polynomial time.
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sical computers, the value of the bit can only be 0 or 1. However, for a quantum com-

puter, the qubit can also be a superposition of 0 and 1, such as: |φ 〉 = α | 0 〉+β | 1 〉.

Moreover, there could be quantum entanglement between the qubits. If the unit is in

a d-level system, then it’s still in the DV regime, the unit is called qudit. If the unit

is continuous, then it’s a CV, and the unit is often called qumode. Those three types

of encoding share some similar properties, which we will discuss in the next Chapter.

In this thesis, I will focus on the continuous-variable encoding.

As for the operations, there are two mainstream implementations: the circuit-

based model [9] and the measurement-based model [10]. The traditional circuit-based

model is similar to the classical computing case, but the “circuits” are now quantum

circuits, featuring qubits and quantum gates. Another difference between a classical

and a quantum computer is, for a quantum computer, usually one needs to perform

some quantum measurements on the system to make the quantum algorithm work.

On the contrary, the measurement-based model has no classical analogue. This model

pre-embeds quantum gates in an entanglement source, known as a cluster state [10].

After the preparation, the input information is first entangled with the cluster state,

then all quantum logic gates are implemented by single-qubit measurements on the

whole entangled state [10]. During the measurements, the cluster state is usually

destroyed, and the information flows one-way from the input to output, so this model

is also known as one-way quantum computing [10].

After presenting the abstract architecture of quantum computers, we now look at
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the physical implementation. There are a lot of different candidate systems: semi-

conductors [11], superconductors [6], trapped ions [12], optics [13,14], to name a few.

Basically, anything that demonstrates observable quantum behaviors and is manipu-

lable can be a candidate for quantum computing. In this thesis, I will focus on optical

one-way quantum computing with continuous variables. That is, the information is

encoded in continuous variables, the operation is done in a measurement-based way,

and the system is implemented by quantum optics.

The thesis is organized as the following:

In Chapter 2, I introduce the basic concepts for quantum computing, we look into

details of qubits and qumodes, and then focus on the cluster state, which is the heart

of a one-way quantum computer.

In Chapter 3, I talk about the components and functionality of the optical para-

metric oscillator (OPO). I will also talk about the limitations of the OPO.

In Chapter 4, I demonstrate how to combine the techniques in previous chapters to

generate large scale entangled source for universal quantum computing. In particular,

I will demonstrate two novel schemes proposed in Ref. [4] and Ref. [5] in detail.

In Chapter 5, I summarize this thesis and discuss some future possibilities.



Chapter 2

Qubits, Qumodes and Cluster
States

In this chapter, I cover in more detail about the building blocks of a measurement-

based quantum computer: qubits, qumodes and cluster states.

2.1 Qubits

For a system in a two-dimensional Hilbert space of computational basis {| 0 〉 , | 1 〉}

, a general state can be written as:

|ψ 〉θ,φ = cos
θ

2
| 0 〉+ sin

θ

2
eiφ | 1 〉 (2.1)

This state can be represented using a Bloch sphere, where θ and φ are the spherical

coordinates. The two states in the basis {| 0 〉 , | 1 〉} can also be written in canonical

vector form:

| 0 〉 =

 0

1

 , | 1 〉 =

 1

0

 (2.2)

With the state defined, I introduce some useful unitaries: the Pauli operators,

5
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the rotation operator, the Hadamard operator. I start with the Pauli operators. The

Pauli operators can be written as Pauli matrices in the qubit representation:

X̂ =

 0 1

1 0

, Ŷ =

 0 −i

i 0

, Ẑ =

 1 0

0 −1

 (2.3)

Note that these matrices are both unitary and Hermitian. We can check what they

do to the states. Applying these operators to the basis states, we get:

X̂ | s 〉 = | s̄ 〉 , Ẑ | s 〉 = (−1)s | s 〉 (2.4)

where s ∈ {0, 1}, and 0̄, 1̄ = 1, 0 respectively. We can see that X̂ flips the qubit, Ẑ

adds a phase to the qubit. The Pauli Ẑ and X̂ are the generators of the Pauli group.

Now we can define the rotation operator using the Pauli operators:

R̂s(θ) = e−i
θ
2
s·σ (2.5)

where s is the unit vector around which the rotation is performed, and σ = (X̂, Ŷ , Ẑ)T.

For example, a rotation around Ẑ by θ will be Ẑθ := R̂(0,0,1) = e−iθẐ/2 = cos θ
2
1 +

i sin θ
2
Ẑ. By applying the previous formula, or in the general case, the Baker-Campbell-

Hausdorff (BCH) formulas, we can get:

Ẑ†θX̂Ẑθ = X̂ cos θ − Ŷ sin θ

Ẑ†θ Ŷ Ẑθ = X̂ sin θ + Ŷ cos θ (2.6)

Ẑ†θẐẐθ = Ẑ
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Just as the qubit can be represented by the Bloch sphere, single-qubit unitaries

can be viewed as rotation on the Bloch sphere. So all the single-qubit unitaries can

be written as a rotation operator.

I now introduce the conjugate basis of {| 0 〉 , | 1 〉}:

| ± 〉 =
1√
2

(| 0 〉 ± | 1 〉) (2.7)

It has the similar behaviors under Pauli operators:

X̂ | ± 〉 = ± |± 〉 , Ẑ | ± 〉 = | ∓ 〉 (2.8)

We can see X̂ adds a phase to the qubit, Ẑ flips the qubit. The Hadamard gate Ĥ

transforms one basis to the other:

Ĥ | 0 〉 = |+ 〉 , Ĥ | 1 〉 = | − 〉 (2.9)

We can also write it in the matrix form:

Ĥ =
1

2

 1 1

1 −1

 (2.10)

Having introduced some useful operators, for quantum computing purpose, I now

define a special group of operators, known as the Clifford group. The Clifford group

is a group formed by single-qubit unitaries that transform Pauli operators into Pauli

operators. For example, Pauli operators, Hadamard gate, the Ẑπ/2 are in the Clifford

group, but Ẑπ/4 is not (we can easily check this by using Eq. (2.6).).

If any unitary operations can be approximated to arbitrary accuracy by only
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involving a certain set of quantum gates, then this set of quantum gates is called the

universal set [9]. A universal set of gates is usually chosen to be: {Ĥ, Ẑπ/2, Ẑπ/4, ĈZ}.

This set has three single-qubit gates and one two-qubit gate. It’s proved that all gates

can be decomposed into single-qubit gates and two-qubit gates (same as the classical

computing case). So if the three single-qubit gates can perform general single-qubit

operations, then this set is clearly universal. The general single-qubit operation is

a rotation for arbitrary angle around arbitrary axis. It’s not obvious that how this

discrete set is able to produce rotations at all angles (which is continuous), but it is

beyond the scope of this thesis. Interested readers can check the proof in Ref. [9].

2.2 Qumodes

A qumode is a quantized harmonic oscillator. The quadrature operators, dimen-

sionless analogues of position and momentum, are defined in terms of the creation

(â†) and annihilation (â) operators:

q̂ =
1√
2

(â+ â†)

p̂ =
1

i
√

2
(â− â†) (2.11)

From the commutator: [â, â†] = 1, we find the commutator of the quadrature

operators: [q̂, p̂] = i. The Hamiltonian of a qumode can be written as:

Ĥ = ~ω(â†â+
1

2
)

=
~ω
2

(q̂2 + p̂2) (2.12)
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The eigenstates1 of q̂ and p̂ are the analogues of qubit basis {| 0 〉 , | 1 〉} and

{|+ 〉 , | − 〉} respectively. The reason may not be obvious at this point but it will

be clear later.

| q 〉q and | p 〉p are related by the Fourier transformation:

| q 〉q =
1√
2π

∫ ∞
−∞

e−iqp| p 〉pdp

| p 〉p =
1√
2π

∫ ∞
−∞

eiqp| q 〉qdq (2.13)

The Fourier transformation can also be written as F̂ |x 〉q = |x 〉p. Because the

Hadamard gate transforms one basis into the other, the Hadamard gate on qubits is

the analogue of the Fourier transformation on qumodes.

The Pauli operators on qubits also have analogue on qumodes. We define the

Weyl-Heisenberg (WH) operators as:

X̂(s) ≡ e−isp̂

Ẑ(s) ≡ eisq̂ (2.14)

with this we can see:

X̂(s) | q 〉 = | q + s 〉q

Ẑ(s) | q 〉 = eisq| q 〉q (2.15)

Compare this with Eq. (2.4), we can see the Weyl-Heisenberg X̂ and Ẑ to qumodes

is the analogue of the Pauli X̂ and Ẑ to qubits.

1In this thesis, the the two quadrature eigenstates are denoted by | . 〉q and | . 〉p respectively.
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Similar to the qubit Clifford group, the qumode Clifford group is a group of single-

qumode unitaries that transform WH operators into WH operators. The unitaries in

the Clifford group are also called Gaussian unitaries. The unitaties I have covered

so far are all Gaussian unitaries. One example of the non-Gaussian unitaries is the

cubic phase gate D̂3(t) = exp(itq̂3). Because:

D̂3(t)X̂(s)D̂†3(t) = X̂(s)Ẑ(6ts2)e3istq̂2

(2.16)

The right-hand side is not a multiplication of WH operators. Table 2.1 shows a

comprehensive comparison between qubits and qumodes.

Table 2.1: Comparison between qubits and qumodes.
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2.3 Cluster States

Now we are ready to look at details about the cluster state, which is the heart

of a measurement-based quantum computer. In this Section, I first introduce the

qubit cluster states, and then talk about the stabilizer formalism for representing the

cluster states, and then the qumode cluster states.

2.3.1 Cluster State Basics

Let’s start with the n-qubit state |+ 〉⊗N . This state can be represented by a

graph of n isolated vertices. Now we apply controlled-Z gates between some pairs

of qubits, then the final state can be represented by a graph where the vertices are

qubits and edges are the entanglement between qubits. This state is called graph

state. The structure of the graph state depends on where the controlled-Z gates are

applied. If the graph is a d-dimensional square-grid lattice, then the state is called

the cluster state2.

Let’s look at some examples. The state in Fig. 2.2(a) is:

CZ12 |+ 〉1 |+ 〉2 =
1√
2

(| 0+ 〉+ | 1−〉) (2.17)

If we apply a Hadamard gate on the second qubit, the state becomes: (| 00 〉 +

| 11 〉)/
√

2, which is a maximally entangled state in two dimensional Hilbert space,

also known as the Bell state [9].

2The community has different definitions of cluster states, I adopt this definition in this thesis.
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Figure 2.2: Examples of graph states.

The state in Fig. 2.2(b) is:

CZ12CZ23 |+ 〉1 |+ 〉2 |+ 〉3 =
1

2
(| 00+ 〉+ | 01−〉+ | 10+ 〉 − | 11−〉)

=
1√
2

(|+0+ 〉+ | −1−〉) (2.18)

If we apply a Hadamard gate on the second qubit, the state becomes: 1
2
(|+ + + 〉 +

| − − − 〉), which is known as a Greenberger-Horne-Zeilinger (GHZ) state. This graph

can be viewed as a “star graph”, in which all nodes are linked to a single center node.

In this particular case, node 2 is the center. One can prove that all star graphs are

LU-equivalent to GHZ states, where LU-equivalent means equivalent after applying

local unitaries [15].
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The state in Fig. 2.2(c) is:

CZ12CZ13CZ24CZ34 |+ 〉1 |+ 〉2 |+ 〉3 |+ 〉4

=
1

2
√

2
(| 000+ 〉+ | 100−〉+ | 001−〉+ | 101+ 〉

+ | 010+ 〉 − | 110−〉 − | 011−〉+ | 111+ 〉)

=
1

2
(| 0 + 0+ 〉+ | 1 + 1+ 〉+ | 0− 1−〉+ | 1− 0−〉) (2.19)

As we can see as the number of qubits increases, the final state becomes more com-

plicated. If I write everything in the {| 0 〉 , | 1 〉} basis, it has 16 terms.

The state in Fig. 2.2(d) is:

CZ12CZ13CZ24CZ34CZ14CZ23 |+ 〉1 |+ 〉2 |+ 〉3 |+ 〉4

=
1

2
√

2
(| 000+ 〉+ | 010−〉 − | 101+ 〉 − | 111−〉

+ | 001−〉 − | 011+ 〉+ | 100−〉 − | 110+ 〉) (2.20)

Ref. [15] proved the final state above is LU-equivalent to a GHZ state. In general, a

graph state with complete graph is LU-equivalent to a GHZ state [15].

From these examples, we can clearly see that as the number of qubits increases,

the state vector soon becomes exponentially larger (2N terms for N qubits). Also, by

looking at the final state vector, it’s very hard to know what the graph is. Fortunately,

there’s a better way to describe the state, that is to use the stabilizer formalism.
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2.3.2 The Stabilizer Formalism

Let S be a group of operators. If an operator K̂ ∈ S satisfies K̂ |ψ 〉 = ψ, then

we say |ψ 〉 is stabilized by K̂. If all the state vectors from a vector space Vs are

stabilized by every operator K̂ from a group S, then S is called a stabilizer of Vs [9].

For example, S = {I,X} is a stabilizer of Vs = {|+ 〉}, S = {I, Z1Z2, Z2Z3, Z1Z3} is

a stabilizer of Vs = {| 000 〉 , | 111 〉}.

A group can always be represented by its generators, which are independent ele-

ments that generate the group by applying group multiplication. For example,{Z1Z2, Z2Z3}

are the generators of group S = {I, Z1Z2, Z2Z3, Z1Z3}. I can then denote the group

by its generators: S = 〈Z1Z2, Z2Z3〉, and use 〈...〉 to indicate that these are the

generators instead of an enumeration of all elements.

The group of most interest is the Pauli group Gn on n qubits, which is a group of all

n-fold tensor products of Pauli operators [9], with multiplicative factors of ±1, ±i. If

S = 〈g1, . . . , gn−k〉, where g1, . . . , gn−k are independent and commuting elements from

Gn, then Vs that is stabilized by S is a 2k dimensional vector space [9]. For example,

in the case n = 3 and S = 〈Z1Z2, Z2Z3〉, the vector space Vs = {| 000 〉 , | 111 〉} is s

2(3−2) = 2 dimensional vector space. This tells us that a certain stabilizer corresponds

to a particular set of states, so we can use stabilizers to describe the states.

This is good, but if we only look at the example above where S = 〈Z1Z2, Z2Z3〉,

Vs = {| 000 〉 , | 111 〉}, it’s not very impressive that we need three operators to repre-

sent two states. However, if we apply some unitaries on the states, then the resulting
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state can have up to 8 terms, yet we will still only have three operators in the sta-

bilizer group, as I will show soon. In general, for N qubits, the state vector has 2N

terms, the stabilizer group only has N generators.

We now discuss how to apply unitaries in the stabilizer formalism. For g ∈ S

and |ψ 〉 ∈ Vs, applying Û on the state |ψ 〉 gives: Û |ψ 〉 = ÛgÛ †Û |ψ 〉, so ÛVs is

stabilized by the group {ÛgÛ †|g ∈ S}. Now we can see for applying unitaries, we just

need to transform the group elements in the stabilizer, which is usually very easy to

do for Pauli operators, but much harder to keep track of if we use the state vectors.

The last piece in this formalism is the measurement. In here we only cover Pauli

measurement g. There are three different cases:

(1) If g commutes with all elements in S = 〈g1, . . . , gn−k〉, then ±g is in the

stabilizer, we just need to consider the measurement outcome, the new stabilizer is

S = 〈±g, g2, . . . , gn−k〉.

(2) If g doesn’t commute with g1, then we just kick g1 out and add the measure-

ment outcome, so finally S = 〈±g, g2, . . . , gn−k〉.

(3) If g doesn’t commute with g1 and g2, we kick both of them out and add ±g, but

we need one more operator that commutes with everybody in the group. One can eas-

ily check that g1g2 works. So finally the stabilizer becomes S = 〈±g, g1g2, . . . , gn−k〉.

We can use the same principles for the general cases.

At this point, I have already showed how to represent states using stabilizer for-

malism, and how to handle unitaries and measurements. We are ready to apply this
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formalism to study the properties of the cluster states.

2.3.3 Cluster states with Stabilizer Formalism

Now given any graphs, we know exactly what the corresponding state is: we just

need to follow the above procedure to construct the graph from the beginning. But

what happens when we apply unitaries to the state? What about measurements?

Of course we can write down the state vector for the graph state, and check what

happens after those operations. However, this method is very hard and inefficient, as

we pointed out in the previous section. We have a better choice: use the stabilizer

formalism to represent the graph states.

We start with the initial state. The stabilizer for the initial state (before any

controlled-Z has applied) is: S = 〈{Xi|0 ≤ i ≤ n}〉. A controlled-Z between 1 and 2

(1 is the control and 2 is the target) will transform X1 into X1Z2, and leave all other

Pauli operators unchanged. So the final stabilizer is:

S = 〈{Xi

∏
j∈N(i)

Zj | 0 ≤ i ≤ n}〉 (2.21)

where N(i) represents the neighbors of node i in the graph. Using this expression,

one can easily obtain the stabilizer given a graph, by just looking at every node and

its neighbors.

Now we have the stabilizer for the graph, we can use the rules in previous section

to figure out what happens after applying unitaries. I refer interested readers to find

this out in Ref. [15].
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A very useful property of the graph state is the graph can be reshaped by applying

measurements. Measuring the Z of node i will remove all the links to node i while

leaving the rest part of the graph unchanged. To see this, we apply the stabilizer

formalism for measurements introduced in the previous section. The measurement

Zi commutes with all the elements in the group except for Xi

∏
j∈N(i)

Zj, so this one is

kicked out and replaced by ±Zi. By multiplying ±Zi to the all the other elements,

the Zi term in all the other elements is replaced by the measurement outcome ±1.

Now we can see that node i is now isolated from the rest of the graph, but other nodes

are not affected, except for i’s neighbors get a multiplicative factor ±1, which can be

fixed by applying local Pauli operators 3. Measuring X or Y has more complicated

effect on the graph, interested readers can take a look at Ref. [15].

2.3.4 Ideal Qumodes

Now we consider qumodes. The stabilizer formalism translates well to qumodes

if we replace everything from qubits to qumodes according to Fig. 2.1. That is, we

start from the momentum zero state of all qumodes: | 0 〉⊗Np , then apply controlled-Z

to entangle the qumodes. Let’s look at the same graphs in Fig. 2.2, with all nodes

being qumodes instead of qubits.

3This process is known as feedforward.
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The state in Fig. 2.2(a) is4:

CZ12 | 0 〉1p | 0 〉2p = eiq̂1q̂2
∫ +∞

−∞
dq1 | q1 〉1q

∫ +∞

−∞
dq2 | q2 〉2q

=

∫ +∞

−∞
dq | q 〉1q | q 〉2p (2.22)

Note that the state of qumode 2 is in the p basis. If we apply a Fourier transform on

the second qumode, the state becomes:

∫ +∞

−∞
dq | q 〉1q | q 〉2q =

∫ +∞

−∞
dp | p 〉1p | −p 〉2p (2.23)

This is a maximally entangled state for two qumodes, also known as the Einstein-

Podolsky-Rosen (EPR) state [16]. This state is the analogue of the Bell states in

qubits.

The state in Fig. 2.2(b) is:

CZ12CZ23 | 0 〉1p | 0 〉2p | 0 〉3p =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dq1dq2dq3e

iq1q2eiq2q3 | q1 〉1q | q2 〉2q | q3 〉3q

=

∫ +∞

−∞
dq | q 〉1p | q 〉2q | q 〉3p (2.24)

If we apply a Fourier transform on the second qumode, the state becomes a (CV)

GHZ state. Same as in the qubit case, all star graphs are GHZ states (with a local

Fourier transform applied on the center node).

4These states can’t be normalized, I will address this later.
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The state in Fig. 2.2(c) is:

CZ12CZ13CZ24CZ34 | 0 〉1p | 0 〉2p | 0 〉3p | 0 〉4p

=

∫ +∞

−∞

∫ +∞

−∞
dqdq′ | q 〉1p | q + q′ 〉2p | q 〉3q | q + q′ 〉4p (2.25)

The state in Fig. 2.2(d) is:

CZ12CZ13CZ24CZ34CZ14CZ23 | 0 〉1p | 0 〉2p | 0 〉3p | 0 〉4p

=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dqdq′dq′′eiqq

′
ei(q+q

′)q′′ | q 〉1q | q′′ 〉2q | q 〉3q | q + q′ + q′′ 〉4p (2.26)

Note all the controlled-Z gates commute with each other, so the order doesn’t

matter.

Now we generalize the result to N -qumode case. We use an adjacency matrix A

to present the whole set of controlled-Z gates rather than enumerating all of them.

For example, for Fig. 2.2(c), the adjacency matrix A is:

A =



0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0


(2.27)

We can use Ĉz[A] to represent all the controlled-Z gates that will be applied on

the initial state | 0 〉⊗Np . With this definition, we can calculate the final state in general
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case [17]:

|ψA 〉 = Ĉz[A] | 0 〉⊗Np

=
N∏

j,k=1

exp

(
i

2
Ajkq̂j q̂k

)
| 0 〉⊗Np

= exp

(
i

2
q̂TAq

)
| 0 〉⊗Np (2.28)

where q̂ = (q̂1, . . . , q̂N)T.

Same as qubits, using the state vector (as shown above) is hard to visualize the

state, we now use operators to represent the state, the same procedure as the stabilizer

formalism. Notice that if N̂ |ψ 〉 = 0, then Ŝ = exp (N̂) stabilizes |ψ 〉. The operator

N̂ is called the nullifier of state |ψ 〉. Of course we can still use stabilizers for qumodes,

but nullifiers for qumodes have some nicer properties as I will show later, so the

community adopts nullifiers for qumode graph states.

What are the nullifiers for the state above? The nullifiers for the initial state are

very easy to find: p̂ | 0 〉⊗Np = 0, where p̂ = (p̂1, . . . , p̂N)T. Now we just need to apply

the controlled-Z on the state [17]:

Ĉz[A]p̂ | 0 〉⊗Np = Ĉz[A]p̂Ĉz[A]TĈz[A] | 0 〉⊗Np

= (p̂−Aq̂) |ψA 〉

= 0 (2.29)

So the nullifiers are simply p̂−Aq̂. So this state can then be represented by the

graph with adjacency matrix A. Also, given a graph, one can obtain the nullifiers
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easily.

The unitaries and measurements on the qumode graph state have similar effects

as those on a qubit graph state. For example, measuring q̂ of a node can delete the

node from the graph. Interested readers can look at Ref. [17] for a comprehensive

explanation.

2.3.5 Practical qumodes

We have defined the graph states for qumodes using the direct analogue to qubits,

and everything works well so far. However, the state we begin with for each qumode,

| 0 〉p, has infinite energy and can’t be normalized, so it’s not physical and can’t be

generated experimentally. To fix this, we use a finitely squeezed state to approximate

| 0 〉p.

The (single-mode) squeezed state is created by applying the squeezing operator

Ŝ(α) = exp (αâ†2 − α∗â2)/2 on the vacuum state5 | 0 〉:

Ŝ(α) | 0 〉 =
1

coshα

∞∑
n=0

(− tanhα)n
√

(2n)!

2nn!
| 2n 〉 (2.30)

α→∞−−−→
∞∑
n=0

(−1)n
√

(2n)!

2nn!
| 2n 〉 (2.31)

5Note that | 0 〉 represents the zero photon number Fock state, not the infinitely squeezed state
| 0 〉p.
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Compare this to | 0 〉p:

| 0 〉p =
∞∑
n=0

|n 〉 〈n|0〉p (2.32)

=
∞∑
n=0

|n 〉 Hn(0)√
2nn!

(2.33)

=
∞∑
n=0

(−1)n
√

(2n)!

2nn!
| 2n 〉 (2.34)

where Hn(x) is the Hermite polynomial and I have used:

Hn(0) =


n!(−1)

n
2

(n
2

)!
, n is even

0, n is odd

(2.35)

So we can see that at the limit of infinite squeezing α→∞, we have: Ŝ(α) | 0 〉 →

| 0 〉p. The squeezed state can be easily generated experimentally (I will present details

in Chapter 3), and we can use it to approximate | 0 〉p and create the approximate

cluster states.

We use the approximate nullifiers instead of the ideal nullifiers to represent ap-

proximate cluster states. That is to find some graph Z such that when α → ∞:

(1) p̂ − Zq̂ → 0, (2) Z → A. There are many different choices of Z which sat-

isfy this condition [14, 18], the most useful one (at least in this thesis) is to choose

Z = i sech 2αI+tanh 2αA [17]. The advantages of this choice of Z graph are: one can

easily build the connection between the approximate graph states and Gaussian pure

states, it’s easier to calculate the error and noise introduced by the finite squeezing,

and it’s the state closest to the ideal state given a squeezing level [17]. As I will in-
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troduce in the next Chapter, Gaussian states are the states we create and manipulate

in the lab, by using the Z graph we can track the evolution of the state easily and

formulate it in a very compact way.
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2.3.6 The H graph

Now I introduce another graph: the Hamiltonian graph, or the H graph for short.

The H graph is a graphical way to represent the Hamiltonian. For the Hamiltonian

in this form:

Ĥ(G) = i~κ
∑
i,j

Gij â
†
i â
†
j +H.c. (2.36)

Since interactions only involves two fields, so it can be represented by the adja-

cency matrix G, where the vertices are the modes, the edges indicate the interactions.

The adjacency matrix G forms the H graph.

The H graph gives the Hamiltonian of the system, the A graph describes the

structure of a graph state in the ideal case, the Z graph represents the graph state

with finite squeezing. The H graph is what we got directly from the lab, I will cover

more details about this in the next Chapter. The A graph and Z graph represent the

final states, so we’d like to know the connection between those three kinds of graphs.

In the next section, I will present how to derive the A graph and Z graph from the

H graph.

2.4 From H graph to Z graph

Given an arbitrary H graph, we’d like to know what the correspond Z graph is. I

will derive it in both Heisenberg and Schrödinger picture.
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2.4.1 Heisenberg picture

The general Hamiltonian of Eq. (2.36) leads to temporal evolution Û = exp (− i
~Ĥ(G)t)

from the initial vacuum state | 0 〉 in the Schrödinger picture, and applies Û †âÛ to

the field â in the Heisenberg picture. We first investigate the Heisenberg picture.

Let’s first look at the Hamiltonian of only two qumodes: Ĥ = 2i~κâ†1â
†
2 + H.c..

Comparing with Eq. (2.36), we have:

G =

 0 1

1 0

 (2.37)

Using the Heisenberg equations, we have:

dâ1

dt
=

1

i~
[â1, Ĥ]

= κ[â1, 2â
†
1â
†
2]

= 2κâ2

dâ2

dt
= 2κâ1 (2.38)

To write it in a more compact way, let: â = (â1, â2)T. Then the above result can

be written as:

dâ

dt
= 2κGâ† (2.39)
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Solve this equation, we have6:

â(r) = erGâ(0) (2.40)

where r = 2κt > 0 is an overall squeezing parameter. So the quadratures satisfy: q̂(r)

p̂(r)

 =

 erG 0

0 e−rG


 q̂(0)

p̂(0)

 (2.41)

where q̂ = (q̂1, q̂2)T, p̂ = (p̂1, p̂2)T. This result can be generalized to N qumode case,

the solution is in the same form as the above equation.

Now we apply a balanced beamsplitter to the field out from the OPO (this step is

very useful, I will talk about the details later.). In the Heisenberg picture, a balanced

beamsplitter can be represented by a unitary matrix R in which all entries have equal

magnitude. In the two-qumode case, we have:

R =
1√
2

 1 1

1 −1

 (2.42)

The transformation on quadratures is:

 q̂(r)

p̂(r)

 =

 RerG 0

0 Re−rG


 q̂(0)

p̂(0)

 (2.43)

In state verification and other applications (we will discuss later), we need to

measure the squeezing level, which involves measurements of quadrature variances.

6Note: from now on, to differentiate between the two pictures, the operators without an argument
(e.g., q̂) are in the Schrödinger picture (which means they don’t evolve), the operators with an
argument (e.g., q̂(r), q̂(0)) are in the Heisenberg picture.
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So it’s useful to calculate the covariance of the quadratures.

For two Hermitian operators x̂1 and x̂2, the covariance is defined as :

cov(x̂1, x̂2) =
1

2
〈x̂1x̂2 + x̂2x̂1〉 − 〈x̂1〉〈x̂2〉 (2.44)

In this Chapter, I set 〈x̂〉 = 0 for all operator x̂, since I’m focused on quadrature

operators with zero mean. The non-zero mean case can be handled by applying

displacement operations [17].

The covariance matrix for x̂ = (x̂1, x̂2)T is defined as:

cov(x̂) :=

 cov(x̂1, x̂1) cov(x̂1, x̂2)

cov(x̂1, x̂2) cov(x̂2, x̂2)



= 〈ψ |

 x̂1x̂1 x̂1x̂2

x̂2x̂1 x̂2x̂2

 |ψ 〉
= 〈ψ | x̂x̂T |ψ 〉 (2.45)

When x̂ = (q̂T, p̂T)T, we have:

cov

 q̂

p̂

 = 〈ψ |

 q̂q̂T q̂p̂T

p̂q̂T p̂p̂T

 |ψ 〉

= 〈 0 |

 q̂(r)q̂(r)T q̂(r)p̂(r)T

p̂(r)q̂(r)T p̂(r)p̂(r)T

 | 0 〉

=
1

2

 Re2rGRT 0

0 Re−2rGRT

 (2.46)
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where I have used Eq. (2.43) and:

〈q̂(0)q̂(0)〉 = 〈p̂(0)p̂(0)〉 =
1

2

〈q̂(0)p̂(0)〉 = 〈p̂(0)q̂(0)〉 = 0 (2.47)

This result holds for N -qumode cases as well.

If G is self-inverse, then:

e2rG =
∞∑
n=0

(2rG)n

n!

= cI + sG (2.48)

where c = cosh2r, s = sinh2r. So we have:

cov

 q̂

p̂

 =
1

2

 cI + sRGRT 0

0 cI− sRGRT

 (2.49)

With Eq. (2.43), we can calculate the covariance of all linear combinations of

quadratures.

Now we derive the nullifiers of the final state. We first look at the nullifiers before

BS (right after OPO), where the Hamiltonian is written in Eq. (2.36). We know the

state here is a collection of two-mode squeezed states. If mode i and mode j are

entangled, the nullifier for this pair is:

q̂i,θ(t1)− q̂j,−θ(t1)→ 0 (2.50)



CHAPTER 2. QUBITS, QUMODES AND CLUSTER STATES 29

where q̂i,θ = q̂i cos θ + p̂i sin θ. Whether mode i and mode j are entangled depends

on whether Gij in G is nonzero. So taking the whole Hamiltonian into consideration,

the nullifier vector is:

q̂θ(t1)−Gq̂−θ(t1)→ 0 (2.51)

After the OPO, the BS transforms q̂θ(t1) into q̂θ(t2) = Rq̂θ(t1), so the final

nullifier vector in the Heisenberg picture is:

RTq̂θ(t2)−GRTq̂−θ(t2)→ 0 (2.52)

Now we check the covariance of the nullifier vector RTq̂θ −GRTq̂−θ:

cov(RTq̂θ −GRTq̂−θ) = 〈ψ | (RTq̂θq̂
T
θ R + GRTq̂θq̂

T
θ RGT

−GRTq̂−θq̂
T
θ R−RTq̂θq̂

T
−θRGT) |ψ 〉

=e−2rI (2.53)

We can see the variances (diagonal terms in covariance matrix) go to zero as r →∞,

indicating this is the nullifier vector of the final state [19].

By applying local transformations and rearranging the nullifiers into the form of

p̂−Aq̂, one can find out the corresponding A graph, which is the adjacency matrix

for the graph state at infinitely squeezing limit.

2.4.2 Schrödinger picture

We now solve the same problem in a different picture: the Schrödinger picture.

Ref. [17] proposed a Z graph which can be used to represent any zero-mean Gaussian



CHAPTER 2. QUBITS, QUMODES AND CLUSTER STATES 30

pure state. The complex matrix Z can be written as: Z = V + iU, where V and U

are real matrices. If U → 0 at infinite squeezing limit, the Z graph becomes the A

graph: V→ A.

For a given |ψ 〉, Z can be obtained from the covariance matrix of quadratures.

By comparing the covariance matrix in Eq. (2.46) with Eq. (2.19) in Ref. [17], we

find:

Z = V + iU

= iRe−2rGRT (2.54)

For any Z graph, this relation holds: (p̂− Zq̂) |ψ 〉 = 0 [17]7. In our case:

(p̂− iRe−2rGRTq̂) |ψ 〉 = 0 (2.55)

Note in this case when r →∞, the imaginary part of Z (Z is pure imaginary in this

case) doesn’t go to zero, so it’s not clear what the corresponding A is at this point.

Before finding the A graph, we first look at the nullifiers of the final state.

In the previous section, we derived in Heisenberg picture that the nullifier vector

is RTq̂θ −GRTq̂−θ, now how do we derive the nullifiers using the above relation, in

the Schrödinger picture?

7Note (p̂−Aq̂) |ψ 〉 goes to zero at infinite squeezing limit, but (p̂− Zq̂) |ψ 〉 equals to zero for
all squeezing levels.
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We first separate the real and imaginary part by left-multiply −iRT and −ie2rG:

e−2rGRTq̂ |ψ 〉 = −iRTp̂ |ψ 〉

e2rGRTp̂ |ψ 〉 = iRTq̂ |ψ 〉 (2.56)

If G is self-inverse, G2 = I, then Eq. (2.56) becomes:

(I− tG)RTq̂ |ψ 〉 = −iεRTp̂ |ψ 〉

(I + tG)RTp̂ |ψ 〉 = iεRTq̂ |ψ 〉 (2.57)

where t = tanh2r, ε = sech 2r. Since ε
r→+∞−−−−→ 0, so the right-hand side goes to zero

at infinite squeezing limit. Combine these two equations:

[RTq̂θ − tGRTq̂−θ] |ψ 〉 = −iεRTq̂θ+π
2
|ψ 〉 r→+∞−−−−→ 0 (2.58)

Clearly, RTq̂θ−tGRTq̂−θ is a nullifier vector. Compare Eq. (2.53) with Eq. (2.58),

we can see the latter has an additional coefficient t. As I pointed out earlier, there

are infinite choices of approximate nullifiers. For this particular case, a particular set

of nullifiers is to replace the coefficient t by t′, as long as t′ → 1 when r → +∞, we

will have [RTq̂θ − t′GRTq̂−θ] |ψ 〉 r→+∞−−−−→ 0.

To deviate from the main topic (that is to find Z and nullifiers given H graph,

which has been done for the self-inverse G case) a little bit, it is interesting to find

what t′ minimized the variance of the approximate nullifiers RTq̂θ − t′GRTq̂−θ, for

a certain squeezing parameter r.
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With Eq. (2.46), we got:

cov(RTq̂θ − t′GRTq̂−θ)

=
1

2
([c(t′ − t)2 + ε]I + [s(t′ − t)2 − δ]G cos 2θ) (2.59)

where δ = csch2r.

The variances are the diagonal terms in the covariance matrix. We can clearly

see that the minimum variance is achieved when t′ = t, which corresponds to the

nullifiers in Eq. (2.53). So the nullifiers derived in the Schrödinger picture using the

Z graph achieve the minimum variance. In fact, Ref. [17] proved that the Z graph

is the “closest” cluster state to the ideal cluster state, which means the approximate

nullifiers of this state have the minimum variance over other choices of approximate

cluster states.

However, smallest variance doesn’t mean largest squeezing, because the squeezing

level is a ratio between the variance of final state and the variance of the vacuum.

When the coefficient changes, both the variance of the final state and the variance of

the corresponding vacuum will change.

The covariance of the vacuum is:

〈 0 | (RTq̂θ − t′GRTq̂−θ)(R
Tq̂θ − t′GRTq̂−θ)

T | 0 〉 =
1

2
(1 + t′2)I (2.60)

It clearly depends on the t′. Now the diagonal terms in the covariance matrix,
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which are the variances, become:

c(t′ − t)2 + ε

1 + t′2
= c+

2s

t′ + 1
t′

(2.61)

This is minimized when t′ = 1, with a minimum value of e−2r. So although the

nullifiers in Eq. (2.58) (t′ = t) have the smallest variances, the largest squeezing is

achieved by the nullifiers in Eq. (2.53) (t′ = 1).

As we will point out later, in the state verification experiment, the coefficient t′

is actually the ratio between two reference fields (known as local oscillators) used for

quadrature measurements. By controlling the powers of the two fields, we can choose

any coefficient t′ for different approximate nullifiers.

Now we come back to the main topic. So far I have covered the cases when G is

self-inverse. In the following Section, I provide a method for general G.

2.4.3 When G is not self-inverse

Ref. [17] is focused on self-inverse G, which provides an easy connection to Z and

A graph. Ref. [20] studied a 4-qumode non-self-inverse G, but didn’t generalize the

method. In here, I present a method for finding the nullifiers and Z graph for any

bipartite G.

In Eq. (2.56), G is on the exponent, which makes it hard for linear transformations.

When G is self-inverse, the equation becomes linear in G, which significantly simplifies

the equation. When G is not self-inverse, we can diagonalize G to for calculating the

exponential term.
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Let (c1, ..., cN) be G’s eigenvectors: Gci = λici, and C = (c1, ..., cN), we have:

CTGC =
N⊕
i=1

λi

G =
N∑
i=1

λicic
T
i (2.62)

The exponential term can then be written as:

CTerGC =
N⊕
i=1

erλi

erG =
N∑
i=1

erλicic
T
i (2.63)

We first look at the special case that G’s dimension is N = 2n, and its eigenvalues

are paired: {±λi, λi > 0, i ∈ [1, n]}. Let Gci = −λici, Gci+n = λici+n, i ∈ [1, n].

With this assumption, G can be diagonalized as:

CTGC =


n⊕
i=1

−λi 0

0
n⊕
i=1

λi

 (2.64)

We can expand the exponential term of G in Eq. (2.56) using G’s spectrum:(
n∑
i=1

e−2rλicic
T
i

)
RTq̂ |ψ 〉 = −iRTp̂ |ψ 〉 , i ∈ [1, n](

n∑
i=1

e2rλicic
T
i

)
RTp̂ |ψ 〉 = iRTq̂ |ψ 〉 , i ∈ [n+ 1, 2n] (2.65)
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Using the orthogonality: cT
i cj = δij, we can get:

cT
i RTq̂ |ψ 〉 = −ie2rλicT

i RTp̂ |ψ 〉 λi<0,r→+∞−−−−−−−→ 0

cT
i RTp̂ |ψ 〉 = ie−2rλicT

i RTq̂ |ψ 〉 λi>0,r→+∞−−−−−−−→ 0 (2.66)

We have found the nullifiers. Let ε =

(
n⊕
j=1

e−2rλj

)
, then the nullifiers can also be

written as: In 0

0 0

CTRTq̂ |ψ 〉 = −i

 ε 0

0 0

CTRTp̂ |ψ 〉 r→+∞−−−−→ 0

 0 0

In 0

CTRTp̂ |ψ 〉 = i

 0 0

ε 0

CTRTq̂ |ψ 〉 r→+∞−−−−→ 0 (2.67)

The nullifiers tell us what quadrature combinations to measure in state verifica-

tion, but we are also interested in what the graph is for this state. We now derive

the Z graph for a general G.

Let CT =

 C1 C2

C3 C4

, Q̂ = RTq̂ =

 Q̂1

Q̂2

, P̂ = RTp̂ =

 P̂1

P̂2

, and

ε =

(
n⊕
j=1

e−2rλj

)
, then Eq. (2.67) can be written as:
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 C1 C2

0 0

 Q̂ |ψ 〉 = −i

 εC1 εC2

0 0

 P̂ |ψ 〉

 0 0

C3 C4

 P̂ |ψ 〉 = i

 0 0

εC3 εC4

 Q̂ |ψ 〉 (2.68)

Put the two equations together: C1 C2

−iεC3 −iεC4

 Q̂ |ψ 〉+

 iεC1 iεC2

C3 C4

 P̂ |ψ 〉 = 0 (2.69)

Now apply the Fourier transformation on the first half of modes: Q̂1 → P̂1,

P̂1 → −Q̂1, then C1 iεC2

−iεC3 C4

 P̂ |ψ 〉 −

 iεC1 −C2

C3 iεC4

 Q̂ |ψ 〉 = 0 (2.70)

If the matrix before P̂ is invertible, then:p̂−R

 C1 iεC2

−iεC3 C4


−1 iεC1 −C2

C3 iεC4

RTq̂

 |ψ 〉 = 0 (2.71)

Comparing with p̂− Zq̂ = 0, we have:

Z = R

 C1 iεC2

−iεC3 C4


−1 iεC1 −C2

C3 iεC4

RT (2.72)

Now we apply this result to two special cases.
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2.4.3.1 The Square Cluster State

First, we look at the case in Ref. [20], where the H graph is:

G =



0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0


(2.73)

The eigenvalues for this matrix are: {−Φ,− 1
Φ
,Φ, 1

Φ
}, where Φ = 1+

√
5

2
. In this

case, the matrix C formed by its eigenvectors is:

C =
1√

5 +
√

5



−1 Φ 1 −Φ

Φ −1 Φ −1

−Φ −1 Φ 1

1 Φ 1 Φ


(2.74)

Using Eq. (2.67), we can easily find all the nullifiers, which are consistent with Eq.

(2-5) in Ref. [20], with qumode 1 here corresponds to qumode (−n, y) in Ref. [20],

qumode 2 to qumode (n, y), qumode 3 to qumode (−n, z), and qumode 4 to qumode

(n, z).

Now we check what the A is. Using Eq. (2.72), and let ε → 0, we get the A
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graph:

A =



0 0 2 −
√

5

0 0
√

5 −2

2
√

5 0 0

−
√

5 −2 0 0


(2.75)

This is a square graph state and is consistent with the result in Ref. [20]. Note in

here the Fourier transformation is applied on the first two qumodes, applying it on

different qumodes can lead to a A graph of different weights, but those graphs are

LU-equivalent.

2.4.3.2 The Self-inverse G

Now we check whether our result is consistent with Ref. [17] where the self-inverse

cases are discussed. When G is bipartite and self-inverse , it can be written in the

form as Eq. (4.15) in Ref. [17]:

G =

 0 GT
0

G0 0

 (2.76)

where G0 has a dimension of n = N/2. In this case, we have:

CT =
1√
2

 −I G0

G0 I



CTGC =

 −I 0

0 I

 (2.77)
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With this, Eq. (2.72) becomes:

Z = R

 i sech 2rI tanh 2rG0

tanh 2rG0 i sech 2rI

RT (2.78)

this gives the same result as Eq. (4.17) in Ref. [17] (in Ref. [17] R = I).

2.4.3.3 More General Cases

What if G’s eigenvalues are not paired as ±λi? In this case, let’s assume the

first n eigenvalues are negative and all the rest N − n eigenvalues are positive, then

it’s easy to see Eq. (2.68) is still valid, but the dimension of C1 becomes n × n, the

dimension of C2 becomes n × (N − n), dimension of C3 becomes (N − n) × n, and

dimension of C4 becomes (N −n)× (N −n). So our derivation for the nullifier vector

still applies for this more general case.

Similarly, the derivation for the Z graph is also valid, we only need to change

the dimension of Q̂1 and P̂1 to n × 1, Q̂2 and P̂2 to (N − n) × 1. Note the Fourier

transformations can be applied on any n modes, not necessarily the first n modes.

What if all of G’s eigenvalues are positive or negative (i.e., G is positive- or

negative-definite)? In this case, Eq. (2.68) will have only Q̂ or P̂. Then no matter

what local transformations are applied, the nullifiers can only be turned into the form

p̂−Aq̂ where A = 0, which means all the modes are not entangled with other modes,

so this state is not useful.

The non-self-inverse G hasn’t been studied for large scale states, because it’s more

complicated than the self-inverse case using the method in Ref. [17]. The method in
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this section can be used for finding non-trivial states generated from non-self-inverse

H graphs.

2.5 Summary

In this Chapter, I have reviewed the basic ideas of qubits, qumodes and cluster

states. I introduced three important graphs related to the cluster states: the A graph,

the Z graph, and the H graph. I showed how to derive the A graph and the Z graph

from a H graph, and extended the research to the non-self-inverse H graph, which

haven’t been studied yet.

In the next Chapter, I will introduce the fundamentals in the quantum optics

implementation for generating cluster states.



Chapter 3

The Optical Parametric Oscillator

In this chapter we introduce the heart of the optical continuous variable quantum

computer: the optical parametric oscillator (OPO). The OPO is an optical cavity with

nonlinear crystals inside. In order to understand the functionality of the OPO, we

first talk about the optical cavities, and then the nonlinear optics, finally we combine

these two to discuss about the OPO and the use in quantum computing.

3.1 Optical Cavity

Let first look at the simplest (but actually general) case, where the cavity consists

of two mirrors, labeled 1 and 2 respectively. The input field goes to the cavity, part

of it reflects, part of it transmits. The reflected field can be decomposed into a series

of fields: the field reflected at the first incidence, the fields transmitted when the

transmitted incident field bounces back for one round trip, two round trips, and so

on. Similar treatment can be done for the transmitted field.

41
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The mathematical expression for the overall reflected field is:

Er = −r1E0 + t21r2e
ikdE0 + t21r2e

ikdr1r2e
ikdE0 + ...

=
r2e

ikd − r1

1− r1r2eikd
E0 (3.1)

where E0 is the input beam, k is the wave number, d is the round trip length. Simi-

larly, for the transmitted beam:

Et = t1t2r2e
i kd

2 E0 + t1t2r2e
i kd

2 r1r2e
ikdE0 + ...

=
t1t2e

ikd

1− r1r2eikd
E0 (3.2)

The transmittance is then:

T =

∣∣∣∣EtE0

∣∣∣∣2
=

t21t
2
2

1 + r2
1r

2
2 − 2r1r2 cos(kd)

(3.3)

What if the cavity has loss? Assuming the loss is length dependent: rl = eαd,

then after one round trip, the beam will pick a factor of rlr1r2e
ikd. We can actually

absorb all reflective coefficients into a single parameter r = rlr1r2. This trick works

even the mirror has more than two mirrors, or more than one source of loss. Then

the transmittance can be written as:

T =
1

1 + 4R
(1−R)2 sin2 kd

2

(3.4)

where R = r2. This is a periodical function of kd. In experiments, usually we will fix

either d or k. Fixing d means that the cavity mirrors are fixed and we’re scanning
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the frequency of the input beam, fixing d means that the input beam has constant

frequency and the cavity length is scanned. Fig. 3.1 shows the transmittance versus

the input frequency when d is fixed. When R increases, the peaks become narrower,

indicating that approximately only a discrete set of frequencies can pass this cavity.

The frequency difference between the top of peaks is called free spectral range (FSR)

∆, the full-width half-maximum (FWHM) of each peak is called the linewidth δ of

the cavity. From Eq. (3.4), we can easily get:

∆ =
c

d

δ =
c

πd
arcsin

√
(1−R)2/R (3.5)

Figure 3.1: Cavity transmittance versus input frequency.
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The finesse is defined as: F := ∆/δ. In the case T = 1−R� 1, we have:

F =
π

arcsin
√

(1−R)2/R

≈ π
√
R

1−R

≈ 2π

T
(3.6)

The final expression is very simple and useful for calculating finesse. For example,

a one-sided cavity with a (T=) 5% output mirror has finesse of 2π/0.05 ≈ 126, a

two-sided cavity with two 5% mirrors has finesse of 2π/(2× 0.05) ≈ 63.

3.2 Nonlinear Optics

3.2.1 Introduction to nonlinear optics

In linear optics, the relation between the electric field and the polarization density

is P = ε0χE, where χ is a diagonal matrix for isotropic materials. For nonlinear

materials, more terms are introduced1:

P = PL + PNL

= PL + 2dE2 + 4χ(3)E3 + ... (3.7)

where PL = ε0χE is the linear term. The second and third term are called second-

and third-order nonlinearity respectively. Usually, each successive order is weaker

than the previous one, as long as the field isn’t too large, so in here we only keep the

1This convention is used in Fundamentals of Photonics, B. E. A. Saleh and M. C. Teich, 1991.
An alternative convention, P = ε0(χE + χ(2)E2 + χ(3)E3), is used in The Principles of Nonlinear
Optics, Y. R. Shen, 1984.
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second order term.

By using Maxwell’s equations, we can get the equation for fields in nonlinear

materials2:

∇2E − 1

c2

∂2E

∂t2
= µ0

∂2PNL
∂t2

(3.8)

The only nonlinearity in this equation is the second order nonlinear term, which

makes three-wave coupling possible. The three waves can propagate in different di-

rections, in here, I first study the collinear case where three waves are all propagating

along the x axis.

To solve the above equation, we assume waves of three different frequencies are

involved, then the solution can be written in the form [21]:

E(t) =
∑
j=1,2,3

Re[Eje
iωjt]

=
∑
j=1,2,3

1

2
[Eje

iωjt + E∗j e
−iωjt] (3.9)

where we assume ω3 = ω1 + ω2 and ω1 6= ω2. The nonlinear polarization density is:

PNL(t) =
1

2
d

∑
j,k=±1,±2,±3

EjEke
i(ωj+ωk)t (3.10)

The right-hand side of Eq. (3.8) becomes:

µ0
∂2PNL(t)

∂t2
= −1

2
µ0d

∑
j,k=±1,±2,±3

(ωj + ωk)
2EjEke

i(ωj+ωk)t (3.11)

The final expression has 64 terms in total, but if we exclude the terms whose frequen-

2Note c is the speed of light inside the material (c0 is the speed of light in vacuum), so the PL

term is absorbed into the second term in the left-hand side of the equation.
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cies are not ω1, ω2 or ω3, then we have 36 terms left, with three frequencies. More

specifically, we have:

(1) ωj + ωk = ±ω3 in Eq. (3.11): (j, k) ∈ {(1, 2), (2, 1), (−1,−2), (−2,−1)}

(2) ωj + ωk = ±ω2 in Eq. (3.11): (j, k) ∈ {(−1, 3), (3,−1), (1,−3), (−3, 1)}

(3) ωj + ωk = ±ω1 in Eq. (3.11): (j, k) ∈ {(−2, 3), (3,−2), (2,−3), (−3, 2)}

So each case has four possible combinations.

Now we use the plane-wave approximation to write the fields asEj = Aje
−i(kjx−ωjt),

j ∈ {1, 2, 3}. Under paraxial assumption, we have:

∇2Ej −
1

c2

∂2Ej
∂t2

≈ −2ikj
dAj
dx

e−ikjx (3.12)

Plug everything into Eq. (3.8), we get:

da1

dx
= −iga∗2a3e

−i∆kx

da2

dx
= −iga∗1a3e

−i∆kx

da3

dx
= −iga1a2e

i∆kx (3.13)

where aj = Aj/
√

2ηj~ωj, ηj = η0/nj is the impedance of the medium, g2 = 2~ω1ω2ω3η1η2η3d
2,

and d is the second-order nonlinear coefficient. The phase mismatching factor ∆k is:

∆k = n(ω3, T )
ω3

c
− n(ω1, T )

ω1

c
− n(ω2, T )

ω2

c
(3.14)

From Eq. (3.13) we have:

d

dx
(ω1|a1|2 + ω2|a2|2 + ω3|a3|2) = 0 (3.15)
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which indicates the conservation of energy. This is known as the Manley-Rowe rela-

tion [22].

Depending on the pump frequency and beams’ degeneracy, one can distinguish

three common cases:

(1) ω1 = ω2, so a1 = a2, and the pump is a1. Since the pump is much stronger

than generated beams, so da1

dx
= 0 (undepleted pump approximation). Eq. (3.13) can

be simplified, together with the energy conservation equation, the equations for all

waves can be solved. This process is called second-harmonic generation (SHG). In

the next subsection I will present the solution for SHG.

(2) Similar to the above case, let a1 be the pump, however ω1 6= ω2. The equations

can be solved in similar way, and this process is called sum frequency generation

(SFG).

(3) The pump is a3, so da3

dx
= 0. This is called parametric down-conversion (PDC).

In the next subsection, I will solve the equation for SHG. The other two cases,

SFG and PDC, can be solved following the same procedure.

3.2.2 Second-Harmonic Generation

I first update Eq. (3.13) according to the conditions for SHG discussed in the

previous subsection for the undepleted pump3 (a1 = a2, da1

dx
= 0):

da3

dx
= −ig

2
a2

1e
i∆kx (3.16)

3The solution for the depleted pump case can be found at Chapter 19.4 in Fundamentals of
Photonics, B. E. A. Saleh and M. C. Teich, 1991.
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where:

∆k = n(ω3, T )
ω3

c
− 2n(ω1, T )

ω1

c

= [n(2ω1, T )− n(ω1, T )]
2ω

c
(3.17)

Note in here the coefficient is half of that in Eq. (3.13), because according to Eq. (3.11),

there are only two terms with frequency of ω3: (j, k) ∈ {(1, 1), (−1,−1)}, instead of

four.

Eq. (3.16) can be solved by integrating both sides, with the initial condition:

a3(0) = 0 (i.e., no field of ω3 at the input side x = 0)4:

a3(L) = −ig
2
a2

1e
i∆kL

2 L sinc
∆kL

2
(3.18)

The intensity of field 3 is then given by:

I3(L) = 2ω2
1η

3d2I2
1L

2 sinc2 ∆kL

2
(3.19)

We have two observations from this solution:

(1) The intensity of field 3 is quadratic of the intensity of field 1.

(2) If L (crystal length) is fixed, the maximum of a3(L) is achieved when ∆k =

k3−2k1 = 0, this is known as phasematching condition. For a fixed L, as ∆k increases,

the intensity will drop rapidly since sinc(x) damps fast when x increases.

We can also check the intensity of field 3 inside the crystal by varying L. Fig. 3.2

shows the intensity of the field 3 increases very fast (blue trace) as propagating along

4In here I used this notation: sinc(x) = sin(x)/x.
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Figure 3.2: The blue trace is when the phasematching condition is satisfied, the red
trace is when the condition is not satisfied.

the crystal when the phasematching condition is satisfied. When ∆k = 0, we have

I3(L) ∼ L2. If the phasematching condition is not satisfied, it will oscillate (red

trace). In this case, we have I3(L) ∼ sin2 ∆kL
2

.

When this condition is not satisfied, the generated field a3(L) decreases rapidly.

So to maximize the non-linear effect we usually need to fulfill the phase-matching

condition.

3.2.3 Phasematching

Phasematching can be achieved by tuning the incident angle to the crystal and

crystal temperature. Due to birefringence, the refractive index varies with propa-

gating direction, for a certain choice of directions of the three fields, we can have

∆k = 0. This method of phasematching is called birefringent phasematching. Usu-
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ally the generated two fields will have different directions. Birefringent phasematching

has better coupling strength, but the downside is the lack of tunability, the phase-

matching bandwidth is small, and it can only be applied for specific directions and

frequencies.

Another phasematching method, known as quasi-phasematching, uses crystals of

periodic structures, to compensate the momentum mismatching in the reciprocal

lattice. A common method is known as periodic poling in ferroelectrics, where the

second order nonlinearity is alternating between d0 and −d0 with a period of Λ =

2π/∆k, where ∆k is the phase mismatching. Then second order nonlinearity can be

written as a function of position and expended in Fourier series:

d(x) =
∞∑

m=−∞

d0
2

mπ
e−im

2π
Λ
x (3.20)

If we plug this to Eq. (3.13), the phase mismatching term will be compensated, but

the effective nonlinearity is reduced by a factor of 2/mπ, if the m’th order is used.

The nonlinear process will happen in a certain frequency range where the phase-

matching condition is satisfied. It is important to know how wide this range is, as we

will discuss later, this range limits the number of entangled qumodes we can create.

In the next section I present a study of the phase-matching bandwidth in a particular

nonlinear crystal: periodically poled KTiOPO4 (PPKTP).
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3.2.4 Quasi-phasematching bandwidth of PPKTP

In general, the nonlinear coefficient d is not isotropic, so I now write it in the tensor

form: dij, where i ∈ {1, 2, 3}, with 1, 2, 3 referring to the x, y, z axis of the crystal re-

spectively, and j ∈ {1, 2, 3, 4, 5, 6}, with 1, 2, 3, 4, 5, 6 referring to xx, yy, zz, yz, zy, xz, xz, xy

respectively [23]. For the interactions that are of most interest, d33 corresponds to

the zzz process, means that pump field and two generated fields are all z polarized.

For KTP, the only three nonzero nonlinear coefficients are d33, d32 and d24. In here,

we study the phasematching bandwidth of zzz PDC for PPKTP.

The phasematching bandwidth for PDC is the same as SFG, and experimental

characterization for the latter is much easier, so I study the SFG instead of PDC, in

both theory and experiment.

The system we want to model has two pumps at ω1 and ω2, due to SFG, field

at ω3 = ω1 + ω2 will be generated, at the same time, SHG will also take place, so

field at 2ω1 and 2ω2 will be generated as well. We still use the standard plane-wave

approximation as we have used in the coupling wave equations. All classical fields
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are of the form Ej = Aje
−i(kjx−ωjt), j ∈ [1, 5]. The coupled wave equations are

da1

dx
= −ig1a

∗
1a4e

−i∆k1x − ig3a
∗
2a3e

−i∆k3x (3.21)

da2

dx
= −ig2a

∗
2a5e

−i∆k2x − ig3a
∗
1a3e

−i∆k3x (3.22)

da3

dx
= −ig3a1a2e

i∆k3x (3.23)

da4

dx
= −ig1

2
a2

1e
i∆k3x (3.24)

da5

dx
= −ig2

2
a2

2e
i∆k3x (3.25)

where aj = Aj/
√

2ηj~ωj, ηj = η0/nj is the impedance of the medium, g2
1,2 =

4~ω3
1,2η

2
1,2η4,5d

2
33, g2

3 = 2~ω1ω2ω3η1η2η3d
2
33, and d33 is the second-order nonlinear coef-

ficient. The SHG and SFG phase mismatches are, respectively,

∆k1,2 = n(2ω1,2, T )
2ω1,2

c
− 2n(ω1,2, T )

ω1,2

c
− 2π

Λ
, (3.26)

∆k3 = n(ω3, T )
ω3

c
− n(ω1, T )

ω1

c
− n(ω2, T )

ω2

c
− 2π

Λ
, (3.27)

where Λ is the poling period. In the limit of undepleted pumps a1,2, 15 can be solved

simply to yield the total intensity

I =g2
3L

2|a1a2|2 sinc2
(∆k3L

2

)
+
g2

1

4
L2|a1|4 sinc2

(∆k1L

2

)
+
g2

2

4
L2|a2|4 sinc2

(∆k2L

2

)
. (3.28)

We first examine the SFG phasemismatch of Eqs. (3.28-3.27) at room temperature as

a function of the poling period Λ and of SFG input — or OPO “signal” — frequencies

ω1 and ω2 = ω3−ω1, ω3 being fixed to the pump frequency (563 THz, 532 nm) of the
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OPO. This can be done by using temperature-dependent Sellmeier equations [24,25].

The result, plotted in Fig. 3.3, displays a remarkably broad phasematching frequency

bandwidth around frequency degeneracy (ω1 = ω2 = ω3/2). Therefore, we can expect

a 532 nm pumped, zzz PPKTP OPO to achieve mode entanglement over a 4.74 THz

full width at 99% maximum, which would yield 10,000 entangled cavity modes for an

OPO of 0.95 GHz FSR.

Figure 3.3: Quasiphasematching function, versus signal frequency ω1 and poling pe-
riod, for a 1 cm-long PPKTP crystal. The red line outlines the considered QPM
FWHM bandwidth, which reaches 4.74 THz at 99% of the maximum and decreases
significantly in the separated branches.

Analogous calculations for longer wavelengths, such as 775/1550 nm, indicate that

the QPM bandwidth at 99% of the maximum should be broader by a factor of 3.

In order to test this prediction, we used experimental SFG with 2 Newport-New
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Focus TLB-6721 “Velocity” tunable, continuous-wave, linearly polarized diode lasers,

the sum of whose frequencies was kept constant over a 1058-1070 nm wavelength

range. The experimental setup is shown in Fig. 3.4. The x-cut, 1 × 2 × 10 mm3

  Pol   

  HWP

  PBS
Laser 1

Laser 2

  HWP  HWP

f=15cmf=10cm
DM

PPKTP

T controller

Oven

Figure 3.4: Experimental setup. HWP: half wave plate; PBS: polarizing beam split-
ter; Pol: polarizer; DM: dichroic mirror (HR for IR and AR for green).

PPKTP crystal was poled at a period of 9.0 µm (at room temperature) and provided

by Raicol Crystals. The crystal faces were antireflection coated by Advanced Thin

Films for both y and z polarizations at 1064 nm and for the z polarization at 532

nm. The PPKTP crystal was placed in a temperature-stabilized oven, controlled by

a Peltier module driven by a Wavelength Electronics, Model LFI-3751 temperature

controller.

The power of the lasers are set to be 23.0(2) mW and 19.6(2) mW, respectively,

to compensate the efficiency difference caused by their different beam profiles. The

power of the z-polarized beam entering the crystal are 7.7(2) mW and 7.0(2) mW

respectively. Both lasers were scanned in the wavelength range of 1058-1070 nm,

keeping the average wavelength of the two lasers fixed at 1064.090(5) nm, so that the
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generated SFG green beam always had λ = 532.05 nm. The IR frequencies displayed

by each laser were initially measured with a Coherent WaveMaster wavelength meter

for calibration.

Figure 3.5(a) shows the measured power of generated green beam (both SFG and

SHG) versus the fundamental wavelength and crystal temperature. For each tempera-

ture, about 30 data points of different wavelength are measured. The maximum SFG

and SHG power were 19.2(1) nW and 8.94(1) nW respectively, yielding maximum

efficiencies for SFG and SHG of 3.60(2)× 10−4 W−1 and 1.67(1)× 10−4 W−1, respec-

tively. We attributed these relatively modest values to the unoptimized overlap of the

highly elliptical transverse intensity profiles of the diode lasers. However, we believe

it is reasonable to assume that this imperfect overlap was stationary throughout the

measurements.

Figure 3.5(b) shows the theoretical prediction for the total green intensity. As

can be clearly seen, the qualitative behavior of SHG (frequency-sharp ridges) and

SFG (broadband feature) match the experimental results very well. The measured

frequency width of the constant SFG QPM was 3.178(2) THz, at least, since our

measurement was limited by the tuning range of the diode lasers (we could not make

use of the full 1030-1070 nm tuning range of the lasers as it was not centered on

the SHG fundamental wavelength of 1064 nm). This measurement indicates that as

many as 6,700 cavity modes (beyond the 60 actually measured) could be entangled

in our recent demonstration in a single OPO [26].
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Figure 3.5: (a) Experimental phasematching curve. The laser wavelength is scanned
from 1058 to 1070 nm, the temperature of the crystal is scanned from 15◦C to 40◦C
(11 different temperatures). About 30 data points of different wavelengths were mea-
sured at each temperature. The 3D plot was obtained by a linear interpolation
(Mathematica) from the data points. (b) Theoretical phasematching curve, plot-
ted by using the respective power values 18.28 nW for g2

3L
2|a1a2|2, and 8.23 nW for

g2
1L

2|a1|4 = g2
2L

2|a2|4 in Eq. (3.28). The measured SFG bandwidth is 3.178(2) THz,
at quasi-constant efficiency, around 23◦C. The crossing ridges are due to the more
narrowly quasiphasematched SHG interactions.
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3.3 The Optical Parametric Oscillator

Now what happens if we put the nonlinear crystal inside a resonant optical cavity?

Let’s focus on the PDC process, that is, we shine a pump beam into the cavity, and

due to the nonlinear effect, the crystal will downconvert the pump field into pairs of

fields that must satisfy the energy conservation and phasematching conditions, as in

the previous Section. The difference is, instead of getting a continuous spectrum, only

the modes at the resonant frequencies of the cavity will be enhanced by the cavity, all

the other modes will be of much weaker intensity. As a result, we now have a discrete

spectrum of modes, and they are created in pairs.

We already have a classical description of the nonlinear process, we now turn to

the quantum one. The PDC process can be viewed in this way: one pump photon

is annihilated, two signal photons are created, and their frequencies are restricted to

the cavity resonant frequencies. So we can write the Hamiltonian as:

Ĥ = i~χ
∑
i,j

b̂â†i â
†
j +H.c. (3.29)

where b̂ is the pump field and âi,j are the generated fields. Since in PDC the pump

field is very intense so we can treat it as a classical undepleted field: b̂ ≈ β, take it

out of the sum and define: κ = χβ. Now this Hamiltonian becomes the Hamiltonian

of two-mode squeezing, so this process will produce two-mode squeezed pairs, at the

resonant frequencies. We represent this process in Fig. 3.6.

How many entangled modes do we have in such a device? As we have discussed
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Figure 3.6: Pair generation by single pump.

in the previous section, the quasi-phasematching bandwidth of the nonlinear crystal

limits the frequency range where PDC takes place. Now we have the cavity, only the

resonant modes will survive. The pairs created by the PDC are always symmetric

in frequency around half the pump frequency, however, it’s not always the case that

both modes in the pair will be enhanced by the cavity (doubly resonant). If one mode

is not a resonant mode of the cavity (singly resonant or no resonant), the intensity

of both modes will be much smaller. So the OPO dispersion also plays an important

role, and we will talk about this in the next section.

3.3.1 OPO dispersion

Due to the dispersion of the nonlinear crystal of the OPO, we can expect the comb

spacing to become uneven at frequencies far removed from half the pump frequency
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νo = νp/2. Let ∆ be the free spectral range (FSR) of the OPO; in the absence

of dispersion, PDC will yield emission of photon pairs into, and generation of EPR

entanglement between, qumodes at frequencies ν±j = νo±j∆, where j is an integer. In

the presence of dispersion in, say, a ring resonator, the FSR will depend on frequency,

i.e. j:

∆j =
c

L+ n(νj)`
, (3.30)

where L is the length of the air path in a round trip, ` is the length of the crystal

path in a round trip, n is the index of refraction of the crystal, and c is the speed

of light. In the presence of normal dispersion, we can expect the average frequency

(νj + ν−j)/2 to veer away from νo as j � 1, which will lead to a severe degradation of

squeezing as the shift (νj + ν−j)/2− νo becomes of the order of the OPO linewidth,

see Fig. 3.7.

We now consider the exact OPO used in Ref. 26, contains two identical PPKTP

crystals, oriented at 90◦ from each other. With this arrangement, the OPO cavity is

polarization degenerate and resonant frequency νj is given by (the refraction of air

being negligible compared to that of KTP):

2π

c
νj[L+ nz(νj)`+ ny(νj)`] + φ = j2π (3.31)

where nz(νj), ny(νj) are the refractive indices for polarizations along the z and y

principal axes of KTP crystal, respectively; and φ is the phase added by the OPO

mirrors or other dispersion compensating elements.
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Figure 3.7: The dispersion effect of the OPO. The OPO pump has a fixed frequency
and very narrow linewidth; the blue solid vertical line in the center marks half the
pump frequency νo. In the absence of dispersion, the symmetric resonant modes
±j of the OPO (solid lines) are equally spaced by a constant FSR: (a), j = 1,
νo = (ν−1 + ν1)/2; (b), j = 2, νo = (ν−2 + ν2)/2. In the presence of dispersion, i.e.,
for j � 1, the resonant modes of the OPO (solid lines) are not equally spaced by a
constant FSR: (c), νo 6= (ν−j + νj)/2, the overlap between the PDC modes and the
nearest OPO eigenmodes is severely reduced.
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If φ is frequency independent, which means no dispersion compensating is imple-

mented in the OPO, then j will have a constant offset of −φ, which we set to zero

for simplicity, so that:

νj = j
c

L+ nz(νj)`+ ny(νj)`
≡ j∆j, (3.32)

where ∆j is the dispersive FSR. Let νj0 , which is half of the pump frequency, to be the

center frequency (In our case, νj0 corresponds to 1064.04 nm, our pump’s wavelength

is 532.02 nm). Then Eq. (3.31) can be written as:

νj =
∆j

∆j0

νj0 + (j − j0)∆j (3.33)

Without dispersion, ∆j is just the regular FSR, which is the same for all frequen-

cies: ∆j = ∆j0 . The resonant frequencies ν ′j satisfies: ν ′j = j∆j0 , indicating that all

the resonant frequencies are equally spaced by the FSR. With dispersion, the resonant

modes are no longer equally spaced, because ∆j is frequency dependent: ∆j 6= ∆j0 .

Given an integer j, by solving Eq. (3.33), the correspondent resonant frequency νj

can be obtained. The difference between νj and ν ′j is the frequency shift due to

dispersion5.

To evaluate this effect, we used the Sellmeier equations of Ref. [27] for nair, Ref. [24]

for nz, Ref. [28] for ny, and we used the dependence determined in Ref. [25] for the

temperature dependence of nz and ny. For our OPO: L = 28.126 cm, l = 1 cm,

5In here, ν′j is defined as ν′j = j∆j0 . Notice that ν′j depends on choice of νj0. Within this paper,
we fix νj0 to 1064.04 nm.
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∆j0 = 0.945 GHz, λj0 = 1064.04 nm. The frequency shift referring to the regular

frequency comb(where resonant frequencies are ν ′j = j∆j0) is shown in Fig. 3.8.

Figure 3.8: Frequency shift νj−ν ′j vs ν ′j, calculated by solving Eq. (3.33). Within the
plot range(200 GHz) it is almost linear and symmetric around the center frequency
νj0 .

The first order approximation of Eq. (3.33) provides a simple solution for the

resonant frequencies with good precision. Since we only study the frequency range of

1 THz around νj0 , where the dispersion of air is 10−5 of the dispersion of the crystal,

so we can treat it as a constant: nair(νj) = 1. Then the Taylor expansion gives:

nz,y(νj) = nz,y(νj0) + (νj − νj0)
dnz,y
dν
|νj0 +O[(νj − νj0)2] (3.34)

When:

(νj − νj0)
d2nz,y
dν2

|νj0 �
dnz,y
dν
|νj0 (3.35)

we can neglect the high order terms:

νj = j
c

L+ n0l + l(νj − νj0)d(nz+ny)

dν
|νj0

(3.36)

where n0 = nz(νj0) + ny(νj0). Given l(νj − νj0)d(nz+ny)

dν
|νj0 � L+ n0l, we can simplify
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it to:

νj = j∆j0

1 + l
c
νj0∆j0

d(nz+ny)

dν
|νj0

1 + l
c
j∆2

j0

d(nz+ny)

dν
|νj0

= j∆j0

1− l
j0
D1

1− jl
j20
D1

(3.37)

where D1 = d(nz+ny)

dλ
|λj0 , and we used dn

dν
= (− c

ν2 )dn
dλ

, νj0 = j0∆j0 . Given jlD1/j
2
0 � 1,

finally, we have:

νj = j∆j0 [1 +
l

j0

D1(
j

j0

− 1)]

= νj0 +m∆′ +m2 ∆j0lD1

j2
0

(3.38)

where m = j − j0, ∆′ = ∆j0(1 + l
j0
D1). This equation gives a very good approximate

solution of Eq. (3.33).

When m � j2
0/(lD1), the second order term is much smaller than the first order

term, so:

νj = νj0 +m∆′ (3.39)

where ∆′ = ∆j0(1 + l
j0
D1). This equation shows the resonant modes are still equally

spaced, but the spacing is ∆′, instead of ∆j0 in the nondispersive case. Usually

D1 < 0, so ∆′ < ∆j0 , which means all the resonant modes shrink to the center

frequency mode νj0 , comparing to the nondispersive case.

Notice that this conclusion does not depend on choice of center frequency νj0 .

Any resonant frequency can serve as νj0 . A different νj0 will lead to a different

nondispersive FSR ∆j0 , which gives a different regular frequency comb to define the
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frequency shift.

Also, from Eq. (3.39), we can see that from the m-th resonant mode referring

to the center frequency, the integer j increased by m. In other words, mode νj0+m

is the +m’th resonant mode from νj0 . This is obviously true in nondispersive case,

but does not hold when the second order term is comparable to the first order term,

i.e., m ∼ j2
0/(lD1). We only study 1 THz around the center frequency, where the

dispersion effect is not very strong so this relation still holds. Then the ±m’th modes

from νj0 is just νj0±m.

We now check the average of νj0−m and νj0+m, which are the ±m’th modes from

the center frequency νj0 . From Eq. (3.38), we have:

(νj0−m + νj0+m)/2− νj0 = m2 ∆j0lD1

j2
0

(3.40)

Typically, j0 ∼ 3×105, D1 ∼ −7×104 m−1, then the shift is around −7.77m2 Hz.

The deviation between this solution and the exact solution increases as m increases,

for m ∼ 320, the deviation is only 500 kHz. The linewidth of the resonant modes is

the linewidth of the OPO, which is also the linewidth of the average frequency.

We can see as the average decreases gradually, the overlap between the average

frequency(whose linewidth is the the linewidth of the resonant modes, which is the

OPO linewidth) and the pump becomes smaller. When this overlap is out of half the

linewidth of either the pump or the average frequency, the PDC will be very weak, as

shown in Fig. 3.7. It is equivalent to say, when the PDC generated pairs’ frequency
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difference is large, they will not be enhanced by the OPO due to OPO’s disperion.

Let ∆ν to be the greater value of the pump’s and the OPO’s linewidth, the number

of total modes, with orthogonal polarization, are 1.44
√

∆ν/2. For the case in [26],

the pump’s linewidth is 1 kHz , the OPO’s linewidth is 10 MHz, which corresponds

to 3220 modes.

Figure 3.9: Average frequency shift vs ν ′j, calculated by solving Eq. (3.33). Equa-
tion (3.40) gives almost the same result over this frequency range.

Notice that in here we set φ = 0 in Eq. (3.31), however, by using dispersion

compensating elements (for example, special coated mirrors, or prism pairs), this

dispersion effect can be compensated.

3.4 Conclusion

In this Chapter, I have presented the basic components of the OPO and studied

the limitation of the OPO as an entanglement source. For a 9µm-poled PPKTP

for 532/1064 nm up/down-converted wavelengths, the experiment shows a 3.178(2)

THz QPM bandwidth, at constant SFG efficiency, and the result was limited by the

tunability of our diode lasers and hence this result is only a lower bound for the actual
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QPM bandwidth. As it stands, this measurement indicates that as many as 10,000

cavity modes (beyond the 60 actually measured) could be entangled in our recent

demonstration in a single OPO [26]. Analogous calculations for longer wavelengths,

such as 775/1550 nm, indicate that the QPM bandwidth at 99% of the maximum

should be broader there by a factor of 3.

Taking the OPO dispersion into consideration, I showed that the resonant modes

become asymmetric around center frequency (half of the pump frequency) gradually,

when the modes are off by the pump’s linewidth, the generated pairs from PDC will

not be enhanced by OPO. In the presence of dispersion, 3220 entangled modes can

be generated using the scheme in [26]. Moreover, dispersion can be compensated by

using dispersion compensating elements, such as prism compressors [29, 30], chirped

mirrors [31, 32], adding opposite group velocity dispersion materials [33, 34], and so

on. These are widely used in mode-locked laser experiments. With the dispersion

compensated, we expect 10,000 modes can be achieved in [26].

In this Chapter, I have only covered the case when a single pump is used in a OPO.

What if we have more than one pump? We just need to add more terms into the OPO

Hamiltonian. More generally, we can use a graph adjacency matrix G to represent

the Hamiltonian’s couplings, where the vertices are the generated modes, the edges

indicate the entanglement, i.e., those modes are created as pairs. The Hamiltonian
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can then be written as:

Ĥ(G) = i~κ
∑
i,j

Gij â
†
i â
†
j +H.c. (3.41)

which is Eq. (2.36).



Chapter 4

Generating Large Scale Cluster
States

I have presented the theoretical and experimental fundamentals in Chapter 2 and

Chapter 3 respectively. In this Chapter, I will connect the results from the previous

two chapters and introduce two important proposals that can generate large scale

cluster states with rich structures for universal quantum computing.

4.1 The Hypercubic Cluster States

In this Section, we discuss the proposal for generating scalable hypercubic cluster

states [4]. Up to 2012, most experimental proposals for making cluster states are

“bottom-up” approaches, which is to entangle qubits one by one [6], which is usually

hard to conduct in a scalable way. The only scalable “bottom-up” approach is to use

temporal modes to sequentially generate cluster states [35, 36]. The only two “top-

down” approaches are ultracold neutral atoms in optical lattice [37] and the quantum

optical frequency comb (QOFC) from a single OPO [38, 39]. The two proposals, in

Ref. [38] and Ref. [17], are the precursor of the work in this Section. At that time,

68
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creating large scale square-grid cluster states on QOFC in frequency domain was

considered very hard, because the arrangement of qumodes in frequency domain is

much more complicated than that in the time domain. In the time domain, at one

time point only one entangled pair is created, and the “time” of one qumode can

be easily changed by delaying [35]. However, in the frequency domain, all entangled

qumodes over the entire QOFC are created at the same time, and the frequencies of

the qumodes can’t be changed after creation. So to create a square-grid cluster state

in the frequency domain, one has to make sure all the qumodes after creation are

exactly at the desired frequencies.

In this section, I present a method for generating large scale hypercubic lattice

cluster states in frequency domain. I first introduce the building blocks, the two-

mode squeezed states (TMSS), then talk about the lattice alignment, weaving and

verification.

4.1.1 Two-mode squeezed states generation

The building blocks of the hypercubic state are the TMSSs, which are the entan-

gled pairs generated by the OPO as introduced in Chapter 3. However, in Chapter

3, we haven’t utilized the polarization as a degree of freedom. In here, we use two

identical PPKTP crystals oriented at 90◦ from each other, with the first (second)

quasiphasematching the ZZZ (Y Y Y ) interaction, as defined by the polarization di-

rections of pump and downconverted fields, Z (Y ) being the horizontal (vertical)

direction.
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As we mentioned before, the QOFC created by the optical cavity is a collection

of equally spaced, well-resolved qumodes. To make it easier to demonstrate, we label

the modes by the frequency index n ∈ Z with in the comb, such that the resonant

modes are at frequencies ωn = ω0+n∆ω, with ω0 an arbitrary offset, and ∆ω the FSR

of the OPO cavity. Pump light at frequency ωpump in the crystal will downconvert

into photons of frequencies ωn1 and ωn2 such that:

ωpump = ωn1 + ωn2 = 2ω0 + ∆ω(n1 + n2). (4.1)

We rewrite this phasematching condition by defining the pump index :

p :=
ωpump − 2ω0

∆ω
= n1 + n2. (4.2)

Nondegenerate downconversion, which creates TMS states with no single-mode

squeezing, requires an odd pump index p so that n1 6= n2. Without loss of generality,

we assume that n1 is odd and that n2 is even from this point forward.

For convenience, we now replace each mode index with a macronode index m :=

(−1)nn. The phasematching condition then becomes a difference condition on macron-

ode indices: p = m2−m1. Since m2 is assumed even and m1 is assumed odd, we can

repeatedly add 2 to both and still satisfy the condition. This relation therefore pro-

duces a two-step-translationally invariant set of interactions (for each polarization)

with respect to the macronode indices [Figs. 4.1(a); 4.2(a); and 4.5(a), top].

We can write the Hamiltonian in the interaction picture with a single classical
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Figure 4.1: The phasematched QOFC interactions in two different OPOs, with Y -
and Z-polarized pump indices pY and pZ (black arrows). The qumodes are denoted by
vertical lines (with orthogonal polarizations at the same frequency slightly separated
for clarity) labeled by frequency index n and node indexm (in red). The curved arrows
denote the nonlinear interactions (ZZZ, top; Y Y Y , bottom), each of which becomes
an edge of weight 1 in the OPO’s H graph [17,39] and generates corresponding TMS
states. (a) The QOFC of a single OPO with pY = −pZ = ∆m = 1, which produces
a single chain of interactions between adjacent node indices. (b) The QOFC of a
single OPO with pY = −pZ = ∆m = 3, which produces interactions between all pairs
of node indices m (red) separated by three units. This can also be interpreted as
producing three independent chains (colored arrows) of the type obtained in (a).

undepleted pump. The well-known TMS Hamiltonian is:

Ĥ = i~κâ†1â
†
2 + H.c. (4.3)

where κ > 0 is the overall nonlinear coupling strength. We can write this in terms of
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the adjacency matrix of a H graph [17,39–41]:

G =

0 1

1 0

 (4.4)

with components Gjk, as follows:

Ĥ[G] = i~κ
∑
jk

Gjk â
†
j â
†
k + H.c. (4.5)

In this simple case, the two-mode interaction is purely nondegenerate (i.e., G

is purely off-diagonal), and we have a graph with no self-loops. We will eschew

degenerate interactions (self-loops in G) throughout this paper. We now introduce

more elaborate H graphs, which will be plugged into Eq. (4.5) to represent more

complicated interactions.

4.1.2 Macronode lattice setup

We now show that the TMS states generated by D OPOs are naturally arranged

by the phasematching condition in a D-hypercubic lattice of frequency-degenerate

macronodes. In the next Section, we will describe the interferometer that acts within

each macronode to generate cluster entanglement.

4.1.2.1 Scaling the graph valence

We consider a collection of D OPOs, each of which pumped by two monochromatic

fields of distinct frequencies and orthogonal polarizations, with OPO #j having pump
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Figure 4.2: Arrangements of the TMS states qumodes into (a) linear, (b) square-
lattice, and (c) cubic-lattice configurations (with M2 = 7 and M3 = 13) by grouping
together frequency-degenerate qumodes into macronodes (red circles or white spheres)
labeled by macronode indices (red numbers). See text for details. In (c), only the
macronode connective structure is shown; individual qumodes and their connections
are hidden for clarity. The macronode connections created by OPO #1, #2, #3 are
drawn in green, purple, yellow transparent tubes.

index pjε per polarization ε. This implements the Hamiltonian

Ĥ = i~κ
D∑
j=1

∑
ε∈{Y,Z}

∑
mjε∈2Z+1

â†mjε â
†
mjε+pjε + H.c. , (4.6)

which can be represented by Ĥ[G] from Eq.(4.5) using the H graph:

G =
D⊕
j=1

⊕
ε∈{Y,Z}

⊕
mjε∈2Z+1

0 1

1 0


mjε,mjε+pjε

. (4.7)

To create the desired structures, we prescribe that pjY = −pjZ = ∆mj, which cor-

responds to an H graph with exactly one edge between all pairs of macronodes sep-
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arated by |∆mj|, each of which produces a corresponding TMS state, as illustrated

in Fig. 4.1.

(1) Linear lattices: Figure 4.1(a) depicts tthe H graph of a single OPO (#1) with

p1Y = −p1Z = ∆m1 = 1 This graph is a collection of TMS state edges, which are

shown reordered in Fig. 4.2(a), where all qumodes of same index define to a macronode

and a linear structure is clearly visible. (We will see later that a Hadamard inter-

ferometer transforms this linear sequence of disconnected EPR edges into a dual-rail

quantum entangled wire, or single quantum wire over macronodes, as was experimen-

tally demonstrated in Ref. [26].)

Figure 4.1(b) shows an additional, remarkable feature of this construction: when

∆mj > 1, the OPO will generate ∆mj (here, 3) disjoint quantum wires. This gener-

ation of multiple quantum wires in a single OPO was also demonstrated in Ref. [26]

and is the basis for generating higher-dimensional lattices, to which we now turn.

(2) Square lattice: We now imagine taking the quantum-wire sequence of OPO

#1, as in Fig. 4.2(a), and “wrapping” it around a fictitious “cylinder,” like a piece of

thread around a spool [green wire in Fig. 4.2(b)]. We then employ a second OPO (#2),

with p2Y = −p2Z = ∆m2 = 7 here, to create 7 additional quantum-wire sequences

[purple wires in Fig. 4.2(b)] whose macronodes exactly overlap with those of the first

(spiraling) wire and bridge the spiral’s coils with graph edges along the second lattice

dimension (i.e., along the cylinder’s axis), which will result in a square lattice with

twisted cylindrical topology [Fig. 4.2(b)]. For a cylinder of circumference M2 in units
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of macronode-index spacing, such a construction requires ∆m1 = 1 (for the wrapped

wire) and ∆m2 = M2 (for the cross-links).

(3) Cubic lattice: This method can be extended to higher-dimensional lattices by

using a fractal procedure, treating the twisted cylindrical lattice from the previous

step as the linear resource to itself be wrapped around another cylinder [Fig. 4.2(c)],

with an additional OPO used to create edges along the axis of the new cylinder

and between adjacent macronodes along the new cylinder axis. For example, by

first wrapping the wire around a cylinder of circumference M2 and then wrapping

that entire structure around a second cylinder of circumference M3, we can create

all the required macronode links with 3 OPOs with ∆m1 = 1, ∆m2 = M2, and

∆m3 = M2M3. This results in a cubic lattice in the macronodes with twisted toroidal

topology in the first two dimensions and linear topology in the third.

(4) Hypercubic lattices: Continuing this fractal progression weaves hypercubic

lattices from macronodes. In general, for a D-dimensional hypercubic lattice, one

employs D OPOs with ∆mj =
∏j

k=1Mk for OPO #j (and M1 = 1). These lattices

have twisted toroidal topology in the first D− 1 dimensions and are linear in the Dth

one.

4.1.2.2 Scaling the number of independent copies of the graph

The same D OPOs can create M copies of a D-hypercubic lattice from (4) above,

if OPO #j has pump indices: pj(Z,Y ) = ±M∆mj + (M − 1), and if we now label

each macronode by a two-component compound macronode index m(k) for previous
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Figure 4.3: An example of making three copies of linear lattice cluster states. Different
colors indicates different linear lattice cluster states. (a) The compound macronode
index m(k) is used instead of the macronode index m. In this case, ∆mj = 1, M = 3,
k ∈ {0, 1, 2}. (b) The TMS states can be arranged into three groups, each group will
independently form a linear lattice cluster state. Starting from this, by applying the
procedure from (2)-(4) multiple copies of lattice cluster states with higher dimension
can be constructed.
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macronode index m within lattice k ∈ ZM , then the frequency indices become:

n = (Mm(k) + k), if m(k) is even (4.8)

n = −(Mm(k) + k) + (M − 1), if m(k) is odd. (4.9)

An example of making three copies of linear lattice cluster states is shown in

Fig. 4.3. Following the dimension building-up procedure from (2) to (4), multiple

copies of square [Fig. 4.2(b)], cubic [Fig. 4.2(c)] and hypercubic lattice cluster states

can be constructed.

4.1.3 Macronode lattice entanglement

With the quantum-wire sequences being appropriately arranged in a D-hypercubic

pattern, we first describe the entanglement step, which is to interfere all qumodes

within each (frequency-degenerate) macronode [35] by use of a Hadamard interfer-

ometer. The formal justification and proof of this will employ the graphical calculus

for Gaussian pure states [17,42].

4.1.3.1 Experimental construction of hypercubic lattice clusters

In the Heisenberg picture, the action of an interferometer on 2D qumodes (D

frequencies, two polarizations) is modeled by the action of a unitary matrix U on

a vector of qumode annihilation operators a = (â1, . . . , â2D)T. Here, we need the

interferometer to be balanced, i.e., all entries of U to have equal magnitude.

When 2D is a multiple of 4, up to 668 and possibly higher [43], U can be chosen to

be a 2D × 2D Hadamard matrix R. We restrict ourselves to this case for simplicity,
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leaving the general case to future work. For D = 1, a π
8

half-wave plate (HWP) acts

as a balanced beamsplitter on polarization modes with R, in this case, being:

H1 :=
1√
2

1 1

1 −1

 . (4.10)

Using the Sylvester construction of Hadamard matrices [44], we can obtain the

balanced 2D-splitter matrix: HD := H⊗D1 , which can be implemented using balanced

beamsplitters [45, 46] or, equivalently, using π
8

HWPs and polarizing beamsplitters

(PBSs). Figure 4.4 shows the experimental setup to generate cluster states with

linear, square-lattice, and 4-hypercubic-lattice graphs. Each compact setup builds

on the previous one, akin to the fractal construction of Fig. 4.2. All ring OPO

cavities must be of identical FSR and held to the same exact resonant frequency, e.g.,

by Pound-Drever-Hall servo locks to the same counterpropagating reference laser

beam [20,26].

4.1.3.2 Theoretical construction of hypercubic lattice clusters

AnyN -mode Gaussian pure state has a position-space wavefunction of the form [17]

ψZ(q) = det

(
Im Z

π

) 1
4

exp

(
i

2
qTZq

)
, (4.11)

up to displacements, for some complex, symmetric matrix Z with Im Z > 0. Z can

be interpreted as the adjacency matrix of an N -node, undirected, complex-weighted

graph and evolves under Gaussian unitary operations (in the Schrödinger picture)

according to simple graph transformation rules [17]: Starting with the D OPOs rep-
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Figure 4.4: Compact experimental setups for generating and verifying QOFC-
based CV cluster states with linear, square-lattice, and 4-hypercubic-lattice graphs.
All polarizing beamsplitters (PBSs) transmit Z and reflect Y , and all half-wave
plates (HWPs) are at π

8
to the PBSs’ axes. Box C1 generates at (1) a CV cluster state

with linear topology as in Fig. 4.2(a) and graph structure as shown in Fig. 4.5(a),
which can be verified using two-tone balanced homodyne detection (BHD) in Box V1
(and omitting all the other optical elements). This was demonstrated experimentally
in Ref. [26]. Box C2 builds on this setup to generate at (21,2) a square-lattice CV
cluster state with twisted cylindrical topology as in Fig. 4.2(b) and graph structure
as shown in Fig. 4.5(b). This can be verified using Boxes V1 and V2. Box C4 fur-
ther builds on this, generating at (41−4) a 4-hypercubic-lattice CV cluster state with
toroidal topology in the first three dimensions and linear topology in the fourth, which
can be verified using all BHD’s. The BHDs contain a two-tone local oscillator (LO),
phaselocked to the OPO and polarized at π

4
to the PBS’s axis [20, 26].
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resented by G from Eq. (4.7), when the Hamiltonian Ĥ(G) in Eq. (4.6) is applied on

the vacuum state for time t, the output state is a Gaussian pure state with graph:

Z0 = i exp(−2αG), (4.12)

where α = 2κt > 0 is an overall squeezing parameter. Crucially, since G is self-

inverse [17,47], this relation simplifies to

Z0 = icI− isG, (4.13)

where c = cosh 2α, and s = sinh 2α, resulting in a TMS state for each edge in G

[Figs. 4.5(a), top, and 4.5(b), left].

We write the total interferometer as R =
⊕

m∈Z(HD)m, which acts with HD

simultaneously on each macronode, evolving the state as [17]

Z0
R7−−→ Z = ic I− isRGRT. (4.14)

Since RGRT is self-inverse, Z is equivalent [35]—up to trivial local phase shifts—to

the approximate CV cluster state

ZC = iεI + tRGRT, (4.15)

where ε = sech 2α, and t = tanh 2α. We focus on Z rather than ZC for experimental

simplicity but still refer to the former as a “CV cluster state” because the phase shifts

can be absorbed entirely into mode-wise quadrature redefinitions [35].

As shown in Fig. 4.5, we can see after interfering the 2D output qumodes of the
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OPOs by the balanced 2D-splitter, all qumodes within each macronode are entangled

with all qumodes in the neighbor macronodes, thus creating a D-dimensional lattice

cluster state.

4.1.4 State verification

To verify the state, we need to measure the nullifiers. As we have already derived

in the previous Section, the nullifier vector is:

n̂θ := RTqθ − tGRTq−θ (4.16)

which is comprised of simultaneously commuting observables known as approximate

nullifiers [17] or variance-based entanglement witnesses [19]. Since R acts locally on

frequency-degenerate qumodes and since G links each node to exactly one other of a

different frequency, each component of n̂θ contains exactly two frequencies and can

be measured by the two-tone balanced homodyne detection methods of Refs. [20,26].

The theoretical covariance matrix [17] of n̂θ is given by

cov(n̂θ) =
ε

2
(I− tG cos 2θ), (4.17)

vanishing in the large-squeezing limit α→∞. Each element of n̂θ therefore has a

theoretical variance of ε (i.e., sech 2α) units of vacuum noise.

Further application of the massively entangled QOFC to quantum information

processing will require separating the frequencies. We are investigating the use of

quantum-optics grade arrayed waveguide gratings [48] and of virtually-imaged phase
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arrays [49], which have been successfully implemented in classical optical frequency

combs [50].

4.1.5 Conclusion for the hypercube proposal

We have proposed novel hypercubic-lattice cluster states, highly scalable in size,

graph valence, and number of copies of the state, and we have detailed their experi-

mental generation and characterization with remarkably compact and proven technol-

ogy [20,26]. The macronode-based implementation presented here and elsewhere [35]

occurs naturally in quantum optics [36] and is becoming known to be a more ef-

ficient use of such cluster states for one-way quantum computing [5]. This work

further motivates the development of a unified theoretical approach to macronode-

based cluster states. Finally, the availability of large-scale, high-dimensional lattices

invites theoretical and experimental investigations into the topological properties of

these structures [51], including their high-dimensional incarnations [52].
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Temporal-mode continuous-variable cluster states using linear optics
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Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
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I present an extensible experimental design for optical continuous-variable cluster states of arbitrary size
using four offline (vacuum) squeezers and six beamsplitters. This method has all the advantages of a temporal-
mode encoding [Phys. Rev. Lett. 104, 250503], including finite requirements for coherence and stability even as
the computation length increases indefinitely, with none of the difficulty of inline squeezing. The extensibility
stems from a construction based on Gaussian projected entangled pair states (GPEPS). The potential for use of
this design within a fully fault tolerant model is discussed.
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The GPEPS techniques developed above for the CV quantum wire can be adapted to a two-dimensional square-lattice CV
cluster state, as well. This additional dimension makes the state universal for CV one-way QC [? ]. We again start with the
states created by the single-OPO method [? ? ], which have the local topology of a square lattice, but with four physical nodes
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I present an extensible experimental design for optical continuous-variable cluster states of arbitrary size
using four offline (vacuum) squeezers and six beamsplitters. This method has all the advantages of a temporal-
mode encoding [Phys. Rev. Lett. 104, 250503], including finite requirements for coherence and stability even as
the computation length increases indefinitely, with none of the difficulty of inline squeezing. The extensibility
stems from a construction based on Gaussian projected entangled pair states (GPEPS). The potential for use of
this design within a fully fault tolerant model is discussed.
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The GPEPS techniques developed above for the CV quantum wire can be adapted to a two-dimensional square-lattice CV
cluster state, as well. This additional dimension makes the state universal for CV one-way QC [? ]. We again start with the
states created by the single-OPO method [? ? ], which have the local topology of a square lattice, but with four physical nodes
per site of the lattice. Analogous to the quantum wire, we can make this graph invariant under translations in either lattice
dimension by phase shifting the highlighted nodes by ⇡ (which, again, is a local redefinition of basis only):
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Figure 4.5: Effect of the interferometers acting on the macronodes. In both (a)
and (b), the combined H graph G for the output of the OPO(s) is shown first,
where the red circles indicate frequency-degenerate macronodes labeled by the red
macronode indices (see text), with polarization [and OPO# in (b)] as indicated in
the legend. The state produced at the output of the OPOs has a graph [17] given
by Z0 = icI − isG (see text), which corresponds to a collection of separable TMS
states in accord with G. After the interferometer is applied (represented by the
orthogonal matrix R), a state with graph Z = icI− isRGRT results, which is phase-
shift equivalent to the CV cluster state ZC = iεI + tRGRT (see text). The product
RGRT, interpreted as an adjacency matrix, is visualized as the second graph and
provides an intuitive picture for the resulting state, as well as its precise definition
through Z or ZC [17]. (a) An H graph that is linear with respect to macronodes,
a.k.a. dual-rail quantum wire [26], can be created from a single OPO with ∆m = 1
[Fig. 4.2(a)], and R represents the action of a balanced two-mode interferometer acting
on each macronode. (b) An H graph with a square-lattice graph on macronodes can
be created from two OPOs with ∆m = 1 and ∆m = M2 [Fig. 4.2(b)]. Here, M2 = 7,
and R represents the action of a balanced four-mode interferometer acting on each
macronode.
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4.2 The Time-Frequency Domain Cluster States

In this Section, I introduce another proposal for generating ultra-scalable cluster

states on the QOFC. Up to 2014, the one dimensional case of the two proposals in

Ref. [35] (time domain) and Ref. [53] (frequency domain) have been demonstrated

experimentally in Ref. [36] and Ref. [26] respectively, and both experiments set the

world records in their own domains. However, both methods haven’t reached their full

potential. The time domain method only uses two frequency modes at one time, and

the frequency domain method only uses the state at one time point. This suggests

that if we use the scalability in both time and frequency, we can generate the most

scalable cluster states that are at least four orders of magnitude larger than any other

cluster states that have ever been created or proposed.

In this section, I present our proposal for generating time-frequency domain hybrid

cluster states by utilizing the best of both proposals, with a single OPO [5]. Moreover,

the state has simpler structure and are more entangled, comparing to previous square

grid cluster state proposals.

4.2.1 State generation

The first step of this proposal is to generate the one dimensional dual-rail cluster

state, as discussed in the last Section. The same OPO is used as shown in Fig. 4.6(a).

A π
4

polarization rotation (by a halfwave plate at π
8
) entangles the state into the

frequency domain dual-rail quantum wires [4,26], as shown in Fig. 4.6(b). Note that
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even if the pump beams are continuous wave (CW), we can still logically assign pieces

of the output beam to sequential time bins [36]. This leads to the idea that we can

delay one “rail” of the dual-rail wire, and entangle it with the wire coming later.

In this way, we will have a two dimensional state, the two dimensions are frequency

and time. This idea will work, but will not create a clean square grid cluster state.

Interested readers can verify this by applying the techniques I have introduced in

previous sections.

We found that if only half of the frequencies in one “rail” of the dual-rail wire

are delayed, the final state will be a clean square grid cluster state, as shown in

Fig. 4.6(d). This requires us to separate the odd and even frequencies, and this can

be done by using a Mach-Zehnder interferometer (MZI).

A MZI of path difference c(2∆ν)−1 [54, 55] separates frequencies of even and odd

frequency index (and node index) into separate beams. For all odd qumodes, the

Z polarization is then time-delayed with with respect to the Y polarization by the

interval δt between two consecutive time bins. The result is shown in Fig. 4.6(c). A

final π
4

polarization rotation on the odd qumodes yields the BSL graph of Fig. 4.6(d).

A final phase shift by −π
2

(not shown) on either all odd or all even frequencies

converts this into a finitely squeezed CV cluster state with the same ideal graph as

in panel (d). It is this state that we call the BSL CV cluster state. The fact that the

BSL is a bipartite, self-inverse graph makes this possible and ensures the scalability

of the scheme [17, 35, 38, 39, 53]. (See the general discussion of bipartite, self-inverse
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graphs in Ref. 17.)
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Figure 4.6: Experimental setup to generate a bilayer square-lattice (BSL) CV cluster
state (see text for details). Abbreviations: HWP@θ = halfwave plate at angle θ to
the horizontal axis (rotates polarization by 2θ); (P)BS = (polarizing) beamsplitter;
MZI = Mach-Zehnder interferometer. Local oscillator fields, at the frequencies of
the qumodes to be measured, will be injected at the unused input port of the MZI
and will also be used for locking all optical phases in the experiment. Note that
light propagates from right to left in the figure. The labeled panels show a precise
graphical representation of the Gaussian state present in the beam at each step of
the experiment, using the simplified graphical calculus for Gaussian pure states in-
troduced in Ref. 35. Blue and orange correspond to edge weights of ±C tanh 2r [35],
respectively, with C given below for each panel. All qumodes (black dots) are labeled
as shown in the left panel: by node index (vertical) and by time bin and polarization
(horizontal). (a) The OPO generates a temporal sequence of frequency-encoded two-
mode squeezed states (C = 1). (b) Multiple (time-binned) dual-rail quantum wires
encoded in frequency [4, 26] (C = 2−1/2). (c) Result of delaying all odd-numbered
Z-polarized qumodes (C = 2−1/2). (d) Final BSL CV cluster state (C = 2−3/2) after
required phase shifts (see text).

There are some experimental constraints in the proposal. First, we have a “musi-

cal score” condition—i.e., the measurement times must be compatible with resolving

all qumode frequencies: δt � ∆ν−1, an easily fulfilled condition. In addition, the
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measurement times must allow one to achieve maximum squeezing—that is, they

must be at least as long as the OPO cavity storage time [56]. This translates into

δt � δν−1 � ∆ν−1, since δν is also half the squeezing bandwidth [57]. This con-

dition can also be fulfilled in practice [36] and ensures that the time bins contain

maximally squeezed qumodes, to the extent permitted by the experiment’s squeezing

limit (mainly determined by the intracavity losses).

The verification, i.e., measurements of nullifiers, can be done in the similar way

as shown in Ref. [26,53].

4.2.2 Quantum computing

We have looked at how to make a time-frequency domain square-grid cluster state,

now we look at how to do quantum computing with this state. The BSL CV cluster

state is easily shown to be universal for MBQC. Simply measure q̂ on all qumodes

of one (e.g., Y ) polarization (which will delete the entire layer, as we discussed in

Chapter 2), resulting in a CV cluster state with an ordinary square-lattice graph,

which can be used with standard CV MBQC protocols [14, 58]. This is shown in

Fig. 4.7(a). We can see in this method, half of the graph nodes are wasted. This

method also inefficiently uses available squeezing, which leads to extra noise when

using these resources for quantum computing [5]. Furthermore, lattice edges are at

45◦ to the direction of increasing temporal index, meaning that either the information

must flow in a zig-zag pattern or the lattice width will have to scale linearly with the

length of the computation, hindering the scheme’s scalability.
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Figure 4.7: Two MBQC protocols applied on the bilayer square-lattice cluster state.
In both cases, information is encoded on the left (in purple nodes) and flows from
left to right along (green) wire segments. Wires are separated by lines of sacrificial
qumodes (shown in the red segments). These are referred to as control macron-
odes c(i, i + 1) because measurements on them control whether two single- or one
two-qumode gate gets applied on the adjacent wire macronodes w(i) and w(i + 1).
Two-qumode gates are represented by a connecting green segment between two ad-
jacent wires. (a) Standard one-way protocol [14, 58] applied to the BSL graph after
measuring q̂ on all Y -polarized qumodes (shown faded). Time-ordering of the nodes
has been preserved, resulting in an atypical nodal arrangement of an ordinary square-
lattice graph. Information propagates at 45◦ to the direction of increasing temporal
index. Control nodes are measured in the q̂-basis to delete them or in a different basis
to implement a two-qumode gate. (b) New MBQC protocol taking advantage of the
BSL structure. Both layers of the lattice are used simultaneously and quantum infor-
mation propagates in the direction of increased temporal index, i.e., horizontally on
the figure. All edge weights have magnitude (2

√
2)−1. Control and wire macronodes

are now at a constant frequency, as shown. See text for further details.
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A more favorable MBQC protocol that eschews all these complications and makes

better use of the structure of the BSL CV cluster state is demonstrated in Ref. [5].

The idea is to use both layers of the graph simultaneously and in a way analogous

to the conventional (single-layer) square lattice protocol, as shown in Fig. 4.7(b).

Interested readers can find more information about this protocol in Ref. [5].

4.2.3 Other Types of Cluster States

By delaying every other node in one layer, we have constructed a square-grid

lattice cluster state. We can generate this method to delaying every N nodes in one

layer. In this case, a state of interleaved squares and 2N -polygons will be created.

For example, in Fig. 4.8 top, I delay every three nodes in one layer, after the BS, a

state of interleaved squares and hexagons is created. Similarly, in Fig. 4.8 bottom, I

delay every four nodes in one layer, after the BS, a state of squares and octagons is

created.

The different types of time delay can be realized by using different types of MZIs.

Although square grid lattice is sufficient for universal quantum computing, other

rich structures may also be useful in other quantum information research areas such

quantum simulating.

4.2.4 The Self-inverse Property

I have already pointed out that this proposal is more scalable and experimentally

simpler than the proposals in Ref. [38] and Ref. [4]. Another difference is, in this
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BSL cluster state, one macronode only has two modes, instead of having to have four

modes in the other two proposals. This not only simplifies the structure, but also

preserves stronger entanglement by having larger edge weights between the entangled

modes.

So why in the previous proposals we were using four-mode macronodes for square-

grid, instead of simpler ones? Let’s start from linear case, then go back to the square-

grid case. For generating a A with desired structures from a certain G, which can

be manipulated directly by engineering the crystals, it’s easier if G is self-inverse,

because in this case A and G are the same up to permutations, as I have shown in

previous Chapters. In order for A to be self-inverse, it must satisfy [39]:

(A2)jk =
∑
l

AjlAlk = δjkI (4.18)

Note in here we allow entries Ajk in A to be matrices, i.e., the graph can have

matrix-valued weights. This equation can be interpreted geometrically:

(1) All 2-paths that begin and end on the same node have weights that sum to I,

and

(2) All 2-paths that link different nodes have weights that cancel out.

A linear graph with real-valued edges can’t satisfy Eq. (4.18), because in general

there’s only one 2-path between different nodes, and it must be zero according to

condition (2), then the graph will have zero weights: the multiplication being zero

means one of the terms must be zero. But this is not true if the weights are matrices.
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The simplest self-inverse graph must have 2-by-2 matrix-valued weights, as in Eq. (19)

in Ref. [39]. One can easily check it satisfies both conditions. The two matrix-valued

weights are constructed by using the two orthogonal 2-D vectors.

What about the square-grid case? One can easily check that the graph with the

4-by-4 matrix-valued weights shown in Eq. (22) in Ref. [39] satisfies Eq. (4.18). In

Ref. [4, 17], the graphs also have 4-by-4 matrix-valued weights. The four matrix-

valued weights are constructed by using the four orthogonal 4-D vectors, this choice

is very natural because it uses the orthogonality and completeness of the four vectors

to fulfill Eq. (4.18). It’s harder to design a matrix-valued square grid with matrices

of lower dimensions.

However, the BSL has 2-by-2 matrix-valued weights, rather than 4-by-4. As I

pointed out, it’s not easy to satisfy Eq. (4.18) with 2-by-2 matrices for a square grid

structure. Indeed, as shown in Fig. 4.9 left, if we check the macronode in the solid

circle, it doesn’t satisfy Eq. (4.18)! However, the A for the BSL must be self-inverse,

because we start from a self-inverse G (TMSS Hamiltonian), after the BS transform it

remains self-inverse. This contradiction can be explained by mode permutation. For

example, for a self-inverse matrix A, we have A2 = I. If we permutate the elements

in A, then the square of A will equal to a permutated I, so Eq. (4.18) wil be violated.

Indeed, if we look at Fig. 4.9 right, which is topologically same as Fig. 4.9 left up

to some modes rearrangements. Now one macronode has six neighbors instead of four,

so it is not a square grid in the macronode picture, but this graph satisfies Eq. (4.18).
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4.2.5 Conclusion of the hybrid cluster states proposal

The vast majority of the existing literature on continuous-variable (CV) cluster

states has treated canonical CV cluster states (i.e., those described in Refs. [14, 18,

58]) as the appropriate target for an MBQC resource state. The body of work by

the present authors (and our collaborators) has by now shown definitively that this

emphasis on canonical CV cluster states is misplaced [4, 5, 26, 35, 36, 38, 39]. Instead,

our schemes—which are all based on bipartite, self-inverse graphs and thus necessarily

have a macronode structure [39]—have been demonstrated to have unprecedented

scalability [26,36] and to admit novel, flexible, and more efficient quantum-computing

schemes within the MBQC paradigm [5]. The work presented here further underscores

this point, again emphasizing the importance of bipartite, self-inverse graphs and of

the focus on scalable designs from the ground up when working with CV cluster

states.

We have proposed an extremely compact and scalable method for producing—from

a single OPO and simple interferometer—a CV cluster state of unprecedented size

[(3× 103)×∞] that is universal for quantum computation. The proposal has all the

advantages of record-breaking temporal- and frequency-multiplexed schemes [26, 36]

while vastly increasing the size of the lattice by utilizing both types of multiplexing

at once. This is the most compact and scalable proposal for CV cluster states to

date, and it is implementable today using demonstrated quantum-optical technology.

Complementing this proposal, we have also developed a novel scheme for MBQC that
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is tailored for this resource state and that has all the advantages of other schemes

based on scalable macronode-based CV cluster states [5].

With the ultimate goal being fault-tolerant quantum computing, future work (be-

yond performing the experiment proposed here) includes lowering the amount of

squeezing required for fault tolerance [61], experimentally demonstrating squeezing

at that level, and demonstrating the required error correction [59–61].
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Figure 4.8: Instead of delaying every two nodes in one layer, we can skip an arbitrary
number of nodes when applying the time delay. Top: delaying every three nodes in
one layer, resulting a state of interleaved squares and hexagons. Bottom: delaying
every four nodes in one layer, resulting a state of interleaved squares and octagons.
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Figure 4.9: Left: the BSL cluster state. Every macronode (in solid circle) has four
neighbors (in dashed circles). Right: the modes in BSL cluster state are rearranged
by reversing the time delay and grouping the two modes at the same time as a
macronode. Every macronode (in solid circle) has six neighbors (in dashed circles).



Chapter 5

Conclusion

In this thesis, I have introduced measurement-based quantum computers imple-

mented by quantum optics, and focused on two experimental proposals for generating

large scale lattice cluster states that can be used for universal quantum computing

and other quantum information process.

One of the biggest advantages of optical qumodes (continuous variables) over

qubits is the scalability. The world records for the largest entangled cluster states

were achieved by using a single optical parametric oscillator (OPO) [26,36]. The most

convenient way to describe such a scalable system is to use graphical approaches. I

have introduced the A graph, the H graph and the Z graph, and have presented how

to derive one graph from the other.

The most important process in generating cluster states on QOFC is the paramet-

ric down-convertion (PDC), which is a second order nonlinear process. I have reviewed

the PDC and other nonlinear optical processes, and demonstrated the limitations of

qumodes scalability in both theory and experiment [53].

96
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I have presented a scalable experimental proposal for generating giant cluster

states with hypercubic lattice structures [4]. I have shown that with only D OPOs,

a D-dimensional hypercubic cluster state can be generated in the frequency domain.

This proposal significantly simplified the requirements for creating square-grid cluster

states in the previous proposals [38], and the high dimensional lattice structure opens

possibilities for other quantum information research topics.

I have demonstrated a recent proposal for generating a time-frequency hybrid

square-grid cluster state, with a single OPO [5]. This method is the most scalable

method ever proposed: the total number of entangled modes in the generated state

is 103 ×∞ in theory. Besides the scalability and simplicity of the proposal, we have

also developed a more efficient method for performing universal quantum computing

by making use of all qumodes in the square-grid cluster states. I have also shown

with a simple modification, cluster states with different structures can be generated

by the same setup.

Our ultimate goal is to realize fault-tolerant quantum computing. Although the

finite squeezing in the continuous variable implementation introduces noise to CV

cluster states, by using the Gottesman-Kitaev-Preskill (GKP) encoding [59], quantum

error correction can be fulfilled if the initial squeezing level of the cluster states is

above 20.5 dB [61]. The future works in this area include lowering the amount of

squeezing, experimentally demonstrating squeezing at required level, and implement

the error correction encoding [60].
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