

USING A MONTE CARLO SIMULATION TO RESOLVE THROUGH CONFUSION THE RADIO

SOURCE BACKGROUND OF WEAK RADIO SOURCES OUT TO Z = 2.9

Melanie L. Grierson

Instructor: Dr. Jim Condon

Department of Astronomy

University of Virginia

This thesis is submitted in partial completion of the requirements of the BA Astronomy Major.

May 8th, 2018

DRAFT VERSION MAY 10, 2018
Typeset using LATEX twocolumn style in AASTeX61

USING A MONTE CARLO SIMULATION TO RESOLVE THROUGH CONFUSION THE RADIO SOURCE
BACKGROUND OF WEAK RADIO SOURCES OUT TO Z = 2.9

M. GRIERSON1

1Department of Astronomy, University of Virginia

ABSTRACT

This thesis details how to create a simulated universe on a 1000′′× 1000′′ sky with 1′′× 1′′ pixels. The simulated sky was
created to provide a realistic distribution of radio sources given a specific source count and includes instrumental observing
effects associated with the Karl G. Janksy Very Large Array (VLA). 1.4 GHz counts from Condon et al. (2012), which underwent
a spline interpolation, were used to create ≈ 37k radio sources ranging from 103 to 10−8 Jy. These realistic sources allowed for
the determination of the number of galaxies per flux density bin with a spacing of 0.01 in log flux density in order to calculate
the fraction of galaxies on the sky with each corresponding flux density. Each of the simulated galaxies was smeared by an
8′′ FWHM point spread function (PSF) and was assigned a random galaxy location, in which the flux densities of overlapping
sources are summed. In order to more closely approximate and mimic the instrumental effects obtained on a VLA observation,
both the Gaussian primary attenuation pattern with a 14′ FWHM and a convolution of the confusion amplitude distribution with
the VLA’s Gaussian instrumental noise distribution are included within the simulation. This simulation program will be used
to analyze a confusion-limited VLA observation intended to study the star-formation history of the universe by counting radio
sources as faint as S∼ 0.2µJy.

2

1. INTRODUCTION

1.1. The Star Formation History of the Universe

The star formation history of the universe (SFHU) is usu-
ally specified by the comoving star formation rate density
(SFRD) ψ(t) (in units M� yr−1 Mpc−3) as a function of look-
back time t (Feldmann et al. 2016). Madau & Dickinson
(2014) used far-ultraviolet (FUV) and far-infrared (FIR) data
to fit the SFRD, which Matthews (2018) plotted with a lin-
ear lookback time (in units of Gyr) axis to emphasize that
≈ 90% of all stars were formed within the past 11 Gyr at
redshifts z≤ 2.9 (Figure 1).

Figure 1. The Madau & Dickinson (2014) SFRD plotted by
Matthews (2018) with a linear lookback time axis to show that
≈ 90% of all stars have formed since z = 2.9.

.

Figure 1 shows that the SFRD peaks at around z≈ 1.9 and
at a lookback time t ≈ 10 Gyr, which defines the time called
“cosmic noon”. The period from z ≈ 1.5 − 3 delineated a
time in the formation of the universe when there was intense
star formation. Since this peak at cosmic noon the SFRD
has declined by a factor of ten. Interestingly, the decline
is often connected to the impact of gaseous outflows driven
by feedback from supermassive black holes (Feldmann et al.
2016). Therefore to probe the star formation history of the
universe (SFHU) it’s necessary to observe galaxies with red-
shifts around this peak.

The SFHU is fundamental for cosmology because it indi-
rectly constrains and provides information about the gravita-
tional collapse of dark matter and baryons which form galax-
ies, how the elements chemically evolved over time, the cre-
ation of interstellar dust, the formation rate of core-collapse
supernovae (SNe), and the feedback between stars and su-
permassive black holes residing in AGNs (Feldmann et al.
2016).

Also, it is important for us to learn more about the SFHU
for its own sake. Older stars within star-forming galaxies
(SFGs) account for the majority of the total stellar mass and
emit primarily in the near-infrared (NIR) (Jarvis et al. 2015).
Current infrared and optical observations using space-based
telescopes such as the Spitzer Space Telescope and the Hub-
ble Space Telescope (HST) have gathered significant data
tracing stellar emission to high redshifts.

Unfortunately, for galaxies at large redshifts (and therefore
longer lookback times) it becomes increasingly difficult to
trace star-formation rates and evolution due to higher levels
of dust obscuration surrounding hot young blue stars. This
dust obscuration of young stars causes visible and ultra-violet
(UV) surveys to be error-prone and incomplete (Madau &
Dickinson 2014). It has been measured from integrated opti-
cal and infrared background radiation that≈ 50% of the light
from stellar activity is hidden by the surrounding dust (Buat
et al. 2007).

Radio waves trace the total star-formation rate in both ob-
scured and unobscured galaxies (Jarvis et al. 2015) because
radio continuum emission is not absorbed by dust or contam-
inated by older stellar populations (Condon 1992). However,
active galactic nuclei (AGN) within these SFGs can contam-
inate the radio emission and therefore steps should be taken
to exclude them.

At the beginning of cosmic noon, 75% of the stars were
in SFGs with radio flux densities S > 2× 10−33 W m−2

Hz−1 at 1.4 GHz. Radio astronomers use a convenient
non-SI unit of measurement for spectral flux density known
as the Jansky (Jy) defined as 10−26 W m−2 Hz−1, so 2 ×
10−33 W m−2 Hz−1 ≈ 0.2 µJy. The Jansky is typically used to
describe point sources. For the remainder of this thesis flux
densities will be expressed in this unit. Even the most sensi-
tive telescopes today cannot detect individual radio galaxies
with flux densities less than a few µJy. However, the popula-
tions of fainter radio sources at z = 2.9 can be studied statis-
tically by the "confusion" they produce in radio sky images.

1.2. Confusion Statistics

Astronomers use the term "confusion" for the bright-
ness fluctuations in a sky image produced by multiple faint
sources with varying flux densities piling up in each resolu-
tion element. Historically confusion was measured from the
probability distribution P(D) of the deflections D on a chart-
recorder plot, but today the observed "deflection" D at any
point in an aperture-synthesis array image is the intensity in
units of flux density per synthesized beam (the point-source
response) solid angle (Condon et al. 2012). This deflection
is the sum of contributions from the noise-free source confu-
sion and the instrumental noise in the image. Therefore the
observed P(D) distribution is the convolution of the source
confusion and noise distributions, allowing one to extract the

AASTEX 6.1 TEMPLATE 3

source confusion distribution and its width from the observed
deflections and measured noise.

Condon et al. (2012) produced the 3D profile image in
Figure 2 showing the 3 GHz confusion amplitude distribu-
tion observed in a single Jansky Very Large Array (VLA)
pointing made with an 8′′ FWHM Gaussian resolution, trun-
cated at D = 100µJy beam−1 to indicate the intensity scale.
The VLA is an aperture-synthesis interferometer consisting
of 27 25-m diameter dish antennas, and the primary beam
(angular response) of each antenna at 3 GHz is a Gaus-
sian with FWHM≈ 14 arcmin. The preliminary image pro-
duced by Fourier transforming the interferometer fringes is
the sky brightness attenuated by the 14 arcmin primary beam,
smoothed by the point-source response of the 8 arcsec syn-
thesized beam, and degraded by instrumental noise. The in-
strumental noise has a Gaussian amplitude distribution at this
stage. After the preliminary image has been corrected for
primary-beam attenuation, the image noise gradually grows
with distance from the pointing center.

Figure 2. This profile plot shows the confusion in a 3 GHz VLA
image made with an 8” FWHM Gaussian synthesized beam Condon
et al. (2012). The brightest sources have been truncated at 100µJy
beam−1 to show the intensity scale.

Condon et al. (2012) estimated the noise in confusion-
limited regions near the VLA’s pointing center. They mea-
sured the noise distribution from one source-free region near
the edge of their wideband image and obtained a Gaussian
with rms σ = 1.02µJy beam−1. This noise distribution can be
seen in Figure 3. Because Figure 3 has a logarithmic ordi-
nate, a Gaussian appears parabolic in shape.

Condon et al. (2012) details beautifully how to resolve
the radio source background through the use of confusion.
It specifically details how one can extract the true source
count (number of sources per steradian per unit of flux den-
sity) down to S ∼ σ/2 ∼ 0.5µJy, a factor of ten below the
minimum flux density S ≈ 5σ ∼ 5µJy of individually de-
tectable sources, from a confusion-limited survey. How-
ever, the analytic equations Condon (1974) used to calculate
source counts from the confusion P(D) distribution are exact
only for power-law source counts. The actual source counts

Figure 3. The Gaussian noise histogram obtained by Condon et al.
(2012) has rms σ = 1.02µJy beam−1 and appears parabolic on this
plot because the ordinate is logarithmic.

are only approximately power law over limited flux-density
ranges.

1.3. Monte Carlo Simulation Approach

While statistical analysis using confusion is necessary to
obtain higher sensitivity, the data have only been analyzed
by Condon et al. (2012) through the use of a power-law ap-
proximation. Therefore, to avoid the errors which come from
using the power-law approximation, I created a Monte Carlo
simulation of a patch of sky, as it would appear to the VLA.
The goal of the simulation would be to:

1. Compare the observed confusion analysis of the actual
source count to something other than the power-law
approximation

2. Create realistic synthetic data to more accurately de-
termine the sensitivity which can be obtained through
a more sensitive future observation with the VLA C
configuration.

To achieve these goals I created the Monte Carlo sim-
ulation detailed in Appendix C and explained qualita-
tively throughout the rest of this thesis. The simula-
tion uses the original 1.4 GHz source count from Con-
don et al. (2012) by creating, first, a noiseless image of a
1000 arcsec×1000 arcsec view of the sky and placing down
at random positions the total number of galaxies. Then each
galaxy flux density was smeared by a Gaussian of FWHM
= 8 arcsec. Overlapping galaxies within this section of sky
were summed together yielding a view of the sky from an

4

observer’s perspective. In order to best approximate the in-
strumental effects one would get through observation on the
VLA, the image was multiplied by the telescope’s primary
beam, a Gaussian attenuation pattern with FWHM = 14 ar-
cmin. The noiseless P(D) distribution was also convolved
with a Gaussian noise distribution to simulate the P(D) dis-
tribution that an observer would see in a VLA observation
with configuration C.

This simulation was primarily developed for analysis of
the potential observation proposed for Fall 2018 on the VLA,
which plans to observe for 120 hr a carefully chosen sky area
in order to model the SFHU since z = 2.9 (Matthews 2018).
My aim is to not only provide realistic observation analy-
sis with similar constraints before the supposed observation
date, but also be used after the observation to test the actual
source counts and constrain the star formation history of the
universe back to z∼ 2.9.

2. MODIFYING THE 1.4 GHZ SOURCE COUNT DATA

2.1. Using Spline Interpolation to Change Sampling Size

The 1.4 GHz source count used by Condon et al. (2012)
lists the differential source count, n(S), from 10−8 Jy to 103

Jy. For convenience, the 1.4 GHz data for this project can be
seen in Appendix A. These counts were given with a spac-
ing of 0.2 in log flux density, making the sampling size too
coarse to accurately create a simulated sky. To make the sam-
pling size of the data finer, I used a spline interpolation to
expand the original data by fitting a piecewise polynomial
parametric curve. By plugging in all 56 source flux densi-
ties S and counts n(S) from the original 1.4 GHz data into
a pre-defined function which executes a spline interpolation,
I increased the sample size so that it sampled every 0.01 in
log flux density instead of 0.2 in log flux density. The spline
S maps the values on an interval [a,b], which in the case of
this simulation is 103 to 10−8 Jy, to a set of real values, R.
The specific spline interpolation utilized to create the inter-
polated 1.4 GHz data with 0.01 intervals in log flux density is
a cubic spline, which is a spline constructed of a third-order
polynomial that passes through a set of control points. In the
case of this specific example the control points come from
the original 1.4 GHz data.

S j = a j + b j(x − x j) + c j(x − x j)2
+ d j(x − x j)3 (1)

Instead of applying the spline interpolation to extend only
the source flux densities, it was primarily applied to find the
average number of radio sources per bin for every 0.01 in log
flux density. This process was applied to both 1) a power law
approximation of the source count and 2) the actual source-
count data. The actual data were analyzed further and were
used to create the simulated universe.

2.2. Power Law Verification

First the power-law count approximation was used as an
initial test of the simulation. The main reason for begin-
ning with the power law verification is that the distribution
of the confusion amplitude provided by this approximation
can be calculated analytically (Condon 1974). The cumula-
tive source count N(> S) is the mean number of sources per
steradian stronger than S, where S is typically expressed in
Jy.1 The differential source count n(S) can be defined as

n(S) =
∣∣∣∣dN

dS

∣∣∣∣ = −
dN
dS

(2)

Therefore, N(> S) can be expressed

N(> S) =
∫ ∞

S
n(x)dx , (3)

where n(S)dS is the mean number of sources per steradian
with flux densities in the infinitesimal flux density range from
S to S + dS. The mean number of sources per steradian per
flux density bin, λ, can be approximated as λ ≈ n(S)∆S,
where ∆S is a small but finite flux density range � S, with
a flux-density bin spanning from S −∆S/2 to S +∆S/2. To
convert λ, the mean number of sources per steradian, to being
per bin I multiplied it with the solid angle Ω steradians of the
sky covered. Typically for simulations of this type the range
of flux densities is quite large (i.e. Smax/Smin� 1). Thus, it
is often favorable to work with the differential source count
per logarithmic flux density range n∗(S) , which is expressed
by

n∗(S) =
∣∣∣∣ dN
d logS

∣∣∣∣ = −
dN

d logS
(4)

In the same vein as before, the mean number of sources in
the infinitesimal flux density range from S to S+d logS is λ =
n∗(S)d logS. Therefore, if ∆ log(S)� 1, the mean number of
sources per steradian in the finite narrow bins spanning the
logarithmic flux density range S −∆ logS/2 to S +∆ logS/2
is λ≈ n∗(S)∆ logS. Multiplying by the area of the sky across
Ω steradians yields the mean number of sources per bin.

Using the chain rule for derivatives the relation between
n(S) and n∗(S) in Equations 2 and 4 is revealed as:

n∗(S) = −
dN

d logS
=

dN
dS

dS
d lnS

d lnS
d logS

= n(S)S ln(10) (5)

Equation 5 expresses the power law approximation for de-
termining the differential source count per logarithmic flux
density range in terms of n(S). Therefore, for example, if
n(S) = 300S−2, then Equation 5 can be re-written as:

n∗(S) = 300ln(10)S−2 (6)

1 Steradian (sr) or squared radians is the SI unit of solid angle.

AASTEX 6.1 TEMPLATE 5

Equation 6 takes the functional form of a power-law source
count with n(S) = kS−γ , where k is a constant and γ is the dif-
ferential count slope on a log-log plot. Condon et al. (2012)
specifically uses the example of log[S2n(S)]≈ 300S−2 to pro-
duce some of their confusion plots.

The differential source count was calculated for each of the
galaxy flux densities within the 1.4 GHz data. After calculat-
ing the differential source count for each of the flux density
sources, the approximated number of galaxies per flux den-
sity bin per image area, λ, was calculated using

λ = n∗(S)×∆ logS×
(

1000′′× π

3600′′×180

)2

(7)

where ∆ logS = 0.01, is the size of the logarithmic flux den-
sity bin. The squared factor in Equation 7 is the image solid
angle Ω in sr so that λ becomes the mean number of galaxies
per flux density bin per image.

The simulated image size of 1000′′ × 1000′′ = 106

arcseconds2 was chosen in order to cover a 3 GHz primary
beam of the VLA, which has a FWHM ≈ 14′ = 840′′. This
section of sky would also contain only ≈ 3.7 ×104 sources
stronger than 0.01 µJy. Since our point-source response
function (PSF) is a Gaussian with FWHM = 8′′, it will not
be a problem that sources outside of the image, which are at
least 80 arcsec outside of the primary FWHM circle, are not
contributing to the inside that circle. Using a random Pois-
son generator provided by numpy, the number of sources one
should find within a bin is a function of λ (from Eq. 7), the
average number of galaxies per flux density bin per image.
For each flux-density bin the Poisson probability that there
will be n sources in a given simulation is

Pp(n|λ) =
λn

n!
e−λ (8)

Summing over bins should provide an estimate of the number
of sources within the simulated image, which as stated earlier
is ≈ 3.7× 104. Additionally doing this verification method
was important because it revealed an error in the program
caused by using an integer variable where a real variable was
needed. Changing from a integer to a float was necessary
in order to get the Gaussian function seen in Appendix C to
work.

2.3. Actual Source Count Calculation

The same process used for the power-law approximation
was used to calculate the average number per bin for a re-
alistic source count. Obtaining a realistic source count is
best done by working with the brightness-weighted differen-
tial count S2n(S) from the 1.4 GHz data because it is nearly
constant in the flux density ranges that contribute the most
to the radio sky brightness. The source counts within the 1.4
GHz data used by Condon et al. (2012) are presented with

the static Euclidean normalization S5/2n(S). Therefore, sim-
ply we can covert S5/2n(S) to S2n(S) by:

S2n(S) =
S5/2n(S)

S1/2 (9)

Instead of using the Equation 5 to determine n∗(S), the
brightness weighted different source count from Equation 9
can be used to determine first n(S)S and then n∗(S) by the
following relation

n∗(S) = n(S)S ln(10) (10)

Equation 7 can then be used again to solve for the average
number of galaxies per bin without using a power law ap-
proximation by plugging in the resulting n∗(S) from Equation
10 . The spline interpolation once again can make the sam-
pling size finer by calculating the average number of galaxies
per bin per image for every 0.01 in log flux density instead
of 0.2 in log flux density. An array of the mean number of
galaxies per bin from the original source data was modified
with a random Poisson generator to produce the number n of
galaxies in a simulation given the mean number lambda, as in
Equation 8. This randomized average number of galaxies per
0.01 in log flux density was used to create the simulated sky.
It should be noted that the "random" Poisson generator can be
given a specified "seed" number to manually control whether
each run of the universe simulation will yield the same aver-
age number of galaxies per flux density bin per image area,
λ. By re-using the same seed, an earlier calculation can be
reproduced exactly. For example, in Sect. 4.4 I cut out the
faintest sources to see what effect that had on the P(D) dis-
tribution, and I had to re-use the same seed in order to obtain
the same strong-source contribution to the P(D) distribution.

3. MONTE CARLO CONFUSION SIMULATION

There were two main steps to making the simulated
sky. First, the sky was created by making a 2D array of
1 arcsecond2 pixels on a 1000′′× 1000′′ grid. Secondly, the
sky was filled with galaxies with flux densities obtained rang-
ing from 10−8 to 103 Jy with steps of 0.01 in log flux density
(Appendix A). The number of galaxies with a certain flux
density was determined from the average number of galaxies
per flux density bin per image λ calculated earlier.

3.1. 2D Gaussian Equation

To make the simulation as close to approximating the in-
strumental effects of the VLA as possible, a Gaussian dis-
tribution was used to smear each of the sources placed on
the 1000′′× 1000′′ sky with an 8′′ FWHM resolution. The
Gaussian distribution α that was applied to each galaxy is

α = exp
(

−
4ln2r2

θ2

)
(11)

6

where θ = FWHM = 8′′ and r is the radial offset from the
center of the galaxy and can be calculated as

r2 = (x0 − xgal)2
+ (y0 − ygal)2 (12)

where x0 and y0 are reference points on the 2D pixel array
and the central point of the galaxy is located at (xgal ,ygal).

Therefore, the flux density for a single galaxy as a function
of distance from the center of the galaxy is:

S(r) = S0α = S0 exp
(

−
4ln2r2

θ2

)
(13)

Within the simulation the galaxy coordinates are determined
first and then fed into Eq.12 to determine the radial offset.
This value is then used to determine the flux density as a
function of radial offset with Eq.13. The exact python func-
tion I created to place an 8′′ FWHM Gaussian at the position
of each radio galaxy can be seen in Appendix C.

3.2. Pixel Array Creation

After creating the Gaussian function to smear each of the
flux density sources, my next step was to set up the 2D pixel
array. This array begins empty and then becomes filled by
flux densities as a function of λ. The 2D pixel array was cre-
ated by initially making a 1000 x 1000 element array filled
with zeros. It was purposely made in this way so that each
pixel would correspond to 1 arcsecond2 and therefore the
1000 × 1000 pixel array would correspond directly with the
1000′′× 1000′′ sky covered. Each of these pixels was given
an associated x- and y- coordinate by creating two more 2D
arrays for x-coordinates increasing from right to left and y-
coordinates increasing from top to bottom. Starting with
the empty 2D pixel array, the sky was built by first looping
through the array of the randomized n number of galaxies per
flux density bin. Once the simulation identified a flux density
bin in which the number n of sources was not equal to 0, the
program created the 8′′ FWHM Gaussian responses to the
point sources, caused by the finite resolution of the VLA, for
the total number of galaxies for each respective central flux
density. This was done using Equation 13 which shows how
the flux density decreases as a Gaussian with respect to dis-
tance from the galaxy center. Since each pixel is equal to 1
arcsecond2 no conversion has to be made between the flux
density per pixel and flux density per beam.

In order to create the sky, each of these galaxies was given
a randomized x- and y- galaxy coordinate ranging from 0
to 1000 in each direction. For galaxies which overlapped,
the code was made to sum the contribution of flux density
per pixel. Therefore, if a galaxy with the same central flux
density had the same x- and y- coordinate it would appear as
if it was one Gaussian galaxy source with 2 times the flux
density. For each run there are approximately 37k sources
to place in a random location on the sky and then apply the

Gaussian smearing α to. In order to visually see the universe,
a 2D linear and log contour plot of each sky was created by
using the final filled pixel array of summed Gaussian sources.
An example of a linear and log 2D contour plot can be seen
below in Figures 11 and 12. Larger versions of these plots
can be seen in Appendix E.

0 200 400 600 800 1000
0

200

400

600

800

1000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

Figure 4. A 2D representation of one universe run based on the 1.4
GHz data from Condon et al. (2012) in the linear scale. Contour
lines mark different levels of flux density in units of Jy.

.

Producing these 2D contour plots marks the end of creating
the Monte Carlo simulation of the noiseless sky smoothed by
the 8′′ FWHM PSF. In the following sections I will multi-
ply the sky by the 14′ FWHM primary beam attenuation pat-
tern to simulate the still noiseless VLA image from a single-
pointing observation.

4. ANALYZING SIMULATION RESULTS

One the main uses of this Monte Carlo simulation is to gain
a deeper understanding of what kind of observable data can
be determined from similar observations on the VLA. The re-
sults of the simulation provide realistic source counts which
can be not only compared to results from the power law ap-
proximation analysis, but also with actual data from potential
future observations with the VLA. This section covers vari-
ous tests one can implement to fine tune the simulation and
to understand what the simulation tells us.

4.1. Probability Distributions

One of the first tests we can do to analyze the validity of
the Monte Carlo simulation is by creating probability distri-
butions of several different runs. Because the simulation is

AASTEX 6.1 TEMPLATE 7

0 200 400 600 800 1000
0

200

400

600

800

1000

10-5

10-4

10-3

10-2

10-1

100

Figure 5. A 2D contour representation of the same universe from
11, but represented logarithmically.

.

reading in the same mean number of sources per bin λ and
modifying it through the usage of a random Poisson function,
every universe run should yield relatively similar numbers of
galaxies at each flux density. Therefore, by comparing sev-
eral runs, my plot in Figure 6 is showing how the slightly
different numbers n end up producing slightly different P(D)
distributions. The method used in python to achieve the prob-
ability distributions of seven simulations is detailed in Ap-
pendix D.

The first step, was to reduce the dimensions of the 1000 ×
1000 2D array. The array needs to be reduced in order to ac-
count for the simulation only being valid within the FOV of
the image. Therefore, while it is equally likely for a galaxy to
be located at any coordinate within the 1000× 1000 pixel ar-
ray, galaxies outside of this field which could add flux density
value to the edges due to being smeared by the 8′′ FWHM
Gaussian PSF are not accounted for. To remove the inaccu-
racy at the edges I reduced the 1000 × 1000 by trimming
off the radius size of the galaxies. Specifically pretending a
galaxy source existed right at the edge of the field it could
only affect the values within its radius. Therefore, 9 pixels
from all sides of the array were trimmed off. The reduced ar-
ray is 984 pixels2, which corresponds with a 984 arcsecond2

field of view. After correcting for the limits of the simula-
tion the data can now be used to determine the probability
distribution. This was done by reading in each flux density
value and placing it within a bin of bin width d = 0.01µJy.
The resulting probability distributions for seven runs of the
simulation can be seen in Fig.6. From the overlapping distri-

butions it is clear that they all agree within the error of their
respective noise.

0.0000000 0.0000005 0.0000010 0.0000015 0.0000020

D [Jy/beam]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
(D

)
[b

e
a
m

/m
ic

ro
Jy

]

Figure 6. The P(D) distributions of 7 different runs of the simu-
lation. Note that the universe run delineated by the red line is an
obvious outlier.

4.2. Simulating VLA Instrumental Effects

The plots seen in Figures 11 (linear contour spacaing) and
12 (logarithmic contour spacing) show simulated skies which
are completely noiseless. However, observations done by the
VLA introduce two instrumental effects: (1) primary beam
attenuation and (2) instrumental noise.

4.2.1. Primary Beam

The VLA primary beam attenuation pattern at 3 GHz can
be approximated as a Gaussian with FWHM = 14′. To add
this effect to the contour plots seen within Figures 11 and 12
one must simply multiply each sky pixel array by a Gaussian
with FWHM = 14′ and peak = 1. The Gaussian should be
centered on the pixel array at pixel x = 500, y = 500. To vi-
sually see this effect the resulting linear 2D contour plot of
the universe seen in Fig. 11 can be seen in Fig. 13. Notice
how the galaxy sources appear to fall off in number from the
center causing a circular shape of the field. For convenience
a larger version of this figure can be seen in Appendix E.

4.2.2. Noise Distribution

The other VLA effect which must be included in order
to accurately model a VLA observation is the noise which
smears the observed flux density from each galaxy source.
This smearing can be modeled as a convolution of the noise-
less P(D) distributions (seen in Fig.6) with a noise Gaussian
of a specified rms value σ. It was chosen as σ = 1.012µJy
beam−1 to match with the rms noise measured by Condon
et al. (2012) statistically and seen in Fig.3.

8

0 200 400 600 800 1000
0

200

400

600

800

1000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

Figure 7. A 2D linear contour plot of the same universe from Fig-
ures 11 and 12 by including the effect of the primary beam attenua-
tion on the VLA with a FWHM = 14′.

A predefined convolution function was used to read the
noiseless P(D) distribution and a Gaussian with σ = 1.012µJy
beam−1. Fig.8 shows both the noiseless P(D) distribution
from one simulation run and the noisy P(D) distribution after
convolution with the instrumental noise.

4 3 2 1 0 1 2 3 4

D [microJy/beam]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
(D

)
[b

e
a
m

/m
ic

ro
Jy

]

Figure 8. The noiseless probability distribution can be seen in green
and the convolved distribution including instrumental noise from
the VLA can be seen in red.

4.3. Testing Optimal Sensitivity for VLA Observing

The simulation can be used for determining the sensitivity
of the VLA in its C configuration to faint sources. This can be
done by analyzing to what degree one can distinguish the dif-
ference between the noisy P(D) distributions when the source
counts in the faintest flux-density bins are half of the origi-
nal value or doubled. By manipulating the 1.4 GHz source
counts at the lowest flux densities it is simple to extract the
probability distributions using the same method from Sect.
4.2.2. I also re-used the Poisson generator seed to eliminate
variations in the numbers and positions of the strong sources
from one simulation to another.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

D [microJy/beam]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
(D

)
[b

e
a
m

/m
ic

ro
Jy

]

Halved

Doubled

Figure 9. The probability distribution of the flux densities per beam
between two different simulation runs. The cumulative source count
for the smallest flux densities are either "halved" or "doubled" and
are clearly labeled. Noise is included within these P(D) distribu-
tions.

From Fig. 9 there is a distinct difference in the peak of the
distribution with the "halved" distribution being steeper and
higher at the low flux density end in comparison to the "dou-
bled" distribution. These probability distributions show that
the source counts can only be marginally constrained below
S = 0.12 µJy at 3 GHz and therefore the VLA in its C config-
uration can reach the sensitivity of flux density S≈ 0.2µJy.

4.4. Reducing Run Time with Fewer Sources

Unfortunately, while the simulation succeeds in producing
a realistic galaxy field at a redshift of z = 2.9 using realistic
data sources, each run of the simulation was a great compu-
tational effort and took≈ 78 minutes to run. By having to de-
termine about 37,000 source coordinates per image, convolve
the sources with Gaussians, and add them to other overlap-
ping galaxies, the simulation becomes bogged down in the
loop which determines all of these factors.

AASTEX 6.1 TEMPLATE 9

Therefore, to decrease the computational time of the sim-
ulation I looked into decreasing the number of sources that
simulation had to run, starting from the faintest flux density
sources of 1×108 Jy. The reasoning behind this method was
to determine if the analytical results changed significantly if
the faintest sources were deleted. If the resulting 2D flux den-
sity pixel arrays yielded approximately the same noisy P(D)
distributions then I could determine whether the faintest flux
density sources were necessary for the simulation to be effec-
tive. By deleting these sources from my code I significantly
decreased the computational time it took to run the code be-
cause the faintest sources are the most numerous.

The process of achieving this test was to first introduce a
specified “seed” number. Seed numbers are used alongside
random number generators in order to provide the user con-
trol on what number will be randomly chosen. By specifying
this number I was able to create the same universe for each
consequent run of the simulation. A control run was done
with all the source counts and seed number included. The cu-
mulative source count N(> S) was set to zero first for sources
weaker than S = 1× 10−8 Jy. In the next run the cumulative
source count N(> S) was set to zero for sources weaker than
both S = 1× 10−8 Jy and S = 1.58× 10−8. Each subsequent
run set N(> S) equal to zero for sources weaker than each
increasing step in flux density seen in Appendix A. This was
done six times decreasing the number of counts to exclude
those < 1× 10−7 Jy. It was at this point where the proba-
bility distribution became noticeably skewed away from the
originally unmodified run of the simulation.

What this analysis shows us, however, is that even when
N(< 3.58× 10−8 Jy) = 0 it agreed strongly with the orig-
inal probability distribution curve, including all the source
counts. Therefore, the faintest source counts beyond N(<
3.58×10−8 Jy) are statistically insignificant and unnecessary
for this simulation to run effectively. Ridding the simulation
of these faint sources significantly decreases the run time of
this simulation from ≈ 78 min to ≈ 44 min.

5. CONCLUSION

In conclusion, this thesis covers the creation of Monte
Carlo simulations of 1.4 GHz and 3 GHz radio sources, the
implementation of using the simulation to model realistic ob-
servational data from actual source counts instead of power-
law source counts, and the analytical process of introducing
instrumental noise and effects from a typical VLA observa-
tion along with testing the simulation and refining it for bet-
ter time efficiency. From the approximate mean number of
galaxies per flux density bin λ the various probability distri-
butions of each run were created, detailing the percentage of
the flux density sources one can expect out of the total num-
ber of sources for each respective run. In order to convert
the originally noiseless runs into more accurate sources ob-

0.0000000 0.0000002 0.0000004 0.0000006 0.0000008 0.0000010

D [Jy/beam]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
(D

)
[b

e
a
m

/m
ic

ro
Jy

]

All Sources

N(< 3.98E-8) = 0

N(< 6.31E-8) = 0

N(< 1.00E-7) = 0

Figure 10. The probability distributions of 4 different runs of the
simulation all sharing the same seed number. The range of 1.4 GHz
data with cumulative source count, N(< S) = 0, is specified. Notice
the significant deviation from the "All Sources" probability distri-
bution and the probability distribution for "N(< 1.00×10−7) = 0".

.

served by the VLA in configuration C, three additions were
made to the code. First, the flux density point sources were
each smeared by a Gaussian with FWHM = 8′′. The sec-
ond modification was to include the effect of the VLA’s pri-
mary beam attenuation which comes from the receivers hav-
ing a greater signal in the pointing center than at the edges.
This was implemented by multiplying the noiseless sky 2D
pixel flux density array by a Gaussian with FWHM = 14′.
The last effect introduced to approximate the VLA was a
smearing of the noiseless probability distributions due to in-
strumental noise of the VLA. Finally, in order to reduce run
time costs it was determined that the cumulative source count
N(< 3.98× 10−8 Jy) from the 1.4 GHz data can be disre-
garded as it does not add significant accuracy to the results
and is cost ineffective.

6. ACKNOWLEDGEMENTS

I would like to acknowledge Dr. Jim Condon, who dedi-
cated time in helping me complete this thesis project and who
without I would not have been able to have gained the oppor-
tunity to learn more about this fascinating and meaningful
topic. I would also like to acknowledge Allison Matthews
and Christopher Hayes, two graduate students at the Univer-
sity of Virginia who helped me tremendously when it came
to the specifics of implementing Python programming tech-
niques and functions in order to get the code to work cor-
rectly and efficiently. Without them the code would have not

10

turned out as successful as it has. Finally, I would like to
thank the Astronomy Department, for without its available

resources and helpful faculty I would not have been able to
complete the culmination of my undergraduate career.

REFERENCES

Buat, V., Marcillac, D., Burgarella, D., et al. 2007, A&A, 469, 19

Condon, J. J. 1974, ApJ, 188, 279

—. 1992, ARA&A, 30, 575

Condon, J. J., Cotton, W. D., Fomalont, E. B., et al. 2012, ApJ,

758, 23

Feldmann, R., Hopkins, P. F., Quataert, E., Faucher-Giguère, C.-A.,
& Kereš, D. 2016, MNRAS, 458, L14

Jarvis, M., Seymour, N., Afonso, J., et al. 2015, Advancing
Astrophysics with the Square Kilometre Array (AASKA14), 68

Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415
Matthews, A. 2018, ApJ

http://dx.doi.org/10.1051/0004-6361:20066685
http://dx.doi.org/10.1086/152714
http://dx.doi.org/10.1146/annurev.aa.30.090192.003043
http://dx.doi.org/10.1088/0004-637X/758/1/23
http://dx.doi.org/10.1088/0004-637X/758/1/23
http://dx.doi.org/10.1093/mnrasl/slw014
http://dx.doi.org/10.1146/annurev-astro-081811-125615

AASTEX 6.1 TEMPLATE 11

APPENDIX

A. 1.4 GHZ SOURCE COUNTS

Table 1. 1.4 GHz source counts retrieved from Condon et al. (2012)

S [Jy] S5/2n(S) [Jy3/2/sr] N(> S) [sr−1]
1.00E+03 78.909 0
6.31E+02 80.016 0
3.98E+02 81.507 0
2.51E+02 83.611 0
1.58E+02 86.639 0
1.00E+02 91.031 0.1
6.31E+01 97.38 0.1
3.98E+01 106.46 0.3
2.51E+01 119.201 0.6
1.58E+01 136.581 1.3
1.00E+01 159.376 3
6.31E+00 187.737 6.8
3.98E+00 220.635 16
2.51E+00 255.359 37.1
1.58E+00 287.398 85.1
1.00E+00 311.08 189.9
6.31E-01 321.058 409
3.98E-01 314.167 844.5
2.51E-01 290.721 1664.2
1.58E-01 254.473 3124.6
1.00E-01 211.235 5591.3
6.31E-02 166.98 9555.4
3.98E-02 126.345 15643.8
2.51E-02 92.012 24628
1.58E-02 64.864 37435.3
1.00E-02 44.526 55173.2
6.31E-03 29.964 79192.1
3.98E-03 19.947 111243.6
2.51E-03 13.316 153884.4
1.58E-03 9.114 211500.2
1.00E-03 6.603 292842.7
6.31E-04 5.235 416983.3
3.98E-04 4.59 626102.4
2.51E-04 4.329 1009557.2
1.58E-04 4.172 1741466.6
1.00E-04 3.921 3125746
6.31E-05 3.489 5631486.5
3.98E-05 2.908 9899998
2.51E-05 2.271 16719941
1.58E-05 1.675 26985924
1.00E-05 1.176 41660408
6.31E-06 0.793 61749244
3.98E-06 0.518 88290704
2.51E-06 0.329 122353744
1.58E-06 0.205 165041696
1.00E-06 0.125 217498592
6.31E-07 0.075 280917184
3.98E-07 0.045 356548064
2.51E-07 0.026 445710112
1.58E-07 0.015 549801344
1.00E-07 0.009 670309760
6.31E-08 0.0051 808823296
3.98E-08 0.0029 967037760
2.51E-08 0.0017 1146761984
1.58E-08 0.0009 1349920640
1.00E-08 0.0005 1578557696

12

B. DICTIONARY OF VARIABLES

Variable Units Definition

α Gaussian synthesized beam power pattern with FWHM = 8′′ (Eq. 11)

λ The average number of galaxies per flux density bin per image (Eq. 7)

FWHM Full Width between Half Maximum points

N(> S) sr−1 Cumulative source count: the mean number of sources per steradian stronger than S (Eq. 3)

n(S) sr−1Jy−1 Differential source count (Eq. 2)

n∗(S) Differential source count per logarithmic flux density range (Eq. 4)

P(D) beam µJy−1 Confusion probability distribution of "deflections" D (µJy beam−1)

Pp(n|λ) Poisson probability that there are n sources per bin in a given simulation (Eq. 8)

r arcsec The radial offset from the galaxy’s center (Eq. 12)

S2n(S) Jy sr−1 Brightness-weighted differential count (Eq. 10)

SFHU Star Formation History of the Universe

SFRD M� yr−1 Mpc3 Star formation rate density

S(r) Jy The flux density for a single galaxy as a function of radial offset r (Eq. 13)

t Gyr Lookback time: time elapsed between light detection on Earth and original light source emission

VLA Very Large Array

z Redshift

C. MONTE CARLO UNIVERSE SIMULATION

Below details specifically how I coded the Monte Carlo simulation described in the thesis. It should be noted that there are
many ways to achieve the same resulting program, but the choices I made suited my coding preferences. The simulation was
created using the 1.4 GHz data seen in Appendix A and the python coding language.

To start, the following python packages will be used along with associated abbreviations.

import m a t p l o t l i b . p y p l o t a s p l t
import numpy as np
import s c i p y . misc
import t ime
from s c i p y import i n t e r p o l a t e
from s c i p y . i n t e r p o l a t e import i n t e r p 1 d
import pandas as pd

Briefly, the matplotlib.pyplot plotting package associated with Python allows the user to create various types of plots, the numpy
package allows the user access to predefined mathematical functions and support for large, multi-dimensional arrays, the scipy
package gives the user access to more defined scientific and technical computing abilities, the time package can determine the
timestamp at specific parts in the code, and finally the pandas package allows the user predefined functions which help with
reading comma separated values (.csv) files. After specifying which python libraries, it is necessary to read in the 1.4 GHz data
(from Appendix A) in order to use it for calculation and creating the simulation. For this part I use the pandas python package to
read in the different columns in "sourcedata.csv" (i.e. the 1.4 GHz data), where S is the source flux densities in Janskys, S5_2 is
equal to S5/2n(S), and N is the cumulative source count N(> S). The function np.array() makes makes each of the three columns
of values seen in Appendix A data arrays.

r e a d i n g i n t h e a c t u a l s o u r c e da ta
df = pd . r e a d _ c s v (’ s o u r c e d a t a . csv ’)

AASTEX 6.1 TEMPLATE 13

S = np . a r r a y (d f . S) # f l u x d e n s i t i e s i n Jy
S5_2 = np . a r r a y (d f . S5_2) # Flux D e n s i t i e s ^ (5 / 2) ∗n (S) , where n (S) i s t h e d i f f e r e n t i a l

s o u r c e c o u n t . U n i t s = Jy ^ (3 / 2) / s r
N = np . a r r a y (d f .N) # t h e number o f s o u r c e s per s r s t r o n g e r than S

Now that we have all of the necessary 1.4 GHz data in arrays we can complete the first task of verifying the expected results
with the power law approximation described in Section 2.2. First we find the power law approximation of the differential source
count n(S) by using the equation n(S) = 300S−2 and the differential source count per logarithmic flux density range n∗(S) is defined
by Eq. 6. To find the average number of galaxies per flux density bin λ, Eq. 7 was used. Therefore, powerlaw_numperbin is
an array of the mean number of galaxies at each flux density S. Since we want to create different universes for each run of the
simulation with similar λ we can use the Poisson function seen in Eq. 8 to get a random sampling of λ. This is done using the
predefined numpy function np.random.poisson(), which takes in the value lam = λ and size is set to the default of “None". For
convenience the total number of sources can be found for each run using np.sum(), which sums every value in a predefined array.
The value of axis was set to its default of “None” at each flux density.

u s i n g t h e power law a p p r o x i m a t i o n where k = 300 and a lpha = 2
powerlaw_n = 300∗S∗∗ (−2)
p o w e r l a w _ n s t a r = 300∗np . l o g (1 0) ∗S∗∗ (−1) # t h e d i f f e r e n t i a l s o u r c e c o u n t n ∗ (S) per

l o g a r i t h m i c f l u x d e n s i t y
power law_numperbin = p o w e r l a w _ n s t a r ∗ . 0 1∗ (1 0 0 0 / (3 6 0 0∗1 8 0 / np . p i)) ∗∗2 # average number o f

g a l a x i e s per f l u x d e n s i t y b i n
power law_numsources = np . random . p o i s s o n (lam = powerlaw_numperbin , s i z e = None) #

number o f s o u r c e s w i t h i n a b i n
sumof_p lnumsources = np . sum (powerlaw_numsources , a x i s = None)

Using the power-law approximation is important in order to verify and test my simulation of realistic sources to previous
calculations using power-law sources by Condon et al. (2012). However, for a more realistic simulation of the universe at a
redshift of z = 2.9 we must use the actual source counts to determine the differential source counts. We can do this by calculating
n(S) from columns 1 and 2 of Appendix A, S and S5/2n(S), by: S5/2n(S)

S5/2 . Then using Eq. 10 I found the actual differential source
count per logarithmic flux density range, n∗(S). This array of differential source counts was used to once again calculate the
average number of galaxies per flux density bin λ, with Eq.7. The predefined python functions of np.random.poisson() and
np.sum() were once again used to create different universes for each run of the simulation with similar λ and sum the total
number of galaxies within the universe run.

u s i n g a c t u a l da ta t o d e t e r m i n e n (S)
a c t u a l _ n = S5_2 / (S ∗ ∗ (5 . / 2 .)) # a c t u a l d i f f e r e n t i a l s o u r c e c o u n t
a c t u a l _ n s t a r = a c t u a l _ n ∗S∗np . l o g (1 0)
a c t u a l _ n u m p e r b i n = a c t u a l _ n s t a r ∗ . 0 1 ∗ (1 0 0 0 . / (3 6 0 0 . ∗ 1 8 0 . / np . p i)) ∗∗2 # avg number o f

g a l a x i e s per f l u x d e n s i t y b i n f o r a c t u a l s o u r c e s
s a m p l e _ p o i s s o n = np . random . p o i s s o n (lam = a c t u a l _ n u m p e r b i n , s i z e = None)
meannum = np . sum (a c t u a l _ n u m p e r b i n , a x i s = None)

However, this is not what is used in the final simulation. The given 1.4 GHz data in Appendix A samples too coarsely the intrinsic
population, therefore in order to make it finer I used the cubic spline interpolation seen in Eq. 1 in order to go from from every
0.2 in log flux density to 0.01 in log flux density. First I defined two arrays using the numpy function np.arange(start,stop,step),
which generates values with the half-open interval [start, stop) with an input step size. The first array, xold, defines the original
flux density range with a spacing of 0.2 in log flux density and the second array, xnew, defines the same flux density range, but
with the desired spacing of 0.01 in log flux density. The predefined function interpolate.interp1d() takes in the original spacing
and λ values and then executes the interpolation with the new spacing of 0.01 in log flux density. Note that the “stop” value is
−8.0+step because of the fact that np.arrange() creates values on a half-open interval. Finally, the np.random.poisson() function
was used again to create a Poisson generated version of the final λ array determined by the actual realistic source counts from the
1.4 GHz data. The np.sum() function can be used to determine the final total number of galaxies being simulated. The variable
power_xnew defines the xnew array converted from log-to-linear-based flux densities in units of Jy.

t h e f o l l o w i n g u s e s a s p l i n e i n t e r p o l a t i o n f u n c t i o n t o f i t t h e a c t u a l _ n u m p e r b i n
r e s u l t s t o a new x − a r r a y w i t h a s p a c i n g o f . 0 1 i n l o g f l u x d e n s i t y

14

xo ld = np . a r a n g e (3 . , − 8 . 2 , − . 2) # o l d a r r a y o f l o g f l u x d e n s i t i e s w i t h s p a c i n g o f . 2
xnew = np . a r a n g e (3 . , −8 .01 , − . 01) #new a r r a y o f l o g f l u x d e n s i t i e s w i t h s p a c i n g o f

. 0 1
f = i n t e r p o l a t e . i n t e r p 1 d (xold , a c t u a l _ n u m p e r b i n)
a v g _ s o u r c e s = f (xnew) #mean number o f s o u r c e s per b i n
#np . random . seed (0) # by p l a c i n g t h e seed here i t f i x e s t h e number o f s o u r c e s per b i n

and a l s o f i x e s t h e g a l a x y p o s t i o n s
n u m g a l a x i e s = np . random . p o i s s o n (lam = a v g _ s o u r c e s , s i z e = None)
sumof_numga lax ies = np . sum (numga lax ies , a x i s = None)
power_xnew = 10∗∗xnew

Next, we move onto the creation of the 2D pixel data array which will be used to create our contour plots later on, which is
basically an image of the simulated universe! Using the np.arange() function again, I start by defining the x- and y- dimensions
of the array so that it is 1000 pixels across for both. I then set up three 2D arrays with the np.zeros(shape) function, which sets
the value for every index in the array as 0 across for the total shape. The arrays are:xpix_array, ypix_array, and f lux_array. The
xpix_array and ypix_array will be filled in the following steps so that they can define a central galaxy coordinate on the 1000
pixels2 image. The f lux_array will be filled with the flux densities of each Gaussian point source within λ, with overlapping
pixel locations summing together. For-loops were used to fill the values within the xpix_array and ypix_array so that xpix_array
increases from 0 to 1000 from left to right and ypix_array increases from 0 to 1000 from top to bottom.

xp ix = np . a r a n g e (0 , 1001 , 1)
yp ix = np . a r a n g e (0 , 1001 , 1)

x p i x _ a r r a y =np . z e r o s ((1 0 0 1 , 1001))
y p i x _ a r r a y =np . z e r o s ((1 0 0 1 , 1001))
f l u x _ a r r a y =np . z e r o s ((1 0 0 1 , 1001))

f o r i in range (l e n (xp ix)) :
f o r j in range (l e n (xp ix)) :

x p i x _ a r r a y [i , j]= xp ix [j]

f o r i in range (l e n (yp ix)) :
f o r j in range (l e n (yp ix)) :

y p i x _ a r r a y [j , i]= yp ix [j]

The majority of the computation of the simulation comes down to the next created function and for-loop. First, I defined a 2D
function named gauss2d() to calculate the decreasing flux density with increasing radial offset r2 from the center flux density
peak, as defined in Eq. 13. This function takes in the flux density array, the x-pixel array, the y-pixel array, the central flux density
in Jy, and the randomized galaxy x- and y-positions. The randomized galaxy positions are created using np.random.uni f orm(),
which selects a random value from a uniform distribution between a set range. The range was chosen specifically to create an
equal chance of the galaxies being placed at any position on the simulated sky. The for-loop cycles through each value within
λ (numgalaxies) and determines a randomized galaxy x- and y-coordinate. Each source and its coordinates are fed into the
gauss2d() function which calculates and adds the Gaussian point source to the 2D 1000 pixels2 array. The gauss2d() function
adds each source and eventually yields the final universe in a 2D array.

def gauss2d (t o t a l _ f l u x , x p i x _ a r r a y , y p i x _ a r r a y , g a l _ f l u x , ga lxpos , g a l y p o s) :
FWHM = 8 .
r_2 = (x p i x _ a r r a y − g a l x p o s) ∗∗2 + (y p i x _ a r r a y − g a l y p o s) ∗∗2
f l u x _ a d d = g a l _ f l u x ∗np . exp (−4 .∗ np . l o g (2 .) ∗ r_2 / (FWHM∗∗2))
f l u x _ a d d [r_2 > 1 7 .∗∗2] = 0 .
t o t a l _ f l u x += f l u x _ a d d
re turn t o t a l _ f l u x

f o r k in range ((l e n (n u m g a l a x i e s))) :
i f n u m g a l a x i e s [k] != 0 :

AASTEX 6.1 TEMPLATE 15

f o r m in range (n u m g a l a x i e s [k]) :
g a l x p o s = np . a round (np . random . un i fo rm (0 . 0 , 1 . 0 0 0 0 1 , s i z e = None) ,

d e c i m a l s = 3 , o u t = None) ∗1000
g a l y p o s = np . a round (np . random . un i fo rm (0 . 0 , 1 . 0 0 0 0 1 , s i z e = None) ,

d e c i m a l s = 3 , o u t = None) ∗1000
p r i n t ga lxpos , g a l y p o s
f l u x _ a r r a y = gauss2d (f l u x _ a r r a y , x p i x _ a r r a y , y p i x _ a r r a y , power_xnew [k] ,

ga lxpos , g a l y p o s)

The last step to the simulation is to create a usable data file containing the 1000 arcsecond2 pixel array. With the pandas python
package we can set the 2D flux density array as a data frame and then covert it to a comma separated file by:

import pandas as pd
my_df = pd . DataFrame (f l u x _ a r r a y)
my_df . t o _ c s v (’ u n i v e r s e . c sv ’ , i n d e x = F a l s e , h e a d e r = F a l s e)

Now that we have successfully rendered a 2D “universe” using realistic sources we can make our 2D array of flux density
values into visual plots. The remainder of the code I present from here will be on how I specifically created the plots, added in
the noise obtained in a typical VLA observing with configuration C, and analyzed the results.

D. ANALYSIS OF SIMULATION

Before beginning the analysis part of the simulation it is important to introduce first more python packages that were used
during this section that were not part of the last section. These are:

import m a t p l o t l i b . p y p l o t a s p l t
import m a t p l o t l i b . c o l o r s a s c o l o r s
from m a t p l o t l i b . t i c k e r import L o g F o r m a t t e r

Most of this appendix will detail how I created the analytical plots seen within the thesis so that one can feasibly recreate the
same results on their own with similar data. It should be noted that once again the method of plotting used here is only one of
many and was deemed most efficient for the results I wanted to obtain.

The last step in Appendix C was to convert the pandas data frame into a .csv file. Using the pandas function pd.read_csv() we
can read in the 2D flux density array and then with the function np.array() we can covert the values within the array to ones that
can be used with python functions.

d f = pd . r e a d _ c s v (’ u n i v e r s e . csv ’ , h e a d e r = None)
Z = np . a r r a y (d f)

We can now use the created arrays of various runs of the simulation to create the 2D contour plots seen in Appendix D. The
process is simply to use the ax.contour() function which reads three 2D arrays, the xpix_array, the ypix_array, and the flux
density array we just obtained from the .csv file. I created the contour plots using both a linear and logarithmic scaling in flux
density. I did this by creating an array called "levels" which specifies the steps at which the user wants the contours to be marked.
Therefore to plot a linear plot I did:

f i g = p l t . f i g u r e (f i g s i z e = (1 0 , 8))
ax = f i g . a d d _ s u b p l o t (1 1 1)
l e v e l s = np . a r a n g e (0 . 0 0 0 0 1 , 0 . 0 0 0 0 9 , 0 . 0 0 0 0 1)
im = ax . c o n t o u r (x p i x _ a r r a y , y p i x _ a r r a y , Z , l e v e l s , l i n e w i d t h s = . 1)
ac = f i g . c o l o r b a r (im , ax=ax)
f o r m a t t e r = L o g F o r m a t t e r (1 0 , l a b e l O n l y B a s e = F a l s e)
p l t . s a v e f i g (’ l i n e a r . pdf ’ , b b o x _ i n c h e s = ’ t i g h t ’ , format = ’ pdf ’)

And to create a logarithmically scaled plot I did:

f i g = p l t . f i g u r e (f i g s i z e = (1 0 , 8))
ax = f i g . a d d _ s u b p l o t (1 1 1)
l e v e l s = [1 0 .∗∗ (− 5) , 1 0 .∗∗ (− 4) , 1 0 .∗∗ (− 3) , 1 0 .∗∗ (− 2) , 1 0 .∗∗ (− 1) , 1 . 0]

16

im = ax . c o n t o u r (x p i x _ a r r a y , y p i x _ a r r a y , Z , l e v e l s , norm = c o l o r s . LogNorm () ,
l i n e w i d t h s = . 1)

ac = f i g . c o l o r b a r (im , ax=ax)
f o r m a t t e r = L o g F o r m a t t e r (1 0 , l a b e l O n l y B a s e = F a l s e)
p l t . s a v e f i g (’ u n i v e r s e _ l o g . pdf ’ , b b o x _ i n c h e s = ’ t i g h t ’ , format = ’ pdf ’)

For stylistic purposes I incorporated extra additions to some of the functions, but do not plan to go into detail. The python
reference library defines in great detail many of the stylistic parameters I have included. The function plt.save f ig() creates a .pdf
image of your 2D contour plot, however this has not incorporated the noise and instrumental effects of VLA observations and
imaging. In order to obtain a noiseless probability distribution of the each universe run we much first remove the part of the array
which is not correct as described in Sect. 4.1. Then by using a function which "flattens" the 2D array into a 1D array we can bin
each value into a histogram of bin width d = 0.01µJy. It is important to apply an array of weights with the same length as the
flattened array in order to contribute its relative weight towards the bin count. This ensures that the integral of the distribution
remains 1. To create the weighted array I used the function np.ones(shape) which makes an array of ones for the user defined
shape of a specified shape. This shape is the length of the flattened 2D contour array. Thus since there is 100 bins per µJy we can
multiply the bins by 100 to convert it to per µJy. Therefore the normalized probability per bin is the number per bin divided by
the length of the flattened array which took into account the error of the original 2D array’s border.

Znew = Z [1 6 : 9 8 4 , 1 6 : 9 8 4]
A = Znew . f l a t t e n ()
l e n g t h = l e n (A)
w e i g h t e d _ v a l u e = np . ones (9 3 7 0 2 4) ∗1 0 0 . / 9 3 7 0 2 4 .
f i g = p l t . f i g u r e (f i g s i z e = (1 0 , 8))
ax = f i g . a d d _ s u b p l o t (1 1 1)
ax . h i s t (A, b i n s =np . a r a n g e (0 . 0 , 5.0∗10∗∗ −6 + .01∗10∗∗ −6 , .01∗10∗∗ −6) , h i s t t y p e = ’ s t e p ’ ,

w e i g h t s = w e i g h t e d _ v a l u e)
p l t . x l im (0 . 0 , 2 .0∗10∗∗ −6)
p l t . s a v e f i g (’ pd − diagram . pdf ’ , b b o x _ i n c h e s = ’ t i g h t ’ , format = ’ pdf ’)

The bins range from 0 to 5 µJy in order to see the distribution across the faintest flux density sources.
Now we can add in the instrumental effects along with the noise obtained from the VLA. The following steps detail how to

include the noise from the VLA within the probability distribution. For convenience I first converted the flattened array to units
of µJy to avoid having to convert within the rest of the code. Using the function np.histogram()[0] I took the converted array
and chose the bins to range from -10 to 10 with 1000 bins total. The np.histogram()[0] function returns two values and since we
only care about the first value I made sure that was the only value being returned by using "[0]". Next, I created a dummy array
which will be necessary to perform the convolution on the probability distribution in order to incorporate noise into the noiseless
distribution. Since we are doing this convolution numerically, the dummy array must be the same length as the chosen histogram.
After creating the dummy array I then created a user defined function named gauss1d() which reads in both the dummy array and
the user specified FWHM. The function returns a 1D Gaussian which can be convolved with the probability distribution.

c h o i c e = A
c o n v e r t e d h i s t = c h o i c e ∗10∗∗6 # c o n v e r t t o microJy realm
h i s t _ c h o i c e = np . h i s t o g r a m (c o n v e r t e d h i s t , b i n s = np . l i n s p a c e (−10 , 10 , 1000) , d e n s i t y =

True) [0] #np . h i s t o g r a m r e t u r n s 2 v a l u e s o n l y need f i r s t one
l e n h i s t c h o i c e = l e n (h i s t _ c h o i c e)
dummy_array = np . l i n s p a c e (−10 , 10 , l e n h i s t c h o i c e)

def gauss1d (dummy_array , FWHM) :
rms = FWHM/ 2 . 3 5 5
re turn np . exp (− . 5∗ (dummy_array / rms) ∗∗2) / (rms∗np . s q r t (2 . ∗ np . p i))

Now that we have the dummy array and a function which can return a 1D Gaussian at a specified FWHM we can determine
the Gaussian noise which we can then convolve with the chosen probability distribution using the function np.convolve(). Since
np.convolve() uses discrete convolution it needs to know the step size of the dummy array. Therefore an additional factor is

AASTEX 6.1 TEMPLATE 17

multiplied with the convolution in order to obtain the correct result. Finally using simple plotting methods we can obtain the
results seen in Fig. 8.

n o i s e = gauss1d (dummy_array , 1 . 2) #FWHM from Jim ’ s paper
c o n v o l v e d _ c h o i c e = np . c o n v o l v e (h i s t _ c h o i c e , n o i s e , mode = ’ same ’) ∗ (dummy_array [2] −

dummy_array [1]) #np . c o n v o l v e works w i t h d i s c r e t e c o n v o l u t i o n and i t needs t o know
t h e d i f f e r e n c e s i n t h e s t e p s

p l t . p l o t (dummy_array , c o n v o l v e d _ c h o i c e)
p l t . p l o t (dummy_array , h i s t _ c h o i c e)
p l t . x l im (− 4 , 4)
p l t . s a v e f i g (’ pd − c o n v o l u t i o n . p d f ’ , b b o x _ i n c h e s =’ t i g h t ’ , f o r m a t = ’ p d f ’)

In order to implement the effect of the VLA’s primary beam attenuation it requires simply for us to multiply the 2D flux density
array with an array of the same shape and a 2D Gaussian with a FWHM = 14′ centered in the middle of the array. This is achieved
by using the same gauss2D() function I created before, but instead of inputting random x- and y-coordinates I specified the center
of the array. This resulting array can then simply be multiplied with the 2D flux density array from any simulation run to create
a simulated VLA image. All other plots not described here used the same plotting methods and can be determined in a similar
manner. Therefore, this concludes the implementation and plotting instructions.

18

E. ENLARGED 2D CONTOUR PLOTS

0 200 400 600 800 1000
0

200

400

600

800

1000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

Figure 11. A 2D representation of one universe run based on the 1.4 GHz data from Condon et al. (2012) in the linear scale. Contour lines
mark different levels of flux density in units of Jy.

.

AASTEX 6.1 TEMPLATE 19

0 200 400 600 800 1000
0

200

400

600

800

1000

10-5

10-4

10-3

10-2

10-1

100

Figure 12. A 2D contour representation of the same universe from 11, but represented logarithmically.

.

20

0 200 400 600 800 1000
0

200

400

600

800

1000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

Figure 13. A 2D linear contour plot of the same universe from Figures 11 and 12 by including the effect of the primary beam on the VLA with
a FWHM = 14′.

