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Abstract

This thesis concerns optimal control of the linear motion, tilt motion, and yaw

motion of a two-wheeled self-balancing robot. Traditional optimal control methods

for the two-wheeled self-balancing robot usually require a precise model of the system,

and other control methods exist that achieve stabilization in the face of parameter

uncertainties. In practical applications, it is often desirable to realize optimal con-

trol in the absence of the precise knowledge of the system parameters. This thesis

proposes to use a new feedback-based reinforcement learning method to solve the

linear quadratic regulation (LQR) control problem for the two-wheeled self-balancing

robot. The proposed control scheme is completely online and does not require any

knowledge of the system parameters. The proposed input decoupling mechanism and

pre-feedback law overcome the commonly encountered computational difficulties in

implementing the learning algorithms, which the former shortens the learning tran-

sient phase and the latter improves the system performance. Both state feedback

optimal control and output feedback optimal control are presented. Numerical sim-

ulation shows that the proposed optimal control scheme is capable of stabilizing the

system and converging to the LQR solution obtained through solving the algebraic

Riccati equation.
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Chapter 1

Introduction

This chapter gives a brief introduction about the two-wheeled self-balancing robot

and the reinforcement learning control, followed by the thesis outline.

1.1 Two-Wheeled Self-Balancing Robot

The two-wheeled self-balancing robot (TWSBR) is a typical robot that has poten-

tial application prospects in many areas, such as transportation and exploration. De-

sign and control of the TWSBR have attracted substantial attention in both academia

and industry over the past decades. The TWSBR is an inherently unstable, high-

order, multivariable, nonlinear, and strongly coupled system, and represents an un-

deractuated mechanical system. For such an underactuated mechanical system, which

has fewer control inputs than the generalized coordinates, it is necessary to indirectly

control the underactuated generalized coordinates through dynamic coupling. Under-

actuation, while resulting in a smaller number of actuators and thus helping to reduce

the manufacturing costs and failure rate, poses challenges to control design. Further-

more, unlike simpler systems like the pendulum on a cart system that are restrained

to a guided trajectory, the TWSBR moves on its own trajectory while balancing the

1
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pendulum. One of the difficulties of controlling the TWSBR is to simultaneously

control its linear motion, tilt motion and yaw motion [1]. In addition, control of the

TWSBR with system parameter uncertainties is essential in practical applications.

Several control methods were used to stabilize the TWSBR. In the work of [23],

velocity and position control of the TWSBR using partial feedback linearization was

proposed. In the work of [24], a well-known pole-placement state feedback controller

was designed for the TWSBR. In [27], an adaptive integral backstepping controller

with the velocity estimator for the TWSBR was presented to stabilize the system.

Other traditional control methods, including PID control, fuzzy control and sliding

mode control, were also investigated in previous works. In the works of [1], [2] and [26],

the conventional PID or PD controllers with the adaptation and robustness abilities

were proposed for the TWSBR. In [3], adaptive fuzzy logic control of the TWSBR

with parametric and functional uncertainties was investigated. In the work of [25],

fuzzy logic control of the TWSBR was investigated in order to achieve balance and

velocity control of the system. In the work of [4], two sliding mode control methods

were proposed for the TWSBR with parameter unknown and external disturbance.

In [5], nonlinear adaptive sliding mode controllers were proposed for the two-wheeled

human transportation vehicle with system parameter uncertainties and variations.

Some of these methods are capable of controlling the TWSBR in the absence of

the precise knowledge of the system parameters, but do not achieve optimal control.

In practical applications, it is often desirable to achieve optimality beyond simple

stabilization. The design of the traditional LQR controller based on the solution

of the Riccati equation achieves the goal of optimal control [6], [7]. However, this

control method requires precise knowledge of the system model. A control scheme

that realizes optimal control in the absence of precise knowledge of the system model

is desirable.
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1.2 Reinforcement Learning Control

Reinforcement learning is a type of machine learning, which is a popular method

for solving dynamic optimization problems. Reinforcement learning is motivated by

the living organism learning mechanism by which animals reveal the capability of

learning, adapting and optimizing their behaviors by interacting with the environ-

ments. Reinforcement learning used to solve optimization problems involves an agent

that interacts with its environment and modifies its actions or control policies based

on some stimuli or reward received in response to its actions. Reinforcement learning

indicates a cause-and-effect relationship between actions and reward or punishment,

which matches well with the framework of the feedback mechanism in control com-

munity [18], [21]. Fig 1.1 illustrates a block diagram of the reinforcement learning

mechanism, which has been attracted significant attention in designing optimal feed-

back controllers. Based on this mechanism, a reinforcement learning-based controller

is able to learn the optimal control parameters and stabilize the system without re-

quiring the system model information. In addition to realizing optimal control of the

system, the reinforcement learning-based controller also has the adaptation ability by

adapting to the changes in system dynamics during the learning process [28].

Q-learning is a type of reinforcement learning algorithm, which is completely on-

line in nature and does not use any prior information of system dynamics [22]. This

technique was introduced in the work of [30] and is based on learning the Q-function

involving both the states and the control actions. The Q-function is the sum of the

single step cost of implementing an arbitrary control action in the current state and

the total cost of implementing a specific policy from the next state to all the future

states. As a Q-function includes information about control actions in every state, the

best control action in each state can be chosen by identifying only the Q-function.
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Figure 1.1: Reinforcement learning mechanism

In other words, the purpose of the Q-learning algorithm is to estimate the optimal

Q-function. Once the optimal Q-function is learned, the optimal control action can be

obtained by minimizing or maximizing the optimal Q-function [29]. The Q-learning

Policy Iteration (PI) algorithm was proposed in the work of [9], which requires an

initially stabilizing control policy, and the Q-learning Value Iteration (VI) algorithm

was presented in the work of [10], which can start with an arbitrary control policy. A

review of Q-learning LQR control was given in the work of [11]. However, full-state

feedback was needed in these papers.

In many practical cases, an output feedback control scheme is more desirable be-

cause it requires fewer sensors and therefore is more cost effective and reliable. The

output feedback reinforcement learning control method was proposed in the work

of [12], which used the value function approximation (VFA) method to develop PI

and VI-based algorithms. In that work, the cost function consists of a discounting

factor that helps to overcome the bias issue associated with the excitation signals.

However, the resulting optimal controller is different from the optimal controller ob-

tained through solving the Riccati equation, and the use of discounted cost function
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may cause the loss of stability inherent from the optimal controller corresponding to

the undiscounted cost function. In the works of [13] and [14], the output feedback

Q-learning algorithms were proposed without using discounting factor in the cost

function. The optimal controllers learned by these algorithms are the same as the

one obtained through solving the Riccati equation and the closed-loop stability is

guaranteed.

1.3 Thesis Outline

In this thesis, we propose to use the Q-learning method to design optimal con-

trollers for the TWSBR. Both state feedback and output feedback are considered. In

order to overcome the commonly encountered numerical difficulties associated with

high dimensionality and strong instability of the open-loop system in implementing

Q-learning control algorithms, we propose to explore the physical properties of the

system and adopt an input decoupling mechanism and a pre-feedback law before

applying the Q-learning algorithms.

The remainder of the thesis is organized as follows. Chapter 2 presents the descrip-

tion of the system, Chapter 3 provides the control design algorithms, and Chapter 4

presents simulation results for optimal control of the robot. Some concluding remarks

are made in Chapter 5, where some future research topics are also pointed out.



Chapter 2

Description of the System

In this chapter, we describe the TWSBR system using Newtonian mechanics.

The TWSBR is composed of a pair of identical wheels, along with their actuators, a

chassis, and an inverted pendulum. The chassis sustains the inverted pendulum and

the pair of wheels. The wheel actuators generate torques to rotate the wheels with

respect to the chassis. The motion control unit controls the wheel actuators so as to

move and stabilize the robot [1], [8]. Fig. 2.1 illustrates the system. The robot is

able to execute linear motion along the X-axis, rotate around the Z-axis to execute

tilt motion, and rotate around the Y-axis to execute yaw motion. The parameters are

defined in Table 2.1. The dynamics of the system can be described by the following

equations [15], [19]. For the left wheel,

mẍl = fl −Hl (2.1)

Jωθ̈l = Cl − flR (2.2)

For the right wheel,

mẍr = fr −Hr (2.3)

6
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Figure 2.1: A diagram of the TWSBR
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Table 2.1: Definitions of parameters of the system

Symbol and Unit Definition
M [kg] Mass of the chassis (with the inverted pendulum part)
m [kg] Mass of each wheel
R [m] Radius of the wheel
D [m] Distance between the two wheels
L [m] Distance between the center of gravity of the robot and the Z-axis
Jδ [kg·m2] Moment of inertia of the chassis with respect to the Y-axis
Jp [kg·m2] Moment of inertia of the chassis with respect to the Z-axis
Jω [kg·m2] Moment of inertia of the left (or right) wheel with respect to the Z-axis
v [m/s] Linear speed of the robot
θ [rad] Tilt angle of the robot
ω [rad/s] Tilt angular velocity of the robot
δ [rad] Yaw angle of the robot

δ̇ [rad/s] Yaw angular velocity of the robot
xl, xr [m] Displacements of the left and right wheels
xp, yp [m] The position of the center of gravity of the robot
Hl, Hr [N] Interacting forces between the wheels and the chassis on the X-axis
Vl, Vr [N] Interacting forces between the wheels and the chassis on the Y-axis
fl, fr [N] Frictions between the wheels and the ground surface
Cl, Cr [N·m] Torques generated from the left and right actuators
θl, θr [rad] Rotational angles of the left and right wheels

Jωθ̈r = Cr − frR (2.4)

For the chassis,

Mẍp = Hl +Hr (2.5)

Mÿp = Vl + Vr −Mg (2.6)

Jpθ̈ = (Vl + Vr)L sin θ − (Hl +Hr)L cos θ − (Cl + Cr) (2.7)

Jδ δ̈ =
D

2
(Hl −Hr) (2.8)

The relationships between the rotational angles of the two wheels and their displace-

ments are given by

xl = Rθl, xr = Rθr (2.9)

Furthermore, the relationship between the yaw angle of the robot and the displace-

ments of the wheels is

Dδ = xl − xr (2.10)
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Letting x = 1
2

(xl + xr), we have

xp = x+ L sin θ, yp = L cos θ (2.11)

Combining (2.1) - (2.11), we obtain the following nonlinear equations of the system,

ẍ

(
M + 2m+

2Jω
R2

)
+ML

(
θ̈ cos θ − θ̇2 sin θ

)
=

1

R
(Cl + Cr) (2.12)

(
2Jδ
D

+
DJω
R2

+Dm

)
δ̈ =

1

R
(Cl − Cr) (2.13)

Jpθ̈ = 2ẍL

(
m+

Jω
R2

)
cos θ +MgL sin θ −ML2θ̈ sin2 θ

−ML2θ̇2 sin θ cos θ −
(

1 +
L cos θ

R

)
(Cl + Cr)

(2.14)

Linearizing these nonlinear equations around θ = 0, we obtain the following linear

state space model of the system,



ẋ

v̇

θ̇

ω̇

δ̇

δ̈


=



0 1 0 0 0 0

0 0 a23 0 0 0

0 0 0 1 0 0

0 0 a43 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0





x

v

θ

ω

δ

δ̇


+



0 0

b21 b22

0 0

b41 b42

0 0

b61 b62



 Cl

Cr

 (2.15)

y =


1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0





x

v

θ

ω

δ

δ̇


(2.16)



10

where
[
x v θ ω δ δ̇

]T
is the state vector,

[
Cl Cr

]T
is the input vec-

tor, y =
[
x θ δ

]T
is the output vector, and the parameters are defined as,

a23 =
−M2L2g

MJp + 2 (Jp +ML2) (m+ Jω/R2)

a43 =
M2gL+ 2MgL (m+ Jω/R

2)

MJp + 2 (Jp +ML2) (m+ Jω/R2)

b21 = b22 =
(Jp +ML2) /R +ML

MJp + 2 (Jp +ML2) (m+ Jω/R2)

b41 = b42 =
− (R + L)M/R− 2 (m+ Jω/R

2)

MJp + 2 (Jp +ML2) (m+ Jω/R2)

b61 = −b62 =
D/2R

Jδ + D2

2R

(
mR + Jω

R

)
The objective of this thesis is to present a control scheme that is capable of realizing

optimal control of the TWSBR when system parameters listed above are unknown.



Chapter 3

Design of Optimal Controllers

In this chapter, we describe optimal controllers that stabilize the linear motion,

tilt motion and yaw motion of the TWSBR system in the absence of any knowledge

of the values of the system parameters. The control scheme is completely online in

nature and utilizes a Q-learning to solve the LQR control problem. We will present

both the state feedback optimal control method and the output feedback optimal

control method for the system.

3.1 Input Decoupling and Pre-feedback

In [11], [13], [14], the Q-learning algorithms are developed that achieve optimal

control of the system in the absence of a model. However, computational issues

emerge when these control algorithms are applied to the TWSBR because of the high

order and the strong open-loop instability of the TWSBR. We propose to take advan-

tages of the structure of the matrices in the model and the physical characteristics of

the system and introduce an input decoupling mechanism to decouple the 6th order

system model into two lower order systems and a pre-feedback law that moderates

the open-loop instability. These measures prove to mitigate the computational issues

11
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in the learning process and improve the system behavior.

3.1.1 Input decoupling

From the state space model in (2.15), we know that the wheel torques Cl and

Cr have influences on the motion in all three directions simultaneously, which means

there exists a coupling problem in the system. Motivated by the work of [15], we

utilize a decoupling unit that transforms the wheel torques Cl and Cr into the new

control inputs Cθ and Cδ. These two new control inputs control the tilt motion and

the yaw motion, independently. Such a decoupling mechanism takes the form of

 Cl

Cr

 =

 0.5 0.5

0.5 −0.5

 Cθ
Cδ

 (3.1)

Combining (2.15) and (3.1), we have



ẋ

v̇

θ̇

ω̇

δ̇

δ̈


=



0 1 0 0 0 0

0 0 a23 0 0 0

0 0 0 1 0 0

0 0 a43 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0





x

v

θ

ω

δ

δ̇


+



0 0

b21 0

0 0

b41 0

0 0

0 b61



 Cθ
Cδ

 (3.2)

More specifically, under the new control inputs Cθ and Cδ, the system is decoupled

into two subsystems. Subsystem I governs the linear motion and the tilt motion of

the system, while Subsystem II governs the yaw motion. The state space model of

the two subsystems are given as follows.
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Subsystem I:


ẋ

v̇

θ̇

ω̇

 =


0 1 0 0

0 0 a23 0

0 0 0 1

0 0 a43 0




x

v

θ

ω

+


0

b21

0

b41

Cθ (3.3)

y =

 1 0 0 0

0 0 1 0



x

v

θ

ω

 (3.4)

Subsystem II:

 δ̇
δ̈

 =

 0 1

0 0

 δ
δ̇

+

 0

b61

Cδ (3.5)

y =
[

1 0
] δ

δ̇

 (3.6)

3.1.2 Pre-feedback

By the physical characteristics of the TWSBR, we know that the instability of the

system is mainly caused by the instability of the inverted pendulum part, and the

third state θ in (3.3), the tilt angle of the inverted pendulum, has the most influence

on controlling the robot. In order to mitigate the instability of Subsystem I and

make the control algorithms easier and faster to converge to the optimal solution,

we include a pre-feedback with gain K =
[

0 0 k3 0
]

applied to Subsystem

I before executing the learning algorithms. This pre-feedback renders Subsystem I

from exponentially unstable to polynomially unstable.
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3.2 State Feedback Optimal Q-Learning Control

Consider a discrete-time linear time-invariant system,

xk+1 = Axk +Buk, xk ∈ Rn, uk ∈ Rm (3.7)

where (A,B) is controllable.

The LQR problem is to determine the feedback control sequence that minimizes

the following cost function

J =
∞∑
i=0

r (xi, ui) =
∞∑
i=0

(
xTi Qxi + uTi Rui

)
(3.8)

with the one step utility function r (xk, uk) = xTkQxk + uTkRuk and the user-defined

weighting matrices Q = QT ≥ 0 and R = RT > 0. Assume that
(
A,
√
Q
)

is de-

tectable.

The optimal control law is given by,

u∗k = K∗xk = −
(
R +BTP ∗B

)−1
BTP ∗Axk (3.9)

where P ∗ = P ∗T > 0 is the unique positive definite solution to the algebraic Riccati

equation (ARE),

ATPA− P +Q− ATPB
(
R +BTPB

)−1
BTPA = 0 (3.10)

Determining the optimal control policy through solving the ARE requires the precise

knowledge of the system model and parameters. In what follows we recall the Q-

learning-based control algorithms that result in the optimal control policy in the
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absence of the knowledge of the system parameters in matrices A and B [9], [11], [14],

[17], [20].

The cost function is defined as,

VK (xk) =
∞∑
i=k

r (xi, ui) (3.11)

which gives the cost of following a control policy uk = Kxk starting from state xk.

Under a stabilizing policy, this cost function takes the following quadratic form,

VK (xk) = xTkPxk, P = P T > 0 (3.12)

Motivated by Bellman optimality principle, (3.11) can be expressed as,

VK (xk) = r (xk, Kxk) + VK (xk+1) (3.13)

The Q-function is then defined as,

QK (xk, uk) = r (xk, uk) + VK (xk+1) (3.14)

which is the sum of the single step cost of implementing an arbitrary control uk from

state xk and the total cost of implementing a policy K from xk+1 and all future states.

This Q-function can be expressed as,

QK (xk, uk) = xTkQxk + uTkRuk + xTk+1Pxk+1

= xTkQxk + uTkRuk + (Axk +Buk)
T P (Axk +Buk)

=

 xk
uk

T  Hxx Hxu

Hux Huu

 xk
uk


, zTkHzk (3.15)
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with zk =
[
xTk uTk

]T
and the submatrices defined as

Hxx = Q+ ATPA ∈ Rn×n

Hux = BTPA ∈ Rm×n

Hxu = ATPB ∈ Rn×m

Huu = R +BTPB ∈ Rm×m

(3.16)

By choosing a greedy action, the improved policy K
′

can be obtained when the

cost VK associated with the control policy K is given, which can be expressed as,

K
′
xk = arg min

u
(r (xk, uk) + VK (xk+1))

= arg min
u

(QK (xk, uk)) (3.17)

indicating that the improved control policyK
′
can be obtained by solving (∂/∂uk)QK =

0. The cost of the improved control policy K
′
(the new policy) is better than or equal

to the cost of the current control policy K, which can be expressed as VK′ ≤ VK .

After several policy improvements, the cost is able to converge to the optimal cost

V ∗, while the policy can converge to the optimal control policy K∗ [9], [17], [20]. This

policy improvement mechanism forms the basis of the iterative improvement algo-

rithms, which will be shown in Algorithms 1, 2, 3 and 4 below. The optimal policy

K∗ can be obtained when the optimal cost V ∗ is given. Then, we define the optimal

Q-function as,

Q∗ (xk, uk) = r (xk, uk) + V ∗ (xk+1) (3.18)

The following optimal control policy K∗ can be obtained as,

K∗xk = arg min
u

(Q∗ (xk, uk)) (3.19)
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which means the optimal controller can be obtained by minimizing the optimal Q-

function Q∗ corresponding to P ∗ and H∗ by (3.15). By setting (∂/∂uk)Q
∗ = 0, the

optimal result of uk can be obtained as,

u∗k = − (H∗uu)
−1H∗uxxk (3.20)

Substituting (3.16) into (3.20), we arrive at the same result as given by (3.9), which

is obtained by solving the ARE.

We would like to obtain the recursive form of the Q-function so that the reinforce-

ment learning techniques can be applied to learn the optimal controller. Motivated

by Bellman optimality principle and combing (3.13), (3.14), (3.15), the recursive form

of the Q-function can be derived as below:

QK (xk, uk) = xTkQxk + uTkRuk +QK (xk+1, Kxk+1) (3.21)

zTkHzk = xTkQxk + uTkRuk + zTk+1Hzk+1 (3.22)

Equation (3.21) is the LQR Bellman Q-learning equation. In (3.22), uk+1 is computed

as

uk+1 = − (Huu)
−1Huxxk+1 (3.23)

The matrix H in Q-function is related to system dynamics and parameters and is

unknown, the reinforcement learning techniques can be applied to learn the H matrix,

and the optimal controller can be obtained. To this end, we parameterize the matrix

H in (3.15) as,

QK = H̄T z̄k (3.24)
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where

H̄ = vec (H)

,
[
h11 , 2h12 , · · · , 2h1l , h22 , 2h23 , · · · , 2h2l , · · · , hll

]T
∈ Rl(l+1)/2

with l = m+ n. The regression vector z̄k ∈ Rl(l+1)/2 can be expressed as,

z̄k = zk ⊗ zk

z̄ =
[
z2

1 , z1z2 , · · · , z1zl , z
2
2 , z2z3 , · · · , z2zl , · · · , z2

l

]T
Then, we can obtain the following Bellman equation,

H̄T z̄k = xTkQxk + uTkRuk + H̄T z̄k+1 (3.25)

Then, the state feedback Q-learning PI and VI algorithms are presented in the

following.

Algorithm 1: State Feedback Q-Learning Policy Iteration (PI)

Initialization. Start with a stabilizing control policy u0
k with H0 = I. Then, for the

following iterations j = 1, 2, · · · , repeat until the convergence criterion is met,

‖ H̄j − H̄j−1 ‖< ε

for the constant scalar ε that can be set by users according to the requirement of

system optimal accuracy.

Policy Evaluation. Determine the least-squares solution of

(
H̄j
)T

(z̄k − z̄k+1) = xTkQxk + uTkRuk
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Policy Update. Determine an improved control policy using

uj+1
k = −

(
Hj
uu

)−1
Hj
uxxk

Algorithm 2: State Feedback Q-Learning Value Iteration (VI)

Initialization. Start with an arbitrary control policy u0
k with H0 = I. Then, for the

following iterations j = 1, 2, · · · , repeat until the convergence criterion is met,

‖ H̄j − H̄j−1 ‖< ε

for the constant scalar ε that can be set by users according to the requirement of

system optimal accuracy.

Policy Evaluation. Determine the least-squares solution of

(
H̄j
)T
z̄k = xTkQxk + uTkRuk +

(
H̄j−1

)T
z̄k+1

Policy Update. Determine an improved control policy using

uj+1
k = −

(
Hj
uu

)−1
Hj
uxxk

In both Algorithms 1 and 2, the policy evaluation step utilizes the Bellman equa-

tion (3.25) to learn the H̄ matrix in each iteration, we can rewrite (3.25) in a more

compact form, which can be expressed as a linear equation below:

ΦT H̄ = Υ (3.26)
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which can be converted to the least-squares form as,

H̄j =
(
ΦΦT

)−1
ΦΥ (3.27)

where the Φ ∈ Rl(l+1)/2×L and the Υ ∈ RL×1 of the state feedback PI algorithm

defined as

Φ =
[
z̄1
k − z̄1

k+1 , z̄
2
k − z̄2

k+1 , · · · , z̄Lk − z̄Lk+1

]
Υ =

[
r1 (xk, uk) , r

2 (xk, uk) , · · · , rL (xk, uk)
]T

and the Φ ∈ Rl(l+1)/2×L and the Υ ∈ RL×1 of the state feedback VI algorithm defined

as

Φ =
[
z̄1
k , z̄

2
k , · · · , z̄Lk

]
Υ =

[
r1 (xk, uk) +

(
H̄j−1

)T
z̄1
k+1 , · · · , rL (xk, uk) +

(
H̄j−1

)T
z̄Lk+1

]T
L ≥ l (l + 1) /2 data samples of uk, xk, xk+1 need to be collected to form the matrices

Φ and Υ in each iteration for both Algorithms 1 and 2.

In addition, from the policy update step in both Algorithms 1 and 2, we know

that the policy uj+1
k can be obtained by minimizing the Q-function of the jth policy.

We notice that uk is linearly dependent on xk, which means that ΦΦT is singular.

In order to guarantee a unique solution to (3.27), we add excitation signals in uk for

both Algorithms 1 and 2. That is, the following rank condition must be satisfied,

rank (Φ) = l (l + 1) /2 (3.28)
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3.3 Output Feedback Optimal Q-Learning Control

Consider a discrete-time linear time-invariant system,

xk+1 = Axk +Buk, xk ∈ Rn, uk ∈ Rm

yk = Cxk, yk ∈ Rp

(3.29)

where (A,B) is controllable and (A,C) is observable.

Let the quadratic cost function be

J =
∞∑
i=0

r (xi, ui) =
∞∑
i=0

(
yTi Qyyi + uTi Rui

)
(3.30)

with the one step utility function r (xk, uk) = yTkQyyk + uTkRuk and the user-defined

weighting matrices Qy = QT
y ≥ 0 and R = RT > 0. Let Q = CTQyC and Q =

√
Q
T√

Q. Assume that
(
A,
√
Q
)

is detectable [16].

Then, the output feedback LQR Q-function can be derived as following. In the

previous works [12], [13], when the system is observable, the system state can be

expressed as below:

xk = Myȳk−1,k−N +Muūk−1,k−N (3.31)

with N ≤ n as the upper bound of the system’s observability index, and ūk−1,k−N ∈

RmN , ȳk−1,k−N ∈ RpN are the input and output data vectors defined as,

ūk−1,k−N =


uk−1

uk−2

...

uk−N

 , ȳk−1,k−N =


yk−1

yk−2

...

yk−N
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The matrix My and Mu are defined as,

My = AN
(
V T
N VN

)−1
V T
N , Mu = UN − AN

(
V T
N VN

)−1
V T
N TN

where VN , UN , and TN are the observability matrix, controllability matrix and Toeplitz

matrix, defined as,

VN =
[ (
CAN−1

)T (
CAN−2

)T · · · CT
]T

UN =
[
B AB · · · AN−1B

]

TN =



0 CB CAB · · · CAN−2B

0 0 CB · · · CAN−3B

...
...

...
. . .

...

0 0 0 · · · CB

0 0 0 0 0


Then, (3.31) can be written in terms of inputs and outputs data instead of states as,

xk =
[
Mu My

] ūk−1,k−N

ȳk−1,k−N

 (3.32)

Combing (3.15) and (3.32), the output feedback LQR Q-function can be expressed

as,

QK =


ūk−1,k−N

ȳk−1,k−N

uk


T 

Hūū Hūȳ Hūu

Hȳū Hȳȳ Hȳu

Huū Huȳ Huu



ūk−1,k−N

ȳk−1,k−N

uk


, zTkHzk (3.33)
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with zk =
[
ūTk−1,k−N ȳTk−1,k−N uTk

]T
and the submatrices of H defined as

Hūū = MT
u

(
Q+ ATPA

)
Mu ∈ RmN×mN

Hūȳ = MT
u

(
Q+ ATPA

)
My ∈ RmN×pN

Hūu = MT
u A

TPB ∈ RmN×m

Hȳū = MT
y

(
Q+ ATPA

)
Mu ∈ RpN×mN

Hȳȳ = MT
y

(
Q+ ATPA

)
My ∈ RpN×pN

Hȳu = MT
y A

TPB ∈ RpN×m

Huū = BTPAMu ∈ Rm×mN

Huȳ = BTPAMy ∈ Rp×pN

Huu = R +BTPB ∈ Rm×m

(3.34)

The optimal controller can be obtained by minimizing QK in (3.33). By setting

(∂/∂uk)Q
∗ = 0, the optimal result of uk can be obtained as,

u∗k = − (H∗uu)
−1 (H∗uūūk−1,k−N +H∗uȳȳk−1,k−N

)
(3.35)

Combing (3.32), (3.34) and (3.35), it is proven that the optimal controller in (3.35)

converges to the optimal controller in (3.9), which is obtained by solving the ARE.

Based on the state feedback case, we can obtain the following Bellman equation

in terms of inputs and outputs data,

H̄T z̄k = yTkQyyk + uTkRuk + H̄T z̄k+1 (3.36)

where we apply the user-defined weighting matrix Qy on the outputs. The term

xTkQxk can always be substituted by yTkQyyk without requiring the knowledge of C
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when yk = Cxk and Q = CTQyC, where yk is available and xk is unavailable. In

(3.36), uk+1 is computed as

uk+1 = − (Huu)
−1 (Huūūk,k−N+1 +Huȳȳk,k−N+1) (3.37)

The matrix H is unknown and need to be learned, the reinforcement learning

techniques can be applied to learn the optimal H matrix and the optimal controller.

The output feedback Q-learning PI and VI algorithms are presented in the following

[14].

Algorithm 3: Output Feedback Q-Learning Policy Iteration (PI)

Initialization. Start with a stabilizing control policy u0
k with H0 = I. Then, for the

following iterations j = 1, 2, · · · , repeat until the convergence criterion is met,

‖ H̄j − H̄j−1 ‖< ε

for the constant scalar ε that can be set by users according to the requirement of

system optimal accuracy.

Policy Evaluation. Determine the least-squares solution of

(
H̄j
)T

(z̄k − z̄k+1) = yTkQyyk + uTkRuk

Policy Update. Determine an improved control policy using

uj+1
k = −

(
Hj
uu

)−1 (
Hj
uūūk−1,k−N +Hj

uȳȳk−1,k−N
)

Algorithm 4: Output Feedback Q-Learning Value Iteration (VI)

Initialization. Start with an arbitrary control policy u0
k with H0 = I. Then, for the
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following iterations j = 1, 2, · · · , repeat until the convergence criterion is met,

‖ H̄j − H̄j−1 ‖< ε

for the constant scalar ε that can be set by users according to the requirement of

system optimal accuracy.

Policy Evaluation. Determine the least-squares solution of

(
H̄j
)T
z̄k = yTkQyyk + uTkRuk +

(
H̄j−1

)T
z̄k+1

Policy Update. Determine an improved control policy using

uj+1
k = −

(
Hj
uu

)−1 (
Hj
uūūk−1,k−N +Hj

uȳȳk−1,k−N
)

In both Algorithms 3 and 4, the policy evaluation step utilizes the Bellman equa-

tion (3.36), we can rewrite (3.36) in the least-squares form as,

H̄j =
(
ΦΦT

)−1
ΦΥ (3.38)

where the Φ ∈ Rl(l+1)/2×L and the Υ ∈ RL×1 of the output feedback PI algorithm

defined as

Φ =
[
z̄1
k − z̄1

k+1 , z̄
2
k − z̄2

k+1 , · · · , z̄Lk − z̄Lk+1

]
Υ =

[
r1 (yk, uk) , r

2 (yk, uk) , · · · , rL (yk, uk)
]T

and the Φ ∈ Rl(l+1)/2×L and the Υ ∈ RL×1 of the output feedback VI algorithm
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defined as

Φ =
[
z̄1
k , z̄

2
k , · · · , z̄Lk

]
Υ =

[
r1 (yk, uk) +

(
H̄j−1

)T
z̄1
k+1 , · · · , rL (yk, uk) +

(
H̄j−1

)T
z̄Lk+1

]T
L ≥ l (l + 1) /2 data samples of uk, yk, ūk−1,k−N , ȳk−1,k−N , ūk,k−N+1, ȳk,k−N+1 need

to be collected to form the matrices Φ and Υ in each iteration for both Algorithms 3

and 4, l = mN + pN +m. As in the state feedback case, in order to obtain a unique

solution to the matrix H, we add excitation signals in control inputs.

3.4 Summary

In this chapter, we have presented the state feedback Q-learning control method

and the output feedback Q-learning control method to solve the LQR optimal sta-

bilization problem for the TWSBR in the absence of any knowledge of the system

parameters. Each control method is completely online in nature and consists of

two control algorithms, the PI algorithm and the VI algorithm, the former of which

requires to start with a stabilizing control policy and the latter can start with an

arbitrary control policy. We have utilized a parametrization of the state given by the

past input and output data to develop the output feedback control method, which is

more desirable in practice due to a reduction in the number of sensors.

In addition, the input decoupling mechanism and the pre-feedback law are able to

decouple the original system and moderate the instability of the open-loop system.

Both measures help to overcome the computational issues and improve the system

behavior in the learning process.



Chapter 4

Simulation Results

In this chapter, we present simulation of both state feedback and output feedback

optimal control for the TWSBR. The parameters adopted in the simulation are as

follows: M = 21 kg, m = 0.42 kg, R = 0.106 m, D = 0.44 m, L = 0.3 m, Jw = 0.0024

kg·m2, Jδ = 0.3388 kg·m2, and Jp = 0.63 kg·m2. The initial states in the simulation

are: x = 0.1 m, v = 0.1 m/s, θ = 0.1 rad, ω = 0.1 rad/s, δ = 0.1 rad and δ̇ = 0.1

rad/s. The pre-feedback gain for Subsystem I is set to be K =
[

0 0 −50 0
]
.

The sampling time is 0.1 s. We show here that the proposed control scheme is able

to learn the optimal control parameters and stabilize the system.

4.1 State Feedback Optimal Q-Learning Control

for the TWSBR

In the simulation of both the state feedback PI and VI algorithms, the weighting

matrices are chosen to be Q = 5×I, R = 1, the convergence criterions for Subsystems

I and II are set to be ε = 1 and ε = 0.01, respectively. For Subsystem I, since

lI = mI + nI = 1 + 4 = 5, we need LI = lI(lI + 1)/2 = 15 data samples to satisfy

27
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the rank condition in (3.28) to solve (3.27) in each iteration. For Subsystem II,

lII = mII + nII = 1 + 2 = 3, LII = lII(lII + 1)/2 = 6 data samples are required to

be collected in each iteration. We use sinusoidal signals with different frequencies

as the excitation signal included in the control for both the PI and VI algorithms.

The initial policies for Subsystems I and II under the PI algorithm are set to be

K =
[
−0.5 −1.5 25 −2.5

]
and K =

[
0.4 0.5

]
, respectively. We set

the initial policies for Subsystems I and II under the VI algorithm to be respectively

K =
[

0 0 0 0
]

and K =
[

0 0
]
, neither of which is stabilizing. Simulation

results of the state trajectory of the closed-loop system under the PI and VI algorithms

are shown in Figs. 4.1 and 4.3, respectively. Note that the excitation signal is removed

once the convergence criterion is met. Figs. 4.2 and 4.4 show the convergence of the

parameter estimates to the optimal values for the PI and VI algorithms, respectively.

We compare here the optimal control parameters obtained by the algebraic Riccati

equation (ARE) and by the state feedback Q-learning PI and VI algorithms.

By solving the ARE (3.10), which requires the precise knowledge of the system

parameters in matrices A and B, we obtain the optimal control matrices and the

optimal control policy for the state feedback controller as follows:

Subsystem I:

H∗ux =
[
−4.0091 −9.7644 36.1627 −7.2177

]
H∗uu = 3.2146

K∗ =
[
−1.2472 −3.0376 11.2497 −2.2453

]

Subsystem II:

H∗ux =
[

4.0731 4.6687
]
, H∗uu = 3.3180, K∗ =

[
1.2276 1.4071

]
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Figure 4.1: State trajectory of the closed-loop system under the state feedback Q-
learning PI algorithm.
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Figure 4.2: Convergence of the parameter estimates under the state feedback Q-
learning PI algorithm.



30

0 100 200 300 400 500 600 700 800
-0.5

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700 800
-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 100 200 300 400 500 600 700 800
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 100 200 300 400 500 600 700 800
-1.5

-1

-0.5

0

0.5

1

1.5

0 50 100 150 200 250 300 350 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 50 100 150 200 250 300 350 400
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 4.3: State trajectory of the closed-loop system under the state feedback Q-
learning VI algorithm.
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Figure 4.4: Convergence of the parameter estimates under the state feedback Q-
learning VI algorithm.
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The final parameter estimates obtained by the state feedback Q-learning PI algo-

rithm are

Subsystem I:

Ĥux =
[
−4.0091 −9.7644 36.1628 −7.2177

]
Ĥuu = 3.2146

K̂ =
[
−1.2472 −3.0376 11.2497 −2.2453

]

Subsystem II:

Ĥux =
[

4.0730 4.6686
]
, Ĥuu = 3.3180, K̂ =

[
1.2276 1.4071

]

The final parameter estimates obtained by the state feedback Q-learning VI algo-

rithm are

Subsystem I:

Ĥux =
[
−3.9286 −9.5970 36.2080 −7.1424

]
Ĥuu = 3.2089

K̂ =
[
−1.2243 −2.9908 11.2836 −2.2258

]

Subsystem II:

Ĥux =
[

4.0704 4.6681
]
, Ĥuu = 3.3178, K̂ =

[
1.2268 1.4070

]

Simulation results show that the proposed state feedback optimal controllers

learned by the PI and VI algorithms are able to stabilize the TWSBR and con-

verge to the optimal control parameters. In addition, the number of iterations of the
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PI algorithm is less than that of the VI algorithm as a result of starting with a stabi-

lizing control policy, and therefore, the PI algorithm has a better state response. In

practice, if an initial stabilizing control policy can be obtained by some preliminary

knowledge of the TWSBR system, we can directly use the PI algorithm. If not, we

will use the VI algorithm to learn the optimal controller and stabilize the TWSBR.

In addition, for the original 6th order system without the decoupling mechanism,

since lo = mo + no = 2 + 6 = 8, we need to collect Lo = lo(lo + 1)/2 = 36 data

samples in each iteration. It is evident from the rank condition in (3.28) that the

more unknown parameters we have corresponding to H, the more data samples we

require in each learning iteration of the PI and VI algorithms, and the longer the

learning transient phase lasts. The number of data samples needed in each iteration

of the decoupled system is LI + LII = 15 + 6 = 21, which is less than that required

of the original 6th order system. In other words, the decoupling mechanism is able

to reduce the computational complexity as well as shorten the learning time since

each learning iteration now takes fewer time steps due to a reduction in the number

of unknown parameters. Therefore, the overall learning transient phase is shortened,

which is quite desirable.

Since Subsystem I in the absence of the pre-feedback law is strongly unstable,

it is hard to satisfy the rank condition in (3.28) in every iteration. The purpose of

implementing the pre-feedback law for Subsystem I is to render Subsystem I from

exponentially unstable to polynomially unstable. The pre-feedback law is able to

relocate the two real poles of opposite signs to the imaginary axis. In other words,

the pre-feedback law helps to improve the transient performance during the learning

phase by preventing the system trajectory from diverging exponentially to higher

magnitudes. Both the input decoupling and the pre-feedback have the advantage of

making the learning algorithms easier and faster to converge to the optimal solution.
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4.2 Output Feedback Optimal Q-Learning Control

for the TWSBR

In the simulation of both the output feedback PI and VI algorithms, we only need

to observe the linear position, tilt angle and yaw angle of the TWSBR instead of

measuring all six states. The weighting indices are chosen to be Qy = 5, R = 1,

and the convergence criterions for Subsystems I and II are ε = 10 and ε = 0.1, re-

spectively. For Subsystem I, since lI = mINI + pINI + mI = 1 × 2 + 2 × 2 + 1 = 7,

we need LI = lI(lI + 1)/2 = 28 data samples in each iteration. For Subsystem II,

lII = mIINII + pIINII + mII = 1 × 2 + 1 × 2 + 1 = 5, LII = lII(lII + 1)/2 = 15 data

samples are collected in each iteration. Sinusoids of different frequencies are added

in the control to satisfy the excitation condition for both the PI and VI algorithms.

The initial policies for Subsystems I and II under the PI algorithm are set to be K =[
0.18 −0.36 −16 28 15 −12

]
and K =

[
0.27 0.14 5.8 −5.4

]
,

respectively. We set the initial policies for Subsystems I and II under the VI algo-

rithm to beK =
[

0 0 0 0 0 0
]

andK =
[

0 0 0 0
]
, respectively.

Simulation results of the state trajectory of the closed-loop system under the PI and

VI algorithms are shown in Figs. 4.5 and 4.7, respectively. Again, the excitation

signal is removed once the convergence criterion is met. Figs. 4.6 and 4.8 show the

convergence of the parameter estimates to the optimal values for the PI and VI al-

gorithms, respectively. We compare here the optimal control parameters obtained by

the algebraic Riccati equation (ARE) and by the output feedback Q-learning PI and

VI algorithms.

By solving the ARE, we obtain the optimal control matrices and the optimal

control policy for our Q-learning-based output feedback controller as follows:
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Figure 4.5: State trajectory of the closed-loop system under the output feedback
Q-learning PI algorithm.

Subsystem I:

H∗uȳ =
[
−57.1342 −20.7329 54.6796 21.7755

]
H∗uū =

[
0.1506 0.0433

]
, H∗uu = 1.2050

K∗ =
[

0.1250 0.0359 −47.4127 −17.2052 45.3757 18.0703
]

Subsystem II:

H∗uȳ =
[

18.9972 −16.1536
]
, H∗uū =

[
0.7648 0.4193

]
, H∗uu = 1.6172

K∗ =
[

0.4729 0.2593 11.7471 −9.9888
]
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Figure 4.6: Convergence of the parameter estimates under the output feedback Q-
learning PI algorithm.

The final parameter estimates obtained by the output feedback Q-learning PI

algorithm are

Subsystem I:

Ĥuȳ =
[
−57.1354 −20.7335 54.6808 21.7760

]
Ĥuū =

[
0.1506 0.0433

]
, Ĥuu = 1.2050

K̂ =
[

0.1250 0.0359 −47.4137 −17.2056 45.3768 18.0708
]

Subsystem II:

Ĥuȳ =
[

18.9972 −16.1536
]
, Ĥuū =

[
0.7648 0.4193

]
, Ĥuu = 1.6172

K̂ =
[

0.4729 0.2593 11.7471 −9.9888
]
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Figure 4.7: State trajectory of the closed-loop system under the output feedback
Q-learning VI algorithm.

The final parameter estimates obtained by the output feedback Q-learning VI

algorithm are

Subsystem I:

Ĥuȳ =
[
−55.9625 −20.3872 53.5987 21.3703

]
Ĥuū =

[
0.1468 0.0430

]
, Ĥuu = 1.1983

K̂ =
[

0.1225 0.0359 −46.7017 −17.0135 44.7291 17.8339
]
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Figure 4.8: Convergence of the parameter estimates under the output feedback Q-
learning VI algorithm.

Subsystem II:

Ĥuȳ =
[

18.9958 −16.1523
]
, Ĥuū =

[
0.7647 0.4193

]
, Ĥuu = 1.6171

K̂ =
[

0.4729 0.2593 11.7467 −9.9884
]

Simulation results show that the proposed output feedback optimal controllers

learned by the PI and VI algorithms are able to realize the goal of optimal control

for the TWSBR.

In addition, the number of data samples required to be collected in each iteration

of the decoupled system is LI +LII = 28 + 15 = 43. The number of data samples that

need to be collected in each iteration of the original 6th order system for our proposed

output feedback control is Lo = lo(lo + 1)/2 = (moNo + poNo + mo)(moNo + poNo +
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mo + 1)/2 = 78, which is higher than that required of the decoupled system. Clearly,

the decoupling mechanism also helps to overcome the computational issues and signif-

icantly shorten the learning transient in the output feedback case. The pre-feedback

law in the output feedback case helps to improve the learning transient behavior in

the same way as in the state feedback case. Both the input decoupling measure and

the pre-feedback measure in the output feedback case have the same positive effects

on the implementation of the learning algorithms as in the state feedback case.

Furthermore, compared to the state feedback learning algorithms, the output

feedback learning algorithms require more data samples due to more unknowns, and

thereby the optimal control policies are learned slower. However, the output feedback

learning algorithms have the obvious advantage of requiring fewer sensors, which

improves the reliability and the cost effectiveness of the system and is more desirable.

4.3 Robustness of the Learned Optimal Control

Policy

We now examine the robustness of the optimal control policy obtained by the

proposed Q-learning algorithms. When the TWSBR achieves stabilization and the

convergence criteria is satisfied, we increase the mass of the robot body M , which

means that in practice the robot begins to carry a load, such as a package, after the

learning phase. The robustness of the optimal control policy can be determined by

observing whether the robot with a load can maintain stabilization and what the

maximum load is. Simulation of the state trajectory of the TWSBR with a load

under the state feedback PI and VI algorithms are shown in Figs. 4.9 and 4.10,

respectively. Simulation of the state trajectory of the TWSBR with a load under the

output feedback PI and VI algorithms are shown in Figs. 4.11 and 4.12, respectively.
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Figure 4.9: State trajectory of the closed-loop system with a 20 kg load under the
state feedback Q-learning PI algorithm.
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Figure 4.10: State trajectory of the closed-loop system with a 20 kg load under the
state feedback Q-learning VI algorithm.
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Figure 4.11: State trajectory of the closed-loop system with an 11 kg load under the
output feedback Q-learning PI algorithm.
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Figure 4.12: State trajectory of the closed-loop system with an 11 kg load under the
output feedback Q-learning VI algorithm.
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After several simulation attempts, we determined the maximum load for the

TWSBR. The TWSBR under the proposed state feedback Q-learning control method

can carry a maximum load of 20 kg, while the TWSBR under the proposed output

feedback Q-learning control method is able to carry a maximum load of 11 kg. Simu-

lation results show that the TWSBR with a certain load is capable of remaining stable

operation, the robustness of the optimal control policy obtained by the proposed state

feedback and output feedback Q-learning control methods is verified.

4.4 Summary

In this chapter, we have presented simulation of state feedback and output feed-

back Q-learning control for the TWSBR. Simulation results show that the optimal

control parameters obtained by the proposed Q-learning algorithms converge to the

optimal control parameters obtained through solving the ARE, which means the pro-

posed state feedback and output feedback control methods are able to realize optimal

control of the TWSBR. The output feedback method uses fewer sensors but learns

the optimal parameters slower than the state feedback method. The PI algorithm

has a better state response, while the VI algorithm eliminates the need of starting

with a stabilizing control policy. The input decoupling measure and the pre-feedback

measure help to overcome the computational issues in implementing the learning algo-

rithms and make the learning algorithms easier and faster to converge to the optimal

parameters. The robustness of the optimal control policy learned by the proposed

Q-learning control is verified by showing through simulation that the robot is able to

carry a sizable load after the learning phase and maintain stable operation.



Chapter 5

Conclusions and Future Research

Topics

5.1 Conclusions

In this thesis, we addressed optimal control of the two-wheeled self-balancing robot

in the absence of the knowledge of the system parameter values. The proposed control

scheme uses a completely online, feedback-based Q-learning method to realize opti-

mal control of the robot. The optimal control parameters obtained by the proposed

Q-learning algorithms converge to the optimal control parameters solved by the al-

gebraic Riccati equation. Both state feedback and output feedback were considered.

The output feedback method requires fewer sensors, while the state feedback method

learns the optimal parameters faster. Both the Policy Iteration (PI) algorithm and the

Value Iteration (VI) algorithm were presented. The VI algorithm is able to start with

an arbitrary control policy, while the PI algorithm has a better state response. The

adoption of the input decoupling mechanism and the pre-feedback law have helped

to overcome the commonly encountered numerical difficulties associated with high
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dimensionality and strong instability of the system in applying Q-learning control al-

gorithms. Extensive simulation shows that the input decoupling mechanism shortens

the learning transient phase, the pre-feedback law improves the system behavior by

preventing the system trajectory from diverging exponentially to higher magnitudes,

and the proposed control results in stabilizing and robust optimal controllers.

5.2 Future Research Topics

Optimal control for the TWSBR by Q-learning, as discussed and analyzed in this

thesis, is a new research topic. This work also gives rise to some new questions and

problems for future work, such as,

1. Solving general optimal tracking control for the TWSBR in the absence of the

knowledge of the system parameters.

2. Extensions to optimal control of the two-wheeled human transportation vehicle

with a human load.

3. Relaxing the excitation conditions for safe learning practices.
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