A Survey of Automatic Vulnerability Detection and Repair Systems in Software

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia « Charlottesville, Virginia

In Partial Fulfillment of the Requirements of the Degree
Bachelor of Science, School of Engineering

By

Kevin Melloy
Fall 2020

On my honor as a University Student, | have neither given nor received
unauthorized aid on this assignment as defined by the Honor Guidelines

for Thesis-Related Assignments

Signature 7%/ W/@/ J o Date | 2/1/20

Kevin Melloy

Approved /V) W M Date 12/13/20

Nathan Brunelle, Department of Computer Science

Introduction

In cybersecurity, there exist many different types and varieties of vulnerabilities within
software that can be exploited, allowing for a multitude of malicious actions. These
vulnerabilities can have a wide range of consequences, ranging from mild inconveniences to
major security threats. Some of the most significant of these consequences can often lead to
massive financial loss or theft of personal information. Estimates claim that as many as 4.1
billion records were exposed in just under 4,000 cyber attacks in the first half of 2019
(RiskBased). With a global average cost of $3.92 million per data breach as of 2019 (Security
Intelligence), the threat that software vulnerabilities pose is incredibly apparent.

As software is becoming more prevalent in society and the cost of cyber attacks is only
increasing--the global average cost per data breach reported in 2019 had grown by 12% since
2014 (Security Intelligence)--it is now more important than ever to develop methods of
detection, prevention, and repair of software vulnerabilities. To help combat the threat of
software vulnerabilities, DARPA held a competition from 2014 to 2016 titled the Cyber Grand
Challenge. The intention of the challenge was to develop automatic software defense systems
that were capable of detecting and repairing vulnerabilities within software (darpa.mil). DARPA
awarded the winner of the challenge $2 million, a testament to the significance of the topic of
software vulnerabilities.

In this paper, we showcase several different papers proposing software vulnerability
detection systems, some of which made an appearance at DARPA'’s Cyber Grand Challenge,
as well as some general topics within cybersecurity and software vulnerability detection. For
each of the systems discussed, we highlight its primary goal or goals, the approach used to
reach those goals, as well as its weaknesses and strengths, with the ultimate intention of

illustrating the importance and effectiveness of automatic vulnerability detection.

As the systems and topics discussed within this paper each deal with specific
vulnerabilities or have varying approaches to vulnerability detection, it is helpful to provide brief
descriptions of some of the software vulnerabilities that will be discussed.

e Buffer Overflows and Injected Code
o These attacks deal with inputting more data than is expected by a given program.
In most cases, a buffer--a data structure used to accept a user’s input--has a
specific number of bytes it is expecting to receive. If a user enters more data than
is expected, that extra data can overwrite certain values that are located past the
buffer in memory. This allows malicious users to inject their own code to be
executed, change return addresses from functions, etc.
e Invalid Memory Writes
o Typically systems allocate a specific amount of memory for programs to use
while running, and any attempts to access memory outside of this allocation are
denied. This is due to the fact that operating systems will typically have important
data stored at some of these inaccessible memory locations. If a user were able
to access any memory location from a given program, he or she would be able to
alter the functionality of the operating system.
e Zero-Day Attacks
o A zero-day vulnerability is one that is unknown by software developers until the
software’s release. This can be any kind of vulnerability, and is especially
dangerous due to it being exploitable without the knowledge of the developers.
e Function Boundary Errors
o Function boundary errors deal with the beginning and ending memory locations
of functions, as well as memory located in between functions. For example, if a
wide enough gap of memory exists between functions, it would be possible to

hide malicious code within that gap.

e Code Disguised as Data
o Within most executables, data is stored in specific sections of the program,
typically at the beginning of the file. As data and assembly instructions are both
represented as bytes, it is possible to conceal malicious instructions within the
same sections as data, hiding them from disassemblers.
To help provide context for the majority of the systems in this paper, the first two papers
that are discussed provide an example of automatic detection and support for trusting of

automated systems, respectively.

Disguising Malicious Code as Data

As mentioned above, disguising code as data is one of the many ways that malicious
code can find its way into software. This is an area in which the advantages of automation can
be seen quite clearly. The technique involves hiding x86 assembler instructions within areas of
a file not revealed by a disassembler. Thus, manual detection of such code would require
access to the entirety of a file’s contents--disassembling the program would not be
sufficient--followed by analysis of each byte to ensure that no malicious instructions were
present. This would be a tedious process to say the least. Each individual byte would have to be
compared to a list of bytes that indicate an assembly instruction. If any byte were to indicate an
instruction, the string of bytes would then have to be compared to the length of the instruction.
Finally, if the length of that string of bytes matched the length of the instruction in question, each
byte within that string would have to be analyzed to determine if the instruction did indeed make
sense. To avoid this process needing to be a manual one, Wartell et al. present their algorithm
for the automatic detection of code within data in their paper, Differentiating Code From Data in
x86 Binaries.

Summary

The algorithm that the authors’ system uses combines heuristics used in expert reverse
engineering and a language model that captures correlations between byte sequences. To start,
the executable on which the system is being run is treated as a string and divided into
segments. Each segment is then tagged as either more likely to be code or data, using the
authors’ algorithm to determine which is more probable. A difficulty with this task is ambiguities.
A given string of bytes could have multiple different interpretations and requires an
understanding of its surrounding context to determine which meaning is correct. The algorithm
must also deal properly with padding bytes.

The tagging algorithm is comprised of two components: an instruction reference array
and a utility function. The reference array holds information on the length of x86 instructions
given an initial byte. The utility function is what determines the likelihood of a byte sequence
being code, using a model built from pre-tagged x86 binaries to estimate the probability.

After the tagging algorithm estimates each string of bytes to be either code or data, each
segment must be reclassified using the aforementioned language model and heuristics adapted
from expert, manual disassembly. This step is necessary as the tagging algorithm is imperfect
and may mark segments incorrectly.

Wartell et al. tested this process on 11 programs. For each program, the other 10 were
used to build the language model. The authors summed all of the false positives (data tagged
as code) and false negatives (code tagged as data) together, converted this sum to a
percentage and subtracted it out to give the percentage of correct tags. Using this formula, the
authors showed an accuracy of 100% of 6 out of the 11 executables, with near-perfect accuracy
on the rest. The classification accuracy was also shown to be near-perfect, with 100% accuracy
on 5 out of 11 executables.

Limitations
As mentioned before, some segments of bytes are ambiguous. The authors provide an

example of this: a data segment starting with an initial byte that would indicate an assembly

instruction and being of a length that matches that instruction’s length in the reference array.
This would be incorrectly tagged as code. To attempt to get around this, the heuristics drawn
from manual disassembly are used. However, manual disassembly is obviously imperfect, thus
this is an incomplete workaround.

The algorithm is also unclear on how to tag padding bytes. Such bytes are legitimate
code instructions, but could also be classified as data. The authors claim that classification as
code would be preferable.

Additionally, while the authors’ algorithm does seem to be effective when looking at the
results of the authors’ experiments, 11 executables seems too small a number to adequately

prove the usefulness of this system.

Trust in Automated Software Repair

As a large goal of this paper is showcasing the automation aspect of software
vulnerability detection systems, it is important to discuss the trustworthiness of automated
software analysis. It is not difficult to see the necessity of automation within the future of
cybersecurity, however it is also necessary to ensure that it is accurate and trustworthy. In other
words, automated software vulnerability detection systems will not be useful if they are not
trusted, even if they are accurate. This is precisely the topic covered by Ryan et al. in the
following paper, Trust in Automated Software Repair.
Summary

To study how trustworthiness of automated and manual software repairs compare, Ryan
et al. conducted two studies. The first study was performed with software developer students,
while the second was performed with software developer experts. In each study, the participants
were shown five different pieces of code, both before and after being repaired by an automated
repair program. The participants were then asked to rate the trustworthiness of the repair and

whether or not they would endorse the use of the repair. In both studies, half of the participants

were informed that the source of the repairs was an automated repair program, while the other
half was made to believe that the repairs were written by a human.

This difference between the believed source of the repairs had a significant effect on the
results of the studies. In both cases, the participants showed that trust in the *human” written
repairs declined severely between the initial and final assessments while trust in the automated
repair program did not significantly change. Ryan et al. speculate that this may be due to the
unorthodox methods used by the automated repair program. Repairs made using
unconventional approaches by a human would inhibit trustworthiness from another human,
while those same approaches may seem perfectly normal when coming from a machine. Thus,
those in the study that believed that the unorthodox methods came from manual repair stated
that they trusted the repair less. It is important to note that each of the repairs shown were
equally as effective as each of the rest.

The results from the two studies led Ryan et al. to the following conclusion: trust in
automated processes is determined through different factors than in human-to-human trust.
Specifically, trust in automated programs is primarily determined by the performance of the
program, while trust in humans incorporates other non-performance-based factors, such as
methods used and perceptions of efficiency. The authors cite previous research to back this
conclusion.

Limitations/Future Work

As with any study, the studies performed could have benefitted from a larger, or perhaps
simply more diverse, sample size. Additionally, some of the tools used to receive input from the
participants were very black-and-white, usually of the form of a question such as “Would you
endorse this or not?”, when perhaps a more expressive response would have allowed for more

information.

As mentioned earlier, Ryan et al. stress how important this research of trust in
automated repairs is. The authors hope that this paper will be an impetus for future work in the

study of human biases with regards to automation in software development.

Automated Detection and Repair Systems
In this next section, we discuss some of the systems that deal with automated detection
and repair of software vulnerabilities. The methods used for detection vary between several
different techniques, with static analysis, dynamic analysis, and symbolic execution being
among them. The repair aspect of these systems also differs, with some systems simply
invalidating inputs that would trigger program faults while other systems generate software

patches.

Automatically Patching Errors in Deployed Software

The first of the systems in this section is named ClearView. It is a system designed to
automatically detect and patch errors in Windows x86 binaries. The ClearView system can be
used to defend against attacks or provide immunity against security risks. It achieves this
provision of defense and immunity by identifying aspects, called invariants, of how a given
executable would run normally, detecting when an error occurs, identifying violations of
established invariants, and generating potential repair patches before selecting the most
successful patch. ClearView is able to do this patching of errors without requiring the application
to restart. Perkins et al. describe this system in their paper, Automatically Patching Errors in
Deployed Software.
Summary

In order to properly identify an application’s invariants, ClearView observes the
application when running normally, creating a collection of important parts of the execution such

as memory locations and register values. Multiple runs of the application can be executed in

order to improve ClearView’s collection of these invariants. ClearView labels each execution of
an application as a success or failure depending on its failure detection. This failure detection
currently (as of the writing of the paper) uses two monitors: Heap Guard and Determina Memory
Firewall. HeapGuard is used to detect out-of-bounds memory writes and Determina Memory
Firewall detects illegal transfers of control flow. When a failure is detected, the monitor provides
the location within the binary of the failure.

To fix a violated invariant, ClearView generates many candidate repair patches, restoring
register values and memory locations or changing the control flow based on previously
observed invariants. Each of these candidate patches must be evaluated, as each individual
patch may have no effect or even, in some cases, a negative effect. To perform this evaluation,
ClearView observes each patch applied and ranks them based on whether or not the application
crashed with the patch in place. ClearView then selects the patch that minimizes the probability
of a crash.

To test ClearView’s effectiveness in providing security against attacks, DARPA hired
Sparta Inc. to perform a Red Team evaluation of the system. This evaluation took place on a set
of computers all running the Firefox web browser. Within the evaluation, ClearView was not only
able to protect against all attacks by the Red Team, but was also able to provide immunity
against attacks to machines that had not yet been attacked. ClearView’s success was achieved
by finding a valid defense against an attack on one computer, and sharing it to all other
computers in the community of the evaluation. In addition to blocking all attacks, preventing the
execution of injected code, ClearView was also able to provide successful patches to seven of
ten attacks, allowing the application to continue execution without interruption. No false
positives were encountered during the evaluation.

Limitations
While extremely effective at detecting, blocking, and patching errors as seen from the

Red Team evaluation, ClearView is only able to be successful against errors detectable by its

monitors. For errors beyond the scope of HeapGuard, ShadowStack, and Determina Memory
Firewall, additional monitors would need to be incorporated.

There is always the chance that a patch generated and selected by ClearView may
negatively affect the application. False positives may also happen, for example a valid input
could theoretically cause ClearView to generate an unnecessary patch. These limitations could
be solved, or at least minimized, with a better learning model. It is also possible that ClearView

is unable to create a patch that protects against an error to a satisfiable degree.

Automatic Data Patch Generation for Unknown Vulnerabilities with Informed Probing

The next of the systems within this section is called ShieldGen. It is a system designed
to automatically generate a data patch or vulnerability signature for an unknown vulnerability
given an attack instance. This automatic generation of patches would allow for far more efficient
defense against zero-day attacks, an attack that exploits a vulnerability that is unknown to the
developer or vendor of a given piece of software, as prior to the ShieldGen system, the majority
of new vulnerability analysis and defense generation has been mostly manual. Cui et al.
describe this system in their paper, ShieldGen: Automatic Data Patch Generation for Unknown
Vulnerabilities with Informed Probing.
Summary

The ShieldGen system works by using knowledge of the input data format to generate
multiple new potential attack instances, which the authors call probes. Each probe is sent to a
zero-day detector to determine if it is still capable of exploiting the vulnerability in question. The
results from the zero-day detector are used to construct more probes as well as to discard
attack-specific parts of the original attack while retaining the parts that relate to the vulnerability
itself, ultimately leading to the generation of the vulnerability signature. The generated
vulnerability signature would act as a filter, processing input to the program and removing data

that would attack the vulnerability. Using a ShieldGen prototype to experiment with three known

vulnerabilities, Cui et al. were able to generate vulnerability signatures with no false positives
and a low rate of false negatives.

ShieldGen consists of two main components: an oracle (zero-day detector) and a data
analyzer. ShieldGen’s oracle is based on dynamic data flow analysis — it monitors and tracks
how the input data propagates and changes as the program executes. The oracle has three
vulnerability conditions: arbitrary execution control, arbitrary code execution, and arbitrary
function arguments. Arbitrary execution control checks whether input data is about to be moved
into the instruction pointer, this monitor attempts to overwrite return addresses and stack or
function pointers. Arbitrary code execution tests whether a given instruction depends on the
input data. This monitors for possible attempts at execution of injected code. The arbitrary
function arguments condition is similar to arbitrary code execution, but is specifically related to
critical system calls. The oracle will check whether said calls depend on input data. If any of
these three conditions is violated, the oracle will issue an alert, providing detailed information on
the exploit and vulnerability, including data flow history and application state at the moment the
vulnerability was detected as well as the locations of the values that triggered the alert.

The data patch generation of ShieldGen starts with the derivation of the vulnerability
predicate. The data analyzer checks for any violations of the data format constraints. For any
violated constraints, probes are constructed that satisfy the constraints. If these probes were
unsuccessful in exploiting the vulnerability, the data patch is simply the data format specification
that enforces the data format constraint. If a probe is successful, the process moves on to the
generation of the attack predicate. This predicate is composed of boolean conditions with each
data field being equal to the values in the attack input. From here, the data patch generation
algorithm will relax or remove conditions specific to the original attack input, allowing for the
admittance of more attack variants. If all values of a data field have been tried and been
classified as attacks, the oracle marks that field as a “don’t-care” field and is removed from the

predicate. At the end of this process, the predicate with the minimal necessary fields is left.

Cui et al. ran a ShieldGen prototype on three known vulnerabilities to test the efficiency
and accuracy of ShieldGen. A pencil-and-paper evaluation was also performed to estimate
ShieldGen’s accuracy. Each probe was found to take roughly 10 seconds, however the authors
believe that this can be reduced significantly. Two of the known vulnerabilities were of the stack
buffer overrun variety, while the last one was not. ShieldGen was able to identify the two buffer
overrun vulnerabilities and address them correctly. For the third vulnerability, ShieldGen was
able to provide a vulnerability signature after some initial unsuccessful attempts. In the
pencil-and-paper evaluation, it was found that ShieldGen was able to produce precise filters for
19 of the 25 vulnerabilities in question.

Limitations

While ShieldGen is quite effective at accomplishing the authors’ goal of automatic data
patch generation for the cases showcased in this paper, it is limited in what types of
vulnerabilities it can address. ShieldGen is very dependent on data format specification,
meaning that a vulnerability with a complex data format would likely be able to stump it.
SheildGen’s vulnerability detector is used as a black box, only capable of giving yes or no
outputs when perhaps something less black and white could be useful. As mentioned earlier, as
of the writing of the paper, each probe had a total time of approximately 10 seconds. Future

work on this topic could aim to improve this time, as Cui et al. mention.

FuzzBomb: Fully-Autonomous Detection and Repair of Cyber Vulnerabilities

The next automated detection system is detailed in FuzzBomb: Fully-Autonomous
Detection and Repair of Cyber Vulnerabilities by Musliner et al. FuzzBomb is an autonomous
cyber vulnerability detection and repair system built upon the authors previous work, Fuzzbuster
and FuzzBALL. It was created as part of DARPA’s Cyber Grand Challenge (CGC) and
performed rather well in the challenge’s practice scoring events before placing just outside the

qualifying range in the CGC Qualifying Event.

Summary

As mentioned, FuzzBomb is built upon Fuzzbuster, a system used to find flaws within
software through symbolic analysis and fuzz testing. Fuzzbuster works by creating what
Musliner et al. call “reactive exemplars” and “proactive exemplars.” These exemplars are
created when an attacker triggers a program fault (reactive) or when Fuzzbuster’s fuzz testing
determines a potential exploit (proactive). Using the exemplars, Fuzzbuster builds vulnerability
profiles through its analysis tools and further fuzz-testing. From there, the system is able to
develop constraints, determining things such as the minimal portion of an input string that
triggers a given exploit. Fuzzbuster can then create a filter blocking that specific input,
protecting the software from that particular path to the vulnerability. Fuzzbuster is able to
continuously refine its understanding of the flaw, leading to better constraints and filters over
time, eventually preventing exploitation of all the known vulnerabilities while maintaining full
program functionality.

FuzzBALL, the other system that FuzzBomb is built upon, is a system used for symbolic
execution with a specific focus on binary software. This particular emphasis on binary execution
sets FuzzBALL apart from many other symbolic execution tools. FuzzBALL works by exploring
various executions of a given binary, building what Musliner et al. call a “decision tree.” The
nodes of this tree represent occurrences of symbolic branches for a given execution. The tree is
used to ensure that each execution explored is unique. This system’s program analysis
capabilities, along with FuzzBuster’s logic framework, were integrated into FuzzBomb for
DARPA’s CGC.

FuzzBomb improves upon FuzzBALL'’s symbolic execution engine. Static analysis
identifies areas of the software that could potentially contain a vulnerability. The system then
performs a symbolic execution to find an execution path to the potential vulnerability. This
symbolic execution generates a number of input constraints that lead to the vulnerability,

determining the inputs that the system should block. It is noted that this procedure of generating

input constraints through various execution paths requires a large amount of space and
computing power. To mitigate this, Musliner et al. applied parallelization techniques and
heuristic search improvements. For example, if reachability analysis determines a vulnerability
to be unreachable, the vulnerability is ignored.

The authors acknowledge that the FuzzBomb system does not eliminate the underlying
problem of the software that led to the vulnerabilities. Rather, the system applies a remedy,
mitigating access to the vulnerabilities, often simply terminating the program when a vulnerable
execution path is attempted.

Limitations/Future Work

While FuzzBomb performed well in the CGC’s practice events, the authors acknowledge
that the system ran into some unanticipated challenges during the qualifying event. In particular,
there was an analysis that determined every element in the software to be a constant, giving the
fuzzing tools nothing to work with. Additionally, FuzzBomb was only able to solve 7 of 24 of the
challenge’s problems on its own. It was, however, able to fully solve each of them when given
the proof of vulnerabilities for the problems, perhaps leading to the conclusion that the system’s
vulnerability detection could stand to be improved. Musliner et al. end by stating that they are

actively looking into real world applications of the FuzzBomb system.

Identifying Open-Source Functions in Malware Binaries

Alrabaee et al. present FOSSIL, a three-component system they have designed to
efficiently identify free open-source software (FOSS) packages within binaries when the source
code is unavailable. This system is detailed in their paper, FOSSIL: A Resilient and Efficient
System for Identifying FOSS Functions in Malware Binaries.
Summary

The first component of FOSSIL extracts syntactical features of functions. The second

component extracts the semantics of functions. The third and final component of the system

applies a z-score to the normalized instructions to extract the behavior of instructions within
functions. Each of these components is incorporated within a Bayesian network model which
uses the results of the components to determine the FOSS function. Alrabaee et al. show that
their system is able to identify FOSS packages with a mean precision of 0.95 and a mean recall
of 0.85, pointing out that this is significant due to the frequency with which FOSS packages are
used within malware. By identifying which FOSS functions are present within a given binary,
insight into the binary’s functionality can be gained.

The system’s process of identifying FOSS functions is divided into four steps. The first
step normalizes the binary’s instructions, helping to account for variations in the code based on
different compilers and compiler settings. Then, the instructions are sent to the system’s
previously mentioned three components for feature extraction. The third step is feature
processing, making use of a hidden Markov model (HMM) to detect the behavior of a function
given opcode frequencies. During this same step, control-flow graphs may be used. The final
step of the process uses a Bayesian Network to identify the FOSS function. Alrabaee et al. use
a collection of known FOSS packages compiled with different compilers and compilation
settings to evaluate the efficiency and accuracy of their system’s process of identifying FOSS
functions.

The normalization step of the system’s process is accomplished by categorizing x86
assembly instructions into three categories: memory references, registers, and constants. The
control-flow graphs (CFGs) consist of blocks, or nodes, which represent sets of instructions. By
using these graphs to develop “walks” the authors are able to represent the semantic relations
of functions. Thus, by converting a potential FOSS function into one of these CFGs, the authors
can reference the already existing CFGs to find a match, or approximate match. Furthermore,
the system will also take opcode frequency distributions into account. Alrabaee et al. mention
that this is due to the hypothesis that FOSS functions performing the same task will often have

similar opcode distributions. These opcode distributions then have their opcodes ranked

according to their importance within the function. The HMM mentioned above makes use of
these rankings to create confidence intervals. Additionally, z-scores are utilized to convert
opcode distributions into scores. Finally, the Bayesian Network (BN) makes use of all the
aforementioned information to model the interaction between each of the components, providing
a probability function.

To test their system and evaluate its efficiency and accuracy, Alrabaee et al. used 160
projects that reuse FOSS packages. All experiments were run on machines running Windows 7
and Ubuntu 15.04. Within their evaluations, the authors were primarily concerned with finding as
many relevant functions as possible with little concern for false positives. The results of the
evaluations showed several points:

e Compiler functions should be filtered out prior to running FOSSIL to allow for better
precision.

e Accuracy of the system is dependent on the project. For example, running on
cryptography related libraries will often yield higher accuracy than parser related
libraries.

e FOSSIL scales very well, being minimally affected by the size of the project.

e Applying different values to the Bayesian network model can allow for trade offs between
precision and recall.

When comparing their system to other modern systems of similar nature, the authors
show that FOSSIL is generally superior in terms of precision (average of 95%), recall (average
of 89%), and efficiency (average of 48.5s). Additionally, the authors show that their system is
scalable when running on up to at least 1.5 million functions, with only a slight decrease in
accuracy.

Limitations/Future Work

The FOSSIL system has many limitations. Alrabaee et al. list several:

e Function Inlining:

o The authors state that they do not currently support the ability to fingerprint a
function with partial code in another program, thus this compiler optimization
would cause issues.

e Multiple Architecture:

o Currently, the system only deals with x86. However, the authors state that future

work will involve researching how to deal with multiple architectures.
e Type Inference:

o FOSSIL does not currently support type inference, which the authors state would

help reduce the number of false positives.
e Advanced Obfuscation:

o One of the system’s greatest limitations is being unable to deal with advanced
obfuscation techniques. One of the assumptions made by the system is that the
code is already unpacked. Thus, obfuscation would render the system nearly
useless.

e Dataset Size:

o While the repository of FOSS functions used in this paper is quite large, the

authors state that its size would still need to be dramatically increased,

something they state will be addressed in future work.

Function Boundary Detection in Stripped Binaries

In this next paper, Function Boundary Detection in Stripped Binaries, Alves-Foss and
Song present an automated function detection algorithm as a part of the Jima tool suite. The
algorithm takes in stripped binaries and returns a list of possible function boundary locations.
This is useful, as stripped binaries will typically not have symbol tables containing function
addresses. Alves-Foss and Song developed this tool for DARPA’s Cyber Grand Challenge and

evaluated it and related tools against the SPEC CPU 2017 test suite and the Chrome browser.

Summary

The problem that the algorithm addresses deals with determining the list of functions
within a binary without the symbol table or debug information. In particular, the algorithm has the
goal of finding function starts and function boundaries. With this goal in mind, Alves-Foss and
Song assume that all instructions are contiguous in memory. Other systems and algorithms that
also deal with discovering function boundaries exist, such as Nucleus and Ghidra, and the
authors reference them as the primary systems to which they compare Jima.

The Jima function detection algorithm consists of six phases. The first of these phases is
disassembly. Jima uses the objdump command to list out all of the assembly instructions. These
instructions are then parsed and stored in a data structure which the authors call Jil. During this
parsing, Jima records all control flow operations along with their respective target addresses, if
possible. The second phase is exception handler analysis. Here, Jima maps exception handling
code to the parent function. Phase three deals with jump pointer analysis—Jima iterates through
each jump pointer operation and attempts to detect the location and size of the related jump
tables. In phase four, Jima iterates through all call destinations. For each call destination, Jima
moves forward in the code until the function terminates or another call destination is reached.
Phase five is the detection of missing functions. These missing functions are defined as
executable code within the gaps of the functions detected from phase four. The final phase
detects all terminal function calls. The authors define a terminal function as any function that
does not return from execution.

During the disassembly phase, Jima categorizes each observed instruction, recording
returns and the source and target addresses if the instruction is an explicit jump. To analyze
jump instructions, Jima stores the register used to calculate the jump, then works backwards
through the code, searching for the location where that register was set with a comparison or

bound using logical operators. When working backwards to find the location of the register

calculation, Jima will stop the analysis if it finds the start of the function, or if more than 50
instructions are encountered.

The bulk of the function detection process begins with a sorted list of possible function
addresses, found during the disassembly. The algorithm starts with the first address as a
possible start address of a function and then processes instructions until the next address in the
list is reached or if a function exit point is reached. If the last detected instruction is a sequence
of NOPs (no operation) followed by a jump, the algorithm assumes it has found the end of the
function. If there is a gap between the end of a function and the next address in the sorted list,
the algorithm attempts to find the “missing function” as mentioned above.

The authors tested their function with three different datasets. The first dataset, Unix
Utilities, deals with programs from various utils packages. The second dataset, SPEC CPU
2017, consists of a range of different programs written in C++, C, and Fortran. The third and
final dataset used was the Chrome browser. Alves-Foss and Song compared the Jima algorithm
against other similar algorithms mentioned above, Ghidra and Nucleus, as well as a few others.
The results of the authors’ experiments showed that Jima was comparable to these other
algorithms, outperforming most in terms of accuracy, but requiring a large amount of time and
space, primarily due to the algorithm’s use of objdump generating a large amount of overhead.

Limitations/Future Work

One of the primary areas of improvement that Alves-Foss and Song mention is that of
performance. By integrating disassembly into Jima without the use of the objdump command,
the algorithm could be sped up significantly. Additionally, the algorithm struggled in some cases
in which the compiler used different levels of optimization. Jima performed best with no
optimizations in place, and performed the worst on binaries compiled with O2 and O3
optimizations.

The authors also mention that future work will involve porting the Jima tool to work on

Windows PE binaries, as it currently only works on Linux ELF binaries.

Toward Smarter Vulnerability Discovery Using Machine Learning

The final system in this section of automated vulnerability detection does not deal with
the detection of vulnerabilities itself. Rather, Grieco and Dinaburg present a system called
Central Exploit Organizer (CEO) that deals with selecting optimal vulnerability detection tools.
CEO is a machine learning based system that predicts the effectiveness of any given
combination of a vulnerability detection tool (VDT), configuration, and input. Grieco and
Dinaburg state that efficiency of selected VDTs can be improved over random selection by 11%
to 21%. CEO was primarily tested on binaries from DARPA’s Cyber Grand Challenge, using a
variety of VDTs, such as fuzzing and symbolic executors. With regards to fuzzing, the authors
state that CEO only deals with mutational fuzzers, those that modify existing program inputs, as
the CEO system has the requirement of being provided an initial input.
Summary

Grieco and Dinaburg briefly give an overview as to why their system is useful for the
cybersecurity community, explaining the drawbacks of typical VDTs. As fuzzers and symbolic
executors are resource intensive, potentially consuming a massive amount of time and space
only to produce no useful result, finding the optimal VDT is a valuable saver of time and effort.

The CEO system works by executing a target program with a given input, extracting
features from the execution and identifying patterns in the program’s behavior. CEO will then try
to anticipate the result of the execution based on the program’s behavior. Lastly, CEO will try to
select the optimal combination of VDT, configuration, and input through the use of the system’s
machine learning techniques.

A large part of the authors’ contribution to this system is their dataset used by CEO to
optimize the selection of VDTs. The dataset consists of target programs, a set of VDTs, a
random action generator, a labeling procedure, and a feature extraction process. As previously

stated, the target programs were binaries obtained from DARPA’s Cyber Grand Challenge. The

set of VDTs within the dataset only contained tools based on dynamic analysis, as static
analysis does not take an initial input. The VDTs used were Manticore, a symbolic execution
tool designed to find memory safety violations, Grr, a fuzzing tool, and American Fuzzy Lop,
another fuzzing tool.

The action generator within Grieco and Dinaburg’s dataset generates a random
configuration and input for a given VDT on a target program. Each action generated was
performed and labelled according to the authors’ labeling procedure:

1. Failure: the VDT did not start or encounter a new program state
2. New Input: the VDT encountered a new program state
3. Valuable Input: the VDT encountered a vulnerable condition

Grieco and Dinaburg’s feature extraction process deals with two classes: exec features,
and config features. The exec features are extracted from the execution of the target program
and consist of a sequence of assembly instructions, a sequence of system calls, a control flow
graph of the target program, and transmitted words. The config features are simply the
configuration options of the given VDT.

In the authors’ evaluation section, they state that CEO was able to perform well with
each of the three VDTs mentioned above. For American Fuzzy Lop, the system was able to
identify the optimal combination of configuration and input with an average accuracy of 71%.
For Grr, the result was an average accuracy of 61%. Manticore had an average accuracy of
70%.

Limitations/Future Work

One of the primary limitations of Grieco and Dinaburg’s system and evaluation was the
limited dataset of target programs. As the binaries used were a part of DARPA’s Cyber Grand
Challenge, there is a chance that each of the binaries are sufficiently different from each other

that few patterns can be found in multiple binaries. Secondly, the authors state that some of the

VDTs used are non-deterministic. As such, there is the possibility of varied behavior in any
given tool, even with an identical configuration and input.

Grieco and Dinaburg state that one of the first steps in improving CEO would be to
include a more diverse set of larger binaries. This would allow for more accurate evaluation of
the system. The authors are also investigating the use of other machine learning techniques, in
the hopes of improving data labeling and feature extraction. They are additionally considering

testing CEO with more VDTs.

Reverse Engineering
In the previous section, we showcase several systems that deal with automatic
vulnerability detection, with some of the systems also dealing with vulnerability repair. This next
section will highlight a few systems that deal with another side of software defense, reverse
engineering. This is an important topic within cybersecurity as it is common for the source code
of malware to be unavailable or unobtainable. Reverse engineering allows cybersecurity
professionals to gain insight into how potentially malicious executables work without access to

the source code. This allows for better development of defenses.

Reverse Engineering of ARM Binaries

The first reverse engineering paper within this section is Reverse Engineering of ARM
Binaries Using Formal Transformations, written by Pfeffer et al. In this paper, the authors aim to
create an approach for reverse engineering ARM binaries. The goal of this reverse engineering
process is to produce a high-level, well-comprehensible abstraction of the program. The authors
also aim to have this process automated and require no information aside from what the binary
provides. Additionally, the process is intended to semantically preserve the original program and

run within a reasonable time.

Summary

Because few approaches to decompiling ARM binaries--as opposed to binaries of the
x86 architecture--exist, Pfeffer et al. make use of program transformation rules. Specifically,
they make use of the FermaT transformation system, developed by Martin Ward. This
transformation system will apply transformation rules to code given in the Wide Spectrum
Language (WSL), transforming the code into a more readable version, allowing for easier
analysis. As the FermaT system has never before been used on ARM binaries, Pfeffer et al. first
apply translation rules to transform the ARM assembly into WSL, before feeding the WSL
representation to FermaT.

During the transformation process, each line of assembler instructions is translated into
one WSL action that preserves its semantic effects. All of these created WSL actions together
create an overarching action system that represents the original code. Here, the authors split
this action system into separate procedures, maintaining control flow of the original code. This
process is highly modular and reusable, another goal the authors had in mind.

The translation process from ARM to WSL makes use of a model of assembler
representation described by Ward and Bennett, referenced in the paper. This model uses one
WSL action per line of code to represent the assembler instructions. Additionally, this model
makes use of global variables to represent the 16 ARM registers. Memory is represented as an
array. Condition codes are split into four variables: N (Negative), Z (Zero), C (Carry), and V
(oVerflow).

The translation rules themselves are made up of three parts. The first is an expression
used to represent the rule itself and accounts for the semantic effects of the instruction. The
second is an epilogue which models the control flow of the code. The last is a list of status bits.
For some of the more complicated instructions, such as conditional execution, the condition
codes along with IF/ELSE logic within the epilogue are used. Access to memory is either direct
or with an offset. Some of the specific instructions, such as CMP and CMN, are translated using

simple arithmetic instructions in conjunction with temporary variables used to set the CPSR bits.

Once the code is fully translated into WSL with its semantic effects preserved, the WSL
representation is fed to FermaT. The primary goal throughout this part of the process is control
flow recovery, gaining a representation of the code that is free from any control flow obscuring
code. This allows the representation to be easily restructured into high level control flow
structures. Here, Pfeffer et al. apply six rephrasing transformations:

e Removal of the program counter, connecting the actions within the system together.

e Flag removal, made possible due to the code now being a regular action system and
removing the need for condition checks.

e Splitting of the action system into separate processes.

e Removal of the link register from each process, changing the system into a non-regular
action system.

e Removal of all calls to unidentifiable labels and collapsing of the action systems,
recovering control flow.

To evaluate the quality of their approach, the authors applied their process on binaries
chosen from the Debian coreutils package. Plotting the size of the binaries against the time
taken by the transformation process, the authors showed that the process has a linear runtime,
fulfilling the goal of reasonable runtime. Additionally, the size of the resulting representation of
the code is generally larger than that of the original, but not unreasonably so. In terms of quality
of the transformation, Pfeffer et al. provide an example of a translation, stating that the result is
significantly more comprehensible, claiming this as a success of their process.

Limitations/Future Work

For the most part, Pfeffer et al. achieved all of the goals laid out at the beginning of their
paper. Their process is modular, reusable, automated, applicable within a reasonable time, and
accurate while also giving the results a fair amount of readability. While the process provides
control flow recovery, the main area of future work the authors list is the inclusion of data flow

recovery.

Reverse Engineering of Types in Binary Programs

Lee et al. present TIE, Type Inference on Executables, in their paper, TIE: Principled
Reverse Engineering of Types in Binary Programs. TIE is an end-to-end reverse engineering
system with the goal of inferring the most amount of accurate information on variable types
given binary code. Lee et al. compare their system against a couple of other similar systems,
such as REWARDS and Hex-rays, and claim that TIE consistently yields more conservative and
precise results when it comes to identifying variable types. The authors define conservativeness
as never inferring more information than is available in the binary, in other words, not guessing
types. Precision is how close the inferred type is to the original type. The system was run on 87
programs from coreutils, with results backing up the authors’ claims of higher conservativeness
and precision than other systems.

Summary

The start of the process of TIE uses a binary analysis platform, BAP, to convert the
binary code into a binary analysis language called BIL. BAP is able to consider both static
analysis scenarios and dynamic analysis scenarios, another advantage of TIE over other similar
systems. For static analysis, the binary is disassembled and functions identified. For dynamic
analysis, the program is run and the instructions executed are output. In both scenarios, an
assembly program is the result, with dynamic analysis giving the single path actually executed.
These results are converted to BIL for further analysis, with a mapping to the original assembly
kept to allow final results in terms of the original assembly.

The next step in the process is variable recovery and type reconstruction. This phase
takes the BIL code produced as input. Variables are inferred through analysis of memory
access patterns. These recovered variables are then passed to TIE’s type reconstruction
algorithm along with the BIL code. The algorithm will first assign each variable a placeholder

type, before generating a constraint on the possibilities of the variables type. These constraints

are determined by things like how the variable itself is used, what operations are performed on
the variable, etc. The constraints are then solved, finding the most precise yet conservative
range of possible types for the variable. The types inferred through this algorithm are within the
TIE type system. This is a system of types that can be easily converted to C types. Another
advantage of TIE is that this system of types can be retargeted to convert to other languages,
thus TIE is not limited to just reverse engineering the language of C.

In addition to TIE’s type reconstruction algorithm, the system also has an
inter-procedural constraint generation step. This is a pre-processing step in which TIE creates a
context F of known functions. When function is called, TIE first searches F for the function
description. If a match is found, the function’s parameters and return type can be used to aid in
the recovery of the variables within the function call.

The final step in TIE is constraint solving. In this step, a list of remaining unsolved
constraints is kept and drawn from to find the next type to be recovered. Each entry in this list is
removed and processed to find upper and lower bounds to the variable’s type. Once this list is
empty, each constraint is considered to be solved. The algorithm terminates after all constraints
are solved.

Limitations

While TIE is versatile in that it is not limited to just C, it is somewhat limited to the x86
architecture, due to it relying on things like memory access patterns and calling conventions to
determine type ranges. Additionally, many of the results from this system’s algorithm will only
yield a range of possible types for recovered variables. Thus, in some cases it is not possible for
TIE to give a complete reverse engineering given a binary. However, this limitation is not

necessarily exclusive to TIE and applies to most reverse engineering in general.

A Decompilation Framework for Static Analysis of Binaries

The final system we discuss is REcompile, detailed in the paper, REcompile: A
Decompilation Framework for Static Analysis of Binaries, written by Yakdan et al. REcompile is
a decompilation framework that transforms low-level machine code into a high-level
representation, allowing for easier readability. The REcompile system uses a variety of
techniques to regain some of the information lost—variable names, types, etc.—during
compilation. Yakdan et al. tested their framework against real malware samples and compared
the results to that of a state-of-the-art decompiler.

Summary

As malware is becoming increasingly complex, Yakdan et al. created REcompile with the
goals of readability, extensibility, and modularity in mind. Being able to generate more readable
representations of code is particularly useful when the given compiled code would be nearly
impossible to decipher due to its size or complexity. Extensibility allows the REcompile system
to grow and change along with the malware it is used against. Finally, modularity divides the
system into explicit input, output, and function components to aid the development process.

REcompile is comprised of five main components: an intermediate representation (IR)
generator, a data flow analyzer, a type analyzer, a control flow analyzer, and a code generator.
The intermediate representation generator takes the input program and transforms it into
REcompile’s IR. REcompile’s IR uses a static single assignment form. This is a type of
representation in which every variable has a single definition. The data flow analyzer performs
code optimizations, removes dead code—such as a variable that is defined but never used
again—and identifies parameters and return values of functions. The type analyzer determines
the types of variables by examining how the variables are used in the program. For example, an
assignment instruction such as x = y would show that the variables are of the same type. Thus,
if y is known, the type of x could be inferred. The control flow analyzer is responsible for the
reconstruction of high-level language controls structures, such as loops and conditionals.

Finally, the code generator generates the decompiled code once all analyses are completed.

Yakdan et al. evaluated the REcompile system in two tests. The first test was performed
with samples with available source code, to allow comparison between the output of REcompile
with the given input. The second test compared REcompile with the Hex-Rays decompiler. Both
decompilers were evaluated on a large set of real malware samples. Within these tests,
performance was measured based on functional equivalence, structuring efficiency, and
reduction ratio. The first metric, functional equivalence, was simply measuring how closely the
decompiled output resembled the functionality of the given input. The second metric measured
how well high-level control structures could be represented. The final metric measured the
difference in size between the input and output. The results of the tests showed that REcompile
achieved functional equivalence on programs with functions of varying complexity, performed
slightly better than the Hex-Rays decompiler in terms of structuring efficiency, but
underperformed slightly in terms of reduction ratio.

Limitations/Future Work

The authors state the REcompile is implemented as a plugin for IDA, a commonly used
disassembly. Thus, the functionality of REcompile is dependent on IDA. If IDA were to be fooled
by any anti-disassembly techniques, REcompile would incorrectly decompile the code.
However, due to the modularity aspect of REcompile, the authors state that it could easily be

ported to also be used with other disassemblers.

Conclusion
Within this paper, we show several systems each created with the intention of
addressing automatic vulnerability detection, vulnerability repair, or reverse engineering of
executables. Each of these systems of course have limitations, some of which are listed after
discussing a general overview of that particular system.
Though many of the systems differ in various ways, they are each evaluated by their

authors and are typically found to perform their particular task or goal reasonably well. Some

systems, such as Cui et al.’s ShieldGen, perform exceptionally well when given particular
executables on which to act, but lack versatility. Other systems, such as the ClearView system
created by Perkins et al., are able to deal with a lack of versatility by being highly modular. In
the example of ClearView, the system is able to adapt to cover a wider range of vulnerabilities
by simply adding more monitors in addition to HeapGuard, ShadowStack, and Determina
Memory Firewall already in place. Given the complexity and rapid growth and change of
malware, this high modularity of some of the systems detailed within this paper is what sets
them apart from other systems of similar natures.

Several of these systems were evaluated with executables from DARPA’s Cyber Grand
Challenge. While it is certainly impressive for those systems to perform as well as they did given
the complexity of the executables and difficulty of the challenge overall, the executables are not
entirely representative of malware that the systems would encounter in the real world. As a
result, these systems that deal with CGC executables could benefit greatly from further
evaluation, using real world malware similar to some of the other systems discussed.

Overall, the systems discussed throughout this paper and the generally positive results
from their authors’ evaluations offer an optimistic outlook of the future of cybersecurity. As
previously mentioned, software is continually evolving and becoming more complex, rendering
manual detection of software vulnerabilities increasingly obsolete. These systems show that
automatic detection and repair is a reliable and accurate alternative, with room to match the

rapid growth of malware.

Sources

Differentiating Code from Data in x86 Binaries

Wartell R., Zhou Y., Hamlen K.W., Kantarcioglu M., Thuraisingham B. (2011) Differentiating
Code from Data in x86 Binaries. In: Gunopulos D., Hofmann T., Malerba D., Vazirgiannis M.
(eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2011. Lecture

Notes in Computer Science, vol 6913. Springer, Berlin, Heidelberg

Trust in Automated Software Repair

The Effects of Repair Source, Transparency, and Programmer Experience on Perceived
Trustworthiness and Trust

Ryan T.J., Alarcon G.M., Walter C., Gamble R., Jessup S.A., Capiola A., Pfahler M.D. (2019)
Trust in Automated Software Repair. In: Moallem A. (eds) HCI for Cybersecurity, Privacy and

Trust. HCII 2019. Lecture Notes in Computer Science, vol 11594. Springer, Cham

Automatically Patching Errors in Deployed Software

Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan Bachrach, Michael
Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai Wong,
Yoav Zibin, Michael D. Ernst, and Martin Rinard

SOSP '09: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles,

October 2009, Pages 87-102

ShieldGen: Automatic Data Patch Generation for Unknown Vulnerabilities with Informed Probing
W. Cui, M. Peinado, H. J. Wang and M. E. Locasto, "ShieldGen: Automatic Data Patch
Generation for Unknown Vulnerabilities with Informed Probing," 2007 IEEE Symposium on

Security and Privacy (SP '07), Berkeley, CA, 2007, pp. 252-266.

FuzzBomb: Fully-Autonomous Detection and Repair of Cyber Vulnerabilities
Musliner, David & Friedman, Scott & Boldt, Michael & Benton, J. & Schuchard, M & Keller, P.

(2015). FuzzBomb: Autonomous Cyber Vulnerability Detection and Repair.

FOSSIL: A Resilient and Efficient System for Identifying FOSS Functions in Malware Binaries
S. Alrabaee, P. Shirani and L. Wang, "FOSSIL: A resilient and efficient system for identifying

FOSS functions in Malware binaries", ACM Trans. Privacy Secur., vol. 21, no. 2, pp. 1-34, 2018.

Function Boundary Detection in Stripped Binaries
J. Alves-Foss & J. Song, ACSAC '19: Proceedings of the 35th Annual Computer Security
Applications Conference, December 2019, Pages 84-96,

https://doi.org/10.1145/3359789.3359825

Toward Smarter Vulnerability Discovery Using Machine Learning
G. Grieco & A. Dinaburg, AlSec '18: Proceedings of the 11th ACM Workshop on Atrtificial
Intelligence and Security, January 2018, Pages 48-56,

https://doi.org/10.1145/3270101.3270107

Reverse Engineering of ARM Binaries Using Formal Transformations

T. Pfeffer, P. Herber, and J. Schneider, SIN '14: Proceedings of the 7th International
Conference on Security of Information and Networks, September 2014, Pages 345-350,

https://doi.org/10.1145/2659651.2659697

TIE: Principled Reverse Engineering of Types in Binary Programs
J. Lee, T. Avgerinos, and D. Brumley (2011). TIE: Principled Reverse Engineering of Types in

Binary Programs. NDSS.

REcompile: A Decompilation Framework for Static Analysis of Binaries

K. Yakdan, S. Eschweiler and E. Gerhards-Padilla, "REcompile: A decompilation framework for
static analysis of binaries," 2013 8th International Conference on Malicious and Unwanted
Software: "The Americas" (MALWARE), Fajardo, PR, 2013, pp. 95-102, doi:

10.1109/MALWARE.2013.6703690.

Risk Based Security

https://pages.riskbasedsecurity.com/2019-midyear-data-breach-quickview-report

Security Intelligence
L. Ponemon,

https://securityintelligence.com/posts/whats-new-in-the-2019-cost-of-a-data-breach-report/

Defense Advanced Research Projects Agency, Cyber Grand Challenge

https://lwww.darpa.mil/program/cyber-grand-challenge

