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Abstract

There have been two main approaches to determining action for autonomous
agents: classical planning and reactive planning. Classical planners can construct plans
which take into account complex interactions between the various actions the agent may
take, but is computationally expensive, and requires complete knowledge of a static envi-
ronment. In contrast, reactive planning systems simply map sensor inputs to actions.
These mappings may be done in constant time, and the perception-based nature of reactive
systems enables the agent to cope with dynamic and uncertain environments. However
reactive planning abandons the machinery needed to contend with complex situations.

This dissertation presents a new paradigm for interaction with complex, dynamic,
three-dimensional environments which builds on the reactive approach. The centerpiece
of this paradigm is theffective field of vieyas implemented by marker-based representa-
tions of the local environment. Thefetive field of view is an extension of the standard
field of view of a sensgwia representation of past sensor inputs. Thecefe field of
view endows the agent with more information regarding the environment than the direct
sensor inputs alone. By judiciously extracting and representing information for inclusion
in the efective field of view based on the relevance of the informationtéskui.e., by
marking the useful information, the competence of an autonomous agent is increased
beyond that achievable by agents constructed using the pure classical or pure reactive
approaches.

The efective field of view paradigm is demonstrated via an agent that interacts
with a dynamic, three-dimensional, hostile virtual environment using visual perception
alone. This agent is modelled after an herbivore which must collect food while avoiding
obstacles and a predatdrhe addition of markdbased local-space representations to
expand the ééctive field of view is shown to measurably increase the performance of
such an agent.

The representations used to expand the field of view are amenable for use with
advanced classical planners which relax the complete information assumptions required
by older planners. This dissertation sets the groundwork for the construction of agents

which capitalize on the strengths of both classical and reactive planning paradigms.
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Chapter I. Introduction

We live in a complex world. It is impossible to know the complete state of the
world at any given instant, and ridiculously impossible to predict the state of the world
into the future. ¥t, as human beings, we are often able to make and carry out plans to
achieve our goals, given only limited information about the world. In order to do this, we
rely on our senses to collaelevantinformation, based on our current goals.

Visual sensing is also complex. Adar portion the human brain is devoted to
visual processing, and yet the bulk of this machinery is used for concentrated processing
in the fovea, a small region in the center of the human visual field of about four degrees of
visual arc. The great feft required to extract information from such a small area moti-
vates us to manage the visual processing resource to exthatte information relevant
to the current goals.

One consequence of this concentration of visual processing is that it is often not
possible to extract all the relevant information simultanepssige the relevant informa-
tion may spread across more than four degrees of visual arc. The natural solution to this
problem is to remember what we saw in one area while looking somewhere else. In gen-
eral, all sensors, regardless of modalifyerate over a limited region of space. It is useful
to remember previously sensed information, since this allows us to know more about the
world than just the currently sensed information.

Successful human interaction with the world is made possible by focusing on the
current goals, and such a focus must be applied to the design of artificial agents as well.
When constructing autonomous agents which operate in the real world, we as system
designers must confront the uncertain nature of the world and the limitations of sensing.
This motivates us to adoptask-orientedapproach at every stage of the design. The task-
oriented approach dictates that the agepé&rception, action, and representation systems
must be designed to explicitly support the tasks the agent is to perform.

This dissertation is concerned with the application of a task-oriented approach to
the construction of autonomous agents, and the information which is sensed and repre-
sented by the agent in order to accomplish its tasks. This set of information is referred to
as the agentsffective field of view his work establishes the concept of tifeaive field
of view, and discusses how the existing literature in autonomous agent design can be inter-
preted in terms of the fefctive field of view | will describe how task-oriented design and
the effective field of view can be applied to build autonomous agents which have multiple
goals and use visual sensing of a dynamic three-dimensional environment. These concepts
are demonstrated via an implemented agent which uses task-oriented spatial-memory



structures called markers to expand tHeative field of view and thereby measurably
improve the agent’s performance.

Perception, action, and representation are fundamentally intertwined. This fact
must be reflected in the architecture of an autonomous agent. The agent model used in this
dissertation is one in which the agent must determine and execute an appropriate action at
each instant of time. Figure 1-1 shows a block diagram of such an agent. The agent
receives input from the environment via its sensors, and takes action in the environment
via its efectors. Wthin the agent, there are modules for perception, action, and memory
Information flow between the modules is bidirectional, so each module e #fe
behavior of the others. Perception, action, and representation (i.e., memory) modules are
tightly coupled within the agent, reflecting the necessity to address all facets of the agent
design with respect to performing a given task. All modules must cooperate to perform the
task.

AGENT

reflex triggering stimuli

Sensors Perception proprioception Action Effectors

‘ local-space
attention representations

segmented

Images

task-specific
Memory marker allocations

Markers plans
LT L[]

ENVIRONMENT ]

Figure 1-1: Autonomous Agent Architecture

To be successful, the agent must have available the information necessary to deter-
mine an appropriate action, whether that information is retained in memory or obtained
directly from perception. This model of an agent is referred tosésated automatarA
prominent model for controlling situated automata is cakkegtive planningl will argue
that the performance of reactive models can be improved by augmenting the reactive plan-
ning basic model with a sparse representation of the ad@edl spacei.e., the configu-
ration of objects in the agent’s immediate physical environment. Further, these local space

Representation for Perception/Action Introduction



representations may form an interfaceckassical planningmodels for controlling situ-
ated automata, which can further improve their performance on complex tasks.

The representation structure suggested for storing task-relevant information about
the identity and location of objects in the agemthmediate environment (i.e., thecal
space is called amarker The idea of a marker was conceived and applied by others in
two-dimensional environments; this dissertation develops techniques for applying mark-
ers in three-dimensional environments, and elaborates on the marker concept by identify-
ing several types of markers, based on their relationship to the task and to eadyother
recognizing the diérent roles of markers in the tasks, this work develops specialized
strategies for acquiring, maintaining and using the markers to achieve thes ageid.

The marker is used as a means for expanding the agent’s effective field of view.

In a complex world, an agent may have multiple tasks to accomplish, which may
result in conflicting determinations of what action to take. | develop a system architecture
which facilitates mediation among conflicting tasks, while allowing the tasks to be pur-
sued independently when they are not in conflict. The architecyaeines the machin-
ery for accomplishing a given task intask-agenciesand provides for communication
(via markers) among the task-agencies in order to resolve conflicts.

A further potential dficultly with the task-oriented approach is that one poten-
tially must design a new agent from scratch for each task one might want to accomplish.
Fortunately there is a great deal of commonality among tasks suitable for autonomous
agents. | will analyze a spectrum of tasks and abstract a relatively small set of sub-tasks
that can be parameterized and composed to perform a wide variety tasks.

As a demonstration of the concepts developed in this dissertation, | have imple-
mented an agent that operates in a three-dimensional virtual environment. The@agent’
ception consists entirely of a sequence of images of the environment taken from the
agents perspective. The use of mardkarsed representations to increase the information
available to the agent beyond that provided by the current sensory input (i.e., expand the
effective field of view) is shown to measurably increase the performance of the agent.

This dissertation refines and extends the gmgrsituated automata model of
agent design. The techniques for expanding teetafe field of view by instantiating and
manipulating markebased representations of the environment provide the opportunity to
capitalize on the strengths of both the situated automata model of agent design and the
more traditional classical planning approach, thereby constructing mobile robots capable
of performing tasks beyond the capabilities of those constructed using either approach
alone.

Representation for Perception/Action Introduction



Chapter Il: Related Work

This dissertation addresses representations for perception/action systems operating
in dynamic three-dimensional environments. The representations discussed are used to
augment a reactive system and improve its performance. The representations used poten-
tially form an interface between classical and reactive planning. The use of these represen-
tations may be used to capitalize on the strengths of classical and reactive approaches,
especially in regards to sensing and representing the environment. | will concentrate on
visual sensing, although the concepts to be developed Chapter Il are applicable to sensing
in other modalities.

This chapter briefly reviews the two approaches to determining action in the world,
and visual sensing of that world. Reviews of classical planning can be found in [25, 60,
64]. A compilation of papers in classical planning, with a few papers in reactive planning
as well, can be found in [3]. A collection of papers on reactive planning can be found in
[41]. Rodney Brooks reviews reactive planning work at the MIT robotics lab in [12].
Papers from a recent workshop on the interaction of visual sensing with acting in the envi-
ronment is in [43] Figure 2-1 depicts a time line of some of the major planning systems
since the field inception. The names on the lower portion of the diagram are classical
systems, and the upper portion of the diagram names reactive systems.

Subsumption
Pengi , LFA
Sopja

ex [
80 90 95
T STRIPS NOAH'\L,\”_IN DEVISER T\I/EAK ucrop
QA3 HACKER SIPE Xl

ABSTRIPS

Figure 2-1: A time line of planning



2.1. Classical planning

The classical planning grew out of early work in resolution theorem proving sys-
tems such as Cordell GreerQA3 [27]. As such, it inherited many of the assumptions
required by resolution theorem provers. For example:

» omnisciencethe theorem prover has full access to all information

« certainty all the information is true with complete certainty

* consistencynone of the information is contradictory

When resolution theorem provers are applied to planning problems, we must fur-
ther assume:

* sole cause of changthe only changes in the world are caused by the agent
* atomic time exactly one complete indivisible action occurs at a time

Given these assumptions, we can divide the world into discrete time slices that can
be labelled, so that the resolution theorem prover can prove facts about the state of the
world at timet, time t+1, t+2, etc. Under this formulation, one can modify a resolution
theorem prover to construct plans via the usual resolution methodamgwyssume the
negation of the theorem, and derive a contradiction. In planning, this means we assume
there doesot exist a state in which the desired goal is true, and start the theorem prover
The plan is produced as a side-effect of deriving the contradiction.

A major problem with this approach is the action representation requieede®&d
to know the new state of the world after an action is executed, i.e., given the state of the
world at timet and a description of the action taken at tim@e must to be able to derive
all the relevant facts about the world at tim&. Unfortunatelythis means that in describ-
ing an action, we must not only specify all of the changes that occur in the world as a
result of the action—we must also specify all of those thingglthabtchange as a result
of the action. This is an exampletb& frame problenm its purest form [46].

Fikes and Nilsson dealt with this incarnation of the frame problem in the STRIPS
system [22] by decoupling resolution theorem proving from the search through world
states. Resolution theorem proving was only used to determinevittutsa world state.

To move between world states they introduced what became knows as the STRIPS action
representation, which consisted of an “add list” and a “delete list.” Each action had an add
and delete list associated with ib §enerate the world state at titkd after an action is
executed, take the description of the world at tinseld all the statements in the acton’

add list, and delete all the statements in the delete list. All statements that are not explicitly
mentioned in the add or delete lists are assumed to be unchanged.

The STRIPS planner was still left with afaitilt combinatorial search problem;
one still had to decide what action to apply at each world state. Heuristics were used with

Representation for Perception/Action Related Work



limited success. Then in ABSTRIPS, the next version of the STRIPS system, Earl Sacer-
doti introduced the idea of a hierarchy of abstraction spaces in which the planner first
solved the problem at a high level, ignoring many details, and then used the solution to
this easier problem to guide the searches at the more detailed levels [53]. The abstraction
spaces were constructed by simply ignoring some of the preconditions of the actions. The
choice of which preconditions to ignore was guidea lpyiori assigningriticality values

to literals in the preconditions. This approach dramatically improved the performance of
the planner.

ABSTRIPS laid the groundwork for Sacerdstihext plannerNOAH [54]. By
ignoring all the preconditions, one can start with a empty plan which is assumed to
achieve the goal (i.e., it has the single “action” labelled “achieve goal”). Then one contin-
ually adds “refinements” to the plan which fill in the details of the “achieve goal” action.
Actions are considered which achieve goals or portions of goals independedthction
ordering is only imposed as necess&@scerdoti used “critics” to impose such orderings
as needed to resolve conflicts in the plans. This formulation fundamentally alters the
search space from a search through a space of world states to a search through a space of
plans of increasing detail. This type of planner is referred to as a “nonlinear” planner
since it does not consider a linear progression through a sequence of world states. NOAH
is the foundation of all modern classicplanners.

By changing the search space, NOAH was able to solve a number of problems
without backtracking (i.e., without “search”), notably the blocks-world problem known as
the “Sussman Anomaly” which caused trouble for SusssnBt8CKER system [58].
However the critics in NOAH still made choices among alternative orderings—choices
which may later turn out to have been wrong. This made NOAH incapable of solving a
number of problems, since it didrsave the choice points for backtrackingtels NON-

LIN planner [59] reintroduced backtracking search to the planning problem.

Over the next few years, additional enhancements were made to the basic nonlin-

ear planning algorithm. For examplesre's DEVISER [63] considered planning in time,

i.e., some actions must occur within a time windand Wikins’ SIPE [66] had special-

ized mechanisms for dealing with limited resources. Eventui@higpman examined the

state of the art in planning and constructed TWEAK [15], a relatively simple planner with-
out the extra mechanisms for time, resources, etc., which he proved correct and complete.
At the heart of TWEAK was theodal truth criterion which lists the necessary and suffi-
cient conditions for ensuring that a statement is true at a given point in time. Chapman fur-

1. Please excuse the oxymoron. | think the meaning of “modern classical” in this context is clear.
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ther proved that if a plag’actions contain conditionalfefts, evaluating the modal truth
criterion is NP-hard. Since TWEAK evaluated the modal truth criterion in its innermost
loop, Chapman concluded that planning with expressive action languages (such as those
with conditional efects) was unlikely to be fruitful. Chapman rejected classical planning,
and went on to make contributions in the realm of reactive planning.

Since publication of Chapmanlandmark papeit has been pointed out that it is
not necessary to evaluate the modal truth criterion in a planner’s innermost loop, since the
planner need not evaluate whether something is true, but rather only to be sure to insert the
actions needed to make it true. The UCPOP planner takes advantage of this fact to con-
struct plans with actions having conditionaleefs and universal quantification in both
preconditions and &fcts [64]. Howevereven simple planning (i.e., without conditional
effects) is PSRCE complete if actions can have more than two conjuncts in their precon-
ditions [14], and given sfi€iently powerful action representations, planning is undecid-
able [20]. See [21] for extensive results on the computational complexity of planning.

Very recently some work has been done on relaxing the basic underlying assump-
tions in planning. For example, the XlI [26] planner begins to address the problem of plan-
ning with incomplete information. The Xl planner constructs plans for “softbots,”
intelligent agents that perform tasks in the artificial world of a computer network.

2.2. Reactive planning

Classical planners were initially developed to be applied by mobile robots; in fact
STRIPS, ABSTRIPS, and NOAH all built plans to be executed bysS®bot named
Shakey However about the time of the construction of NOAH, planners began to find
more successful applications in other domains. NONLIN was applied to planning electric-
ity turbine overhauls, DEVISER did mission sequencing for tyayer spacecraft, and
SIPE did advanced planning for aircraft carrier missions. Classical planners were found to
of limited use in mobile robots, because none of the basic assumptions made by classical
planners (omniscience, certaintpnsistencysole cause of change, atomic time) are true
in mobile robotics domains.

Brooks developed an engineering methodology caldasumptior{11], which
rejected the use of planning, and instead used hard-wired “behaviors” in which sensor
inputs were passed through simple combinational circuits to approprigetoes.
Increasingly complex behaviors were layered over simple low-level behaviors, with the
high-level behaviors taking priorityr “subsuming” lowetevel behaviors if necessary
The robot simply “reacts” to its current sensor inputs. This approach became known as
reactive planningwhich is somewhat of an oxymoron, since this reactive approach is
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really the antithesis of “planning.” An alternate name for this approastuated autom-
ata

The reactive planning approach made diametrically opposed assumptions from
classical planning:

* ignorance the agent has no information but the current sensor readings

* uncertainty even sensor readings are suspect, and actions may or may not work

* inconsistencydifferent behaviors have different ideas about what to do

» dynamic environmenthe world changes all the time, regardless of the agent

* continuous timeactions may be aborted in the middle of executing

Given the state of the art in sensor and mobile robotics techndhage assump-
tions are much closer to being true for mobile robots than are the assumptions made by
classical planners. Brooks was able to construct robots that performed simple navigation
and obstacle avoidance tasks in dynamic, real-world environments, which is more than
can be said for classical planning systems. Bolstered by this success, and by Ghapman’
pessimistic classical planning results (Chapman was Brooks’ student) Brooks went on to
reject classical planning, the use of representation, and the physical symbol system
hypothesis [12, 13]. It is the role of representation that is of concern in this dissertation—
and it is dificult to reconcile Brooks’ rejection of representation with the subsumption
architecture, since subsumption allows for the use of instance variables, i.e., representa-
tion. A system that in fact, diabt use internal state was GafLFA [24], which was built
to really test the limits of the pure memoryless approach.

Leslie Kaelbling adopted a less radical stance in the construction of Rex [36], and
Gapps [37], which allowed for internal state and moreover, were advertised as such. Kael-
bling’s approach to situated action was that the agent performs a mapping from input to
outputmediated by its internal statdhis is the approach | adopt in this dissertation, in
which | will address the form, maintenance, and use of this internal state to perform the
“mediation” of the action function in mobile robots.

2.3. Visual sensing

There is a laye and growing literature describing various techniques for the recov-
ery of information concerning a scene from an image. These techniques, such as shape-
from-shading [34] and depth-from-stereo [50], can deliver rough estimates of measurable
aspects of a scene, such as surface-tilt and 3D-depth. These computations are accom-
plished by exploiting constraints imposed on the possible configurations of the scene by
the physical world [42]. These constraints must be used by the visual system, due the
inherent complexity of the visual problem; otherwise the problem is underconstragted. Y
even with the use of these constraints, and despite considefablecefrrent visual sys-
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tems are not capable of delivering an accurate, three-dimensional model of a realistically
complex scene from image data.

A number of advantages and computational simplifications can be obtained by
considering the tasks to which vision is applied [6]. As a complement to searching for
additional constraints which might further enable the construction of a world model, we
can relax the demands on the visual system by reducing the requirements of the resulting
world model. In the limit, one would consider the visual component of a reactive system,
i.e., no world model at all. In a reactive system, the role of vision is reduced to recognition
of the object at the current point of fixation. The requirements of the visual system would
remain substantial in order to perform this recognition, but the three-dimensional position
of objects would not be retained by the agent over time to build up a model of the environ-
ment.

The agument put forward here and by others elsewhere [4, 6, 16], is that the pur-
pose of vision is to enable an agentitothe right thingand so the labels assigned by the
visual system must be relevant to some task. Perception and action are so intertwined that
they must be studied in conjunction with one anotlibis means that in order tofex-
tively investigate perception beyond the lowest level mechanisms, one must do so with
respect to a task to be performed by some agent. Dana Ballard is generally recognized for
introducing this task-oriented approach, knowmetsve or animatevision [6]. A number
of recent papers on this approach can be found in [43].

2.4. Psychophysical evidence

This dissertation is concerned with the acquisition and maintenance of the environ-
ment representations via sensing. The particular form of the representation used exten-
sively in this dissertation is thdeictic representation, in which the representation
basically consist of “pointers” or “markers” on objects in the physical world. The concept
of marking a limited set of objects originated in the psychological literature with Pyly-
shyn’s FINST (Finger of INSantiation) model of visual tracking [52]. This model pro-
poses that a set of markers, or FINS€an “point” to objects in the world, and the
FINSTed objects form the basis of spatial perception. Pylyshyn and Storm present several
psychophysical experiments which provide evidence supporting the theory [51]. Recently
additional experiments byavitis suggest that the spatial relationships between the marked
objects are critical for visual tracking [68].

Pylyshyns model considered these FINSAnly as they indexed currently visible
objects, but this dissertation will go further t@ae that the deictic representations are
maintained in memory even if the indexed object is not currently visible. There is also
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psychophysical evidence to support this position; some of the strongest is provided by Att-

neave and Farrar [5]. Subjects studied a row of seven objects laid out on a shelf, and then
turned around with their backs to the objects. The subjects were then asked questions
regarding the relative positions of the objects behind them (e.g., on which side of the duck

is the shoe?). Subjects performed well on the task, even though the left/right distinctions

are inverted from those made when facing the objects. Subjects reported that they
answered the questions as though they were viewing the objects with “eyes in the back of
the head.” Attneave and Farrar remarked (my emphasis):

Our internal representation of the world around us is based in part on current sensory
input, butin a much greater part on past sensory inputs, upon memory.

Several others have investigated the way in which such internal representations of
the environment are used to aid in navigation tasks. Mittelstaedt and Mittelstaedt [48]
report that geese represent information regarding a “home” location, and update the rela-
tive position of the home location by integrating optic flow information, so that they
always know which way is “home,” even if home is not currently visible. Muller and
Wehner [49] report a similar technique is used by desert ants, except that the ants use
proprioception of their movements instead of optic flow to update the home location. Loo-
mis et al [40] report similar abilities in humans; blindfolded people can use proprioception
of their movements to maintain a representation of the location of an external point.

2.5. Representations for mobile robotics

The classical form of representation for mobile robotics is perhaps exemplified by
the work of Kosaka and Kak [38], in which a complete CAD-model representation is pro-
vided to the roboa priori. A number of techniques are used to deal with clutter in the
environment that is not contained in the CAD model, and in errors in the estimated posi-
tion of the robot with respect to the CAD model. These techniques enable the robot to
achieve impressive performance, but acquisition of the model is not addressed, and the
robot navigation is completely dependent on the existence and accuracy of this CAD
model.

Agre and Chapman introduced the deictic representations to the reactive planning
literature [1, 2]. They implemented an agent that used the deictic representations to play a
video game called Pengi. The agent played the role of a penguin that avoided a swarm of
bees. Rather than identify and label all of the bees, as would be the case in the classical
paradigm, markers were placed on only the nearest (or otherwise most task-relevant) bees.
The markers served as input to reactive-style planning circliitiey maze environment of
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Pengi was well-structured and rectilinear, easing the planning task considerably. In subse-
guent work, Chapman developed another video game agent, Sonja [16], that operated in a
less-structured, though still two-dimensional environment. Sonja also interacted with a
human advice-giveraccepting deictic instructions with pronouns that were bound to
objects depending on the current situation.

Chapman [17] investigated visual strategies for operating in a complex environ-
ment, but only addressed the problem at the leveéhtefmediatevision, and did not
attempt to solve the problems associated with usirgadmp vision system, such as occlu-
sion and the underconstrained nature of the early vision problem. FFadheemory was
used in either of these video-game agents; markers were only placed on currently visible
items.

Maja Mataric developed the use of maps in a reactive planning context [44]. Sonar
sensors and a low-resolution digital compass were used to identify landmarks and con-
struct a distributed topological map of the environment. The map enables the robot to nav-
igate to locations in the environment as directed by a human. These maps are useful for
navigating the large-scale space, but are fundamentally different from the local-space rep-
resentations used in this dissertation. The local-space markers are metric, in that they iden-
tify the locations of objects relative to the agent in a low-resolution coordinate system,
whereas the Mataric maps are primarily topological. The Mataric maps are useful for nav-
igating the lage-scale space (such as using a map to drive from Neutd Los Angeles)
while the local representations are used for coping with the immediate surroundings (such
as driving on the highway in heavy traffic, avoiding accidents). In this way, the two repre-
sentations are complimentan extension to the work of this dissertation would be to
investigate the interface between the matiased local-space representation with a
Mataric-style representation of the large-scale space.

lan Horswill constructed a visually-guided robot which was endowed with a map,
i.e., an internal topological representation of the environment [33]. His system demon-
strated that a visually guided robot can be implemented for a reasonable cost and operate
on the basis of low-resolution images, but it had no memory for objects it had recently
seen, and could not, for instance, know to brake for an object that had passed outside the
current field of view.

At the University of RochesteDana Ballard and several students have an ongoing
research program in deictic visual behaviors, and have conducted experiments that show
humans use very little memory in accomplishing natural tasks [31]. When possible,
humans employ a strategy in which memory is limited to a single item, acquired immedi-
ately before use of the information. The memory in question is not spatial memory of the

Representation for Perception/Action Related Work



12

type addressed in this dissertation, but rather factual memory (e.g., the color of a given
item). Rochester also has a virtual reality system, and has been conducting experiments in
a virtual environment. They have constructed a “go-cart” simul&torvirtual driving,

and are investigating the role of deictic visual behaviors in that task [45]. Their work is
primarily concerned with the use of the fovea as a masdket in learning of the visual
behaviors associated with the use of the fovea, rather than the spatial memory that may be
required to direct the visual system to place the fovea a given object that may be currently
outside the field of viewSpatial memory is limited to simple left-right distinctions. In
contrast to the Rochester go-cart work, we will be concerned with higher resolution main-
tenance of multiple markers.

Classical planning addresses the general problem solving issue in potentially com-
plex, yet static and certain environments in which the agent has complete information.
Reactive planning addresses issues in dynamic, uncertain environments and real sensors,
but the reactive approach limits the capability of the agents to deal with moderately com-
plex problems. Neither approach contains an adequate account of representation of the
agent’s local environment. Dealing effectively with the local environment is necessary for
intelligent interaction with a dynamic, uncertain, three-dimensional environment via real-
istic sensors and effectors.

The most promising account of local space representation is Agre and Crepman’
markerbased approach. Markers provide a means of mapping a set of percepts into an
appropriate action, enabling the agent to take consider its spatial relationships to the per-
cepts and the spatial relationships of the percepts to eachkdtimee, markers provide a
powerful means of reasoning about the local space. HowAgee and Chapman use
markers only to index into the current perceptual input, and they in fact deny markers
should be used as memory mechanisms, insisting instead that markersosityuidex
current percepts. This stance is inadequate in a three-dimensional world in which sensors
are subject to occlusion and a limited field of vi&ut by promoting markers to true
memory mechanisms, this dissertation realizes &ttafe means of representing the
local space.
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Chapter III: Building Agents for the Real World

The history of artificial intelligence has seen the construction of many “agents,”
most of which operated in artificial environments. The study of such agents in artificial
environments resulted in a great deal of theoretical progress, but researchers have found it
difficult to apply these results to agents operating the real world. A fundamemtaltgif
for agents attempting to apply the traditional “classical planning” approach to the real
world is that the input to a classical planner is a complete and flawless description of the
environment and the actions the agent can take in the environment. ,Glegiiypossi-
ble to construct such a description of the real world. This fundamerftaliltjf is exacer-
bated if some or all of the world description is to be obtained by real sensors. Real sensors
are errofprone, may require computationally intensive processing, and have a limited
region of space over which they operate.

As a consequence, the field of reactive planning has quite appropriately focused
attention on those ddrences between theoretical worlds and the real world, and has
resulted in additional progress in the field of mobile robotics. The reactive planning
approach abandons the idea of a world description, and in its extreme form, further pur-
ports to reject representation altogethather than attempting to construct general-pur-
pose reasoners, reactive planning researchers carefully analyze a specific simple task and
construct an agent to perform that task. By focusing on a specific task, the designer can
limit demands on the sensors so that they only extract the information needed to accom-
plish a specific task. This approach makes at least some tasks in the real world tractable
for artificial agents. A major tenet of this dissertation is that the real world demands a task-
orientation for perceiving and acting agents.

The rejection of representation by some members of the reactive planning commu-
nity is prompted by an underlying assumption that sensors can be used to uniquely deter-
mine the correct action to take based purely on the current readings of those sensors—
memory is not necessaifyor instance, when executing a sequence of actions, it is not nec-
essary to remember and explicitly represent an entire sequence of world states and the cur-
rent position in the sequence, since execution of the first action in the sequence will result
in a change in the world that will enable the next action. It may appear that the agent is
stepping through actions in a sequence, but the actual system is merely mapping the cur-
rently sensed situation to an action, a paradigm which has many appealing features.

| assert that due to the limited nature of sensors, it is sometimes not possible to
simultaneously sense all the information needed to determine an effective action. | further
contend that by augmenting a reactive style agent with some carefully chosen and main-
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tained representations, the combination of these representations and current sensor read-
ings can be used to determine aiecive action; a determination that may not have been
possible based on the current sensor readings alone.

The reactive model requires constructing a mapping from the current sensor read-
ings to an action. The model | propose extends the reactive model through the concept of
an effective field of viewvhich is created by a agent acquiring and maintaining limited
representations of task-specific world attributes. Using the effective field of view concept,
we can justify maintenance and use of a limited representation within the agent and still
retain the attractive features of the reactive paradigm. In order to expantkthieefield
of view in an agent operating in a three-dimensional environment, | co-opt the idea of a
marker a term which | define as | intend to use it in section 3.1.1 before going on to dis-
cuss the effective field of view.

One basic dffculty with the task-oriented paradigm of mapping situations to
actions arises when an agent has multiple tasks. In order to accomplish one goal, the cur-
rent situation may map to some action. In order to accomplistfieaedif goal, that same
situation may map to a @@rent action. | will discuss an architecture and techniques for
resolving such conflicts in section 3.2. Section 3.3 elaborates techniques for using markers
to expand the &ctive field of view distinguishes diérent types of markers and their
uses, and discusses techniques for maintaining the markers in a dynamic environment.

3.1. Representation in an uncertain world

After becoming disenchanted with the classical planning paradigm [15], Agre and
Chapman developed a theory of activity [1, 2] in which situations were mapped to actions,
enabling an agent to perform well without planning in the classical sense. At the heart of
this theory and what dierentiated Agre and Chapmarsystem from previous situated
automata, was the use of deictic representationsjaskerson relevant objects in the
environment. The agestturrent situation (which was mapped to an action) was identified
by the current state of the markers. Agre and Chapman developed this system as an alter-
native to classical planning, but it has since become a goal of the research community to
reconcile such a system with classical planning, so as to apply the advantages of both.
After defining the term marker in this section, | develop a framework based on markers
which capitalizes on the strengths of both the situated and classical paradigms.

3.1.1. Markers

A markeris a data structure that contains two primary pieces of informatioat
an object is in terms of its role in the current task,@hde the object is in an egocentric
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coordinate system. Markers provsfgatial memoryor an agent. Howevgthe agent does

not (and cannot) remember everything about the local space. In the definitishatly

do not mean the marker contains a complete, objective, geometrical description of the
object. Ratherthe marker identifies an object relative to the current task being performed
by the agent. One of the most important aspects of markers is their task dependence.
Accomplishing a task in the world requires certain items be used; markers provide the
place holders for these items. For example, the task of pouring a bowl of cereal requires
two items: a bowl and a box of cereal. There may be many bowls and boxes of cereal in
the cupboard, but we need only one of each. By placing a marker on one bowl and one
box, the pouring task need only refethe bowl andthe box. The marker need not contain
descriptive information such as the color of the bowl or the brand of the cereal, since they
are not relevant to the current task.

Similarly, by where,l do not mean the object is located in some external coordi-
nate system. The purpose of markased representations is to enable an agent to interact
with its immediate surroundings, so the appropriate coordinate system is egocentric. | will
now flesh out this definition with analogies | have found to be useful in my understanding
of markers and their function. These analogies will also provide motivation for my use of
markers.

3.1.1.1. Marker as pronoun

As the above definition makes cletire primary analogy is that markers are refer-
ence pronouns augmented with hand gestures. For example, if a person in a classroom is
asked “who is the teacher?” the answer might be “Professor Jones,” or it might,be “her
(with an associated finger point). The latter response is in a marker mode.

3.1.1.2. Marker as register

Markers are analogous to registers that contain information regarding important
objects. B extend this analogy furthewe can think of the physical world as the “main
memory” of an agent [12], and the agent copies information from main memory into reg-
isters in order to improve itsfefiency The determination of the objects to mark is there-
fore analogous to a register allocation problem. Moreavieen data is replicated, there is
a possibility that one of the copies may be modified, and not the ltlaedynamic world,
it is likely that the world changes, but our internal representation of it does edt.eve-
fore have a “cache coherence” problem with which to contend. Just as the data in a cache
can fall out-of-sync with main memaqrglata in the markers can fall out-of-sync with the
state of the world. This problem of markers falling out-of-sync with a dynamic world is
ultimately a form of the frame problem [46].

Representation for Perception/Action Building Agents for the Real World



16

In multiprocessor systems, cache coherence is traditionally handled by having
writes to main memory be accompanied by broadcast messages advising all processors to
invalidate their cache. No analog for such a broadcast exists in the physical world, so an
agent acting on the basis of internal state always runs the risk of acting on stale data,
which is part of the original motivation for the reactive approach (i.e., no internal state
reduces the risk). The Agre and Chapman environment simulation updated the state of the
markers automatically once they were placed; thus their environment had the equivalent
of the broadcast message that not only invalidated the old data, but updated them, thereby
solving the cache coherence problem.

The real world does not have such a broadcast mechanism, so agents must rely on
other strategies to synchronize their internal state with the environment. A realistic treat-
ment of the marker maintenance problem is a significant contribution of this dissertation.
Fortunately stabilities and regularities in the physical world mitigate the problem some-
what, so by limiting the amount of internal state and by monitoring the environment peri-
odically to update that state, we sharply decrease the risk of acting on stale information.

The locations of some markers can be monitored visualking marker mainte-
nance for the visible markers amount to visual tracking with multipjetsr Maintenance
of markers outside the field of view is rather mordi@ift. Use of an egocentric coordi-
nate system requires that the marker locations be updated as the agent moves. One of the
unique features of my system, as compared to reactive agents, is use of spatial memory for
objects not currently visible, either due to occlusion or limited field of view.

3.1.1.3. Marker as parameter

Another helpful analogy is to think of the relationship of markers to tasks as like
the relationship of parameters to subroutines.céah think of the cereal pouring task men-
tioned previously as a subroutine that takes two parameters: one of type BOWL, and one
of type CEREAL_BOX.

In the “computability” sense, markers do ndeofadditional power to the autono-
mous robot—there are alternative strategies for accomplishing tasks without them, just as
subroutines and object-oriented facilities do not add computational power to theusasic T
ing machine model. & subroutines are remarkably useful constructs. Like subroutines,
the advantages to using markers are mattersfiofegicy and ease of implementation of
useful algorithms.

3.1.2. The effective field of view

If an agent can perceive where everything is all of the time, then there is no need
for spatial memorysince all of the data needed and more is available from the current sen-
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sor readings. Howevereal sensors, visual and otherwise, are not capable of providing
this level of omniscience, due to (among other things)usionand dimited field of view

These are real problems which are not addressed by the planning literature, either classical
or reactive. Classical planning incorreclysume®mniscient sensing or its moral equiv-
alent—the world state is encoded in a perfect internal representation to which the agent
has complete access. The reactive planning approach contends that the all of the relevant
information can be extracted from the current sensor readings, provided that there are
enough sensors and they are engineered propgesly will describe, this can result in
unnecessary profusion of sensors in the case of dealing with a limited field phncbis

simply ineffective in dealing with occlusion.

All sensors have a limited region of space over which they operate. Specidically
sensor extractsredicatesconcerning the environment from some limited region of space.
For example, a visual sensor might extract the information that “there is a red ball at loca-
tion X,” which is a predicate in that it is an assertion that may either be true or false. This
predicate can only be extracted in the region of space in which the camera is pointing; not
the area behind the camera, and furthermore not in the area in front of the camera that is so
far away that it is impossible to identify a ball. | will refer to the region in which a given
sensor can extract predicates as its “field of Yiewd apply the term to sensors which are
not usually referred to as having a “viewuch as sonars and contact sensors. These sen-
sors have a field of view in the sense that there is a limited region of space over which they
can extract predicates.

Furthermore, predicates extracted from real sensors have “certainties” associated
with them. Outside of the sensoedisolutefield of view these certainties are at a mini-
mum (i.e., completencertainty).The absolute field of view of a sensor at a given instant
of time is defined as the region of space in which the sensor can extract predicates with
some nonzero degree of certainty at that timside the absolute field of viewertainty
may vary over the region, for example decreasing near the edges of the absolute field of
view. Consider the camera searching for red balls; the region behind the camera is outside
it's absolutefield of view since the camera cannot produce any information regarding the
existence of red balls (or anything else) in the area behind camighén We camera
absolute field of viethe camera may have increasindidifity resolving balls beyond a
certain distance, thus the certainty regarding the predicate “there is a red ball at location
X" may decrease with the distance to location X.

Even within the region of high certaintye actual predicate returned by a sensor
may be of limited use—it ismferencesmade from these predicates that are useful. For
example, a camera does not really return information about the locations of objects, but
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rather arrays of pixel values, which are predicates concerning the light falling on the sen-
sor. We infer that the camerasee$ something. This inference is yet another predicate,
moreovey it may be a far more useful predicate than the raw sensor predicates with
regards to a task such as picking up an object. Howtheeinference process can inject
more uncertainty into the resulting predicates (although several predicates supporting a
single inferred predicate may reinforce the inferred predicate and each.ethercrease

their certainties). There are formalisms for propagation of certainty/uncertainty along
chains of inference; e.g., see [55].

In a dynamic world, certainty generally decreases with time, since things (includ-
ing the agent) are moving and changing in unpredictable ways. An object may no longer
be where we sensed it a minute ago, or even where we think it might be after accounting
for an estimate of the rate and direction of change. Therefore, certainty generally
decreases witime, space anddepth of infeence Certainty generallyncreaseswith
breadthof inference; by breadth of inference | mean that evidence from diverse sources
supporting a single predicate can increase certainty.

A series of actions (plan) executed based on the truth of the entire set of (direct
sensor and inferred) predicates may enable an agent to accomplish a given task with some
certainty The actions in the plan have preconditions, and produce results (more predi-
cates). The certainty that these results will be obtained by the action depend on both the
action itself, and the degree of certainty that the actipréconditions are true. The action
description itself may be inaccurate to some extent, or may only be capable probabilisti-
cally of producing the intendedfe€t. An action therefore hassult certaintiesassociated
with it, which encode how likely it is that the action will produce its resttse action’s
preconditions are true. Also, the act®mpreconditions may not, in fact, be true in the
environment, since these preconditions were sensed by real (imperfect) sensors. There-
fore, chains of actions (plans) lead to decreasing certaimye the uncertainty of the
individual actions in the plan is cumulative. Having additional plans to achieve a single
goal can convee to increase certaintigleally the certainty of the goal being achieved by
the plan can be computed from the certainties of the sensor and inferred predicates that the
plan is based upoandthe certainty associated with the actions in the plan itself.

To summarize: a given set of sensors produces a set of predicates with associated
certainty values. Inferences based on tlsesesor predicategroduceinferred predicates
again with associated certainties. Based on the information in the sensor and inferred
predicates, we can select or construct a plan to produce some goal result in the world.

A plan iseffectualif it will produce a goal result with a given level of certainty
Note that this model is a superset of classical planning, except that in classical planning all
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the certainties are maximal. In the real world, we must allow that the plan may not achieve
success with complete certaingtherwise there would be no such thing as &cefal

plan. Note further that sensors can re-sense a predicate, which hdsdhefdjuilding
certainty i.e., a predicate that was very uncertain suddenly becomes quite certain if it is
verified by a reliable sensor.

Sensor data igsefulif it can be used to construct or select dratéial plan.The
usefulness of sensor data must therefore be determined in the context of a goal and a set of
actions and inferences, e.g., see [28, 65]. The implication of this is theffebgvefield
of view of a sensor is not completely intrinsic to the sensdiner the efective field of
view must be defined in terms of theefulnes®f the data it provides, which is in turn
defined in terms of the agentyoals and abilities. | therefore defihe effective field of
viewof a sensor to be that region of space and time in which the sensor data isNageful.
that given this definition, occlusion is a special case of a limited field of view—occluded
regions are regions of space about which we cannot draw any useful inferences. Occluded
regions also have the additional complication that they cannot be reasoned pborit
This is in contrast to a situation in which, for example, a lens has a 30 degree wide field of
view, which can be stated without regard to the current environment.

Note also that the definition of usefulness requires the agent to know the informa-
tion for it to be useful—information that the agent is not aware of cannot be used to con-
struct a plan. Howeveit is helpful for us as system designers to conglueinformation
thatwould be useful if the agent knew it; | will refer to thisthsometically usefuinforma-
tion. Once the agent acquires the information, it may beqmuaetically useful(or just
plain usefu). Furthermore, once the agent knows some information, it does not become
directly useful until the information is actually used in a plaformation that the agent
knows, but is not yet used in a plan is opbtentially usefullnformation that the agent
has incorporated into a plandsectly useful

It is primarily the function of the agestperceptual system to convert theoretically
useful information into potentially useful information, and it is primarily the function of
the agens planning system to convert potentially useful information into directly useful
information; although, as we will see, this is not a strict division of ldbdhe discussion
to follow, unless specified otherwise, | will use the waséfulto describe practically use-
ful information, i.e., the union of the directly and potentially useful information.

3.1.2.1. Spatial and temporal fields of view

The absolute field of view of a sensor is a purely spatial object; it has no temporal
dimension, since one can determine the current absolute field of view based purely on
where the sensor is pointinpw The effectivefield of view howeverhas a temporal
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extent. This is because theegtive field of view is defined not on where the sensor is
pointing now but rather on the usefulness of the predicates extracted from the sensor data.
When we say predicate haemporal extentwe mean that the predicate remains useful

or potentially useful for some interval of time beyond the point in time at which the predi-
cate was extractedNote that for the agent to be able to utilize the temporal extent of a
predicate, the agent must represent the predicate in some persistent storage.

The idea of a temporal extent includes the idea of usefulness. A predicate extracted
some time ago (milliseconds, seconds, minutes, hours, or more) may still be useful, even
if the absolute field of view does not currently contain the relevant object. This is because
although the world is dynamic, the degree of change is limited. Most things that were true
a second (minute, hour, etc.) ago are still true now. Therefore, remembering the predicates
extracted by a sensor expands the effective field of view of the sensor.

Consider an analogy in which a flashlight represents a semgbthe cone of light
the flashlight gives dfepresents the sensefield of view In a dark room, we can turn on
the flashlight, and immediately see the absolute field of view of the flashlight, since it cor-
responds exactly to those things that are “lit up” right.nbwose things that remain “in
the dark” are outside of the absolute field of vidw the flashlight is moved around the
room, the absolute field of view changes as the light falls derelift locations. To deter-
mine the absolute field of view, we simply observe what is lit up at any given moment.

If we remember previous views, howeyvtre effectivefield of view depends on
both where the light falls nguand where the light has fallen recentlynagine that after
the flashlight has been in a given region, that region continues to,*goen after the
flashlight has moved somewhere else. The glow corresponds to our memory for recently
seen items. The effective field of view is the union of the locations that are currently lit by
the flashlight and those locations that continue to glewthermore, we can encode
brightness as certaintguch that the current absolute field of view is brighter (more cer-
tain) than the glowing regions outside of the absolute field of.\A@athe flashlight is
moved around the room, it leaves a glowing trail that fades with time. The agent can then
use the information inside the glowing trail, as well as that in the current absolute field of
view, in order to make decisions about what to do next. In this thayuse of memory
expands the effective field of view.

Now | need to complicate this flashlight analogy somewhat, because in the simple
version given above, brightness was encoded as cestainéyeas the fdctive field of
view is defined in terms of the related but distinctlyfed@nt concept of “usefulness.”
When brightness encodes certajritye flashlight sweeps out a broad swath of glowing
points. Howevernot all of these points can be used to draw useful inferences. Since use-
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fulness is the more important concept, we should instead have brightness encode useful-
ness, in which case the flashlight leaves a trail of glowing isolated points.

@)

(b) (©

Figure 3-1: Images of a box (a) in which brightness
encodes certainty (b) or usefulness to obstacle avoidance (c)

For example, consider the situation in which our goal is navigation with obstacle
avoidance, and the flashlight (sensor) points at a box sitting on the floor in our path. Fur-
ther assume that we can segment box pixels from non-box pixels. After the segmentation,
we have a set of predicates, one for each pixel, concerning whether there is box at that
pixel. If brightness encodes certainty as in Figure 3-1b, then the region in the interior of
the image projection of box is quite bright, since we are very certain of those pixels being
“box” pixels. The regions at the boundary between box and non-box pixels are dimmer
since we are less certain about the “boxness” of those pixels. However, in terms of useful-
ness, the border and corner points of the box are the most important for navigating around
the box, so if brightness encodes usefulness, as in Figure 3-1c, the corners of the box are
the brightest points. Instead of leaving broad swaths of glowing areas, the flashlight leaves
a few glowing hot spots on important items, edges, and corners. Certainty contributes to
the usefulness of these points, since if our estimate of the location of the corner of the box
became sdiciently uncertain, the points would no longer be useful. Howesxssfulness
is driven primarily by the task to be accomplished.

Having brightness encode usefulness instead of certafettsathe regiomside
the absolute field of view as well at the glowing trail it leaves behind. As any researcher in
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computer vision knows, just because you are pointing the camera at something does not
mean you can draw any useful inferences about the object, or can even determine what the
object is. Our “eective field flashlight,” therefore, does not light up everything in its
absolute field of viewbut rather only those things the agent can draw useful inferences
about.

As a side note, given the current state of the art in perception techrnblegypso-
lute field of view of vision sensors is muchgar than that of sonar, since cameras can see
very far away with remarkable resolution—sonar by comparison is pathetic. However, the
effectivefield of view of sonar is bigger than that of vision, since nobody yet knows how
to extract much in the way asefulpredicates from images, whereas sonar has been quite
successful in navigation tasks—vision by comparison is pathetic. Sonar can extract useful
predicates such a “there is an obstacle three feet to the left of métiatwith a camera.

As | have noted, the usefulness of a percept depends on the end-to-end operation
of the entire system, from the properties of the environment, to the sensor techtwlogy
the sensor processing capabilities, to the actions the agent is capable of, to the planner that
sequences these actions, to the ultimate goals of the agent that the planner seeks to
achieve. All of these components must be considered when determining whégdhecef
field flashlight illuminates. Improvements to any of these components of the autonomous
agent ultimately expands the effective field of view. In fact, the entire field of autonomous
agents can be defined in terms of expanding agefestigk field of viewsince it embod-
ies the idea that our goal, the goal of the research commisity enable our agents to
know more in order to do more things—to accomplish more goals in the world.

3.1.2.2. Planning and the effective field of view

Given the notion of the ffctive field of view the subdisciplines of classical and
reactive planning fit neatly at opposite ends of a spectrum with regards to their positions
on the temporal extent of predicates. Classical planning assumes that the temporal extent
of predicates is infinite—i.e., predicates that were true and useful a few minutes ago
remain true and useful novand by induction, remain true and useful until the agent
changes them. This is evident in the “static world assumption” that is at the heart of classi-
cal planning, and determined the course of the field since its inception in the latg 1950’
continuing well into the in the 90’s (e.qg., see [64]).

A classical planning system begins by assuming the existence of a complete
description of the world. If one does not exist, go create one—we can waitar take
as long as you want, since everything you find out during the first minute will still be true
when you are done, since predicates are assumed to have infinite temporal extent. And we
will have to wait a long time, since classical planning does rfetatitiateuseful predi-
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cates, so the perceptual system might genafiapeedicates regarding the environment—

a very time consuming task indeed. It should be clear that not all predicates that are true
are also useful; truth does not imply usefulness. Finding all true predicates (if you could)
would potentially take far more work than finding the useful predicates.

For some predicates, the assumption of infinite temporal extent is not a bad one.
These predicates usually take the form of “general laws,” and can be programmed into the
robot initially. The law of gravity is one example, and it implies that everything must be
on the ground or be supported by something that is on the ground. This is not always true,
but it is true often enough to be useful.

As a side note, consider that, even as we have said that truth does not imply useful-
ness, it is also the case that usefulness does not imply truth. There may be many predicates
that are not strictly true, but which can nevertheless form the basis for successful plans. As
example, consider that the idea of “naive physics” is based on the fact that predicates con-
cerning physics which may be false may also be useful [29].

The strong form of reactive planning takes a diametrically opposed position from
classical planning with respect to the temporal extent of predicates, in that it assumes that
there isno temporal extent—if you are not sensingnaw the certainty of the predicate
being true is not high enough for it to be useful. This position leads to the “no representa-
tion” dogma, since representation is memamnyd memory is an attempt to expand the
temporal extent of predicates. Of course, it is difficult to build an agent that does anything
useful which believes only those things that it is currently sensing, and as pointed out by
Tsotsos [61], having no representation at all is, well,. $ilwwever the reactive planning
community has constructed several working robots with impressive (given the current
state of the art) capabilities. Thus, a question arises: how can we reconcile the apparent
success of the agents built ostensibly under the patently inappropriate “no representation”
doctrine. The answer of course, is that the doctrine was not strictly followed. However
given the temporal extent concept, we can describe the actual method@widgyhy is
was relatively successful.

Instead of having a continuum of temporal extent, one can divide predicates into
two broad classes: those with infinite temporal extent, and those with little or no temporal
extent. A reactive system “hard-wires” a set of sensor inputs to an action. This hard-wiring
embodies knowledge concerning predicates of “infinite” temporal extent. For example, a
robot was built to find and pick up soda cans, and then deposit them in the trash [18].
When the robot sensed an object of approximately the right size and shape in an appropri-
ate location (using a laser range-finger), a “pick-up” action was triggered. Knowledge
about the colgrsize, and shape of soda cans is a set of predicates of infinite temporal
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extent: “facts” about the world. These infinite extent predicates are not explicitly repre-
sented in the agent, howeyttey are implicit in the agestteactive rules, e.g., “if you see

a red blotch in the image of such-and-such a size and shape, move towards it.” The fact
that this red blotch is assumed to be a soda can is an infinite extent predicate: red blotches
of this size and shape are soda cans. This predicate can be “wired-in” and “hidden” pre-
cisely because it is of infinite extent. Since it is always assumed to be true, there is no need
to represent it explicitlybut implicit “facts” such as these permeate the design of the
agent. Moreoverthese predicatemre explicitly represented by trgesignerof the agent.
Explicitly representing and reasoning about these predicates is what enabled the system
designer to construct the robot. These sorts of predicates do not “count” as representation,
since the agent does not represent them explicitly.

Other predicates in a reactive system, such as “I'm holding something” have no
temporal extent. This requires the robot to have a sensor that signals at all times whether
there is something in the gripp&iven the unreliability of the grippers, this is a very good
idea, since it means that if the robot drops the object, there is an immediate signal of the
change, which triggers a thfent set of actions (possibly to pick up the object again). If
we were to give the “I'm holding something” predicate a longer temporal extent, the robot
runs the risk of acting on false information, e.g., continuing to proceed to the trash can,
even though the robot accidentally dropped the trash a while back. This kind of predicate
really does not have much temporal extent. One reason the reactive robots are so success-
ful is that they are unlikely to take inappropriate actions based on stale information.

Another reason reactive systems are successful relative to the traditional approach
is that the current sensor technology is so bad that sensor predicates, and more impor-
tantly, inferences made from the sensor data, have very low associated certainties. By
eliminating the temporal extent of these predicates, the agent is again likely to act on only
very certain information. One of the major faults of non-reactive systems is a tendency to
take actions based on inferences from the sensor data that are really quite tenuous. In prac-
tice, reactive systems eliminate this possibility basically by eliminating (or hard wiring)
inference. Eliminating inference and inferred predicates leaves only the sensor predicates,
which really do not have any temporal extent, so the division of predicates into those with
infinite temporal extent and those with zero temporal extent is a pretty good characteriza-
tion of the remaining predicates. The zero temporal-extent predicates are those determined
by the robos rather poor sensors, whereas the infinite temporal-extent predicates are
those determined by the human designer of the system, who brings a great deal of exper-
tise to bear on the design of those predicates.
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3.1.2.3. Markers and the effective field of view

A marker is a predicate with temporal extent concerning the location of an object
in space. As we will see, markers are important because they efficiently expand an agent’s
effective field of view.

Recall our “efective field” flashlight: as it surveys a room, useful predicates “light
up” and stay lit up, as if by magic, as the flashlight moves around the room. Howssver
of magic is not an option; we must extract and maintain these predicates. They only light
up if we extract them, and they only stay lit up if we maintain them. Thaetek field of
view only contains those predicates that are lit up by our efforts.

One overly simplistic way to maintain the information is to save all the raw sensor
readings ever taken. Howeyesaving these readings is highly iing@ént; consider the
case if the sensor is a camerae Would save every image the camera ever produced,
which is an extremely memory intensive proposition. Moreaber actual usefulness of
these predicates (i.e., the pixel values), is rather limited; it is the information extracted
from these pixels that is useful.ewhight imagine that the pixels themselves have only a
faint “usefulness gloyv whereas the information extracted from the pixels,(sayners)
glows brighter The extraction process concentrates the useful information; a marker is a
storage mechanism that contains and maintains that concentrated information.

It is worth noting here that sometimes it may actually be useful to retain the raw
image instead of just the percepts derived from it. The drawing of inferences is ultimately
a form of data compression, and morepl@ssy data compression. There are an infinite
number of inferences that we can draw from the sensor data, and we can only save some
of them. Drawing only a few inferences and throwing away the original sensor data admits
the possibility of throwing away potentially useful information. Saving the original sensor
data is a “least-commitment” stratedput it comes at the price of a high memory over-
head. It is only useful if the agent is likely to gain additional information later that will
determine what computations should be done to draw inferences from the sensor data.

This discussion of information that “might be useful later” hints at the subtle and
complex structure of the concept of “usefulness.” The overall usefulness of information
contained in a predicate depends not only on the usefulness of the information in execut-
ing a currently active plan to achieve a currently active goal, but also uptututesuse-
fulness of the information in plans and goals that are not currently active. Such
information is, as defined previouspotentiallyuseful. Since we are interested in agents
that operate with incomplete information, it may be the case that information not known
by the agennow (i.e., theoretically useful information) will become knovater and
change the value of other information. For example, consider an agent that has an action
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which it may use to directly accomplish some goal, and that action has a precondition con-
sisting of the conjunct of propositions A and B. The agent may have reliable information
that A is true, yet it may not know about the truth of B. The possible falseness of proposi-
tion B limits the usefulness of the information that A is true, since A can only be used if B
is also true. Howeveilf B is later found to be true, then the information that A is true
becomes much more valuable.

This sort of situation is one in which the previous generalizations about the roles of
the perception and planning systems break down. Recall that | had stated that it is prima-
rily the function of the agerst’perceptual system to convert theoretically useful informa-
tion into potentially useful information, and it is primarily the role of the aggadnning
system to convert potentially useful information into useful information. Howatvéhe
point in time at which the agent knows predicate A above, but not predicate B, the agent
may construct a plan to obtain information regarding B, thereby involving the planning
system in converting a theoretically useful predicate into a potentially or practically useful
predicate.

Given the discussion above, we can see that the overall usefulness of any proposi-
tion is dependent on not only its current value, but also on its potential future value. If we
are considering discarding information that the agent may have gathered previously (and |
contend that we must) then the decision on what information to discard must be based on
the informations current and future potential values. Additional research is therefore
needed to further elaborate the structure of the concept of usefulness.

There are any number of means of accomplishing the goal of expandintethe ef
tive field of view; markers are just one (particularly good).vwapother way to expand the
effective field of view is to expand tladsolutefield of view, by simply getting more sen-
sors, or sensors with a ¢mr intrinsic field of viewFor example, one could get a wide
angle lens for a camera, or get more cameras (or sonars, contact switches, laser range find-
ers, etc.). More, bigger, better sensors come at a cost and the increase the effective field of
view’s spatial dimension onlyneaning that the agent can know more about the world
by increasing the absolute field of vigwut does not know more about parts of the world
it has seein the pastGiven a fixed set of sensors and an associated absolute field of view
the use of memory can potentially increase the agefective field of view beyond the
absolute field of view provided by the sensors.

The use of markers increases the effective field of view’s temporal dimension, and
for movable sensors, marker use increases the sgspatial dimension as well. An alter-
native to marker use that also increases the temporal dimension (and by extension, the
spatial dimension), is to save raw sensor data instead of the markers, i.e., do without the
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data compression. The pros and cons of this approach are discussed above. Like every-
thing else in engineering, it is a trade-off.

Another important @ument in favor of the use of markers is the ability to deal
with occlusion, which as mentioned previously is a special case of a limited field of view
The problem of occlusion is intrinsic to the sensor modality; there are simply some things
that a sensor such as a camera or sonar cannot see through, and no lens or amplifier can
change that fact. One solution is to change modalities (use x-rays or something). However
by working through the temporal dimension, the use of markers or other memory mecha-
nisms can enable the agent to “see through” obstacles by remembering what was seen
when the agent was on the other side of the obstacle.

An interesting possible alternative is the use of multiple cameras on independent
bases which can broadcast information to each ,o¢ivarlar to [67]. This “cooperative”
strategy expands the notion of an “agent” to encompass cooperating agents that communi-
cate their perceptions. An agent could “see through” an obstacle by having one of its
“friends” that is on the other side of the obstacle radio back what it sees. This is also a
variation on changing modalities.

3.1.3. Conclusion

The notion of an effective field of view encapsulates in a single concept the defini-
tion, motivation, purposes, and goals of active perception for autonomous agents. The
effective field of view is defined not in terms of a physical seradrrather in terms of
usefulpredicates, predicates which contain information about the world that can help the
agent accomplish its tasks. Théeetive field of view consists of those predicates that are
useful in the context of the agentjoals and capabilities. Thdegdtive field of view is a
focal point for research aimed at dealing comprehensively with the problem of incomplete
and uncertain information that confronts autonomous agents operating in realistic environ-
ments.

All research in autonomous agents, from perception to planning to manipulation
and action, can be cast in terms of how it relates to the fundamental operation of expand-
ing the efective field of view The use of markers is arfielent means of expanding the
effective field of view which works by using a memory and data compressionfito ef
ciently maintain highly useful information.

3.2. Task-oriented design

Given the centrality of the ffctive field of view to the design of agents that oper-
ate in real environments, and given further the centrality of the task to be accomplished to
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the efective field of viewthe first step in constructing any agent is to analyze the task or
tasks the agent is to perform. The specification of an agent is therefore task-oriented, i.e.,
the central aganizing principle is to support a set of tasks to be accomplished by the
agent. Some amount of hardware and software mechanisms are needed to accomplish each
task, with several component mechanisms required to accomplish a compleR task.
supervisory apparatus is needed to coordinate the individual component mechanisms; we
refer to this supervisptogether with the components it uses, as thedasléncy after

Minsky [47].

One might like to think of task-agencies as subroutines, howiese are impor-
tant diferences between subroutines and task-agencies. Unlike subroutines, task-agencies
areactiveandopportunistic By “active,” we mean that they can “look for” their markers/
parameters, e.g., by pointing directional sensors appropribtelgunching the appropri-
ate visual routines in the intermediate vision system, or by stimulating other agencies to
perform actions likely to result in the appropriate world objects being marked. By “oppor-
tunistic,” we mean that if a task-agency has its inputs available, whether or not they
became available due to the direct actions of the task-agéman use those inputs to
accomplish its task. A complete autonomous agent may have several tasks to accomplish,
each with its respective agency for accomplishing it. Any number of these task-agencies
may be active in parallel at any given time.

Any suficiently complex agent will have multiple goals—some of these goals will
be in conflict, while others will support one anothEnere is a vast variety of tasks one
might wish to accomplish, and a task-oriented design dictates that agents i&itbndif
tasks have diérent designs. Howeviaall such agent designs have the common aspect that
agent design must address the issue of task interactions. This section discusses general
principles for dealing with several goals, and illustrates these principles via an example
that will run throughout this dissertation. The example agent is a small herbivore that col-
lects and eats food in the presence of obstacles and predators which it must avoid. It there-
fore has three tasks to accomplish: find food, avoid obstacles, and avoid predators. In later
chapters, a simulation of this example is developed and analyzed.

The interactions among tasks come in two major varieties: conflicting and mutu-
ally supporting. The agent must have some mechanism for mediating among conflicting
tasks; this issue is addressed in the next section. Mutually supporting tasks cga-be or
nized into a hierarchy reminiscent of the “hierarchy of abstraction spaces” in classical
planning [53]. These task hierarchies are addressed later in this chapter.
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3.2.1. Mediation among conflicting goals

An agent may perform several tasks, and is therefore made up of an interacting
collection of agencies. @anizing the design via agencies assures that all the elements
needed for a task are active when necesaar converselythat elements not needed for
the current task are not active, and therefore do not consume resources unnecessarily.

This analysis will first consider the tasks to be accomplished independeritig
level of Marrs “computational theoryin which the goals of the computation are deter-
mined, and the strategies for attaining those goals are thought out [42]. The “representa-
tion and algorithms” (Mafs level 2) are developed by taking into consideration
interactions among the tasks. Marthird level (hardware implementation) is addressed at
implementation time.

3.2.1.1. Resource conflicts among tasks

Each agency may have several components, and furthermore, these component
sets are not disjoint, i.e., some components are used in more than one Huyetesks of
these agencies are not independent; they must be carried out continuously and simulta-
neously in spite of the fact that the goals of the tasks are occasionally in conflict. In this
analysisthe conflicts are cast assouce conflicts The resources in question are compo-
nents that are shared amongst agencies. Conflict arises when two or more agencies simul-
taneously require the same component in order to perform their task, and the alternative
actions the agencies require the component to perform are mutually exclusive. Identifying
and handling these sources of conflict is critical to the successful construction of a situated
agent.

The block-diagram of the agent given in Figure 3-2 identifies three major sub-
systems: Action, Perception, and MemdRgsource conflicts can arise in all three. One of
the most important resources involved in the construction of a situated agent is the set of
effectors. Most effectors can only be doing one thing at any given time, so if two agencies
simultaneously require the same effector for different purposes, a conflict arises.

The agent constructed for this research program has three primary tasks: obtain
food, avoid obstacles, and avoid predators. The agencies responsible for each of these
tasks are referred to as theIEBUMP, and RUN agencies, respectivelihe agent ana-
lyzed here only has two effectors, its body and its neck. The body accepts two commands,
a forward speed and a turn speed, while the neck accepts one command, a head angle rela-
tive to the bodyThis implies that the agent has a distinguished “forward” direction, which
is the direction of motion. An example ofextor resource conflict in this domain arises
between the EAand RUN agencies when a predator is seen next to a food item. The EA
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agency wants to issuefettor commands that direct the agent to move towards the food,
whereas the RUN agency prefers to run away from the predator (and thereby run away
from the food item). Unfortunatelyhe agent can only move in one direction at any given

moment.
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Figure 3-2: Autonomous Agent Architecture

Another important resource is the agerget of sensors. In the case of the our
agent, its only sensor is its “eye,” as realized by the image stream generated by the simula-
tion. While fleeing from a predatoa conflict might arise between the RUN and BUMP
agencies over what commands to send the néegtef to orient the eye sensd®he RUN
agency might prefer to keep looking back towards the predatorder to keep track of
the predatos position, and thereby ensure that it directs the agent to move directly away
from it. Looking directly towards the predator keeps the predator in the sigéstlute
field of view which presumably keeps the predicate concerning the preditoation at
a high degree of certaintgs opposed to remembering the last known location of the pred-
ator, which would be a predicate of lower certairn the other hand, the BUMP agency
would much prefer to keep the eye pointing forward, so that it can see whigang and
avoid any obstacles. The predicate that the BUMP agency needs to establish with a rea-
sonably high certainty is that “there is a clear path immediately in front” of the agent. This
predicate may have a short temporal extent, especially if the agent is moving quickly in
order to evade the predatdteeping the eye pointed forward evaluates a “clear path”
predicate with a high degree of certainty.
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Another critical resource in the perceptual system is intermediate visual processing
power At the lowest-level, visual processing is bottom-up, with all early maps being com-
puted in parallel regardless of the current task, but visual routines at the intermediate level
are top-down and sequential [62]. This implies a limited amount of intermediate “visual
processing cycles.” Rather than compute all of the possible spatial relationships in the
visual input, currently active agencies direct the visual routines processor to perform only
those computations necessary for carrying out their tasks, i.e., extract the useful spatial
relationship predicates. This conserves the visual processing resource, but also gives rise
to resource conflicts when more than one agency is active concurfamtbkample of
this type of conflict arises between theTe#nd RUN agencies when a predator is noticed.
EAT wants the intermediate visual processor to continue to find food (extract predicates
about food locations, which are useful to its task), whereas RUN wants to find a place to
hide immediately (extract predicates usefuitsaask), without wasting time looking for
food. Which agency controls the intermediate visual processor is dependent on the relative
“strengths” of the agencies (see section 3.2.1.4), which in this case is dependent on the
proximity of the predator.

Finally, a central point in this discussion is that there are resource conflicts in the
short-term memory subsystem, since the extracted predicates must be stored and main-
tained in order to remain useful. As memory mechanisms, markers record useful predi-
cates concerning the location (and possibly some visual attributes) of items important to a
current task [1, 2]. There is overhead involved in maintaining markers. In a dynamic
world the locations (and visual attributes) of important items may change; thus there is
potential for the recorded information to no longer properly represent the current world
state. Maintaining markers is not simply a matter of updating an internal representation,
but also requires overt sensing activities in order to re-verify the information at appropri-
ate intervals, in order to synchronize the world state represented by the markers to the
actual world state. Clearlyacting on an incorrect world model is potentially hazardous,
and as discussed in section 3.1.1.2, is really a form of the frame problem.

To minimize the maintenance overhead, the number of markers must be kept low
The agencies are in conflict over how to use the limited set of markers. ThagéAcy
would like to mark food, RUN wants to mark predators, and BUMP wants to mark obsta-
cles. There are far more objects that might be marked than could be established and main-
tained using limited computational and sensing resources, so a choice must be made.

3.2.1.2. Independent task analysis (level 1)
Despite the acknowledged interactions between tasks, it will simplify the analysis
to initially consider each task independeniiis initial analysis will be confined to the

Representation for Perception/Action Building Agents for the Real World



32

“computational theory” level of information processing, since the next level (representa-
tion and algorithms) must consider interactions among tasks. Each agency has compo-
nents in each of the major subsystems of Perception, MearayAction. In some cases,

the same component is shared among agencies, but the conflicts this implies are addressed
at a subsequent level of analysis, or even at implementation time.

3.2.1.2.1. The EAT Agendy.our sample domain, the EAagency must identify food and
direct the agent to move toward it.e\Wo not attempt to simulate the manipulation
involved in a realistic eating behavior; rathgron coming in contact with a food item, the
agent automatically “eats” it. The agent should accomplish the eating task as efficiently as
possible, i.e., the agent should travel as small a distance as possible between food items.
The EA agency must have a component which identifies food in the incoming
image stream. Once identified, the faotbication relative to the creature must be deter-
mined; this location might be noted by placing a marker on it. Based on the current knowl-
edge of food locations (both from the current perception and from memory of items seen
previously but now out of the absolute field of view), the agent must choosged faod
item and send appropriatefexdtor commands to direct the agent to move toward the tar-
get. If no food is currently visible or remembered (via a marker), a visual search strategy
must be used, which could be a simple random walk, or a sophisticated search routine.

3.2.1.2.2. The RUN Agendhe RUN agency must perceive the existence of a predator
and determine the magnitude of the potential threat (based primarily on the perceived dis-
tance to the predator). If an escape behavior is deemed necéssappropriate com-
mands should be sent to théeefors. A more subtle task of the RUN agency is to be wary

of potential hiding places for predators. If the RUN agency only becomes active after the
predator is seen, it may be too late to perform an effective escape maneuver.

3.2.1.2.3. The BUMP Agendihe task of this agency is to prevent the agent from running
into obstacles. The simplest way to accomplish this is to prevent the agent from moving at
all. Howevey this strategy will not allow the other agencies to perform their functions.
The BUMP agency is interesting because its preferred action is to do nothing. Thus, most
of its activity is necessitated to the extent that it interacts with the other agencies, which is
the topic of the next section.

3.2.1.3. Task interactions (level 2)

Identifying and resolving conflicts among the agencies is a critical aspect of the
design of an agent with multiple goals. This section discusses general principles for con-
flict resolution between agencies, along with specific solutions for the interaction between
the agencies in our sample agene #gue that satisfactory resolution of some conflicts
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requires the agencies in question to communicate via a shared representation. The pro-
posed representation for this purpose is mabksed, and examples of markased
communication among the agencies are given in the context of our sample domain.

The first point to note when addressing the issue of conflict among the agencies is
that it is not necessarily a purely adversarial relationship between the agencies. Compro-
mise and cooperation between the agencies is possible, and the best solution may require
such cooperation.dl'show the form that this cooperation may take, we will consider the
interaction between the HAand BUMP agencies. First, an adversarial (non-cooperative)
strategy is developed and analyzed, followed by the development of a cooperative strat-
egy.
3.2.1.4. Adversarial resource conflict resolution

As discussed above, if the BUMP agency were working in isolation, a simple strat-
egy would be to not allow the agent to move at all. The problem with this is that it unnec-
essarily prevents the other agencies from pursuing their goals. This strategy is clearly not
cooperative. Another possible strategy is to cancel or redirect faryoefcommand that
might result in a collision. This subsumptiorl]ktyle strategy allows the other agencies
to pursue their goals, except when near an obstacle, when the BUMP agency takes prece-
dence. Howevetthis strategy is not cooperative eith&ince the winnetake-all control
precedence still casts the agencies as adversaries.

In general, the adversarial method of resource conflict resolution proceeds as fol-
lows. At any given time, each of the agencies is assigned a numerically valued “strength”
based on the current situation, where the current situation is determined based on the cur-
rent sensor input and state of mema&¥hen a resource conflict arises, the agency with the
highest strength obtains the resource, and uses it as if it were working in isolation. In the
first version of the BUMP agency (that never allowed the agent to move), the strength of
the BUMP agency was always higher than that of the other agencies. In the second ver-
sion, the BUMP agency’strength only rises above that of the other agencies when the
agent is sdiciently close to an obstacle. In cases where the alternative actions desired by
different agencies are truly mutually exclusive, the adversarial form of conflict resolution
is the only option.

However adversarial resource conflict sometimes fails to solve the problem. As an
example, consider the action taken by the BUMP agency when it wins control dettie ef
tor resource from the HAagency Presumablythis occurs when the HAagency directs
the agent towards a food item, with the selected path containing an obstacle. (It may seem
inappropriate to suggest that the agency would select a path containing an obstacle, but for
an agent with finite width, it is possible for a “clear” line-of-sight path to containfec: ef
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tive obstacle. For example, the agent may see a food item through a gap between a rock
and a tree, but the gap is too narrow to allow passage.) When the agent ctimestuf
close to the obstacle, the BUMP agency takes over, and determines a course of action.

One course the BUMP agency can take is to cancel the move command sent by the
EAT agencyor alternatively command the agent to stop. If this is done, at the next time
step the situation is the same, in that the path to the food will still intersect an obstacle, so
the EAT agency'’s attempt to move towards the food is again canceled by BUMP. This can
continue ad infinitum, and no further progress is made. The BUMP agency functionally
locks out the other agencies.

In pure adversarial resource conflict, one of several agencies competing for the
resource is the strongest, and the resource is used by the winner as if it were working in
isolation. In the case of fettor resources, this means that each agency has an action it
wants to take, and exactly one will be chosen, based on the agencies’ strengths. But in the
case of the EABUMP conflict, the correct action to take was not that desired by tiie EA
agency (go forward), nor that desired by the BUMP agency (stop). Nor is the correct
action a weighted combination of the two (go forward slowly?).

Reactive systems built using a subsumption approach usually deal with this prob-
lem by executing a pre-planned (with possibly some random elements) behavior designed
to change the situation sufficiently that progress is possible, e.g., [11, 18]. For example, in
a subsumption based system, the BUMP agdnsiead of instructing the agent to stop,
might direct the agent to back up slightiyrn a little to the left, and then move forward a
little. Upon completion of the behavior, the normal rules again apply, and the EAT agency
directs the agent to move towards the food. The assumption here is that from the new loca-
tion of the agent, a ddrent path to the food will be selected. Howewbis may still
result in a collision, in which case BUMP will take over again, and execute its semi-ran-
dom behaviarControl alternates between EAnd BUMP until eventuallythe “back-
and-turn-left-then-go-forward” action will cause the agent to circumvent the obstacle on
the left.

The problem with this approach is that it is ofterficlift to find a single behavior
that is appropriate in all situations. It may be the case that the datyiw$ route around
the obstacle is to the right, rather than the left. Modifying the BUMP action from “stop” to
“back-and-turn-left-then-go-forward” is a special purpose hack, which is exposed as a
hack when a better action is to turn right, not leftdétermine a morefafient action, the
BUMP agency needs to have knowledge of th@ Bgencys goals. In general, the pre-
ferred behavior is not uniquely determined by the current perceptual input, but is also
dependent on the goals of the other agencies.
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3.2.1.5. Cooperative resource conflict resolution

There is often an option that allows cooperation between the agencies and is supe-
rior to the purely adversarial approach. In this case, the action to be taken is dependent on
the goals of other agencies. If an agency must know the goals of another agency in order
to determine a good course of action, those goals must be communicated amongst the
agencies in some wa@ne way an agency might learn more about the goals of another
agency is to intercept the other agesoyutputs, and modify its own outputs based on
them. For example, the BUMP agency might intercefgicedr commands sent by the
EAT agency. If the EA agency wanted to turn right, then we might assume the best strat-
egy for BUMP is to circumvent the obstacle on the right. But it is easy to imagine situa-
tions where this assumption fails. Morequemay not be possible to determine the actual
goal of the EAT agency based purely on the effector commands it sends.

As a solution to this cooperation problem, | propose the use of markers to commu-
nicate among the agencies. By communicating the what and where aspects of their inten-
tions via a set of markers, agencies can cooperate to share a limited pool of resources, and
determine an &ctive action to take. This use of markers can be likened to the “marker as
register” analogy given in section 3.1.1.2. Processes and subroutines often communicate
by placing information in a register to which both entities have accesseel how this
works, we can re-examine the EAT-BUMP effector resource conflict.

The behavior of the ERagency when acting in isolation is to notice nearby food
items, and place markers on them. Then it chooses the nearest marked food item as its tar-
get, and sends effector commands to direct the agent to move towards the target item. The
EAT agency communicates its intentions to other agencies by tagging the appropriate
marker as its goal location. If the agent should then move too near an obstacle, the BUMP
agency can use the extra information in the goal marker (established byTilag&rcy)
to determine an efficient course of action. The BUMP agency can circumvent the obstacle
in the direction that is judged to be moré&ogént in the context of the goal of the EA
agency.

In fact, with the agencies communicating via the markers, we can streamline the
process even furtheAs soon as the HAagency tags a given location as its goal destina-
tion, the BUMP agency can look for potential obstacles in the path towards that destina-
tion. If such an obstacle is found, BUMP can place a marker on the object, and label it as
an obstacle associated with EA particular destination. By only marking the obstacles
associated with a destination, the number of things that the BUMP agency needs to mark
is kept small. It is then possible for the EAgency to notice when there is an obstacle
associated with its current destination, i.e., the new markers established by the BUMP
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agency, and modify its heading so that the agent never passes close enough to the obstacle
to trigger any other special actions by the BUMP agenzyparaphrase and summarize
this communication, the exchange takes place as follows:

EAT:“l want to gothere”
BUMP:*You can't go straight there becauseludt obstacle.”
EAT:*O.K., I'll go aroundthat on my waythere”

Each of the italicized deictic wordghére that) above refers to a markérhere
was placed by ER andthat was placed by BUMPHere we have a clear example of
cooperative conflict resolution. If we only look at the problem at the lowest level, there is
a major conflict; the ER agency wants to move towards the food, whereas the BUMP
agency want to prohibit that action due to an imminent collision. But by having the agen-
cies communicate via the shared representation, the conflidectivedly avoided alto-
gether.

3.2.2. Task hierarchy

The preceding discussion regarding task agencies emphasizes the independence of
the agencies, and the resolution of conflicts that may arise when otherwise independent
goals conflict. In that context, it was appropriate to consider the operation of the obstacle
avoidance process as communication between independent entities. Holweeestep
back and consider the operation of the agent as a whole, what was described as “coopera-
tive resource conflict resolution” can instead be viewed as a distributed algorithm for plan
generation. The goal to be achieved was to consume the bedycommunication
between EA and BUMP resulted in the insertion of a step in the plan to circumvent an
obstacle in pursuit of the goal.

In general, several task agencies can cooperate to achieve a goal. Moheseer
cooperating agencies can begamized into a hierarchyn which the agency responsible
for achieving a primary goal is at the top of the hierarahg subsidiary tasks are beneath
the primary task. In the example given above, the primary task was berry consumption,
with the subsidiary task being obstacle avoidance. Furthermore, the obstacle avoidance
task itself had the subsidiary tasks of finding the obstacle and finding a route around the
obstacle. At the lowest level of the hierarchy are the actual actions that must be taken in
order to achieve the goalraversing along the leaves of this hierarabrye can find the
individual steps in a plan to achieve the given goal.
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3.3. Markers and task-agencies

The ties that bind the steps in a plan together are predicates regarding the state of
the world. Predicates form the preconditions for each action, and the results each action
produces. For agents interacting with the real world, these predicates cdecheedf
embodied by markers. In such agents, it is therefore the state of the markers that deter-
mines what actions are appropriate at any given time, what agencies are active, and how
these agencies interact. The remainder of this chapter is a discussion of the roles that
markers play in relation to the task agencies. An abridged version of this discussion
appears in [9]. Note that while it may not always be explicitly mentioned ptleveon-
cepts of usefulness and théeetive field of view are embodied in the idea of a marker
since, as discussed above, a marker is a useful predicate (with temporal extent) regarding
the location of an object, used to expand an agent’s effective field of view.

3.3.1. Categorization of markers

Although all markers have the “what” and “where” properties given in our defini-
tion at the beginning of this chaptenarkers can be logically divided into several catego-
ries based on their general role in a task. Recall that the “what” aspect of markers is
defined in terms of a task. Markers may therefore hatereit properties, depending on
the task and how the marker relates to that task.

3.3.1.1. Image markers versus egocentric 3D markers

One distinction among markers can be made based on the coordinate system in
which they are located. In previous work with markers this was not an issue, since there
was only a single coordinate system: image coordinates [1, 16]. Howe\gerealistic
visual environment, the natural coordinate system for visual perception (image coordi-
nates) is not the natural coordinate system for acting in the environment, instead an ego-
centric 3D coordinate system is mordeefive. In a 2D video game environment, the
perception and action coordinates can be confounded, whereas in a 3D environment, they
cannot. This gives rise to the two coordinate systems, and hence, two types of markers.
Actually, there are an infinite number of coordinate systems, e.g., object-centered coordi-
nate systems are useful for many tasks, and external 3D coordinate systems are useful for
tasks such as reading maps, but | will not consider these coordinate systems in the follow-
ing discussion.

Image coordinate markers are placed on objects in the current image, and are used
to facilitate visual routines. They mark objects such as edges, lines, terminations, etc.
Image-coordinate markers which are instantiated based primarily on the incoming data

Representation for Perception/Action Building Agents for the Real World



38

stream make up a set of items similar to Ndaraw primal sketch [42]. Image-coordinate
markers which require a “top-down” processing component for their instantiation corre-
spond to the markers in Ullmanvisual routines [62]. These two types of markers are
analogous to the “activating” and “active-only” markers described below.

Egocentric 3D markers are the focus of this dissertation; all markers discussed in
the remainder of this dissertation will be in egocentric 3D coordinates. When the visual
system has processed the inpufisigntly to determine what and where a task-critical
object is in the environment, a marker may be instantiated. The natural coordinate system
for acting in the world is egocentric, and furthermore, is centered onfé¢lagoetaking the
action. This idea is well known in the active vision community [6]. For example, if an
effector is a manipulator grasping an object, the correct direction to movedehmefs
given by the signs of the coordinates of the object imthgripulatorcoordinate system.

In the sample agent constructed for this research program, markers are used for navigation
by a robot that accepts velocity commands in the form of a forward speed and a turn
speed. Clearlythe natural coordinate system for such markers is,pwgatered on the

robot, with the zero angle directly ahead. When this is the case, the direction to turn to get
to a destination at coordinate §) is given by the sign &, the amount to turn is given by

the magnitude o, and the distance to move is givenrby

3.3.1.2. Activating versus active-only

Another distinction that can be made among markers is based on how they are
instantiated by the task-agendask-agencies are not always active, e.g., the “find food”
agency is not active if the agent is not hungry. However, some agencies may have compo-
nents in the perceptual system that perform computations continueusly when the
agency is not active. For example, there is some computation performed to determine
whether the agent is hungry. If so, the “find food” agency is activated.

The result of this “continuous” computation may be a markere specifically, an
activating marker since the instantiation of the marker activates one or more agencies.
Once an agency is active, it may require other inputs in order to carry out its task. The
agency directs the perceptual system to carry out activities that will instantiate markers,
this timeactive-onlymarkers, which are markers which are instantiated actavetask-
agency, that serve as the agency’s other inputs.

As an example, recall the sample domain of a small creature that must avoid pred-
ators. This creature has a RUN agency to coordinate the predator avoidance task (see Fig-
ure 3-3). Whether this agency is active or not, a “preddgtector” scans for predators
over the entire field of viewlf one is found, aractivating marker is instantiated and
placed on the predatsrlocation. The instantiation of the predator marker activates the
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RUN agencywhich directs the creature to start looking for a place to hide. This might be
a rock or a tree, but the objextole in the current task is as a “hiding-place,” so when a
suitable object is found, aactive-onlymarker is instantiated to serve as the *hiding-
place” input to the RUN agency.

predator
detector

hiding-place

detector
hiding
place

Figure 3-3: RUN and its markers

The predator detector and hiding-place detector are sub-tasks of the predator
avoidance task. Note that the hiding-place marker is put on a rock or tree, objects that
would not normally be marked if it were not for the active task-agéhayanother way
exactly the same visual stimulus may or may not be marked, depending on the internal
state of the agent, i.e., the activation of its task-agencies. Fiob#grve that whether a
marker is “activating” depends on the perspective of the agency using it. For example, the
destination marker above is an active-only marker from the perspective of the RUN
agencysince it is only created when RUN is activated. Howether instantiation of the
destination marker activates the navigation ageseythis same marker is an activating
marker from the navigation agensyperspective. Finallyhote that both types of marker
have a direct relationship to a task-agemdgrkers are instantiated only if the predicates
they embody are potentially useful to some task-agency.

3.3.1.3. Primary goal markers versus dependent markers

As has been mentioned previoyslythe most abstract level we can impose a hier-
archy among tasks, i.e., there are primary tasks and secondary tasks. Secondary tasks can
have further subsidiary tasks, etc. For example, we may have the primary task of “staying
alive.” Subsidiary to that is the task of “getting food,” and subsidiary to that is the task of
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“getting money” to buy food, and then “getting a job” to get mo@mstting and keeping a
job may have any number of sub-tasks.

Once tasks are accomplished, there is no need to continue with their sub-tasks. For
example, getting money is no longer an issue if we win the lpdadyneither is having a
job (although “keeping a job” may subserve goals other than just getting namideyay
therefore still be an active task).

The task hierarchy imposes a similar hierarchy on the markers associated with par-
ticular tasks. As we have discussed, primary tasks have markers associated with them,
e.g., a rabbis goals are to find food and avoid predators, so berries and predators are
marked. The BUMP task-agency is activated by instantiating an approgegtieation
marker e.g., by the berry-detector of the EAgency. Howevelit may not be possible to
proceed directly to the primary destination, due the presence of an obstacle.

intermediate
destination

<

obstacle detector

effectors

Figure 3-4: BUMP instantiates obstacle
and intermediate-destination markers

The BUMP task-agencyather than allowing the agent to blindly move towards
the destination, launches perceptual machinery to find any obstacles to its given destina-
tion. If an obstacle is found, it is marked with @vstaclemarker Obstacle markers are
always active-only markers, since an object is only an obstacle to the extent that it is in the
path to a destination. \say that obstacle markers dependenbn the associated pri-
mary destination, so that if the destination marker is ever deleted or changed, the obstacle
marker is deleted as well. This situation is illustrated in Figure 3-4.

If an obstacle marker is instantiated, BUMP looks for a path around the obstacle.
When an appropriate location is found, BUMP instantiategt@mmediate-destination
marker which is dependent on the obstacle marker. The agent moves towards the interme-
diate destination just as it would any other destination. Reaching the intermediate destina-

Representation for Perception/Action Building Agents for the Real World



41

tion triggers a reevaluation of the “obstacleness” of the associated object with respect to
the primary destination.

As the domain becomes increasingly complex, this pattern can be extended to hier-
archies of markers. These task and marker hierarchies bear resemblance to the classic con-
cept of a partially ordered plan [25], with the task hierarchies equivalent to the increasing
plan detail found in constraint-posting nonlinear planners. Further research is needed to
determine the full relationship of marker hierarchies to partially-ordered plans. Marker
hierarchies may potentially bridge the gap between reactive and classical planning, at least
for navigation tasks.

The entire process—searching for an obstacle, creating intermediate-destination
markers, and moving to the intermediate destination—repeats until there is no longer an
obstacle in the path to the original destination marad the destination location is
reached. The combination of destination, obstacle, and intermediate-destination markers is
sufficient for most simple navigation tasks.

3.3.1.4. Tentative markers

A single image may contain evidence for the existence of an object; hotwmter
“evidence” may simply be an artifact of the noise in the imaging process. If we immedi-
ately mark an “object” without retaining some measure of our confidence of the object’
existence, the control system may act upon the marker as if there is no doubt as to the
existence of the object, even if the evidence is scant. As discussed in previous sections, the
predicate regarding the existence of the object has a high degree of uncenailey
there may be a continuum of “certaifitye adopt the simplification of categorizing mark-
ers into two classes based on their certainty measure: those we intend to act upon, and
those we do noflentativemarkers are placed on objects for which there is some evidence,
but which we do not intend to act upon until more evidence for their existence is obtained.
Such predicates are only potentially useful, in that they are not being used in a current
plan. Further evidence may be obtained, and the predicate will become useful in the full
sense. Note that the agent may construct a plan to obtain such additional evidence.

Our intent with the tentative markers is to filter out noise in the perceptual input, so
one useful measure of certainty is whether the percept is stable over a sequence of images.
One implementation of a certainty measure can therefore be a count of the number of
times the object has been found in the image stream at the expected location. When first
seen, an object is given a tentative markat when the number of frames in which it has
been seen crosses some threshold, the tentative marker is upgraded to an activating
marker which activates the appropriate task-agefdys implementation is especially
effective if coupled with an ego motion induced change in viewpoint. If the viewpoint
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changes between consecutive frames, the location of the potential opjeptction in

the image will change. If the ego motion is known, the new location of the projection in
the next image can be predicted. It is highly unlikely that noise will move in the image in
a way that is consistent with the ego motion, so the tentative marker on noise will be
dropped.

3.3.1.5. Hypothesized-object markers

In some cases, especially in a 3D environment with occlusion, it is necessary to
reason about objects thaightexist, even though they are not currently visible, or possi-
bly have not even been seen yet. For example, consider an agent in the presence of rocks
and predators. Since a predator might be behind any given rock, the agent could consider
the possibility that such a predator exists. In fact, the agent might behave as if there were a
predator behind every rock.aMan induce this behavior by hypothesizing the existence
and location of a predator, and placingypothesized objeatarker labelled “predator” at
that location. In some cases, the desired action to take depends on whether the object is
actual or hypothesized, whereas in others it is not necessary to make such a distinction. An
agent, once it hypothesizes the existence of a predator behind a rock, may behave exactly
as if there were an actual predatdbhe marker update procedure will treat real and
hypothesized object markers identically.

3.3.2. Marker maintenance

In our control system, at every instant of time an action is selected for execution
based on the information about the state of world currently available. In a purely reactive
system, the available information about the world is limited to the current sensor values
only. We expand on the reactive model by including the state of the markers as additional
information, thereby expanding the agerdfective field of view The advantage of this
approach is that the agent is better informed when determining an action, since it can now
remember a portion of the world around it. A disadvantage of this approach is that it
admits the potential for the representation to be incorrect with respect to the actual state of
the world (recall discussion in section 3.1.1.2¢ kéve found that an incorrect represen-
tation is worse than no representation at all, since it encourages the agent to confidently
take an action that is not at all appropriate in the current circumstances. Brooks reports
that adding representation to an agent usually decreased the competence of the robots
[12]; we believe his observation is a result of this phenomenon. Representation is not
intrinsically bad—it5s only bad if it5s wrong. It is therefore critical that the representation
be maintained accuratelgr discarded. There is of course the additional consideration of
the cost of computing the information, and also the cost of computing an action given a
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large amount of information to examine, but correct information itself is not harméul. W
must first strive to maintain the correctness, and hence the usefulness, of the information.

3.3.2.1. Compensating for ego-motion

When the agent moves, updating the markers requires estimating the coordinate
transformation between the agsmntrevious and current locations. It is then a simple mat-
ter of applying the transformation to all the marker coordinates. We distinguish short term
and long term approaches to estimating the transformation. Short term methods estimate
the transformation continuously (or as near to continuous as possible), but have a ten-
dency to drift from the actual transformation over time due to accumulated leynay
term methods are used periodically to correct the drift.

There are three main short-term methods: dead-reckoning, acceleration measure-
ment, and optical-flow [32] based methods. Dead-reckoning assumes that all motion of the
autonomous agent is due purely to the motor commands given by the agent itself. Since
the agent knows the motor commands issued, the expected motion can be calculated
directly. However motor commands are often not executed perfeatlgt forces external
to the agent can influence the motion. If the motor commands are accurate and well char-
acterized, this is the easiest option to implement. Another method is to measure the accel-
eration continuous|yand then integrate twice to determine change in position. Measuring
the acceleration enables the marker locations to be updated even if the motion of the agent
is not purely the result of the agenthotor commands. Optical flow can also estimate the
transformation under these conditions. An ideal system will use a combination of all three
methods.

The primary long term method is to locate several points in the environment, and
then solve a structure from motion problem. Howgtles option requires a correspon-
dence problem be solved. (Another possibility might be to use a “global positioning sys-
tem,” if it is an option in the domain.)

3.3.2.2. Correspondence for visible markers

Marked objects are not featureless points; they have perceptual properties that
allow them to be identified. Those same properties can be used to re-identify them later
Clearly, to do this we must retain some of the perceptual information associated with the
marker from frame to frame, i.e., primary visual cues, e.g., the color and size of.a berry
The obvious place to keep this information is in the marker.

Our definition of “marker” required only two elements: a role in a task (what), and
a location (where). This does not mean that markers must be limited to only these two
pieces of information. In order to maintain object/marker correspondence, markers must
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also retain some information about the perceptual aspects of the objects they mark. W
might say that markers must have the ability to “find themselves” in the new perceptual
input, and can therefore be augmented to retain additional information to aid in the corre-
spondence process.

3.3.2.3. Perception overrides memory

As we have discussed, memory for the location of objects runs the risk of being
incorrect, and acting on incorrect information is potentially hazardous. Information
derived from current perceptual input is more reliable than that stored in meandry
therefore overrides the information in memdrya first cut at an implementation of this
policy, whenever a marker cannot find itself in the current input, the marker is dropped.
But this policy would drop any marker outside of the current absolute field of soewe
amend it to dropping any marker wgpecto find in the input but do not. For visual input,
the two main cases in which we do not expect to find the marked object are when the
object is outside the absolute field of view, e.g., behind the camera, and when the object is
occluded. The field-of-view case can be detected by knowing the field of view of the sen-
sor and comparing it with the location stored in the mafkez second case requires addi-
tional visual processing; one must determine that there is some object along on the
azimuth towards the markdsut is nearer than the marked object. The visual routine that
performs this occlusion computation is only executed when a marker indicates that an
object should be in the field of vietwut no visual cue for the object is found [e.g., see sec-
tion 5.2.2.1]. Note that this policy enables the maintenance and deletion of hypothesized
object markers without any special machinery.

3.4. Conclusion

The nature of the real world and real sensors dictate that a task-oriented approach
be adopted in constructing autonomous agents. Exactly what the task-oriented approach
means in terms of perception, action, and representation is summarized in the concept of
an efective field of view The efective field of view contains exactly that information that
the agent can use to determine the actions necessary to perform tasks in the world.

In a complex world, an agent may have multiple tasks to accomplish, and each task
induces a dferent efective field of viewwhich may result in conflicting determinations
of the actions to take. By ganizing the separate tasks into task-agencies, we can identify
and mediate conflicts among the task-agencies.

The use of markers is a means of expanding fleetafe field of view and com-
municating information between task-agencies. There are several types of markers,
depending on their relationship to the task agencies and to eachBytlnecognizing the
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different roles of markers in the tasks, we can build strategies into our agents for acquir-
ing, maintaining and using the markers to achieve the agent’s goals.
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Chapter IV: Applications and Primitives

The task-oriented approach to agent design requires that the use to which the agent
will be applied is considered explicitly in the design. There are any number of tasks we
might want an agent to accomplish, which presents the possibility that a complete rede-
sign of an agent is required for each task. Howetertasks with which this dissertation
is concerned all involve action in the real three-dimensional world, and there is a great
deal of commonality in the tasks. Rather than begin from the ground up for each agent, we
can identify a set of primitives which can be composed to construct arbitrary agents. This
chapter presents a number of example tasks, and then abstracts from those tasks to identify
a proposed set of primitive operations. The central thesis of this dissertation is that the use
of a small amount of representation can be used to expandabtveffield of view and
thereby increase the performance of situated automata. The applications and primitives
described in this chapter are therefore discussed primarily in terms of these representa-
tions and the specific implementation of these representations as markers.

4.1. Examples in the problem space

The markeibased representations developed in this dissertation are meant for use
by agents in dynamic three-dimensional environments in which the agent has one or more
tasks to accomplish. Clearlgne should not assert that markesed representations are
necessary faall tasks ireverysuch task domain. I do claim, howeuiat these represen-
tations have a broad range of applicability in gdaclass of useful domains. This section
delineates the applicability of the 3D markarsed representations through the use of a
number of examples.

The sample domains discussed in this chapter have a number of aspects in com-
mon. Naturally we confine the discussion to tdgnamic, thee-dimensionaknviron-
ments in which 3D markers are applicable. Furthermore, we intentionally do not consider
task domains that require what is colloquially meant by “intelligence” or “creativity
These tasks do not require generation of new knowledge—one might expect to be able to
write an algorithm for them if requisite perceptual and effector technology existed. As our
first example, consider the task of taking out the trash. Clesmyneed not be intelligent
or creative to accomplish this task. One might write an algorithm for this task as follows:

1. Getatwisttie

2. Remove the trash can lid

3. Seal the bag with the twist tie

4. Carry the sealed bag to the dumpster
5. Open the dumpster lid
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Put the bag in the dumpster

Close the dumpster

Get a new trash bag

Put the trash bag in the garbage can
0. Replace the garbage can lid

BoOox~NO

One might ague that “intelligence” is required tmnstructthis algorithm. How-
ever it should not require intelligence tollow this set of instructions, provided they are
expressed in a language comprehensible to the agent expected to carry out the task. | do
not intend for the agent itself to construct the “plan;” ratiaehuman designer is to con-
struct the plan, and the agent is to follow it. By focusing on the role of a human designer
do not mean to imply that it is impossible to construct a software system that designs the
plans. On the contraryhe tasks discussed are expected to be amenable to automatic plan
generation—however, that is a topic for future research.

Below is a list of sample applications in which | expect the techniques developed
in this dissertation to be successfully applied Want to be able to program a robot to
accomplish these tasks in dynamic and sometimes hostile environments, e.g., the house
should be cleaned while people are living and working in the house and messing things
up. The robot should not destroy anything in the house (including the inhabitants, or any
pets) in the course of cleaning.

Cleaning house

Getting from NY to LA

Driving in traffic

Playing basketball

Going down the basement stairs
Loading and unloading the dishwasher
Setting the table

Packing a suitcase

Running office errands

10. Building a house

11. Conducting experiments in a biology lab
12. Picking up trash

13. Mowing the lawn

14. Making breakfast

15. Baby-sitting

16. Waiting tables

17. Any minimum wage job

18. Exploring Mars

19. Rabbit World

©CoNoO~WNE

Some of the tasks listed above are more “useful” than others (e.g., the usefulness
of a basketball playing robot is dubious), but the dynamic and complex nature of all of
these tasks are central to this research program. Note further that the lmagdcerepre-
sentations that are the focus of this dissertation must be augmented for many of the tasks,
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e.g., getting from NY to LA requires a map. Another goal of this chapter is to delineate
those tasks that markbased representations aret good for In the remainder of this
chaptey | will briefly describe the tasks in the list above and very high level strategies for
accomplishing them.

4.1.1. Cleaning house

There are many sub-tasks of cleaning house, but in this particular section, by
“cleaning house,” | mean that the robot is to find things that are “not in their place” and
put them “where they belong,” e.g., picking up childsetdys and putting them away
There is, of course a fundamentallyfidiflt recognition problem associated with this task,
which | do not expect to address in this dissertation—I will assume an adequate recogni-
tion algorithm exists. Furthermore, the agent must know where everything belongs, i.e.,
there must be some kind of representation of the layout of the house, and there must be a
list of items (or types of items) in the house, with pointers to where they belong, e.g.,

Board Games ———® Top shelf in closet of bedroom 2

Dirty Clothes —— - Laundry hamper in hall
Children’s Books —— - Bookcase in bedroom 3

The actual representation of the house can be topological, metric, or some combi-
nation of the two. In any case, the agent must be able to navigate to the locations given in
the list of items. Note that none of the representations discussed thus far islmadder
a variety of representations must be used to perform complex tasks. These other represen-
tations arausefu) in the sense that they are predicates about the world that the agent can
use in a plan to achieve its goals. The concept of usefulness applies to all representations,
not just markers.

Markers are used once an object is found to be out of place. The object itself is
marked, i.e., its location relative to the robot is noted and updated as the robot moves.
Marking an object in this way amounts to asserting that information concerning the
objects location and identity is useful, and marking the object expandsféutiveds field
of view to include the object, even if the object is not currently in the absolute field of
view.

Assuming there is a straight-line path to the object, the robot can simply servo on
the marker location until is arrives near enough to the object to pick it up. This behavior
demonstrates two fundamental primitives we expect our mobile robot to understand:

Mark object
Go to marker
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Note here that maintenance of the marker is implicihark object , and obstacle avoid-
ance is implicit ingo to marker . Once the robot is near enough to the object to grasp it, the
robot needs to pick the object up. While maitkased representations are useful for
manipulation, (e.g., marking grasp-points on the objects), | leave a complete exposition of
manipulation to future work. For the purposes of the current discussion, we will assume a
Pick up marked object primitive.

The next part of the task is to put the object where it belongs. The robot must have
a representation of the house, and know where the object belongs with respect to that rep-
resentation. Let us assume that the robot has a topological map of the house, as in Figure
4-1, and that the robot has picked up a chitdy in the Living Room, and needs to put it
in Bedroom 3.

Bedroom 1 Bedroom 2
[ (]

: o
Living Room )
@

\ |

Gy
O

Foyer ) ,
.\_j Kitchen Bedroom 3

Figure 4-1: A map of the house to clean

The robot consults its topological map, and finds that it must go to the east end of
the hall and turn right. This navigation is performed via a series of “mark location/go to
marker” pairs: first by marking and going to the west end of the Hall, then the east end of
the Hall, and finally into Bedroom 3. Once in the room, the robot can mark the location in
the bedroom where the object belongs, and place the object there usingpjact at
marker primitive. The algorithm for putting something away is summarized in #oe “
something away’ routine. The boldfaced items are primitives, while the others are “subrou-
tines,” as indicated by the parentheses. | will be rather loose with the syntax of the
pseudocode in this section—the later sections will have a slightly more formal syntax.

For the purposes of exposition, the primitives discussed in this chapter are
described as being composed in a linear sequence of actiotisigV8uch aexplicit
sequence of instructions may be the most intuitive way to construct the algorithm for put-
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ting something away, howevéehe implementation in the architecture to be described later
will useimplicit sequencing (see section 4.2.6) when executing an algorithm. The situated
automata model of agent design is not conducive to the execution of linear sequences in
the standard wayather actions are taken when their preconditions are met, and the con-
dition the action produces is a desired one. Linear sequences of actions, therefore, are
implemented by having each action in the sequence produce the preconditions for the next
action in the sequence. Sequencing is therafopécit in the preconditions and effects of

the actions. Implicit sequencing will be discussed more in depth batiefor now | sim-

ply want to provide a warning that the explicit linear sequencing shown in the next few
sections (because explicit sequencing easier to think about at this point) is not the model
we are working towards.

Put something away() {
Find out-of-place object ()
Mark object location
Pick up marked object
Go to location in map ()
Mark destination location
Put object at marker

}

Cleaning the entire house consists of finding objects throughout the house and put-

ting them where they belong. We can write a simplistic algorithm for this task as:

while (find something out of place) {
Put something away()

}

However this algorithm is extremely inigfient, since the robot would likely
spend a lot of time moving from one end of the house to ansihelar to the “Big Shell
Game” example in [8]. A more fefient algorithm is to clean one room at a time, confin-
ing most activity to a single roomcfean house” is a series of Elean room” routines.

Using the primitives of marking objects, picking up marked objects, marking des-
tinations, and putting objects at marked locations, one can easily write algorithms for
put_object_near_door() and put_object_in_proper_room(). This example illustrates the flexibil-
ity of the proposed primitives to construct alternative algorithms.

Clean house () {
for (each room in the house) {
Clean room()

}
}

Clean room() {
while (find something out of place in room)
Mark out of place object
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if (object belongs in room) {
put away object()
else
put object near door()

for all (objects near door)
put object in proper room()

}
4.1.2. Getting from NY to LA

To get from NY to LA, the single most important item needed is a plane ticket. |
usually get plane tickets by calling a travel agent. An often useful strategy for a robot
working in natural environments is to ask for assistance from a human (or another robot),
such as a travel agent. There may be any number of things that the robot needs help with,
but I will confine myself here to discussion of getting help with obtaining physical objects
(such as plane tickets). The robot may need an object in order to accomplish some goal,
and may not have a plan for obtaining that object. The default plan for obtaining such an
object is to ask the nearest human for it. The human may give the item to the robot directly
(e.g., “here is your ticket”), or give the robot a plan for obtaining it (e.g., “call the travel
agent and ask for it”). The issues involved in the communication are addressed in e.g.,
[16] and [56]. Getting assistance from humans or other robots/agents is useful enough that
we should consider it a primitive operation:

Ask for object

whereobject is something the robot needs to accomplish its goals and can name. It is also
important that the robot know the goal it expects to achieve using the object, since this
may help in eliciting a better response from the human. For example the robot may
attempt to ask for a screwdriyend the response may be “I dohave a screwdrivér
However if the robot asks for a screwdriver to “pry open this box,” the response may be
“use this letter opener instead.” When interacting with humans or other independent enti-
ties, it may often be necessary for the robot to communicate its goals. The robot must
therefore always be prepared to answer the questions “what are you doing?” and “why?”
Note that in order to do this, the robot architecture must represent its goals exphcitly
be able to communicate them, as in Shoham’s “agent-oriented programming [56].”

Once the plane ticket is obtained, one needs to get to the airport, perhaps via a cab,
so we ask for a cab, similar to the way we obtained the plane ticket. In this example, we
add a clause communicating the goal of getting the cab, e.g.,

Ask for cab to get to flight at 3:15 pm
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The additional goal information communicated here enables the provider to sched-
ule the cab appropriateljote also here that there is a structure imposed on the goals, i.e.,
the goal of getting the cab is a sub-goal of getting on the flight, which in turn is a sub-goal
of getting to LA. If for any reason the goal of getting to LA is retracted (e.g., the confer-
ence is cancelled), then all of the sub-goals are retracted as well. The agent must explicitly
represent this hierarchy of goals in order behave approprig#elgan think of this as giv-
ing the agent the ability to answer repeated “why” questions, e.g.,

Robot: | need a cab.

Human: Why?

Robot:  To get to the airport.

Human: Why?

Robot:  To go to LA.

Human: Why?

Robot:  To go to a conference.

Human: Yu dont need to go to a confemce—youe a
robot! Go fix me a martini!

Assuming the robot retains the goal of getting to LA, the remainder of the task is a
matter of getting to the various transfer points at the appropriate time, e.g., to the cab when
it arrives, and to the gate to catch the plane. The most interesting of these navigations is
getting from the cab to the gate in a crowded airport. Performing this task requires domain
knowledge about airports, the ability to use maps, and the use of thadeazt representa-
tions in local spacé.

Domain knowledge about airports is needed to determine the gate to catch the
plane. Airports have displays that map from flight numbers to gate numbers, and the robot
will need to know to look for such a dispJand furthermore, where to look. Once the
gate is determined, the robot needs to look for directional signs to the gate and follow
them. Following a series of directional signs is identical to the skill of following a path in
a topological map, except that the series of signs is in the sabethoryrather than in
the environment. In getting from one signpost or landmark to anotlaeker-based repre-
sentations of the local space are needed. The robot places a marker on the next location in
the map or the next signpost, and navigates toward it as was done when navigating the
house in the previous section, and the entire journey is performed as a series of “mark
location/go to marker” pairs.

1. Of course, the biggest problem for a robot would be getting through security, but we won't
address that issue here.
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4.1.3. Driving in traffic

Like navigating in an airport, driving in tfaf requires elements of domain knowl-
edge, lage-scale maps, and local-space representation. Domain knowledge is needed con-
cerning the operation of the vehicle and rules of the road—the things one learns ias driver
education. Lage scale topological map following is needed to navigate to the destination
using signs and landmarks. And finalbne needs to deal with the dynamics of the local
space, since there are other vehicles on the road. The unpredictability of other drivers
makes it impossible to navigate open-loop on a real road, even if we had a perfect metric
map of the path to the destination. Even if we could guarantee there are no other vehicles
on the road, navigating open loop is a losing proposition, due to the imperfectly executed
motor commands characteristic of any real system. In the remainder of this section, | will
concentrate on the local-space problem.

While travelling along the highway to the next landmark, the area of interest is pri-
marily in front of the vehicle. In fact, no matter what the form of locomotion, it is funda-
mentally more important to pay attention to where you are going than where you've been,
since the obstacles are in front of you. While travelling along the higltiagng might not
currently be a vehicle in front of us, but if we come up on one, we’ll need to mark it. Being
prepared to mark an object that is noticed in some region is important enough to declare a
fundamental operation for this task—a monitor operation.

Monitor area in front of the vehicle for traffic

The size of the area to monitor depends on the task. For driving, we need to moni-
tor far enough ahead that we can brake effectively, and this is dependent on our speed and
the road conditions. Note that in contrast to the previous operations, monitoring is a con-
tinuous process, rather than a one-time operation. Once a vehicle is noticed in front of us,
it is marked, and if necessamye brake. If we need to change lanes for any reason, then
the area near us in the lane we want to move into is monitored. Another way of looking at
this is that the “forward” direction changes when we want to move into the other lane.

Simultaneous with monitoring the road immediately in front of the vehicle, we are
also monitoring the terrain for the next landmark or road sign. Since the vision sensors are
limited, we must accomplish this “simultaneous” monitoring by time-sharing the vision
sensor and processing resource. Changing the direction of gaze and remembering the
important information over a series of gazes amounts to using memory to expand the
effective field of view. An implementation of this idea is to use the concehitpttycles
Depending on the importance and dynamics of the taskretit monitors have dérent
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duty-cycles, or rates at which they must use the vision proceédsaitoring for land-

marks might have a duty-cycle of several seconds, since the landmarks are usually visible
from rather far awgyand missing a turn would be unpleasant, but not disastrous. Monitor-
ing the road in front of the vehicle has a duty-cycle of a fraction of a second, since if we
are moving quickly another vehicle could “appear” in the road in front of the vehicle
rather quickly and the consequences of not noticing another vehicle stopped immediately
in front of us are dire.

Once an object is marked, duty cycles can also be used to implement marker main-
tenance. The certainty of the location of the object when it is first detected is quite high,
and may remain high for some period of time immediately afterward, i.e., the predicate
concerning the objed’location has temporal extent. In a dynamic world, the certainty
deteriorates over time, so we may need to look at the object again to verify its location.
How often we need to verify a marker is the marker’s duty cycle.

4.1.4. Playing basketball

I’'m not much of a basketball playdyut what little | know about the game has a
number of interesting aspects from the point of view of local space representation. In con-
trast to the previous tasks discussed, there is nothing in the way géatale topologi-
cal map of the space—all of the relevant aspects are local. There is a good deal of high-
level knowledge involved for the rules of the game, and there are adkilsf needed,
many of which are specific only to basketball, such a dribbling, shooting, passing, and
shot blocking. In accordance with the basic model of situated automata, these skills are
launched at the appropriate times based on the situation, and that situation is determined
based on the spatial relationships of relevant (marked) objects such as the basket, the near-
est opposing team memband the basketball itself. Markbased representations are at
the core of the vast majority of basketball playing skills, and for this reason, basketball is a
near-ideal domain to study the use of marker-based representations.

For example, when playing a “man-to-riadefense, the primary objective is to
stay between “your man” and the baskes. #'so a good idea to know where the ball is, in
case it is passed to your man. So three markers are required, one on each of the starred
entities in the figure below. Given these markers, you can determine the direction to move
to stay on the line between your man and the basket (shown as a dashed line in the figure).

1. These skills are similar to Firby’s reactive action packages (RAPs) [23].
2. Please excuse the gender-specific term; in basketball, an opposing player is referred to as a
“man” even if the “man” is a nine year old girl.
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Maintaining these markers requires you to spend most of the time looking at your
man, since that is your greatest responsibitityd he moves a lot, so the predicate con-
cerning his position has a very short temporal extent and resulting duty cycle. Frequent
glances toward the ball are needed also, since the ball also moves.dLesklyrequent
glances are needed towards the basket, since it dogsve, and its position can be main-
tained by dead-reckoning. There are also other visual cues that allow the position of the
basket to be maintained, since the geometry of the court is constant and well known to the
players. For example, if you can see the top of the key out of the corner of your eye, then
you have a pretty good idea where the basket is, even without looking at it directly.

X you
@ ourman ’*
7
@ man with ball X -7
_ r e
O basket _ 7
7~
7
7~

Figure 4-2: Playing defense in basketball

When playing a “zone” defense, the player is responsible for a region of the court;
which corresponds to a monitor operation. The “monitor” region is somewbat than
the actual zone, so that the player can mark opposing players that might enter the zone, so
that there is a better response time when the opponent actually enters the zone. If an oppo-
nent enters the zone, the situation is similar to the man-to-man case, except that if the
opponent leaves the zone, the defender drops the marker and doesn't follow.

Offensive players monitor the region between themselves and the basket. (Note
that the monitor region is not a fixed location in any coordinate system, even an egocentric
one; it is dependent on the spatial relationship of two objects that are moving relative to
one anothey If a player has the ball, and the monitor region is entipty player can drive
to the basket, i.e., launch the “drive to basket and shoot lay-up” skill. Good playdrs don’
just wait for this opportunity to present itself; they have a number of ball-handling skills
they use to try to create this situationellAtoached teams also have a number of coopera-
tive strategies (such as a “screen”) to create the opportunity to drive to the basket. In addi-
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tion, players that shoot well from the perimeter monitor the region very near to them in the
direction of the basket, so that they might be able to take a shot from the outside without it
being blocked.

4.1.5. Going down the basement stairs

Consider a situation in which a tall person walks down a flight of stairs over which
is a low ceiling. A traditional model based approach would have the person examine the
steps and ceiling, construct a model of it, and generate a plan for the correct posture
needed to negotiate the stairs which is then executed. The scene need only be analyzed
once. But this is not what people do; they continually shift their gaze back and forth
between the stairs and the overhang until the overhang is passed. | suggest that the person
is querying the world, in this case first asking questions such as “is there an object near my
head?” This question might be asked continually over the entire visual field. When the
query returns true, the person places a marker on the object, in this case the overhang.
Another process might continually be looking for uneven terrain (such as stairs), and
return a marker on the location of the stairs. Questions can then be asked with respect to
the markers, such as “is my head getting too close to the overhang?” and “am | putting my
foot in the right place?” These last two questions are the queries being made as the per-
sons gaze shifts between the ceiling and the stairs. Much more could be learned about
gaze strategies for locomotion in humans from controlled psychophysical experiments
that track a persos’'gaze while walking. Implementing this marbased strategy uses

the monitor operation over the area of space in the direction of travel, and then mark oper-
ations for the stairs and overhang (starred in the figure), with appropriate duty-cycles for
the stair and overhang marker maintenance.

Loading and unloading the dishwasher setting the table, running office errands,
picking up trash. These tasks fit a general pattern that we saw in the “house cleaning”
task, namely, picking up things and putting them in other places. The general mechanisms
described in the house cleaning sections are directly applicable to these tasks, which illus-
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trates the power of these few simple mechanismt ¥éme slight variations, one can
also use the marker operations described thus far for the remainingpsieg a suit-

case, building a house, conducting experiments in a biology lab, mowing the lawn, baby-
sitting, waiting tables, any minimum wage job, exploring mars, and makeakflast
Constructing these variations is left as an exercise for the reader.

4.2. Behavior “primitives”

By surveying the list of tasks discussed in section 4.1, we can make a first-cut at
the primitives that are needed to accomplish the tasks. When considering the form of the
list of primitives, the question arises as to the level of abstraction at which one should
refer to items as “primitives.” At the high end of spectrum, the task list itself might be con-
sidered a set of primitives, e.g., there are primitives for “Cleaning House,” “Getting from
NY to LA,” etc. | think all would agree that this is far too high level, especially given the
current state of the art in autonomous agents. At the low end, one might consider the set of
primitives as the instructions directly realizable in the physical robot, e.g., “Drive Motor A
at Speed X.” But this approach would tie us to a given machine architecture, and further-
more, it would require the robot programmer to work at the “machine language” level,
whereas we are interested in the equivalent of a “high-level language” for behavior
Clearly we need “something in the middle,” but where?

By the end of this section we will have at least a high level idea of a language in
which to express instructions for tasks such as taking out the trash; a “language of behav-
ior” if you will. Marker-based representations play a fundamental role in this language.
Marked objects are the data on which the primitives operate.

One way of thinking about the set of primitives is as the interface between reactive
and classical planning. The classical planner (or human designer) constructs a routine
using the set of primitives described beldvine reactive system executes this plan, and
therefore has mechanisms for detecting when a action is executable, and monitoring the
execution of these actions.

4.2.1. monitor (region, object type, duty cycle)

The plans for agents which act in the physical world refer to physical objects that
the plans manipulate. Howeyéhese plans may not have knowledge of specific objects
that are to be used in the plan. The perceptual system will locate these objects as a part of
the plan. This is in contrast to the classical planning approach, in which all the objects in
the plan are known and available to the planner before the plan is generated. The planner
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(or human designer) will insert the actionitor (region, objecttype, dutycycle)  when-
ever a physical object is needed to be found to instantiate a parameter to an action.

The monitor action accepts two parameters, a region of space in which to operate
the sensqrand the type of object which is of interest in that region. The object type has a
perceptual action (e.g., a visual routine) associated with it, which is used to determine if an
object of that type is in the current perceptual input. Tfeeebdf a monitor operation is to
direct the sensor toward the given region and apply the perceptual action that corresponds
to the object type. If the perceptual action finds an object, that abjecstion is made
available to downstream processing.

The monitor operation is an ongoing process; the agent repeats the perceptual
action until an object is found. This is because the world is dynamic, and the object of
interest may come into the serisdield of view The rate at which the perceptual action is
repeated depends on the duty cycle paramé&ker monitor action repeats the perceptual
action, once per duty cycle, until the monitor operation is explicitly cancelled.

One can implement the monitor operation using one or more hypothetical markers.
By placing a hypothetical marker in the region to monitor, the mechanism for maintaining
markers can be applied to perform the monitor operation. If the monitor regioges lar
than the absolute field of viewhen a number of markers can be used, spread throughout
the monitor region, so that the sensors are directed at each marker in turn, thereby cover-
ing the entire region. This approach was used in the implementation described in later
chapters.

4.2.2. mark (object)

In the remainder of the primitives described beltve parameters are all marked

objects, so a fundamental primitive must be to “mark” an object or locattomark an

object simply means to note the location of the object, and then track thesolojeation

in an egocentric coordinate system. Note that maintenance of the ©ljeetion over

time is implicit in the mark operation. The object marked has a “type,” which assists in the
maintenance task. The object type has an associated visual routine which is used to relo-
cate the object in the visual input. Since the object at this point has already been found in
the visual input, a more specific visual routine can be used than that which was used by the
monitor operation to find the object initially. For instance, if the object to mark is a rubber
ball, the monitor operation used to find the rubber ball initially must use the generic “rub-
ber ball finding routine.” Once a specific ball has been found more information is avail-
able to the maintenance procedure, e.g., if the specific rubber ball located during the
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monitor operation was red, the marker maintenance procedure can use the “red rubber ball
finding routine,” which may be more efficient than the generic rubber ball finding routine.

The type of the object to mark may also dictate a duty cycle for verifying the
object location, e.g., objects that are known to move may have shorter duty cycles than
stationary ones. The object type may even have a motion model that can be used for esti-
mating the object’s location as it moves.

Not only are the marked locations parameters to the primitive actions, but together
with the current sensor input, the markers form the model of the local space that the agent
uses to select the actions to take (i.e., the markers are used to expafettive &&ld of
view). All the object specific techniques for updating marker locations described here,
together with the general marker maintenance techniques discussed in section 3.3.2 must
be brought to bear to maintain the object locations as accurately as needéectmeef
operation of the agent, both in terms of determining the action to take, and facilitating an
action once it is selected.

4.2.3. goto (marker)

Once an object is marked, we may want to move towards it usiggtthenarker)
operation. Obstacle avoidance is implicit in the goto operation. Also, we will not want the
goto operation to try to put the exact center of the agent at the exact center of the marked
object. The actual location to which the agent should go depends on the next action in the
sequence. For example, if the next action is to pick the marked object up, the agent should
move into such a position that the agemtianipulators can grasp the objece ¥dn take
care of this problem to some extent through the use of implicit sequencing. As the agent
moves towards the marked object, the agent will eventually be close enough that the pre-
conditions of the action that picks the object gg,(below) will be satisfied. At this point,
the get operation takes oyand it makes sure that the agent moves into the correct loca-
tion to pick the object up.

4.2.4. get (marker) and put (object marker, destination marker)

In examining the long list of tasks described in section 4.1, | found it remarkable
how much of these tasks consisted of variations on picking things up and putting them
down somewhere else. | would want a robot that did nothing but sequences of reasonably
robust get, goto, and put operations. These operations, used in the context of the frame-
work developed in this dissertation, would provide most of what | personally expect from
a mobile robot, and indeed, from artificial intelligence. Naturdil§icult perception and
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manipulation problems must be solved before any of the operations can be “reasonably
robust.”

In order to be robust, the get and put operations must be parameterized by the type
of object. Getting an egg is quiteféifent from getting a piano, the operations must reflect
this fact. Clearlyagents that will be built in the near future will have a rather short list of
types of things they can get or put.

4.2.5. askfor (marker) < because (goal) >

This primitive facilitates cooperative behavior between artificial agents, and
between artificial agents and humans. It can also be used to compensate for the some of
the limitations of the agent by allowing the agent to ask a human for things it cannot get
for itself for some reason. This use should be applied sparingéyever; | would not
want to have a robot that did nothing but ask me to do all of the work.

4.2.6. Implicit sequencing

The sequences of actions shown in the sections above when discussing tasks have
all been explicit—one action follows the next in sequence. But this does not fit the stan-
dard model of situated automata, in which actions are taken based on the state of the world
as determined by the sensors. A situated automaton should not take an action simply
because the program counter is pointing at that action in the sequence, since such an
action may be totally irrelevant to the current world state. The previous action may have
failed, or some completely unforeseen change in circumstance requiressentgction.

For instance, if you are in the middle of loading the dishwastmel you notice that the
frying pan on the stove is on fire, just putting the next dish in the dishwasher is not an
appropriate action; you should tend to the fire on the stove, i.e., be reactive.

Actions should be taken because (1) they achieve a desired goal, (2) their precon-
ditions are met, and (3) the resources are available to take theladdiwaover for the
tasks with which this dissertation is concerned (such as those described in section 4.1), the
preconditions and goals are all conditions in the physical world. Hoyt&xe¢emodel of a
situated automaton from Figure 1-1 contains memanmnyg the determination of actions
taken by the déctors is mediated by the internal state. If the memory contains an explicit
sequence of instructions and a program coumésult of this “mediation” could be to

1. The “fire on the stove” example is a case of the application of rule 3. The need to tend to the
stove made the fefctors unavailable to continue with the dishes. Actuallg 3 is a special case
of rule 2, since if the resources aren’t available, the preconditions aren’t met.
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actually be to cause the agent to take the action to which the program counter is pointing,
regardless of the current sensor input. In my view, this would be a misuse of memory.

The action selection should be based on the current state of the world, and the
memory structure used by a situated automaton should simply be a reflection of the cur-
rent state of the world. The use of memory simply allows the agent to know more about
the current state of the world than that which is currently available to the sensors; this
approach is reflected in the use of the ternetttive field of view’ The memory simply
allows the agent to “see more,” and therefore make a more informed choice of an action.

The preconditions are all states of the world, as opposed to the case in explicit
sequencing, in which the precondition is purely a state of the agent (its program counter).
Implicit sequencing comes about by having actions proddeetefin the world that are
preconditions for other actions. This ensures that the actions taken are appropriate for the
current world state.

The use of implicit sequencing has consequences in the construction of the agent.
No special sequencing mechanisms are needed for the case when a sequence of actions
must be aborted; other actions just start executing. No special mechanism is needed for
returning to and repairing aborted instruction sequences—fteeteproduced by the
actions are either still true, in which case the sequence can begin where i} teftiody
are not, in which case the necessary actions are repeated. Implicit sequencing also allows
for skipping actions if the &fcts they produce are serendipitously found to be true
already The agent can also take advantage of potential parallelism if more than one action
can be taken simultaneously.

The agens control structure can be implemented as a production system. On the
other hand, it is sometimes the case that it is easier for us as human designers to describe
the behavior as linear sequences of actions. It may be possible to automate the generation
of a set of actions that can be executed via implicit sequencing from a linear sequence of
actions produced by the human designer. This is a topic for future research.

Future research is also needed in integration of partial-order planning with the sit-
uated automate model. It may seem that situated automata and partial-order planning are
incompatible, but creating and following plans gets at reason (1) for a situated automaton
to execute an action, i.e., the action achieves a desired goal. One must have a plan in order
to know whether an action achieves a goal, even if it is a trivial one-step plan. But rather
than treating a plan as a sequence of actions to be rigidly followed to achieve a goal via
explicit sequencing, the plan can be treated as a resourchelpato determine the
actions at each step, but doesdhiotatethe action to take. This approach to plans was first
discussed by Agre and Chapman [1, 2], and is further developed by Hayes-Roth [30].
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Chapter V: Rabbit World™—A Case Study

5.1. The simulation

I have implemented a marker based control system that illustrates many of the con-
cepts developed in the preceding chapters. Usinglibevirtual reality rapid prototyping
software developed at UVa [19], | have constructed an environment with trees, rocks, ber-
ries, and walls. An agent survives in this environment by eating berries and avoiding
obstacles. Furthermore, the environment contains a predator which actively seeks out the
agent. The agent has the concurrent goals of finding food, avoiding obstacles, and avoid-
ing the predatorAn example of a rendered image that forms the input to the vision proces-
sor is shown in Figure 5-1. Rocks, trees, and berries are located on a flat field surrounded
by a fence. A predator is also shown.

Figure 5-1: The virtual agent’s environment

The textures are not reproduced well by our prjitet are evident in the rock sur-
faces. The textures are not complex; they are treated as noise by our vision processes.
Each image is rendered from the ageme&rspective as in Figure 5-1—new images are
rendered as the environment changes, either due to movement in the environment (such as
predator movement), or due to motion of the agent.

The environment simulation is a separate process, running on separate hardware
from the agent control software. The a block diagram of the complete simulation system is
depicted in Figure 5-2. On the left is the environment simulation; the agent control system
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is on the right. Each of these two major subsystems is further subdivided into two parts.
The environment simulation consists afimulation enginend arendering engineThe
simulation engine maintains a complete representation of the environment, including the
locations, speeds and other relevant state information of all objects in the environment.
Collisions between objects are detected by the simulation engine as well. The rendering
engine accepts graphics database updates from the simulation engine and renders the
scene from the viewpoint specified by the simulation engine. The rendering engine runs
on a Silicon Graphics ONYX Reality Engine, producing high-qudlitj-color, shaded

and texture-mapped images in real time. The simulation engine may also run as a separate
process on this same machine, or alternately on a separate machine, such as a Sun SPARC
Workstation. They communicate via a stream-type internet-protocol socket connection.

Rendering images Vision
Engine Processor
Simulation commands High-Level
Engine Control
Environment Agent

Figure 5-2: The complete simulation system

The agent control software does not have any access to the underlying representa-
tions used by the environment simulation, and must instead construct its own representa-
tion based on its perception of the environment. This perception consists entirely of the
image sequence drawn by the rendering engine, from the viewpoint of the agent. After
drawing each frame, the rendering engine quantizes the image to 64 colors, run-length
encodes it, and sends it to the vision processor via a socket connection.

The vision processor identifies relevant items in the visual input: in this case, ber-
ries, the predatoand the ground line (described below). The locations of these objects in
the image are forwarded (again via a socket) to the high-level control module. The control
module is a multi-threaded process running on a Sork$tation running the Solaris
operating system. The agenttontrol module decides upon an action based on these
images, and sends velocity commands to the simulation system, which updates the display
based on the new location of the viewpoint. Even with the communication overhead of
this design, the simulation runs in real time at 10-15 frames per second. The examples of
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the 160x120 pixel, 64 color images that form the input of the vision processor are shown
in Figure 5-3.

Figure 5-3: Images after quantization

In later versions, one additional feature was added—the ability to turn the viewing
direction independently of the direction of travel, i.e., a “neck.” This feature was moti-
vated primarily by the predator avoidance behavior needing to run away from the predator
while periodically looking backward to verify the predator location. This necessitated
additional machinery in the simulation and communication between the simulation and
control system. A “head angle” command was added to the set of instructions the control
system could send to the simulation. The complete set of instructions was therefore:

setForwardSpeed(s)
setTurnSpeed(s)
setHeadAngle(a)

The addition of the neck, and the distributed asynchronous nature of the simula-
tion, made it necessary to add one additional “sensor” to the simulation, a proprioceptive
“head angle” sensoflhis is needed because after the control system issues a command,
there is a nondeterministic delay before the command tatexs. &fhe head angle sensor
enabled the agent to know when head angle commands feck &his is critical, since
the images are useless without knowing the direction the eye was pointing when the image
was generated. For example, if the agent is looking directly forward, issues a command to
look behind it, and then sees the predate agent would not know whether the predator
is in front of it or behind it without the head angle senSach image was therefore paired
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with the head angle at which it was generated, to disambiguate such cases. On a physical
robot, such a sensor could easily be implemented via, e.g., a potentiometer.

Finally, another “sense” that the simulation provides is a sense of time that can be
inferred from the regular production of the simulation frames. Each frame is generated a
fixed amount of simulation time after the previous frame, so the production of frames pro-
vided a clock input to the agent. This was needed in order to update the markers properly
when they are outside the field of viesince this update is done by integrating the veloc-
ity of the agent over time. On a physical robot, equivalent information can be obtained by
equipping the robad’ wheels with shaft encoders, and using the shaft encoder values to
update the markers.

By strictly adhering to a principled design in which the agent and environment are
completely decoupled, | have constructed a simulation system which retains the essential
qualities of the real world which | am investigating, while abstracting away many of the
difficulties associated with using a physical robot (battery maintenance, hardware failures,
etc.). Each “sensor” in the simulation has a direct analog in a physical robot, and therefore
many of the lessons learned in this simulation can be expected to apply to real-world
robots. Recent work with a physical robot, to be described later in this ¢heggehown
this to be true; the techniques developed for use in the simulation are directly applicable to
physical robots in the real world.

5.2. The agent

This section provides a detailed description of the functioning of the rabbit agent,
and its constituent task-agencies. At this point, identification of which computations are
performed by which task-agency is left as an exercise to the r@ddemain point to
notice is the way in which markéased representations are used to enable the agent to
achieve its goals morefettively and diciently than either a pure reactive system or clas-
sical planner.

5.2.1. Task-oriented design

There are any number of aspects of the environment that the perceptual system
might compute, howeveponly a relatively small number of this computations produce
results that are useful in accomplishing a given task. The agent constructed here is to
accomplish the tasks of gathering berries and avoiding predators, so it is only natural that
the perceptual system perform computations that identify predators and berries. The per-
ceptual system will also notice higher level concepts and situations, such as the occlusion
of a berry or the “dangerousness” of the predatomhis section details an end-to-end
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specification of the sample agent, its agencies, and its markers at the seconcsdédarr
els: the representations and algorithms. The way in which the agencies interact in each of
the major subsystems (Perception, Memory, and Action), are described.

The agencies are those identified aboveT,EBUMP, and RUN. In addition to
their various components, the primary aspect of the agencies with which we shall be con-
cerned is their “strength.” Exact values for the strengths are left to the implementation; we
will refer to their values as being “high” or “low” relative to the other agencies in the sys-
tem.

5.2.1.1. The perception subsystem

Each of the agencies needs a component in the perceptual system to detect the
items with which it is most concerned. The input to these components is a set of early
maps for the hue, saturation, and intensity of the incoming image. Thad&hcy has a
food-detectgrwhich in this case looks for small red blobs in the image of about the right
size and shape (the food items in our simulation are like “berries”). The BUMP agency
has arobstacle-detectathat works similarly to Horswill's Polly robot [33] in that it looks
for obstacles by starting at the bottom of the image and scanning “upward” for the first
non-ground item. The agent will notice a change in the hue from that of the green ground.
The output of the obstacle-detector is a “ground line” that represents the edge of free space
in the current image. Another component of the obstacle-detector determines the extent of
an object by looking for vertical “jumps” in the ground line, which usually correspond to
the left or right edge of an object. Finalthe RUN agency needspaedator-detectqr
which looks for yellow blobs that are just above “jagged” portions of the ground line (the
predator in the simulation is yellow). The use of the ground line here is mainlyet@if
tiate between the predator and the walls (which are also yellow), and basically amounts to
looking for the predator’s feet.

For the sake of the agemtsurvival, the predatatetector must be active at all
times, even when the strength of the RUN agency is relativelyTlbis implies that the
ground line must be computed on every incoming image. This information can be also be
used by the BUMP agency for obstacle detection, which must be done whenever the agent
moves (which is also nearly all the time). The food-detector, however, need only be active
when the strength of the EAagency is high, i.e., when the agent is hungvhen the
agent is not hungrythose visual processing cycles can be used by other agencies. Even
when the agent is hungrny a predator is perceived to be neartyse processing cycles
may be needed to find a place to hide. This case is a processing resource conflict between
the EAl and RUN agencies, as discussed above. An adversarial scheme will be used to
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resolve this conflict. Finallythe obstacle extent computation need only be done when a
given obstacle must be circumvented.

5.2.1.2. The memory subsystem

The limited set of markers is a resource that must be allocated car&fadly
agency has need of markers in order to carry out its task. Theag#ncy marks food
items, so that when they are outside the field of vewindication of their last known
location is retained. A dramatic improvement in thigcieincy of the eating behavior is
realized by remembering the location of only a few food items. In some situations, how-
ever many food items may have been seen recestlpot all of them can be marked. The
EAT agency therefore marks only the four nearest food items (assuming enough markers
are available). EA also tags the single nearest food item as its curregdttarhis tag is
helpful to the BUMP agency.

The BUMP agency marks obstacles, but it is not feasible to mark every object that
might be considered an obstacle. However, from the task-oriented point of view, an object
is an obstacle only if it is in the path from the current location to some destination point.
The BUMP agency need only mark obstacles that are between the current location and
locations tagged as tget destinations, e.g., tagged by thélEe§yency as described above.

In fact, it only need mark the nearest such obstacle, since in most simple navigation prob-
lems, only the nearest obstacle is immediately relevant. The navigation algorithm to be
described in the Action section below will only consider two (marked) locations, the desti-
nation point and the first obstacle on the path to that destination. This navigation algorithm
is employed by the other agencies (EAT and RUN), to guide the agent to target locations.

In order to navigate &dctively, non-point attributes must be associated with obsta-
cle markers, namelyhe objecs width. An obstacle is thus represented by two markers,
the left and right edges of the object. Note that this representation is task and viewpoint
dependent, and changes as the agent moves. The specific locations of these markers
change, both relative to the agent, and relative to a hypothetical world coordinate system.
This further exemplifies the idea that “obstacleness” is a subjective concept, and depends
on the agent’s goals.

The determination that an object is an obstacle in the path tged tacation is
made by a BUMP agency visual routine, which is triggered by the act of tagging a particu-
lar marker as a goal location. When facing thgedatocation, the direct path towards it
appears in the image as a cone with thgetdocation at its apex. If any of the ground line
falls within this cone, this is an indication of an obstacle. If an obstacle is indicated, the
ground line is traced to the left and right in search of “jumps” in the ground line, which are
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indications of the “edges” of the obstacle. These edges are taken to be the marker loca-
tions that define the obstacle.

The RUN agent marks the location of a predator when one is noticed. It instructs
the agent to turn around (see Action below) and run away from the predatm the
agent is running roughly away from the predator, the RUN agency looks for potential hid-
ing places by using a variant of the obstacle finding visual routine described above. Once a
hiding place is found, the RUN agency places a marker at a location estimated to be
behind it, and the marker is tagged as gdlocation. Once this is done, the navigation
algorithm guides the agent to the hiding place.

Since the number of markers is limited, there are also conflicts over which agen-
cies control them. The conflict resolution in these cases is primarily adversarial in nature,
with the strongest agencies gaining control of the markers. The strengths of all the agen-
cies is initially rather lowwith certain events causing the strengths to increase. (Perhaps
an as yet to be constructedWDER agency could be in control when nothing else is
happening.) The strength of the EAgency increases when the agent is hyradigwing
it to mark food locations. The RUN agersystrength increases when a predator is
noticed. Whether RUN is strong enough to take markers fromdefends on the prox-
imity of the predator and how hungry the agent is. The BUMP agency becomes active
when the an obstacle is in the path to gegadestination, and its strength increases with
proximity to the obstacle.

5.2.1.3. The action subsystem

Finally, we have the Action subsystem, and the components of the various agen-
cies within it. The Action subsystem consists primarily of the navigation algorithm, which
guides the agent toward a givengelrdestination, avoiding obstacles en-route. The con-
flict issue here is which agency determines the curreggttaycation. First, we will briefly
describe the navigation algorithm, and then discuss the resource conflicts.

The navigation algorithm takes a marker as input, which identifies tet taca-
tion. This marker may have an obstacle associated with it, which is in turn another marker
The obstacle marker identifies the first obstacle en route to get tacation. If there is
no such obstacle, then the navigation algorithm sets the forward and turn speeds such that
the agent moves directly towards thegar Obstacle markers are also tagged as being
associated with the particular destination, so if the destination is ever deleted or changed,
the obstacle marker is deleted as well.

If an obstacle is found, the navigation agency looks for a path around the obstacle.
When an appropriate location is found, the navigation agency instantiatésrarediate-
destinationmarker which is guaranteed not to have an obstacle obstructing the path to it.
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The intermediate destination is to the left or right of the obstacle, depending on which
direction is estimated to be the shorter path to the destination. The navigation agency
guides the agent towards the intermediate destination just as it would any other destina-
tion. Once the intermediate destination is reached, the marker on it is deleted, as is the
obstacle marketf there is more than one obstacle en-route to this destination, then subse-
guent obstacles will be marked by the BUMP agent after the first has been circumvented.

Conflicts between BUMP and the other agencies are avoided for the most part due
to communication via the markers. The BUMP agency only interacts with the navigation
algorithm by placing obstacle markers. It does not selegettdocations, although in
some extreme situations, when a collision is imminent, the strength of the BUMP agency
can be high enough to override othefeetor commands and direct the agent to move
away from the nearby obstacle.

The conflict between ERand RUN are resolved by the agents competing for con-
trol. The strongest agent wins, where the strengths are determined by the amount of hun-
ger and the proximity of a predat@ome of this conflict is also alleviated by a least-
commitment strategyespecially on the part of the RUN agent. It is not necessary that the
agent rurdirectly away from the predator, jugenerallyaway. Therefore, RUN can allow
the EAT agent to choose any target destination that is generally away from the predator.

5.2.2. The agent implementation

As described above, the agent is implemented by two separate processes: a vision
processor and a high-level control module. On each frame, the vision processor extracts
the following information from the input and forwards it to the high level control module:
potential berry locations, potential predator locations, the current head angle, and the
ground line The ground line is the boundary between ground and non-ground in the
image, and represents the edge of free space. A similar technique was used by Horswill
[33] in his robot, PollyThis technique was used extensively by the agent in this simula-
tion. Figure 5-4 shows a view of the environment with the ground line highlighted

In order to extract this information, the image is converted from raw RGB values
to HSV to compensate for the shading and texturing to some extent, and segmented based
primarily on the hue. Potential berries are taken to be regions of red hue, which results in
some false positives, since the tree bark is often of a red hue, depending on the lighting.
The ground line is found by scanning from the bottom of the image for the light green hue
that makes up most of the ground coloring. Darker green pixels are not taken to be ground
pixels, since they are often found in the rocks. Instead, the dark green flecks in the ground
area are eliminated by median filtering. Potential predator locations are found by scanning
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just above the ground line for yellow pixels. This results in a number of false positives,
since the walls are also yelloMost of these false positives, as well as most of the berry
false positives, are eliminated by the first stage of processing in the high-level control
module. The bounding rectangles of red connected components (berries), the ground line,
and the predator warning locations are forwarded to the high-level control.

Figure 5-4: The ground line

In the first stage of processing in the control module, the potential berry locations
are filtered based on their size and shape to eliminate false positives. Basically, unlike tree
trunks, berries are small, short, and close to the ground. The potential predator locations
are also filtered to eliminate the wall areas. This is done by examining the ground line in
the region of the potential predator location for “jumps” in the ground line corresponding
to the predatos feet. There are usually no such jumps in the wall areas (see Figure 5-4).
The output of this first stage of processing is a set of berry and predator locations in image
coordinates, along with the ground line.

The next stage converts these image based representations to egocentric world
coordinates. This stage also maintains the marker based representations across multiple
frames. Object locations are determined based on azimuth and elevation in the visual field,
by assuming that the ground plane is flat, and all objects are on the ground. The system
attempts to keep the four closest berries and any nearby predator marked at all times. The
markers are maintained by using dead-reckoning based on the most recent velocity com-
mands to estimate the expected new position of the object. If the expected position is in
the image, then the correspondent is found in the image if possible. The output of this
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stage is a set of markers on berries and the preddisrset of markers forms the “world
model” of the agent, and represents an estimate of the current state of the world.

5.2.2.1. Berry gathering behavior

The next stage of processing is to implement a strategy for survival by determining
an action to take based on the current situation. The strategy for the agent is to head for the
nearest berrywhich may not be currently visible, due to occlusion or the limited field of
view. The agent must carefully follow the “perception overrides memory” doctrine, since
due to noise in the image caused by severe color quantization some erroneous markers are
created. Markers also occasionally drift due to imperfections in the dead-reckoning proce-
dure. The problems with erroneous markers are overcome by having the agent drop any
markers that are supposed to be in the field of Moemvdont have any perception corre-
sponding to them. So for example, if a berry marker is maintained to the left of the agent,
the agent turns to the left to look at it. If no berry is seen to the left, the marker is dropped.
This behavior serves to allow the agent to use the markers that are accurate, without being
led too far astray by incorrect markers.

The strategy described above must be augmented to notice the occlusion of
marked objects and behave appropriat€he technique we used is similar to Horswill’
obstacle avoidance routine [33] in that it relies only on being able to segment the ground
from non-ground (i.e., obstacles) @etermine if a marked object is occluded, points on
the ground line are converted to egocentric 3D coordinates and compared with coordinates
of the markerlf the ground boundary points in the direction of the marked object are
strictly nearer than the marked object, then the object is assumed to be occluded. Occluded
markers are not dropped, but now we need a strategy for navigating around the obstacle.
The original behavigmwhich was to go directly towards the nearest maderiously will
not work for occluded markers.&\have implemented the navigation algorithm described
in section 3.3.1.3 using the target berry’s location as the destination marker.

To determine the location of the obstacle marttex ground/non-ground boundary
in the region of the goal marker is analyzed for sharp jumps that indicate the edges of the
obstacle. Simple geometric reasoning is used to determine the shortest distance around the
obstacle, and the obstadetdge is marked. An intermediate-destination marker is then
instantiated, and the agent is directed to move towards the intermediate destination,
thereby circumventing the obstacle.

5.2.2.2. Predator avoidance behavior
Running concurrently with the berry gathering behavior is the predator avoidance
behavior When a predator is noticed, and deemeficserfitly “dangerous” the agent exe-
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cutes a “run away and hide” behavidhis behavior has the following stages: look for a
place to run, run awajook for a place to hide, and hide. The current stage is determined
by the state of the world as encoded in the agendrkers, rather than by a traditional
program, with a program counter stepping through the stages. This way the agent can
revert to previous stages or abandon the procedure at any time without using any special
mechanisms.

The first step is to actually notice the predatororder to accomplish this, the
agent must “look around” much more often than is necessary for simply gathering berries,
since the predator is quite fast, and may approach at any time, from any direction. The
look-around behavior is accomplished by establishing “pseudo-markers,” at points around
the agent’s bodywith duty cycle timers set to request the agent to look at them at appro-
priate intervals. These are termed “pseudo-markers” since they are not actually on any
object, and they are not updated in the usual way—they are at a fixed location with respect
to the egocentric coordinate system.

An alternative would be to provide the agent with a “compass,” which would
enable these markers to be place at fixed compass points. Intuitigelyms this alterna-
tive may work betterbut the implemented option works adequatahd it didnt seem
necessary to confound the results by adding an additional séwsmher alternative
would be to update these markers in the usuaj uatythis would take time, be subject to
drift, and be unlikely to significantly improve performance.

The agens field of view is about 75 degrees, so these pseudo-markers were placed
at 60 degree increments around the agdyaty which covered the entire 360 range, and
allowed for some overlap (see Figure 5-5). No pseudo-marker was placed directly ahead,
since the agent usually looked directly forward anyway.

field
of
o view o
pseudo-markers
@) @)
@)

Figure 5-5: Pseudo-marker configuration

The duty-cycle timers on these pseudo-markers were set (empirically) such that
the agent struck a balance between looking where it was going (forward), and looking
around enough that the predator was usually noticed when it approached.
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Once the predator is noticed, a determination of the “dangerousness” of the preda-
tor needs to be made. The predator detection visual routine uses color and the ground line
shape to basically look for the predasofeet. Unfortunatelythis requires that the preda-
tor be rather close in order to detect it, so if the agent detects the predator at all, it is prob-
ably dangerous. Howevehe predator detector also produced a number of false positives,
when rocks against the wall caused a section of the wall to look like “feet.” Such a situa-
tion is rather transient, howeveso if the agent keeps moving, this false predator will dis-
appear So rather than running away immediately upon seeing a pretie@gent looks
for the predator in a sequence of frames, in order to filter out some of these false positives,
and keep the agent from wasting gydoy running away from something that is not there.

Once a predator has been seen for more than some threshold number of consecu-
tive frames, the predator is deemed to be “dangerous,” and the agent begins looking for a
direction in which to run. Depending on the relative location of the predhammlagent
may prefer to run in certain directions. Naturatlynning “away from” the predator is a
good choice. Howeversince the predator will run directly towards the agent until it
catches the agent or runs into an obstacle, running laterally to the predator is also a good
strategy since this is more likely to cause an obstacle to be positioned between the agent
and predatorAlso, if the agent decides it wants to run in the direction it is currently fac-
ing, it can do so immediatelywhereas if the agent decides to run in the opposite direction,
if must take the time to turn around first, and it may be too late by the time it gets turned
around.

The agent considers each of six possible directions to search for a place to run.
These directions are, like the pseudo-markers discussed above, in 60 degree increments
around the agent, again taking into account the aggeld of view to achieve complete
coverage of the range of directions. Each of these potential directions to run is scored for
its desirability taking into account the relative predator location and direction the agent is
facing as discussed above. Each of the six directions gets points for being away from the
predatoy being lateral to the predat@nd being in the direction the agent is facing. Once
each of the directions is scored, the agent picks the direction with the highest score and
looks in that direction for a place to run. If it fails to find a place to run, it looks in the next
most desirable direction, and so on, until it finds a place to run. If all the directions are
tried, the agent starts the process over again.

A “place to run” is some open space in which the agent can move in a straight line
for a suficiently large distance. It can be found by analyzing the ground line, which is at
the boundary of free space. Consider the scene shown in Figure 5-6a, in which the ground
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line is highlighted. Some of the points on this line are too close, so there@m' to run
in that direction (see Figure 5-6b).

(b)

(d)

Figure 5-6: Finding a place to run

Other points may be far enough awhuyt there is not a clear path towards them.
This situation is determined by projecting the path towards the given point back into the
image, and seeing whether this projection intersects the ground line (see Figure 5-6c¢) If
the ground line point is both far enough away and has a clear path, the point is marked as a
place to run (as in Figure 5-6d). This procedure is identical to that for determining if there
is an obstacle to any potential destination point. If no such point is found in the given
viewing direction, then the next most desirable direction to run is tried.

Once a place to run is found, it is marked, and the agent moves towards the marker
The agent also accelerates to a speed that is slightly higher than that of the predator (other-
wise it doesrt’' have a chance). The drawbacks of this acceleration are that the agent uses
more engyy to go fasterand any collisions with an obstacle will “hurt” more, since the
penalty for collisions is proportional to the speed of the agent.

After running for some (empirically determined) length of time to put some dis-
tance between itself and the predatbe agent begins to look for a place to hide. By
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“hide,” | mean that the agent wants to run in such a way that it positions an obstacle
between itself and the predatdiridentifies such an obstacle by looking for its left and

right edges in the ground line while looking in the forward direction. Once such a obstacle

is identified, its edges are marked, and the agent computes where it needs to go in order to
get on the opposite side of the obstacle from the predatdithis location is also marked.

This goal location is then tested to see if the agent can proceed directly towards it, or if an
intermediate destination needs to be established, as in the usual obstacle avoidance algo-
rithm.

It is important to emphasize that the use of markers is central to the functioning of
this hiding behaviorThe current action to take is completely determined by the current
state of the markers (their types and locations). The marker maintenance system is respon-
sible for assuring that the marker state is eantly useful and accurate estimate of the
world state. The progression of the agent through the steps of the run-away-and-hide
behavior is caused by a progression of marker configurations, which corresponds to a set
of world states (where a world state includes both the observable state of the physical
world and the internal state of the agentankitions between states are caused by the
allocation, update, and deallocation of markers. Basing the actions to take on the marker
states, rather than a fixed sequence of plan steps insures that the action taken is appropriate
for the current world state, rather than taking a (possibly inappropriate) action simply
because it is the “next step” in the plan. This is implicit sequencing is critical in a dynamic
environment. The fact that the markers are continually updated and verified with the world
state provides reactivity to unexpected events in the environment, yet these markers are
also labeled with symbols that are meaningful steps in a plan. Here we see directly the
potential for maging the reactive and classical planning paradigms through the use of
markerbased representation. The plan above was hard-coded, but | believe the concepts
are amenable to use with an automated planner as well.
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To further illustrate the points in the previous paragraph, | will step though an
actual example of the working predator avoidance behawanting out the marker states
and labels, and how they drive the progression of the system though the succession of plan
steps. In Figure 5-7, we see a situation in which the predator is approaching the agent.
(Recall that the agent does not have access to this overhead view.)

Figure 5-7: An impending predator encounter

The agent (the small blue triangle) is looking off to the left, with the yellow preda-
tor approaching from below. The marker maintenance system attaches a duty-cycle count-
down timer to each of the markers, and requests that the head be turned in the direction of
the marker with the lowest timer value. Whenever an object is seen in the current field of
view, the timer is reset. The pseudo-markers described previously which make the agent
“look around” have timers as well, and they may also cause a request that the agent look in
their direction. In the situation above, the timer associated with the pseudo-marker is
about to “go df' and cause the agent to look towards the pred@tben the agent looking
towards the predatothe predator is noticed, and a predator marker is placed on the esti-
mated location of the predatatepicted as a yellow circle in Figure 5-8b. The predator
marker is given an initial timer value of zero, causing the agent to look directly at the
predators location immediately (note the change in the direction of the aggare
between Figures 5-8a and 5-8b). If the predator is seen again when looking directly at it,
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the predator marker is augmented with the label “dangerous,” which causes the agent to
move to the next step in the sequence.

(b)

Figure 5-8: Noticing the predator’s approach
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Once the predator marker is upgraded to “dangerous” status (as indicated by the
red circle in Figure 5-9) the agent begins to look for a place to run. The six possible direc-
tions to search are evaluated as described, and the preferred direction to run is marked

(b)

Figure 5-9: Looking for (a) and finding (b) a place to run

with a “search” marker (white circle in Figure 5-9a), again with a duty-cycle timer of zero,
causing the agent to look directly at it immediat&gcall that any command given by the
agent may take some nondeterministic amount of time before it is executed. After the
agent issues the command to look at the search méarkeust therefore wait until that
command is actually executed before actually searching in the ground line for a place to
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run. The execution of the command is indicated by the head angle, semsbrwill show

the agent to be looking at the marker after the command has té&ein €he agent can

then search the ground line and establish a “run” marker in an open area (white marker in
Figure 5-9b).

While the agent is running it needs to occasionally look back at the predator to ver-
ify its location (especially since it is moving), and also to see if the predator has by chance
become occluded, in which case the agent is hidden alr€aryis accomplished by the
same timer mechanisms as described above. The timer associated with the predator is rel-
atively short, causing the agent to make frequent glances back towards the predator (see
Figure 5-10). An even shorter timer is placed on the run location (white marker in Figure
5-10) so that the agent is usually looking where it is going, in order to avoid collisions.

Figure 5-10: Verifying the predator location

Once the agent is moving (i.e., running away from the predator) it has the opportu-
nity to search for a hiding place, since the agent is less vulnerable vghaovihg. While
the agent is looking at the run markesearches the ground line for a hiding place. When
one is found, the left and right edges are marked (black markers in Figlly@bella goal
location is chosen on the opposite side of the obstacle from the predator (blue marker in
Figure 5-1). If necessarythe agent also establishes an intermediate goal marker (not
shown in the figures), and proceeds towards this marker instead. The agent verifies the
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locations of these markers as it approaches the hiding place and the predator advances,
and the marker locations are readjusted as necessary (see Figure 5-11b).

@)

(b)

Figure 5-11: Finding and tracking a hiding place
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The predator marker is updated as well by making occasional backward glances in
the direction of the predator marker (Figure 5-12).

(b)

Figure 5-12: Monitoring the predator location

Eventually if all goes well, the agent will look back towards the predator and
notice that it has become occluded by the hiding place obstacle, as shown in Figure 5-13a.
Once this occurs, the hiding place and obstacle markers can be deleted, since the goal they
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subserve has been achieved. The predator marker is retained, h@semerestimate of
the predator’s last known location (see Figure 5-13b).

(b)

Figure 5-13: Hiding successfully

The agent will delete the predator marker when it believes (as indicated by its
markers) that the predator is both occluded, arficgritly far awayHaving achieved the
occlusion goal, the agent tries to further distance itself from the pretgta@ctually
establishing a search markand thereby reverting to the beginning of the run away and
hide behaviarThis time, howeverthe occlusion of the predator by the obstacle will be
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noted, and this, combined with the increasing distance from the preddt@ause the
predator marker to be deleted. Howevéethe agent was unsuccessful in its attempt to
hide, the cycle will be repeated, with the agent looking for a new place to hide.

(b)

Figure 5-14: Increasing the gap and getting away

Note how the use of markers was central to the operation of each step in the pre-
ceding “routine.” While is one cannot claim that markers are the only means for imple-
menting this routine, nor even necessarily the best or nfaseef, it contrasts well with
the alternatives of classical and reactive planning. A classical planner would have trouble
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with the dynamic world and incomplete information available to the agent. A reactive
planning system, being memoryless, would not be able to deal with the limited field of
view and occlusion, since it carkeep sensor contact with all of the information it needs
simultaneously (although Chapmsausystem would work quite nicely if it were given the
overhead viewpoint shown in the figures of this section).

Moreover, | do not claim that this routine is the best way to use markers to accom-
plish this task, only that it is a good waye., it is more successful than a memoryless
approach, as will be demonstrated quantitatively in the following section. One can think of
many ways to enhance the performance of the system by using additional markers or mak-
ing better use of the markers used here. Howévese enhancements would still be using
markers, which only further supports my main thesis.
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5.3. Experimental results

The simulation system can easily be instrumented to measure the performance of
the agent. In describing the “big shell game,”dusad that the use of memory will enable
the agent to more efficiently gather items. However, that is a mathematical argument in an
idealized situation, in which the agenthemory is perfect and complete. The simulation
provides the opportunity to make measurements of a more realistic situation, in which
memory is limited and potentially error prone, and occlusion and a limited field of view
may be factors.

In order to measure thefiefency of the various agents, | have instrumented the
simulation to compute the average “inbaErry distance.” As the agent is gathering ber-
ries, it must travel some distance to its intendegketdverry. Vé can say that one agent is
more eficient than another if over the long run, the mofeieht agent travels less dis-
tance in gathering berries, and that the average distance between consecutive pairs of ber-
ries would be smaller for the more efficient agent.

Below are comparisons of threefdient agents in two dérent conditions. In the
first condition, the environment is an open field with no obstacles, and in the second con-
dition obstacles are added. The three agents compared are a completely reactive agent, an
agent with fout markers to place on berries, and an agent with four markers and a “neck.”
The strategy for reactive agent is to always move towards the nearest berry that it “knows
about,” and the reactive agent only knows about berries iabbautefield of view The
strategy for the “four marker” agent is identical—to move to the nearest berry it knows
about. Howeverthe agent with markers may potentially know about more berries than the
reactive agent, since it may have géarefective field of view The agent with a “neck” is
identical to the four marker agent, except that rather than always looking directly forward
in the direction of travel as does the four marker agent, the “neck” agent may look in any
direction, independent of the direction of travel. In the berry gathering task, the neck agent
uses this ability to look directly at the gat berry and also to glance around from time to
time to get a more complete picture of its surroundings. Redirecting the absolute field of
view in this way in conjunction with memorymay dramatically increase theesftive
field of view The “looking around” behavior is implemented by using the “pseudo-mark-
ers,” see section 5.2.2.2, Figure 5-Bnérs are placed on these pseudo-markers such that
the agent glances around at regular intervals. A much shorter timer is placed on the goal

1. A discussion of the choice fafur markers, as opposed to some other number is postponed until
later in this chapter.
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berry, so that the agent is usually looking at the goal location. Figure 5-15 shows the com-
parison of the performance of these agents in an open field.

Each agent is allowed to collect 100 berries in the field. The field initially con-
tained 50 berries, and as each berry is “eaten” a new one is added at a random location in
the field. Over a given run of 100 berries, the mean and standard deviation of the inter
berry distance for that run is computed. The mean and standard deviation are used to con-
struct 95% and 99% confidence intervals for the actual mearbiertsr distance for the
agent, assuming that the inteerry distance is roughly normally distributed. The blue
error bars in the graph indicate the 95% confidence interval, and the green bars indicate
the 99% confidence interval. Three different runs are made for each agent.
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Figure 5-15: Average inter-berry distance in an open field

We can see in Figure 5-15 that the idterry distance of the “no marker” agent is
somewhat higher than that of the other two agents, indicating poorer performance for the
memoryless agent. The other two agents performed roughly the same in this open field
condition.

Figure 5-16 shows the results of another experiment, which is identical to the
experiment shown in Figure 5-15, except that the field contained a number of obstacles.
Performance for all of the agents degraded slightly in this condition as opposed to the
open field condition (note the change in scale on the vertical axis). Performance is more
variable in this condition as well, as indicated by the wider error bars. In addition, the per-
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formance of the four marker agent (without the neck) has degraded relative to the neck
agent in the presence of obstacles.

The poorer performance of the memoryless agent in both experiments is a result of
the agent not taking full advantage of areas in with there is a cluster of several berries. As
the agent approaches a clusteany of the other nearby berries go out the absolute field
of view. This is illustrated in Figure 5-17, in which the gray triangle indicates the agent
with its absolute field of view indicated by the conical shape. The memoryless agent may
miss these nearby berries completalyd instead move towards a berry directly in front of
it, but relatively much further awayhe agent with markers will remember the approxi-
mate locations of these nearby berries, and can turn towards them approgtrataly
watching the agents perform, | can say subjectively that this occurs frequently—this

observation is borne out in the statistics illustrated in Figures 5-15 and 5-16.
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Figure 5-16: Average inter-berry distance in a field with obstacles

Figure 5-17: Nearby berries passing out of the field of view
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The diference in performance between the “neck” and “no-neck” versions of the
marker using agents can also be explained by observing that the agent which “looks
around” more may potentially know more about its surroundings, and in this specific case,
know about more nearby berry locations. In the open field case, this potential advantage
didn’t significantly improve the measurable performance of the agent with the neck, since
in the absence of occlusions, the agent need not look around much to get a good idea of its
surroundings.

However in the case with obstacles, occlusions could hide information that can
later be obtained by looking around. Consider the scenario in Figure 5-18, in which at time
1 (in blue) the agent can only see the single berry on the far right, since the nearer berry is
occluded by a rock. Later, however, in the course of pursuing the further berry, the nearby
berry becomes unoccluded at time 2 (in green). The agent which always looks forward
will not see the nearby berry until after it goes all the way to the further, feat\all. The
agent that simply glances around occasionally can notice it, hgwawércan take a
shorter path to obtain the two berries. This kind of scenario is responsible for the
improved performance of the agent with a neck, which is evident in Figure 5-16.

Figure 5-18: Occlusion thwarts the no-neck

A real rabbit agent might consider a shorter path to be méogerf under an
enegy-expended metric. of model this difciency aspect, we can give the agent an
“enemlgy” budget, in which eating berries increases the agentrgyand moving around
decreases it. Under this model an agent is considered successful if its behavior patterns
enable it to maintain a positive eggrbudget (i.e., an ergy level of zero constitutes
death). V@ can also add a “resting” eggrconsumption rate, so that the uninteresting
strategy of sitting in one place is unsuccessful.

This is done with each of the three agents discussed above, plus a “null” agent
which simply sat in one place. The field had obstacles as in the second experiment
described above. The agents are given an initiaggnedue of 200 units, and berries are
worth 20 units each. Energy decreased at a rate of 5 energy units per unit of distance trav-
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elled, and there is a resting egyeconsumption rate of 0.2 units per simulation “tic.” The
enegy level of the agents were recorded over time (in simulation tics), as shown in Figure
5-19.

The null agent just sat in one place, and as expected, itpyeathepleted in 1000
tics (1000 tics x 0.2 engy units per tic = 200 engy units). The memoryless rabbit fared
slightly better: as it moves, it depletes gyefaster than the null agent, but with each
berry eaten, the ergyr level jumps up by 20. This agent managed to survive for more than
1200 simulation tics. Howevethe agents with memory managed to survive indefinitely
(the simulation was stopped after 3000 tics). The agent without the neck held gt ener

value around 200, and the energy level of agent with the neck steadily increased.
400 T T T T T T T T T

"No Markers"
350 - "Four Markers" B
"Four plus Neck"
300 B
250 : B
200 k AN N . 4

150 AN -

100 ARRRREN -

_50 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 5-19: Energy time series for 4 different agent types

The reader may wonder if there are other parameter values (i.gy eeptetion
rates) at which the memoryless rabbit performs better than the raak@&aining rabbits.
However for this particular task, and this set of parameters, | have not found any such
(reasonable) parameter values, and do not believe any exist. Of course, we could enable
the memoryless rabbit to outperform the other agents with a different set of parameters, in
which we might, saypenalize for the use of memory (e.g., each marker costs orgy ener
unit per simulation tic). But by manipulating the egyeparameters used in this experi-
ment (initial enegy, resting enayy, moving enggy, and berry engy), the marker based
rabbits will always perform bettefhe problem space in this scenario is well character-
ized—some things make the egyeigo up, and others make it go down, and there are no
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complicated interactions among the various parameters. (Note that we could actually
make the null agent perform better by setting the resting energy rate to zero, and the mov-
ing enegy rate quite high, but this case is not very interesting.cdluld also make the

berry enegy negative, but that would just be unreasonable.) By daybling the berry

energy all of the agents would perform befteut the relative ordering would stay the
same. It is at the point where some agents succeed and others fail that the experiment is
interesting.

In more complicated scenarios, there may be some overhead associated with the
additional marker based behavior that decreases the performance of the more complex
agent for some parameter settings. | will discuss this further when dealing with obstacle
and predator avoidance.

We can see that the simulation developed for this research enables us to measure
and compare the performance of various agents on the berry gathering task. In the remain-
der of this chapter, | will use this methodology to compare the performance of agents on a
variety of tasks. | will demonstrate that an agent can acquire and maintain useful represen-
tations which expand thefettive field of view—even in a dynamic and uncertain 3D
environment—and that the use of these representations leads to a measurable increase in
performance.

5.3.1. The usefulness of multiple markers

The presentation of the previous experiments begs the question “how did you
decide on four markers?” and furthermore “how many markers are necessary?” Of course
the answer to the latter question is that it depends on the problem. Markers are meant to
represent useful predicates, and whether a predicate is useful can only be evaluated in the
context of a task. A predicate is only useful if the agent can construct a plan in which the
predicate is a precondition for some action which accomplishes a desired task. The answer
to the former question is that | observed the agent and chose to use the number of markers
at which | subjectively decided the agent had “enough,” in that the agent did not appear to
be missing berries due to a lack of markers. Natunally worthwhile to actually analyze
the situation more completelgnd to measure the performance of agents witardiit
numbers of markers, which is the purpose of this section.

In our rabbit agent, the planner is not very sophisticated, in that the “plans” it con-
structs usually consist of a single “step” which is to get the nearest berry (note that multi-
ple steps are needed if there is an obstacle in the direct path to the berry). Also, since all
the agents have a limited absolute field of vighe “go to berry” step must be preceded by
a “find nearest berry” step. One way to do this would be to mark all the berries visible
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from the current location, and then scan through the madsad representation to find

the nearest one. This “find out everything first” approach is the classical decomposition of
perception and action, and would require a lot of markers, and a lot of searching to find all
of the berries. Fortunately, it's not necessary.

In order to find the closest beritis only necessary to represent the nearest berry
seenso farin a scan of the surroundings. If we are willing to stop and do a scan of the
environment before moving, then we can choose the nearest berry using only one marker
We cannot take this approach with zero markers, since when looking to the left, it is neces-
sary to remember what was seen on the right, so that a comparison can be made between
the nearest berry on the left and the nearest berry on the right. The problem with this “scan
before moving” approach is that in the presence of obstacles, one may not see the nearest
berry on a given scan because it is occluded, yet a little tateberry becomes “unoc-
cluded,” as is shown in Figure 5-18& deal with this case, the agent would either need a
sophisticated understanding of occlusion, so as to know when to look at recently unoc-
cluded regions, or the agent must stop and scan on every small step.

Another approach, which is the one | adopted in the construction of this agent, is to
scan “all the time,” and move “all the time.” In this constant-scan approach, the agent
always moves towards the closest berry it has marked, and simultaneously with moving,
the agent scans the environment to find other nearby berries. The use of a marker on the
current destination allows the agent to move towards the current goal while looking in a
different direction. The constant-scan admits the possibility of going in the “wrong” direc-
tion for a little while, toward what is perhaps the second nearest, logtily the scan
comes around to the region in which the actual nearest berry can be seen. This approach
can again be used with a single marker placed on the current goal, which is moved if
another berry is seen to be neafiédre scanning behavior is implemented by using the set
of pseudo-markers described earlier (see Figure 5-5). The duty-cycle of these markers is
set so that the agent looks around enough (as determined empirically), yet the pseudo-
marker duty-cycles are longer than the duty-cycle of the current goal msokivat the
agent is usually looking at the current goal, in order to accurately maintain the goal
marker.

If only one marker is used in the constant-scan approach, consider what happens
immediately after the agent eats a befilye marker was on the eaten beawd is now
available to be placed somewhere else. It is immediately placed on the nearest berry in the
current field of viewwhich may or may not be the actual nearest b&hg agent immedi-
ately moves towards this markeand if it is not on the actual the nearest helrgy agent
moves in the wrong direction until the scan comes around to the area with the actual near-
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est berryOne way around this is to stop and wait for a complete scan before moving, but
another is to have a second maskdaiced on the second nearest bednyce the first near-

est berry is eaten, the second nearest berry now becomes the first nearest, and the agent,
having marked this berrgan turn immediately towards it. It is as if the agent still “sees”

this second nearest berry, since it is still inside the agent’s effective field of view.

This discussion is by way of explaining the data in Figure 5-20, which shows a
comparison of the performance of severiedént agents. The vertical axis is mean dis-
tance between berries as in Figures 5-15 and 5-16 (lower is better). The leftmost cluster of
data points is from an agent with one markeit this agent does not scan at all, i.e., the
head is fixed pointing forward relative to the botlige performance of this agent is nearly
identical to that of a completely reactive agent. This is to be expected, since its behavior is
also nearly the same, in that it always moves towards the nearest berry in the current field
of view; it just also happens to “mark” the berry.

25 . 4

15

1 1 1 1 1 1 1
No Scan 1 2 3 4 5 Ideal

Figure 5-20: Increasing the performance via marker use

The next five agents have non-fixed necks, and use 1, 2, 3, 4, or 5 markers in the
constant-scan behaviohdding the scanning behavior increases the performance of the
agent using a single marksince it can now compare currently seen items with items out-
side the field of view. Adding a second marker also increases performance, as is discussed
above. Adding the 3rd. 4th, and 5th markers does not appededb @drformance. The
rightmost agent shown is an “ideal” agent: an omniscient agent that always moved directly
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to the nearest berry (through obstacles if necessary), and provides a lower bound on the
potential inter-berry distance.

This ideal agent performance is actually only optimal for an agent that has the
strategy of going to the nearest beoyt what if the agent used a strategy that looked
ahead more, by plotting a shortest path through the berries it knows abitlutRisN
improve performance more, and be a bigger win for the use of representation? | imple-
mented just such a strategy see if it would improve the performance of the agent, and
found that it did not. The problem is that the world is dynamic enough (a new berry
appears at a random location each time the agent eats a berry) and the information the
agent has about its environment isfisigntly incomplete (the agent can only sense the
few nearest berries) that plotting a course that looks ahead more is not helpful. The world
is likely to change enough or the agent is likely to acquire new information that invalidates
the latter steps of the longer plan. | found no significaféreihce in performance using
this several-step shortest-path method.

As | “drive” the rabbit manuallyhowevey| am able to achieve better performance
by observing that the berries are often found in groups, and by preferring to go to groups
of berries, rather than single berries, | can do significantly bettet not implement this
strategy in an automated controjlsmce it involves a “chunking” strategy [39] that is
beyond the scope of this research, however, chunking as described here is not inconsistent
with the other strategies used in this research, and can (and should) be used in conjunction
with marker-based memories.

Given the example analyzed above, what can we say aboutdbe dailestion of
how many markers are useful for typical problems® Midve shown that a few (in this
case, two) markers can significantly improve performance, but that additional markers
may not help. W can make further general statements about markers using the idea of
“useful predicates.” In the agent constructed here, the nearest berry location is a useful
predicate, in that there is a current plan which uses the information regarding the berry
location in order to determine action. Any other marked berries are only potentially useful,
since we may construct a plan later using these predicates as preconditions. If no such plan
is created, then it is of no benefit to acquire and maintain these extra representations. Fur-
thermore, if acquiring the representation (i.e., doing the perception) is cheap and easy
rather than acquiring potentially useful predicates now and saving them fomiatean
simply wait until the information is needed, and acquire it just before it is used.

As an example, contrast the performance of a rabbit agent using a single marker
with rabbit agents using two or more. First of all, the rabbit agent with “extra” markers
should place them where they are more likely to become useful, i.e., the nearby berries,
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rather than berries that are far awape marker then becomes useful when the agent
decides to use it, and get that second bédfrtiie agent does not get the berry marked by

the extra marker, possibly because other berries are later found to be nearer, then the extra
marker was in fact useless. Even if the extra-marker agent does get that seconlkiberry
may not represent an improvement over the single-marker agent, since the single marker
agent, after eating the primary berry it has marked, may immediately sense the location of
the second berry and put a marker on it then. The extra marker only yields a performance
improvement if the agent usesaihd it is more eficient to use the stored information
rather than re-acquire the information laterthe experiments described above, the per-
formance improvement of the two-marker agent over the one-marker agent was such a
case, since the scanning behavior needed for re-acquiring the information takes time. The
failure of three or more markers to improve the performance was either because the addi-
tional marker was never used (i.e., the marker was deleted before the agent actually got
that berry), or because the agent could justfagesftly re-acquire that berry latévlore-

over, since the saved information may become less accurate over time in a dynamic world,
the information re-acquired “just in time” may be more accurate as well. The point to be
made here is that representation, even if correct, is not necessafiljin terms of a per-
formance measure on some task, since the information is only useful if it helps the agent
do something better than if it did not have the representation. By judicious selection of
those things to be represented, only a small amount of representation can enable the agent
to approach the performance of an agent which has complete information about the envi-
ronment.

The observation that it is often better to acquire or re-acquire information as it is
needed rather than use an internal representation is the crux of the “using the world as its
own model” agument made by supporters of the reactive paradigm. Advocates of the use
of representation must address this issue, since careful analysis of a problem may reveal
that far less representation than initially considered necessary is actually needed. Using an
efficiency agument, | have shown that in the case of the rabbit agent, the use of represen-
tation does in fact improve the agesnperformance, even with respect to this “re-acquir-
ing” criteria. Howeverthere is an even strongegament for the use of representation,
which addresses capabilityot just eficiency If the agens plan has conjunctive precon-
ditions, and these preconditions cannot be sensed simultandbaslyhe agemhustuse
representation to achieve its goake Will see examples of this later in rabbit world in the
case of the predator avoidance behavior.
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5.3.2. Obstacle avoidance

When evaluating an obstacle avoidance scheme, it must be done in the context of a
navigation goal, otherwise the easiest way to avoid obstacles would be to not move at all
(assuming other objects aremoving). A good obstacle avoidance scheme must both
minimize collisions and yet still allow the agent to reach its goal, so the evaluation mea-
sure must take both factors into account. In order to measure the performance of the obsta-
cle avoidance schemes, | convert the berry gathering and collision avoidance criteria to a
common currency—engy. Eating berries raises the egyetevel of the agent, and colli-
sions lower it. Vi can observe the performance of the agent by plotting thgydegel of
the agent over time, as is done in Figure 5-19. Of course, the relative ratesgef ener
increase/decrease is a parameter to the system, and we must account for this in the analy-
Sis.

In the experiments described beJdwompared the performance of three obstacle
avoidance schemes: no avoidance, a reactive avoidance, and almagdaavoidance. In
the no-avoidance scheme, the agent does not do anything special for obstacle avoidance, it
merely moves directly towards the currenggdrberry However we should note that a
certain amount of obstacle avoidance is achieved due to the fact that the agent only moves
towards berries for which it has a line-of-sight. This does not mean, hquleateihe path
to the berry is free of obstacles, as illustrated in Figure 5-21. Since the agent has a non-
zero width, the path towards thegat object may have an obstacle in it, even though there
is a direct line of sight to the target.

line-of-sight direct path

agent

obstacle

Figure 5-21: Direct path contains an obstacle

Note also that this does not mean that the no-avoidance agent must currently be
looking at the target berry. All the agents discussed in this section use three “berry” mark-
ers and have a “neck.” Rath#drthe agent looks in the direction of thegit; then it must
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find the taget in the visual input, otherwise the agent deletes the matkeragents dis-
cussed in this section therefore, delete markers on occluded objects.

The reactive-avoidance agent uses a reactive behavior which is triggered whenever
the agent is “close enough” to something. When looking in the direction of ¢fee, tidne
agent examines the ground line to determine if there are nearby obstacles. If so, the normal
behavior of moving toward the gt is subsumed, and the agent is directed to move
towards the “open space,” i.e., the direction in which the ground linefisiesuifly far
away The reactive-avoidance agent does not retain any memory for the location of obsta-
cles, howeverand therefore cannot know to avoid obstacles which are not in the current
absolute field of view.

The markeravoidance agent implements the obstacle avoidance routine described
in sections 3.3.1.3 and 5.2.2.1, which establishes markers at the edges of the obstacle, and
at an intermediate destination. The agent moves towards the intermediate destination
before proceeding to the target berry.

All three of these agents use markers for berry locations and a “neck,” since these
markers were established to be useful in the previous set of experiments. They all used
three markers, which is actually one more than was established to be useful, but the extra
marker doesit’decrease performance eith&gents that dom’use berry markers perform
more poorly on this obstacle avoidance task, since it incorporates the berry-gathering task.
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Figure 5-22: Agent performances with no penalty for collisions

Representation for Perception/Action Rabbit World™—A Case Study



97

As a basis for comparison, the agents are first evaluated in a environment that has
no penalty for collisions. The emgrtime series for the agents in this environment are
depicted in Figure 5-22. The agents are given an initiaggre#r200 units, and allowed to
run until they either expired, or it becomes clear that they are likely to survive indefinitely

| made several runs of each type; representative runs of each of the three types
(plus the null agent, which stays in one place) are shown in Figure 5-22. The agents using
obstacle avoidance strategies eventually “died” (theirggrierels went to zero), whereas
the enggy level of the no-avoidance agent continued to increase (itgyetemel had
reached 1200 when | stopped the run). These observations are true of all runs made,
including those not shown in the figure. By changing other parameters, e.g., the ener
value of berries, it is possible to construct environments in which the no-avoidance agents
die, and reactive- and marker- avoidance agents survive indefinitely. However, at interest-
ing parameter values, at which some agents survive and some do not, the no-avoidance
agents survive, and the others do not.

This indicates that the obstacle avoidance strategies carry a cost, since they require
the agent to slow down and go around obstacles, rather than simply bduheenadt full
speed as does the no-avoidance agent described above. In order for the obstacle avoidance
strategies to be beneficial, the penalty for collisions must bieisafly high that the
expense of using an obstacle avoidance strategy is justified.

In the following experiment, all parameter values are the same as those in the pre-
vious experiment, except that there is a penalty for collisions which is linear in the for-
ward speed of the agent. The exact value of the penalty is not important, only that it is
sufficiently high to justify the cost associated with avoiding obstacles. In order to deter-
mine the penaltyl simply raise the penalty at regular intervals until there is a qualitative
difference in the relative performances of the agents. Once this point is found (at a penalty
of 200 energy units per units of agent speed), the penalty is fixed for all the runs.

Since this is a strictly harder problem, we expect the performance of all agents to
decrease to some extent as compared to the problem in which there is no penalty for colli-
sions. In accordance with this expectation, all the agents in this experiment eventually
died. Howeverif we simply look at the survival times of the agents, a clear pattern
emerges. Figure 5-23 shows the survival times for five runs of each of the three agents.

None of the five runs of the no-avoidance agent is longer than 4000 time steps. The
same is true of the reactive-avoidance agent. On the other hand, all runs of the marker
avoidance agent survived at least 8000 time steps. One raaxkdance run lasted over
18000 time steps. Clearly the markersed avoidance scheme iteefive, i.e., the mark-
ers have expanded the agent’s effective field of view.
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The reactive avoidance scheme appears to be completdigcinad. We cannot
conclude purely on the basis of this evidence that all reactive strategies fetiure=bn
this problem, only that one person (with no particular interest in constructing a good reac-
tive obstacle avoidance scheme) failed to construct one. Howktrer absolute field of
view does not contain enough information to determine f@ctefe action, then no reac-
tive strategy can be fettive. Consider the situation back in Figure 5-21. As the agent
moves forward on the path to the bethe rock may pass outside the field of viéwt
back end of the agent may still collide with the rock. If the agent can bump into things that
are not in the absolute field of view but have been seen before, i.e., things which an agent
with marker could have in itsfettive field of view then the agent using markers must
out-perform the reactive agent.
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Figure 5-23: Survival times of obstacle avoidance approaches

Rather than looking at just the bottom line as is done in Figure 5-23, we can also
look at the time series of all the runs, which are shown in Figure 5-24. This figure dramat-
ically depicts the superior performance of the magkardance agent (in blue). As a point
of reference, it took about 40 minutes to do a run of 20000 tics, which works out to an
average of about 8.3 tics per second. These numbers are approximate, heneyé¢he
actual speed of the simulation depends on the job mix on the machines, network load, etc.
The simulation usually ran at slightly more than 10 hertz, with occasional pauses of 1 to
20 seconds caused by external load, bringing the average down to the 8.3 hertz mentioned.
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Figure 5-24: Time series of obstacle avoidance performance

The data points in Figure 5-24 are joined by lines, in order to make it easy to see
the expire times of the markavoidance agent, at around 8300, 9000, 14700, 15800, and
18700. Looking closely at this figure, it appears that a run of the rrrke&tance agent
did expire at around 2000 tics, and again around 2700 tics. This agent did not expire, how-
ever although its engy level did get very low (to just 1 emgrunit at about 2700 tics).

Even if we allow that this particular agent just “got lutkihe performances of the

markeravoidance agents are clearly superior to the alternatives. The run in which the
markeravoidance agent nearly expired at 2000 and 2700 tics is interesting in that several
“bad things” happened on this particular run. Figure 5-25 shows the time series of this run

During the early part of the run, the agent performed well. Theggrsowly
decreases as the agent moves between berries, and then sharply increases when the agent
eats a berryThis pattern of alternating slow decrease followed by sharp increase persisted
through the first thousand tics of the run. During the second thousand tics of the run, the
agent runs into some difficultpround 1200 tics, there is a long slow decrease, indicating
that the agent took a long time to find the next bérhen, around 1500 tics, there are
some lage downward jumps in ergr—these correspond to collisions. The marker
avoidance strategy (or more accurately implementation of the markawoidance strat-
egy) is not perfect, and there are still a few collisions. These collisions, combined with
long stretches between berries, result in the agentgy plummeting from around 245
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units at 1000 tics, to 6 units at 2000 tics. The agent then finds a cluster of several berries,
and the engyy briefly recovers to 100 at about 2500 tics. But once this cluster is con-
sumed, the agent again has trouble finding berries, and thygy etemrreases to just one
enegy unit at 2755 tics. Just as the agent is about to expire, hqvitefreds a a lage

cluster of berries, enabling the agent to recover to 220 energy units at around 3500 tics.
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Figure 5-25: An “interesting” run of the marker-avoidance agent

From 3000 to about 8000 tics, the agent alternates between periods of steady
increase and decrease, with the occasional collision. This alternating pattern is observed in
all the runs, with the periods of increase corresponding to the agent consuming all the ber-
ries in a local region, and the periods of decrease corresponding to the agent moving out of
the current region (which is now sparse) to a region with more berries. On this particular
run, between 3000 and 8000 tics, the periods of increase are greater than the periods of
decrease, resulting in a net increase over the long term. This agent achievedyan ener
level of 380 units at around 7800 tics, which is the highest ever achieved by any of the
agents shown depicted Figure 5-24.

Unfortunately for this agent, at 8155 tics a disastrous event cost the agent 210
enepgy units, and it is unable to recovéhe agent located a bergnd moved towards it,
but in order to reach the berry it had to pass between two obstacles, as depicted in Figure
5-26. The agent overestimated the size of the gap between the obstacles, and attempted to
move through the gap. Unfortunatetlye gap is too narrow to safely pass through, and the
agent became “wedged” between the obstacles. In this situation, the simulation semi-ran-
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domly “bounces” the agent between the two obstacles (penalizing the agent for each
bounce), until the agent happens to bounce through to the other side (or dies). In the case
of this agent, the agent eventually bounced through, but it cost a penalty of 210 units. The
marker-avoidance agent that expired at around 9000 tics had a similarly disastrous experi-
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Figure 5-26: A disaster in the making
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Figure 5-27: A representative run of the marker-avoidance agent
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Figure 5-27 shows a more representdtivm of the marker-avoidance agent. This
run displays the typical alternation between steady increase while in clusters of berries,
and steady decrease in the sparse periods between clusters. In the run in Figure 5-27, this
cycle very roughly appears to have a period of 2000 tics. Near the end of run, a sparse
period goes on longer than usual (frod0Q0 to 14000 tics), and the agent eventually
expires. For comparison, Figure 5-28 shows representative runs of the no-avoidance and
reactive-avoidance agents (note the change in scale). In both runs shown in Figure 5-28,
the agents have trouble with collisions (around 1500, 2500, and 2700), that eventually
contribute to an early demise.
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Figure 5-28: Representative runs of no- and reactive- avoidance agents

It appears that the reactive scheme is nigicé¥e, since the agent is required to
look at the obstacle in order to avoid it (i.e., keep the obstacle in the absolute field of
view). Given a camera with a limited, cone-shaped field of vite®& sometimes impossi-
ble to look at the nearby obstacles that are slightly to one side, and also look forward in the
direction of travel toward the @et. The collisions that the reactive-avoidance agent
makes occur when the agent is looking towards tlyetdrerry and cannot see the obsta-
cle nearby and slightly to one side. The absolute field of view did not contain enough
information about the situation to determine an appropriate action.

1. In Figures 5-27 and 5-28, the “representative” runs are the second longest surviving of the five
runs for each agent type.
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The markeibased obstacle avoidance scheme is factefe strategy. The use of a
marker at the edge of the obstacle is an example of expanding the affewtive field of
view. Even when the obstacle passed outside the agsrgblute field of viewthe agent
could still know to avoid it, since the marker kept the obstacle in the agéatsivefield
of view.

5.3.3. Predator avoidance

In evaluating performance of the markased predator avoidance scheme
described in section 5.2.2.2, it isfaitilt to determine a “reactive” alternative to use as a
basis for comparison. Since the goal is toawayfrom the predatorand we have a lim-
ited absolute field of viewit is not possible to look at the predator and look where we are
going (to avoid collisions) simultaneousihurthermore, given the behavior of the preda-
tor, the most déctive strategy for the agent is to position some obstacle between itself and
the predatqrand then move sligiently far away from the predatoin order to do this
effectively the agent should maintain an estimate of the location of the predator even
when the predator is occluded. Reactive agents are incapable of maintaining such an esti-
mate. Only through the use of memory can ttiecéf/e field of view of an agent with
these sensor limitations be expanded to include the predator and obstacle locations in the
presence of occlusion. &\imust therefore compare the performance of the mbdsad
agent with a reactive agent without a predator avoidance strdtegguse there is no
effective reactive predator avoidance strategy.

Next, we must consider the performance metric to use. If we simply look at “mean
time to failure,” there will be a great deal of noise in the measurements, since the mean
time to failure is lagely dependent on whether the predator happens to encounter the
agent at all. Instead, we want to look at whether the agent escapes, given that an encounter
has occurred. In order to measure this, the simulation must be instrumented to determine
when an encounter occurs. Once an encounter begins, it either ends with an escape, or
with the predator catching and eating the agent.

In order to detect “encounters,” the simulation is instrumented to determine
whether an unobstructed straight-line path existed between the predator and the agent, i.e.,
there are no obstacles between the predator and the agent. If such an unobstructed path
exists, this is taken to be the beginning of an encauhter encounter ends when either
the straight-line path becomes obstructedg@rapg, or the agent is caught (aaf. The
predator is omniscient, so it “knows” where the agent is regardless of whether the path is
obstructed.
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The performance of a reactive agent is showrallé'5-1. Since the reactive agent
really has no strategy for escape, the escapes occur by chance. Haewe\agent does
“escape” by chance on occasion, since an occlusion might occur by accident as the agent
continues its pursuit of berries. The simulation is allowed to run until there are 100 total
encounters. If the encounter ended in an escape, the escape is recorded and the simulation
allowed to continue. If the agent is caught, the “eat” of the agent by the predator is
recorded, and both the predator and agent are transported to a random location. The simu-
lation then continued as beforeabile 5-1 shows the results of 5fdient runs of 100
encounters each. The reactive agent escaped by chance on an average of a little more than
30% of the encounters. The average escape to eat ratio is 0.49, or about 1:2.

Escapes Eats Ratio
Run 1 49 51 0.96
Run 2 32 68 0.47
Run 3 29 71 0.41
Run 4 21 79 0.27
Run 5 33 67 0.49
Average 32.8 67.2 0.49

Table 5-1: Chance escape performance

Table 5-2 shows the performance of the maldeeyed predator-avoidance strategy.
The agent escaped on slightly over 70% of the encounters. The average escape to eat ratio
is 2.7, or nearly 3:1.

Escapes Eats Ratio
Run 1 68 32 2.13
Run 2 75 25 3.00
Run 3 74 26 2.85
Run 4 77 23 3.35
Run 5 71 29 2.45
Average 73.0 27.0 2.70

Table 5-2: Marker-based escape performance

Representation for Perception/Action Rabbit World™—A Case Study



105

Clearly, the markeibased strategy is not perfect. In order to successfully escape,
the agent must detect the predatiod an open space to run, then find a hiding place, and
successfully get behind the obstacle that constitutes the hiding place. Any or all of these
steps can and do fail. The predator travels faster than the agent does when the agent is col-
lecting berries; only when the predator is detected does the agent accelerate to slightly
faster than the predatdf the agent does not detect the preddtwr predator will easily
overtake the agent and catch it. The agent can fail to detect the predator because it never
looks in the direction of the predator as it approaches, or because the predator detection
visual process fails to find the predator in the image even when it does look. The predator
must be quite close for the predator detection visual process to work.

If the predator comes upon the agent when the agent is in a,dbmagent may
not find an open space in which to run. Even if an open space is found, the agent may need
to turn around almost 180 degrees in order to run towards the open space, which usually
takes long enough that the predator catches the agent before the turn operation is com-
plete. If a hiding place is found, then the agent may bump into an obstacle on its way
towards the hiding place. This carieetively slow the agent down to the point that the
predator catches it.
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Figure 5-29: Escape ratios of the two agents
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Figure 5-29 compares the performances of the reactive escape-by-chance and the
markerbased escape strategies. Although the variance of the raden agent’s perfor-
mance is high, the marker-based strategy is clearly effective in comparison with chance.

As the agents are performing the escape task, | observed the performance from an
overhead viewpoint, as in Figures 5-7 through 5-14. From this vantage point, the escape
task appears trivially easy, since there igatively an unlimited field of viewand there is
no occlusion. If the agent had access to this viewpoint, there would be no possibility of the
predator “sneaking up” on the agent, and the agent would haveficaltlf in locating
and moving to a hiding place. It is only when the agektowledge is limited due to the
first person viewpoint that the task is interesting. | controlled the agent myself using the
first person viewpoint, and found the predator avoidance task to be gitetdidnd usu-
ally never saw the predator coming before being caught.

The predator avoidance task given the first-person viewpoint therefore exemplifies
the importance of considering thdesftive field of view when the absolute field of view is
inadequate to perform the task. Given perfect information, the task is easy; unforfunately
perfect information is rarely available. The use of makdemed memory structures
increase the &ctive field of view so that the agent has enough information about the cur-
rent situation to determine an effective action.

5.4. A physical robot agent

In order to further demonstrate the viability of the matk@sed approach to
expanding the éfctive field of view in physical environments, we have implemented this
approach on a physical robot [10]. The robdd'sk is to detect and navigate to a goal loca-
tion, circumventing obstacles as necess@ing environment is our laboratpey cluttered
room in daily use, with some cones on the floor—the goal location is a striped cone. Fig-
ure 5-30 shows two images acquired from the camera on the robot.

If there is a clear path from the agent to the goal (as in the image on the right in
Figure 5-30) the agent can proceed directly to it. If the path is blocked (as in the image on
the left in Figure 5-30) the agent must go around the obstacle. The agent searches for the
goal and places a marker on it. If necessianyay also mark any obstacles in the direct
path to the goal location. In a tight loop, the agent computes the current position of the
markers, and based on their location, it decides what action to take.

Our robot, Bruce, is a Rugaitior based robot [35] (MC68HQAL microcontrol-
ler) whose sensors consist of a single, front-mounted, black and white camera, one axle-
mounted shaft encoder for each wheel, and a “bump skirt” to detect collisions (see Figure
5-31). The camera is mounted on a pan/tilt “neck,” though in the trials described here, the
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robot only looked directly to the front. Host communication takes place via thin cable or

wireless transmission of both video and control signals.

Figure 5-30: The physical agent’s environment

Figure 5-31: The phy

sical robot
The vision system consists of a gray-scale camera connected to a Datacube
MV200 image processor and a Sparc Brk¥tation. The MV200 captures a 512x512

image, sub-samples it to 128x128, smooths this image with a 3x3 Gaussian kernel, and
then convolves it with an edge magnitude operdtioe resultant image is thresholded and
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sent to the Sparcstation for connected component analysis, which eliminates very small
connected components from the image, since they are assumed to be noise (or dirt on the
carpet). A modified flood fill (similar to that used by Horswill [33]) of this image from the
bottom produces thground line which in this case separates carpet and non-carpet

5.4.1. Goal detection

Points at which the ground line “jumps” (i.e., makegéacthanges in height in the
image when traversing the ground line from left to right) indicate the edges of objects:
downward jumps being left edges, and upward jumps being right edges (see Figure 5-32).
Left/right pairs are matched to obtain potential goal-object locations in the image, slightly
above the ground line and between the matching pairs of jumps. The real-world location
of the object is computed using height of the ground line in the image to compute depth.

goal
ground line

direct path

Figure 5-32: Detecting obstacles to the goal

The agens goal is a horizontally striped conen find it, the vision system sub-
samples the 512x512 square image obtained above to 256x256 and convolves the result to
compute the vertical derivative image. The absolute value of the derivative image is sub-
sampled again to 64x64, convolved with a box mask to smear it, and then thresholded to
create thegoal detection imageThe potential goal-object locations found by processing
the ground line as described above are then checked for their response at the correspond-
ing locations in goal detection image. If the response is high (i.e., there are a lot of hori-
zontal lines at that location), the location is marked as a goal.

5.4.2. Obstacle detection

Finding obstacles is accomplished by determining whether the direct path to the
goal, as projected into the image, intersects the ground line (see Figure 5-32). The inter-
section indicates an obstacle along the path to the goal. The direct path is determined from
the given width of the robot and the assumed horizontal orientation of the ground plane. If
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an obstacle is found, it is marked as an obstacle to the goal. This is a case of a dependent
marker since this obstacle is dependent on the detected goal and its direct path. If the goal
were to be deleted for any reason, the dependent obstacle marker would be deleted as well.
If an obstacle is found, the agent must navigate around it. This is done by placing

an intermediate-destination marker at a fixed position relative to the obstacle. This marker
is dependent on the obstacle marker instantiated above. Its location is determined based on
the location of the obstacle and the width of the robot. It is placed outside the direct path to
the goal, and does not correspond directly to any image feature.

5.4.3. Marker maintenance

As discussed in section 3.1.1, the positions of marked objects are stored in an ego-
centric polar coordinate system. The system knows the width of its field of view and
which markers it ought to be able to see. Nearest-neighbor matching via a stable-marriage
algorithm is used to determine correspondence between “remembered” (marked) objects
and the currently visible objects. Marked objects which lie outside the aded of
view are updated to account for ego-motion. The ego-motion is computed based on read-
ings from shaft encoders on the robot’s wheels.

5.4.4. Action selection

What action to take an any given time is determined by the state of the markers
(i.e. their position). If there is an allocated goal maraed no obstacle markers, the path
to the goal has been determined to be ckmathe agent proceeds directfyan intermedi-
ate-destination marker is associated with the goal, the direct path to that goal is obstructed,
and the agent must go to the intermediate destination instead. Once the intermediate-desti-
nation marker is reached, both it and the obstacle marker can be deallocated, leaving the
goal as the only marker. The goal can then be pursued directly.

One of the important behaviors validated through our implementation of a marker
based system to control an actual robot is the maintenance of a primary goal. In particular
our robot system has, without operator intervention, been able to detect a goal object,
identify an obstacle along the path to that goal, and allocate an intermediate-destination
marker Then, when proceeding towards the intermediate-destination, the robot can have
the goal and obstacle both pass outside of the field of view of thesrahatera. The use
of the marker representation enables the robot to maintain the primary goal (which is out-
side the sensory input), while still reacting to therent sensory input coming from the
camera, and to finally attain the goal location.

Representation for Perception/Action Rabbit World™—A Case Study



Chapter VI: Future Work

This chapter discusses possibilities for extending or augmenting the work done for
this dissertation. The concept of théeefive field of view and the use of marker based-
representations can be augmented by using other representations. A means of constructing
plans compatible with agents with limited information is also needed. Another avenue for
investigation is to search for possible biological implementations of extensions to the
effective field of view| will close this chapter with some speculation as to how this work
in spatial representations has consequences for artificial intelligence in general.

6.1. Relationship to other spatial representations

The marketbased representations developed in this dissertation are not meant to
replace other forms of representation of the environment, but rather to augment those
other forms. For lge-scale navigation, it is useful to have a more traditional topological
map representation. In a topological representation, one navigates from node-to-node in
order to reach a goal. Path planning in thgdascale space may be done independent of
any marketbased representations, but once a path is chosen indkestaale, navigation
within a node or edge in the topological map should be done via marker-based representa-
tions. In fact, at the level of actually interacting with objects in the environment, one must
use an egocentric representation, since the egocentric representation contains the informa-
tion needed by the fefctors for competent action. Markieased representations are where
the “rubber meets the road” so to speak. Large-scale maps and local-space representations
combine to provide more information (and enable more competent behavior) than either
type of representation alone.

Another type of representation concerns the spatial relationships of external
objects. Rather than have the agent represent all objects in the local space egogentrically
the agent can represent the locations of some objects egocentaicdllyther objects can
be located relative to the egocentrically represented objects [6]. For example, consider an
example in which there are two important objects in the environment, a lamp and a table,
and the lamp is on the table. The agent may represent the location of the table, and then
simply remember that the lamp is on the table. This results in nfmiemfalgorithms for
updating the locations of the objects as the agent moves. Rather than represent and trans-
form the coordinates of both objects independemthty the table coordinates need be
transformed. The coordinates of the lamp (which are “table-centric”) remain unchanged.

An additional advantage of representing the spatial relationships of external
objects is that the external spatial representations are more robust to error than using
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purely egocentric representations. Imagine that some small percentage error is incurred
during each ego-motion inverting transformation. If the lamp and table locations are repre-
sented independently and egocentrigatlynay be the case that as the agent moves, accu-
mulated error of the transformations needed to compensate for ego-motion causes the
represented lamp location to “drift” under the table. This cannot happen if we explicitly
represent the fact that the lamp is on top of the talaletiy” [68] experiments with visual
tracking of multiple objects indicate that representation of the spatial relationships of the
tracked objects are critical to tracking performance in humans; it is much easier to track
multiple objects if the spatial relationships of those objects are do not change. More evi-
dence for the importance of representing and considering the spatial relationships of exter-
nal objects is provided by Barnard and Thompson [7], who constructed a robust system
for solving correspondence problem by choosing corresponding points such that the spa-
tial relationships were best maintained across the two images.

Note that the use of external spatial relationships is merely another (perhaps in
some cases more efficient and robust) means of retaining the information within the effec-
tive field of view than direct egocentric coordinates. Note also that when the agent actu-
ally goes to interact with an object (to pick up the lamp, for example) the object’s location
must be represented in egocentric coordinates.

6.2. On-line planning

When constructing a plan for action in the real world, it hardly makes sense to plan
in minute detail very far in advance, since the information needed for such a detailed plan
is usually either not available, or subject to change. Howéwaiay be possible to con-
struct a high-level plan in advance based on relatively stable information, and then only
fill in the details as necessafor example, consider the case for planning a trip from my
home in Charlottesville to a hotel in Miami. It ismiecessary to plan my route from the
airport in Miami to the hotel until | get to the airport. | only need to make sure | get to
Miami in time, and have enough money to rent alozan make a high-level plan as illus-
trated in Figure 6-1a.

Once I've made my high-level plan, | can fill in the details for getting from home
to Dulles airport, as in Figure 6-1b. Moregveican startexecutingmy plan to get to
Dulles before | even make the plan to get from the Miami airport to my hotel. Starting to
execute the plan before it is complete is what | mean by “on-line planning.” Starting with
a high-level plan and adding detail is similar to the approach used by Saserdotr’
ABSTRIPS [53], except that ABSTRIPS constructed the entire plan before executing. On-
line planning is compatible with agents having incomplete information. Notazmy
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start executing my plan to get to Dulles before making a plan to get to the hotel from the
Miami airport, Imust since | dort have enough information yet to make the latter plan. |
can get a map of Miami when | get to the airport, and start planning the last stage of the
trip then. Future research is needed determine the viability of this approach in general.
Combined with the use of techniques employed by partial information planners, a power-
ful perception/action system may be realized.

Dulles airport Dulles airport

home home

Miami airport Miami airport

hotel hotel

(a) (b)
Figure 6-1: An on-line plan to get to my hotel

At each level of the abstraction hierarchgme (small) number of “control points”
are chosen; the example above uses two control points corresponding to the airports. As
the planner descends each level of the hieraittonly add control points between the
start state the first control point. Execution can begin as soon as the earliest part of the plan
consists of executable actions.

The significance of on-line planning to markersed memory systems is that the
memory needed (an more importantlye maintenance of that memory so that is reflects
the state of the world) is limited. If we assume that the number of control points selected at
each level in the hierarchy is a small constant, and further assume that the control points
are selected such that they are “evenly distributed” along the length of the plan, then the
total number of control points in existence at any given time is logarithmic in the plan
length (control points are deleted after the sub-goals they represent are achieved). This
may result in a small enough amount of memory to allow the agent to use its sensors to
maintain this memory with a high degree of certaioging marketike structures. The
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markers representing the control points are all dependent markers, each dependent on the
goal it subserves which is one level up in the hierarchthe example above, the airport
control points are dependent on the goal of getting to the hotel in Miami. At the next lower
level in the hierarchy, the control points on the path from Charlottesville to Dulles Airport
are dependent on the goal of getting to Dulles, (which is in turn dependent on the goal of
getting to the hotel in Miami). If the goal of getting to Miami is abandoned, then all of the
dependent control points are deleted as well.

6.3. Biological implementation

The marketbased representations used by the artificial agent constructed for this
research were implemented via memory locations containing the egocentric coordinates of
the object, and those coordinates were updated as the agent or object moved. Such an
implementation is not biologically plausible, so one wonders how these egocentric loca-
tions can be stored in biological systems.

For objects inside the absolute field of view of the eyes, there is a retinotopic rep-
resentation available, in which there are cells corresponding roughly to each point in the
visual field. One would expect a similar solution, i.e., a coding by location rather than a
coding by value, for the extended field of vjelbeit at a lower resolution than that used
in the retina (certainly lower resolution than the fovea). Attheave and Farrar’s [5] subjects
described their experience as seeing objects out of “eyes in the back of the head,” which
suggests that the implementation of the representations used for objects outside the field of
view is similar to that used for objects inside the field of vigéwng these lines, Attneave
and Farrar postulated the existence of a cycloramic, 360 degree field of view to account
for their data.

Some of Attneave and Farrar’s subjects also reported a kinesthetic experience, i.e.,
they “felt” where the objects were, and | suggest that this is the most illuminating descrip-
tion of the experience. If we are to encode locations in a biologically plausible magner
need a roughly sphericalganization for a group of “direction cells.”a\have a ready-
made group of such cells in the form of skin receptors, or at least in the set of neurons a
few layers removed from the skin receptors. | suggest that some portion of the mechanism
used to determine where an object is touching the skin is co-opted to determine where an
object is located when it is not touching the skin. This (admittedly speculative) theory
could be verified via cell recordings which indicate similar neural activity when an object
is near an animal as when it is actually touching the animal.
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6.4. Navigation: the universal problem?

One wonders whether the problem of getting around in the physical world is a nar-
row sub-problem of artificial intelligence, or whether developments in robot navigation
have implications for general intelligence. If we look to human evolution for an example
of the creation of an intelligence, we find evidence for the application of navigation to
general intelligence.

Before humans evolved to the point of being capable of solving abstract problems,
creatures (including humans) needed to navigate their environments. Mechanisms for nav-
igating the environment evolved into mechanisms for general problem solving. Humans
generally appeal to physical models to solve abstract problems, and use a notion of for-
ward progress to guide the search for a solutioa.spkak of “steps” in a proof, even
though no one is really going anywhere. An artificial evolution might follow the same
lines as natural evolution by constructing the capability to deal with the physical environ-
ment, and then evolving the techniques used into general problem solving methods. The
pure reactive approach, by rejecting representation, is insufficient for general intelligence.
By reintroducing and redefining the role of representation to the model of an agent, this
dissertation opens the possibility that the mechanisms developed here are applicable to
general intelligence.

Representation for Perception/Action Future Work



Chapter VII: Conclusion

There have been two primary paradigms used to determine actions for mobile
robots: classical and reactive planning. In order to build mobile robots which perform use-
ful tasks in the physical world, we must capitalize on the strengths and compensate for the
weaknesses of both approaches. Until nibvhas been difcult to reconcile the para-
digms’ treatment of perception, representation, and action.

The classical approach, by divorcing perception from action, produces systems
incapable of déctive interaction with the real world. The nature of the real world and the
nature of sensing dictate that an task-oriented approach be followed in the design of per-
ception-action systems. Perception and action are so fundamentally intertwined that they
must be studied in conjunction with one another.

Reactive planning, while being direct perception-based, abandons the machinery
needed to analyze the task components and the situation, severely limiting the range of
tasks that reactive agents can perform. The actions an agent performs in the world are
often suficiently complex that the agent must consider alternatives, consider the interac-
tions of tasks, and remember relevant events and objects that may not be currently sensed.

7.1. The effective field of view

The concept of aeffective field of viewiorms a foundation for building systems
that combine the best features of the classical and reactive approachesediive éield
of view of a sensor is defined to be the information extracted from the sensor that is useful.
The agent decides upon an action at each instant, based on the information in the effective
fields of view of its sensors. The primary functions of the perception, representation, and
action systems can be thought of as expanding these effective fields of view.

The perception system expands tHedive field of view of a sensor by extracting
additional information, i.eusefulpredicates, regarding the environment. Which predicates
are useful depends on the task to be performed. At any given instant, the sensor can only
extractsensor pedicateswithin its absolute field of viewAdditional information, i.e.
inferred pedicates can be deduced from the sensor predicates. The agent can also be
endowed with some amount of useful informatgopriori. Thea priori information is a
set of facts about the world that can be hard-wired into the agent; e.g., an inference rule
encodes a fact about the real world. In order to deal with the realities of the physical world
and perception of it, all of the predicates must haeréaintiesassociated with them, and
some means of propagation of these certainties must be employed.
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The memory system may retain some representation of useful predicates over
time. The use of representation can expand tieetefe field of view of a sensor beyond
its absolute field of view by endowing predicates with a temporal extent. These predicates
and their associated certainties must be updated to reflect change over time. When the cer-
tainty of a predicate falls didgiently low, it is no longer useful. If the predicate involves
an important aspect of the task, then it must be re-sensed. Prefémalntyormation is re-
sensed before the predicate ceases to be useful. The rate at which the predicate must be re-
sensed to retain its usefulness igliity cycle

The total information available to the action system is the union of the information
in the efective fields of view of the sensors, plus angriori information, plus the infor-
mation embedded in any plans constructed by the agent. The action system maps this
information to an action that is executed by tHeatbrs. The action system can construct
plans that use information to achieve the agegals; the existence of a plan determines
which predicates artheoeetically useful The theoretically useful predicates are those
which would be useful if the perception system were to extract them. The action system
can expand the ffctive field of view by selecting actions that control the sensors, e.g., to
change the camera orientation. These actions can expand the sefsciigedield of
view to encompass the environment containing the theoretically useful predicates, thereby
converting them intpractically usefulpredicates.

7.2. Task-oriented design

The construction of an agent with itdesftive field of view is most easily thought
of in terms of a single task. But any agent in a reasonably complex environment will have
multiple tasks to accomplish, and there may be resource conflicts among the tasks which
must be resolved. By ganizing the components that the agent uses to accomplish a given
task intotask-agenciesthese resource conflicts can be recognized and resolved in either
an adversarial or a cooperative man@amplex tasks can begamized into a set of sub-
tasks with associated sub-task-agencies. Some subset of the task- and sub-task- agencies
areactiveat any given moment, depending on the current situation and goals.

7.3. Marker-based memory systems

The important case in which predicates are obtained through expaheed/ef
fields of view was demonstrated through the use of mdn&sed representations. Markers
represent predicates regarding the location of task-relevant objects in local space. They
can be stored and maintained when the objects they mark are outside of the absolute field
of view, which gives the marker a temporal extent and expandsféutiet field of view.
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Since markers are stored in an egocentric coordinate system, their maintenance procedure
must compensate for ego-motion. If the marked object is in motion and the agent has a
model of that motion, the marker maintenance procedure can account for this as well. The
certainty of the information stored in the marker may deteriorate over time, so the marker
has a duty cycle which dictates when to re-sense the information. The information
acquired via perception overrides that in memseiyce the certainty of the new informa-

tion is greater than that of the information in memory.

Different types of markers can be distinguished based on their relationship to a
task and the task’agencyAt any given time, some task-agencies may be active or inac-
tive, depending on the current situation and goals. The instantiation of a marker may cause
a task-agency or sub-task-agency that was previously inactive to become active. Such a
marker from the perspective of the activated task-ageiscgnactivatingmarker Once
the task-agency becomes active, it may as a part of its activity perform perceptual routines
which result in the production of some other markerch a markefrom the perspective
of the active task-agency which instantiated it, iseive-onlymarker.

Some markers are placed on objects which may constitute a destination considered
to be a primary goal; such markers are referred poiagry-goalmarkers. Other markers
may be placed on objects that subserve the primary goal, such as an intermediate destina-
tion en-route to a primary destination. These markers are cfgshdenmarkers, since
they only are used to help achieve the primary goal. If the primary goal is abandoned, so is
are the subservient intermediate goals. The corresponding markers are treated in kind; if
the primary goal marker is deleted, so are all the related dependent markers.

It is sometimes useful to place markers on objects for which direct perceptual evi-
dence is weak or even non-existent. If the perceptual system detects some evidence for the
existence of an object, but that evidence is weak, the agent may [éaatavemarker
on the supposed location of the object. The tentative marker can be used to direct the col-
lection of further data to sfifiently raise the certainty that the object actually exists in the
environment so that the marker is upgraded to a regular marker.

There may be no perceptual evidence at all for the existence of an object, but some
higher level process (in the action system) may hypothesize the existence of an object, and
instantiate dypothesized-objecharker which again, can be used to direct the collection
of the evidence needed to instantiate a regular markermain difference between tenta-
tive markers and hypothesized-object markers is whether the “evidence” originates in the
perceptual system or the action system.

Quantitatively, tentative and hypothesized-object markers are simply markers with
low certainty values. Once the certainty isfisidntly high, howevera qualitativediffer-
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ence between these markers and regular markers is realized. Regular markers are those
which the agent treats as containing true predicates about the world, and on which actions
in direct pursuit of goals can be baseentitive and hypothesized-object markers are only
used as a basis for gathering more information in order to increase the marker’s certainty.

7.4. Demonstration of applicability and viability

This dissertation developed the concepts of tactve field of viewtask-oriented
design, and markdyased memory systems, and then applied these concepts to a number
of common tasks. A broad range of tasks was discussed, and several common sub-tasks
were abstracted from these various specific taskéurther pursue these concepts, an in-
depth example, Rabbit World™, was developed and implemented.

The task-oriented design methodology was applied to the construction of an agent
in Rabbit World, a dynamic, three-dimensional environment in which the perceptual input
consists exclusively of a real-time stream of images of the environment from thes agent’
viewpoint. The agent’s task is to collect food while avoiding obstacles and a predator. The
perception system was designed an built to deal with real-world problems such as noisy
input, occlusion, and a limited absolute field of vidlwe agent dealt with these problems
by using markers to retain information over time and expand the effective field of view.

Tentative markers were used to screen out noise by requiring a percept to be stable
over a number of images before it was upgraded to a regular misikeeers retained
information that passed out of the absolute field of view of the sensor in order to give the
agent a more complete picture of the local space (i.e., expandidtigveffield of view) to
include objects behind the sensor and occluded objects. Markers were also used to lead the
agent through multi-step plans for avoiding obstacles and evading a prbtiatars rep-
resented intermediate steps in the plan, such as dependent intermediate-destination mark-
ers used to circumnavigate obstacles.

An important observation is that although a few markers can expandebtvef
field of view the use of more markers than necessary does not expaniethigefield of
view purely by virtue of retaining more information in memadtys often more dicient
and more accurate to sense or re-sense the information as needed, rather than maintain a
representation in memory.

A relatively complex plan was implemented to evade predators—a plan was exe-
cuted entirely on the basis of the information embodied by the several markers, e.g., mark-
ers for the predatpfor the place to look for room to run, for the open space to run, for the
obstacle to hide behind, for the location behind the obstacle where the agent will be hid-
den, and for the intermediate destination on the path to the hiding ljphgodieit sequenc-
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ing moved the plan from one step to the next, based on the situation implied by the marker
configuration. The action taken at each instant based on the markers is likely to be appro-
priate to the current situation in the world, since the perceptual system works to ensure
that the state of the markers is firmly grounded in the state of the environment.

The expanded fdctive field of view resulting from marker use measurably
improved the performance of the agent over a purely reactive version, i.e. a memoryless
version in which the effective field of view was equal to the absolute field of view. Perfor-
mance improvements were achieved in all aspects of the sigenfibrmance: food collec-
tion, obstacle avoidance, and predator avoidance. Firtallyurther demonstrate the
viability of the approach in real robots, a markased system was implemented which
enabled a physical robot to avoid obstacles and reach a destination, even if both the obsta-
cle and destination pass outside of the absolute field of view [10].

The thesis of this dissertation, stated brjafiythatrepresentation can expand the
effective field of viewAs developed in this dissertation, théefive field of view is more
than just a perceptual concept; the concdpttd and is & cted by all of an agestmod-
ules: memory and action as well as perceptionexdpand the &ctive field of view is to
enable an agent to perform more tasks, mdextfely. One of the contributions of this
dissertation is the establishment and development of the concept déetiveffield of
view and its associated concepts (potential and theoretical usefulness, duty cycles, etc.).
These concepts enabled the succinct expression of such a consequential thesis statement.
More importantly expansion of the fefctive field of view is a criterion against which
research in perception, representation, and action must be evaluated. Certainly all artificial
perception research must be accompanied bygamrent as to how the research expands
the efective field of view of some agent with respect to some task, in order for the
research to be deemed relevant.

My research in local-space representation is accompanied by suchuameat.

Use of local-spaceepresentations is shown to expartde effective field of vieaf an

agent, thereby increasing the capabilities of the agent beyond those of agents built using
the reactive approach. The contribution of this research in local-space representations is
not only that the ééctive field of view can be expanded in this wayt more importantly

this research demonstrates exabtlyvan agent establishes, maintains, and uses these rep-
resentations to expand thdesfive field of view The techniques developed are applicable

any agent using sensors to operate in a dynamic three-dimensional environment, i.e., any
mobile robot. The use of these techniques enable an agent to perform tasks unattainable by
agents using a pure reactive or a pure classical approach to interaction with the world.
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