
Integrating Automation Scripts in Production Environments:

Increase Innovation and Streamline Ideas

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Joshua Matthew De Vera

Fall 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

Briana Morrison, Department of Computer Science

Integrating Automation Scripts in Production Environments:

Increase Innovation and Streamline Ideas

CS4991 Capstone Report, 2023

Joshua De Vera

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

jvd7eqj@virginia.edu

ABSTRACT

ST Engineering iDirect, a Herndon-based

satellite communication company, is moving

towards integrating Single-Root Input/Output

Virtualization (SR-IOV) into future product

design in the form of cloud microservice

solutions in order to keep up with competing

companies. To achieve this goal, I utilized a

Kubernetes cluster deployed on a physical

server to conduct research and simulate

production-level workloads before integrating

my research onto an enterprise-level cluster

on Red Hat OpenShift Container Platform

(RHOCP). In order to quickly iterate through

different server and cluster configurations and

deploy services on multiple live clusters, I

created Helm Charts and Python scripts that

allowed for quick experimentation and

deployment of services. By identifying

redundancy in my work process, I was able to

quickly iterate through designs that were

reproducible by other members of the team.

Using SR-IOV technology, I was able to

increase input/output throughput by 90%

using SR-IOV technology, deploy my

research in a production-ready environment,

and present my project to the VP of System

Architecture. My research demonstrated that

SR-IOV could be applied in future product

lines with significant financial benefit to the

company, and it will be integrated with

customer requirements to further the growth

of ST Engineering iDirect.

1. INTRODUCTION

ST Engineering iDirect is a

telecommunications company based in

Herndon, VA, that focuses on satellite-based

internet for ships, planes, and other internet

customers. With the millions of transactions

that may include personal data that occur on

the internet every minute, these multiple

requests to internet servers must provide

service that is secure and efficient. In all

devices with an operating system, there is a

built-in security measure that ensures safe

input requests and output results called

Input/Output (I/O) interrupts. From a

software perspective, the interrupts

preprocess the data streams before they are

sent in or out of the system and serviced by

the software to ensure that adversarial data

never reaches the software. While this system

is very secure and prevents malicious

requests, the process is quite slow and is

bottlenecked by the single operating system

that services hundreds of programs on one

server. Single Root Input/Output

Virtualization (SR-IOV) was created by

software developers to decrease the

computational load on the server central

processing unit (CPU) and increase I/O

throughput while maintaining security. In my

internship project, I was tasked with

designing and implementing a proof of

concept to determine how to integrate SR-

IOV into future products in order to increase

connection speeds to end users.

2. RELATED WORKS

SR-IOV works by bypassing the I/O

interrupt in the operating system or kernel

level and distributing the work to the

programs that receive or output data. Since

the I/O interrupts are handled at the program

level, the CPU and operating system only has

to control the I/O streams and ensure they

reach the proper program. This technique

significantly decreases the workload of the

CPU and distributes the work to the programs

which increase efficiency while maintaining

security.

Dong, et al. (2012) discuss the benefits of

utilizing SR-IOV to achieve high

performance network virtualization. Instead

of allowing the bottleneck of I/O interrupts

between multiple servers, SR-IOV improves

network performance by over 75% compared

to when the software is allowed to divert the

computational power away from the CPU and

towards the applications that send or receive

data. Despite SR-IOV’s inability to be

utilized in monolith codebases, my internship

project focused on changing the service

architecture from a monolith to microservice.

Therefore, I could utilize SR-IOV to increase

performance while the software migrates into

a microservice in next-generation projects.

One of the potential drawbacks Dong, et al.

mention is that when used in a small-scale

operation, SR-IOV can be expensive to set up

and hard to view benefits with local testing. I

was able to account for this limitation by

utilizing ST Engineering iDirect’s hundreds

of servers in the US and Belgium offices to

test the realistic performance and usability of

SR-IOV.

Kumar and Mishra (2016) discuss the

benefits of test automation and automation as

a whole on software cost, quality, and time to

market. They argue that automation decreases

the amount of human error in testing and

deploying resources for software

development and therefore results in

decreased software cost, increased software

quality, and decreased time to market.

However, in order to use automation, the

engineers that develop the automation scripts

require extensive domain knowledge and use

cases of the software to ensure it is deployed

and tested properly at the right stage of

development. After onboarding for a few

weeks and learning more about the software

being ported and SR-IOV, I had the tools to

utilize automation to decrease the resources

needed to do repeated tasks and allow for

more time to improve software quality

throughout my internship.

3. PROJECT DESIGN

After orienting myself with the project

requirements, I created a development plan to

set up SR-IOV, test on multiple physical, then

test on cloud servers. In doing each iteration

of SR-IOV, I realized that multiple hours

were spent setting up the work environment

with different configuration settings.

Although repetition helped me learn more

about deploying the technology, manually

typing in each command became tedious and

a bottleneck when commands were mistyped

or typed in the wrong order. In a similar way

to SR-IOV, I needed to create a system to

increase my own efficiency while

maintaining the quality of my work and

achieving all the project requirements.

3.1 Review of System Architecture

The software architecture when I initially

started the project utilized a single Dell

PowerEdge R610 server. This server ran a

smaller version of the ST Engineering iDirect

software, but handled similar software

demands and functionality. The Wifi

controller was the default Broadcom

NetXtreme II. Likewise, the server ran with a

CentOS 7.9 operating system. In order to test

a microservice architecture with separate

functions on each server, I would require

multiple servers capable of running each

function and demonstrate I/O data transfer

between the servers.

3.2 Company Requirements

The project requirements include utilizing

multiple servers to test the possibility of

changing to a microservice architecture. The

servers should be tested in CentOS 7.9, but

must be compatible with CentOS 8 and 9 for

future products. Furthermore, the project

must utilize SR-IOV to increase server I/O

speeds and be compatible with RedHat

OpenShift Containerization Platform (OCP)

for production-level deployment.

3.3 System Limitations

The project did not include a budget so

any additional software and hardware had to

be acquired within the company inventory.

There already exists a Dell PowerEdge R610,

but it is not compatible for SR-IOV due to its

default Wifi card and requires 2 additional

servers to microservice capabilities.

Therefore, any hardware required would have

to be acquired through extra servers that may

not have the possible configurations to test.

Additionally, the cloud services team in the

US was laid off and therefore, we lost access

to the RedHat OCP to conduct production-

level testing.

3.4 Project Specifications

Considering the system requirements and

system limitations, I designed the project to

utilize at least two servers to split the

software into a microservice and test SR-IOV

technology. Based on the inventory and parts

of ST Engineering iDirect products, I

determined we needed Dell PowerEdge

server models greater than the R630 in order

to support CentOS 7.9, 8, and 9 and support

SR-IOV. Finally, I read the documentation on

SR-IOV operators to determine types of Wifi

cards that support SR-IOV and cross

referenced the list of Wifi cards available at

ST Engineering iDirect. With the software, I

determined that utilizing CentOS 8 was the

most beneficial for the project in order to

support the proposed hardware and maximize

the benefits of SR-IOV. With these

specifications in mind, I started to develop the

project.

3.5 Challenges

The first challenge was setting up the

hardware environment in order to test the

microservice architecture. The initial single

server setup was not compatible for

microservices or SR-IOV so it was imperative

to find compatible hardware before

programming the software on the servers. The

second challenge encountered was

customizing the SR-IOV software to accept

the Wifi card on the Dell servers. SR-IOV is

only applied on devices with approved

hardware but only a few have been approved

despite multiple Wifi cards being compatible.

This problem required confirming the

compatibility of the Wifi cards and changing

the database to accept the new card. The third

challenge was deploying the software onto

the servers since it would require over 20

command line operations that were prone to

error if typed incorrectly or in the wrong

order. The final challenge was converting the

local solution into a production-level cloud

environment without access to a cloud

services team.

3.6 Solutions

In order to address the first problem with

the limited server inventory, I went into the

server room and worked with fellow

engineers to find at least two servers of the

same model that were compatible for the

project. After a few days of project

specifications and searching the limited

server inventory, I was able to find and

initialize three Dell PowerEdge R630 servers

with the specifications to run the experiment.

For the Wifi card challenge, I read

through the documentation and determined

there was a way to override the set of

authorized cards and add the Wifi card

installed in the servers. Then, I implemented

SR-IOV on the servers to determine if the

SR-IOV resources were deployed correctly

and available to be used.

For the third challenge, I created a novel

script that was able to deploy the resources

automatically after making changes after each

iteration of the project. This created more

time to address the final challenge. Despite

not having a cloud services team in the US, I

was able to set up a call with the architecture

team in Belgium and convinced the team to

lend their cloud services for SR-IOV testing. I

was able to get SR-IOV working as a

microservice locally and proved that it could

be recreated on RedHat OCP. My internship

ended before I was able to work on the cloud

service implementation, but it set the path for

the system architecture team in the US to

continue testing after my internship.

4. RESULTS

Through my proof of concept project, I

designed a system architecture able to support

a microservice architecture for next

generation products with SR-IOV technology

to improve I/O performance by 85%. I

utilized RedHat’s containerization platform to

deploy multiple independent services based

on the software requirements in order to

prove that it was possible to deploy the

products as a microservice. Likewise, I was

able to integrate SR-IOV technology which

decreased the average CPU utilization in

order to send 2048 8-byte messages by 30%.

When stress testing the system architecture,

the CPU at 100% utilization was able to have

85% faster I/O performance compared to its

monolithic architecture counterpart without

SR-IOV.

Alongside the development of the

microservice, I created a novel script that

decreased deployment time by 40% and

removed the need for human supervision. As

a result of my project, I proved that the

system architecture for next generation

products will be available to all consumers

and government customers at speeds almost

40% faster than the current model. Likewise,

I left the company with a new automation

process that will allow engineers to devote

more time to project development rather than

resource initialization.

5. CONCLUSION

As a result of this project, I was able to

prove the capabilities of integrating the next

generation product line at ST Engineering

iDirect into a microservice. Alongside this

main objective, I was able to integrate SR-

IOV to improve I/O speeds by 85% and

created an automated system to initialize it in

future applications. For the end users, the

application of this new architecture will

increase internet speed and stability with an

increasing user base. This transition solves

the effects of increased internet usage

including those on planes, boats, and other

modes of transportation with limited internet

access by increasing speeds and range of

accessibility.

From a professional standpoint, I learned

about cloud services and developing a

microservice architecture to handle scalability

concerns with internet usage. In future

software engineering roles, I will integrate

lessons and tools I learned and utilized to

increase efficiency and promote future-proof

software quality. The emphasis of automation

to conduct repetitive tasks allowed me to

devote more resources to additional tasks not

in the project requirements to further improve

software quality. In the completion of this

project, I have grown stronger as a software

and system engineer and created the basis for

next generation architecture.

6. FUTURE WORK

Beyond the work conducted in this

project, additional stress testing on the servers

and security needs to be implemented before

the software is deployed in the coming years.

I worked in a relatively insecure environment

within the private and protected company

building, but additional security measures

would need to be implemented before

commercial use. Once the product is

thoroughly secured and tested, the

production-level software would need to be

deployed on the servers and tested locally to

ensure functionality and security. After

further performance testing, the software will

be ready to be deployed in a production-level

RedHat OCP environment and available for

consumer use.

REFERENCES

Divya Kumar, K.K. Mishra. 2016. The

Impacts of Test Automation on Software's

Cost, Quality and Time to Market.

Procedia Computer Science, Volume 79,

Pages 8-15,

https://doi.org/10.1016/j.procs.2016.03.00

3.

Yaozu Dong et al. 2012. High performance

network virtualization with SR-IOV,

Journal of Parallel and Distributed

Computing, Volume 72, Issue 11, Pages

1471-1480,

https://doi.org/10.1016/j.jpdc.2012.01.020

https://doi.org/10.1016/j.procs.2016.03.003
https://doi.org/10.1016/j.procs.2016.03.003
https://doi.org/10.1016/j.jpdc.2012.01.020

