Exploiting the Structure of User Feedback in Recommender
Systems

A
Dissertation

Presented to
the faculty of the School of Engineering and Applied Science
University of Virginia

in partial fulfillment
of the requirements for the degree

Doctor of Philosophy

by

Renqin Cai

August 2021

APPROVAL SHEET

This
Dissertation

is submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Author: Renqin Cai R@”«g”& &”\

This Dissertation has been read and approved by the examing committee:

Advisor: Hohgning Wang
Advisor:

Committee Member: Aidong Zhang

Committee Member: Denis Nekipelov

Committee Member: Yangfeng Ji

Committee Member: Jundong Li

Committee Member:

Committee Member:

Accepted for the School of Engineering and Applied Science:

Qe =2 LO=t

Jennifer L. West, School of Engineering and Applied Science

August 2021

Abstract

From shopping to dining, people consume items on digital service platforms as a part of their daily life
routine. In the meanwhile, people leave feedback about the consumptions, e.g., browsing products or
writing reviews. By leveraging user feedback, recommender systems predict the items that users would
be interested in and then make recommendations. Recommender systems are important for both users
and service providers. They not only save users’ efforts on finding relevant items but also achieve the
providers’ objectives on improving user satisfaction. In this thesis, we study the problems of making
contextualized recommendations and providing explanations for recommendations, since these are
highly desired properties of recommender systems. Modeling the dependence among user feedback is
essential to address these two problems. Various research efforts have been devoted to improving
the recommendation quality and the quality of explanations for recommendations. Nevertheless, the
structure among user feedback is overlooked. In the thesis, we argue that explicitly exploiting the
structure (e.g., sequential structure, or graph structure) among user feedback allows us to effectively
recognize the dependence among feedback, consequently improving the recommendation quality and
the quality of explanations for recommendations. First, for contextualized recommendations, we
developed solutions which exploit the sequential structure among user feedback in regard to the
temporal information and category information of user feedback. Second, to provide explanations for
recommendations, we developed a solution that exploits the graph structure among user feedback.
We have demonstrated the effectiveness of our solutions through experiments on large datasets.
This thesis shows that exploiting structure among feedback helps build an effective and explainable

recommender system.

ii

To everyone who makes the world better

iii

Acknowledgments

I would like to thank all the people who helped me make this thesis happen.

First, I would like to thank my advisor Prof. Hongning Wang for his support and guidance. He
is a great role model during my PhD. He is very hardworking, and very enthusiastic in pursuing
innovative ideas. His insightful suggestions and keen comments have greatly inspired me. His patient
discussions and encouraging messages have helped me go through a lot of difficult moments. I

sincerely appreciate his devotion.

I would like to thank my thesis committee members, Prof. Aidong Zhang, Prof. Denis Nekipelov,
Prof. Yangfeng Ji and Prof. Jundong Li for their feedback on my PhD research and thesis. I have
benefited a lot from the discussions with them. Their suggestions and comments are insightful, which

help me finish the thesis.

In addition, I sincerely thank my mentor Chong Wang in Bytedance, and my mentor Parikshit Sondhi
and the colleague Zhenrui Wang in WalmartLabs. They provided me opportunities to know how
industrial researchers tackle research problems. They also provided tremendous support during the

internships.

Moreover, I want to thank my collaborators, Jibang Wu, Mengdi Huai, Xueying Bai, Zhendong Chu,
and Peng Wang. They have devoted a lot of time and efforts to the projects we worked on. The

discussions with them were always fruitful. Without them, the thesis is not possible.

Then I would like to thank my friends, Junwu Weng, Qiugiang Kong, Ruocheng Guo, and Zhan
Xu. They have provided a lot of suggestions on my research. I also want to thank all HCDM group
members. They have built such a wonderful environment for research. I am very grateful for all the

discussions and encouragement that I received from them.

iv

Last but not least, I owe my gratitude to my parents and my girlfriend, Summer. They are my

biggest supporters. Without them, I could not make this thesis happen.

Contents

[Abstract]

[Acknowledgments|

Contents!

List of Figures| e

(1 _Introduction

[2.2.1 User Behavior Modeling|
[2.2.2 Sequential Recommendation|. o000

2.2.3 emporal Recommendation00,

2.5 Method 2: Contextualized Temporal Attention|
2.5.1 Model Overview e
[2.5.2 Three Stage Weighing Pipeline|,
[2.5.3 Parameter Learning|

2.6 Experiments|. e e

[2.6.2 Experiments on LSHP|
2.6.3 Experiments on CTA|.
B.7 Conclusion]

BAd_Methodl
13.4.1 Data-Driven Statistical Analyses|
13.4.2 Category-aware collaboration Sequential Recommender|
3.4.3 Model Training & Inference| Lo

vi

[3.5 Experiments|

13.5.2 Comparison against Baselines|

13.5.3 Detailed Analysis on Our Approach|

3.6 Conclusion|

4.4 Graph Extractive Explainer for Recommendations|

[4.4.1 Graph Structure]o

4.4.2 Graph Attention Layer

4.5 Experiments|

4.5.1 Experiment Setup|

4.5.2 Quality of Generated Explanations| 0oL

[4.5.3 Hyperparameter
[f54 Ablation Analysis|

[E55 Case Study] o o

Bibliograp

List of Tables

........................... 31

2.2 Performance comparison of LSHP against baselines on sequential recommendation. . 32
[2.3 Performance comparison of CTA against different baselines on sequential recommen-

C dafione -« v v v e e e e e e 33
[2.4 Ablation analysis on two datasets under metrics of Recall@5 (left) and MRR@5 (right).
The best performance is highlighted in bold face. | and 1 denote a drop/increase
of performance for more than 5%. 1, p, 7w, w respectively denote the exponential

| logarithmic, linear and constant temporal kernels. The superscript on the kernel |

L function denotes the number of such kernel used in the model. | 37

[B.1_Statistics of two evaluation datasets] oL 54

3.2 _Performance of models on Taobao dataset.|. 57

[3.3 Performance of models on BeerAdvocate dataset) 58
[3.4 Performance of CoCoRec with different number of actions in in-category encoder (T)

| and context encoder (L) on Taobao dataset.|. 62
3.5 Performance of CoCoRec with different number of retrieved neighbors on Taobao

[dataset. e e 62

4.1 Summary of the processed datasets.| 75

[£.2 Comparison of explanation quality by different methods.]. 76
4.3 Comparison of explanation quality by GREENer with different number of selected

[sentences k. e e e e e 7

4.4 Comparison of explanation quality by different variants of GREENer| 78

5 Example explanations produced by different models.] 78

viii

List of Figures

T A ST Tad Eion Fad 5 - —Toxed

chronologically. The recommender system needs to predict which items to recommend

to the user. e 2
1.2 An illustration of explanations for recommendations. Besides recommended items

explanations composed of multiple sentences are presented to users.| 4
2.1 Contextualized recommendation in online shopping scenario. 10

2.2 'The architecture of our proposed Contextualized Temporal Attention Mechanism.

[hiree stages are proposed to capture the content information at o stage with sell-

attention, temporal information at 3 stage with multiple kernels, and local information

at v stage with recurrent states, for sequential recommendation.|

24

[2.3 Attention visualization. The blue (left) bar is the content-based importance score a,

the orange (middle) bar is the contextualized temporal influence score 3°, the green

(right) bar is the combined importance score 4. The figures contains three different

sequences selected trom the test set of the Taobao dataset. |

3.1 An illustration of collaborative sequential recommendation. Each user’s actions are

indexed chronologically. The recommender system needs to predict which items to

recommend to the user Lily based on her and another user lvy’s past actions.|

44

[3.2 Result of the statistical dependence analysis on Taobao dataset. Lhe distribution of

frequencies of 3rd-order item-to-item transition patterns in in-category subsequences

are as the red points show. The distribution of the frequencies of 3rd-order item-to-item

[transition patterns in the original sequences are as the blue points show.

3.3 verview of CoCoRec. In CoCoRec, an action sequence is decomposed into multiple

subsequences with respect to the item category associated with each action. The in-

category encoder encodes the category-specific action subsequences into latent vectors

representing users’ in-category preferences. The context encoder predicts the category

of the next action to activate the corresponding in-category item-to-item transitions for

the next item prediction. Lhe context encoder infers the episodic context of the next

action based on recent items. To address the sparsity issue, the collaboration module

retrieves neighbors based on users’ encoded in-category preferences. Based on signals

from these three sources, CoCoRec predicts the next item and make recommendations

to the userd e e e

[3.4 Performance of variants of CoCoRec for ablation analysis on two datasets.|.
[3.5 Performance of CoCoRec with different number of selected categories (k) on Taobao.|

50
59
61

3.6 An example of the next item prediction by CoCoRec. The target user’s (user 45323)

action sequence is separated into category-specific subsequences. On the top, We visu-

alize the action subsequence containing the recent actions, and the action subsequence

specific to the category of the next item. On the bottom, the most similar neighbor’s

(user 4461) in-category subsequence is presented. The actions in each subsequence are

indexed chronologically, denoted as a tuple (item id, category id). The color indicates

the attention weight in self-attention networks.|

ix

4.1

Example of the task of providing explanations for recommendations. Besides the

recommendation, the user also cares about the reason of the recommendation.

65

[

Illustration of a graph constructed to extract sentences as explanations for a pair of a

user and an item. The graph consists of four types of nodes: user node, item node

feature nodes, and sentence nodes. User node is connected to feature nodes, item node

1s connected to feature nodes, and feature nodes are connected to sentence nodes. . .

70

Chapter 1

Introduction

From e-commerce to entertainment, e.g., Amazon or Netflix, people consume items on the digital
service platforms. In the meanwhile, people leave feedback about the consumptions, like browsing
products or writing reviews. By leveraging user feedback, recommender systems are to predict the

items that are relevant to users’ preferences and then make recommendations.

Recommender systems have played more and more important roles in people’s lives. The rise of
information systems allows people to conveniently access the information. On the other hand, the
huge amount of information puts burden on people to find out relevant information. What is worse,
due to the lack of the knowledge about which items are available, users would miss the items. Thus,
tools navigating through the information overload are demanded. Recommender systems, which
suggest relevant information to people in a personalized way, consequently become one of the most
critical component to the success of information systems. As disclosed in reports [1], in Netflix 75%

of what people watch is from recommendations.

Not only recommender systems are important for users, but also are useful for service providers of
information systems. Service providers have the growth objectives including user retention, item
click-through rate in production. Helping users obtain the relevant information can improve user
experience, thus retaining users and increasing the click-through rate. YouTube reports that 60 % of
the clicks on the home screen are on the recommendations [1], and about 35 % of Amazon’s sales are

from recommendations.

| Recommendations |

Mevnd znssdlis

Timeline | |

Figure 1.1: An illustration of contextualized recommendation. Each user’s actions are indexed chronologically. The
recommender system needs to predict which items to recommend to the user.

1.1 Motivation and Overview

Due to the great importance of recommender systems, improving the satisfaction of recommendations,
including the effectiveness and the persuasiveness of recommendations, has attracted a great deal of

attention [2].

To improve the effectiveness of recommendations, contextualized recommendations are highly desired.
Users’ preferences towards items are influenced by context. Specifically, context refers to conditions
that can influence a user’s perception of the relevance of an item [3]. Recommender systems face
dynamically evolving user preferences under various context. For example, in Figure|l.1| when a user
is looking for casual outfit (e.g., sport shoes) on e-commerce website, recommending formal outfit
would annoy the user. In contrast, when the user is looking for formal outfit (e.g., high-heel shoes),
it would be annoying to recommend casual outfit to the user. With recommendations impacting
people’s life under increasingly diverse conditions, considering the context becomes increasingly

demanding.

Moreover, to improve the persuasiveness of recommendations, explanations for recommendations are
demanding. People not only care about which items have been recommended but are also curious
about why these items are recommended. For example, a person is recommended with several types of
sport shoes by an e-commerce website. She might be curious about why the website thinks she would
like these types of shoes, instead of others. Without any explanations about the recommendations,
she would not trust the recommendations and thus would ignore the recommendations. Explanations
like “this pair of shoes are cheap and suitable for everyday walking” could make the user realize the
recommended shoes may suit her taste. Providing explanations along with recommendations enable

the service provider to help users make informed decisions and build trust with users.

Because considering context and providing explanations are critical factors to the success of recom-
mender systems, in this thesis, we study the problems of making contextualized recommendations

and providing explanations about recommendations.

To make contextualized recommendations, the essence is to understand how the context affects
users’ preferences. It is vital to distinguish when an interaction happens (e.g. a day after the last
interaction or several minutes since the last interaction) as well as differentiate a casual interaction
from a serious interaction. Take the browsing actions in the e-commerce website as an example,
shown in Figure The user chooses what to browse next in several minutes after browsing the suit.
Because of the short time interval, the browsed suit in the last action is a strong indicator of her
next preference that she is looking for formal outfits. In contrast, the action of browsing a watch two
days ago carries little signal about the next action. The importance of past actions to the prediction

of the next action changes along with the changing context.

Considering the contextualized importance of past actions to the next action has driven the progress
of recent development of contextualized recommendations [4,(5]. The context under which the user
interacted with the recommender system is not observable. To consider the context, various types
of its proxies are leveraged, like the time when the feedback is generated, or the category of the
item associated with the feedback. They are widely available and provide extra information about
the feedback. One of the early attempts |6] models user, item and context (e.g., time) with a
tensor. Similarly, matrix factorization has also been adopted to model user, item and context with
matrices [7,[8]. Because of the expressiveness, neural network based models have shown superior
performance than matrix or tensor factorization based models [9-{11]. Especially neural sequence
models, such as Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM) [12], Gated
Recurrent Unit (GRU) [13] and self-attention [14] models have been adopted to model user, item
and context. For example, Time-LSTM [15] proposed to model the variable time intervals between

actions as part of the recurrent unit in LSTM.

Furthermore, to provide explanations about recommendations, the essence is to identify how a user
would perceive an item and deliver it clearly to the user. Since an item is associated with multiple
features, it is vital to recognize which features of the item attract the user. In addition, making the
explanation read as nature as human-generated sentences is friendly to users and easy to convince
users. For example, in Figure for a user and a pair of shoes, multiple sentences are used to

explain why this pair of shoes is recommended to the user. The sentences contain features like

Recommendations Explanations

The light high-heel shoes are
N comfortable for formal events,
but they are expensive.

The Nike's shoes provide
% cushioning in a light form
- and they are cheap.

Figure 1.2: An illustration of explanations for recommendations. Besides recommended items, explanations composed
of multiple sentences are presented to users.

“high-heel” and “comfortable” which this user would be interested in.

Generating sentences containing users’ opinions towards items’ features has been the focus of
providing explanations for recommendations. There is a lack of dedicated corpus of textual sentences
as explanations. Since user-generated reviews contain sentences describing users’ opinions towards
features, most existing solutions employed reviews as proxies of explanations. The mainstream
solutions leverage text generation techniques to synthesize sentences . Based on the encoder-
decoder neural model, Attribute-to-Sequence @ utilized users, items, and ratings as inputs and
generated sentences. Similarly, based on the pre-trained language model, i.e., Bidirectional Encoder
Representations from Transformers (BERT) , Aspect Conditional Masked Language Model has

leveraged the expressiveness of pre-trained models to improve the generation quality.

Nevertheless, the structure among user feedback is overlooked. Users follow some logic to leave
their feedback on the service platforms. The flow of the logic makes the user feedback connected
with various types of structure, like sequential structure or graph structure. Take Figure|l.1|as an
example of sequential structure among feedback. Browsing behaviors in the e-commerce website
can be organized into sequences in regard to their occurring time. While the input data to various
solutions is unstructured feedback, the structure among feedback provides extra knowledge about
feedback, like which past items should be emphasized for the next item prediction in contextualized
recommendations. In Figure the order of actions in a sequence suggests the long-term and
short-term influence from past actions to the next action. The distant history indicates that the

user is interested in shopping sports related products. Now that she is looking for a pair of shoes,

the system could have recommended some sports shoes instead of formal ones. However, the recent
browsed suits suggest now she is interested in formal outfits. The system should recommend formal
shoes to the user. Most existing work assume the models are sufficiently expressive to automatically
and intelligently take advantage of the structure. Because of the intricacy of the dependence among

feedback, the implicit utilization of structure cannot capture such fine-grained dependence.

In this thesis, we argue that explicitly exploiting the structure of user feedback allows models to

effectively recognize the dependence among feedback.

For contextualized recommendations, we make use of sequential structure to improve the next item
predictions. The relevance of different segments of historical actions to users’ preferences is different in
regard to the context. The sequential structure among actions helps models recognize the importance
of different segments in suggesting the next action with respect to the context. In this thesis, we
consider two types of proxies for context: occurring time of actions and item categories associated

with actions. Other types of proxies are left for future work.

First, we model the time intervals among actions when considering the sequential structure. We
treat the occurring time of actions as the context of actions. Time intervals among actions reveal
the closeness of actions. The distant and prolonged historical actions could carry sparse yet crucial
information of user preferences in general, while the more recent actions should more closely represent
the user intention in near future. To capture the long-term and short-term influence suggested
by the time intervals among actions, we proposed a Hawkes process based solution, Long- and
Short-term Hawkes Process (LSHP), and a self-attention based solution, Contextualized Temporal
Attention (CTA). In LSHP, based on observations that the importance of past actions differs in
accordance with the session boundaries which are defined with respect to time intervals between two
consecutive actions, we consider the sequential structure among actions in regard to their sessions.
Specifically, inspired by the cognitive psychological concepts “episodic memory”, we assume actions
within sessions have influence to the next action. Likewise, the concept “semantic memory” motivates
us to assume actions associated with the same item across sessions have influence to the next action.
Since the influence from actions within sessions include actions in regardless of their associated
items and actions within sessions have small time intervals to the next action, we call this type of
influence as short-term mutual influence. Since the influence from actions across sessions considers
actions associated with the same items and actions across sessions have large time intervals to the

next action, we call this type of influence as long-term self-influence. To capture these two types of

influence, we design LSHP as a mixture of a multi-variate Hawkes process and a uni-variate Hawkes
process. The multi-variate Hawkes process is to capture the short-term mutual influence, while the
uni-variate Hawkes process is to capture the long-term self-influence. Based on the influence from
past actions, LSHP predicts the next item. In CTA, considering the LSHP’s drawback that in regard
to the time intervals the influence from past actions decays with the fixed rate, we proposed to
utilize a mixture of decaying rates. The decaying patterns of influence is more complex than the
fixed rate for all actions. Casual actions decay fast while serious examinations decay in a slow rate.
To introduce the flexibility in modeling the decaying patterns concerning the time intervals, CTA
adopted exponential decaying rate, logarithmic decaying rate, linear decaying rate and constant
decaying rate. In addition, because LSHP utilized the one-hot vector to represent items, the item
similarities are ignored with this type of representation. To mitigate this issue, CTA takes advantage
of embeddings and self-attention to consider the item similarities when evaluating the importance of
past actions to the next action. Thus, in CTA, the influence of past actions to the next actions is
determined by their time intervals and item similarities. Based on the influence from past actions,

CTA make predictions of the next item.

Second, we model the item category for contextualized recommendations. Treating item categories
associated with actions as context, we proposed Category-aware Collaborative Sequential Recom-
mender (CoCoRec) to consider the sequential structure. Based on the observation that actions of
the same item category are strong indicators of the next action, CoCoRec considered the sequential
structure among in-category subsequences which contain actions of the item categories. In addition, to
mitigate the sparsity issue of actions by each user, CoCoRec leveraged other users’ similar in-category
subsequences. Fusing the signals from both users’ own in-category subsequences and other users’

in-category subsequences, CoCoRec predicts the next item.

When coming to the explanations for recommendations, we consider graph structure. The historical
explanations written by users suggest which features are cared by users, while the historical expla-
nations describing items suggest which item features are noticeable. The graph structure among
users, items and explanations suggest which features are important for certain users when perceiving
particular items. We proposed a graph based solution, GRaph Extractive ExplaiNer (GREENer),
to produce explanations which depict users’ perception of items. GREENer extracts sentences
from the corpus of reviews as explanations. The graph structure among users, items, features and
sentences indicates both the co-occurrence of user-feature and item-feature, and the correlation of

feature-sentence. To utilize the graph structure to estimate the relevance of sentences to user-item

pairs, GREENer appeals graph attention network to encode high-order relations among nodes in
graphs into sentence representations. With encoded sentence representations, GREENer predicts
the probabilities of sentences serving as explanations and then select sentences based on predicted

probabilities.

To investigate the effectiveness of proposed solutions, we have conducted extensive experiments on
large datasets correspondingly. The comparison against baselines and ablation analyses of proposed
solutions show that exploiting the contextualized sequential structure helps proposed solutions
improve the recommendation quality. In addition, exploiting the graph structure helps the proposed
solution improve the quality of explanations. This thesis pushes steps toward building effective and

transparent recommender systems.

1.2 Thesis Organization

According to the studied problems, we organize the proposal with two parts: 1) research on making
contextualized recommendations, 2) research on providing explanations for recommendations. In

particular, the overview of the subsequent chapters in this thesis is as follows.

e Chapter 2: Temporal Contextualized Recommendations. In this chapter, we consider
two types of context, i.e., occurring time of actions and item category of actions, and study how
these two types of context affect user decisions. We propose solutions which exploit the structure
among actions in regard to action timestamp and item category. First, to improve the quality of
recommendations, we consider the time-aware sequential structure. Inspired by psychological study
about user behaviors, we separate the influence of past actions to future actions into long-term and
short-term influence in regard to the time proximities among actions. We proposed a Long and
Short-term Hawkes Process (LSHP) to capture these two types of influence. In addition, to consider
diverse rates of influence decaying over time and improve the expressiveness of the solution, we
propose a self-attention based solution, Contextualized Temporal Attention (CTA). The content is
organized as, we instantiate the problem of making contextualized recommendations in regard to the
action timestamp. We formulate the specific task and describe the related work about considering
action timestamp for recommendations. Then we introduce our proposed solutions, including LSHP
and CTA. In addition, we evaluate the performance of LSHP and CTA on making recommendations

on two large datasets.

e Chapter 3: Category-aware Contextualized Recommendations. We consider exploiting
the structure among actions in regard to item category to improve the quality of recommendations.
The sequential structure among actions with the same item category is validated by our statistical
analysis and captured by our model category-aware collaborative recommender (CoCoRec). To
mitigate the sparsity issue, our model also leverages sequential structure collaboratively among users
who have close preferences towards items of a category. The content is organized as, we specify the
task with respect to the item category. Then we describe the existing work of utilizing the item
category to enhance the quality of recommendations. In addition, we introduce our proposed solution
CoCoRec, and show that CoCoRec can improve the recommendation quality by making use of the

structure among actions regarding the item categories.

e Chapter 4: Graph Based Extractive Explainer for Recommendations. In this chapter,
we utilize processed reviews as proxies of explanations and identify which item features attract
users’ attention and how users express opinions about these features in sentences. Considering the
high-order and complex co-occurrence patterns among users, items, features, and sentences, we
construct a graph connecting them and exploit the graph structure among them. To utilize the
co-occurrence patterns to produce explanations, we propose a graph neural network based solution
to select sentences as explanations, i.e., GRaph Extractive ExplaiNer (GREENer). The content is
organized as, we formulate the task and describe the related work on producing natural language
explanations. Then we introduce our proposed solution, GREENer. In addition, we discuss the

experiments demonstrating GREENer can produce high-quality explanations.

e Chapter 5: Conclusions and Research Frontiers. In this chapter, we summarize the thesis.

Then we discuss possible future work and research frontiers.

Chapter 2

Time-aware Contextualized

Recommendations

Designed to propose a set of relevant items to its users, a recommender system faces dynamically
evolving user interests over the course of time under various context. For instance, it is vital to
distinguish when the history happened (e.g. a month ago or in the last few minutes). The time
intervals suggests how related his/her next preferences are to the past particular event. In this
chapter, we studied problem of temporal contextualized recommendation by treating the occurring

time of actions as context.

2.1 Introduction

Understanding users’ preferences based on their past action is essential to recommender systems.
Concerning the sequential dependence within user preferences, sequential recommendations which
consider the sequential structure among actions for contextualized recommendations have attracted
a lot of attention recently [10,]11,25-30]. Specifically, sequential recommendation is to predict the
ongoing relevant items based on a sequence of the user’s historical actions. Such settings have been

practiced in popular industry recommender systems such as YouTube [31}[32] and Taobao [33].

Take the online shopping scenario illustrated in Figure for example: the system is given a series

of user behavior records and needs to recommend the next set of items for the user to examine.

| Recommendations |

= i MBI
Timeline > | |

Figure 2.1: Contextualized recommendation in online shopping scenario.

We should note in this setting we do not have assumptions about how the historical actions are
generated: solely from interaction between the user and the recommender system, or a mix of users’
querying and browsing activities. But we do assume the actions are not independent from each other.
This better reflects the situation where only offline data and partial records of user behaviours are

accessible by a recommender system.

One major challenge to this task is that the influence patterns from different segments of history

reflect user interests in different ways, as is exemplified in Figure [2.1

e By temporal segment: The distant history indicates that the user is interested in shopping
sports related products. Now that he or she is looking for a pair of shoes, the system could have
recommended some sports shoes instead of generic ones. Essentially, the distant and prolonged
user history could carry sparse yet crucial information of user preferences in general, while
the more recent interactions should more closely represent the user intention in near future.
Since the user closely examined several formal suits (much shorter time intervals in between
than the average), these interaction events could be emphasized for estimating current user
preference such that formal shoes might be preferred over sport shoes. In general, some periods
of user browsing log could appear to be heterogeneous, packed with exploration insights, while
at a certain point, the user would concentrate on a small subset of homogeneous items, in a

repetitive or exploitative way.

Hence, the designs to capture and connect these different signals from each part of history have
driven the progress of recent development of recommendation algorithms that consider the sequential

structure.

There are attempts for modeling user behavior over the course of time, and mainstream approaches

focus on fixed- or varying-order Markov models [34] or hidden Markov models [35], which capture
transitional patterns between consecutive user actions in unit time steps. Semi-Markov models are
used to model continuous time-intervals between actions [36]. However, it is very expensive to use a
Markov model to capture long-term dependency between actions, since the overall state-space grows

exponentially with respect to the order of dependency considered.

Some recent efforts have explored point process models, such as Hawkes processes [37}38|, to capture
the dependency between user actions. But the dependency is simply modeled as additive time
decaying from previous actions to current ones, which cannot differentiate influence from previous

actions bursting together in a short period of time versus those happening long time ago.

Neural network models have also been adopted for contextualized recommendations. RNNs have
been shown to outperform Markov models |10,/39]. Traditional RNN-based approaches leave little
room for one to dynamically adjust the historical influence in regard to the occurring time of actions.
One earlier work, known as Time-LSTM [15], proposed several variants of time gate structure to
model the variable time intervals as part of the recurrent state transition. But this assumes that the
temporal influence only takes effect for once during transition and is fixed regardless of context or
future events. Other work [27,/31,/33] has borrowed the state-of-art self-attention network structure
from nature language modeling [14,[24]. In [31], the attention component can enhance the model
capacity in determining dependence over an extensively long sequence of history. Nevertheless, Kang
and McAuley [27] report that the action order in long sequence of user interaction history is lacking
in boosting the empirical evaluation performance on several recommendation datasets, even though
the position embedding technique is proposed for self-attention mechanism in its original paper [14].
In other words, there is no explicit ordering of input or segment of history modeled by self-attention
mechanism. Therefore, this presents us the opportunity to model temporal information as a more
informative and flexible order representation to complement existing attention mechanism, bridging
the insights from the both sides of work in sequential recommendation. But the challenge also comes
along as incorporating these information could contribute more noise than signal unless properly

structured by the model.

In the thesis, we proposed a Hawkes process based solution, i.e., Long- and Short-term Hawkes Process

(LSHP), and a self-attention based solution, i.e., Contextualized Temporal Attention (CTA).

The concepts of episodic memory and semantic memory in cognitive psychology [40,41] inspire

the design of LSHP. These two types of memory are used to explain how people’s past experience

influences their next behavior differently. On the one hand, episodic memory records events and
context surrounding them, so that context that colours the previous episode is experienced at the
immediate moment. On the other hand, semantic memory is a structured record of facts, concepts,
and skills that one has acquired in the past. It is simply memory recall and independent of context.
These two types of memory are not isolated. Semantic memory is derived from accumulated episodic
memory; and episodic memory can be thought of as a “map” that ties together items in semantic
memory. These two concepts motivate us to model users’ sequential actions over time as a mixture
of stochastic point processes, which are driven by different long-term and short-term influence from
past actions. To realize contextual information in episodic memory, we employ a multi-dimensional
Hawkes process to model the action sequence, where the generation of an action is influenced by other
actions in a close temporal proximity, e.g., within a session or task. To capture semantic memory, we
employ a one dimensional Hawkes process, in which only the actions of the same item from previous
periods influence the actions in the current period. These two types of influence interleave with each
other and generate the observed user behavior sequence. We name our resulting stochastic process

model as Long- and Short-term Hawkes process, or LSHP in short.

In LSHP, the multi-dimensional Hawkes process captures the “mutual-influence” of different actions
within a period of time; and the one dimensional Hawkes process captures the “self-influence” of
actions of the same items across different periods of time. Intuitively, mutual-influence reflects
the transitional patterns among different actions in a close temporal proximity, and self-influence
characterizes repetitive pattern of the same items of actions over a longer period. Because the mixture
of these two types of behavior dynamics behind an observed action sequence is latent, we model it in a
probabilistic manner and estimate model parameters via a maximum likelihood estimator (MLE). In
practice, one can easily expect a large number of items in datasets, which quadratically increases the
number of parameters needed to estimate the mutual influence among actions. To avoid overfitting,
we assume a sparse structure in the mutual-influence matrix and impose a L1 regularization on
the matrix in the objective function of MLE. We adopt alternating direction method of multipliers

(ADMM) to iteratively solve resulting optimization problem.

The Contextualized Temporal Attention Mechanism (CTA) is an attention based sequential neural
architecture that draws dependencies among the historical interactions not only through event
correlation but also jointly on temporal information for sequential behavior modeling. Considering
the LSHP’s drawbacks that in regard to the time intervals the influence from past actions decays

with the fixed rate, CTA proposed to utilize a mixture of decaying rates. The decaying patterns of

influence is more complex than the fixed rate for all actions. In addition, because LSHP utilized the
one-hot vector to represent items, the item similarities are ignored with this type of representation.
To mitigate this issue, CTA takes advantage of embeddings and self-attention to consider the item

similarities when evaluating the importance of past actions to the next action.

In this mechanism, we weigh the historical influence for each historical action at current prediction

following the three design questions:

1. What is the action? The dependency is initially based on the action correlation through the
self-attention mechanism, i.e., how such an action is co-related to the current state in the

sequence.

2. When did it happen? The influence is also weighed by its temporal proximity to the predicted
action, since the temporal dynamics should also play an important role in determining the

strength of its connection to presence.

3. How did it happen? The temporal weighing factor is realized as a mixture of the output each
from a distinct parameterized kernel function that maps the input of time gaps onto a specific
context of temporal dynamics. And the proportion of such mixture is determined by local
factors, inferred from the surrounding actions. In this way, the influence of a historical action

would follow different temporal dynamics under different local conditions.

We apply LSHP and CTA on both XINGH and Taobadﬂ dataset each with millions of interaction
events including user, item and timestamp records. The empirical results on both dataset show
that our model improves recommendation performance, compared with a selection of state-of-the-art
approaches. We also conducted extensive ablation studies as well as visualizations to analyze our

model design to understand its advantages and limitations.

2.2 Related Work

Several lines of existing research are closely related to ours in this paper, and their insights largely
inspired our model design. In this section, we briefly introduce some key work to provide the context

of our work.

Lhttps://github.com/recsyschallenge/2016/blob/master/ TrainingDataset.md
2https://tianchi.aliyun.com/dataset/dataDetail ?datald=649

2.2.1 User Behavior Modeling

User behavior modeling is essential for understanding users’ diverse preferences and intents, which in
turn provides valuable insights for recommender systems to adaptively maximize their service utility
in a per-user basis. Considerable amount of effort has been made on this direction [42-44], while
most of it focuses on extracting task-specific features for improving a particular type of applications.
For example, in [45], the authors studied students’ learning activity patterns recorded in a Massive
Online Open Courses (MOOCs) platform and developed a badge-based incentive system to improve
student engagements in MOOCs. In [44], the authors proposed a probabilistic model to integrate
customer-level behavior features and product-level conversion patterns in e-commerce websites for
conversion prediction. Such feature engineering effort targets at specific end tasks, but it can
hardly unveil the underlying dynamics of the observed user behavior. Therefore, it is of limited

generality.

At a micro level, prior studies show that time intervals between users’ sequential actions carry a great
deal of information about their underlying intents [461/47]. At a macro level, it has been independently
observed in several different application scenarios that a series of user actions burst in a short period,
referred as sessions [48H50] or tasks [5152], and a sequence of a user’s interactive behavior is usually
carried out over several such periods. More importantly, quantitative analysis suggests correlation of
user behavior both within and across those short periods [53|, and such correlation enables prediction
of users’ future behavior [54]. This clearly suggests that a user’s sequential interactive behaviors are
not a set of independent actions, but there are internal dependency and structure that reflect and

characterize his/her underlying preference and intent.

2.2.2 Sequential Recommendation

Sequential recommendations which consider the sequential structure among actions for contextualized
recommendations have attracted a lot of attention recently [26]. For the problem of sequential
recommendation, statistical models based on Markov assumptions are the early attempts. Factorizing
Personalized Markov Chains [55] is a typical model of this kind, which combines factorization
machine [56] with a Markov model. Their solution assumes there are patterns in users transiting
from an action to another action. The Markov chains are used to model the transition patterns.
Because of considering the transition patterns, their solution can thus capture sequence effects in
time and predict the next items. But due to the exponential growth of Markov state space with

respect to the order of modeled dependence, these Markov models can hardly capture any long-term

dependence of actions in a sequence. Recurrent Neural Network (RNN) and its variants, including
Long Short-Term Memory (LSTM) [12] and Gated Recurrent Units (GRU) [13], have become a
common choice for sequential recommendations [10]. Other methods based on Convolutional Neural
Networks (CNN) [28], Memory Network [29] and Attention Models [57] have also been explored.
The hierarchical structure generalized from RNN, Attention or CNN based models [11,25,)26] is
used to model transitions inter- and intra-sessions. The recent work [25] by You et al. showed that
using Temporal Convolutional Network to encode and decode session-level information and GRU
for user-level transition is the most effective hierarchical structure. Nevertheless, as many studies
borrow sequence models from natural language modeling task directly, their model performance is
usually limited by the relatively small size and sparse pattern of user behaviors, compared to the

nature language datasets.

The attention mechanism was first coined in [58]. The original structure is constructed on the hidden
states generated from RNN in order to better capture the long-term dependence and align the output
for decoder in RNN. The Transformer model [14] and several follow-up work [24,/59,/60] showed
that for many NLP tasks, the sequence-to-sequence network structure based on attention alone,
a.k.a. self-attention mechanism, is able to outperform existing RNN structures in both accuracy and
computation complexity in long sequences. Motivated by this unique advantage of self-attention,
several studies introduced this mechanism to sequential recommendation. SASRec [27], based on
self-attention mechanism, demonstrated promising results in modeling longer user sequences without
the session assumption. Another work known as Multi-temporal range Mixture Model (M3) [31]
manages to hybrid the attention and RNN models to capture the long-range dependent user sequences.
The most recent work, BERT4Rec [33], adopts the bidirectional training objective via Cloze task

and further improves its performance over SASRec.

2.2.3 Temporal Recommendation

Temporal recommendation specifically studies the temporal evolution of user preferences and items;
and methods using matrix factorization have shown strong performance. TimeSVD++ [61] achieved
strong results by splitting time into several bins of segments and modeling users and items separately
in each. Bayesian Probabilistic Tensor Factorization (BPTF) [62] is proposed to include time as a
special constraint on the time dimension for the tensor factorization problem. And many of these

solutions [62-64] in temporal recommendation share the insight to model separately the long-term

static and short-term dynamic user preference. Nevertheless, none of the models are developed

specifically for sequential recommendation.

There have been various efforts to utilize temporal information in existing deep recommendation
models. In [65], the authors proposed methods to learn time-dependent representation as input to
RNN by contextualizing event embedding with time mask or event-time joint embeddings. In [15],
authors proposed several variants of time gate structure to model the variable time interval as part
of the recurrent state transition. But the empirical results of both model show limited improvement

compared to their LSTM baseline without using temporal information.

Meanwhile, the time series analysis is a well established research area with broad application in
real world problems [66,[67]. Hawkes process [37,/68] is one of the powerful tools for modeling and
predicting temporal events. In [69], authors combined Hawkes process with Dirichelt process to
cluster sequences of users’ online video watching records. In [38], a multi-task Hawkes process is
proposed to identify user clusters through learning cluster specific mutual-influence. It models the
intensity of events to occur at moment ¢ conditioned on the observation of historical events. In a
standard Hawkes process, temporal dependency between actions are generally modeled as additive
time decaying from previous actions to current ones. Some recent work [46,|70,/71] attempt to use
RNN to model the intensity function of point process model and predict the time of next action. As
a typical example, the Neural Hawkes Process [72] constructs a neurally self-modulating multivariate
point process in LSTM, such that the values of LSTM cells decay exponentially until being updated
when a new event occurs. Their model is designed to have better expressivity for complex temporal
patterns and achieves better performance compared to the vanilla Hawkes process. However, these
solutions cannot distinguish influence from previous actions happening together in a short period
of time versus those taking place in a long period of time. Motivated by the concepts of episodic
memory and semantic memory in cognitive psychology, we separate these two types of temporal
dependencies into two Hakwes processes: one focuses on mutual influence across different types of
actions in a close temporal proximity, and another focuses on self influence within the same type of
actions in a longer period of time. This provides the model with both flexibility and constraint in

modeling users’ sequential actions.

2.3 Notations and Problem Setup

In this section, we introduce the notations used in this chapter and the problem setup studied in this
chapter. We consider the sequential recommendation problem with temporal information. Denote
the item space as V of size |V, and the user space as U of size U. The model is given a set of user
behavior sequences C = {S!,82,...,8Y} as input. Each 8" = {(t¥,v¥), (t4,vY),...} is a sequence
of N actions. An action is a time-item tuple, where t7 is the timestamp when item v}" is accessed
by user u. The action sequence is chronologically ordered, i.e., t{* < t¥ ;. The interacted item is
represented as a one-hot vector v € R™IV| and the timestamp is a real valued scalar t € RT. The
notion of session is defined in regard to the time interval between two consecutive actions [73]. A
session ends if there is a period of inactivity since the last action, like 30 minutes. Until the next
action occurs, a new session starts. A sequence composed of K sessions can then be represented as
S* = {s{, ..., s%}, where the k-th session s} = {(t}4,v}4), (t¥5,v}5), ... }. The recommendation task
is to select a list of items V' C V for each user u at a given time ¢ with respect to S*, such that V'
best matches user u’s interest at the moment. When no ambiguity is incurred, we omit the subscript

u to simplify our subsequent discussions.

2.4 Method 1: Long- & Short-term Hawkes Process

In this section, we first discuss some basics of Hawkes process. Based on these, we provide detailed
description of our algorithm, Long- and Short-term Hawkes Process (LSHP), which differentiates
short-term and long-term influence among sequential actions by separating mutual-influence among
actions of different items in a close temporal proximity from self-influence among actions of the same
item in a longer temporal distance. We estimate the model parameters of LSHP via alternating

direction method of multipliers (ADMM).

2.4.1 Hawkes Process

Before discussing the details of our proposed model, we briefly introduce Hawkes process [37]. Hawkes
Process is a type of temporal point process, which models sequences of timestamped actions. It
assumes historical actions would influence the intensity of future actions over a certain period of
time [68]. And it has been widely applied to modeling sequences of events over time, such as
earthquake aftershocks [74]. In Hawkes process, the conditional intensity function is used to depict

the generating rate of current action given historical actions and to capture the influence of historical

actions on current one. For example, in one dimensional Hawkes process that models the generation
of sequences with actions of a single item (e.g., the item v), the conditional intensity function at time

t is defined as

t
Ao(t) = i +/ ayk(t —t)dN,(t),
0

where u, is the base intensity, representing the instantaneous generation rate of the action with the
item v. The kernel function a,k(t —t') describes the influence of past actions N, (¢') with the item v
on the current action at time ¢ in this sequence. This reflects the “self-exciting” property of Hawkes
process. The parameter « represents the strength of self-excitement, and x(t — s) characterizes the
time decaying effect. Exponential kernel or power-law kernel is typically chosen to describe this
time decaying effect. And because of time decay, actions occurring temporally closer have stronger

influence than those temporally further away.

A one dimensional Hawkes process only considers the influence from previous actions of the same
item. Efforts have been made to extend it to multi-dimensional Hawkes process capturing dependence
among actions of different items, where the conditional intensity function of an action with the item

v at time t is defined as,

\4 t
Nt = o+ S / Ayt — ANy (1),
0

v'=1

where the parameter A,/, represents the influence of type v’ on type v, and v’ denotes the type

associating with previous actions occurring at time #'.

2.4.2 Long- and Short-Term Hawkes Process

Motivated by the cognitive psychology concepts of semantic memory and episodic memory, which
describe how the past experience or knowledge influences people’s present or future behaviors, we
model users’ sequential interactive behaviors as a mixture of two different stochastic processes.
Specifically, we consider the actions happening in the same session of the current action as its context.
As studies in cognitive psychology suggest that episodic memory would gradually lose its sensitivity
in context over time, we assume the context actions only generate their influence within a session.
Hence, we adopt a multi-dimension Hawkes process to realize the concept of episodic memory as the

mutual influence of past actions to this current action in this session. This forms the first stochastic

process in LSHP. On the other hand, it is suggested that the semantic memory is memory recall [40],
independent of context. We regard the repetition of actions of the same type in a sequence as a result
of semantic memory. We employ a one dimensional Hawkes process to realize the semantic memory
as a self-influence driven action generation. Because semantic memory is derived from accumulated
episodic memory, we assume this one dimensional Hawkes process is only influenced by actions of the
same type from preceding sessions of the current action. This forms the second stochastic process in

LSHP.

Using the language of Hawkes process, we incorporate these two stochastic processes into one process:
for the i-th action of the item wv; appearing at time ¢; in an action sequence S, the conditional

intensity specified by LSHP is:

Xo () = poy + D A (i = 0)8(s1 =) + Y Buis(ts = 15)8(s; # s:)0(v; = vi) (2.1)

1 <t; t;<t;
where sj represents the session index of the action (¢, vg) and 6(+) is an indicator function.

There are three key components in LSHP. First, the base intensity u,, describes the spontaneous
occurring rate of an action with the item v;, and u,, > 0. For example, if an action with a particular
item occurs at the beginning of a new session and this is its first appearance in the sequence, we will
accredit this occurrence to its base intensity, since the user’s episodic memory has not formed (as it
is the first action in this session) and his/her semantic memory does not include this item (as it is
the first time this item appears in the sequence). In this work, we assume the base intensity is static

over time, and leave the dynamic base intensity for future work.

Second, to capture the dependence of the next action on its preceding actions within the same session,
a mutual influence matrix A € RXXV over different items is introduced in LSHP. Each element A,,,,
specifies the influence from the item v; to another item v;. We do not assume the mutual influence is
symmetric and leave it for the model to decide from data, as it is possible in some applications, an
action of a certain item is more likely to lead to an action of another item, rather than the other
way around. To realize the assumption that actions with closer temporal proximity have larger
influence on each other, we use an exponential kernel k., (t; — t;) = exp (— B (t; — tl)) to scale the
mutual-influence, i.e., accounting for the time decaying effect. We should notice this mutual influence

is limited to actions within the same session, to realize the short-term temporal influence.

Third, LSHP models the repetitive interactions of the same item across sessions with a one dimensional

Hawkes process, in which B,, represents the item v;’s self-influence strength. Another exponential
kernel function r,(t; —t;) = exp (— Bs(t; — t;)) is used to account for time decaying in self-influence.
As mutual influence is used to characterize actions’ in-session dependence and self influence is for
across session dependence, the distribution of time intervals for these two types of dependence are
intrinsically different. To account for the difference, we use different decaying coefficient, 85 and 5,,,

in the corresponding kernel functions.

Comparing with standard Hawkes process which has been used for user behavior modeling [38,/69],
our LSHP model defined in Eq differentiates the long-term and short-term temporal dependency
among actions. Instead of using a universal time decaying function over all historical actions,
LSHP captures short-term mutual influence among actions of different types in the same session
and long-term self influence between actions of the same type across sessions. These two types
of dependency are integrated into one stochastic process to account for the heterogeneity of users’

sequential interactive behaviors. And this design does not increase the model complexity.

2.4.3 Parameter Estimation

To apply LSHP, we need to estimate its model parameters, i.e., the base intensity vector u € R‘Jyl,

RLVIXM, and the strength vector of self-excitement B € RLV‘. We

the mutual influence matrix A €
treat the time decaying coefficients (5, and (s as hyper-parameters, and appeal to the maximum

likelihood estimator for parameter estimation in LSHP.

Given a corpus of sequences C = {S',8?%,...,8Y}, assuming the time span in a sequence S* is T,

the log likelihood of LSHP on this corpus is computed as,

Ul N Ul Vi

.
LA B) = Y0 Y loe s () =203 [N (2:2)

u=11i=1 u=1v=1

Because the size of the mutual influence matrix A increases quadratically with respect to the number
of unique items in the corpus, we need to control the model complexity to avoid overfitting. We
assume the mutual-influence between items is sparse in nature, and impose a L1 regularization on it.
Consequently the optimization objective function is,

i —L(p, A, B A
u>0,zr4nzuol,Bgo (1, A, B) + nallAllx

where 14 is a trade-off coefficient. Because of the introduction of L1 regularizer, the objective function
is not differentiable, we appeal to the alternating direction method of multipliers (ADMM) [75/76] to

solve the optimization problem.

To apply ADMM, we rewrite the objective function by introducing auxiliary variable Z and dual
variable @) into the following format,

F(u,A,B,Z,Q) = —L(p, A, B) + nal|Z||1 + pTr(Q" (A - 2)) + gllA —Z||* (2:3)

min
p>0,A>0,B>0,Z
where p > 0 is a hyper-parameter. We solve the problem by iteratively updating p, A, B, Z, Q with

respect to the following steps.

Step 1: Update p, A, B. The terms in Eq. (2.3) that are relevant to the update of u, A, B

include,

F(u, A, B) = ~L(u, A, B) + pTr(QT (A= 2)) + £||A— 2| (2.4)

min
pu>0,A>0,B>0

To solve the optimization problem defined in F'(u, A, B), we adopt the majorization-minimization
algorithm, which optimizes the upper bound of F(u, A, B) by introducing a set of branching parame-
ters pi;, pji and py;. One advantage of using majorization-minimization to minimize the upper bound
of this objective function is that we can obtain closed form solutions for u, A, B independently; and
in the meanwhile, the non-negativity constraints are satisfied automatically. Replacing Eq. and
Eq. into F'(u, A, B), we obtain,

F(/JHAaB) =
Ul N

50,40, 550 ; ;log (““i + tl;_ Avpo B (i — t)6(s1 = si)
+) Buks(ti —1;)8(s; # 5:)8(v; = 'Ui))

tj<t;

Ul VI apu p

* T

+zz/ Xo(0)dt + pTr(QT (A= 2)) + B (1A - 21

u=1v=1"0

Ul N

v, Ao m (ts — t
<- Z Z (pii log] + Z pid(s; = s;) log M
u=1i=1 pii 3, Pii

+ Z Djid(s; # s:)0(v; = v;) log BWHS(?‘ -~ tj))

Pji
tj<t; J

Ul Vi

£ [N L(ia- 2+ al)

u=1v=1

The branching parameters are defined as

M
Dii X (6)

Ay Em(ti — 1)0(s1 = 54)
Pii =)‘:ji (tz)

By ks(ti —t5)0(s; # 8:)6(v; = v;)
e X ()

The branching parameter p;; could be considered as the probability that the i-th action is generated
from the base intensity. And the branching parameter p;; indicates the probability that the I-th
action within this session leads to the i-th action. Likewise, the branching parameter p;; can be
regarded as the probability that the j-th action occurring in previous sessions leads to the i-th action
in this session. Setting the gradients of these parameters to zero, we obtain the updating rule of

u, A, B as follows:

Ul N

> 2 piid(vi = v)

u=1 1
S, Te
Ay = %(- X+ VX 4pY) (2.6)

Ul K M, tm

X = p(Uyy — Zyoy +ZZZ§W—U/ kﬁm(t—tl)dt

u=1k=11[=1

My = (25)

Ul N

ZZZMZ (S, =8:)6(v; = v,v; =)

u=11i=1t;<t;

U]
> tZt pjid(vi = v = v)4(S; # Si)

u=

U

i ;

7

B, = (2.7)

§A

M=

> 8oy =) [ot~ 1)t

t

Eo

u=1 1

<.
[
—

The updating rules of A suggest that the value A,,, corresponding to the mutual-influence between
the item v and the item v’, correlates with both frequency of the item v and the item v’ co-occurring
in the same session, and the time interval between actions with these two items. The shorter time
the actions are to each other, the stronger mutual influence they would have on each other. Besides,
the updating rules for p and B suggests that not only the frequency of items in sequences but also

the relative temporal duration of actions of these items affect their estimates.

Step 2: Update Z. With the updated parameters u, A, B, we update Z through solving the

following optimization problem.
p
Z =z nallZ|l + pTr(QT(A = 2)) + 5 (I[A = Z|1*)

The updating rule depending on the magnitude of A + U is

IV
S
N

(Avv’ + vi’) - WTA’ Av'u’ + vi’
ZU'U/ = (Avv’ + vi’) + 777!1’ Avv’ + vi’ § =la
Ou |Avv’ + Qv'u" < UTA

As the equation suggests, the auxiliary variable Z is introduced to handle the L1 regularizer on the

mutual influence matrix A.

Step 3: Update Q. Given the updated parameters u, A, B and auxiliary variable Z, we update

the dual variable

Qnew = Qold + (Anew - Zneu))

where Apew, Znew represent updated mutual-influence matrix and auxiliary variable respectively.

2.5 Method 2: Contextualized Temporal Attention

In this section, we discuss the details of our proposed Contextualized Temporal Attention Mechanism
(CTA) for sequential recommendation. We will first provide a high-level overview of the proposed

model, and then zoom into each of its components for temporal and local information modeling.

2.5.1 Model Overview

In this section, we will introduce from a high level about each part of our CTA model in a bottom-up
manner, from the inputs, through the three stage pipeline: content-based attention, temporal kernels
and local mixture, denoted as a — 3 — = stages as illustrated in Figure and finally into the

output.

Attention Output

y stage :

Local Features ‘

[

OOO\M@ol !

f stage IO O .l

Terhporal Kernels ‘ ’ ’ oi . . <>

\

'

-3
it ot LT

X2

a stage

Scaled Dot Product

Last Input
Embedding

Self Attention Blocks
josi S |

|
Action Sequence |:| ‘ _ D ‘ —_ l:’ <>
Action: l:' ‘ Iltem Embedding: I:‘ Time Interval: ’

Figure 2.2: The architecture of our proposed Contextualized Temporal Attention Mechanism. Three stages are
proposed to capture the content information at a stage with self-attention, temporal information at 3 stage with
multiple kernels, and local information at « stage with recurrent states, for sequential recommendation.

The raw input consists of the user’s historical events of a window size L in item and time pairs
{(ti,s:)}E,, as well as the timestamp at the moment of recommendation t7,1. The sequence of
input items is mapped into embedding space with the input item embeddings Ei,pue € RN xdin
X =[s1,...,50] - Einput € RELxdin - We also transform the sequence of timestamps into the intervals

between each action to current prediction time: T' = [ty 41 — t1,...,t41 — L] € RExT,

Motivated by our earlier analysis, we design the three stage mechanism, namely M, M#? and M7,
on top of the processed input X and T', to model dependencies among the historical interactions

respectively on their content, temporal, and local information:
a=M"(X) = B=M(T)—»~y=M(X,Ba)

In essence, M“ weighs the influence of each input purely on content X and outputs a scalar
score as importance of each events in sequence a € RE*1; MP transforms the temporal data T

through K temporal kernels for the temporal weighing of each input 8 € RE*K: MY extracts

the local information from X, with which it mixes the factors a and 3 from previous stages into
the contextualized temporal importance score v € RE*!1. We will later explain their individual

architectures in details.

In the end, our model computes the row sum of the input item sequence embedding X weighted
by ~ (through the softmax layer, the weight 4 sums up to 1). This weighted sum design is
borrowed from the attention mechanism in a sense of taking expectation on a probability distribution,
v =[P(Zr41 = 2] X, T)]iL:O' The representation is then projected to the output embedding space

Réut with a feed-forward layer FOUt :

i'L+1 — Fout(,YT . X) c Rdoutxl

We consider 2741 as the predicted representation of recommended item. We define matrix Eqoutput €
RN*dout wwhere its ith row vector is the item i’s representation in the output embedding space. Then
Vi € Z, the model can compute the similarity r; between item ¢ and the predicted representation

Z1,+1 through inner-product (or any other similarity scoring function):

a I Nx1
SL+1 = (rla e 77nN) - Eoutput *TL41 eR

For a given user, item similarity scores are then normalized by a softmax layer which yields a
probability distribution over the item vocabulary. After training the model, the recommendation
for a user at step L + 1 is served by retrieving a list of items with the highest scores r, among all

v E V.

2.5.2 Three Stage Weighing Pipeline

a stage, what is the action: The goal of a stage is to obtain the content-based importance
score « for the input sequence X . Following the promising results of prior self-attentive models, we
adopt the self-attention mechanism to efficiently and effectively capture the content correlation with
long-term dependence. In addition, the self-attention mechanism allows us to directly define the

importance score over each input, in contrast to the recurrent network structure.

We use the encoder mode of self-attention mechanism to transform the input sequence embedding

X, through a stack of d; self-attentive encoder blocks with d; heads and d, hidden units, into

representation H 4 which is the hidden state of the sequence at the last layer. Due to the recursive
nature of self-attention, we use the following example to explain the multi-head attention component
in our solution. For example, in the ith attention head of the jth self attention block, from the input

state H?, we compute one single head of the self-attended sequence representation as,
2] = Attention(HjWiQ, H'WE HWY)

where WS, WX WY € Riaxda/dn are the learnable parameters specific to ith head of jth attention
block, used to project the same matrix H’ into the query @, key K, and value V representation as

the input to the Scaled Dot-Product [14]:

KT
Attention(Q, K, V) = softmax (Q) 1%

Vda/dp

Here the scaling factor y/d,/dp, is introduced to produce a softer attention distribution for avoiding

extremely small gradients.

All the computed heads z¢ in the jth attention block is stacked and projected as Z7 = [2¢,...,24 |-
WO, where WO € Rda*da. We can then employ the residue connection |77| to compute the output

of this attention block as:

H'™' = LN (H + F/(Z7))

where FV is a feed-forward layer specific to the jth attention block mapping from R% to R%» and

LN is the Layer Normalization function [78|.

Note that for the initial attention block, we use X to serve as the input H’; and in the end, we
obtain H% as the final output from self-attention blocks. In prior work [27,133], this H 4 is directly
used for prediction. Our usage of self-attention structure is to determine a reliable content-based
importance estimate of each input, hence we compute once again the Scale Dot-Product using the
last layer hidden states H*! to project as the query and the last item input embedding zT to

project as the key via WOQ, WE € Rnxdin;

o = softmax <(Hj+1WOQ) . (xLWOK)T>

din

Note that we can also view this operation as the general attention [79], i.e., the bi-linear product of

the last layer hidden states and the last input item embedding, where WOQ (WEHT is the learnable

attention weight and /d;, serves as the softmax temperature [30].

3 stage, when did it happen: The goal of 3 stage is to determine the past events’ influence
based on their temporal gaps from the current moment of recommendation. The raw information
of time intervals might not be as useful to indicate the actual temporal distance of a historical
event’s influence (e.g., perceived by the user), unless we transform them with some appropriate kernel

functions.

Meanwhile, we incorporate the observation that each event can follow different dynamics in the
variation of its temporal distance, given different local conditions. The item browsed casually should
have its influence to user preference drop sharply for a near term, but it might still be an important
indicator of user’s general interest in the long term. In contrast, if the user is seriously examining the
item, it is very likely the user would be interested to visit the same or similar ones in a short period
of time. Therefore, we create multiple temporal kernels to model the various temporal dynamics
and leave it for the local surrounding environment to later decide contextualized temporal influence.
This design allows more flexibility in weighting the influence of each event with different temporal

distances.

In this thesis, we handpicked a collection of K kernel functions ¢(-) : RY — R with different shapes

including:

1. exponential decay kernel, ¢ (T) = ae~T + b, assumes that the user’s impression of an event

fades exponentially but will never fade out.

2. logarithmic decay kernel, ¢ (T') = —alog(1 + T') + b, assumes that the user’s impression of an
event fades slower as time goes and becomes infinitesimal eventually. Later we will introduce a

softmax function that will transform negative infinity to 0.

3. linear decay kernel, ¢ (T') = —aT + b, assumes that the influence drops linearly and the later

softmax operation will map the influence over some time limit to 0.
4. constant kernel, ¢ (T') = 1, assumes that the influence stays static.

where a,b € R are the corresponding kernel parameters. Note that the above kernels are chosen
only for their stability in gradient descent and well understood property in analysis. We have no
assumption of which kernel is more suitable to reflect the actual temporal dynamics, and an ablation

study of different combinations is presented in the following Section [2.6.3. This mechanism should be

compatible with other types of kernel function ¢(-) by design, and it is also possible to inject prior

knowledge of the problem to set fixed parameter kernels.

Hence, given a collection of K kernel functions, {¢(-)*,...,#(-)* }, we transform T into K sets of

temporal importance scores: 3 = [(él(T), . ¢K(T)], for next stage’s use.

~ stage, how did it happen: The goal of « stage is to fuse the content and temporal influence
based on the extracted local surrounding information. The core design follows the multiple sets of
proposed temporal dynamics in the 3 stage, in which it learns the probability distribution over each

temporal dynamics given the local conditions.

First, we explain our design to capture local information. In our setting, we consider the local
information as two parts: sensitivity and seriousness. Specifically, if one event seems to be closely
related to its future actions, it means the user is likely impressed by this event and his or her ongoing
preference should be sensitive to the influence of this action. In contrast, if the event appears to
be different from its past actions, the user is possibly not serious about this action, since his or her
preference does not support it. Such factors of sensitivity and seriousness can be valuable for the
model to determine the temporal dynamics that each particular event should follow. Review the
example in Figure [2.1] again, the repetitive interactions with smartphones reflect high seriousness,
while the sparse and possibly a noisy click on shoes suggests low sensitivity to its related products.
This observation also motivates our design to model local information as its relation from past and
to future events: we choose the Bidirectional RNN structure [81] to capture the surrounding events
from both directions. From the input sequence embedding X, we can compute the recurrent hidden

state of every action as their local feature vector:

C = Bi-RNN(X) @ Cyyr € REX4r

where @ is the concatenation operation. Here, we also introduce some optional local features Clpgyr
that can be the attributes of each event in the specific recommendation applications, representing the
scenario when the event happened. For instance, we can infer the user’s seriousness or sensitivity from
the interaction types (e.g., purchase or view) or the media (e.g., mobile or desktop) associated with
the action. In our experiments, we only use the hidden states of bidirectional RNN’s output as the

local features, and we leave the exploration of task specific local features as our future work.

Second, the model needs to learn the mapping from the local features of event i to a weight vector

of length K, where each entry p;(k|c;) is the probability of this event follows ¢*(-) as the temporal
dynamics. We apply the feed-forward layer F'¥ to map them into the probability space R¥ and then

normalize them into probabilities that sum up to one for each action with a softmax layer:

P(-|C) = softmax (F7(C))

Finally, we use the probability distribution to mix the temporal influence scores from the K different
kernels for the contextualized temporal influence 3° = 3 - P(-|C), with which we use element-wise
product to reweight the content-based importance score for the contextualized temporal attention
score:

~ = softmax (a3°)

This design choice that uses product instead of addition to fuse the content and contextualized
temporal influence score a and 3 is based on the consideration of their influence on the gradients of
0. For example, the gradient on parameters in « stage is,

daB) _ da .. da+f) _ da
80 9pa" 00« T 90

The error gradient in the addition form is independent of the function evaluation of 3¢, while the
product form has the gradients of a and 3¢ depend on each other. Therefore, we choose the product

form as a better fusion of the two scores.

2.5.3 Parameter Learning

Loss Functions In the previous section, we showed how the model makes recommendations by the
highest similarity scores {r,} for all v € V. When training the model, we only use a subset of {r,}.
That is, since the size of the item space can be very large, we apply negative sampling [82], i.e.,
proportional to their popularity in the item corpus, sample a subset of items Ng C V, that excludes

the target item 1, i.e., i &€ Ng.
We adopt negative log-likelihood (NLL) as the loss function for model estimation:

e’
L1 = —log S

r;’?
jeNg €7

which maximizes the likelihood of target item.

We also consider two ranking-based metrics to directly optimize the quality of recommendation list.

The first metric is the Bayesian Personalized Ranking (BPR) loss [83]

1
Lepr = — 5~ Z logo (ri —15),
JENs
which is designed to maximize the log likelihood of the target similarity score r; exceeding the other

negative samples’ score r;.
The second is the TOP1 Loss [84]:

1
Lrop1 = Na Z o(rj—ri)+o(ry),
JjENs
which heuristically puts together one part that aims to push the target similarity score r; above the

score r; of the negative samples, and the other part that lowers the score of negative samples towards

zero, acting as a regularizer that additionally penalizes high scores on the negative examples.

Regularization We introduce regularization through the dropout mechanism [85] in the neural
network. In our implementation, we have dropout layer after each feed-forward layer and the output
layer of the bidirection RNN with a dropout rate of 0.2. We leave as out future work to explore
the effect of batch normalization as well as regularization techniques of the parameters in temporal

kernels.

Hyperparameter Tuning We initialize the model parameters through the Kaiming initialization
proposed by he2015delving. The temporal kernel parameters are initialized in proper range (e.g.
uniform random in [0,1]) in order to prevent numerical instability during training. We use the Relu

function [86] by default as the activation function in the feed-forward layer.

2.6 Experiments

In this section, we perform extensive experiment evaluations of our proposed sequential recommenda-
tion solutions. We compared them with an extensive set of baselines, ranging from session-based
models to temporal and sequential models, on two very large collections of online user behavior log
data. We will start from the description of experiment setup and baselines, and then move onto the

detailed experiment results and analysis.

1

3We use the sigmoid function o(x) = e

Table 2.1: Statistics of two evaluation datasets.

Dataset XING Taobao
Users 64,890 68,216
Items 20,662 96,438

Actions 1,438,096 4,769,051

Actions per user | 22.16+21.25 | 69.91+48.98
Actions per item | 69.60+£112.63 | 49.454+65.31
Time span 80 days 9 days

2.6.1 Dataset

We use two public datasets known as XING and Taobao. The statistics of the datasets are summarized

in Table [3.1] The two datasets include user behaviors from two different application scenarios.

The XING dataset is extracted from the Recsys Challenge 2016 dataset [87], which contains a set
of user actions on job postings from a professional social network site [*| Each action is associated
with the user ID, item ID, action timestamp and interaction type (click, bookmark, delete, etc.).
Following the prior work [11,/25], we removed interactions with type “delete” and did not consider the
interaction types in the data. We removed items associated with less than 50 actions, and removed
users with less than 10 or more than 1000 actions. We also removed the interactions of the same

item and action type with less than 10 seconds dwell time.

The Taobao dataset [88] is provided by Alibaba and contains user interactions on commercial products
from an e-commerce websit Each action is associated with the user ID, item ID, action timestamp
and interaction type (click, favor, purchase, etc.). In order to have a computationally tractable
deep learning model, we randomly sub-sampled 100,000 users’ sequences from each dataset for our
experiment. We removed items associated with less than 20 actions, and then removed users with
less than 20 or more than 300 actions. We also removed the interactions with timestamp that is

outside the 9 day range that dataset specifies.

2.6.2 Experiments on LSHP

Baselines for comparison with LSHP. We compare LSHP with the following baselines on
predicting the next item.

¢ Global Popularity (Pop). Rank items according to their frequency in the training dataset in a
descending order.

e Sequence Popularity (S-Pop). Rank items according to their frequency in the target sequence.

4https://www.xing.com/
Shttps://www.taobao.com/

Table 2.2: Performance comparison of LSHP against baselines on sequential recommendation.

Dataset Metric LSHP Pop S-Pop | standardHP | sparseHP | sessionHP | RTPP
XING | Recall@5 | 0.2173 | 0.0118 | 0.2059 0.1201 0.1417 0.1338 0.1873
MRR@5 | 0.1454 | 0.0062 | 0.1202 0.2008 0.2392 0.1454 0.2254

Taobao | Recall@5 | 0.1201 | 0.0026 | 0.1093 0.0762 0.0778 0.0769 0.1021
MRR@5 | 0.0792 | 0.0013 | 0.0639 0.0431 0.0492 0.0489 0.0668

The frequency of items is updated as more observations in the sequence become available. We use
global popularity to break the tie.

¢ Standard Multi-dimension Hawkes Process (standardHP). Following [38}/69], the intensity
function is defined as \j (t;) = o, + Zthi Ay, v, 6(t; — t1), where p,, is the base intensity of the
item v;. This model assumes the next action depends on every historical action including actions
within the same session and actions across sessions.

e Sparse Hawkes Process (sparseHP). This is an extension of standard Multi-dimension Hawkes
Process. The matrix A capturing mutual influence is constrained to be sparse through adding a L1
regularization of A to the objective function.

e Session-based Hawkes Process (sessionHP). To verify whether considering actions across
session is beneficial to predict the next item, we developed this variant of LSHP as a baseline. The
intensity function is defined as A}, (ti) = po, + D2, o4, Avws(ti —11)0(S; = S;), where the indicator
function 0(S; = S;) excludes influence of actions which do not belong to the same session. The matrix
A is to capture the mutual influence within a session as that in LSHP. As LSHP imposes sparsity
structure to matrix A, we keep the same constraint in this model.

e Recurrent Temporal Point Process (RTPP). In [46], the authors proposed a recurrent marked
temporal point process which utilized RNN to predict the item and Hawkes process to predict the

occurring time. Details can be found in [46].

Experiment settings. We split all the data by user, and select 80% of the users to train the model,
10% as the validation set and the remaining 10% users to test the model. We also adopt the warm
start recommendation setting, where the model is evaluated after observing at least 5 historical

actions in each testing user.

Evaluation metrics. The model predicts the user action at the time of the next observed action.
The result is evaluated by ranking the ground-truth action against a pool of candidate actions. For
both datasets, the candidate pool is the set of all items in the dataset, though only a subset of

negative items is sampled for model optimization.

Table 2.3: Performance comparison of CTA against different baselines on sequential recommendation.

Dataset Metric CTA | GRU4Rec | HRNN | LSHP | SASRec M3R

XING | Recall@5 | 0.3217 0.2690 0.2892 | 0.2173 | 0.2530 0.2781
MRR@5 | 0.1849 0.2008 0.2392 | 0.1454 | 0.2254 | 0.2469
Taobao | Recall@5 | 0.1611 0.0936 0.0940 | 0.1201 | 0.1418 0.1077
MRR@5 | 0.0925 0.0619 0.0610 | 0.0792 | 0.0863 0.0689

We rank the candidates by their predicted probabilities and compute the following evaluation

metrics:

e Recall@K. It reports the percentage of times that the ground-truth relevant item and ranked

within the top K list of retrieved items.

¢ MRR@K. The mean reciprocal rank is used to evaluate the prediction quality from the
predicted ranking of relevant items. It is defined as the average reciprocal rank for ground-truth
relevant items among the top K list of retrieved items. If the rank is larger than K, the

reciprocal rank is 0.

Experimental results. We report the results in Table From the results, we can observe that
LSHP outperforms all other Hawkes Process based models. Without modeling the self-influence
across sessions, sessionHP could not capture the influence from past repetitive actions to the next
action outside its current session. Lack of the Long-term dependence, sessionHP performs worse than
LSHP. Although S-Pop considers dependence between the next action and past repetitive actions
cross sessions, ignoring the dependence among actions of different items within a session leads to
its worse performance. StandardHP and sparseHP do not differentiate temporal dependence within
nor across sessions, and use a universal time decaying function to model the temporal influence,
which leads to their less accurate modeling of dependency. Consequently, they performs worse in
predicting the next item. As Pop does not consider the dependence of the next action on previous
actions, its performance are much worse than all other algorithms. RTPP does not differentiate the
dependence between actions of the same item and those of different items. So it does not perform as
well as LSHP. In conclusion, LSHP benefits from both long-term mutual influence and short-term

self-influence among actions and thus predicts the next item more accurately.

2.6.3 Experiments on CTA

Baseline methods We compare Contextualized Temporal Attention Mechanism with a variety of

neural network based methods and LSHP H To ensure a fair comparison of deep learning model,

6 All implementations are open sourced at https://github.com/Charleo85/seqrec

https://github.com/Charleo85/seqrec

we adjust the number of layers and hidden units such that all the models have similar number of
trainable parameters. Session-based Models. We include several deep learning based models with

session assumptions. We set the session cut-off threshold as 30 minutes by convention.

|Session based Recurrent Neural network (GRU4Rec). In [10], authors used the GRU, a
variant of Recurrent Neural network, to model the user preference transition in each session. The
session assumption is shown to be beneficial for a consistent transition pattern. Hierarchical
Recurrent Neural network (HRNN). In [11], authors proposed a hierarchical structure
that use one GRU to model the user preference transition in each session and another to model

the transition across the sessions.

Temporal Models. Since our model additionally uses the temporal information to make the
sequential recommendation, we include the following baselines that explicitly consider temporal

factors and have been applied in sequential recommendation tasks.

e Long- and Short-term Hawkes Process (LSHP). In [30], authors proposed a Long- and
Short-term Hawkes Process that uses a uni-dimension Hawkes process to model transition
patterns across sessions and a multi-dimension Hawkes process to model transition patterns

within a session.

Sequential Models. Similar to our proposed CTA model, we also include several deep learning
based models that directly learn the transition pattern in the entire user sequence. A fixed size

window is selected for better performance and more memory-efficient implementation.

o Self-attentive Sequential Recommendation (SASRec). In [27], the authors applied the
self-attention based model on sequential recommendation. It uses the last encoder’s layer
hidden state for the last input to predict the next item for user. We use 4 self-attention blocks
and 2 attention heads with hidden size 500 and position embedding. We set the input window

size to 8.

e Multi-temporal-range Mixture Model (M3R). In [31], a mixture neural model is used
to encode the users’ actions from different temporal ranges. It uses the item co-occurrence
as tiny-range encoder, RNN/CNN as short-range encoder and attention model as long-range
encoder. Following the choice in its original paper, we use GRU with hidden size 500 as the

short-range encoder.

Implementation Details For CTA, we use self-attention blocks d; = 2 and attention heads dj = 2
with hidden size d, = 500. We use the same representation for input and output item embeddings
Ein = Eoutput, and a combination of 5 exponential decay kernels (w5). We use a bidirection RNN
with hidden size d,. = 20 in total of both directions to extract context features. We set the learning
rate as 0.001. We will present the experiments on different settings of our model in the following

section.

Experiment settings. We split all the data by user, and select 80% of the users to train the model,
10% as the validation set and the remaining 10% users to test the model. We also adopt the warm
start recommendation setting, where the model is evaluated after observing at least 5 historical

actions in each testing user.

All the deep learning based models are trained with Adam optimizer with momentum 0.1. We also
search for a reasonablely good learning rate in the set {0.01,0.001,0.0001,0.00001} and report the
one that yields the best results. We set batch size to 100, and set the size of negative samples to 100.
The model uses the TOP1 loss by default. The item embedding is trained along with the model,
and we use the embedding size 500 for all deep learning models. The training is stopped when the
validation error plateaus. For the self-attention based model, we follow the training convention [8§]

by warming up the model in the first few epoches with small a learning rate.

Evaluation metrics. We adopted the same metrics as those evaluating LSHP, i.e., Recall@K and

MRR@K.

Overall Performance. We summarize the performance of the proposed model against all baseline

models on both dataset in Table The best solution is highlighted in bold face.

Notably, on both datasets, our proposed model CTA outperforms all baselines in Recall@5 by a large
margin (11.24% on XING dataset, 14.18% on Taobao dataset). The model’s MRR@5 performance
is strong on Taobao dataset, but weak on XING dataset. This suggests that our model fails to
learn a good ranking for the first order transition pattern, since it uses a weighted sum of input
sequence for prediction. Nevertheless, such weighted sum design is powerful to capture the sequential
popularity pattern. It also shows that our model outperforms the self-attentive baselines, which
suggests our design of the contextual temporal influence reweighing, i.e., 3¢, improves sequential
order modeling in recommendation applications, compared to the positional embedding borrowed

from natural language modeling.

Results on XING dataset. The RNN-based methods outperformed both temporal models and
attention-based models. This again confirms that the recurrent model is good at capturing the first
order transition pattern or the near term information. We also observe that the hierarchical RNN
structure outperforms the first order baseline, while the session-based RNN performs not as well
as this strong heuristic baseline. This demonstrates the advantage of hierarchical structure and

reinforces our motivation to segment user history for modeling users’ sequential behaviors.

Results on Taobao dataset. On the contrary to the observations on XING dataset, the temporal
models and attention-based models outperformed RNN-based methods. This means the recurrent
structure is weak at learning the sequential popularity pattern, while the attention-based approach is
able to effectively capture such long-term dependence. Such conflicting nature of existing baselines
is exactly one of the concerns this work attempts to address. This again validates our design to
evaluate and capture the long- and short-term dependence through the proposed three stage weighing

pipeline.

Ablation Study. We perform ablation experiments over a number of key components of our model
in order to better understand their impacts. Table[2.4]shows the results of our model’s default setting

and its variants on both datasets, and we analyze their effect respectively:

e Window size. We found that the window size of 8 appears to be the best setting among other
choices of input window size among {4, 16,32} on both datasets. The exceptions are a smaller
window size on XING and a larger window size on Taobao can slightly improve MRR@5, even
though Recall@5 still drops. The reason might be suggested by the previous observation that
the first order transition pattern dominates XING dataset so that it favors a smaller input
window, while the sequence popularity pattern is strong in Taobao dataset such that it favors a

larger input window size.

e Loss functions. The choice of loss function also affects our model’s performance. The ranking
based loss function, BPR and TOP1I, is consistently better than the NLL loss, which only
maximizes the likelihood of target items. The TOP1 loss function with an extra regularizer
on the absolute score of negative samples can effectively improve the model performance and

reduce the over-fitting observed in the other two loss functions.

e Self-Attention settings. We compare the model performance on different d; and dj, settings.

The performance difference is minimal on XING, but relatively obvious on Taobao. This

Table 2.4: Ablation analysis on two datasets under metrics of Recall@5 (left) and MRR@5 (right). The best performance
is highlighted in bold face. | and 1 denote a drop/increase of performance for more than 5%. v, p, m, w respectively
denote the exponential, logarithmic, linear and constant temporal kernels. The superscript on the kernel function
denotes the number of such kernel used in the model.

. Dataset
Architecture XING Taohao

Base 0.3216 | 0.1847 0.1611 | 0.0925
Window 4 0.3115] | 0.21671 0.1488] | 0.0899
size (L) 16 0.3049] | 0.1733)] 0.1433] | 0.0914
32 0.3052] | 0.1735)/ 0.1401} | 0.0950
Attention 1 0.3220 | 0.1851 0.1631 | 0.0926
blocks (d;) | 4 0.3217 | 0.1849 0.1631 | 0.0924
Attention 1 0.3225 | 0.1860 0.1622 | 0.0919
heads (dp,) | 4 0.3225 | 0.1860 0.1646 | 0.0940

= Sharing embedding 0.1263] | 0.0791] 0.1042] | 0.0192]
Embedding | 300 0.3147 | 0.1831 0.1622 | 0.0920
size (din) | 1000 0.3207 | 0.1857 0.1628 | 0.0921
Loss NNL 0.3130 | 0.1806 0.1571 | 0.0895
function BPR 0.3163 | 0.1804 0.1598 | 0.0913
Flat attention 0.3215 | 0.1869 0.1588 | 0.0907
Global context P(-) 0.3207 | 0.1839 0.1603 | 0.0912
Local context P(-|x) 0.3210 | 0.1841 0.1591 | 0.0912
Kernel wt 0.3191 | 0.1827 0.1604 | 0.0910
types 1 0.3122 | 0.21411 0.1591 | 0.0907
P10 0.3207 | 0.1844 0.1627 | 0.0925
ml 0.2917{ | 0.232371 0.1562 | 0.0976

o 0.3025] | 0.220971 0.1670 | 0.10107

w0 0.3214 | 0.21831 0.1673 | 0.09971
p° 0.3111 | 0.21961 0.1618 | 0.0931
pt0 0.3230 | 0.1869 0.1635 | 0.0932
W5, pP 0.3241 | 0.1888 0.1635 | 0.0932

P2, o 0.3273 | 0.214671 0.1673 | 0.09971

P2, p2,m 0.3254 | 0.19711 0.1664 | 0.09831

indicates the content-based importance score is more important in capturing the sequential

popularity than first order transition pattern.

e Item embedding. We test the model with separate embedding space for input and output
sequence representations; and the model performance drops by a large margin. Prior work,
e.g., [27], in sequential recommendation found similar observations. Even though the separate
embedding space is a popular choice in neural language models [?], but the item corpus appears
to be more sparse to afford two distinct embedding spaces. The dimensionality of the embedding
space, din = doyt slightly affects the model performance on both datasets, and it at the same
time increases Recall@5 and decreases MRR@5 score, and vice versa. A trade-off on ranking

and coverage exists between larger and smaller embedding spaces.

Discussion on Model Architecture To further analyze the strength and weakness of our model

design, we conduct experiments specifically to answer the following questions:

e Does the model capture the content influence a? To understand if our model is able to
learn a meaningful «, we replace the M® component with a flat attention module, such that it

always outputs @ = 1. And we list this model’s performance in Table as “Flat Attention”.

The performance stays almost the same on XING, but drops slightly on the Taobao dataset.
It shows that the content-based importance score is less important for the sequential recom-
mendation tasks when the first order transition pattern dominates, but is beneficial for the
sequential popularity based patterns. It also suggests that contextualized temporal importance

along is already a strong indicator of historical actions about current user preference.

e Does the model extract the context information in « stage? As the effect of temporal
influence depends on our context modeling component, we design the following experiments on

the context component to understand the two follow-up questions.

First, whether the local context information of each event is captured. We replace the local
conditional probability vector P(:|C) with a global probability vector P(-), i.e., a single weight
vector learnt on all contexts. This model’s performance is listed in the table as ‘Global Context’.

We can observe a consistent drop in performance in both datasets.

Second, whether the local context is conditioned on its nearby events. We replace the local
conditional probability vector P(-|C) with a local probability vector conditioned only on the
event itself, P(-|x). More specifically, instead of using the bidirectional RNN component, the
model now uses a feed-forward layer to map each z; to the probability space R¥. This model’s
performance is listed in the table as ‘Local Context’. We again observe a consistent drop in

performance, though it is slightly better than the global context setting.

As a conclusion, our model is able to extract the contextual information and its mapping into

probability for different temporal influences on both datasets.

e Does the model capture temporal influence 3?7 We conduct multiple experiments on

the number of temporal kernels and the combined effect of different kernel types.

Firstly, we want to understand the advantages and limitations of each kernel type. We look at

the model performance carried out with a single constant temporal kernel w!. Its performance

on MRR@J5 is the worst among all the other kernel settings on both datasets. At the same
time, we compare the settings of 10 exponential ¢'?, logarithmic p'° and linear 7'° kernels
each. The 10 linear kernels setting is overall the best on both datasets, especially in improving
the ranking-based metrics. It shows that it is beneficial to model the temporal influence with

the actual time intervals transformed by appropriate kernel functions.

Secondly, we compare the model performance on different number of temporal kernels. The
results suggested that the model performance always improves from using a single kernel
to multiple kernels. This directly supports our multi-kernel design. Specifically, among the
exponential kernels {11, 15 110}, 1® performs the best on XING, yet not as good as 1'° on
Taobao. On linear kernels {m!, 75 71}, as the kernel number increases, Recall@5 improves,
but MRR@5 drops on XING. Similarly on Taobao, 7° achieves the best ranking performance,
but the 7% induces a better coverage. Hence, the model with more kernels does not necessarily
perform better, and as a conclusion, we need to carefully tune the number of kernels for better

performance on different tasks.

Thirdly, we study the combinatorial effect of different kernel types: (¥°,p%), (¢°,7°) and
(4, p°, 7). We can observe that all types of kernel combinations we experimented improve the
performance on both datasets, compared to the base setting ¥°. This suggests the diversity of
kernel types is beneficial to capture a better contextualized temporal influence. However, it
also shows on both datasets that if mixing exponential 1/° with either linear 7° or logarithmic
p° kernel can improve the model performance, mixing all three of them together would only
worsen the performance. We hypothesize that certain interference exists among the kernel
types so that their performance improvement cannot simply add on each other. And we leave

the exploration of finding the best combination of kernels as our future work.

Overall, we believe that the temporal influence can be captured by current model design, and

there are opportunities left to improve the effectiveness and consistency of the current kernel based

design.

Attention Visualization. To examine the model’s behavior, we visualize how the importance score

shifts in some actual examples in Figure [2.3] The x-axis is a series of actions with their associated

items E and the time interval from action time to current prediction time, (s;,tr+1 — t;). From left

"for privacy concerns, these datasets do not provide the actual item content; and we represent the items in the
figure with symbols.

3 Sample Sequence A 3 Sample Sequence B 3 Sample Sequence C
mm alpha

2 beta 2 2
s gamma

: 1 1 I J 1

I] 0 0

ettt cweppTT e

Ny tg S Y, @, ©§, % Ao, to, B @, %, O, %, S 6,8 Sa @y Ko g
%0, “90p 19 05 9 2 Y2 1"20 23, %52, 15)05 559@ 95 Y05 5901 ”eg Go))q %0, 0354 %05, 0041

Figure 2.3: Attention visualization. The blue (left) bar is the content-based importance score a, the orange (middle)
bar is the contextualized temporal influence score 3¢, the green (right) bar is the combined importance score . The
figures contains three different sequences selected from the test set of the Taobao dataset.

to right, it follows a chronological order from distant to recent history. We select the example such
that the ground-truth next item is among the historical actions for the sake of simplicity, and we use
smile face symbol © to denote if the item of such historical action is the same as the target item.
Each action on the x-axis is associated with three bars. Their values on the y-axis is presented as the
computed score e, 3° and « respectively of each event in the model after normalization (by z-score).

The model setting uses the temporal kernel combination (°, %) for its best performance.

e Orange bars. The contextualized temporal influence score 3, in both sequence A and B,
follows the chronological order, i.e., the score increases as time interval shortens. In addition,
such variation is not linear over time: the most recent one or two actions tend to have higher
scores, while the distant actions tend to have similar lower scores. The sequence C, as all
actions happened long time ago from current prediction, the context factor is deciding the
height of orange bar. And the model is able to extract the context condition and assign high
temporal importance to this event, which is indeed the target item. These observations all
suggest that the contextualized temporal influence is captured in a non-trivial way that helps

our model to better determine the relative event importance.

e Blue bars. For the content-based importance score «, it shows different distribution on each
of the sequences. This is expected as we want to model the importance on the event correlation
that is independent of the sequence order. Only in the third example that the target, i.e.,
the most relevant historical action, is ranked above average according to the content-based
importance score. This again shows the important role of the temporal order to improve the

ranking quality for sequential recommendation.

e Green bars. The combined score « largely follows the relative importance ranking in orange

bar. In other words, the contextualized temporal order is the dominating factor to determine

relative importance of each input in our selected examples. This corresponds to the previous
observation that the model performance would only slightly drop if the self-attention component
outputs flat scores. This supports our motivation to model the contextualized temporal order

in sequential recommendation tasks.

Although these are only three example interaction sequences from more than 6,000 users, we can
now at least have a more intuitive understanding of the reweighing behavior of our model design —
the core part that helps boost the recommendation performance over the existing baselines. However,
there are also many cases where the importance scores are still hard to interpret, especially if there
is no obvious correspondence between target item and the historical actions. We need to develop
better techniques to visualize and analyze the importance score for interpretable neural recommender

system as follow-up research.

2.7 Conclusion

In this chapter, we identify and address the critical problem in sequential recommendation, Déja vu,
that is the user interest based on the historical events varies over time and under different context.
First, rooted in concepts of episodic memory and semantic memory in cognitive psychology, we
proposed Long- and Shot-term Hawkes Process to model users’ sequential interactive behavior. To
capture the contextual dependence depicted in episodic memory, LSHP employs a multi-dimensional
Hawkes process to model influences among actions occurring in the same session. And to realize the
memory recall described in semantic memory, LSHP utilizes a one-dimensional Hawkes process to
model influences among actions of the same type happening in different sessions. In this way, the
long-term and short-term dependence are explicitly captured by LSHP as a mixture of stochastic
processes. By adopting ADMM algorithm, we maximize the data likelihood to learn the parameters of
LSHP. Extensive experiment comparisons between LSHP and several other state-of-the-art baselines
prove modeling the sequential structure among users’ actions in regard to occurring time of actions

helps LSHP improve recommendation quality.

Second, we propose a Contextualized Temporal Attention Mechanism that learns to weigh historical
actions’ influence on not only what action it is, but also when and how the action took place. More
specifically, to dynamically calibrate the relative input dependence from the self-attention mechanism,
we deploy multiple parameterized kernel functions to learn various temporal dynamics, and then

use the local information about sensitivity and seriousness to determine which of these reweighing

kernels to follow for each input. Our empirical evaluations show that the proposed model, CTA, has

the following advantages:

e Efficacy & Efficiency. Compared with the baseline work, CTA effectively improves the
recommendation quality by modeling the contextualized temporal information. It also inherits
the advantage of self-attention mechanism for its reduced parameters and computational

efficiency, as the model can also be deployed in parallel.

e Interpretability. Our model, featuring the three stage weighing mechanism, shows promising
traits of interpretability. From the elementary analysis demonstrated in our experiments, we
can have a reasonable understanding on why an item is recommended, e.g., for its correlation

with some historical actions and how much on temporal influence or under context condition.

e Customizability. The model design is flexible in many parts. In the a stage, the model can
extract the content-based importance by all means, such as the sequence popularity heuristics
— customizable for recommendation applications with different sequential patterns. In the 3
stage, as we mentioned earlier, we can adapt different choices of temporal kernels to encode
prior knowledge of the recommendation task. The - stage is designed to incorporate extra
context information from the dataset, and one can also use more sophisticated neural structures

to capture the local context given the surrounding events.

Our work opens several important future directions. Our understandings are still limited in the
temporal kernels including what choices are likely to be optimal for certain tasks, and how we can
regularize the kernel for more consistent performance. Our current solution ignores an important
factor in recommendation: the user, as we assumed everything about the user has been recorded
in the historical actions preceding the recommendation. As our future work, we plan to explicitly
model user in our solution, and incorporate the relation among users, e.g., collaborative learning, to

further exploit the information available for sequential recommendation.

Chapter 3

Category-aware Contextualized

Recommendations

Recommender systems match users under different context with items that they would be interested
in. Understanding users’ preferences under certain context is essential to recommender systems. Item
category, a type of proxy of context, has shown to carry critical signals about users’ preferences [89,/90].
Take online shopping scenario as an example, the item category, like “shoes”, reveals users’ preferences
are narrowed down to shoes. In this chapter, we study the problem of making recommendations with

the item category as context.

3.1 Introduction

Modeling user preferences of the next action based on her past actions is essential to recommender
systems. Concerning the sequential dependence among actions, predicting the next action for users
based on their interaction history has been framed as sequential recommendation. This has been
considered as a sequential prediction problem, and considering the sequential structure among actions
is the key. Various sequence models borrowed from other fields have been explored [10}/12}/34}[55//571/91}
92]. From the earliest Markov models [55] to recent neural sequence models, such as Recurrent Neural
Network (RNN) or self-attention [10,[14], models with a stronger capacity in capturing complex
and high-order sequential dependence among actions have shown to achieve better recommendation

quality.

43

| Recommendations |

0@' O e RE2 |g:
Timeline Iz@i
Ah=fosan =S

Timeline

Figure 3.1: An illustration of collaborative sequential recommendation. Each user’s actions are indexed chronologically.
The recommender system needs to predict which items to recommend to the user Lily based on her and another user
Ivy’s past actions.

However, most of existing solutions treat a user’s action history as a long sequence [10,/29,/93]. Such
simplification usually ignores the fine-grained sequential structure in the action sequence. Consider
the example illustrated in Figure For the user Lily, the reoccurred transitions from clothes to
shoes suggest her next action is very likely to be related to shoes, and the series of her previously
browsed shoes suggest her general preference on sports shoes. But her recently browsed business
suits suggest her current intent in formal outfits. As a result, it is no longer appropriate for the
system to follow her general preference to recommend sports shoes; instead, recommending formal
shoes becomes a better choice. Such observation informs us that sequential recommendation should
be context-aware: under different contexts, the prediction of next action should depend on different

subsequences of past actions.

When considering the sequential structure, another challenge is data sparsity. Observations about
individual user’s actions are known to be sparse [94], not to mention the transitional patterns that
could be covered in a single user’s action sequence. For example, in the example shown in Figure
the user Lily has never visited any formal shoes in the past. Hence, even with the knowledge
that formal shoes should be recommended next, it is still clueless for the system to predict which

specific type/brand to start with.

As a remedy to the data sparsity issue, collaborative learning methods have been recently introduced
to sequential recommendation [6,[611/95/96]. The basic idea is to exploit users with similar past action
sequences for the next action prediction. As a typical solution of this type, in [97], authors modeled
users’ action sequences with RNNs and retrieved neighboring users based on the user latent states
learnt by RNNs. Then the target user’s representation is combined with the retrieved neighboring

users’ representations for the next item prediction. However, user similarity is still measured by

the entire sequence of past actions in this type of solutions. As we argued before, neglecting the
context in sequential recommendation introduces inaccurate dependency on the past actions, and
therefore erroneous neighborhood for next action prediction. Consider the example in Figure [3.1
again. When looking at their entire action sequences, Lily and Ivy might not be considered as
neighbors, as Lily visited mostly shoes and clothes while Ivy visited mostly shoes and handbags. But
the subsequences of shoes browsed by these two users make them closer. Especially the transitions
from sport shoes to formal shoes in Ivy’s subsequence will be very helpful in predicting Lily’s next
action about formal shoes. Therefore, the neighborhood modeling in sequential recommendation

should also be context-aware.

Nevertheless, the context, under which a user takes the next action, is not observable by the system [3].
We have to look for proxies of it. We believe a good proxy of context should: 1) be widely available in
sequential recommendation problems, and 2) enhance the modeling of dependence on past actions. In
this chapter, we consider the category of the next item, which is a type of widely available metadata
about items and also provides context information [89,(90]. Our statistical tests on two large public
recommendation datasets prove the transitional patterns among actions in the category-specific
subsequences are significantly stronger than those in the original action sequences without considering
the categories. We defer the details of our statistical tests to Section [3.4] and the description of the

dataset to Section 3.5

Based on our insight discussed above, we propose a CategOry-aware COllaborative sequential
Recommender (CoCoRec), which draws dependence of the next action on historical actions based on
the target user’s action sequence, item categories and neighboring users’ action sequences. CoCoRec
is composed of three key components: an in-category encoder, a context encoder, and a collaboration
module. The in-category encoder utilizes self-attention to model item transition patterns in category-
specific action subsequences. The context encoder infers the category context. It uses recent actions’
categories to predict the category of the next action, and then based on this prediction, it uses a
gating network to activate the corresponding in-category item-to-item transitions. Since the recently
engaged items can suggest recent preferences, we also model them in the context encoder. It uses
self-attention to model the user’s most recent actions to obtain recent preferences. The collaboration
module uses a memory tensor to record users’ in-category preferences. For each target user, the
collaboration module retrieves neighboring users with similar in-category preferences. Combining
the recent preferences of target user, the in-category preferences of target user, and the neighbors’

in-category preferences, CoCoRec predicts the next item for the target user.

To investigate the effectiveness of CoCoRec for sequential recommendation, we performed extensive
experiments on two large public recommendation datasets. Compared with a list of state-of-the-art
solutions for sequential recommendation, CoCoRec improved the recommendation quality in both
recall and MRR. Our ablation analysis further demonstrated the importance of modeling the in-
category user preferences and collaborative learning among users with similar in-category preferences

for CoCoRec to achieve high quality recommendation performance.

3.2 Related Work

The improvement of sequence models’ capacities in capturing complex and high-order sequential
patterns has unleashed the development in sequential recommendation. Fixed- and varying-order
Markov models are among the earliest attempts [34155], which assume the prediction only depends on
the recent several actions. Factorizing Personalized Markov Chains [55] is a typical model of this kind,
which combines factorization machine [56] with a Markov model. It improves over vanilla matrix
factorization by introducing sequential order among historical actions into factorization. However,
the Markovian assumption also limits the performance of such models: as the state-space grows
exponentially with respect to the order of dependence, this type of solution can hardly capture high

order dependence in practice.

Neural sequence models, such as RNN, Long Short-Term Memory (LSTM) [12], Gated Recurrent
Unit (GRU) |13] and self-attention [14] models, have been adopted to address the limitations in
Markov models [10,[12,29,/57,/91,92]. For example, in [10], the authors applied RNNs to predict
the next action based on actions in a session of which the boundary is defined in regard to the idle
duration between two consecutive actions. In [57], the authors used attention to model influence
from the most related actions in the session. SASRec [27] and BERT4Rec [33] extended the scope of

self-attention models to sequential recommendations.

Besides vanilla application of existing neural sequence models, problem-specific customizations
are proposed to enhance the modeling of action sequences. In [31], the authors has developed
a solution composed of a mixture of sequence models to capture both long-term and short-term
action dependence. Hierarchical neural network models have been applied to model users’ sequential

preferences across different sessions [11,[25}98].

Nevertheless, in [99], the authors found that the session assumption could be the bottleneck of these

models, as the influence from past actions does not necessarily differ with respect to the manually
defined session boundaries. In contrast, our fine-grained action dependency modeling is supported by
statistical tests, i.e., segmenting action sequences into sub-sequences with respect to item categories

enhances sequential dependency modeling.

Collaborative learning has been introduced to sequential recommendation to address the data sparsity
issue. Based on the social network among users, in [100], the authors combined the transition
patterns of neighbors in the social network into the next item prediction of the target user. Lifting
the requirements of pre-existing social networks, in [94], the authors measured user relatedness by the
degree of item overlap among action sequences. Actions from the k-nearest neighbors are introduced
to the target user’s prediction. As a follow-up, in [97], the authors measured user similarities based on
the latent states learnt for users by RNNs; and directly combined neighboring users’ latent states with
target user’s latent state for the next item prediction. To reduce the search space of neighbors, in [96],
the authors made the initial next item predictions based on the target user’s action sequence, and then
utilized the initial item predictions to filter irrelevant users. All the aforementioned methods used
entire action sequences to measure user similarity. However, under different context, the importance
of past actions in representing users is different. Failing to characterize target user’s ongoing context
when retrieving neighbors prevents collaborative learning from helping the next item prediction of

the target user.

Another line of work on sequential recommendation utilized item categories as proxies of action
context and incorporated the context into various models to improve the modeling of action sequences.
Treating the prediction of the next item category as an extra task along with the prediction of the
next item, a multi-task learning based solution has been developed to predict both the next item
and its category [101]. Treating the item category as a condition, a generative adversarial network
based solution validates the next item prediction based on the category of the predicted item [102].

However, the in-category sequential transition patterns are ignored by these solutions.

Besides item category, other types of external knowledge about items have also been utilized for
sequential recommendation, like knowledge bases [103},/104] and category taxonomies [90,/105]. The
relations among items defined in knowledge base are utilized to capture the dependence among
actions [103,/104]. In [90], the authors incorporated multi-hop categories to memory network to
structure the dependency. Likewise, in |[105], the authors proposed to hierarchically model actions

based on the hierarchy of item category. However, the limited availability of knowledge bases or

category taxonomies in different recommendation scenarios directly restricts the application of these

solutions in practice.

3.3 Notations and Problem Setup

In this section, we introduce the notations used in this chapter and define the problem we address in
this chapter. We study sequential recommendations for a set of users u € U over a set of items v € V
from a set of item categories ¢ € C. We denote an action as a tuple a; = (v;, ¢;), where 4 is the index
of the action in a sequence, v; is the item that the user interacts with and ¢; is the item’s category.
Different actions may be associated with the same item and each item is associated with a unique
category. A sequence of N actions from user u is denoted as S, = {a1, as,...,an}, which is ordered
chronologically with respect to the timestamps of actions. A subsequence of actions under category ¢
is denoted as Sg = {af, ...,a%} where T represents the number of actions in this subsequence and
actions are still ordered chronologically. Given S, from user u, the goal of sequential recommendation
is to rank items for this user to consider as the next item vy 1 in the next action ayyi. When no

ambiguity is incurred, we omit the subscript u to simplify our subsequent discussions.

3.4 Method

3.4.1 Data-Driven Statistical Analyses

b

Before introducing our proposed solution, we first describe our statistical analyses about users
sequential behaviors on two public recommendation datasets: Taobao dataset and BeerAdvocate
dataset. The number of total actions on both datasets are larger than 500K, which ensures the
statistical significance of our analyses. The findings in these analyses directly lead to the design of

our solution. More details about these datasets are in Section 3.5

We investigate the dependence structure introduced by item categories. We segment a sequence
of actions into multiple subsequences, where each subsequence consists of actions of the same
item category. We count the frequency of Mth-order item-to-item transition patterns within
subsequences and original sequences respectively. Specifically, the Mth-order item-to-item transition
pattern refers to M items appearing consecutively in a given sequence (or a subsequence), e.g.,
{Viy ooy Vit pr—2, Vixpr—1}. Figure (a) shows on Taobao dataset, the probability of the 3rd-order

item transition patterns appearing multiple times within subsequences is significantly higher than

(O
" 10 ® ® in-category subsequences
-g 10~ - ® original sequences
§] ®
10721 @
2] oo
« 1073 3 [
o E
7))]
-_?-_," 1074 3
2 1075
o] 3
8]
G 107 5 o
é e g °
10° 10! 102 103

frequencies of 3rd order item-to-item transition patterns

Figure 3.2: Result of the statistical dependence analysis on Taobao dataset. The distribution of frequencies of 3rd-order
item-to-item transition patterns in in-category subsequences are as the red points show. The distribution of the
frequencies of 3rd-order item-to-item transition patterns in the original sequences are as the blue points show.

that in the original sequences. On BeerAdvocate dataset, we obtained similar observations. By
varying M from 2 to 10, we observed similar results. These findings strongly support our decision of

using item category to structure actions to enhance the modeling of the action dependence.

3.4.2 Category-aware collaboration Sequential Recommender

Propelled by the findings in our statistical analyses, we propose a CategOry-aware COllaborative
sequential Recommender (CoCoRec). In a nutshell, CoCoRec is composed of three modules: an
in-category encoder, a context encoder, and a collaboration module. First, to model user preferences
under a category, we segment an action sequence into multiple subsequences with respect to item
categories and each subsequence is restricted to contain actions of the same item category. The
in-category encoder utilizes self-attention to model in-category item-to-item transition patterns in
the subsequences. In order to determine which in-category preference to use for the next item
prediction, the context encoder predicts the next category based on the categories of recent actions
with self-attention. Second, to model the episodic context, the context encoder utilizes another
self-attention to model the item-to-item transition patterns among recent actions. Third, to leverage
the neighboring users’ in-category item-to-item transition patterns, we retrieve users with similar
in-category preferences with regard to the target user’s in-category preferences, based on the context
encoder’s next category prediction. Finally, the next item prediction is made based on the episodic

context, the in-category user preferences, and neighboring users’ in-category preferences.
b b

hT’
! self-attention r—'D

T
X E Context
v o Encoder

ﬁ<§w

hing shoes clothlng clothlng

OO0
>
o
a;euamauoo
(000

=
3
3
o
]
-]
S
=
o
3

Ve 2 Y Y " -------------- I

% ! |
! Il

in-Category | in-Category H Nelghbors

Encoder : Encoder : Fletneval

----------- ! /""""'__ Nwrite read
\ self-attention) |
~ 1

’
N self-attentlon ,'

1
'
1
1
1
1
i
[
[
iat Yaind duind 3 1 B e e
{ i "y Collaboratwe
: : E X : : Memory
" 11 clothing ~ _ shoes
| e o N
i o . |
1 |
[~ I
| | I
[1
[N |
N '

clof
C? Category

Context
I

' self-attentlon /—>

£ g (SN)

MMMM LY X

ltemid:@ Item Embedding:[000] Category id:9> Category Embedding:[000] Gateison:M Gate is off:
Figure 3.3: Overview of CoCoRec. In CoCoRec, an action sequence is decomposed into multiple subsequences with
respect to the item category associated with each action. The in-category encoder encodes the category-specific action
subsequences into latent vectors representing users’ in-category preferences. The context encoder predicts the category
of the next action to activate the corresponding in-category item-to-item transitions for the next item prediction. The
context encoder infers the episodic context of the next action based on recent items. To address the sparsity issue, the

collaboration module retrieves neighbors based on users’ encoded in-category preferences. Based on signals from these
three sources, CoCoRec predicts the next item and make recommendations to the user.

In the following, we dive into the details of each component of CoCoRec to discuss about their

designs.

In-category Encoder. The in-category encoder is designed to obtain the category-specific user
preferences. To capture high-order item-item transition patterns, we choose a self-attention network
for the in-category encoder. The self-attention network parameters are shared across categories to

reduce model complexity, i.e., multi-task learning via parameter sharing.

For each of the |C| categories, the in-category encoder learns a hidden representation of the user
preferences respectively. Without loss of generality, we take the encoding process for an action
subsequence of category c as an example to illustrate our design details. The item subsequence
[v§,...,v%], which are associated with the action subsequence, are projected through the input item
embedding layer E;, € RIVIXdn into a set of dense vectors X¢ = [eve,nnns ev%] where X¢ e RT*din,
The relative positions [T, ..., 1] of these actions to the next action are projected through the position
embedding layer P € RT*%n into P°¢ = [P, ..., Pf]. Taking the dense vectors X¢+ P° as input,
the self-attention network outputs the representation of the user preferences in this category, i.e.,

he € R% by h¢=self-attention(X¢ 4 P°).

The self-attention network is composed of n; layers of a multi-head attention block and a point-wise
feed-forward network block [14,106]. Due to the recursive nature of these multiple layers of blocks,

we use jth layer to explain the mechanism. There are nj heads in a multi-head attention block with

dg hidden units. For the ith attention head, the attention block transforms the input latent states

HI €¢RT*da of an action sequence into the output states as,

Al = Attention(H' W&, H' WK, HI'WY)

Q~KT>V
\/da/nh

Attention(Q, K, V) = softmax (

where the projection matrices I/ViQ7 WE WY e R *xda/mn are learnable parameters mapping HY into
query @, key K and value V representations. In addition, v/d,/ny, is the scaling factor to encourage

a softer attention distribution for avoiding extremely small gradients.

We then concatenate the output states obtained by all heads and project the concatenated represen-
tation to A7 = [A{7 e ,Aflh]WO, where WO € R%*da is another projection matrice. Feeding this
representation into the a fully connected feed-forward network (FFN7) and then a layer normalization

network (LN), we obtain self-attended hidden vectors of this sequence as:

H'™" = LN (H’ + FFN7(A7))

In the in-category encoder, the input to the self-attention network is H? = [eve +PF, . .. ; €, + P
and d§ =d,. The self-attention network transforms HY into H™ =[hS, ..., h%] and uses the hidden
state of the last action as the output of the self-attention network to represent the user preferences

within category c, i.e., h®=h%.

Context Encoder. The context encoder is to obtain the context and obtain the recent user
preferences for the next item prediction. To decide which in-category user preferences to leverage,
we predict the category of the next item. Specifically, we use a top-k gating network to obtain the
category context. In addition, we use a recency encoder to capture the episodic context buried in

recent items.

o Top-k gating network. We use the categories of recent items as the input to the top-k gating

network. The categories of the most recent L items are projected through the input category

embedding layer E?, € RICI=45 into a set of dense vectors, Z = leZ,_,,---» el]. The relative
positions of recent actions, denoted as [L, ..., 1], are projected through the position embedding layer

P.ote € REX45 into a set of dense vectors P* = [Pf,...,Pf].

In the top-k gating network, a self-attention network transforms the dense category vectors Z+PZ into
hidden representations and utilizes the hidden representation at the last action as the representation
summarizing the category information of recent actions, as h* =self-attention(Z+ P?) €R%. Feeding
h? into the output category embedding layer EZ ., and then a softmax layer, the top-k gating network

generates a probability distribution over all categories:
p(én+1 = j) x exp((h*, €})), (3.1)

where p(én+1=7) denotes the probability of category j being the category of the next item and
e: is the category embedding of the category j. To account for the uncertainty in next category

prediction, the gating network selects top-k most probable categories according to Eq. (3.2)):
. ~ . C
{cj};?:l = arg ‘p/opk ({p(en41 zjl)}‘j,:ll) where ¢; € C. (3.2)
J

With respect to these k predicted categories, we include corresponding in-category user preferences
to predict the next item, i.e., the hidden representations {h }§:1 from the in-category encoder are
selected. Besides, we also count the probabilities p(¢x1) of these k categories in the prediction of
the next item, which we will discuss later. Because of this design, this top-k gating network is still

differentiable, i.e., the training loss can be propagated back to update the category embeddings.

e Recency encoder. The recency encoder is introduced to infer the users’ recent preferences from
recent actions. Due to their close proximity to the next action, the recent actions reflect the ongoing
intent of the next action. For example, in Figure Lily’s recent actions suggest she is looking for
formal outfits. To capture high-order dependence, we adopt another self-attention network to encode

item-to-item transition patterns among recent actions.

Specifically, the input of the recency encoder is the most recent L items in the original sequence
S, i.e., [uN—L,...,vnN], which are projected through the input item embedding layer E;,, into dense
vectors X" =[eyn_,,---Cuy], Where X" € REXdin The relative positions of recent actions, denoted

RLXd

as [L,...,1], are projected through the position embedding layer Precent € in into a set of

dense vectors P"=[P7,..., Pl]. Then the self-attention network transforms vectors X"+ P" into
hidden states and we use the hidden state of the last action as the representation of the inferred

episodic context as h” = self-attention(X” + P") € R%. This episodic context is utilized for the

next item prediction. We should note the recency encoder examines the recent items disregarding

their categories, as the episodic context refers to information shared by actions with close proximity
beyond specific categories. It provides complementary view of the next action besides the category

context.

Collaboration Module. The collaboration module is designed to leverage neighboring users’ in-
category preferences for the target user’s next item prediction. Due to the sparsity of observations
in individual users’ actions, the item-to-item transition patterns in a single user are expected to be
sparse. Collaborative learning across neighboring users with similar preferences has the potential
to mitigate the sparsity issue. Because our statistical analyses demonstrate that the in-category
item-to-item transition patterns strongly suggest the user’s preferences of the next item, we utilize the
in-category subsequences to obtain the similarities among users. Then we combine the neighboring

users’ information based on their similarities for the next item prediction.

The collaboration module uses a memory tensor Mem € RICIXFxdi to record users’ in-category
preferences, denoted as “collaborative memory” in Figure Specifically, it records the latent states

of last F" users for each category c in a chronological order.

e Reading operation. Given the target user’s in-category preferences hS of the category c, we
compute its similarities to F' latent states of user preferences of this category ¢ in Mem: sim(hS, h§)
exp((hS, h$)). We choose the top-f similar users as the neighbors and take a weighted sum of their
representations by the corresponding similarities as the neighborhood representation for the next

item prediction, as hf =3 "1"PTsim(he, hS)RS

i il

o Writing operation. We randomly initialize the memory tensor Mem and update it with the
latest user’s in-category preference representations A which are outputs of the in-category encoder.
The memory tensor is organized as a queue: the collaboration module pushes the most recently served
user’s representations of the category ¢ to the memory tensor, while popping out the representations

of users inactive for a long time.

Next Item Prediction. Based on in-category user preferences of the predicted top k categories,
neighboring users’ in-category preferences, and episodic context inferred from the most recent items,
CoCoRec predicts the next item. Specifically, we concatenate these three representations for each of
k categories and project concatenated representations into the output item embedding space with a

feed-forward network layer (FFN). The mixture of obtained representations is considered as the user

Table 3.1: Statistics of two evaluation datasets.

Dataset #Users #ltems #Categories FActions FActions per user
Taobao 51,275 68,007 201 3,785,961 73.84+47.44
BeerAdvocate | 7,313 17,373 102 563,638 55.67+69.44

representation for predicting the next item as

hj = FEN(h" @ h% @ h'7), where j = {1,...,k}

Matching the user representation with the item embeddings F,.,;, we obtain the ranking scores of

items by,

k

score(Oyy1) = Z score; (On+1)p(Ent1=c¢;) (3.3)
j=1

score; (On41) = softmax((h;, Eout))

CoCoRec ranks the items with respect to their predicted scores score(dx41) in a descending order

as recommendations to the user.

3.4.3 Model Training & Inference

We train CoCoRec in an end-to-end fashion by minimizing the loss on the predictions of both the

next item and its category, where the cross entropy loss is adopted.

Since the item space can be very large in practice, we apply the negative sampling trick to compute the
loss of item predictions. For each positive item, we randomly sample N, items as negative instances
according to their popularities in training dataset. Thus, the loss of item prediction is,

Ns+1
Litem - - Z 5(UN+1:'U) logp({zN_H = U)

v=1

p(dn41 = v) = softmax (score(ﬁN+1 = v))

where 6(-) is an indicator function, vy 41 is the ground-truth item, and o1 is the model’s prediction.

Likewise, we compute the loss against all categories,

c
Legte = — Z d(eny1 = j)logp(enyr = J).

j=1

where the p(én11 = j) is computed by Eq (3.1). The joint loss is thus computed as
L=XX Litem + (1 = X\) X Leqte.

where A is a hyper-parameter controlling the weight of these two losses in the objective function.

In addition, we modify the training scheme to deal with the discrepancy between training stage
and testing stage. During training, the ground-truth category of the next item is available. Thus,
we can directly choose the in-category user preferences of the ground-truth category for the next
item prediction. In contrast, during testing, the next category is unknown. The errors of the next
category prediction will be propagated to the next item prediction. To mitigate this issue, we separate
the training phase into two stages. In the early stage of training the model, we directly use the
ground-truth category for the next item prediction. In the second stage, we use the top-k predicted
categories. Particularly, we start the second stage model training only when the accuracy of category

prediction stops increasing.

3.5 Experiments

In this section, we study the effectiveness of CoCoRec for sequential recommendation. We first
describe two evaluation datasets, followed by the implementation details of our model on these two
datasets. Then we compare CoCoRec against an extensive set of baselines, ranging from heuristic
solutions to state-of-the-art sequential recommendation solutions. In addition, a complete ablation
analyses illustrates the importance of modeling the in-category user preferences and collaborative
learning among users with similar in-category preferences. We also study the influence of the

hyper-parameters on the performance of CoCoRec.

3.5.1 Datasets

We performed the evaluation on Taobao dataset |'| and BeerAdvocate dataset |, which are both
publicly available. The Taobao dataset contains sequences of user actions from the online shopping
website taobao.com, Each action is associated with a user ID, an item ID, a category ID of the item,
and a timestamp of the action. Due to privacy concerns, the semantic meanings of categories are
not available. We randomly sampled 100,000 sequences from November 25, 2017 to December 3,
2017 for our experiments, where we used the actions in the first 7 days as the training set, actions
on the 8th day as the validation set, and actions on the 9th day as the test set. We removed items
associated with fewer than 20 actions, and removed users with fewer than 20 or more than 300
actions. We merged categories which have fewer than 100 items into a special category, denoted as
category “UNK”. The BeerAdvocate dataset contains user reviews about beer from October 31, 2000
to January 11, 2012. The type of beer is chosen as category, and a user review is treated as an action.
We use actions from October 31, 2000 to January 28, 2011 as the training set, those from January 28,
2011 to July 18, 2011 as the validation set, and the rest as the test set. We removed items with fewer
than 5 actions, and removed users with fewer than 10 or more than 300 actions. Again, we merged
categories with fewer than 100 items into the “UNK” category. The basic statistics of datasets are

reported in Table

Implementation Details. On both datasets, the in-category encoder of CoCoRec utilizes at most
T =20 actions of the same category. The context encoder utilizes the most recent L =20 actions as
input to both the top-k gating network and the recency encoder. The item input embedding layer
shares the same parameters as the item output embedding layer. The category input embedding
layer also shares the same parameters as the category output embedding layer. The self-attention
networks in the in-category encoder, the top-k gating network and recency encoder stack n; =2 layers
of a multi-head attention block with n; =1 head and a feed-forward network block. In the objective
function, the hyper-parameter A is set to 0.5. The dropout rates are all set to 0.2. The batch size is

set to 256. We utilize Adam as the optimizer.

On Taobao dataset, the dimension d;;, of item embeddings is chosen from {128,256,512}. We set
d;n, =256 in our experiments, as we did not observe further improvement of performance with higher
dimensions. The dimension df of the hidden representations in the self-attention network of the

in-category encoder is chosen from {128,256, 512} and we set df =256. The dimension d7, of category

Lhttps://tianchi.aliyun.com/dataset/dataDetail?datald=649
2https://www.beeradvocate.com/

taobao.com

Table 3.2: Performance of models on Taobao dataset.

BeerAdvocate
Models
Recall@5 MRR@5 Recall@20 MRR@20

GlobalPop 0.0078 0.0036 0.0341 0.0059
SeqPop 0.0004 0.0002 0.0016 0.0003
GRU4Rec 0.0173 0.0089 0.0492 0.0097
BERT4Rec 0.0222 0.0092 0.0533 0.0124
M3R 0.0235 0.0102 0.0615 0.0142
RNN+MTL 0.0202 0.0101 0.0573 0.0121
MFGAN 0.0233 0.0114 0.0599 0.0143
CSRM 0.0188 0.0093 0.0514 0.0112
ICM-SR 0.0214 0.011 0.0587 0.0129

CoCoRec 0.0278 0.0141 0.0737 0.0192

embeddings is chosen from {32,64,128} and we set dZ, = 64 due to its promising performance.
The dimension dj, of the hidden representations in the self-attention network of the top-k gating
network is set to be the same as d7,,. The top-k gating network selects k=5 category-specific action
subsequences for the next item prediction. Likewise, we set the dimension dj, in the self-attention
network of the recency encoder to 256. The collaboration module records the in-category preferences
of last F' = 10240 users and retrieves f = 256 neighboring users. The number of negative items
Ny in model training is set to 10000. We find that CoCoRec is sensitive to the learning rate, and
the optimal learning rate 0.0001 is chosen from {0.00001,0.0001,0.0005,0.001}. On BeerAdvocate
dataset, the details of our model are as follows: d;, =64, dj =64, d;, =32,d; =32 and dj, =64. The
hyper-parameters in collaboration module are F'=2048 and f=128. The top-k gating network selects
k=5 category-specific action subsequences for the next item prediction. The number of negative
items Ny in model training is set to 1000. The learning rate is set to 0.0001. The influence of the

hyper-parameters on the performance of CoCoRec is discussed later. The code has been released

publicly

3.5.2 Comparison against Baselines

We compare CoCoRec with an extensive set of baselines, and categorize them based on their modeling

assumptions and the information they leveraged.

Heuristic solutions. We include two heuristic-based solutions, which have been shown to be strong

baselines [107].

3code available at https://github.com/RenqinCai/CoCoRec

Table 3.3: Performance of models on BeerAdvocate dataset.

Taobao
Models
Recall@5 MRR@5 Recall@20 MRR@20

GlobalPop 0.0024 0.0014 0.0076 0.0019
SeqPop 0.0944 0.0533 0.1754 0.0613
GRU4Rec 0.1283 0.0811 0.1888 0.0839
BERT4Rec 0.1291 0.0813 0.2122 0.0869
M3R 0.1294 0.0818 0.2163 0.0875
RNN-+MTL 0.1283 0.0801 0.1979 0.0833
MFGAN 0.1307 0.0817 0.2176 0.0852
CSRM 0.1291 0.0818 0.1923 0.0842
ICM-SR 0.1299 0.082 0.2057 0.0849

CoCoRec 0.1557 0.0917 0.2609 0.1029

e Global Popularity (GlobalPop). It ranks items according to their popularities in the training set in

a descending order.

o Sequence Popularity (SeqPop). Tt ranks items according to their popularities in the target user’s
sequence in a descending order. The popularity of an item is updated sequentially when more actions

are observed.

Classical sequential recommendation solutions. We include solutions which only consider

sequential order of actions for dependence modeling.
o Recurrent Neural Network (GRU4Rec). It adopts GRU for sequential recommendations [10].

e Bidirectional Self-attentive Sequential Recommendation (BERT/Rec). It adopts self-attention for

sequential recommendations [33], which extends the SASRec model [27].

o Multi-temporal-range Mizture Model (M3R). It utilizes a mixture of RNN and self-attention
to capture the dependence on both distant past actions and recent past actions for sequential

recommendations [31].

Category-aware sequential recommendation solutions. We include solutions leveraging the

item category for recommendations.

e Category-Based Recommender (RNN+MTL). It incorporates category information by treating it as
an additional input to the neural sequence model [101]. Particularly, this solution utilizes multi-task

learning to predict both the next item and its category.

- in-category Emm - collaboration EEl complete

Taobao Taobao BeerAdvocate BeerAdvocate
0.105 0.08 0.020
0.25 1 0.100
. 0.06 1 0.0151
0.095 1
0.20 A 0.0101
0.090 1 0.04 A
0.005 1
0.15 0.085 0021
0.080 - 0.000 -
Recall@5 Recall@20 MRR@5 MRR@20 Recall@5 Recall@20 MRR@5 MRR@20
(@) (b) (c) (d)

Figure 3.4: Performance of variants of CoCoRec for ablation analysis on two datasets.

o Multi-Factor Generative Adversarial Network (MFGAN J*| Tt utilizes adversarial training to ensure
the generated action sequences still follow the distribution of the real-world action sequences [102]. It
leverages the category of the next action and item popularity as conditions used by the discriminator

in the adversarial learning.

Collaborative learning based sequential recommendation solutions. We include sequential

recommendation solutions utilizing collaborative learning to combat data sparsity issue.

o Collaborative Session-based Recommendation Machine (CSRM). It utilizes the entire action se-
quences of users to define the users’ similarities and retrieves neighboring users with similar prefer-
ences @ The neighboring users’ preferences are combined with the target user’s preferences to

predict the next item.

o Intent-guided Collaborative Machine for Session-based Recommendation (ICM-SR). This work is
an extension of CSRM, aiming at reducing the search space of neighbors @ It utilizes action
sequences to make initial next item predictions and filters the irrelevant users based on these initial

item predictions.

Evaluation Metrics. Recall@K and Mean Reciprocal Rank@K (MRR@QK) are used as evaluation
metrics. We rank all items for evaluation, instead of sampling a subset of items. This can avoid the
bias introduced by the sampling to the evaluation, as is demonstrated in |108] .

® Recall@K: Tt counts the proportion of times when ground-truth items are ranked among the top-K
predictions.

e MRR@K: It reports the average of reciprocal ranks of the ground-truth items among the top-k

predictions. If the rank is larger than K, the reciprocal rank is set to 0.

4the knowledge graph in this method is omitted as it is not available on these two datasets.

Results & analysis. The results of CoCoRec and baselines on two datasets are reported in Table[3.3]
where CoCoRec outperformed all baselines. Regarding heuristic solutions, since GlobalPop treats
each action independently and SeqPop only considers the dependence on actions associated with the

same item, both of them performed worse than CoCoRec.

None of the classical sequential recommendation solutions leverage category information when
modeling the action sequences. Without considering the fine-grained dependence among actions,
vanilla applications of existing neural sequence models, like GRU4Rec and BERT4Rec, performed
much worse than CoCoRec. M3R considers fine-grained dependence through a mixture of these neural
sequence models. But its worse performance against CoCoRec suggests that leveraging category
information is more useful to calibrate the dependence modeling than blindly combining a set of

distinct neural sequence models.

The category-aware sequential recommendation solutions leverage category information to enhance
the sequential recommendations. The worse performance achieved by RNN+MTL suggests that
without careful design, considering category information does not necessarily improve sequential
recommendation. MFGAN utilizes the category of the next action and the popularity of items to
calibrate the dependence on past actions. But it does not specifically model item-to-item transition
patterns within each category. Moreover, CoCoRec also makes use of category-specific action
subsequences of the neighboring users to enhance the next item prediction. Therefore, we observe

that CoCoRec achieved better performance than these category-aware solutions.

The collaborative learning based sequential recommendation solutions take advantage of neighboring
users’ actions to enhance the sequential recommendations. The better performance achieved by
CSRM over GRU4Rec shows explicit collaborative learning helps sequential recommendation. The
comparison between CSRM and ICM-SR suggests that improving the quality of retrieved neighboring
users enhances the utility of collaborative learning on sequential recommendations. Moreover,
CoCoRec outperformed ICM-SR, which proves that context-aware neighborhood modeling can

further increase the benefits of leveraging neighboring users’ actions.

3.5.3 Detailed Analysis on Our Approach

Ablation Analysis. We conducted ablation analysis to demonstrate the importance of different

components in CoCoRec. Specifically, we tested the following variants of CoCoRec:

- in-category. This variant excludes the in-category encoder from CoCoRec. It only utilizes the
recency encoder and the collaboration module (ignoring item category) to predict the next item. The
comparison between this variant and CoCoRec demonstrates the importance of using the in-category

encoder to model the in-category user preferences.

= collaboration. This variant excludes the collaboration module from CoCoRec. It only uses the
in-category encoder and the context encoder to predict the next item. The comparison between
this variant and CoCoRec demonstrates the value of using the collaboration module to leverage

neighboring users’ in-category preferences.

Results are reported in Figure 3.4 The observation that these two variants perform worse than
CoCoRec suggests that both the modeling f in-category preferences and the collaborative learning

are useful for sequential recommendation.

Hyper-parameter Analysis. We changed the value of hyper-parameters in CoCoRec and investi-

gated their influence on the recommendation quality.

0.17 Taobao Taobao 0.028 BeerAdvocate BeerAdvocate
‘ 0.26 ' 0074 0.014 0.019
0.090
r0.072
@0-16 0258 0.100 o SN S
= ® © = }0.070 ® © 0.018 ®
© 0.15 = < © 0.026 . = o
g S Z0.085 g g 0013 g
& 0248 = 0.095 2 lo.o6s @ = <
0.14 = Rt 0.017
r0.066
0.13 0.23 0.080 0.024 0.012
1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7
the number of categories (k) the number of categories (k) the number of categories (k) the number of categories (k)
(a) (b) (c) (d)

Figure 3.5: Performance of CoCoRec with different number of selected categories (k) on Taobao.

o Number of categories in top-k gating network. Because of the influence from the next category
prediction on the next item prediction, we study the effect of the number of categories k selected
by the gating network on the performance of CoCoRec. We report results in Figure [3.5] We can
observe CoCoRec achieves the best performance with k=3; and when k=1, the performance drops.
This is caused by imperfect category prediction, i.e., the ground-truth categories are not ranked at
the first position. In particular, the performance of the category prediction is Recall@5:0.7328 and
MRR@5:0.5510. The wrong predictions of the next category further impact the next item predictions.
On the other hand, when k keeps increasing, the performance also drops. The reason is that larger k
means more in-category user preferences are included for the next item prediction. This inevitably

introduces irrelevant in-category preferences, which eventually hurts the next item prediction.

o Number of actions in in-category encoder and context encoder. The lengths of category-specific
action subsequences affect the modeling of in-category user preferences. We study the effect of the
number of actions T' per category on the performance of CoCoRec. In addition, since the number of
recent actions affects both the modeling of category context and episodic context, we also study the
effect of the number of recent actions L on the performance of CoCoRec. The results on Taobao
dataset are reported in Table We can observe when too few actions are considered in the
in-category encoder, i.e., T'= 2, CoCoRec perform poorly. This is because limited information
about the in-category user preferences can be captured. Similarly, when too few recent actions are
considered in the context encoder, i.e., L =2, the performance drops. This suggests recent actions
contain important signals for the next item prediction.

Table 3.4: Performance of CoCoRec with different number of actions in in-category encoder (1) and context encoder
(L) on Taobao dataset.

Settings Recall@5 MRR@5 Recall@20 MRR@20

T=2 0.1322 0.0821 0.2371 0.0931
T=20 L=20 0.1557 0.0917 0.2609 0.1029
T=50 0.1559 0.0918 0.2604 0.1026
T—20 L=2 0.1301 0.0811 0.2253 0.0876

o L=50 0.1559 0.0919 0.2612 0.1030

o Number of retrieved neighboring users in collaboration module. Because the number of retrieved
neighbors affects the collaborative learning, we study the effect of the number of retrieved neighboring
users f on the performance of CoCoRec. The results are reported in Table We can see retrieving
either too few or too many neighboring users hurts the next item prediction. When too few neighbors
are retrieved, the collaboration effect is limited. Thus, the CoCoRec cannot benefit from similar
users. On the other hand, when too many neighbors are retrieved, including the action subsequences
from less relevant users hurts the next item prediction.

Table 3.5: Performance of CoCoRec with different number of retrieved neighbors on Taobao dataset.

Settings Recall@5 MRR@5 Recall@20 MRR@20

f=128 0.1502 0.0903 0.2371 0.0931
f=256 0.1557 0.0917 0.2609 0.1029
f=1024 0.1534 0.0907 0.2583 0.1017

Case Study. To examine our model’s behaviors, we qualitatively study in-category action subse-
quences, recent action subsequences, neighors’ in-category action subsequences, and the attention
weights of actions in these subsequences. We select a user and one of her actions in the testing

set as the target action. We retrieve the neighbors with similar in-category preferences to her, as

, \
User 45323 | next action

recent: (4470, 1) (19613, 40) 13880, 40) (53364, 157) [(19412,1) ' (2761,1)

in-category: (520,1) (19412,1) (2761,1) (4470,1) (19412,1)

Neighbor user 4461
in-category: (4470, 1) (4470, 1) (520, 1) (8706, 1) (16400, 1)

Figure 3.6: An example of the next item prediction by CoCoRec. The target user’s (user 45323) action sequence
is separated into category-specific subsequences. On the top, We visualize the action subsequence containing the
recent actions, and the action subsequence specific to the category of the next item. On the bottom, the most
similar neighbor’s (user 4461) in-category subsequence is presented. The actions in each subsequence are indexed
chronologically, denoted as a tuple (item id, category id). The color indicates the attention weight in self-attention
networks.

Figure [3.6/shows. We can observe the in-category subsequence of the top ranked neighbor has actions
in common with the in-category subsequence of the target user. The actions associated with items
(e.g., item 19412) which have appeared multiple times likely have large attention weight. In addition,
the item-to-item transitions (from item 19412 to item 2761) in the category-specific subsequence

suggest the next item.

3.6 Conclusion

In this chapter, suggested by our statistical analyses on the dependence structure introduced by the
category-specific action context, we propose CoCoRec to leverage category information to capture
the context-aware sequential structure among actions for recommendations. Specifically, a sequence
of actions is decomposed into multiple subsequences with respect to item categories. Within each
category-specific subsequence, CoCoRec employs a self-attention network to capture item-to-item
transition patterns. A top-k gating network is employed to predict the category of the next item, so
as to activate the in-category preferences for the next item prediction. Besides, CoCoRec models the
most recent actions as episodic context, due to their close proximity to the next action. To handle
sparsity in individual user’s action sequences, CoCoRec employs context-aware collaborative learning
across users with similar in-category preferences. Extensive experiments and ablation analyses on
two large datasets show that considering the sequential structure among actions helps CoCoRec

improve its sequential recommendation quality.

Currently we only considered the sequential order of actions in users’ interaction history with the
system. Since the actual time of those actions also conveys important contextual information, it is
important to consider how to extend CoCoRec to model such temporal information in the furture

work.

Chapter 4

Graph Based Extractive Explainer

for Recommendations

4.1 Introduction

Recommendations in online service platforms, from e-commerce (like Amazon) to streaming media
services (like Netflix), have greatly shaped people’s engagement with these platforms. However,
explanations about why a particular person gets a certain recommendation are not provided. Providing
explanations of recommendations to users is critical for recommender systems to improve the user
experience, as users not only care about which items have been recommended, but are also interested
in why these items are recommended. Take Figure a person who drank the beer Corona Extra
might be recommended with another beer Modelo Especial, by a service platform. She might not
understand why the service platform thinks she would like this beer (Modelo Especial) and thus
might reject the recommendation. However, an explanation explaining which features of an item
are important for a user could make the user realize the recommended item may suit her taste. For
example, suppose the user has commented the beer Corona Eztra with “The taste is like strong
corn.” presenting an explanation “Its taste is a balanced aroma of corn, with a hint of bitterness”

along with the recommended beer Modelo Especial might give her clear information about the beer

and help her make an informed decision, i.e., to purchase it or not.

Providing explanations for recommendations is attracting more and more attention for the purpose

64

Review: the taste is Why r.ecommend
\ like strong corn. — this beer?

o)

Past consumed item Recommendation

Figure 4.1: Example of the task of providing explanations for recommendations. Besides the recommendation, the user
also cares about the reason of the recommendation.

of making recommendations more understandable and reliable, which helps users make decisions.
Natural language based explainable methods have become one of the main stream solutions. Natural
language based explainable methods are to produce a text snippet to describe which features of
the item is important to the user. Due to the lack of dedicated corpus of textual sentences as
explanations, user-written reviews are treated as proxies of explanations, because reviews depict
noticeable features of items that users care about [16]. Most developed methods are based on the
nature language generation techniques. For example, in [57], the authors proposed a Recurrent
Neural Network (RNN) based solution which considers the user and item information to generate
sentences word-by-word. Likewise, in [23], the authors combined attention with RNN to improve the
generation quality of sentences. In [109], authors proposed to utilize the pointer network to improve

the explanation quality.

Although these solutions have achieved some encouraging results, the produced explanations have
issues. First, the generated sentences are generic. For different user-item pairs, the generated
sentences look very similar and features in these sentences are the same. The items’ noticeable
features that are important to certain users are missing. These solutions assume modeling sentences,
written by certain users to describe certain items, can capture which noticeable features of these
items are important to users. But because feature words take up a small portion and other functional
words which are not about features dominate in a sentence, these models are likely to capture the
correlation between functional words and user-item pairs. Thus, these models fail in capturing items’
noticeable features that are important to users. Second, the content in explanations is repetitive. As
a user’s perception of an item is related to the item’s multiple features, an explanation is expected to
cover multiple features in a long sentence or multiple sentences. Because of the limits in capturing
long dependence in a long sentence or multiple sentences, the generative models have difficulties
in generating long sentences or multiple sentences that cover multiple features. Consequently, the
models would generate repetitive words in a long sentences or generate the same sentences multiple

times.

Concerning these issues, we proposed a graph neural network based solution, GRaph Extractive
ExplaiNer (GREENer). We tackle the problem by extracting sentences from reviews as an explanation,
instead of generating sentences. Users care about particular features and thus tend to repeat
mentioning these features, while items have some noticeable features and thus are described with
these features many times. Therefore, the historical sentences written by users and historical sentences
describing items provide references of new explanations. First, to select sentences containing noticeable
item features which are important to the user, we explicitly model the co-occurrence of user-feature
and item-feature. Modeling the co-occurrence of user-feature and item-feature is to recognize which
noticeable item features are cared by the user. Based on the recognized features, we select sentences
that cover them. Considering the relations of user-feature, item-feature and feature-sentence, we
assume a graph structure among user, item, feature and sentence. Specifically, a graph consists of
four types of nodes: user node, item node, sentence node and feature node. An edge connects a
user node to a feature node if the user has used the feature to describe any item, while an edge
connects an item node to a feature node if the item has been described with the feature by any
user. In addition, an edge connect a feature node to a sentence node if the sentence contains the
feature. To leverage the graph structure, we appeal to graph attention network to obtain sentence
representations. For each sentence, based on its representation, we then predict whether a sentence
is a part of an explanation. Considering the predictions of features appearing in an explanation
are helpful to the predictions of sentences being included in an explanation, we propose to leverage
the supervision of both features and sentences. The joint loss of predicting features and sentences
is utilized to train the model, i.e., multi-task learning. Second, to reduce the redundancy in an
explanation, we select sentences by using similarities among sentences as another criterion besides

relevance. The advantages of GREENer include,

o GREENer uses relevance and similarity as criteria to extract sentences as explanations.

e GREENer utilizes graph structure among user, item, feature and sentence to recognize the relevance

of sentences to a pair of user and item.

To investigate the effectiveness of GREENer for producing explanations, we performed extensive
experiments on two large public datasets. Compared with state-of-the-art solutions for producing
explanations, GREENer improved the explanation quality in both BLEU and Rouge. Our ablation
analysis further demonstrated the importance of modeling these four types of nodes in the graph,

and also the importance of the graph structure. Case study shows that the produced explanations

contain noticeable features that are important to users.

4.2 Related Work

Due to the information explosion, it is difficult for people to digest all information and then make
decisions. Recommender systems which select relevant information and present them to users have
great impacts on people’s decisions [56,95.|]110-112]. Because of its great impact, its transparency
becomes a great concern to people. People not only care about the effectiveness of recommender
systems but also are curious about why the recommender systems believe they like the recommended
items. Explanations for recommendations are critical to the success of recommender systems, e.g.,

increasing user engagement [113-115].

Research on providing explanations for recommendations have attracted great attention. Several
types of explanations have been studied. One type of explanation is based on user-user collaborative
filtering. For example, the explanation might be “people who like Corona Extra also like Modelo
Especial.” Although this type of explanation can give the user a hint about how the recommendation
system works in the back-end, it does not show which particular features of this item are important

to the user.

Another type of explanation is natural language based explanations. These solutions exploit user-
written reviews as the proxies of explanations, as reviews depict items’ noticeable features that are
important to users. So far, solutions which learn to generate explanations from scratch word-by-word
are widely studied. The solutions are based on text generation techniques, like RNN or Attention.
To make the generated content personalized to users and specific to items, these solutions introduce
user and item representations as factors controlling the text generation. In [57], authors proposed a
RNN based solution incorporating user and item embeddings as the initial hidden states of RNN
to generate explanations. In 23], authors proposed a solution which combines RNN with attention
emphasizing a portion of words to improve the quality of generated explanations. In [21], authors
integrate images as extra factors to control the generation besides users and items. However, most
of existing generative solutions produce generic explanations which are not distinct for different
user-item pairs. They assume modeling sentences written by users to describe items can capture users’
preferences towards items’ features. However, the functional words dominate and feature words take
up a small portion in a sentence. The generative models are likely to capture the correlations between

functional words and user-item pairs, instead of the correlations between features and user-item pairs.

In addition, due to the limit of capturing long dependence in multiple sentences, the generation based

solutions would produce repetitive content in explanations.

Instead of generating sentences from scratch, some work proposed to predict features and then fill
these features into templates to generate explanations. In [16], authors proposed to predict features
that are personalized to users and specific to items by matrix factorization. With the predicted
features and the pre-defined templates, they produced explanations, like “You might be interested in
[feature], on which this product performs well.” In [17], authors extended the matrix factorization into
tensor completion with predictions of features. In [116], authors introduced the pairwise constraints
into the feature predictions. Thanks to considering the co-occurrence of user-feature and item-feature,
the explanations produced by these solutions are not generic. Additionally, because of the template,
explanations do not contain repetitive content. However, the strength stemmed from using templates
is also the bottleneck of these solutions, that is, the manually constructed templates are not necessarily
compatible with the predicted features. For example, when recommended item is the beer Corona
Ezxtra and the predicted feature is “corn”, having an explanation “You might be interested in corn,
on which this product performs well.” sounds confusing to the user. It is not nature to state the
beer performs well on corn, which can increase users’ untrust on the recommendation. Different from
these solutions, GREENer extracts sentences written by users as explanations, which can address

these linguistic issues.

Graph attention networks (GATs) have achieved great success in many tasks, like text classification
or reading comprehension [117H120]. GATSs can capture the high-order and complex relations among
nodes. With the message passing, GATs learn node representations by aggregating information from
nodes’ neighboring nodes. Based on the encoded node representations, GATs make downstream task
predictions. Early applications of GATs focus on homogeneous graphs which consists of the same
type of nodes , e.g., multi-class node classifications in Cora, Citeseer and Pubmed citation network
datasets [117]. Recently, researchers have applied GATSs to heterogeneous graphs with multiple types
of nodes, e.g., text summarization [120]. They have shown that GATs can capture multiple relations
among multiple types of nodes. Inspired by these work, we adopt GATs for our task to capture
multiple relations among user, item, feature and sentence nodes, i.e., the relations of user-feature

and item-feature, and feature-sentence.

4.3 Problem Definition

In this section, we introduce the notations used in this chapter and define the problem studied in this
chapter. Denote the item space as C of size |C|, the user space as U of size |U|, and the vocabulary
as V of size |V|. We assume there are G reviews written by users U towards items C. Sentences in
these G reviews are denoted as D = {Suc}tucu cec. Bach S, = {si.}¥, represents N sentences st
written by a user u towards an item c. Each sentence s,. = {wi}iTzl consists of T words w € V. The
set of sentences written by a user u over items is denoted as S, = {Suc}tcec. Likewise, the set of
sentences talking about an item ¢ written by users is denoted as S, = {Suc}ucy. The features F
are items’ popular properties mentioned in the D, which are a subset of |F| words selected from
the vocabulary V. For a pair of a user v € U and an item ¢ € C, the model is to select K sentences
{S"}E | from the union of sentences S, | J S, such that these K sentences best describe how the user

would perceive the item.

4.4 Graph Extractive Explainer for Recommendations

We assume the description of noticeable item features that are important to users can explain how
the user would perceive the item. Thus, our solution learns to produce sentences that contain these
features. Users have preferences towards particular features and tend to repeat emphasizing them,
while items have noticeable features and are likely to be described with these features multiple
times. Therefore, we propose to extract sentences from historical reviews as explanations. To select
sentences that can help users perceive items, we use relevance of sentences to user-item pairs as
an criterion. Specifically, we assume users, items, features and sentences are connected as graphs.
Then we adopt graph attention network to capture the dependence among them in the graphs and
estimate the relevance of sentences. Additionally, to reduce the redundancy of selected sentences,
we use similarities among sentences as another criterion to select sentences. We propose to utilize a
language model based strategy. It adds new sentences into an explanation, based on whether the
new sentences are similar to existing sentences in the explanation. We name the proposed solution as

GRaph Extractive ExplaiNer (GREENer).

4.4.1 Graph Structure

The graph structure among the user, the item, the sentences and features allow GREENer to leverage

the co-occurrence of user-feature, item-feature, and feature-sentence jointly.

little foam, bitter
Sentence 11 and strong start
User:

Wy T~ Feature 1:
bitter

\ e slight, subdued malt
* aroma, mildly bitter hop.

Feature 2:

Item:
Beer
Heineken

T Sentence 3: Nice golden color

golden with little foam.

Figure 4.2: Illustration of a graph constructed to extract sentences as explanations for a pair of a user and an item.
The graph consists of four types of nodes: user node, item node, feature nodes, and sentence nodes. User node is
connected to feature nodes, item node is connected to feature nodes, and feature nodes are connected to sentence
nodes.

Nodes. As Figure shows, a graph G consists of four types of nodes: a user node u, an item node
¢, |Sy| sentence nodes where S, = S, |J S represents the union of sentences written by the user u
and sentences talking about the item ¢, and M feature nodes { f;}f\il where M < |F| appearing in
sentences S,. The set of sentences S, = {s%,.}¥, written by the user u towards the item c is a subset
of Sy. The input representation of the user node is a dense vector X,,, obtained by mapping the
user index u through the input user embeddings E, € RIVIX% Likewise, the input representation of
the item node is a dense vector X., obtained by mapping the item index 7 through the input item

embeddings E, € RI€I*de In addition, to represent feature nodes, we map features {f;}f\il into

dense vectors {X f;}f\il through the input feature embeddings Fy € RIFIxds,

Because pre-trained large language models, i.e., Bidirectional Encoder Representations from Trans-
formers (BERT) have achieved the great success in encoding sentences, we use BERT to encode
sentences S, as their input representations. Specifically, we fine-tune the BERT on the corpus of
reviews. Then we use the hidden vectors of sentences outputted by the fine-tuned BERT {XSZ }Ligll

as input representations of sentence nodes, where XS; € R,

Edges. An edge e, s connects user node u to feature node f if the feature has been used by the user.
An edge ey connects item node c to feature node f if the feature has been used to describe the
item. In addition, an edge ey, connects feature node f to sentence node s if the sentence contains
the feature word. Notice that all these edges are nondirectional. In this chapter, the edge weights
are binary and other types of edge weights (e.g., frequency based weights) are left as future work to

study.

4.4.2 Graph Attention Layer

Given a graph g with nodes X, X., Xy, X, and edges e,f,ecr,efs, we adopt graph attention
networks (GAT) [117] to encode co-occurrence information into node representations. Specifically,
we stack L graph attention layer to map input node representations into output node representations
XU,XC, Xf,XS. Due to the recursive nature of graph attention, we use a layer to illustrate the
mechanism in our solution. For example, in the /th layer, the inputs to the graph attention layer are
H' = {H.,H., Hy, Hy}, which correspond to hidden representations of user node, item node, feature
nodes and sentence nodes. For the ith node hi in the graph, we obtain attention weights a! of its

connected nodes as,

Zéj = LeakyReLU(W! [Wé hi||W, h§]>

1 eXp(le'j)

o =
* Zj'e/\fi exp(zll-j,)

where N refers to other nodes connected to ith node, i.e., the neighboring nodes of ith node.

wi WC} W} are trainable parameters and || denotes the concatenation operation.

With the attention weights, we obtain the output hidden representation of the ith node in the Ith

layer as

hitt =0 () (al;hi) (4.1)

JEN;

With the dj, multi-head attention, we repeat the above process dj, times and merge the output hidden

representations from dj heads as the representation of the ith node as

I+1 _ jdp +1
hz‘ - Hhead:lhhead,i

where hlhti 4 18 obtained as Eq.

Note that for the initial attention layer, we use the input node representations X,,, X., Xy, X as the
input H°, and through L attention layers, we use the output representations HXt! as the output

node representations Xu, XC, Xf7 XS.

4.4.3 Relevance of Sentences

With output node representations by the graph attention layer, we make predictions of sentences
being included in an explanation. Considering the task of predicting sentences being included in an
explanation is related to the task of predicting features appearing in the explanation, we optimize

these two tasks jointly, i.e., multi-task learning.

Multi-task loss function. We use pairwise loss as the loss function of sentence predictions. The
ground truth pairwise order between a pair of sentences is obtained as: for each sentence, we obtain
its similarity to the ground truth explanation, and then rank these two sentences based on their
similarities. We use y,, to denote the similarity of the ith sentence. The ground truth pairwise order

between the ith sentence and the jth sentence is denoted as,

1 lf ySi > ij?
sign(ys, — ¥s;) = Q0 if Y5, == ys,.,

-1 if Ys; < Ys; -

With the output node representations of sentences, we obtain the unnormalized relevance scores of
sentences being selected. Specifically, we feed 2, of the ith sentence into a linear layer and obtain
its unnormalized relevance score as,

score(s;) = (W3, &s,) (4.2)

o

With the pairwise order and unnormalized relevance scores, we obtain the pairwise loss of the ith

sentence and the jth sentence as,

L= Z Z sign(ys, — ys,) log sigmoid(score(s;) — score(s;))
i€Sy jES,

We use cross entropy loss as the loss function of feature predictions. We obtain probabilities of
features appearing in the explanation by feeding the output node representations of features)A(f into

a linear layer and then a sigmoid layer. For the ith feature node, its probability is obtained as,

p(fi) = sigmoid((W{ , @ ,))

With the ground-truth label yy,, the loss of feature predictions is,

M
Ly ="y logp(f:)
=1

Combining these two losses, we obtain the objective function as
L=XL;+(1—-MNLy
where A is a hyper-parameter to control the weight of each loss in the objective function.

4.4.4 Sentence Extraction

Training & Testing. The sentences Sy, = S, |JS. appearing in the training data are candidate
sentences of an explanation. During training, the ground-truth sentences in an explanation are also a
part of candidate sentences. During training, we follow Eq. to obtain unnormalized relevance

scores and then use these scores to obtain the pairwise loss to train the model.

During testing, the ground-truth sentences are excluded from the candidate sentences. we follow
Eq. to obtain unnormalized relevance scores and then we feed these scores into sigmoid function
to obtain probabilities of sentences being included in an explanation. Based on the predicted

probabilities, we rank sentences in descending order.

To reduce redundancy in an explanation, we propose a language model based strategy to select
sentences. This strategy is to select sentences that do not have similar content and cover diverse
features in an explanation. We use overlap of trigrams to evaluate the content similarity in sentences
and use overlap of features to evaluate the diversity in explanations. The process of producing an
explanation for a user-item pair is: we add the top-ranked sentence into the explanation and then we
consider other sentences in the ranking order. We first look into whether the sentence has overlapping
trigrams with other existing sentences in the explanation. If there is any overlapping trigram between
the sentence and other existing sentences, we will skip this sentence and examine the next one. If
there is not any overlapping trigram, we will the look into whether the sentence has overlapping
features with other existing sentences in the explanation. If there is any overlapping features, we
will skip this sentence and examine the next one. Otherwise, we will add this sentence into the

explanation. We repeat the process until we have obtained k sentences in the explanation.

4.5 Experiments

In this section, we investigate the effectiveness of our proposed solution GREENer on producing
explanations. We conduct experiments on two large datasets. We compare our model against a set
of state-of-the-art baselines to illustrate its advantage. In addition, we also did ablation analysis to

study the importance of components in GREENer.

4.5.1 Experiment Setup

Since GREENer focuses on producing explanations, in the experiments, we assume the recommended
items are given. As GREENer is compatible with any recommendation algorithms, the recommended
items can be provided by any recommendation algorithms. The datasets used for evaluation
are Ratebeer dataset [121] and Yelp dataset [122]. Both of them contain reviews crawled from
corresponding platforms, including user, item, text content and rating information. In the Ratebeer
dataset, the rating range is [0, 20]. Since recommender systems generally recommend items that
are attractive to users, the desired explanations are positive sentiments. Thus, we use reviews with
ratings larger than 10 to construct the corpus for experiments. In the Yelp dataset, the rating range

is [1,5]. We use reviews with ratings larger than 3 to construct the corpus for experiments.

Data Processing. Reviews have been directly used as explanations in many previous work [18]/201/22].
But as suggested in [123], a large portion of sentences in a review describes personal subjective
experience, like “I drank two bottles of this beer.”. These sentences do not provide any reason why
the users like the items, which are not qualified as explanations. In contrast, sentences that serve
as explanations should describe the features of items, thus helping users make informed decisions,
like “taste is of bubble gum and some banana.”. Therefore, we construct the explanation dataset
by keeping informative sentences from reviews. Specifically. for the datasets, we use the Sentires
toolkit [42] to extract feature words from reviews and manually filter out inappropriate ones based
on domain knowledge. Then, for each review, we keep sentences that describe certain features of

items as explanations.

We filter inactive users and unpopular items, i.e., we keep users who have written at least fifteen
reviews and keep items which have been commented by users at least fifteen times. We keep 20,000
the most frequent words as the vocabulary. The statistics of the processed datasets are reported in
Table We split the dataset into training, validation, and testing dataset according to the ratio
70%:15%:15%.

Table 4.1: Summary of the processed datasets.

Dataset | # Users +# Items +# Reviews # Sentences # Features
Ratebeer 1,664 1,490 130,739 519,353 575
Yelp 4,604 7,837 191,227 602,572 498

Implementation Details. On both datasets, the dimension d, of user embeddings is chosen from
{128, 256,512}. We set d,, =256 in our experiments, as we did not observe further improvement
of performance with higher dimensions. The dimension d. of item embeddings is chosen from
{128,256,512} and we set d. = 256. The dimension d; of feature embeddings is chosen from
{128,256,512} and we set d; =256 due to its promising performance. The dimension ds is 768.
We have used L =2 graph attention layers with d, =4 head. In the objective function, the hyper-
parameter A is set to 0.5. The dropout rates are all set to 0.2. The batch size is set to 64. We utilize
Adam as the optimizer. We find that GREENer is sensitive to the learning rate. On Ratebeer dataset,
the optimal learning rate is set to be 0.0001, which is chosen from {0.00001,0.0001, 0.0005,0.001}.
On Yelp dataset, the learning rate is set to 0.0001. Our implementation is based on the pytorch

geometric library

Baselines. We compare our model with three baselines that can produce natural language sentences

as explanations:

e NARRE: Neural Attentional Regression model with Review-level Explanations [20] is an
extractive solution. It utilizes user and item representation to attend the reviews, and measures
the relevance of the existing reviews with attention weights. It selects the review with largest

attention weight as the explanation.

e NRT: Neural Rating and Tips Generation [57], is a generative solution. It is originally proposed
for tip (a short summary) generation, but can be seamlessly adapted to generate explanations.

It is based on RNN language model.

e Attr2Seq: Attribute-to-sequence model [57], is a generative solution. It combines attention
with RNN to take the user, item and rating as input to generate an explanation. It places

different weights to user, item and rating when generating every word in the explanation.

Thttps://pytorch-geometric.readthedocs.io/en/latest/

Table 4.2: Comparison of explanation quality by different methods.

BLEU Rouge
1 2 3 4 1 2 L
Ratebeer Dataset
NRT 19.85 10.11 537 2.84 23.97 571 21.93
Attr2Seq | 27.02 14.41 826 4.84 2712 7.10 23.52
NARRE 24.23 8.95 3.45 1.38 2720 3.37 23.85
GREENer | 33.95 16.89 9.16 5.28 | 35.58 8.12 32.14
Yelp Dataset
NRT 3.29 1.47 0.72 0.33 15.19 3.28 13.16
Attr2Seq 9.49 4.45 221 1.08 | 16.90 3.77 14.26
NARRE 17.85 5.96 2.05 0.75 24.53 2.56 20.33
GREENer | 20.86 7.22 2.58 1.03 | 27.04 2.85 22.64

Model

4.5.2 Quality of Generated Explanations

To comprehensively evaluate the quality of generated explanations, we measure the explanation
quality with different types of metrics, including BLEU-1, 2, 3, 4 and Rouge score. The results are
reported in Table

GREENer outperforms baselines under every BLEU metric on the dataset. As BLEU is a precision
based metric, a larger BLEU achieved by a model suggests that a larger portion of content in
explanations produced by the model overlaps with the ground-truth explanations. Thus, the larger
BLEU achieved by GREENer suggests that more content in explanations produced by GREENer is
consistent with the users’ perception of the items. The comparison of GREENer against NARRE
shows though both methods are extractive methods, considering graph structure in data helps
GREENer. The comparison of GREENer against NRT and Attr2Seq shows that the extractive
method can produce higher quality of explanations than the generative method. Especially on
Ratebeer dataset, GREENer achieves much larger BLEU-4 than others do, which further shows

GREENer can produce explanations aligning with users’ understanding of items.

Moreover, GREENer outperforms baselines under every Rouge metric on the dataset. As Rouge is a
recall based metric, a larger Rouge achieved by a model suggests that more content in ground-truth
explanations are included in the explanations produced by the model. Thus, the larger Rouge
achieved by GREENer suggests that GREENer can recognize more content about users’ perception
of items than other methods do. This further demonstrates the effectiveness of GREENer. Especially
GREENer achieves larger Rouge-L than other models do. This indicates that explanations produced

by GREENer contain long phrases that match users’ perceptions towards items.

Table 4.3: Comparison of explanation quality by GREENer with different number of selected sentences k.

i BLEU Rouge
1 2 3 4 1 2 L
Ratebeer Dataset
3| 21.53 11.69 6.98 4.25 23.48 6.91 21.42
4| 3124 1584 876 5.13 31.71 7.53 29.06

5133.95 16.89 9.16 5.28 | 35.58 8.12 32.14
Yelp Dataset
2| 14.02 441 1.52 0.60 | 16.48 1.46 14.63
21.45 715 251 099 | 2226 217 19.02
4120.86 7.22 2.58 1.03 | 27.04 2.85 22.64

w

4.5.3 Hyperparameter

As the number of selected sentences would influence the performance of GREENer, we vary the
number of selected sentences to study the influence. On Ratebeer dataset the average number of
sentences in an explanation is 3.4, while the average number of sentences on Yelp dataset is 2.5. We
set the number of selected sentences k to be 3,4,5 on Ratebeer dataset, while we set k to be 2,3,4
on Yelp dataset. The results are reported in Table We could observe when too few sentences are
selected, i.e., k = 3 on Ratebeer dataset or kK = 2 on Yelp dataset, the quality of explanations drops.

This is because the extracted explanations cover less content in ground-truth explanations.

4.5.4 Ablation Analysis

We include three variants of our solution to study the contribution of each component to the

performance of GREENer:

e — graph. This variant excludes the graph structure. It does not consider user, item, feature and
sentence are connected with graphs. We concatenate user, item, feature and sentence representations
to predict whether a sentence is in an explanation. As multiple features appear in a sentence,
we use the average pooling over the multiple feature representations for the sentence prediction.
The comparison between this variant and GREENer demonstrates the importance of utilizing the

graph structure among data to obtain relevance of sentences.

e — language model. This variant excludes the language model based strategy when selecting
sentences. It select sentences as explanations based on the relevance of sentences. The comparison

between this variant and GREENer shows the importance of reducing redundancy.

Results are reported in Table From the table, we can observe these variants perform worse than

Table 4.4: Comparison of explanation quality by different variants of GREENer

BLEU Rouge
Model 1 2 3 4 1 2 L
Dataset Ratebeer
— graph 18.14 6.49 2.77 1.28 15.65 1.84 15.73
- language model | 25.44 13.42 819 5.34 | 26.17 7.99 22.86
GREENer 33.95 16.89 9.16 5.28 | 35.58 8.12 32.14

Table 4.5: Example explanations produced by different models.

Model Explanation

Example 1
Ground-Truth bottle 2010. dark cloudy amber colour.

malty, sweet, toffee, dark fruit, licorice, a touch of alcohol,
bitterness in the finish. feels rather light bodied for the abv.

NARRE the finish is dry and ashy .

NART flavor of chocolate , roasted malt ,

and light smoke .

GREENer amber colour with a white head.
aroma : malty & sweet, dried fruit, figs, caramel.
bitter and roasted finish. a bit fruity, some biscuity malt, nuts, light bitterness.
updated : jan 14, 2008 bottle at bishops arms in gothenburg.

GREENer. This observation suggests that utilizing the graph structure to obtain the relevance of
sentences is important for GREENer. In addition, considering the similarities among sentences when

selecting sentences as explanations is also important.

4.5.5 Case Study

We include example explanations produced by GREENer and other baselines in Table The
ground-truth explanations are also included for reference. From the table, we could see that the
extracted sentences are close to the ground truth explanations. The features in extracted sentences
match those in ground truth explanations. In the example, features “amber”, “colour”, and “malty”

appear in both extracted sentences and explanations. With these features, the explanation can help

the user have a clear personalized understanding of the item.

4.6 Conclusion

In this chapter, we study the problem of producing explanations for recommendations. The expla-
nations produced by existing solutions are generic and repetitive. To address these two issues, we
proposed GRaph Extractive ExplaiNer (GREENer) to extract sentences from the review corpus
as explanations. GREENer utilizes relevance and similarity to select sentences as explanations.

To produce explanations that describe users’ perception of items, GREENer considers the graph

structure among user, item, feature and sentence to obtain the relevance of sentences. To reduce the
redundancy in explanations, GREENer utilizes a language model based strategy to select relevant
sentences as explanations. Experiments show that GREENer produces explanations that match
users’ perception of items more accurately than baselines do. We are the first one to leverage the

graph structure to produce explanations for recommendations.

In this work, we use processed reviews as explanations. It would be meaningful to consider collecting
large datasets of explanations by crowdsourcing. In addition, iterative communications between
systems and users might further boost the utility of explanations on helping users understand
the recommendations and make informed decision. Thus, it would be interesting to look into

conversational explanations for recommendations.

Chapter 5

Conclusions and Future Work

Recommender systems have become indispensable for people to access information. The systems
have shaped people’s choices, from shopping, eating, to entertainment, etc. The great impact calls
for effective recommendations and explanations for recommendations. With effective and transparent
recommendations, users can make informed decisions, thus optimizing both users’ goals and service

providers’ objectives.

In this thesis, we focus on explicitly exploiting the structure among feedback to improve the
effectiveness and explainability of recommender systems. Various types of structure, like sequential
structure and graph structure, are considered in proposed solutions. The utility of proposed solutions
has been proved by extensive experiments on large datasets from online web service platforms. This
thesis introduced new insights on developing effective and explainable recommender systems, e.g.,
exploiting the structural information among data. In this chapter, we will first summarize the thesis

and discuss future work.

5.1 Conclusions

In this thesis, we proposed solutions to make use of the structure among feedback to improve the
effectiveness and transparency of recommender systems. To improve the effectiveness of recom-
mendations, we proposed solutions to address the problem of contextualized recommendations, i.e.,
making recommendations to users under different context. Treating occurring time of actions and

item category of actions as context, proposed solutions consider contextualized sequential structure

80

among actions to recommend items to users under different context. To improve the transparency
of recommendations, we proposed solutions to tackle the problem of providing explanations for
recommended items. Proposed solutions consider the graph structure among user-written content
(e.g., sentences in reviews) to extract sentences from reviews as explanations. We have conducted
extensive experiments to investigate the utility of proposed solutions on large datasets. The compar-
ison against state-of-the-art baselines demonstrate that our proposed solutions for contextualized
recommendations can enhance the recommendation quality. Additionally, the proposed solution
for providing explanations for recommendations can improve the quality of explanations. In the

following, we summarize each part of the thesis.

Temporal Contextualized Recommendation. In this part, treating occurring time of actions
as context, the proposed solutions address the critical problem in contextualized recommendations
that the user preferences based on historical actions varies over time. To predict the next item, we
consider the time-aware sequential structure among actions. In the first proposed solution, Long- and
Short-term Hawkes Process, the time-aware sequential structure is instantiated as, actions within
the same session have short-term sequential dependence mutually, while actions associated with
the same item across sessions have long-term sequential dependence. In addition, both of these
two types of dependence decay over time. Experiments show that the long-term and short-term
time-aware sequential structure helps LSHP improve the recommendation quality. Concerning that
the decaying rates of influence from historical actions are diverse while they are fixed in LSHP, we
proposed the second solution, Contextualized Temporal Attention. In CTA, the time-aware sequential
structure is instantiated as the sequential dependence among actions is determined by both gaps
between occurring time of actions and local sensitivity and seriousness of actions. The influence from
historical actions decays with a mixture of multiple rates. Experiments show that CTA improves
the recommendation quality by considering contextualized time-aware sequential structure. These
solutions provide insights in effectively utilizing the temporal information to improve recommendation

quality.

Category-aware Contextualized Recommendation. Treating the item category of an action
as the action’s context, we proposed CoCoRec considering the category-aware sequential structure
for recommendations. Supported by statistical analyses, we instantiate the sequential structure
as, actions in the in-category subsequence (i.e., the subsequence containing actions of the same
item category) have sequential dependence. In addition, other users’ in-category subsequences

suggest the next action of the target user. Experiments and ablation analyses on two large datasets

show that category-aware sequential structure helps CoCoRec improve its recommendation quality.
This solution sheds light on utilizing item category information to enhance the effectiveness of

recommendations.

Graph Extractive Explainer. We worked on the task of providing nature language explanations
for recommendations. The problem we addressed in this work is nature language explanations are not
personalized to a recommended item and an user who perceive the recommendation. We proposed
the solution GRaph Extractive ExplaiNer (GREENer) extracting sentences from the review corpus
as explanations. To model user preferences, GREENer utilizes the co-occurrence of user-feature. To
model item properties, GREENer utilizes the co-occurrence of item-feature. To fuse user preferences
and item properties into the sentence extraction, GREENer utilizes the co-occurrence of feature-
sentence. By constructing a graph connecting the user, the item, sentences in reviews and feature
words in sentences, GREENer takes advantage of these three types of co-occurrence. Experiments
show that the graph structure helps GREENer produce sentences that match users’ opinions towards
items more accurately than state-of-the-art methods do. This solution brings new perspective into

the study of improving the transparency of recommendations.

5.2 Future Work

5.2.1 Short-term Future Work

Improving the effectiveness and explainability of recommender systems is demanding. Some interesting

extensions of our proposed solutions are worth considering as future work.

In the proposed solutions for temporal contextualized recommendations, we did not consider signals
conveyed by different types of actions vary. When interacting with online service platforms, users
generate different types of actions, like clicking items or purchasing items on e-commerce websites.
Clicks may be generated casually, while purchases are generated seriously (excluding malicious
behaviors). Compared with clicks, purchases can tell user preferences with high confidence. With this
interpretation of action types, the influence from purchases would decay in a slower rate than clicks.
On the other hand, because users would generally not continue looking for the recently purchased
items while users may repeat clicking recently clicked items, the influence from purchases would
decay in faster rate than clicks. Differentiating action types brings in new understanding of the

influence from these actions. These signals call for new solutions considering the time-aware sequential

structure. In addition, the proposed solutions did not leverage other users’ actions for collaborative
learning. Sparsity of actions is still a challenge temporal contextualized recommendations face. As we
have shown in the work for category-aware contextualized recommendations, collaborative learning
can mitigate the sparsity issue, thus improving the recommendation quality. How to do collaborative

learning for temporal contextualized recommendations is worth further attention in the future.

In the proposed solution for category-aware contextualized recommendations, we did not consider
the influence from past actions decays over time. We have shown that considering the decaying effect
of influence over time is useful to improve the recommendation quality. Therefore, it would be worth
considering the decaying effect for category-aware contextualized recommendations. In addition,
other types of proxies to context are worth exploring. we have explored the occurring time of actions
and the item category of actions as context. Other meta data associated with actions, like location,
also provides critical information about user preferences. Moreover, considering multiple types of
proxies together in a solution may improve the recommendation quality further. We have worked
on solutions by considering individual type of proxy. As different types of context enable different
interpretations of actions, jointly modeling multiple types of context may provide a comprehensive

picture of user preferences.

In the proposed solution for graph based extractive explainer for recommendations, we did not
consider edge weights in the graph. As edge weights are correlated with the importance of nodes,
modeling edge weights may enable the solution to capture co-occurrence patterns more effectively
than the current solution does. In addition, the sentences which appear in the same reviews are
considered separately in the proposed solution. Probably sentences in the same reviews can suggest
each other. Their special correlations are not modeled. It would be worth studying this in the

future.

5.2.2 Long-term Future Work

Because of the pervasiveness of recommender systems on people’s lives, it is demanding to care about
the social impact of recommendations. This involves effective, explainability, fairness, and privacy of
recommender systems. In this thesis, we have studied the explainability of recommender systems.

Both the fairness and the privacy of recommender systems call for further attentions.

Fairness. Recommender systems are trained to capture patterns in data. The bias in data would lead

to biased recommender systems, like female users are associated with low-paid jobs. Consequently,

the recommender systems provide biased recommendations, e.g., recommending low-paid jobs to
female users. The definitions of fairness are various with different concerns and not standardized.
Since recommender systems involve at least two parties, i.e., users and items, the definitions of
fairness in recommender systems become more diverse. Concerning users’ fairness in recommender
systems, some commonly accepted definitions include: the probabilities of recommending items to
users should not dependent on users’ sensitive attributes, like race or gender, i.e., demographic parity;
the probabilities of recommending relevant items to users should not dependent on users’ sensitive
attributes, i.e., equal opportunity. Likewise, there are corresponding definitions emphasizing items’
fairness. Adopting which definition depends on specific applications. Moreover, the bias issues in
recommender systems are not tolerable. Mitigating the bias is of great urgency. Conventionally, when
training recommender systems, we develop objective functions encouraging recommender systems
to fit the data. Concerning the bias in data, it is necessary to include fairness related losses into
objective functions. Thus, the recommender systems are trained to care about both the effectiveness

and the fairness of recommendations.

To make the recommender systems fair, a large amount of research problems need to be addressed.
Some interesting problems include how to mitigate the popularity bias of items and how to mitigate
the activity bias of users. Popularity bias of items refer to the observation that popular items tend to
be recommended more accurately than unpopular items. This type of bias prevents unpopular items
from being recommended accurately. Consequently items which are new to the recommender systems
would hardly be accessed by others. Activity bias of users refer to the observation that active users
tend to have higher quality recommendations than inactive users do. This type of bias discourages

inactive users to have wonderful experience in accessing information.

The insight about the structure among user feedback in this thesis can help address the fairness
problems in recommender systems. For example, for the popularity bias of items, we could utilize the
sequential structure among feedback to infer the correlation between popular items and unpopular

items. Therefore, we can improve the recommendation quality of popular items.

Privacy. Data used to train recommender systems is composed of user interactions. The user
interactions can be used to infer user preferences. On the other hand, they can be used to infer
users’ identities. This would cause privacy issues, e.g., private information leakage. What is worse,
service providers keep the data on their side, which allows malicious third parties to misuse the data.

Privacy preserving recommender systems are demanding. Differential Privacy (DP) aims at solving

the problem in recommender systems that other users’ information is leaked to improve the target
user’s recommendation quality. For example, in Netflix, to recommend movies to a user, both this
user’s historical ratings and other users’ historical ratings are used. To mitigate the leakage of other
users’ information, DP based solutions add noise to the data [124]. Although these solutions achieve
encouraging results in preserving privacy, the recommendation quality drops a lot. In addition, to
avoid keeping all user data on the service providers’ side, federated learning has been studied for
recommender systems. However, so far the existing solutions sacrifice the recommendation quality
dramatically. This thesis may shed some light on addressing the problem. Effectively utilizing the
structural information among a user’s own feedback can save the model from relying on utilizing

other user’s private information to improve the recommendation quality.

Developing effective, explainable, fair and privacy preserving recommender systems requires long-term
and interdisciplinary efforts. Ultimately, we would like the recommender systems make the world

better.

Bibliography

1]

[9]

[10]

[11]

Dietmar Jannach and Michael Jugovac. Measuring the business value of recommender systems.
ACM Transactions on Management Information Systems (TMIS), 10(4):1-23, 2019.

Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender system:
A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1):1-38, 2019.

Gediminas Adomavicius and Alexander Tuzhilin. Context-aware recommender systems. In
Recommender systems handbook, pages 217-253. Springer, 2011.

Gediminas Adomavicius, Ramesh Sankaranarayanan, Shahana Sen, and Alexander Tuzhilin.
Incorporating contextual information in recommender systems using a multidimensional
approach. ACM Transactions on Information systems (TOIS), 23(1):103-145, 2005.

Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat Thalmann. Time-
aware point-of-interest recommendation. In Proceedings of the 36th international ACM SIGIR
conference on Research and development in information retrieval, pages 363-372, 2013.

Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver. Multiverse
recommendation: n-dimensional tensor factorization for context-aware collaborative filtering.
In Proceedings of the fourth ACM conference on Recommender systems, pages 79-86, 2010.

Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-Thieme. Fast
context-aware recommendations with factorization machines. In Proceedings of the 34th
international ACM SIGIR conference on Research and development in Information Retrieval,

pages 635644, 2011.

Linas Baltrunas, Bernd Ludwig, and Francesco Ricci. Matrix factorization techniques for
context aware recommendation. In Proceedings of the fifth ACM conference on Recommender
systems, pages 301-304, 2011.

Yifei Ma, Balakrishnan Narayanaswamy, Haibin Lin, and Hao Ding. Temporal-contextual
recommendation in real-time. In Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery € Data Mining, pages 2291-2299, 2020.

Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

Massimo Quadrana, Alexandros Karatzoglou, Baldzs Hidasi, and Paolo Cremonesi. Personaliz-
ing session-based recommendations with hierarchical recurrent neural networks. In Proceedings
of the Eleventh ACM Conference on Recommender Systems, pages 130-137. ACM, 2017.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

86

[13]

[14]

[15]

[16]

[21]

[22]

[23]

Ajay Shrestha and Ausif Mahmood. Review of deep learning algorithms and architectures.
IEEE Access, 7:53040-53065, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural informa-
tion processing systems, pages 5998-6008, 2017.

Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng Cai. What
to do next: Modeling user behaviors by time-lstm. In IJCAI, pages 3602-3608, 2017.

Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping Ma. Explicit
factor models for explainable recommendation based on phrase-level sentiment analysis. In
Proceedings of the 37th international ACM SIGIR conference on Research & development in
information retrieval, pages 83-92, 2014.

Nan Wang, Hongning Wang, Yiling Jia, and Yue Yin. Explainable recommendation via multi-
task learning in opinionated text data. In The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval, pages 165-174, 2018.

Xiting Wang, Yiru Chen, Jie Yang, Le Wu, Zhengtao Wu, and Xing Xie. A reinforcement
learning framework for explainable recommendation. In 2018 IEEE International Conference
on Data Mining (ICDM), pages 587-596. IEEE, 2018.

Yiyi Tao, Yiling Jia, Nan Wang, and Hongning Wang. The fact: Taming latent factor models
for explainability with factorization trees. In Proceedings of the 42Nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 295-304,
New York, NY, USA, 2019. ACM.

Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. Neural attentional rating regression
with review-level explanations. In Proceedings of the 2018 World Wide Web Conference, pages
1583-1592, 2018.

Quoc-Tuan Truong and Hady Lauw. Multimodal review generation for recommender systems.
In The World Wide Web Conference, pages 1864-1874, 2019.

Peijie Sun, Le Wu, Kun Zhang, Yanjie Fu, Richang Hong, and Meng Wang. Dual learning
for explainable recommendation: Towards unifying user preference prediction and review
generation. In Proceedings of The Web Conference 2020, pages 837-847, 2020.

Li Dong, Shaohan Huang, Furu Wei, Mirella Lapata, Ming Zhou, and Ke Xu. Learning

to generate product reviews from attributes. In Proceedings of the 15th Conference of the
FEuropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers,
pages 623-632, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

Jiaxuan You, Yichen Wang, Aditya Pal, Pong Eksombatchai, Chuck Rosenberg, and Jure
Leskovec. Hierarchical temporal convolutional networks for dynamic recommender systems.
arXw preprint arXiv:1904.04381, 2019.

Qiang Cui, Shu Wu, Yan Huang, and Liang Wang. A hierarchical contextual attention-based
gru network for sequential recommendation. arXiv preprint arXiv:1711.05114, 2017.

[27]

[28]

[29]

[30]

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018
IEEE International Conference on Data Mining (ICDM), pages 197-206. IEEE, 2018.

Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional
sequence embedding. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, WSDM ’18, pages 565-573, New York, NY, USA, 2018. ACM.

Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and Hongyuan
Zha. Sequential recommendation with user memory networks. In Proceedings of the eleventh
ACM international conference on web search and data mining, pages 108-116. ACM, 2018.

Rengin Cai, Xueying Bai, Zhenrui Wang, Yuling Shi, Parikshit Sondhi, and Hongning Wang.
Modeling sequential online interactive behaviors with temporal point process. In Proceedings
of the 27th ACM International Conference on Information and Knowledge Management,
pages 873-882. ACM, 2018.

Jiaxi Tang, Francois Belletti, Sagar Jain, Minmin Chen, Alex Beutel, Can Xu, and Ed H
Chi. Towards neural mixture recommender for long range dependent user sequences. arXiv
preprint arXiv:1902.08588, 2019.

Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H Chi. La-
tent cross: Making use of context in recurrent recommender systems. In Proceedings of
the Eleventh ACM International Conference on Web Search and Data Mining, pages 46-54,
2018.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec:
Sequential recommendation with bidirectional encoder representations from transformer.

arXiw preprint arXiv:1904.06690, 2019.

Ron Begleiter, Ran El-Yaniv, and Golan Yona. On prediction using variable order markov
models. Journal of Artificial Intelligence Research, 22:385-421, 2004.

Yuling Shi, Zhiyong Peng, and Hongning Wang. Modeling student learning styles in moocs. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,
pages 979-988. ACM, 2017.

Jacques Janssen and Nikolaos Limnios. Semi-Markov models and applications. Springer
Science & Business Media, 2013.

Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes.
Biometrika, 58(1):83-90, 1971.

Dixin Luo, Hongteng Xu, Yi Zhen, Xia Ning, Hongyuan Zha, Xiaokang Yang, and Wenjun
Zhang. Multi-task multi-dimensional hawkes processes for modeling event sequences. In
1JCAI pages 3685-3691, 2015.

Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing. Recurrent
recommender networks. In Proceedings of the tenth ACM international conference on web
search and data mining, pages 495-503, 2017.

Lee Ryan, Christine Cox, Scott M Hayes, and Lynn Nadel. Hippocampal activation during
episodic and semantic memory retrieval: Comparing category production and category cued
recall. Neuropsychologia, 46(8):2109-2121, 2008.

Endel Tulving et al. Episodic and semantic memory. Organization of memory, 1:381-403,
1972.

[42]

[43

[48]

[49]

[50]

51

[52]

Mengting Wan, Di Wang, Matt Goldman, Matt Taddy, Justin Rao, Jie Liu, Dimitrios Lym-
beropoulos, and Julian McAuley. Modeling consumer preferences and price sensitivities from
large-scale grocery shopping transaction logs. In Proceedings of the 26th International Con-
ference on World Wide Web, pages 1103-1112. International World Wide Web Conferences
Steering Committee, 2017.

Caroline Lo, Dan Frankowski, and Jure Leskovec. Understanding behaviors that lead to pur-
chasing: A case study of pinterest. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 531-540. ACM, 2016.

Jinyoung Yeo, Sungchul Kim, Eunyee Koh, Seung-won Hwang, and Nedim Lipka. Predicting
online purchase conversion for retargeting. In Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining, pages 591-600. ACM, 2017.

Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. Engaging with
massive online courses. In Proceedings of the 23rd international conference on World wide web,
pages 687—698. ACM, 2014.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and
Le Song. Recurrent marked temporal point processes: Embedding event history to vector. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1555-1564. ACM, 2016.

Hongning Wang, Yang Song, Ming-Wei Chang, Xiaodong He, Ahmed Hassan, and Ryen W
White. Modeling action-level satisfaction for search task satisfaction prediction. In Proceedings
of the 37th international ACM SIGIR conference on Research & development in information
retrieval, pages 123-132. ACM, 2014.

Amanda Spink, Minsoo Park, Bernard J Jansen, and Jan Pedersen. Multitasking during web
search sessions. Information Processing €& Management, 42(1):264-275, 2006.

Claudio Lucchese, Salvatore Orlando, Raffaele Perego, Fabrizio Silvestri, and Gabriele
Tolomei. Identifying task-based sessions in search engine query logs. In Proceedings of
the fourth ACM international conference on Web search and data mining, pages 277—-286.
ACM, 2011.

Wendy W Moe. Buying, searching, or browsing: Differentiating between online shoppers using
in-store navigational clickstream. Journal of consumer psychology, 13(1-2):29-39, 2003.

Hongning Wang, Yang Song, Ming-Wei Chang, Xiaodong He, Ryen W White, and Wei Chu.
Learning to extract cross-session search tasks. In Proceedings of the 22nd international
conference on World Wide Web, pages 1353-1364. ACM, 2013.

Alexander Kotov, Paul N Bennett, Ryen W White, Susan T Dumais, and Jaime Teevan.
Modeling and analysis of cross-session search tasks. In Proceedings of the 34th international

ACM SIGIR conference on Research and development in Information Retrieval, pages 5—14.
ACM, 2011.

Rosie Jones and Kristina Lisa Klinkner. Beyond the session timeout: automatic hierarchical
segmentation of search topics in query logs. In Proceedings of the 17th ACM conference on
Information and knowledge management, pages 699-708. ACM, 2008.

Eugene Agichtein, Ryen W White, Susan T Dumais, and Paul N Bennet. Search, interrupted:
understanding and predicting search task continuation. In Proceedings of the 35th interna-
tional ACM SIGIR conference on Research and development in information retrieval, pages

315-324. ACM, 2012.

[55]

[60]

[61]

[62]

[63]

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized
markov chains for next-basket recommendation. In Proceedings of the 19th international
conference on World wide web, pages 811-820. ACM, 2010.

Steffen Rendle. Factorization machines. In 2010 IEEE International Conference on Data
Mining, pages 995-1000. IEEE, 2010.

Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. Neural atten-
tive session-based recommendation. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, pages 1419-1428. ACM, 2017.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Zihang Dai, Zhilin Yang, Yiming Yang, William W Cohen, Jaime Carbonell, Quoc V Le,
and Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length
context. arXiv preprint arXiv:1901.02860, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. Technical report.

Yehuda Koren. Collaborative filtering with temporal dynamics. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages
447-456. ACM, 2009.

Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff Schneider, and Jaime G Carbonell. Temporal
collaborative filtering with bayesian probabilistic tensor factorization. In Proceedings of the
2010 SIAM international conference on data mining, pages 211-222. STAM, 2010.

Yang Song, Ali Mamdouh Elkahky, and Xiaodong He. Multi-rate deep learning for tempo-
ral recommendation. In Proceedings of the 39th International ACM SIGIR conference on
Research and Development in Information Retrieval, pages 909-912. ACM, 2016.

Lei Li, Li Zheng, Fan Yang, and Tao Li. Modeling and broadening temporal user interest in
personalized news recommendation. Fzpert Systems with Applications, 41(7):3168-3177, 2014.

Yang Li, Nan Du, and Samy Bengio. Time-dependent representation for neural event sequence
prediction. arXiv preprint arXiv:1708.00065, 2017.

Samarjit Das. Time series analysis. Princeton University Press, Princeton, NJ, 1994.

Louis L Scharf and Cédric Demeure. Statistical signal processing: detection, estimation, and
time series analysis, volume 63. Addison-Wesley Reading, MA, 1991.

Patrick J Laub, Thomas Taimre, and Philip K Pollett. Hawkes processes. arXiv preprint
arXiv:1507.02822, 2015.

Hongteng Xu and Hongyuan Zha. A dirichlet mixture model of hawkes processes for event
sequence clustering. In Advances in Neural Information Processing Systems, pages 1354—1363,
2017.

Bjgrnar Vassgy, Massimiliano Ruocco, Eliezer de Souza da Silva, and Erlend Aune. Time is of
the essence: a joint hierarchical rnn and point process model for time and item predictions. In
Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining,
pages 591-599. ACM, 2019.

[71]

[72]

[76]

[77]

Shuai Xiao, Junchi Yan, Xiaokang Yang, Hongyuan Zha, and Stephen M Chu. Modeling
the intensity function of point process via recurrent neural networks. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating
multivariate point process. In Advances in Neural Information Processing Systems, pages
6754-6764, 2017.

Martin Arlitt. Characterizing web user sessions. ACM SIGMETRICS Performance Evaluation
Review, 28(2):50-63, 2000.

Yosihiko Ogata. Statistical models for earthquake occurrences and residual analysis for point
processes. Journal of the American Statistical association, 83(401):9-27, 1988.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends®) in Machine Learning, 3(1):1-122, 2011.

Hua Ouyang, Niao He, Long Tran, and Alexander Gray. Stochastic alternating direction
method of multipliers. In International Conference on Machine Learning, pages 80-88, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770778, 2015.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiw preprint arXiv:1503.02531, 2015.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IFEE Transac-
tions on Signal Processing, 45(11):2673-2681, 1997.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111-3119, 2013.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, UAI ’09, pages 452-461, Arlington,
Virginia, United States, 2009. AUAT Press.

Balézs Hidasi and Alexandros Karatzoglou. Recurrent neural networks with top-k gains for
session-based recommendations. In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, pages 843-852. ACM, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929-1958, 2014.

[86] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th International Conference on International Conference
on Machine Learning, ICML’10, pages 807-814, USA, 2010. Omnipress.

[87] Andrzej Pacuk, Piotr Sankowski, Karol Wegrzycki, Adam Witkowski, and Piotr Wygocki.
Recsys challenge 2016: Job recommendations based on preselection of offers and gradient
boosting. In Proceedings of the Recommender Systems Challenge, RecSys Challenge 16, pages
10:1-10:4, New York, NY, USA, 2016. ACM.

[88] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai. Learning
tree-based deep model for recommender systems. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery € Data Mining, pages 1079-1088. ACM,
2018.

[89] Jing He, Xin Li, and Lejian Liao. Category-aware next point-of-interest recommendation via
listwise bayesian personalized ranking. In IJCAI, volume 17, pages 1837-1843, 2017.

[90] Jin Huang, Zhaochun Ren, Wayne Xin Zhao, Gaole He, Ji-Rong Wen, and Daxiang Dong.
Taxonomy-aware multi-hop reasoning networks for sequential recommendation. In Proceedings
of the Twelfth ACM International Conference on Web Search and Data Mining, pages 573—
581. ACM, 2019.

[91] Qinyong Wang, Hongzhi Yin, Zhiting Hu, Defu Lian, Hao Wang, and Zi Huang. Neural
memory streaming recommender networks with adversarial training. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 2467-2475. ACM, 2018.

[92] Jianling Wang and James Caverlee. Recurrent recommendation with local coherence. In
Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining,
pages 564-572. ACM, 2019.

[93] Mingxiao An, Fangzhao Wu, Chuhan Wu, Kun Zhang, Zheng Liu, and Xing Xie. Neural news
recommendation with long-and short-term user representations. In Proceedings of the 57th
Conference of the Association for Computational Linguistics, pages 336345, 2019.

[94] Dietmar Jannach and Malte Ludewig. When recurrent neural networks meet the neighbor-
hood for session-based recommendation. In Proceedings of the Eleventh ACM Conference on
Recommender Systems, pages 306-310, 2017.

[95] Badrul Munir Sarwar, George Karypis, Joseph A Konstan, John Riedl, et al. Item-based
collaborative filtering recommendation algorithms. Www, 1:285-295, 2001.

[96] Zhigiang Pan, Fei Cai, Yanxiang Ling, and Maarten de Rijke. An intent-guided collaborative
machine for session-based recommendation. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 1833-1836,
2020.

[97] Meirui Wang, Pengjie Ren, Lei Mei, Zhumin Chen, Jun Ma, and Maarten de Rijke. A collab-
orative session-based recommendation approach with parallel memory modules. In Proceedings
of the 42nd International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pages 345-354, 2019.

[98] Nengjun Zhu, Jian Cao, Yanchi Liu, Yang Yang, Haochao Ying, and Hui Xiong. Sequential
modeling of hierarchical user intention and preference for next-item recommendation. In Pro-
ceedings of the Thirteenth ACM International Conference on Web Search and Data Mining.
ACM, 2020.

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Jibang Wu, Renqin Cai, and Hongning Wang. Déja vu: A contextualized temporal attention
mechanism for sequential recommendation. In Proceedings of The Web Conference 2020,
pages 2199-2209, 2020.

Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, and Jian Tang.
Session-based social recommendation via dynamic graph attention networks. In Proceedings of
the Twelfth ACM International Conference on Web Search and Data Mining, pages 555-563,
2019.

Qian Zhao, Jilin Chen, Minmin Chen, Sagar Jain, Alex Beutel, Francois Belletti, and
Ed Chi. Categorical-attributes-based multi-level classification for recommender systems.
2018.

Ruiyang Ren, Zhaoyang Liu, Yaliang Li, Wayne Xin Zhao, Hui Wang, Bolin Ding, and Ji-
Rong Wen. Sequential recommendation with self-attentive multi-adversarial network. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 89-98, 2020.

Hao Hou and Chongyang Shi. Explainable sequential recommendation using knowledge
graphs. In Proceedings of the 5th International Conference on Frontiers of Educational
Technologies, pages 53-57, 2019.

Chenyang Wang, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. Make it a chorus:
knowledge-and time-aware item modeling for sequential recommendation. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pages 109-118, 2020.

Yulong Gu, Zhuoye Ding, Shuaiqiang Wang, and Dawei Yin. Hierarchical user profiling for
e-commerce recommender systems. In Proceedings of the 13th International Conference on
Web Search and Data Mining, pages 223-231, 2020.

Jiacheng Li, Yujie Wang, and Julian McAuley. Time interval aware self-attention for sequen-
tial recommendation. In Proceedings of the 13th International Conference on Web Search and
Data Mining, pages 322-330, 2020.

Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional
sequence embedding. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, pages 565-573. ACM, 2018.

Walid Krichene and Steffen Rendle. On sampled metrics for item recommendation. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 1748-1757, 2020.

Aobo Yang, Nan Wang, Hongbo Deng, and Hongning Wang. Explanation as a defense of
recommendation. In Proceedings of the 14th ACM International Conference on Web Search
and Data Mining, pages 1029-1037, 2021.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30-37, 2009.

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th international conference on world wide web,
pages 173-182, 2017.

Charu C Aggarwal et al. Recommender systems, volume 1. Springer, 2016.

[113] Mustafa Bilgic and Raymond J Mooney. Explaining recommendations: Satisfaction vs.
promotion. In Beyond Personalization Workshop, IUI, volume 5, 2005.

[114] Jonathan L Herlocker, Joseph A Konstan, and John Riedl. Explaining collaborative filtering
recommendations. In Proceedings of the 2000 ACM conference on Computer supported
cooperative work, pages 241-250. ACM, 2000.

[115] Rashmi Sinha and Kirsten Swearingen. The role of transparency in recommender systems.
In CHI’02 extended abstracts on Human factors in computing systems, pages 830-831. ACM,
2002.

[116] Trung-Hoang Le and Hady W Lauw. Explainable recommendation with comparative con-
straints on product aspects. In Proceedings of the 14th ACM International Conference on Web
Search and Data Mining, pages 967-975, 2021.

[117] Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10908, 2017.

[118] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Het-
erogeneous graph attention network. In The World Wide Web Conference, pages 2022-2032,
2019.

[119] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer.
In Proceedings of The Web Conference 2020, pages 2704-2710, 2020.

[120] Danging Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu, and Xuanjing Huang. Hetero-
geneous graph neural networks for extractive document summarization. arXiw preprint
arXiv:2004.12393, 2020.

[121] Julian McAuley, Jure Leskovec, and Dan Jurafsky. Learning attitudes and attributes from
multi-aspect reviews. In Proceedings of the 2012 IEEE 12th International Conference on Data
Mining, ICDM ’12, page 1020-1025, USA, 2012. IEEE Computer Society.

[122] Hongning Wang, Yue Lu, and Chengxiang Zhai. Latent aspect rating analysis on review text
data: a rating regression approach. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 783-792, 2010.

[123] Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-
labeled reviews and fine-grained aspects. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 188-197, 2019.

[124] Frank McSherry and Ilya Mironov. Differentially private recommender systems: Building pri-
vacy into the netflix prize contenders. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 627-636, 2009.

[125] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summariza-
tion branches out, pages 74-81, 2004.

[126] Hongning Wang, Yue Lu, and ChengXiang Zhai. Latent aspect rating analysis without aspect
keyword supervision. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 618-626, 2011.

[127] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for auto-
matic evaluation of machine translation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pages 311-318, 2002.

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

138

Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. Trirank: Review-aware explainable
recommendation by modeling aspects. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management, pages 1661-1670, 2015.

Qingyao Ai, Vahid Azizi, Xu Chen, and Yongfeng Zhang. Learning heterogeneous knowledge
base embeddings for explainable recommendation. Algorithms, 11(9):137, 2018.

Chenliang Li, Cong Quan, Li Peng, Yunwei Qi, Yuming Deng, and Libing Wu. A capsule
network for recommendation and explaining what you like and dislike. In Proceedings of the
42nd International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 275-284, 2019.

Yongfeng Zhang and Xu Chen. Explainable recommendation: A survey and new perspectives.
arXiv preprint arXiw:1804.11192, 2018.

Junjie Li, Xuepeng Wang, Dawei Yin, and Chengqing Zong. Attribute-aware sequence

network for review summarization. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 2991-3001, 2019.

Trung-Hoang Le, Hady W Lauw, and C Bessiere. Synthesizing aspect-driven recommendation
explanations from reviews. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IICAI-20, pages 24272434, 2020.

Yi Xie and Shun-Zheng Yu. A large-scale hidden semi-markov model for anomaly detection on
user browsing behaviors. IEEE/ACM Transactions on Networking (TON), 17(1):54-65, 2009.

Yuyu Zhang, Hanjun Dai, Chang Xu, Jun Feng, Taifeng Wang, Jiang Bian, Bin Wang, and
Tie-Yan Liu. Sequential click prediction for sponsored search with recurrent neural networks.
In AAAIL volume 14, pages 1369-1375, 2014.

Mehrdad Farajtabar, Yichen Wang, Manuel Gomez Rodriguez, Shuang Li, Hongyuan Zha,
and Le Song. Coevolve: A joint point process model for information diffusion and network
co-evolution. In Advances in Neural Information Processing Systems, pages 1954-1962, 2015.

Ke Zhou, Hongyuan Zha, and Le Song. Learning social infectivity in sparse low-rank networks
using multi-dimensional hawkes processes. In Artificial Intelligence and Statistics, pages
641-649, 2013.

Marian-Andrei Rizoiu, Swapnil Mishra, Quyu Kong, Mark Carman, and Lexing Xie. Sir-
hawkes: Linking epidemic models and hawkes processes to model diffusions in finite popula-
tions. In Proceedings of the 2018 World Wide Web Conference on World Wide Web, pages
419-428. International World Wide Web Conferences Steering Committee, 2018.

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures

	Introduction
	Motivation and Overview
	Thesis Organization

	Time-aware Contextualized Recommendations
	Introduction
	Related Work
	User Behavior Modeling
	Sequential Recommendation
	Temporal Recommendation

	Notations and Problem Setup
	Method 1: Long- & Short-term Hawkes Process
	Hawkes Process
	Long- and Short-Term Hawkes Process
	Parameter Estimation

	Method 2: Contextualized Temporal Attention
	Model Overview
	Three Stage Weighing Pipeline
	Parameter Learning

	Experiments
	Dataset
	Experiments on LSHP
	Experiments on CTA

	Conclusion

	Category-aware Contextualized Recommendations
	Introduction
	Related Work
	Notations and Problem Setup
	Method
	Data-Driven Statistical Analyses
	Category-aware collaboration Sequential Recommender
	Model Training & Inference

	Experiments
	Datasets
	Comparison against Baselines
	Detailed Analysis on Our Approach

	Conclusion

	Graph Based Extractive Explainer for Recommendations
	Introduction
	Related Work
	Problem Definition
	Graph Extractive Explainer for Recommendations
	Graph Structure
	Graph Attention Layer
	Relevance of Sentences
	Sentence Extraction

	Experiments
	Experiment Setup
	Quality of Generated Explanations
	Hyperparameter
	Ablation Analysis
	Case Study

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work
	Short-term Future Work
	Long-term Future Work

	Bibliography

