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Abstract

Traditional techniques for analyzing and developing control laws in safety-

critical applications usually require a precise mathematical model of the sys-

tem. However, there are many control applications where such precise, an-

alytical models can not be derived or are not readily available. Increasingly,

data-driven approaches from machine learning are used in conjunction with

sensor or simulation data in order to address these cases. Such approaches

can be used to identify unmodeled dynamics with high accuracy. However,

an objective that is increasingly prevalent in the literature involves merging or

complementing the analytical approaches from control theory with techniques

from machine learning.

Autonomous systems 1 such as self-driving vehicles, distributed sensor net-

works, aerial drones, and agile robots, need to interact with their environments

that are ever-changing and difficult to model. These and many other applica-

tions motivate the use of data-driven decision-making and control together.

However, if data-driven systems are to be applied in these new settings, it is

critical that they be accompanied by guarantees of safety and reliability, as

failures could be catastrophic.

This dissertation addresses the problems in which there are interactions be-
1An autonomous system is one that can achieve a given set of goals in a changing environ-
ment – gathering information about the environment and working for an extended period of
time without human control or intervention. In this dissertation, the autonomous systems is
not used in the control theory sense which has the form of ẋ = f(x) and does not involve
control input (unforced system)



tween model-based and data-driven systems and develops learning-based

control strategies for the entire system that guarantees safety and optimal-

ity. Applications of these systems can be sough in autonomous networked

mobile systems that are quickly making their way into the marketplace and are

soon expected to serve a wide range of new tasks including package delivery,

cooperatively fighting wildfires, and search and rescue after a natural disaster.

As the number of these systems increases, their performance and capabili-

ties can be greatly enhanced through wireless coordination. Wireless channel

extremely contributes to the optimality and safety of the whole system, but it

is a data-driven factor and there is no explicit mathematical model for it to be

involved in the model-based part, that is mostly model predictive controller.

This dissertation presents two approaches to address the above-mentioned

problem. The first proposed approach is the Gaussian Process-based Model Pre-

dictive Controller (GP-MPC) that leverages Gaussian Processes (GPs) to learn

the variations of the data-driven variable in a defined time horizon. To avoid

a large number of interactions with the environment in the learning process,

the algorithm iterates in the reachable set from the current state to decrease

the size of the kernel matrix and converge to the optimal trajectory faster. To

reduce the computational cost further, an efficient recursive approach is devel-

oped to calculate the inverse of kernel matrix while MPC updates at each time

step.

The second approach is Data-and Model-Driven Predictive Control (DMPC)

which is a data-efficient learning controller that provides an approach to merge

both the model-based (MPC) and data-based systems. DMPC is developed

to solve an MPC problem that deals with an unknown function operating in-

terdependently with the model. It is assumed that the value of the unknown

function is predicted or measured for a given trajectory by an exogenous data-

driven system that works separately from the controller. This algorithm can



cope with very little data and builds its solutions based on the recently gen-

erated solution and improves its cost in each iteration until converging to an

optimal solution, which typically needs only a few trials. Theoretical analysis

for recursive feasibility of the algorithm is presented and it is proved that the

quality of the trajectory does not get worse with each new iteration.

In the end, the developed algorithms are applied to the motion planning of two

connected autonomous vehicles with linear and nonlinear dynamics. The re-

sults illustrate that the controller can create a safe trajectory that not only is

optimal in terms of control effort and highway capacity usage but also results

in a more stable wireless channel with maximum packet delivery rate (PDR).

Keywords: Learning Optimal Control, Model Predictive Control, Data-efficient

Controller, Gaussian Process, Autonomous Vehicles, Connected Vehicles
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Chapter 1

Introduction

The conventional control approaches usually need a precise physical model

of the system to develop an optimal and safe controller and also analyze its

characteristics and provide the required guarantees about the optimality, con-

vergence and safety [2–4]. Nevertheless, these mathematical models are not

always available, and only data-driven techniques such as deep learning meth-

ods, Gaussian Processes, statistical methods, and etc are used to describe

the behaviour of these systems. These techniques can be utilized to identify

the unmodeled system with a high accuracy, but challenges appears when we

need some guarantees about the safety, stability and optimality about the sys-

tem and the provided solutions.

Model Predictive Control (MPC) is a methodology in the control area that is

used broadly to control the autonomous systems. To apply this method, the

exact dynamical system is required. Also, the model requires us to add the lim-

itations on the state and control vectors as equality or inequality constraints

into the model. And finally, the cost function steers the state of the system

from the initial to the terminal state. All of these components require explicit

mathematical definitions. However, in some applications these relationships

can not be defined easily.



Connected Autonomous Vehicles (CAVs) are well-known systems in this group

and will be used as an application throughout the dissertation to make the

explanations of the developed algorithms more understandable. CAVs have

shown a great potential to improve both highway throughput and fuel effi-

ciency by traveling nearly bumper-to-bumper while guaranteeing safety. Wire-

less coordination could enable mobile systems to reach high-performance

states that would not otherwise be safe (closer distances, higher speeds, etc).

In the connected mobile systems, especially in CAVs, the main challenge is

to capture the interdependence between mobility, wireless, and safety. The

established communication channel between the vehicles of a platoon can

be easily influenced by numerous factors e.g. surrounding environment, the

states of the connected vehicles and etc. Between these factors, the motion

policies generated by the agent’s controller can profoundly affect the state of

the wireless channel. Inevitably, a poor and imperfect communication channel

results in a sequence of conservative control inputs (because of the safety

concerns) that impact the overall performance.

Connected, autonomous vehicles (CAVs) have the potential to identify, collect,

process, exchange, and transmit real-time data leading to greater awareness

of – and response to – events, threats, and imminent hazards within the ve-

hicle’s environment. At the core of this concept is a networked environment

supporting very high speed interactions among vehicles (V2V), and between

vehicles and infrastructure components (V2I) to enable numerous safety and

mobility applications. When combined with automated vehicle-safety appli-

cations, vehicle connectivity provides the ability to respond and react in ways

that drivers cannot, or cannot in a timely fashion, significantly increasing the

effectiveness of crash prevention and mitigation. Connected Autonomous Ve-

hicles (CAVs) are the advanced generation of the driverless cars that are of

interest to many researchers in this field. One application of CAVs involves Co-



operative Adaptive Cruise Control (CACC), in which the following vehicle not

only localizes the preceding vehicle via on-board sensing, but also receives in-

formation of the preceding vehicles’ current state(s) through a wireless chan-

nel [5]. CACC is an extension to ACC (Adaptive Cruise Control) that is capable

of applying acceleration/deceleration depending on the existence of a preced-

ing vehicle in a certain range. ACC is one of the first concepts enabling au-

tomation to involve a safety concern (i.e. time-to-collision) in its action policy.

Real-time control algorithms, e.g. Model Predictive Control (MPC), provide

a foundation to significantly improve CACC performance. As an Advanced

driver-assistance systems (ADAS), MPC involves generating a sequence of

motion policies for some number of time steps in the future and executing a

subset of this sequence in a receding fashion. Predicting the optimal trajec-

tory into the future benefits the system in different ways, such as providing

safety guarantees (e.g. obstacle avoidance) and minimizing control effort. Fur-

thermore, in the context of CAVs, the predicted motion policy can be shared

via a communication channel with the other vehicles. Being aware of future

vehicle states allows better agility, maneuverability, safety, and optimality [6].

There is a growing literature on MPC in connected vehicle applications [7–9].

However, most of this work assumes a perfect communication channel, mean-

ing that an ego (following) vehicle receives packets from the preceding vehicle

with no dropouts or delay. However, communication delays present a chal-

lenge, especially in vehicle-to-vehicle, or V2V, communication systems, which

are characterized by a dynamic environment, high mobility, and low antenna

heights/power on the transceivers (e.g. between vehicles and roadside units,

telecommunications, etc) [10]. Communication delay can impact the perfor-

mance of vehicle platoons in myriad ways. [11] studies these effects and the

reported results show that string stability is seriously compromised by the

communication delay introduced by the network. They assume a constant



communication delay (i.e. a very benign delay) and propose a simple fix to pre-

serve string stability that is not optimal. The sub-optimality of their approach

comes from the fact that controller designs do not explicitly account for delay

in the communication links. In practice a wireless channel inevitably contains

random delays, and packet losses vary based on the surrounding environment.

Therefore, an approach of multiple time-varying delays was considered in [12],

which implements adaptive feedback gains to compensate for the errors origi-

nated from outdated packets, provides upper bound estimates for time delays,

and examines stability conditions using Linear Matrix Inequality techniques.

However, little work has been done on the effect of uncertainty of communi-

cation channel on the control policy of CAVs, and to our knowledge none have

considered the wireless network itself as a dynamic variable. Typically, when

the policy of a connected vehicle is optimized over a time horizon based on a

given behaviour of the channel, it is assumed that the network will not vary by

changing the state of the vehicle. However, the states of the communicating

vehicles are important factors that influence the wireless channel.

States of the vehicle and wireless communication channel (e.g. PDR, or Packet

Delivery Rate) are two interdependent variables, where changing either will af-

fect the other [6]. The ego vehicle should not only take into account the cost of

control effort and its longitudinal distance from the preceding vehicle, but also

the state of the wireless network should be involved in its controller model.

For instance, the state of the ego vehicle where the communication channel

has zero PDR is not desirable because at this state the ego vehicle will not re-

ceive any packet from the lead vehicle which in turn results in a sequence of

conservative controls (because of the safety concerns) that impacts the over-

all performance. Accordingly, having a more stable wireless channel with a

higher PDR improves the overall performance of the CAVs; however the chal-

lenge is, being data-driven, the wireless communication channel cannot be for-



mulated directly as a straightforward mathematical model to be merged into

the model predictive controller.

This dissertation introduces two novel approaches to involve a data-driven

system in MPC (i.e. a model-based method) to generate a solution that is opti-

mal for the entire system with the applications on connected vehicles:

• GP-MPC (Gaussian Process-based Model Predictive Controller): To con-

sider the PDR in MPC, the Gaussian Processes (GP) is used which is a

model-based method. GP is preferable in this work because the varia-

tions of the environment can be learned and used as a proxy model rep-

resenting the behaviour of the wireless network for a given time horizon.

Also, being a probabilistic method, the uncertainty can be incorporated

into a long-term prediction (time horizon) by using GPs and the impact of

the errors can be reduced [13, 14]. This is a data-efficient approach com-

pared to the model-free methods (e.g. Q-learning or TD-learning) and can

be used without additional interaction with the environment [15]. After

obtaining the proxy model, it can be used in MPC to generate a motion

policy in which the PDR, control effort and the highway capacity usage

are balanced in an optimal way.

• DMPC (Data-and Model-driven Predictive Control): A technique based

on Iterative Learning Control (ILC) is presented that can incorporate an

unknown cost function in MPC to generate the optimal trajectory in a few

trials. The algorithm starts from a given initial trajectory and improves it

by learning from each iteration until converging to an optimal solution.

Iterative Learning Control is typically applied for systems that repeat the

same operation under the same conditions and enables the controller

to learn from previous executions (iterations) to improve its closed-loop

reference tracking performance [16, 17].



The rest of this dissertation is organized as follows. Chapter (2) provides an

overview of the problem’s background, motivations and challenges. Chap-

ter (3) presents Gaussian Process-based Model Predictive Controller (GP-

MPC) for the CAVs in the presence of uncertain wireless channel. Chapter (4)

explains a preliminary version of (Learning Model Predictive Control) LMPC-

based approach for CAVs. In Chapter (5) the presented approach of the pre-

vious chapter is enhanced to overcome its shortcomings, the novel algorithm

is called Data-and Model-driven Predictive Control (DMPC). And finally, Chap-

ter (6) provides a summary of contributions, future work and conclusions to

this dissertation.



Chapter 2

Problem Background, Motivations

and Challenges

2.1 Background

The number of motor vehicles in the world is around one billion and it is in-

creasing rapidly, where it is estimated that this number will be doubled within

the next ten years [18]. By increasing this number, the safety and efficiency re-

lated concerns attract more attention.

On the other hand, recent advances in autonomous driving are becoming in-

creasingly ubiquitous, and Advanced Driving Assistance Systems (ADAS) have

the potential to improve safety and comfort in various driving conditions. Adap-

tive Cruise Control (ACC) is a widely used ADAS module that controls the vehi-

cle longitudinal dynamics. ACC is triggered once a preceding vehicle is de-

tected within a certain distance range from the ego vehicle. ACC automati-

cally maintains a proper minimum safe distance from preceding vehicles by

automatically adjusting braking and acceleration. ACC enhances mobility,

improves safety and comfort, and reduces energy consumption. The use of

Model Predictive Control (MPC) for ACC applications is becoming increasingly



common in the literature [19,20].

The vehicle platoon control problem, or so-called collaborative Adaptive Cruise

Control (CACC) is a natural extension of ACC that leverages vehicular ad hoc

networks and vehicle to vehicle (V2V) communication and has been widely

studied in the literature [5] and several solutions have been proposed [21–23].

This problem has been well studied in the context of MPC control strategies

[7, 8, 24], which have a natural advantage of using the predictive nature of MPC

and then sharing these predictions over the wireless channel, in order to im-

prove overall performance of the system.

2.2 Motivations

In more advanced versions of CACC, it is assumed that instead of sharing just

the current state of the lead vehicle, the whole motion policy predicted for a

time horizon be communicated. In this case, to guarantee safety the controller

has to maintain a distance between two vehicles while optimizing the defined

objective functions in MPC. Using this scheme, it can be shown that the con-

troller of the ego vehicle can generate a trajectory with better performance and

safety guarantees while minimizing the distance of two vehicles, resulting in a

greater highway usage [6].

CAVs have different applications that have been developed over the years and

field implementations of these applications have also been conducted to test

its effectiveness. Generally, three applications can be counted for CAVs [25]:

A. Vehicle Platooning: CAVs enables autonomous vehicles to form vehicle

platoons with shorter inter-vehicle distances. Because vehicles are closely

coupled with other vehicles in the platoon, the highway capacity is highly in-

creased, while the energy consumption is reduced due to diminishing the aero-

dynamic drags and unnecessary speed changes (which in turn enhances the



comfort). Up to now, many studies have been conducted to apply CAVs to ve-

hicle platooning [18].

B. Eco-Driving on Signalized Corridors: The cooperation between vehicles and

intersection management systems is a well-known area in intelligent trans-

portation systems recently. Nowadays, traffic signals are considered to be the

most common way to control the traffic at intersections. However, being a bot-

tleneck of the traffic flow and major contributor to the traffic accidents, many

efforts have been conducted to increase their efficiency by cooperative oper-

ations. According to National Highway Traffic Safety Administration (NHTSA),

40% of accidents and 21.5% of the corresponding fatalities that occurred in the

United States in 2008 were intersection-related. Researchers and practitioners

expect CAVs to take a significant percentage of automobile market by the year

2045. Most of the recent studies in the intersection management field have

been presented based on the emergence of CAVs. They focus on how to in-

tegrate traffic signal information into CAVs systems and therefore reduce the

overall energy consumption and waiting time. Many work referred this topic as

“Eco-driving on signalized corridor”, or “Eco-CACC” [26,27].

C. Cooperative Merging at Highway On-Ramps: Ramp metering is considered

as a commonly used method to regulate the upstream traffic flows on high-

way on-ramps. However, it also enforces a stop-and-go scenario, which re-

sults in extra energy consumption and time waste. Based on CAVs, many re-

searchers have developed advanced methodology to address this issue. Again

same as the previous application, CAVs technology has been widely adopted

to allow vehicles to merge with each other in a cooperative manner. A pioneer

proposed approach in this field maps a virtual vehicle onto the highway main

road before the actual merging happens, allowing vehicles to perform safer

and smoother merging maneuver [28].



2.3 Challenges and existing approaches

As described earlier, in ACC the ego vehicle relies on on-board sensors, such

as cameras and radar, to measure the state of the preceding vehicle when it

is recognized in the range of mounted sensors. With the introduction of V2V

communication, CAVs will have access to the predicted trajectory of the lead

vehicle which is beyond their direct measurement capabilities and promotes

the controller’s performance by obtaining the information that cannot be de-

tected by remote sensors. Clearly, this helps to enhance the sensing range of

CAVs, and can further benefit the whole CAVs systems.

However, because of the nature of wireless channel, this also brings up vari-

ous communication issues to CAVs systems. The V2V communication chan-

nel can be affected easily which in turn threatens the desired safety and effi-

ciency. PDR might fluctuate drastically even by changing the situation slightly.

The disturbances in the network that leads to packet loss can be caused by a

number of issues which can be categorized as follows [29]:

• Components of Network

– network bandwidth and congestion

– insufficient or damaged hardware

– software bugs

– security threats and . . .

• Surrounding Environment

– approaching vehicles

– constructions

– pedestrians and . . .



In the first category, packet loss is considered to be independent of the states

of the vehicles and it is irrelevant to the motion policy generated by the con-

troller. However, the second category is interconnected with the states of the

preceding and ego vehicles where the controller can affect the PDR directly

by changing the control input as its optimal policy. To the best of the author’s

knowledge, researchers consider that the PDR and the motion policy are in-

dependent (i.e. the first category) which is a common assumption while de-

signing a controller for the CAVs. In the literature of connected vehicles differ-

ent network conditions have been assumed that are classified into two main

groups:

2.3.1 Perfect wireless channel

This is the most common category between the others. The majority of the

work conducted in the CAVs assumes that the established channel between

the vehicles is perfect, meaning that packet loss does not occur at all.

Authors in paper [30] develop a fuel efficiency-oriented control problem for a

group of connected vehicles in the presence of a perfect wireless channel and

solve it by a distributed economic model predictive control (EMPC) approach.

They use traditional cost function to minimize the amount of fuel consumption

by optimizing the control input. They analyze the string stability of the system

by a car–tracking performance in the platoon defined in [31] as follows.

Definition 1: (tracking stability) A vehicle platoon is said to have tracking sta-

bility if for a step change of speed v0 at one time t, the system is asymptot-

ically stabilized to the equilibrium point, (i.e. each follower reaches the new

speed)

Definition 2: (predecessor–follower string stability). A vehicle platoon is said

to have predecessor–follower string stability if it has tracking stability and for



each vehicle, the position error of the platoon system satisfies

max
t>0
|δi(t)| 6 βi max

t>0
|δi(t− 1)|, ∀i ∈ {1, . . . , c} (2.1)

where i is the index of vehicles in the platoon with length c, βi ∈ (0, 1], and

δi(t) = xi−1(t) − xi(t) − di,i−1 shows the difference between the desired inter-

vehicular distance at time t, di,i−1, and current distance. xi−1(t) and xi(t) repre-

sent the location of the predecessor and ego vehicle at time t. The predecessor-

follower string stability is added as a constraint to the EMPC model to guaran-

tee the stability.

An Extended Linear-Quadratic Regulator (ELQR) was proposed by [32] in which

`∞-norm and `2-norm have been applied to enforce the string stability. The ex-

tension refers to the dynamical system given as

ẋi(t) = Aixi(t) +Biui(t) +Diai−1(t) (2.2)

with the cost function of

min Ji(xi(t),ui(t)) =

∫ ∞
0

xi(τ)TQixi(τ) + ui(τ)TRiui(τ)dτ (2.3)

The state and control input vectors are defined as xi(t) and ui(t), and ai−1(t)

show the acceleration/deceleration of the predecessor vehicle. By defining a

linear feedback and feed-forward controller as:

ui(t) = κTi,0xi(t) + κi,1ai−1(t) (2.4)

κ0,i is the feedback gain vector for deviation from equilibrium spacing, speed,

and acceleration. The Continuous Algebraic Recatti Equation (CARE) is used

to solve for the feedback gains:



Figure 2.1: Platoon of heterogeneous vehicles [1]

κTi,0 = −R−1
i BT

i Pi

κi,1 = −R−1
i BT

i [(Ai −R−1
i BiB

T
i Pi)

T ]−1PiDi

PiAi + ATi Pi − PiBiR
−1
i BT

i Pi = Qi

(2.5)

Authors in [33] have provided a closed-form analytical solution to involve the

rear-end safety constraint in an optimal control model. They have derived

a simple form of collision-free inequality which just takes into account the

states of the preceding and ego vehicles. The model has been given for ve-

hicles merging zone but the proposed framework is limited to the lower-level

individual vehicle operation control. The `2-norm of control input was consid-

ered as a performance index and they keep the dynamical system linear. To

find a closed-form solution the Hamiltonian equation is written from which the

Euler-Lagrange equations are driven. Another criterion for safety guarantee is

Constant Time Headway (CTH) which is adopted by [34] to provide the string

stability in the CAVs with a perfect wireless channel.

An H∞ control method for a platoon of heterogeneous vehicles with uncer-

tain vehicle dynamics and uniform communication delay (a platoon is said to

be homogeneous if all vehicles have identical system dynamics; otherwise it

is called heterogeneous) was presented in paper [1], see figure (2.1). The re-

quirements of string stability and tracking performance are included in the H∞

norm and a delay-dependent Linear Matrix Inequality (LMI) is derived to solve

the distributed controllers for each vehicle in the platoon.

The performance of the controlled platoon is theoretically analyzed by using a

delay-dependent Lyapunov function which includes a linear-quadratic function



of states. A uniform and constant time delays were considered where the Lya-

punov theorem and integral inequality are used to derive the delay-dependent

condition for H∞ performance of the vehicular platoon to synthesize a con-

troller. The proposed H∞ control method assures the platoon performances in

terms of string stability and tracking ability.

Several types of research from this group can be counted that have been con-

ducted in different applications such as intersection management [35, 36], col-

laborative merging vehicles [37], ocean resources exploration [38] and etc.

2.3.2 Wireless channel with time-varying delay

This group relates to the CAVs in which the communication channel experi-

ences a time-varying delay (packet loss) while sharing the predicted motion

policies between the members. Generally, there are two direct Lyapunov meth-

ods to analyze the performance and stability of the system when there is a

time-delay: Lyapunov-Krasovskii and Lyapunov-Razumikhin methods.

Authors in [12] have adopted the Lyapunov-Krasovskii method to involve time-

varying delays in a homogeneous vehicular platoon that affect the commu-

nication links. The following continuous-time system contains time-varying

delay τ(t) = t− tk:

ẋ(t) = Ax(t) +BKx(t− τ(t)), t ∈ [tk, tk+1) (2.6)

The Krasovskii method is a natural generalization of the direct Lyapunov method

for TDS (Time Delayed Systems). A system with time-varying bounded delay

τ(t) ∈ [0, h] and x(t) ∈ Rn

ẋ(t) = Ax(t) + A1x(t− τ(t)), t ∈ [tk, tk+1) (2.7)



is called asymptotically stable if

∃V (x(t)) > 0⇒ V̇ (x(t)) 6 −ψ|x(t)|2, ψ > 0 (2.8)

Differentiating candidate Lyapunov function V (x(t)) = x(t)TPx(t) along the

system (2.7) adds the term A1x(t − τ(t)) to V̇ (x(t)) which should be com-

pensated to guarantee the asymptotic stability condition (2.8). In Krasovskii

method the Lyapunov candidate function is changed to

V (t, x(t)) = x(t)TPx(t) +

∫ t

t−τ(t)

x(s)TQx(s)ds, P > 0, Q > 0 (2.9)

which results in the following LMI

W =

ATP + PA+Q PA1

AT1 P −(1− d)Q

 < 0 (2.10)

where τ̇ 6 d < 1 is a slowly-varying delay.

Theorem 1. (Lyapunov-Krasovskii Theorem [39]) Suppose f : Rn × C[−h, 0] →

Rn and u(s), v(s), w(s) : R+ → R+ are continuous non-decreasing, positive for

s > 0 and u(0) = v(0) = 0. The zero solution of ẋ(t) = f(t,x(t)) is uniformly

asymptotically stable if ∃V : R × C[−h, 0] → R+ a continuous positive-definite

functional u(||φ(0)||) 6 V (t, φ) 6 v(||φ||C) such that along the system (2.7)

V̇ (t,x(t)) 6 −w(||x(t)||).

Another research conducted in TDS with time-varying delays is [40] that ap-

plies the Lyapunov-Krasovskii method in a heterogeneous vehicular platoon.

The second method in the Lyapunov method is Lyapunov-Razumikhin. In [41]

a platoon control for a nonlinear dynamical system of a vehicle is investigated

where time-varying delay cases are considered. The authors derived an upper-

bound of time-delay for vehicle platoon with constant time delay and, also they



obtained sufficient condition for the stability of the vehicles by deploying the

Lyapunov-Razumikhin theorem.

Theorem 2. (Lyapunov-Razumikhin Theorem [42]) Suppose f : Rn × C[−h, 0]→

Rn and p(s), u(s), v(s), w(s) : R+ → R+ are continuous non-decreasing, pos-

itive for s > 0 and p(s) > s for s > 0, u(0) = v(0) = 0. The zero solution of

ẋ(t) = f(t,x(t)) is uniformly asymptotically stable if ∃V : R × C[−h, 0] → R+

a continuous positive-definite functional u(||x||) 6 V (t, φ) 6 v(||x||) such

that along the system (2.7) V̇ (t,x(t)) 6 −w(||x(t)||) if V (t + θ,X(t + θ)) <

p(V (t,x(t))), ∀θ ∈ [−h, 0], then the solution zero is uniformly asymptotically

stable and function V is called Lyapunov-Razumikhin.

The idea behind the Lyapunov-Razumikhin method is, if a solution begins in-

side the ellipsoid x(t)TPx(t) 6 δ, and is to leave this ellipsoid at some time t1,

then x(t1 + θ)TPx(t1 + θ) 6 x(t1)TPx(t1), ∀θ ∈ [−h, 0]. The sufficient condition

for Lyapunov-Razumikhin method results in the following LMI [39].

WR =

ATP + PA+ qpP PA1

AT1 P −qP

 < 0 (2.11)

for any q > 0 and p > 1.

2.3.3 Summary & Conclusions

The information transmission between vehicles will inevitably induce the phe-

nomenon of time delay due to the limited bandwidth (bandwidth is about through-

put. In networks, bandwidth refers to how much digital information we can

send or receive across a connection in a certain amount of time as is also re-

ferred to as data transfer rate) or the congestion of communication channels.

Time delay, which is known as a source of system instability, may degrade the

performance of the vehicle platoon and even cause the instability of the vehi-



cle string [41]. In addition to the different communication techniques and pro-

tocols and the capabilities of the installed receivers and transmitters, another

factor that causes time delay in the wireless channel is the state surrounding

environment.

Although the Lyapunov-based approaches attempt to analyze, for example,

stability in the presence of time delays, they make no assumptions about the

source of delays. Nor do they attempt to account for changes in delays due to

factors that are affected by the control algorithm itself. Generally, none of the

aforementioned studies take into account the environmental conditions and

the states of the communicating vehicles as an element in the communication

delay. The assumption that the packet delivery rate is independent of the state

vector of the ego vehicle is common in the literature. Nevertheless, the state

of the vehicles as the output of the controller has a direct effect on the time

delay. If the controller ignores this factor, it might generate a motion policy

that leads the vehicle to states that has a big delay or even fail the network

which in turn jeopardizes the string stability.

If the state of communication delay is predicted based on the surrounding en-

vironment how does this prediction affect the trajectory of the ego vehicle?

or what is the optimal motion policy of the ego vehicle? to the best of the au-

thor’s knowledge, this question has not been addressed in the literature.

Environmental conditions such as a bridge overpass, buildings, or other vehi-

cles impact the quality of the communication channel. Many of these condi-

tions involve multipath reflection, for example an adjacent semi-truck might

cause multipath interference between two communicating vehicles. In addi-

tion, the channel is affected by the trajectory of the vehicle itself, moving the

transceivers closer or farther apart might positively (or negatively) impact mul-

tipath reflection.

Furthermore, the states of the two vehicles that are communicating and also



their relative position have significant effects on the quality of the channel [43].

Ignoring this fact might cause a vehicle to generate a motion policy that re-

sults in a communication loss or a low-quality communication channel, which

in turn impacts transferring information from vehicle to vehicle. Lack of in-

formation about the trajectory of, for example, a lead car of a platoon, forces

the following vehicle to generate a more conservative motion policy to satisfy

safety constraints with a worst-case assumption about the lead vehicle’s fu-

ture trajectory, i.e. forward invariance set. This implies that the states of the

vehicles and Packet Delivery Ratio (PDR) depend on each other and varia-

tions of one will impact the other. Accordingly, to have optimal performance,

it is necessary to involve both elements in a single controller algorithm at the

same time. But the challenge is, the nature of MPC and the model governing

PDR are different. The MPC is defined based on existing dynamical system of

the agent and desirable cost function and different constraints which all are

model-based. On the other hand PDR is a data-driven variable and to date an

explicit mathematical model does not exist to describe it.

2.4 Proposed Methods

This dissertation addresses the challenges that arise due to the interplay be-

tween model-based and data-driven components that are increasingly preva-

lent in various control tasks. To address these challenges, the dissertation

develops two approaches:

GP-MPC: that is a methodology to build a proxy model to predict the wireless

channel and merges it with model predictive control to find an optimal trajec-

tory that not only optimizes the conventional costs including fuel consump-

tion, comfort, safety and etc, but also takes a further step to minimize the PDR

to guarantee the stream of information in the time steps beyond the time hori-



zon.

Learning Model Predictive Control: an iterative learning control that involves

a data-driven variable in model predictive control to find an optimal trajectory

for both the model and data-driven systems. GP-MPC needs a reference trajec-

tory to follow, also it requires more training samples and running time. Another

downside of using GP is that, even if the system has linear dynamics, adding

an estimation of wireless channel to the cost function will make the model

non-convex. Such a result is not desirable in terms of running time and solu-

tion quality. This algorithm start form an initial trajectory which is assumed

to be available in the beginning and exploits the generated full trajectories to

generate a better one. This algorithm learns from its previous outputs and im-

proves them.

DMPC: that is a generic methodology for MPC to take into account a data-

driven variables in its decision-making. The preliminary version of this algo-

rithm in the last part, can take into account just a limited number of discrete

values of data-driven variable, and increasing the this number will make the

modeling process a demanding job. Therefore, we first develop DMPC to tackle

a continuously changing data-driven variables while keeping its advantages

over GP-MPC.



Chapter 3

Gaussian Process-based Model

Predictive Controller for CAVs

3.1 Introduction

In this chapter, a data-driven Model Predictive Controller is presented that

leverages a Gaussian Process to generate optimal motion policies for con-

nected autonomous vehicles in regions with uncertainty in the wireless chan-

nel. The communication channel between the vehicles of a platoon can be

easily influenced by numerous factors, e.g. the surrounding environment, and

the relative states of the connected vehicles, etc. In addition, the trajectories

of the vehicles depend significantly on the motion policies of the preceding ve-

hicle shared via the wireless channel and any delay can impact the safety and

optimality of its performance.

In the presented algorithm, Gaussian Process learns the wireless channel

model and is involved in the Model Predictive Controller to generate a control

sequence that not only minimizes the conventional motion costs, but also min-

imizes the estimated delay of the wireless channel in the future. This results in

a farsighted controller that maximizes the amount of transferred information



beyond the controller’s time horizon, which in turn guarantees the safety and

optimality of the generated trajectories in the future. To decrease computa-

tional cost, the algorithm utilizes the reachable set from the current state and

focuses on that region to minimize the size of the kernel matrix and related

calculations. In addition, an efficient recursive approach is presented to de-

crease the time complexity of developing the data-driven model and involving

it in Model Predictive Control. We demonstrate the capability of the presented

algorithm in a simulated scenario.

GPs have been used to model the dynamics of different systems, for instance

leveraging Gaussian Processes to model cart-pole system and a unicycle

robot [44] and inverted pendulum [45]. The same approach of [15] is used,

which is an improvement to Probabilistic Inference for Learning Control (PILCO)

methodology initially presented in [44] that has the ability to propagate uncer-

tainty through the time horizon of a predictive controller and learn the parame-

ters of a LTI system.

However, PILCO and its variants are computationally expensive, and in the con-

text of CAVs it is not critical to learn a LTI system. Another challenge with the

majority of learning algorithms is that they often require too many trials to

learn. For example, learning the mountain-car tasks often requires hundreds

or thousands of trials, independent of whether using policy or value iterations,

or policy search methods [46, 47]. Thus the reinforcement learning algorithms

have limited applicability to many real-world applications, e.g. mechanical sys-

tems, especially if their system dynamics change rapidly (such as wearing out

quickly in low-cost robots) [44].

To decrease the size of the learned GP model in MPC, the concept of N-step

reachable set (see section( 3.3.2) for details) is used to focus on a small part

of the model required to find the optimal motion policy from the current state.

Also, the repetitiveness of the MPC is exploited to develop a recursive ap-



proach to decrease the computational burden of the GP in MPC. Furthermore,

the veloped approach learns the parameters of a wireless channel and inte-

grates this information with known or explicit dynamical models. Therefore,

the contributions of this approach are

1. a computationally efficient controller that leverages and extends state-

of-the-art learning algorithms, and

2. a control architecture for CAVs that accounts for communication uncer-

tainty in a locally optimal way.

3.2 Background: MPC scheme for CAVs

Consider a platoon of autonomous vehicles that generate their own optimal

motion policy and share it with other vehicles in the platoon through a wireless

communication channel.

Given a leader-following pair of vehicles, let xt ∈ Rn and ut ∈ Rm be the state

and control vectors of the ego, or following, vehicle at time step t. Its dynami-

cal system is given by:

xt+1 = f (xt, ut) . (3.1)

It is assumed that f : Rn × Rm → Rn is a smooth function. The smoothness

of a function is a property measured by the number of continuous derivatives

it has over some domain. At the very minimum, a function could be consid-

ered smooth if it is differentiable everywhere (hence continuous). In this dis-

sertation, it is assumed that, the function f is at least twice differentiable. In

the following, the model predictive controller of the ego vehicle is presented,

first, under the condition of perfect communication channel and then imper-

fect communication channel.



3.2.1 Perfect Communication Channel

In this case it is assumed that there is no delay in the wireless channel and the

sent packet from the predecessor vehicle, that contains its predicted trajectory

for N time steps in the future, is being received by the ego vehicle at no time.

The controller of the ego vehicle for this case is proposed as an MPC architec-

ture that solves the following finite-horizon optimization model with length of

N at time t:

min
ut
J = Q(xt+N |t) +

t+N∑
k=t

h(xk|t, uk|t) (3.2a)

s.t. xk+1|t = f
(
xk|t, uk|t

)
(3.2b)

xt|t = xt (3.2c)

Φ(xk|t, x
p
k|t) ≥ ϕ (3.2d)

xk|t ∈ X , uk|t ∈ U ∀k ∈ {t, . . . , t+N}. (3.2e)

where h(xk|t, uk|t) is the stage cost and defined as:

h(xk|t, uk|t) = ‖xk|t − xpk|t‖
2
R1

+ ‖xk|t − xrefk ‖
2
R2

+ ‖uk|t‖2
R3

(3.3)

and xk|t and uk|t are the state and control input vectors at step k predicted at

time t, respectively, which are shown as the solution of model (3.2):

xt =
[
xt+1|t, xt+2|t, ..., xt+N |t

]
ut = [ut|t, ut+1|t, ..., ut+N−1|t].

(3.4)

The receding horizon control law applies the first control input ut|t of ut to shift

the state of the system to xt+1|t, and the process is repeated again from t + 1.

The cost function includes four terms to track: the state of predecessor ve-

hicle xpk|t, a desired reference trajectory xrefk , minimal control effort, and mini-



mum terminal cost Q. The tuning positive (semi)definite matrices are defined

by R1, R2, and R3. The optimal state vector of the lead vehicle, xpk|t, is sent via

the wireless channel in the following packet

xpt =
[
xpt+1|t, x

p
t+2|t, ..., x

p
t+N |t

]
. (3.5)

The dynamical system and the initial condition are represented by (3.2b) and

(3.2c). Constraint (3.2d) enforces the safety conditions which can be defined

simply as a minimum euclidean distance or as the Time To Collision factor

that cannot be less than a given parameter ϕ

Φ(xk|t, x
p
k|t) =


∞ vpk|t ≥ vk|t

dk|t
vk|t−v

p
k|t

vpk|t < vk|t.

(3.6)

vk|t and dk|t are the velocity of the ego vehicle and its euclidean distance from

its predecessor at time step k predicted at time t. It is assumed that there is a

feasible trajectory from the initial state to the terminal state at time step t.

Equation 3.6 can be easily changed in standard form using a Boolean variable

αk|t ∈ {0, 1} and a big numberM as the following form:

Mαk|t +
dk|t

vk|t − vpk|t
(1− αk|t) ≥ ϕ (3.7a)

vk|t ≤ vpk|t +M(1− αk|t) (3.7b)

vk|t > vpk|t −Mαk|t (3.7c)

In this scheme (3.2), it is assumed that the communication channel is perfect

(common in literature, e.g. [35]), which means that the trajectory of the pre-

decessor vehicle xpk|t,∀k ∈ {t, . . . , N + t} is transferred without any delay to

the ego vehicle at the beginning of each time step, t. In this dissertation, this



assumption will be relaxed to capture the uncertainty of the wireless commu-

nication channel.

3.2.2 Imperfect Communication Channel

The communication channel can be impacted by numerous factors such as

relative states of the connected vehicles, surrounding infrastructure and vehi-

cles, free space disturbances, etc. The predicted state vector of the commu-

nication channel established between the ego vehicle and its predecessor is

defined as

wt = [wt+1|t, wt+2|t, . . . , wt+N |t]. (3.8)

wt+k|t shows the prediction for the packet delivery time of time step k + t be-

tween two vehicles calculated at time t (i.e. the inverse of packet delivery rate,

PDR).

The question that we address in this section is “How does predicted delivery

time affect the policy of the ego vehicle, and how can this delivery time be in-

volved in the optimization model of the controller?" If the estimated delivery

time wt+k|t is greater than the length of the time step used for the discretized

dynamics in the general MPC formulation, there will be an estimated delay at

time step t + k. In this case, the ego vehicle should use the most recent avail-

able packet, at time t+ k − 1, sent from the lead vehicle.

Due to the uncertainty in the delivery time of the packets, the ego vehicle can

receive several packets at a single time step, {xpt1 , x
p
t2 , , ..., x

p
tm}, where t1 < t2 <

... < tm 6 t + k. Because the packet containing xptm is the most up-to-date

(though not necessarily current at time t + k), it is used to calculate the motion

policy of the ego vehicle.

xptm = [xptm|tm , x
p
tm+1|tm , . . . , x

p
tm+N |tm ]. (3.9)



Nevertheless, at time step t+ k, the first t+ k − tm states in this packet belong

to the past and are not useful anymore and should be neglected. Therefore,

the useful packet shrinks to:

xptm = [xpt+k|tm , x
p
t+1|tm , . . . , x

p
tm+N |tm ]. (3.10)

The length of this packet determines the applicable time horizon in the model

predictive controller that the ego vehicle can consider to involve the trajectory

of the lead vehicle:

Nt+k = tm +N − (t+ k). (3.11)

where Nt+k denotes the length of time horizon at time t + k, Nt+k 6 N . In-

creases in the value of wt+k|t decreases tm, which in turn decreases the length

of the useful time horizon Nt+k. Fewer useful states from the lead vehicle

causes the ego vehicle to take more conservative policies to satisfy the safety

constraints, and this approach results in more cost for the entire whole tra-

jectory; i.e. the controller might find local optima due to lack of longer-term

information.

In this section, awareness of the cost is added to physical system performance

due to communication delays, which updates the cost function of model (3.2)

to:

min
ut

J = Q(xt+N |t) +
t+N∑
k=t

[h(xk|t, uk|t) + y(wk|t)], (3.12)

in which y is a positive definite function. Adding a notion of the packet delivery

time of the wireless channel to the cost function of the model equips the sys-

tem with a farsighted controller to guarantee the availability of the packet with

a maximum possible length at each time step in the future, ultimately resulting

in a safer and more optimal motion policy. Therefore, the objective function

includes the cost of the delay in communication channel for the trajectories

that result in a low quality state of communication channel, ωt+k|t. Thus, the



optimality condition forces the model to generate trajectories with desirable

quality of the communication while satisfying the constraints. In the next sec-

tion, the Gaussian Processes is used to estimate the state of wireless channel

at each time step, wk|t, as a function of the states of two connected vehicles.

3.3 Gaussian Process for CAVs

In this section, the main components of Gaussian Processes for connected

autonomous vehicles will be presented and it will be shown that how it is in-

volved in model predictive control. Later in the section, an efficient recursive

approach will be developed to improve the time complexity of the presented

algorithm.

3.3.1 Probabilistic Model for Wireless Channel

Assume that the delay of packet delivery from the lead vehicle to the ego vehi-

cle at time t can be described by the following unknown function

ωt = Ω(xt, x
p
t , e) + ε (3.13)

where e show the external environment and ε is noise ε ∼ N (0, σ2
ε). In this

paper, a Gaussian Process setting is considered where deterministic control

inputs ut that minimize the expected long-term cost is sought.

min
ut

{
Jt→t+N +

t+N∑
k=t

y(Eωk|t [ωk|t])
}
. (3.14)

Jt→t+N denotes the conventional cost function in MPC, i.e. equation (3.2a),

and y(Eωk|t [ωk|t]) denotes the cost of expected delay in packet delivery at time



step k predicted at time t. To implement the GP the following augmented vec-

tor is used as training inputs:

x =

 x
xp

 , x ∈ R2n (3.15)

In this vector, x and xp indicate the state of ego vehicle and the state of lead

vehicle associated with x, and ω ∈ R≥0 as training target. A GP as a probabilis-

tic, non-parametric model can be fully specified by a mean functionm(·) and

a covariance function k(·, ·) which is defined as squared exponential (Radial

Basis Function, RBF):

k(x, x′) = σ2
Ωexp

(
− 1

2
(x− x′)TL−1(x− x′)

)
. (3.16)

where σ2
Ω is signal variance, and L = diag([`2

1, . . . , `
2
2n]) with length-scales

`1, . . . , `2n.

Assuming that there are r training inputs and corresponding training targets,

X = [x1, . . . , xr]T and ωωω = [ω1, . . . , ωr]
T are collected. Given the test input de-

noted x∗, the posterior predictive distribution of ω∗ is Gaussian p(ω∗|x∗,X,ωωω) =

N
(
ω∗|m(x∗), σ2(x∗)

)
where

m(ω∗) = k(X, x∗)T (K + σ2
ε I)−1ωωω, (3.17)

σ2(ω∗) = k(x∗, x∗)− k(X, x∗)T (K + σ2
ε I)−1k(X, x∗). (3.18)

K is the Gram matrix with entries of Ki,j = k(xi, xj) [48].

It is assumed that p(xk|t) = N (xk|t|µµµt,ΣΣΣt), where µµµk|t and ΣΣΣk|t are the mean

and covariance of xk|t. From equation (3.17), the cost function (3.14) can be



rewritten as

min
ut

Jt→t+N +
t+N∑
k=t

y
(
k(X, xk|t)T (K + σ2

ε I)−1ωωω
)
, (3.19)

where xk|t is the aggregated vector including the state vectors of the ego and

lead vehicles. The first n elements of this vector (i.e. test input) in (3.15) be-

longs to the ego vehicle and will be decided by the model predictive controller

such that the overall cost takes a minimum value. The constraints (3.2b)-

(3.2e) hold for this cost function. After finding the best control input vector

ut, the first control action, ut|t, is applied and the state of the ego vehicle is up-

dated to xt+1|t.

3.3.2 Efficient Recursive GP-MPC

The GP-MPC algorithm needs to invert the Gram matrix, K, in cost function

(3.19), which has time complexity of O(r3), where r is the number of training

data. For large training sets (ten thousands or more) construction of GP re-

gression becomes an intractable problem. The time complexity of the algo-

rithm is improved in this section by leveraging the concept of Reachable Set to

decrease the size of matrix K.

Definition 1 (one-step reachable set B): For the system (3.1), the one-step

reachable set from the set B is denoted as

Reach(B) =
{
x ∈ Rn : ∃x(0) ∈ B, ∃u(0) ∈ U , s.t. x = f(x(0), u(0))

}
(3.20)

Reach(B) is the set of states that can be reached in one time step from state

x(0). N -step reachable set are defined by iterating Reach(.) computations [49].

Definition 2 (N-step reachable setRN(X0)): For a given initial set X0 ⊆ X , the

N -step reachable setRN(X0) of the system (3.1) subject to constraints (3.2d)

and (3.2e) is defined as [49]:



Rt+1(X0) = Reach(Rt(X0)), R0(X0) = X0, t = {0, . . . , N − 1} (3.21)

To calculate the N−step reachable set from the initial state xt RN(xt), two

finite time optimal control problem can be built to determine the boundaries

for each desirable state. In this application, we are interested in states x and y.

The cost functions of this OCP is defined as minut min{xt+k|t, ∀k}, where all

the constraints hold. The optimal value for the cost function shows the lowest

value that is reachable in N time steps for state x. Similarly, another optimal

control problem with the cost function of minut −max{xt+k|t, ∀k} is built to

find the maximum reachable value for state x. After finding the minimum and

maximum values for states x and y, the data-driven system is called to sample

from this limited range.

Using the N-step Reachable Set concept, sub-matrix K̄(t) is defined that is ex-

tracted from matrix K

K̄i,j(t) = {k(xi, xj)|xi, xj ∈ RN(xt) ∩ X}. (3.22)

This will result in the following cost function

min
ut

Jt→t+N +
t+N∑
k=t

y
(
k(X̄t, xk|t)T (K̄(t) + σ2

ε I)−1ω̄ωωt
)
, (3.23)

where X̄t = {x|x ∈ RN(xt) ∩ X} and ω̄ωωt is the associated training output. As-

sume that the sampling has been executed randomly and for each time step, ν

samples are available on average. The number of training data extracted from

the overall training data, X, would be νN , where νN � r. Constructing the

sub-matrix K̄(t) is straightforward and can be implemented based on the state



vector of lead vehicle, xp, and the defined safety constraint (3.2d).

Lemma 1. Given Matrix K̄(t−1) denoting the sub-matrix extracted from matrix K

and containing N-step Reachable Set at time step t−1, and its inverse K̄−1
(t−1),

then K̄−1
(t) can be calculated in O(ν3N2) time.

Proof. In the given matrix K̄(t − 1), ν training data representing the wireless

channel at time step t − 1 should be removed because the controller has im-

plemented one step of control input, ut|t. In addition, training data representing

time step t + N that is obtained fromRN(xt) should be added to the matrix.

The result of these two steps will be matrix K̄(t). According to the approach, ν

training data will be removed and added, which keep the size of matrix K̄−1
(t)

the same, νN .

The Sherman–Morrison formula [50] is used to find K̄−1
1̄,1̄(t − 1) (i.e. matrix

K̄−1
(t− 1) that its first column and row are removed) from K̄−1

(t− 1). Based on

this formula

K̄−1
1̄,1̄(t− 1) =

(
K̄(t− 1)− pqT

)−1

1̄,1̄
. (3.24)

where p and q are defined as: p = K̄1(t − 1) − e1, and q = e1, (ei is ith canonical

column vector). The right hand side of equation (3.24) can be expanded as:

(
K̄(t− 1)− pqT

)−1

1̄,1̄
= K̄−1

(t− 1) +
K̄−1

(t− 1)pqT K̄−1
(t− 1)

1− qT K̄−1
(t− 1)p

. (3.25)

1 − qT K̄−1
(t − 1)p is assumed to be invertible. This term can be calculated in

O(ν2N2), which comes from multiplication of the square matrix K̄−1
(t− 1) with

dimension (νN × νN) and vector p and qT . We denote the new training set as

X̄′t−1, that has one less training data than X̄t−1.

In the second step, a new training data, x, is added.



M :=

 K̄1̄,1̄(t− 1) k(X̄′t−1, x)

k(X̄′t−1, x)T k(x, x)

 (3.26)

Now, given K̄−1
1̄,1̄(t− 1), we can find the inverse of matrixM by using Schur com-

plement [51]. The Schur’s complement of K̄1̄,1̄(t− 1) in matrixM is given by:

M/K̄1̄,1̄(t− 1) := k(x, x)− k(X̄′t−1, x)T K̄−1
1̄,1̄(t− 1)k(X̄′t−1, x) (3.27)

Assuming thatM/K̄1̄,1̄(t − 1) is invertable,M−1 can be calculated in O(ν2N2)

as:

M−1
2,2 = (M/K̄1̄,1̄(t− 1))−1 (3.28)

M−1
2,1 = −M−1

2,2k(X̄′t−1, x)T K̄−1
1̄,1̄(t− 1)

M−1
1,2 = −K̄−1

1̄,1̄(t− 1)k(X̄′t−1, x)M−1
2,2

M−1
1,1 = K̄−1

1̄,1̄(t− 1)−M−1
1,2k(X̄′t−1, x)T K̄−1

1̄,1̄(t− 1). (3.29)

Removing and adding a row and a column both are calculated in O(ν2N2).

These two steps should be repeated for ν times, which yields to time complex-

ity of O(ν3N2).

Details of the algorithm are presented in Algorithm (1).

3.4 Example Scenario - Uncertain Communication Channel

In this chapter, GP-MPC method is applied on two connected vehicles and it

is assume that there is a region where the packet delivery rate is impacted

significantly; this region is unknown a priori by the controller. The expected

packet delivery time of the wireless channel between two connected vehi-

cles is demonstrated by contour plot in Figure (3.1). Wireless channel model



Algorithm 1 : Calculating K̄−1
(t) from K̄−1

(t− 1)

1: load training data X, K̄(t− 1) and K̄−1
(t− 1)

2: X̄t ← RN(xt) ∩ X
3: X̄′t−1 ← X̄t−1

4: calculate K̄(t), equation (3.22)
5: E ← K̄(t− 1), E−1 ← K̄−1

(t− 1)
6: for all i = 1 : ν do
7: p← E − e1, and q = e1

8: E−1
1̄,1̄
← (E − pqT )−1

1̄,1̄
, equations (3.24),( 3.25)

9: X̄′t−1 ← X̄′t−1 − X̄′t−1{1}
10: load new training data x from X

11: E ←
[

E1̄,1̄ k(X̄′t−1, x)

k(X̄′t−1, x)T k(x, x)

]
12: calculate k(X̄′t−1, x) and k(x, x)

13: S ← k(x, x)− k(X̄′t−1, x)TE−1
1̄,1̄
k(X̄′t−1, x), equation (3.27)

14: M−1
2,2 ← S−1

15: M−1
2,1 ← −M−1

2,2k(X̄′t−1, x)TE−1
1̄,1̄

16: M−1
1,2 ← −E−1

1̄,1̄
k(X̄′t−1, x)M−1

2,2

17: M−1
1,1 ← E−1

1̄,1̄
−M−1

1,2k(X̄′t−1, x)TE−1
1̄,1̄

18: E−1 ←
[
M−1

1,1 M−1
1,2

M−1
2,1 M−1

2,2

]
19: X̄′t−1 ← X̄′t−1 ∪ x
20: end for
21: K̄−1

(t)← E−1

22: K̄(t)← E
23: X̄t ← X̄′t−1



is learned by Gaussian Processes and according to Algorithm (1) in section

(3.3.2). After obtaining the necessary training input for state xt, X̄t, the inverse

of associated kernel matrix K̄−1
(t) is calculated according to Lemma (1). Fi-

nally, the cost function (3.23) is built, and the GP-MPC proceeds by solving a

sequential quadratic program.

In the following example scenario,

In this leader-follower scenario, the vehicles dynamics are formulated as a Lin-

ear Time Invariant (LTI) system xt+1 = Axt+But, ∀t, where xt = [xt ẋt]
T , ut = ẍt

and

A =

1 dt

0 1

 and B =

dt22

dt

 . (3.30)

The system is subject to input saturation and it is assumed that the lead ve-

hicle has a constant velocity 5m/s and the ego vehicle should keep the safe

distance of at least ϕ = 2m form the lead vehicle, Φ(xk|t, x
p
k|t) ≥ 2, which is en-

forced by constraint (3.2d). The time horizon is considered to be N = 10 and

the length of each time step is dt = 1s. The upper and lower bound values of

the state and input values are ẋt ∈ [3, 10] and ẍt ∈ [−3, 2].

The trajectory of the lead vehicle is depicted by a red line in Figure (3.1), and

a controller is developed that finds an optimal trajectory for the ego vehicle

that not only minimizes the conventional motion cost, but also minimizes

the expected delay time in the packet delivery (recalling again that the con-

troller knows nothing about the contours in Figure (3.1) in advance). The blue

line shows the optimal trajectory generated by GP-MPC for the ego vehicle.

It can be seen from the second Figure (3.2) that, to maintain adequate wire-

less channel status (and to optimally balance control cost, safety, wireless

performance, and do this as fast as possible), the ego vehicle decelerates

to increases its distance from the lead vehicle. This policy sacrifices a bit of

short-term performance in order to maintain connectivity, improving situa-



Figure 3.1: Optimal trajectory of ego vehicle generated by GP-MPC to avoid a
region with a considerable delay time in packet delivery.

tional awareness and ultimately long-term performance.

3.5 Conclusions

In this chapter, an efficient Model Predictive Control algorithm based on Gaus-

sian Processes is presented to account for uncertainty in the communication

channel of motion policies in connected vehicle applications. The presented

algorithm learns the wireless channel model in terms of expected packet deliv-

ery time by leveraging Gaussian Processes. Due to the substantial amount of

available training data, the obtained GP model is very large and computation-

ally expensive to deal with.

To solve this problem, the algorithm focuses on the N-step reachable set from

the current state of the ego vehicle as the useful training data set. This de-

creases the size of the required training data for the current state of the vehi-

cle dramatically. Subsequently the resultant kernel matrix would be substan-



Figure 3.2: Optimal control input ẍt, state ẋt and inter-vehicular distance dt
over the time horizon.

tially smaller than the original Gram matrix, which needs less computational

effort to be inverted and multiplied. In addition, because a major part of the

computation involved in GP is conducted to find the inverse of the kernel ma-

trix, the controller exploits the recently calculated and readily available inverse

of the kernel matrix from the previous state. The Sherman-Morrison formula

and Schur complement were used to find the inverse of the current kernel ma-

trix after updating the training data set. These steps decrease the running time

to find the expected packet delivery time of the wireless channel for the given

time horizon N from O(r3) to O(ν3N2) where r and ν are the number of overall

training data and drawn data for a single time step, respectively, and νN � r.

To demonstrate the approach, a simulation of a leader-follower scenario for

two connected autonomous vehicles is developed and the results of the algo-

rithm presented.



Chapter 4

Learning Model Predictive Control

for CAVs

In chapter (3), GP-MPC algorithm was developed to address the problem of

involving the variations of wireless channel as a proxy model of states of two

communicating vehicles and surrounding environment into the conventional

model predictive control setting. The presented technique works, but there are

few disadvantages in this approach:

• In the case of controlling a linear system, GP will transform the prob-

lem to a nonlinear optimal control model, which is a negative point for

GPMPC.

• GPMPC needs lots of data to create a proxy model for the unknown model

and providing a big state space will make GP intractable to handle. This

problem was partially overcome by by developing a recursive approach

to calculate the kernel matrix and confining the state space by the con-

cept of N-step reachable set, but it still demands lots of effort.

• It is not easy to study the asymptotic stability of the equilibrium point

and feasibility of the trajectory from the initial state to the terminal state,



beyond the time horizon.

• GP-MPC, similar to MPC, is unable to observe the state space beyond the

time horizon. This causes a local optimal trajectory in MPC (and in some

cases infeasible trajectory), because the controller assumes a euclidean

cost that is a naive alternative for cost from the state of the end of time

horizon, xt+N |t, and the terminal state, xF .

In this chapter, Learning Model Predictive Controller (LMPC) [52] is presented

and tailored to Connected Autonomous Vehicles (CAVs) applications. This

algorithm is developed for the wireless channel with a limited number of dis-

cretized PDR values. This assumption will be removed in the next chapter. The

proposed controller builds on previous work on nonlinear LMPC, adapting its

architecture and extending its capability to account for data-driven decision

variables that derive from an unknown or unknowable function. The chapter

presents the control design approach, and shows how to recursively construct

an outer loop candidate trajectory and an inner iterative LMPC controller that

converges to an optimal strategy over both model-driven and data-driven vari-

ables. Simulation results show the effectiveness of the proposed control logic.

In this chapter, recent advances in data-driven MPC [52–54] are leveraged

that learn from previous iterations of a control task and provide guarantees on

safety and improved performance at each iteration. In particular, a formulation

of MPC for vehicle platooning is introduced that accounts for imperfect com-

munication, and then a LMPC control scheme is designed that leverages the

notion of predictive capability for wireless channel quality, in order to obtain

better platoon performance. The contributions of this chapter are:

1. formulation of a (L)MPC problem that can handle decision variables or

objective functions that derive from an unknown or unknowable function,

for example variables that are generated by an artificial neural net, and



2. extension of LMPC, adapted to handle dynamic environments and/or

time-evolving constraints, in a computationally tractable manner.

In this chapter, finding a solution for the following infinite time optimal control

problem is of interest:

min
u
J(xS) =

∞∑
k=0

h(xk, uk) (4.1a)

s.t. xk+1 = f (xk, uk) , ∀k ≥ 0 (4.1b)

x0 = xS (4.1c)

Φ(xk, x
`
k) ≥ ϕ, ∀k ≥ 0 (4.1d)

xk ∈ X , uk ∈ U , ∀k ≥ 0. (4.1e)

4.1 Preliminaries of Learning Model Predictive Control

This section is based on the original work of [52]. Beginning with a discrete

time system

xt+1 = f (xt, ut) , (4.2)

where x ∈ Rn and u ∈ Rm are the system state and input, respectively, as-

sume that f(·, ·) is continuous and that state and inputs are subject to the con-

straints

xt ∈ X , ut ∈ U , ∀t ≥ 0, (4.3)

LMPC solves the following infinite horizon optimal control problem iteratively:

J∗0→∞ = min
u0,u1,...

∞∑
k=0

h (xk, uk) (4.4)

s.t. xt+1 = f (xt, ut) ∀k ≥ 0 (4.4a)

x0 = xS (4.4b)

xk ∈ X , uk ∈ U ∀k ≥ 0 (4.4c)



where equations (4.4a) and (4.4b) represent the system dynamics and the ini-

tial condition, and (4.4c) are the state and input constraints. LMPC assumes

that the stage cost h(·, ·) in equation (4.4) is continuous and satisfies

h (xF , 0) = 0 and h
(
xjt , u

j
t

)
� 0 ∀xjt ∈ Rn \ {xF} , ujt ∈ Rm \ {0} (4.5)

where the final state xF is a feasible equilibrium for the unforced system (4.2)

f(xF , 0) = xF .

At the jth iteration of LMPC, the vectors

uj =
[
uj0, u

j
1, . . . , u

j
t , . . .

]
(4.6a)

xj =
[
xj0, x

j
1, . . . , x

j
t , . . .

]
(4.6b)

collect the inputs applied to system (4.2) and the corresponding state evolu-

tion. In (4.6), xjt and u
j
t denote the system state and the control input at time t

of the jth iteration. It is assumed that at each jth iteration, the closed loop tra-

jectories start from the same initial state

xj0 = xS, ∀j ≥ 0. (4.7)

4.1.1 Sampled Safe Set

A key notion of LMPC is that it exploits the iterative nature of control design.

For every kth iteration that successfully steers the system to the terminal point

xF (i.e.,∀k : limt→∞ x
k
t = xF ), the trajectory xk is a subset of sampled Safe Set

Sj , which is defined as:

Sj =

{ ⋃
i∈Mj

∞⋃
t=0

xit

}
(4.8)



where

M j =
{
k ∈ [0, j] : lim

t→∞
xkt = xF

}
(4.9)

Sj is the collection of all state trajectories at iteration i for i ∈ M j . M j in (4.9)

is the set of indices k associated with successful iterations of MPC for k < j.

It follows that S i ⊆ Sj ∀i ≤ j. Sj is a subset of the maximal stabilizable set

because, for every point in the set, there exists a feasible control action that

satisfies the state constraints and steers the state toward xF .

4.1.2 Iteration Cost

Function Qj(·) is defined over Sj that assigns to every point in Sj the minimum

cost-to-go along the trajectories in sampled safe set,

Qj(x) =


min

(i,t)∈F j(x)
J it→∞(x), if x ∈ Sj

+∞ if x /∈ Sj
(4.10)

where F j(·) is

F j(x) =
{

(i, t) : i ∈ [0, j], t ≥ 0 with xit = x; ∀xit ∈ Sj (4.11)

In other words, for every x ∈ Sj , Qj(x) not only assigns the optimal cost-to-go

but also the pair (i, t) that indicates the optimal iteration number in LMPC as

well as the optimal time-to-go for that state.

4.1.3 LMPC Formulation

LMPC tries to find a solution for the infinite time optimal control problem (4.4)

by solving the following constrained finite time optimal control problem at



each time step, t of iteration j:

Jt→t+N(xjt) = min
ut|t,...,ut+N−1|t

t+N−1∑
k=t

h
(
xk|t, uk|t

)
+Qj−1(xt+N |t) (4.12)

s.t. xk+1|t = f
(
xk|t, uk|t

)
∀k ∈ {t, . . . , t+N − 1} (4.12a)

xt+N |t ∈ Sj−1 (4.12b)

xt|t = xjt (4.12c)

xk|t ∈ X , uk|t ∈ U ∀k ∈ {t, . . . , t+N − 1} (4.12d)

where (4.12a) and (4.12c) represent the dynamics of the system and initial

condition, respectively. The feasibility conditions on state and control vectors

are imposed by (4.12d). The constraint (4.12b) forces the controller to select

the terminal state from the safe set Sj−1. The optimal solution for this model

are shown as:

xjt:t+N |t = [x∗,jt , . . . , xjt+N |t] (4.13a)

ujt:t+N |t = [ujt|t, . . . , u
j
t+N−1|t]. (4.13b)

Being MPC, the first control input from vector ujt:t+N |t is applied to the system:

u∗,jt = ujt|t, x∗,jt+1 = xjt+1|t. (4.14)

Again, the finite time optimal control problem 4.12 is solved at time step t +

1 using the newly update state x∗,jt+1 and so on. This process of iteration will

result in a moving or receding horizon control strategy.

Assumption 1: At the first iteration, it is assumed that S0 is non-empty set, and

the provided trajectory from the initial state to the terminal state is feasible

and convergent to the terminal state.

This assumption is not restrictive in practice and can be generated easily in



different applications. Sequences of finite time optimal control model can

be used to drive the system from the initial state to the terminal state by ran-

domly selecting a number of final states for each of these models. For exam-

ple, in an autonomous vehicle case, the car can be run by following a reference

path in a very low speed to obtain a feasible sequence of states and control

inputs.

It can be shown [52] that, using the above notions of sampled safe set and

iteration cost, the jth iteration cost is nonincreasing at each iteration and that

the LMPC formulation is recursively feasible (state and input constraints at the

next iteration are satisfied they are satisfied at the current iteration).

4.2 Learning Model Predictive Control for CAVs

The original LMPC formulation presented above is designed for an entire tra-

jectory from an initial state to a final state, in a static environment. As those

authors acknowledge, LMPC is computationally expensive; in addition, LMPC

cannot be applied in a dynamic environment in its original form. To overcome

these limitations, we propose two concepts. The first notion involves encoding

the dynamics of obstacles both in the constraints and the objective function

of the optimization problem. In addition, LMPC is reformulated from an end-to-

end planning problem (i.e. find an optimal trajectory from xS → xF ), which typi-

cally has better performance in terms of the number of required iterations and

degree of optimality, as the planning horizon, N , increases [55]. In a dynamic

context, a shorter planning horizon trades convergence to global optima with

the ability to overcome computational issues with LMPC in general.

In addition, LMPC is extended to account for decision variables with unknown

dynamics or data-driven approximations. The control architecture includes

a (nominal) outer loop, or high level, motion planner that generates a candi-



date set of feasible trajectories. LMPC works on the inner loop to converge to

a feasible trajectory with optimal (or improved) performance over data-driven

decision variables.

The presented approach assumes the existence of a feasible trajectory from

the current state of the ego vehicle (i.e. the follower), xt → xt+N at the first

iteration but with no assumptions on optimality, given as

x0
t = [x0

t|t, x
0
t+1|t, . . . , x

0
t+N |t] (4.15a)

u0
t = [u0

t|t, u
0
t+1|t, . . . , u

0
t+N−1|t] (4.15b)

where x0
k|t and u0

k|t are the state and control input vectors of the ego system

at time k that have been calculated at time step t. The superscript shows the

iteration number of LMPC, which starts from 0 and is denoted by index j ∈

{0, 1, . . . }. The presented algorithm keeps only a record of successful iter-

ations in this set. The information of each trajectory is saved in set S if it is

completed successfully, which implies no collisions but not necessarily opti-

mality. Given an arbitrary, feasible initial trajectory stored in S0, the dynamic

safe set is iteratively built as

Sj =

{
N⋃
k=1

xjt+k|t

∣∣∣ xjk ∈ X , ujk ∈ U , ∀k ∈ {t, t+ 1, . . . , t+N}

}
∪ Sj−1 (4.16)

where x ∈ X includes the dynamic constraints on state imposed by the time-

to-collision for the predicted leader trajectory at time t.

The cost-to-go of state xk|t is denoted by q(xk|t|x`∗k→N |t) and is defined as “the

trajectory cost of the ego system from x(k|t) to x(k+N |t) given that the states

of the leading vehicle are [x`∗k|t, ..., x
`∗
N |t]". A backward calculation is applied to

find the cost-to-go for each state in set Sj . To start, qj(xjN |t|x`∗N |t) can be ap-
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Figure 4.1: Workflow of the presented Control
Architecture: for each t in the nominal MPC outer loop, the algorithm

computes N − ν shorter, receding-horizon runs over data-driven decision
variables

proximated by path planning algorithms [56] or simply assumed 1-norm dis-

tance between two vehicles at time step N .

qj(xjk|t|x
`∗
k→N |t) = h(xjk|t, u

j
k|t) + qj(xjk+1|t|x

`∗
k+1→N |t) (4.17)

for k = {N − 1, ..., t}, and where h(xjk|t, u
j
k|t) is the stage cost and is defined as

the cost of control effort to transfer the state of the system from xjk|t to x
j
k+1|t

by applying input ujk|t at iteration j and time k. The overall performance of the

controller at iteration j occurs when k = t.

The formulation for ego vehicle in a platoon takes the form of the following

constrained mixed integer optimization problem (MINLP) that uses the generic

form of problem (4.1), with two notable exceptions. First the time horizon is

modified, and significantly for the purposes of computation shortened: {t +

τ, t + τ + 1, ..., t + τ + ν}, where ν < N is the time horizon for inner loop

iterations to explore the states in which the wireless channel has zero PDR and

t + τ is the starting time, for all τ = {0, 1, ..., N − ν}. Figure (4.1) illustrates the

explained futures of the algorithm.



The objective function is modified to

J jt+τ→t+τ+ν(x
j
t+τ ) =

t+τ+ν−1∑
k=t+τ

‖xk+1|t − x`∗k+1|t‖2
P1

+ ‖uk+1|t‖2
P2

+

j−1∑
i=0

N∑
r=0

zirq
i(xit+r|t|x`∗t+r→N |t) (4.18)

All of the constraints (4.1b)-(4.1e) hold, given appropriate sets k ∈ {t+τ, . . . , t+

τ − ν}.

Finally, to force the controller to select the final state from the safe set the fol-

lowing constraints are added:

xt+τ+ν|t =

j−1∑
i=0

N∑
r=0

zirx
i
t+r|t (4.19a)

j−1∑
i=0

N∑
r=0

zir = 1 (4.19b)

zir ∈ {0, 1},∀i = {0, .., j − 1}, ∀r = {0, ..., N} (4.19c)

The following vectors show the optimal solution for this model:

Xt+τ = [xt+τ+1, xt+τ+2, ..., xt+τ+ν ]

Ut+τ = [ut+τ , ut+τ+1, ..., ut+τ+ν−1]

(4.20)

This model assigns a binary decision variable, zir , to each of the states in Sj

(4.16) and selects one of them as the terminal state, (4.19a). Because only

one of these states can be chosen as the terminal state xt+N |t, the summa-

tion of the binary variables should be exactly one, as shown in (4.19b). The last

term of the objective function (4.18) determines the best value for cost-to-go

qj(xjt+r|t|x`∗t+r→N |t) and its associated state. Assuming that the optimal state in

set Sj is xi∗t+r∗|t, the solution for system state is the vector

xt+τ+ν = xi
∗

t+r∗|t (4.21)



After finding the optimal solution as an MINLP model, the first step of the con-

trol input vector, Ut+τ , is implemented and the related state and control vectors

are saved in the trajectory of iteration j:

xjt+τ+1|t = xt+τ+1

ujt+τ |t = ut+τ
(4.22)

The updated trajectory in the current iteration, j, is as follows (notice the slightly

different symbol for x and u, indicating the first step of the receding horizon

LMPC along the time-shift τ ):

xjt = [xjt+1|t, x
j
t+2|t, . . . , x

j
t+τ+1|t]

ujt = [ujt|t, u
j
t+1|t, . . . , u

j
t+τ |t] (4.23)

for τ = {0, 1, ..., N − ν}.

Similar to the previous chapter, it is assumed that given a trajectory, there is

a data-driven system that is able to predict the packet delivery rate for each

states.

ωωωjt+τ :t+τ+ν|t = [ωjt+τ |t, ω
j
t+τ+1|t, . . . , ω

j
t+τ+ν|t] (4.24)

This information should be merged into the learning model predictive control.

The updated formulation should include communication delay, ωωωjt+τ , in the ob-

jective function to penalize the trajectory that results in low quality (predicted)

communication channel. To recognize the part of state space with low qual-

ity PDR, the vector should be utilized to update an obstacles area that repre-

sents the wireless channel. And, if the controller selects a state from this area,

it will be penalized in the cost function. Thus, the optimality condition forces

the model to generate a trajectory in which the quality of the communication

achieves an acceptable level, to avoid extra cost in the objective while satisfy-

ing the constraints.



To solve this problem, the repetitive nature of LMPC is exploited to consider

the variation of PDR as a data-driven factor in the optimization process. This

is done by two modifications in the model. First, qj is updated in the objec-

tive function to include the cost associated with the delay in the communica-

tion channel if a specific terminal state is chosen. Observe that the cost-to-go

vector is updated after a complete trajectory is generated. Second, a dynamic

constraint is added to the model to represent the area where the communica-

tion loss occurs and is updated at each inner loop iteration. For the first part,

the cost-to-go in the objective function is reformulated as:

qj(xjk|t|x
`∗
k→N |t) =

t+N∑
p=k

[
ωjp|t + h(xjp|t, u

j
p|t)
]

= h(xjk|t, u
j
k|t) + ω(xjk|t|x

`∗
k|t) +

t+N∑
p=k+1

ωjp|t + qj(xjk+1|t|x
`∗
k+1→N |t)

The updated cost-to-go contains the cost of delivery time of communication

channel and by replacing it in the objective function, the model will chose a

terminal state that has lower cost in terms of communication channel, and

stage costs.For the second part, a boundary on the state vector is defined as a

dynamic constraint in the model and is updated iteratively based on the vector

of packet delivery time received from data driven system. An auxiliary binary

decision variable is defined to distinguish the states selected from O

βk =


0 xjk|t /∈ O

1 xjk|t ∈ O
(4.25)

If O is a polyhedron in Rn

O = {xjk|t ∈ Rn : Axjk|t 6 b} (4.26)

where A ∈ Rn×d and b ∈ Rd, the following set of inequalities determine if the



state is inside of O to assign an appropriate value to the binary variable βk,m

aTmx
j
k|t +Mβk,m > bm (4.27a)

aTmx
j
k|t −M(1− βk,m) < bm (4.27b)

βk,m ∈ {0, 1},∀m = {1, .., d} (4.27c)

whereM is a large number. If
∑d

m=1 βk,m = d, the state xjk|t is inside of O and

should be penalized in the cost function. Therefore, another binary variable is

defined

λk =


0
∑d

m=1 βk,m < p

1
∑d

m=1 βk,m = p

(4.28)

Using λk as auxiliary variables, the described cost term can be added to the

objective function
t+τ+ν∑
k=t+τ+1

λkCk (4.29)

Vector Ck shows penalty that is added to the objective function if the con-

troller selects state xjk|t inside of the area. The following inequalities control

the value of λk

∑d
m=1 βk,m −Mλk < p (4.30a)∑d
m=1 βk,m +M(1− λk) > p (4.30b)

λk ∈ {0, 1} (4.30c)

A scenario of two connected vehicles is developed and an area is added where

the communication is impacted by the surrounding environment. However,

there are different applications in which the uncertainty of the network state

is involved to generate an optimal motion policy for the vehicles, for instance

autonomous intersection control [26, 27], where the vehicles approaching to

the intersection receive information from a central machine that manages it.



In the simulation, it is assumed that if both vehicles enter the so-called "dead-

zone" (i.e. plotted in time-location graph) the communication is completely

lost and the wireless channel is perfect out of this area. Also, we assume that

these characteristics can be recognized by a network state predictor given the

states of two vehicles over the planning time. Note that, the controller does

not have access to this information and the controller should be able to opti-

mize its motion policy without any knowledge about driving closed-form func-

tion of the state of channel ( i.e. described as a data-driven decision variable)

in either the objective or constraints and by receiving its prediction from an

exogenous system.

In this leader-follower scenario, the vehicles dynamics are formulated as a Lin-

ear Time Invariant (LTI) system xt+1 = Axt+But, ∀t, where xt = [xt ẋt]
T , ut = ẍt

and

A =

1 dt

0 1

 and B =

dt22

dt

 . (4.31)

The system is subject to input saturation and the leader has a constant veloc-

ity of 30m/s over the planning time and the ego vehicle has an initial velocity

of 35m/s and its controller is limited to safety constraints. For other parame-

ters see Table (4.1).

Table 4.1: Scenario and Model Parameters

u,u control input limits m/s2 [-6,6]
N time horizon of outer loop MP – 100
ν time horizon of inner loop – 60
dt sample time or discretization s 0.2
vss` lead vehicle speed (constant) m/s 30
vf,0 follower vehicle initial speed m/s 35
Ωd dropout zone of bridge m 392-551

First, to show the improvement in the performance of the algorithm, the ma-

trix coefficient of the entering to the deadzone is considered a big value to

prevent the controller from generating a motion policy crossing over the red



Figure 4.2: Car-following scenario: The ego vehicle should avoid the
dead-zone region (red rectangle)

region. Figure (4.2) illustrates the results of this case. The total number of at-

tempts required for the algorithm to converge to the optimal trajectory is 3

iterations. The top-left graph shows the cost-to-go vector for each of the tra-

jectories, which the severe decrease in the first two trajectories depict the cost

of deadzone. Also, the down-right one is the overall cost-to-go value for each

iterations which is a decreasing graph and converges from the initial trajectory

to the better one at each generation.

Without the ability to predict communication performance, the ego vehicle

tries to optimize on following distance and terminal cost. But, once it enters

the dead zone, it starts to drop packets and can only use increasingly shorter

portions of (previously communicated) leader trajectory predictions. In the

case of using the presented algorithm with communication prediction, the

controller has access to the prediction of the channel which tells whether the

channel is expected to change in the future. The algorithm is able to converge



Figure 4.3: Car-following scenario: The cost of entering into the dead-zone is
not significant in this case

on a trajectory that smoothly slows down in advance of the dead zone, which

results in significantly improved global performance.

In the second case, the penalty of entering to the deadzone is decreased com-

paring to the cost of trajectory. The controller decreases the velocity of the

vehicle to avoid some of the states that in which the communication loss oc-

curs. After that, it speeds up to optimize the trajectory related cost. The opti-

mal trajectory for this case passes through the deadzone, Figure (4.3).

4.3 Conclusions

In this chapter, an extension to learning Model Predictive Control (LMPC) is

presented. The controller is designed for applications to motion planning in

dynamic environments, particularly when one or more of the decision variables



comes from black box or data-driven models. The control architecture lever-

ages a nominal outer loop motion planner, and then iterates over this trajec-

tory candidate in an inner loop to find optimal policies in terms of both model-

and data-driven variables. This outer and inner control scheme proceeds in a

receding horizon fashion until the system reaches its objectives. These con-

cepts are applied to connected autonomous vehicles and the notion of pla-

tooning, or collaborative adaptive cruise control.

To demonstrate the approach, a simulation of a leader-follower scenario for

two connected autonomous vehicles is developed. The scenario includes

physical characteristics that cause uncertainty in the communication channel,

and the controller leverages recent advances in wireless channel prediction

using machine learning. The presented algorithm is able to generate improved

trajectories in terms of not only communication, but also energy efficiency.



Chapter 5

Data-and Model-Driven Approach to

Predictive Control

5.1 Introduction

In the previous chapter a learning model predictive control approach was pre-

sented to involve the variations of wireless channel in the model predictive

control of an autonomous vehicle. The algorithm could recognize the area

with imperfect communication channel and based on the cost coefficients

of cost function, the controller was taking effective strategy to avoid the area.

But the idea of involving a soft constraint in the optimal control to build the

area representing the behavior of the wireless channel is demanding and is

limited to discretized values of PDR. PDR is a continuous parameter and an

effective algorithm is required to relax this limitation.

This chapter presents DMPC (Data-and Model-Driven Predictive Control) to

solve an MPC problem that deals with an unknown function operating interde-

pendently with the model. The value of the unknown function is predicted for

a given trajectory by an exogenous data-driven system that works separately

from controller. DMPC is a learning controller that provides an approach to



merge both the model-based (MPC) and data-based systems. This algorithm

can cope with very little data and builds its solutions based on the recently

generated trajectory and improves its cost in each iteration until converging to

an optimal trajectory, which typically needs only a few trials. Theoretical anal-

ysis for recursive feasibility of the algorithm is presented and it is proved that

the quality of the trajectory does not get worse with each new iteration. In the

end, we apply DMPC algorithm on motion planning of an autonomous vehicle

with linear and nonlinear dynamics and illustrate its performance.

Traditional techniques for analyzing and developing control laws in safety-

critical applications usually require a precise mathematical model of the sys-

tem [2–4]. However, there are many control applications where such precise,

analytical models can not be derived or are not readily available. Increasingly,

data-driven approaches from machine learning are used in conjunction with

sensor or simulation data in order to address these cases. Such approaches

can be used to identify unmodeled dynamics in a scalable way, and with high

accuracy. However, an objective that is increasingly prevalent in the literature

involves merging or complementing the analytical approaches from control

theory with techniques from machine learning.

Developments in model predictive control (MPC) and reinforcement learning

are most relevant to the techniques developed in this chapter. Recently, tech-

niques based on model predictive control (MPC) have addressed this problem

by first using a statistical method to estimate a mathematical model that is

compatible with the data, and then using this estimated model within a nom-

inal MPC framework to find optimal trajectories and control actions. A pop-

ular choice is to build statistical models using Gaussian Processes (GPs)

[48, 57, 58], while Regression Trees and other machine learning techniques

have been used in other cases [59,60]. The use of GPs in context of model pre-

dictive control often creates highly nonlinear models, resulting in non-convex



problems that are difficult to solve efficiently or online.

Alternatively, approaches based on Reinforcement Learning have been applied

in this setting. Model-based techniques again require a statistical technique,

for example GPs or deep neural networks, to estimate transition probability

distributions [61,62]. Model-free methods represent, informally, a trial-and-error

method for identifying control policies [15, 44]. An open question in reinforce-

ment learning (and indeed much of the literature that uses both controls and

machine learning) involves how to guarantee that the learned policy will not

violate safety or other constraints. In addition, sample complexity represents

a challenge for all the aforementioned techniques and is a general problem in

machine learning.

This chapter seeks to leverage the notion that in many applications, some as-

pects of the system (and environment) may be known mathematically while

other aspects are unknown or represented by a so-called black box. It ad-

dresses both sample complexity and online computational efficiency by ex-

plicitly dividing the state space and iterates over it, such that the data needed

for statistical estimation and prediction are reduced. The presented algorithm

in this chapter efficiently focuses on a specific part of the state space that

likely contains the optimal trajectory without sampling from the rest of the

state space.

Specifically, it is assumed that the dynamics of the system is available in the

form of a known mathematical model, but there is an unknown function of the

states, control inputs of the system, and external disturbances that affects

the performance index or feasible solution space. Also, it is assumed that the

unknown aspects of the system can be measured directly or predicted using,

for example, an appropriate machine learning technique like deep learning, and

this data-driven model can estimate the value of these unknown dynamics for

a given system trajectory.



The presented technique is based on notions from Iterative Learning Control

(ILC). ILC is attractive because it can “learn” through repeated trials to con-

verge to better solutions [16, 17, 63, 64]. The concept of ILC has recently been

extended to a framework that does not require a reference signal [52–54],

although this approach still assumes that initial conditions, constraints, and

costs remain consistent at each iteration. Although the aforementioned tech-

niques have several nice qualities (e.g. no need for reference signal or known

cost function), they (a) assume a repetitive setting and (b) generally do not ap-

ply to so-called “black box” variables.

DMPC borrows from ILC concepts but generalizes to non-repetitive or non-

iterative tasks, where a controller needs to make real-time decisions in novel

environments. Furthermore, the developed approach works when the dynam-

ics are unknown for at least some aspects of the system.

The approach uses a direct measurement or learning techniques and MPC to

predict behaviour of the black-box and mathematically modeled components

of the system, respectively, incorporating both into a technique called Data-

and Model-driven Predictive Control (DMPC). DMPC works without a reference

signal and furthermore, DMPC can work with an unknown cost function. It is

proved that DMPC is recursively feasible at each iteration of the algorithm,

and the generated trajectories will not worsen at each iteration. This algorithm

needs only few iterations to converge to a locally optimal solution and is com-

putationally efficient, even for nonlinear system dynamics.

Section (5.2) states the addressed problem formally. In section (5.3), the DMPC

algorithm is described in which the theoretical background is discussed in the

second half of the section. The implementation steps are explained in details

in section (5.4), and section (5.5) shows the application of DMPC algorithm

on two examples with different unknown functions for a system with linear

dynamics and also for nonlinear dynamical system. Section (5.6) makes con-



cluding remarks.

5.2 Problem Statement

In this section, a formal definition of the problem is presented. Consider the

dynamical system:

xt+1 = f (xt, ut) , (5.1)

where x ∈ Rn and u ∈ Rm are the system state and control input, respectively,

and f : Rn × Rm → Rn is a known and in general nonlinear map which as-

signs the successor state xt+1 to state xt and control input ut. In this chapter

the following infinite time optimal control problem is addressed to find an opti-

mal trajectory from an initial state xS to final state xF within the feasible state

vector space X and control vector space U :

J0→∞(xS) = min
u0,u1,...

∞∑
t=0

[h (xt, ut) + ẑ (xt, ut)] (5.2a)

s.t. xt+1 = f (xt, ut) ∀t ≥ 0 (5.2b)

x0 = xS (5.2c)

xt ∈ X , ut ∈ U ∀t ≥ 0, (5.2d)

where (5.2b) and (5.2c) show the system dynamics and the initial condition,

and (5.2d) are the state and input constraints. The cost function (5.2) involves

two different stage costs:

• h(): that is a known function and can be defined by a precise mathemat-

ical model, often based on first principles from physics. This is called

a “model-driven" function. Traditional cost function of MPC containing

quadratic terms to drive the state of system to an equilibrium point and

to penalize the applied control input are model-driven functions.



• ẑ(): that is an unknown function for the controller. A mathematical model

can not be defined for this type of stage cost (or at least it is too expen-

sive to derive such a function and solve the resulted optimization model),

but it affects the overall cost function. It is assumed that, given the in-

puts, the controller has access to the output of this function. In the ex-

ample given below, the future states of the scene are considered to be

an unknown function of the environment as well as the vehicle’s own tra-

jectory. Another example can be improving aircraft’s flight safety under

the presence of turbulence, where the behaviour, location, and prediction

of turbulent air comes from an unknown function (unknown to the con-

troller).

Before proceeding with technical descriptions of the approach, a bit more con-

text regarding these concepts and the chosen terminology is provided. The

terms known and unknown function are intentionally abstract but perhaps

the reader recognizes the relationship with two main paradigms of predic-

tive modeling. Traditionally, fields in the natural sciences have attempted to

derive mathematical equations from first principles in order to predict behav-

ior. Over the past decades, and increasingly over the past several years, data-

driven methods for approximating functions that predict behavior have gained

attention. Much of the developments in so-called artificial intelligence and ma-

chine learning fall in this paradigm. Because the proposed technique of this

paper is based on iterative learning control, and because ILC is “data-driven” in

a certain precise sense, it has been attempted to define terms that show the

relationship to existing notions of control and machine learning.

Applications for this kind of separation between known and unknown dynam-

ics (or white box and black box models) abound. One example comes from

autonomous vehicle planning and navigation. A common approach is to do

prediction of obstacles in the scene (e.g. pedestrians, cyclists, and other cars)



via convolutional neural network, recurrent neural networks or other similar

technologies [65, 66], while the dynamics of the own vehicle are modeled from

first principles. Planning involves finding safe and efficient trajectories in the

presences of an arbitrary number of vectors (and, typically, associated un-

certainty) representing the predicted state evolution of obstacles in a scene,

which are themselves functions of the vehicle’s own actions. In the case, the

vehicle’s own dynamics are constrained by differential or difference equations,

while the cost is a function of (and/or constrained by) a topology that comes

from an unknown function, e.g. LSTM [67, 68]. Similar problem structure exists

for wireless communication involving mobile agents [69,70].

It is assumed that the model driven stage cost h(·, ·) in equation (5.2a) is con-

tinuous and satisfies

h (xF , 0) = 0 and h (xt, ut) � 0 ∀xt ∈ Rn\ {xF} , ut ∈ Rm\ {0} , (5.3)

where the final state xF is a feasible equilibrium for the unforced system (5.1)

f(xF , 0) = xF .

In the second term of the cost function, the ẑ() is considered to be positive

definite and unknown for the controller, ẑ : Rn × Rm → R+. As illustrated in

Figure (5.1), there is an exogenous data-driven system as a black box, such as

Long short-term memory (LSTM) that calculates ẑ, given xt and ut. Also, we

assume that the following condition is held in the equilibrium point xF

ẑ (xF , 0) = 0. (5.4)

In the case that an unknown inequality is imposed as a constraint to the model

rather than a penalty in the cost function, we can use barrier function to trans-



Figure 5.1: Scheme of the controller and its relationship with the exogenous
system.

form it to model (5.2). If we write these constraints as

ŷ (xt, ut) 6 0, ∀t > 0, (5.5)

the barrier function can be defined as

ẑ (xt, ut) =


− 1
ŷ(xt,ut)

if ŷ (xt, ut) < 0

∞ o.w.

(5.6)

in the exogenous data-driven system, and the controller will receive the value

of ẑ() calculated from equation (5.6) and then considers this value as a pre-

diction for the unknown cost in the performance index shown in model (5.2).

In this chapter we focus on the case that ẑ() is in the cost function. Therefore,

the problem is generating an optimal sequence of control inputs that steers

the system (5.1) from the initial state xS to the equilibrium point xF such that

the cost function of optimal control problem (5.2), J0→∞(xS), which is a com-

bination of a known stage cost h(), and unknown stage cost ẑ() functionals,

achieves the minimum value.

In this problem, concepts from Iterative Learning Control (ILC) is leveraged but



an approach that can be used to solve the infinite time optimal control prob-

lem is developed (5.2), sub-optimally. At each time step of a (perhaps previ-

ously unseen) control task, the approach uses an iterative scheme, where it

learns from each iteration and optimizes model (5.2) without explicitly deter-

mining the unknown function ẑ(). At iteration j, the following vectors collect

the inputs applied to the system (5.1) and the corresponding state evolution

from initial state xS to the equilibrium point xF :

x∗,j = [xj0, x
∗,j
1 , . . . , x∗,jt , . . . , xF ] (5.7a)

u∗,j = [u∗,j0 , u∗,j1 , . . . , u∗,jt , . . . ]. (5.7b)

In (5.7), the optimum values of system state and the control input obtained at

time t and iteration j are denoted by x∗,jt and u∗,jt , respectively. Also, it is as-

sumed that at each jth iteration, the trajectories start from the same initial con-

dition

xj0 = xS, ∀j ≥ 0.

5.3 DMPC Approach

This section describes the DMPC approach to obtain vectors(5.7) as a sub-

optimal solution for the infinite time optimal control problem (5.2). The prop-

erties of DMPC, i.e. feasibility, asymptotic stability, and optimality will be dis-

cussed in the second part of this section. In the remainder of this paper, use

notation ρκ|η will be used to denote the value of ρ at time step κ predicted at η.

The DMPC algorithm is designed such that, starting from a given initial tra-

jectory (Assumption 1), it converges to the optimal solution (trajectory) in a

repetitive fashion.



Assumption 1: Similar to the iterative learning control methods [52, 55], it is

assumed that there exists an initial feasible trajectory x0 for the infinite time

optimal control problem (5.2) from the initial state, xS , to the equilibrium point,

xF , at the first iteration but with no assumptions on optimality.

Generating an initial trajectory can be done easily by using a sequence of finite

time horizon optimal control problem starting from the initial state and ending

up in the equilibrium state. The feasible terminal states selected for OCP is

done randomly and after generating the trajectory it will be considered as the

initial state of the next model and this steps will be repeated until reaching the

terminal state.

Also, the concept of cost-to-go is defined for each states in a complete tra-

jectory as the minimum cost of reaching to the equilibrium point xF from the

current state. The algorithm records the last successful complete trajectory

(i.e. from initial state xs to the equilibrium point xF ), x∗,j−1, and assigns to ev-

ery state in this set a cost-to-go value obtained at iteration j − 1,

qj−1 = [qj−1(xS), . . . , qj−1(x∗,j−1
t ), . . . , qj−1(xF )]. (5.8)

The cost of following the trajectory obtained at iteration j − 1 from state x∗,j−1
t

to final state xF can be defined as:

qj−1(x∗,j−1
t ) = J ∗,j−1

t→∞ (x∗,j−1
t ), ∀t ≥ 0. (5.9)

The main approach of DMPC is generating a full trajectory from xS to xF at it-

eration j, x∗,j , based on the full trajectory generated at iteration j−1, x∗,j−1. The

full trajectory x∗,j is build iteratively from the initial state xS to the final state

xF .

At each time step t of iteration j, DMPC finds the optimal control input, ujt:t+N |t,



and associated trajectory, xjt:t+N |t

xjt:t+N |t = [x∗,jt , . . . , xjt+N |t] (5.10a)

ujt:t+N |t = [ujt|t, . . . , u
j
t+N−1|t]. (5.10b)

Where

x∗,jt = xjt|t (5.11)

is the current state of the system, which is considered as the optimal state

of the trajectory at iteration j at time t. DMPC selects the last state in (5.10a),

xjt+N |t, from a special set that results in a recursive feasibility guarantee. Be-

fore describing this set, two definitions are provided in the following: one-step

reachable set B and N -step reachable setRN(X0).

Definition 1 (one-step reachable set B): For the system (5.1), the one-step

reachable set from the set B is denoted as

Reach(B) =
{
x ∈ Rn : ∃x(0) ∈ B,∃u(0) ∈ U , s.t. x = f(x(0), u(0))

}
(5.12)

Reach(B) is the set of states that can be reached from state x(0). N -step reach-

able set are defined by iterating Reach(.) computations [49].

Definition 2 (N-step reachable setRN(X0)): For a given initial set X0 ⊆ X , the

N -step reachable setRN(X0) of the system (5.1) subject to constraints (5.2d)

is defined as [49]:

Rt+1(X0) = Reach(Rt(X0)), R0(X0) = X0, t = {0, . . . , N − 1} (5.13)

At iteration j, DMPC is designed by repeatedly solving a finite time optimal

control problem in a receding horizon fashion to obtain state and control input

vectors (5.10). In the state vector (5.10a), the last state , xjt+N |t, is enforced to



be selected from set Sjt , that is defined as

Sjt =
( ∞⋃
t=0

x∗,j−1
t

)
∩RN(x∗,jt ). (5.14)

The first term in equation (5.14) is the set of all the states in the most recently

generated full trajectory (iteration j − 1), x∗,j−1, and the second term is N-step

reachable set from state x∗,jt .

All the states in trajectory x∗,j−1 are a member of control invariant set C ⊆ X ,

because, for every point in the set, there exists a feasible control action in in-

put vector u∗,j−1, that satisfies the state and control constraints and steers the

state of the system (5.1) toward the equilibrium point xF . Therefore, forcing

the controller to select the terminal state xjt+N |t from the set Sjt keeps the state

of the system in set C for time steps beyond the time horizon N [35], i.e.

if xjt+N ∈ C ⇒ xjt+N+k ∈ C ∀k > 0, (5.15)

On the other hand, trajectory xjt:t+N |t drives the system (5.1) from state x∗,jt to

one of the states in set Sjt in N time steps (see Figure (5.2)). Therefore, Sjt

is a subset of control invariant set and N-step reachable set, that make the

state x∗,jt to be a subset of maximal stabilizable set. Intuitively, this guaran-

tees the constraint satisfaction and feasibility for all time steps (t > 0) (the

feasibility will be proven in Theorem (3)). This means that the constraint satis-

faction at time steps beyond the time horizon does not depend on the length

of the time horizon, and N can be picked freely; in this work we will select

it to be small to speed up the algorithm. We denote each state in set Sjt by

si,jt ,∀i ∈ {1, . . . , |S
j
t |}.



Figure 5.2: The green area shows the N -step reachable set,RN(x∗,jt ), from
current state, x∗,jt . Controllable set Sjt is illustrated by large blue dots and

dashed purple line segments are the optimal trajectories from current state to
available states in controllable set Sjt .

5.3.1 Algorithmic Details

To find the (local) optimal trajectory xjt:t+N |t in (5.10), DMPC generates two tra-

jectories xjt:t+N |t and xjt:t+N |t−1, and selects the best of them based on their cost

as xjt:t+N |t. The second trajectory is build based on the previous trajectory and

is considered as a worst case, because it is readily available and if the first tra-

jectory is not better, the previously generated trajectory will be followed. We

explain how these trajectories are built in the following.

i) The first trajectory generated by DMPC is xjt:t+N |t, that is illustrated by a solid

black trajectory in Figure (5.3). This trajectory is the state vector associated

with the optimal control input ujt:t+N |t obtained from the following optimization

model over all the candidate terminal states that are reachable in N time steps

from the current state x∗,jt (equations 5.14). This set of terminal states is de-

picted by big blue points in Figure (5.2) and indexed by i ∈ {1, . . . , |Sjt |} in the

following term

ujt:t+N |t = argmin
ui,j
t:t+N|t

{
J i,j
t→t+N(x∗,jt ), ∀i ∈ {1, . . . , |Sjt |}

}
, (5.16)

where J i,j
t→t+N(x∗,jt ) is the predicted overall cost (i.e. summation of both the



Figure 5.3: DMPC generates two trajectories xjt:t+N |t (solid black) and xjt:t+N |t−1

(dashed green) at time step t of iteration j, and selects best of them

model-based
∑
h(.) and data-based

∑
ẑ(.) costs) enforced to the system be-

cause of following the control input ui,jt:t+N to reach the terminal state xi,jt+N |t =

si,jt . To simplify the mathematical notations, ẑi,jk|t will be used to show the pre-

dicted value of the unknown function following the control input ui,jt:t+N , instead

of ẑ(xi,jk|t, u
i,j
k|t). Then the value of J i,j

t→t+N(x∗,jt ) can be defined as:

J i,j
t→t+N(x∗,jt ) = J i,jt→t+N(x∗,jt ) +

t+N−1∑
k=t

ẑi,jk|t. (5.17)

To find the optimal control input ujt:t+N |t in equation (5.16), we first use the fol-

lowing formulation to generate ui,jt:t+N |t and xi,jt:t+N |t from state x∗,jt toward termi-

nal state si,jt ∈ S
j
t , ∀i ∈ {1, . . . , |S

j
t |}, and calculate the cost associated with the

model-based term, which is denoted by J i,jt→t+N(x∗,jt ) in equation (5.17)

J i,jt→t+N(x∗,jt ) = min
ui,jt:t+N

t+N−1∑
k=t

`(xi,jk|t, u
i,j
k|t) + (N + 1)qj−1(xi,jt+N |t) (5.18a)

s.t. xi,jk+1|t = f(xi,jk|t, u
i,j
k|t) ∀k (5.18b)

xi,jt|t = x∗,jt (5.18c)

xi,jt+N |t = si,jt (5.18d)

xi,jk|t ∈ X , u
i,j
k|t ∈ U , ∀k. (5.18e)

In this model, the predictive controller generates the best trajectory to reach

state si,jt (i.e. enforced by constraint (5.18d)) and adds the cost to go (N +



1)qj−1(xi,jt+N |t) to compensate for the remaining cost from state si,jt to the final

state xF . We replace the stage cost h(., .) with positive definite function `(., .)

in the cost function as follows

`(xi,jk|t, u
i,j
k|t) = (xi,jk|t − x

i,j
t+N |t)

TP (xi,jk|t − x
i,j
t+N |t) + (ui,jk|t)

TRui,jk|t, (5.19)

where P and R are positive (semi)definite tuning matrices. Function h() in the

general optimal control problem(5.2) penalizes the controller according to the

difference between the generated state xi,jk|t and the final state xF , but `(., .)

considers the selected terminal state xi,jt+N |t instead of xF . To compensate for

the remaining trajectory cost from xi,jt+N |t to xF , we add cost-to-go qj−1(xi,jt+N |t)

for each N + 1 states in the trajectory.

Constraint (5.18d) in optimization model (5.18) is enforced to the controller to

steer the system to a specific terminal state, si,jt .

The objective optimized by model (5.18) does not involve the cost value com-

ing from the data driven part,
∑t+N−1

k=t ẑi,jk|t. However, given the trajectory xi,jt:t+N |t

generated by model (5.18), the value of this unknown function can be pre-

dicted by the external black-box system (depicted in Fig. 5.1) and added to

J i,jt→t+N(x∗,jt ) to find J i,j
t→t+N(x∗,jt ) based on equation (5.17). Then, according to

(5.16), between all of the trajectories that start from x∗,jt and reach the termi-

nal states in set Sjt which are counted by index i (dashed purple trajectories

in Fig. 5.2), the trajectory that has the minimum cost value is selected and de-

noted xjt:t+N |t. That is, the result for (5.16) with the overall trajectory cost of

J j
t→t+N(x∗,jt ).

ii) The second trajectory generated by DMPC is xjt:t+N |t−1, that is demonstrated

by a dashed green trajectory in Figure (5.3). In addition to xjt:t+N |t, another fea-

sible available trajectory starting from xS to xF can be obtained from the solu-

tion of the previous time step t − 1 at the current iteration j. This trajectory is



generated by applying one more step of the control input, ujt−1:t+N−1|t−1, to the

trajectory of the previous time step t − 1 and shifting its state one time step

toward the final state xF along the optimal trajectory of iteration j − 1. This

trajectory can be written as follows:

xjt:t+N |t−1 = [xjt|t−1, . . . , x
j
t+N−2|t−1, x

∗,j−1
τ , x∗,j−1

τ+1 ] (5.20a)

ujt:t+N |t−1 = [ujt|t−1, . . . , u
j
t+N−2|t−1, u

∗,j−1
τ ]. (5.20b)

x∗,j−1
τ denotes the optimal terminal state selected from the last iteration (i.e.

the last generated complete trajectory) j − 1, and τ is the time index of this

state,

xjt+N−1|t−1 = x∗,j−1
τ . (5.21)

The overall trajectory cost of xjt:t+N |t−1 is given by J j
t→t+N |t−1(x∗,jt ) and is

J j
t→t+N |t−1(x∗,jt ) =

t+N−2∑
k=t

[
`(xjk|t−1, u

j
k|t−1) + ẑjk|t−1

]
+Nqj−1(xjt+N−1|t−1) + qj−1(x∗,j−1

τ+1 ). (5.22)

J j
t→t+N |t−1(x∗,jt ) is assumed to be an upper bound for J j

t→t+N(x∗,jt ), and in the

case that the controller cannot find a better trajectory, this trajectory will be

followed. This upper bound guarantees that the cost of trajectory in different

iterations do not worsen.

Therefore, the best trajectory of time step t and iteration j (ujt:t+N |t and xjt:t+N |t)

is selected between two obtained trajectories, xjt:t+N |t and xjt:t+N |t−1 based on

their cost values.

J j
t→t+N(x∗,jt ) = min{J j

t→t+N(x∗,jt ),J j
t→t+N |t−1(x∗,jt )}. (5.23)

In other words, the algorithm selects between two trajectories: (a) the minimum-



cost feasible trajectory from t → t + N at time step t of iteration j, and (b) the

time-shifted trajectory from t − 1 → t + N that leverages information from the

prior time step t− 1 of iteration j.

After finding xjt:t+N |t and ujt:t+N |t, the first step of its control input is applied to

the system to push its state toward the equilibrium point,

u∗,jt = ujt|t, x∗,jt+1 = xjt+1|t. (5.24)

5.3.2 Theoretical Analysis

In the remainder of this section theoretical analyses of the algorithm are pro-

vided for the feasibility and optimality of the generated solutions.

Theorem 3. In the DMPC scheme with given system (5.1), cost function (5.16),

and constraints (5.18b) - (5.18e), if there is a feasible trajectory at iteration j − 1,

DMPC is feasible at the next iteration, j, as well.

Proof. To prove this theorem, first, we need to show that, given a feasible solu-

tion at time step t − 1 of iteration j, DMPC is feasible for the next time step, t,

too.

The solution of DMPC at iteration j − 1 is:

x∗,j−1 = [xS, x
∗,j−1
1 , . . . , x∗,j−1

t , . . . , xF ], (5.25)

and at iteration j and time step t− 1 is:

xjt−1:t+N−1|t−1 = [x∗,jt−1, x
j
t|t−1, . . . , x

j
t+N−1|t−1] (5.26a)

ujt−1:t+N−1|t−1 = [ujt−1|t−1, u
j
t|t−1, . . . , u

j
t+N−2|t−1]. (5.26b)

According to constraint (5.18d), DMPC selects terminal state xjt+N−1|t−1 from



set Sjt−1 which is denoted by si,jt−1. Because s
i,j
t−1 ∈ x∗,j−1, we can conclude that

xjt+N−1|t−1 ∈ x∗,j−1. Let us assume that xjt+N−1|t−1 = x∗,j−1
τ . Based on the as-

sumption given in the theorem (existence of a feasible trajectory at iteration

j − 1), for every state in trajectory x∗,j−1 there is a feasible sequence of control

actions that satisfies the constraints and steers the system toward the final

state xF . This feasible trajectory for state x∗,j−1
τ can be shown as:

x∗,j−1
τ :∞ = [x∗,j−1

τ , x∗,j−1
τ+1 , . . . , xF ] (5.27a)

u∗,j−1
τ :∞ = [u∗,j−1

τ , u∗,j−1
τ+1 , . . . ]. (5.27b)

Then there is at least one feasible trajectory at time step t and iteration j that

is constructed as:

xjt:∞ = [xjt|t−1, . . . , x
j
t+N−2|t−1, x

∗,j−1
τ , x∗,j−1

τ+1 , . . . , xF ] (5.28a)

ujt:∞ = [ujt|t−1, . . . , u
j
t+N−2|t−1, u

∗,j−1
τ , u∗,j−1

τ+1 , . . . ]. (5.28b)

This completes the proof of the statement that DMPC is feasible at time step t

if it is feasible at t − 1. Also, based on Assumption (1) and by induction we can

conclude that DMPC is feasible for all iterations and time steps.

It was shown that, given a feasible initial trajectory x0, the algorithm will be

feasible at every time steps of different iterations. Theorem (4) proves that,

the algorithm will finally converge to the equilibrium point xF , and Theorem (5)

proves that the performance index is non-increasing at every DMPC iteration.

The next two theorems follow almost the same approach provided in [52].

Theorem 4. In the DMPC scheme with given system (5.1), cost function (5.16),

constraints (5.18b) - (5.18e), and an initial feasible trajectory x0 , the equilibrium

point xF is asymptotically stable at every iteration j > 1.



Proof. Let us start with writing the overall optimal trajectory cost of state x∗,jt−1

J j
t−1→t+N−1(x∗,jt−1) =

(N + 1)qj−1(xjt+N−1|t−1) +
t+N−2∑
k=t−1

[
`(xjk|t−1, u

j
k|t−1) + ẑjk|t−1

]
= `(xjt−1|t−1, u

j
t−1|t−1) + ẑjt−1|t−1 + qj−1(xjt+N−1|t−1)

+
t+N−2∑
k=t

`(xjk|t−1, u
j
k|t−1) +Nqj−1(xjt+N−1|t−1) + qj−1(x∗,j−1

τ+1 ), (5.29)

where

qj−1(x∗,j−1
τ+1 ) =

∞∑
k=τ+1

[
h
(
x∗,j−1
k , u∗,j−1

k

)
+ ẑ∗,j−1

k

]
. (5.30)

Using equation (5.22),

J j
t−1→t+N−1(x∗,jt−1) = J j

t→t+N |t−1(x∗,jt )

+ `(xjt−1|t−1, u
j
t−1|t−1) + ẑjt−1|t−1 + qj−1(xjt+N−1|t−1). (5.31)

Also, according to equation (5.23)

J j
t→t+N(x∗,jt ) 6 J j

t→t+N |t−1(x∗,jt ). (5.32)

From equations (5.31) and (5.32) we conclude that

J j
t→t+N(x∗,jt )− J j

t−1→t+N−1(x∗,jt−1) 6

− `(xjt−1|t−1, u
j
t−1|t−1)− ẑjt−1|t−1 − q

j−1(xjt+N−1|t−1) < 0,

∀t > 1, and ∀j > 1. (5.33)

This completes the proof of asymptotically stability of the equilibrium point

xF .

The next theorem guarantees that the generated trajectory is better than or



equal to the given initial trajectory x0 at the beginning of algorithm

Theorem 5. In the DMPC scheme with given system (5.1), cost function (5.16),

and constraints (5.18b) - (5.18e), and a feasible trajectory x∗,j−1 at iteration j − 1,

J ∗,j0→∞(xS) 6 J ∗,j−1
0→∞ (xS), ∀j > 1 (5.34)

meaning that, the next trajectory x∗,j generated by DMPC has an overall trajec-

tory cost , J ∗,jt→∞(xS), that is not worse than J ∗,j−1
t→∞ (xS).

Proof. Assume that, at iteration j, the trajectory x∗,j−1 illustrated in Figure (5.4)

by orange color is available for an overall cost of J ∗,j−1
0→∞ (xS). It is desirable to

show that, according to optimization model (5.16) and equation (5.23), DMPC

algorithm will generate trajectory xj0:N (trajectory blue) which is not worse than

x∗,j−1

J j
0→∞(xS) 6 J ∗,j−1

0→∞ (xS). (5.35)

Positive definiteness of z and h indicates that at different time steps, t, in itera-

tion j

J j
t→t+N(x∗,jt ) 6 J j

t−1→t+N−1(x∗,jt−1), ∀t > 1. (5.36)

Also, according to equation (5.33), for t = 1

J j
0→N(xS) > J j

1→N+1(x∗,j1 ) + `(xS, u
∗,j
0 ) + ẑ∗,j0 + qj−1(xjN |0), (5.37)

for t = 2,

J j
1→N+1(x∗,j1 ) > J j

2→N+2(x∗,j2 ) + `(x∗,j1 , u∗,j1 ) + ẑ∗,j1 + qj−1(xjN+1|1), (5.38)

until t → ∞, in which the system converges to xF . Summing up these inequali-



Figure 5.4: Trajectory costs in different time steps. Orange: x∗,j−1. Blue: xj0:N .
Green: xj1:N+1.

ties results in

J j
0→N(xS) >

∞∑
k=0

[
`(x∗,jk , u∗,jk ) + ẑ∗,jk + qj−1(xjk+N |k)

]
. (5.39)

Where the right hand side of this inequality shows the sum of all stage costs

of optimal trajectory generated at iteration j

J ∗,j0→∞(xS) =
∞∑
k=0

[
`(x∗,jk , u∗,jk ) + ẑ∗,jk + qj−1(xjk+N |k)

]
, (5.40)

which yields the following inequality

J j
0→N(xS) > J ∗,j0→∞(xS). (5.41)

From (5.35) and (5.41) we can easily conclude that

J ∗,j−1
0→∞ (xS) > J j

0→N(xS) > J ∗,j0→∞(xS), (5.42)

that shows, the overall cost of trajectories does not increase by the number of

iterations

J ∗,j0→∞(xS) 6 J ∗,j−1
0→∞ (xS), ∀j > 1, (5.43)

and the proof is complete.



5.4 Implementation Steps

According to equation (5.14), the DMPC algorithm needs the controllable set

Sjt at time step t and iteration j to select the best predicted terminal state.

However, calculating such a set is a time consuming process and because

it has to be executed for every state in different time steps t of iteration j, it

would affect the overall running time significantly. In this section we propose a

technique to avoid this volume of unnecessary calculations. It is assumed that

assumption (1) holds and there is a feasible trajectory from initial state xS to

the equilibrium point xF which is given as x0 and u0.

The main idea of this approach is, the algorithm will be given all of the states

of the trajectory generated at the previous iteration, x∗,j−1, as terminal candi-

date states

Sjt =
∞⋃
t=0

x∗,j−1
t .

The algorithm selects the best predicted terminal state in this set from its cur-

rent state x∗,jt using the following integer programming optimization model:

J jt→t+N(x∗,jt ) = min
ujt:t+N

t+N−1∑
k=t

`(xjk|t, u
j
k|t) + (N + 1)

|Qj
t |∑

r=1

ξrq
j−1(x∗,j−1

r ) (5.44a)

s.t. xjk+1|t = f(xjk|t, u
j
k|t) ∀k (5.44b)

xjt|t = x∗,jt (5.44c)

xjt+N |t =

|Qj
t |∑

r=1

ξrx
∗,j−1
r (5.44d)

|Qj
t |∑

r=1

ξr = 1 (5.44e)

ξr ∈ {0, 1}, ∀r = {1, . . . , |Qj
t |} (5.44f)

xjk|t ∈ X , u
j
k|t ∈ U , ∀k, (5.44g)



where `(xjk|t, u
j
k|t) is defined in (5.19) and, in the second term of the cost func-

tion, qj−1 ∈ Qj
t . Q

j
t is the cost to go vector of terminal states in the set Sjt ,

which will be updated based on the current state x∗,jt . However, in the begin-

ning, the algorithm starts with Qj
t =

⋃∞
r=0 q

j−1(x∗,j−1
r ). We define a binary deci-

sion variable ξr associated with each terminal state in the previous trajectory

x∗,j−1. ξr takes value one if the controller selects rth state from x∗,j−1 as the

desirable terminal state and assigns value zero to other states; see constraint

(5.44d). Also, using constraint (5.44e) we enforce the model to select only one

state. The output of this model is given by xjt:t+N |t and ujt:t+N |t.

Assume that the best terminal state selected by this model is x∗,j−1
ι . Because

the model has not considered
∑t+N−1

k=t ẑjk|t, the algorithm calls the available

exogenous data-driven system (e.g. a deep neural network) to calculate this

value for the generated trajectory xjt:t+N |t. Therefore, using equation (5.17),

J j
t→t+N(x∗,jt ) can be found easily. After finding the overall trajectory cost from

current state x∗,jt that passes through terminal state x∗,j−1
ι , the algorithm up-

dates the cost-to-go of state x∗,j−1
ι in set Qj

t from qj−1(x∗,j−1
ι ) to qj−1(x∗,j−1

ι ) +∑t+N−1
k=t ẑjk|t. The algorithm keeps recording the index number of updated ter-

minal states of set Qj
t in I. To clarify the reason for such an update, assume

that the algorithm launches model (5.44) again to find the best terminal state,

but by using the updated cost to go set Qj
t . There are two possibilities about

the generated solution

1. The algorithm selects, again, the terminal state that has an updated cost

to go. In this case, this is the best terminal state between all the available

states that are reachable in N time steps and the algorithm stops. We

denote this best terminal state by, ι∗. This implies that

J j
t→t+N(x∗,jt |r = ι∗) 6 J jt→t+N(x∗,jt |r /∈ I), ∀r = {1, . . . , |Qj

t |}, (5.45)



then

J j
t→t+N(x∗,jt |r = ι∗) 6 J j

t→t+N(x∗,jt |r ∈ I), ∀r = {1, . . . , |Qj
t |}. (5.46)

Inequality (5.45) means that, even though the algorithm has not tried the

rest of states in terminal states set Qj
t , r /∈ I , the obtained cost of the

trajectory J j
t→t+N(x∗,jt |r = ι∗) that passes from terminal state ι∗ has less

value than the terminal states that are not in I and they should be ne-

glected, because
∑t+N−1

k=t ẑjk|t > 0 and adding it to J jt→t+N(x∗,jt ) to obtain

J j
t→t+N(x∗,jt ) will worsen the cost ∀r /∈ I. And inequality (5.46) shows

that, the terminal state x∗,j−1
ι∗ is better than all of the terminal states that

have updated cost to go, r ∈ I.

2. The algorithm selects the terminal state that is not in set I , ι /∈ I (i.e. its

cost-to-go value has not been updated). In this case the algorithm has

not found the best terminal state and the process should be repeated

again.

Using this approach, the algorithm will check the set of terminal states that

are potentially the optimal terminal state and ignore the other states in the

N -step reachable set of x∗,jt . After finding xjt:t+N |t, u
j
t:t+N |t and its optimal tra-

jectory cost J j
t→t+N(x∗,jt ), the algorithm will generate the trajectory (ii) which is

a time shift trick on trajectory xjt−1:t+N−1|t−1 described by equation (5.20) as an

upper bound for cost value. Finally, according to equation (5.23) the optimal

trajectory xjt:t+N |t and ujt:t+N |t are obtained and the first step on control input is

applied.

Algorithm (2) presents this procedure in pseudocode.

In the last step (step 28), the similarity of the two last trajectories is consid-

ered as the termination criterion, in which different criteria can be set, e.g. run-

ning time, number of iterations, and etc. Also, it should be noted that Qj
t and



Algorithm 2 : DMPC
1: Set j = 0; convergence← 0
2: while (!convergence) do
3: Update j ← j + 1 and set t = 0
4: Set x∗,10 ← xS , x0, u0, q0

5: while (x∗,jt 6= xF ) do
6: Qj ←

⋃∞
r=0 q

j−1(x∗,j−1
r )

7: Set I ← ∅ and Qj
t ← Qj

8: Set ι← −1, flag ← 1
9: while (flag) do

10: Solve IP model (5.44)
11: Save the solution as X = [x∗,jt , . . . , x∗,j−1

ι ],
12: ι is the index of the selected terminal state, (x∗,j−1

ι ) from set Qj
t

13: Save the cost value as J jt→t+N(x∗,jt )
14: if (ι /∈ I) then
15: I ← ι ∪ I
16: Feed X into the Exogenous System to receive the prediction
17: [ẑjt|t, . . . , ẑ

j
t+N−1|t]

18: Qj
t(x
∗,j−1
ι )← Qj

t(x
∗,j−1
ι ) +

∑t+N−1
k=t ẑjk|t

19: else
20: J j

t→t+N(x∗,jt )← J jt→t+N(x∗,jt )
21: flag ← 0
22: end if
23: end while
24: Construct xjt:t+N |t−1 based on equation (5.20)
25: Calculate J j

t→t+N |t−1(x∗,jt ) according to (5.22)
26: Select the best of X and xjt:t+N |t−1 as x∗,jt:t+N |t based on J j

t→t+N(x∗,jt )

27: and J j
t→t+N |t−1(x∗,jt )

28: Apply the first control input from u∗,jt:t+N |t
29: Update t← t+ 1
30: end while
31: if

∑∞
t=0 |x

∗,j
t − x

∗,j−1
t | < ε then

32: convergence← 1
33: end if
34: end while
35: x∗,j = [xS, x

∗,j
1 , . . . , x∗,jt , . . . , xF ] is optimal



Qj are two different sets. Qj is the overall cost to go vector that is calculated

after completing the trajectory x∗,j−1 and is counted by index r. This set stays

constant for the next iteration. But Qj
t shows a special cost to go for state x∗,jt

that starts with Qj and is updated regularly as the exogenous (data-driven)

information is fed into the results of the integer program (step 16-18). The al-

gorithm counts the updated costs in this set by ι and x∗,j−1
ι is the best terminal

state that has been selected by algorithm for state x∗,jt (step 11-12).

To calculate the complexity of the algorithm at iteration j, assume that at

each iteration of Branch and Bound relaxation, the algorithm solves a con-

vex quadratic model. Using the Interior Point Method (IPM), the computa-

tional complexity to find ε−scale optimum for a quadratic model is polyno-

mial in the size of the optimization model (n′) and required accuracy (ε), i.e.

O(n′log1/ε) [71]. The relaxation is implemented over the binary decision vari-

ables ξr ∀r defined for each terminal states in set Qj
t . If the number of these

candidate states is T , the worst-case number of iterations of B&B algorithm is

exponential O(2T ). On the other hand, the size of model with time horizon N is

(n + m)N at each time step t. In the worst case, all of the candidate states are

tried to find the optimal candidate terminal state, which results in a computa-

tional complexity of O(2T (n + m)NTlog1/ε). The exponential part is dominant

and yields in O(2T ).

5.5 Example

In this section, proposed DMPC algorithm is applied on the constrained linear

and nonlinear models, that are motion planning of an autonomous vehicle with

linear and nonlinear dynamical systems.



5.5.1 Linear Dynamical System

In this section, the proposed DMPC algorithm is applied on the following con-

strained linear quadratic model, where z(vt) is an unknown function and it is

assumed that given a trajectory, there is a black-box system that can find the

corresponding vector vt and pass it to the controller. An example application

of such a setting (see Fig. 5.5) involves motion planning in an environment

with regions that have different cost values, where the state of these regions

are uncertain but the associated cost of selected states can be predicted by

a machine learning-based black box. In motion planning, such black-box vari-

ables could include predictions of other agents’ states or simply a dangerous

zone for a robot" . The infinite time optimal control problem is defined as:

J0→∞(x0) = min
u

∞∑
t=0

[h(xt, ut) + ẑ(xt, ut, dt)] (5.47a)

s.t. xt+1 = Axt +But ∀t > 0 (5.47b)

x0 = [0 5 0 0]T (5.47c)

xt, yt ∈ R ∀t > 0 (5.47d)−4
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 ∀t > 0 (5.47e)
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 ∀t > 0, (5.47f)

where xt = [xt yt ẋt ẏt]
T , ut = [ẍt ÿt]

T and

A =



1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1


and B =



dt2

2
0

0 dt2

2

dt 0

0 dt


. (5.48)



Function J0→∞(x0) shows the overall cost imposed to the controller to steer

the system from initial state x0 = [0 5 0 0]T to final state xF = [54 5 0 0]T . The

stage cost h(., .) is defined as a quadratic function:

h(xt, ut) = (xt − xF )TP (xt − xF ) + uTt Rut. (5.49)

The tuning matrices of the cost function are given as P = diag[1 1 0.1 0.1] and

R = diag[0.1 0.1]. To gain some intuition about the problem setting, assume

that the shape of these areas are unknown, and the controller should avoid the

area that has been colored red, Figure (5.5), but it can enter the blue area for

a cost that is significant compared to the traveling stage cost. The described

exogenous system can generate the data-driven vector given a trajectory. For

instance, if the controller passes an arbitrary trajectory from its current state

x∗,jt ,

xjt:t+N = [x∗,jt , xjt+1|t, . . . , x
j
t+N |t], (5.50)

to the black box, it will generate a vector of information regarding the state of

the system which can be (xt, yt) ∈ {w, b, r} (w, b and r show white, blue and red

areas). One example of this vector can be

[w,w, b, b, r, b, w, w], (5.51)

which means that, if the controller follows the given trajectory, the predicted

position will be in the white area in the first time step, white in the second time

step, blue in the third time step and so on. Also, this vector can be quantified



Figure 5.5: The cost of entering to the blue and red area are small and very
big, respectively. The down-left graph shows the cost-to-go vector for the

states of each separate trajectory, that from top (iteration 0 or initial trajectory)
to down (last iteration) the convergence of trajectories can be seen. The
Down-right graph illustrates the overall trajectory cost of each trajectory.



based on the following piece-wise function

ẑt =


∞ if (xt, yt) ∈ obsred

k if (xt, yt) ∈ obsblue

0 o.w.

(5.52)

where k ∈ R+, which will result in a quantified version of vector (5.51)

[0, 0, k, k,∞, k, 0, 0]. (5.53)

In this scenario k = 5. Again, note that the controller knows nothing about

these regions a priori; it only explicitly knows about its own dynamics and per-

haps things like static obstacles that are a priori encoded in the problem for-

mulation. The controller feeds trajectory vector (5.50) to the exogenous data-

driven system and receives the predicted vector (5.53) without knowing how

(5.51) and (5.52) are calculated.

In this example the DMPC controller is expected to find the optimal trajectory

by using the outputs of the aforementioned black-box given a trajectory.

The DMPC (5.44) is constructed for each time step t from x0 to xF to generate

a full trajectory x∗,j . The algorithm will stop if
∑∞

t=0 |x
j
t − xj−1

t | < 10−4. Also,

the time step and time horizon is assumed to be 0.5 second and N = 8, re-

spectively for this problem. Given the linear constraints, the cost function was

linearized by switching the tracking error to its 1-norm and adding associated

linear constraints to the model to have an overall MILP (Mixed Integer Linear

Programming) model. CPLEX and MATLAB were used to solve this problem.

The algorithm converges after 10 iterations.

The generated trajectories x∗,j ∀j > 0, cost to go for each states in different

trajectories qj ∀j, and overall trajectory cost of iterations qj(xj0) ∀j can be seen



Figure 5.6: Control input ut = [ẍt ÿt]
T and states ẋt and ẏt in the steady state.

in graphs of Figure (5.5).

As the second example in this section, ẑt is defined to be an arbitrary non-

convex function that is again unknown for the controller. The black-box will

receive the information of predicted states of the system and calculates ẑt for

each of states and passes that to the controller. For instance, assume

ẑt = 30(e−
x2t+y2t
100 + e−(0.3xt+2)2−(0.3yt+2)2 + e−yt/70). (5.54)

Even in the case that this cost function is known to the controller, this Non-

linear Model Predictive Control (NMPC) can be changed to iterative DMPC

defined in model (5.44a) which can be optimized by MILP algorithms. In this

model, the algorithm treats ẑ() as an unknown function and extracts special

samples (associated with the generated trajectory) from it and finally con-

verges to the (local) optimal trajectory as illustrated in Figure (5.7).



Figure 5.7: The contour plot of unknown non-convex cost function, i.e. given in
equation (5.54), and local optimal trajectory generated by DMPC.



Figure 5.8: Control input ut = [ẍt ÿt]
T and states ẋt and ẏt in the steady state

for the cost function of equation (5.54).

5.5.2 Nonlinear System

In this section a kinematic bicycle model in an inertial frame is used to de-

scribe the dynamics of the vehicle [72] (see Figure (5.9)). Also, ẑ is an unknown

function and it is assumed that given a trajectory, there is a black-box system

that can find (predicts or measures) the corresponding vector and pass it to

the controller. The infinite time optimal control problem is defined as:

J0→∞(x0) = min
u

∞∑
t=0

[h(xt, ut) + ẑ(xt, ut)] (5.55a)

s.t. ẋt = f(xt, ut) ∀t > 0 (5.55b)

xmin 6 xt 6 xmax ∀t > 0 (5.55c)

umin 6 ut 6 umax ∀t > 0, (5.55d)

x0 = xS (5.55e)



Figure 5.9: Kinematic Bicycle Model

where f(xt, ut) is defined as follows:

ẋt = vt cos(ψt + βt) (5.56a)

ẏt = vt sin(ψt + βt) (5.56b)

ψ̇t =
vt
lr
sin(βt) (5.56c)

v̇t = at (5.56d)

βt = tan−1(
lr

lf + lr
tan(δt)). (5.56e)

The state and control input vectors are xt = [xt yt ψt vt]
T , ut = [δt at]

T , respec-

tively. xt and yt are the coordinates of the center of mass of the vehicle, ψt is

the heading angle, and vt is the velocity of the vehicle at time step t. lf and lr

show the distance of the center of the mass from the front and rear axles, re-

spectively. βt is the angle between the current velocity vector of the center of

mass and the longitudinal axis of the vehicle. The control input vector ut is

composed of the steering angle δt and the acceleration at that is defined for

the center of mass in the same direction as vt.

In constraint (5.55c), the upper and lower bounds of the state vector are as-

sumed to be xmin = [−∞ − ∞ 0 0]T and xmax = [+∞ + ∞ 2π 4]T . Also,

in constraint (5.55d), umin = [−π
7
− 1]T and umax = [π

7
1]T . Equality con-

straint (5.55e) represents the initial state x0, which in this case is assumed



to be xS = [0 5 π
2

0].

Function J0→∞(x0) shows the overall cost imposed to the controller to steer

the system from initial state x0 to final state xF = [51 10 π
10

1.1]T . The stage

cost h(., .) is defined as a quadratic function:

h(xt, ut) = (xt − xF )TP (xt − xF ) + uTt Rut. (5.57)

The tuning matrices of the cost function are given as P = diag[1 1 0.1 0.1] and

R = diag[0.01 0.01].

To gain some intuition about the problem setting, assume that an autonomous

ground robot is running on an uneven surface. The shape of this surface that

is an arbitrary non-convex function can be seen in figure (5.10) as a contour

plot. The height of points is presented by color bar, and the higher altitude lo-

cations has a more cost to travel.

The controller knows nothing about this function and it is only implemented

by the described exogenous system that functions as a black box to the con-

troller. In this example, the controller passes the generated trajectory from its

current state x∗,jt ,

xjt:t+N = [x∗,jt , xjt+1|t, . . . , x
j
t+N |t], (5.58)

to the black box, and the black box will produce a vector of cost values asso-

ciated with each state of the system. This data-driven vector is passed to the

controller to improve its prediction.

In this example, the DMPC controller is expected to improve the given initial

trajectory (blue circle trajectory in Figure (5.10)) in the presence of an unknown

cost function. The controller will use the most recently trajectory to converge

to an optimal trajectory at each iterations. We construct DMPC (5.44) for each

time step t from x0 to xF to generate a full trajectory x∗,j . The algorithm will



stop if
∑∞

t=0 |x
j
t−xj−1

t | < 10−4. Also, the time step and time horizon is assumed

to be 0.5 second and N = 12, respectively for this problem. We used ACADO

Code Generation tool [73] with MATLAB to solve this problem, and DMPC con-

verged after 4 iterations.

The generated trajectories x∗,j ∀j > 0, cost to go for each states in different

trajectories qj ∀j, and overall trajectory cost of iterations qj(xj0) ∀j can be seen

in graphs of Figure (5.10). Also, Figure (5.11) illustrates the optimal steering

angle and acceleration/deceleration as control inputs, velocity and heading

angle at different time steps.

The autonomous reinforcement learning (RL) approaches typically require

large number of interactions with the unknown system/function to learn con-

trollers, which is a practical limitation in real cases, such as robots, where

these number of interactions can be impractical and time consuming [57]. Be-

cause in these group of applications Gaussian Process based MPC outper-

forms the RL approaches, we compare the performance of the DMPC with the

GP methods [44,58].

A Gaussian Process setting is considered where deterministic control inputs

ut is desirable that minimize cost function of the following finite time opti-

mal control problems which will be solved in a receding horizon fashion until

reaching the terminal state:

min
ut

{
Jt→t+N(xt) +

t+N∑
k=t

Exk|t [ẑ(xk|t)]
}
. (5.59)

Jt→t+N(xt) denotes the conventional stage cost and Exk|t [ẑ(xk|t)] denotes the

expected data-driven cost at time step k calculated at time t. To implement

the GP the training input and target data are defined to be x̃ = [x y]T and z̃ re-

spectively. A GP as a probabilistic, non-parametric model can be fully specified

by a mean functionm(.) and a covariance function σ2(.).



Figure 5.10: The contour plot of unknown non-convex cost function, and local
optimal trajectory generated by DMPC. The down-left graph shows the

cost-to-go vector for the states of each separate trajectory, that from top
(iteration 0 or initial trajectory) to down (last iteration) the convergence of

trajectories can be seen. The Down-right graph illustrates the overall trajectory
cost of each trajectory.



Figure 5.11: Control input ut = [δt at]
T and states ψt and vt in the steady state.

The training data and corresponding training targets are collected as X̃ =

[x̃1, x̃2, . . . ]
T and z̃ = [z̃1, z̃2, . . . ]

T . Given the test input denoted by x̃∗, the poste-

rior predictive distribution of z∗ is Gaussian p(z∗|x̃∗, X̃, z̃) = N
(
z∗|m(z∗), σ

2(z∗)
)

where

m(z∗) = k(X̃, x̃∗)T (K + σ2
ε I)−1z̃, (5.60)

σ2(z∗) = k(x̃∗, x̃∗)− k(X̃, x̃∗)T (K + σ2
ε I)−1k(X̃, x̃∗). (5.61)

σ2
ε is variance of noise, k(., .) is defined as squared exponential (Radial Basis

Function, RBF) and K is the Gram matrix with entries of Ki,j = k(x̃i, x̃j) [48].

From equation (5.60), the cost function (5.59) can be rewritten as

min
ut

Jt→t+N(xt) +
t+N∑
k=t

∫
ẑ(x̃k|t)N (x̃k|t|µµµk|t,ΣΣΣk|t)dx̃k|t. (5.62)

It is assumed that p(x̃k|t) = N (x̃k|t|µµµk|t,ΣΣΣk|t), where µµµk|t and ΣΣΣk|t are the mean

and covariance of x̃k|t. Based on the mean function given in equation (5.60)



the cost function is updated to

min
ut

Jt→t+N +
t+N∑
k=t

k(X̃, x̃k|t)T (K + σ2
ε I)−1z̃, (5.63)

where x̃k|t is the vector including the xk|t and yk|t states. The constraints (5.55b)-

(5.55d) hold for this cost function. After finding the best control input vector

ut, the first control action, ut|t, is applied and the state of the vehicle is updated

to xt+1|t in constraint (5.55e).

The same values of the parameters such as time horizon, time step, and etc

are used to run model (5.63). However, without a decent reference trajectory

this approach (PILCO) that is adopted from [44] can’t find the optimal trajec-

tory that drives the system to the terminal state. The reason for this result is,

the MPC uses a naïve approach (quadratic Euclidian distance from the equilib-

rium point) at each iteration to estimate the cost of the terminal state for the

state beyond the time horizon. Therefore, a reference trajectory is necessary

for this approach, but it may be hard to compute such a trajectory. Whereas,

DMPC does not need any reference trajectory, and it adopts the RL approach

to calculate a precise cost-to-go value for the available states in the terminal

set but in a less trial. DMPC is a farsighted approach that is able to guarantee

the safety and convergence to the equilibrium state not only during the time

horizon, but also beyond that.

After adding a reference trajectory to (5.63) and training the model by 5600

training samples, it could solve the problem. Alternatively, DMPC needs less

than 2900 data and half of its running time. Another downside of using GP is

that, if the dynamics of the system is linear, adding such an estimation of ẑ

to the cost function will make the model non-convex which is not desirable in

terms of running time and quality of the solution. While, applying DMPC will

change the model to be MILP which can be solved faster by using off-the-shelf

solvers such as CPLEX, Gurobi.



5.6 Conclusions

In this chapter, a Data-and Model-driven Predictive Control (DMPC) algorithm

is presented to solve a model predictive control problem in which there is an

unknown function in the performance index or constraints that (a) is unknown

to the controller and (b) is interdependent with the decision variables (state

and control vector) of the MPC. The controller is designed to exploit an exist-

ing, exogenous data-driven system such as a black-box deep learning model,

along with model predictive control to find the optimal solution to this prob-

lem. To solve this problem, a controller is developed that conceptually borrows

from iterative learning controller but is intended for non-iterative or nonrepeti-

tive tasks. At each time step the controller optimizes via an iterative scheme,

which can use the generated results in the previous iteration and improve the

trajectory in the current iteration. The DMPC algorithm utilizes the last trajec-

tory only during its iteration scheme and builds an Integer Programming (IP)

model to solve this problem. The algorithm starts from an initial arbitrary tra-

jectory and it is proven that the algorithm will find a feasible trajectory in each

subsequent iteration, and the trajectory at each iteration is guaranteed to be

no worse than the previous one.

DMPC works with very little data and converges only in a few iterations. Two

examples with different forms of unknown functions and both linear and non-

linear dynamical systems were provided to examine the performance of the al-

gorithm. The first example of linear dynamic case is similar to obstacle avoid-

ance except that the controller can enter the area but for a cost, and more im-

portantly, the shape and the position of the obstacles are not known to the

controller. In the second example, the unknown stage cost is a nonlinear and

non-convex function and in both of examples it is assumed that there is an

exogenous system that provides the controller with samples from these func-



tions and the controller uses them to gradually converge to the optimal solu-

tion. In the nonlinear dynamical system the results were demonstrated for an

autonomous vehicle with a bicycle dynamics and its performance was com-

pared to Gaussian Processes.



Chapter 6

Summary of Contributions & Future

Work

After the emergence of autonomous vehicles, CAVs were developed to ad-

dress the safety and efficiency related concerns. CAVs allow keeping the inter-

vehicular distances as small as possible while guaranteeing safety which

brings up advantages such as more highway capacity usage, less aerody-

namic drag, minimum control effort, smoother driving, and less fuel consump-

tion. These benefits are due to sharing the motion policy of vehicles through a

wireless channel inside of a platoon. However, the V2V communication chan-

nel can be affected easily which in turn threatens the desired safety and effi-

ciency. PDR might fluctuate drastically even by changing the situation slightly.

Majority of the work in the literature assume a perfect communication channel

and wireless channel with time-varying delay which both approaches ignore

the relationships between the the states of two vehicles and surrounding envi-

ronment. In this dissertation two novel methodologies have been developed to

relax this assumption.

This chapter summarizes the presented contributions and provides some di-

rections for further studies in this field.



6.1 Summary of Contributions

In this dissertation two approaches GP-MPC (Gaussian Process-based Model

Predictive Controller) and DMPC (Data-and Model-Driven Predictive Control)

were presented to address an infinite time horizon optimal control problem in

which a part of model (cost function or constraints) is predicted or calculated

based on a data-driven system that is unknown to the controller. The appli-

cation for this problem can be sought in connected autonomous problem in

which all the autonomous vehicles are able to generate their optimal trajec-

tory for a number of time steps in the future and share it through a wireless

channel with the other members of the platoon. In this setting, the wireless

channel is assumed to be imperfect, meaning that the packet delivery rate is

not always perfect and varies from time to time as a function of the states of

two communicating vehicles and also the surrounding environment. But, this

function cannot be cast as an explicit mathematical formulation and it is as-

sumed that, given the states of two vehicles, this value can be predicted using

an exogenous system.

6.1.1 Gaussian Process-based Model Predictive Controller

GP-MPC as a data-driven Model Predictive Controller that leverages a Gaus-

sian Process to generate optimal motion policies was presented in chapter (3)

for connected autonomous vehicles in regions with uncertainty in the wire-

less channel. The communication channel between the vehicles of a platoon

is assumed to be influenced by numerous factors, e.g. the surrounding envi-

ronment, and the relative states of the connected vehicles, etc. In addition, the

trajectories of the vehicles depend significantly on the motion policies of the

preceding vehicle shared via the wireless channel and any delay can impact

the safety and optimality of its performance. In the presented algorithm, Gaus-



sian Process learns the wireless channel model and is involved in the Model

Predictive Controller to generate a control sequence that not only minimizes

the conventional motion costs, but also minimizes the estimated delay of the

wireless channel in the future. This results in a farsighted controller that maxi-

mizes the amount of transferred information beyond the controller’s time hori-

zon, which in turn helps to guarantee the safety and optimality of the gener-

ated trajectories in the future. To decrease computational cost, the algorithm

finds the reachable set from the current state and focuses on that region to

minimize the size of the kernel matrix and related calculations. In addition, an

efficient recursive approach was presented to decrease the time complexity of

developing the data-driven model and involving it in Model Predictive Control.

The capability of the presented algorithm was demonstrated in a simulated

scenario.

6.1.2 Learning Model Predictive Control

Chapter (4) presented a learning model predictive control approach to address

the problem of involving a data-driven variable in model predictive control. The

presented algorithm is iterative technique that utilizes its recently generated

trajectories to improve the current one. The algorithm builds a group of soft

constraints in the MPC and updates it regularly while exploring and converging

to the optimal trajectory.

This algorithm has the following advantages over GP-MPC:

• Despite GP-MPC, this algorithm does not transform the problem optimal

controlling a linear dynamical system to a nonlinear one.

• It does not need a reference trajectory, and an initial trajectory suffices.

• It does not require lots of data to generate its optimal trajectories.



• GP-MPC, similar to MPC, is unable to observe the state space beyond

the time horizon. This causes a local optimal trajectory in MPC (and in

some cases infeasible trajectory), but this algorithm does not have this

problem and will drive the system to the terminal state.

The learning model predictive controller approach is presented and tailored to

Connected Autonomous Vehicles (CAVs) applications. This algorithm is devel-

oped for the wireless channel with a limited number of discretized PDR values.

The proposed controller builds on previous work on nonlinear LMPC, adapting

its architecture and extending its capability to account for data-driven decision

variables that derive from an unknown or unknowable function. The chapter

presents the control design approach, and shows how to recursively construct

an outer loop candidate trajectory and an inner iterative LMPC controller that

converges to an optimal strategy over both model-driven and data-driven vari-

ables.

Simulation results to involve the variations of wireless channel in the model

predictive control of an autonomous vehicle showed the effectiveness of the

proposed control logic. The algorithm could recognize the area with imperfect

communication channel and based on the cost coefficients of cost function,

the controller was taking effective strategy to avoid the area. But the idea of

involving a soft constraint in the optimal control to build the area representing

the behavior of the wireless channel is demanding and is limited to discretized

values of PDR. PDR is a continuous parameter and an effective algorithm is

required to relax this limitation.

6.1.3 Data-and Model-Driven Predictive Control

In chapter (5), a Data-and Model-driven Predictive Control (DMPC) algorithm

is presented to solve a model predictive control problem in which there is an



unknown function in the performance index or constraints that (a) is unknown

to the controller and (b) is interdependent with the decision variables (state

and control vector) of the MPC. The controller is designed to exploit an exist-

ing, exogenous data-driven system such as a black-box deep learning model,

along with model predictive control to find the optimal solution to this prob-

lem. To solve this problem, a controller is developed that conceptually borrows

from iterative learning controller but is intended for non-iterative or nonrepeti-

tive tasks. At each time step the controller optimizes via an iterative scheme,

which can use the generated results in the previous iteration and improve the

trajectory in the current iteration. The DMPC algorithm utilizes the last trajec-

tory only during its iteration scheme and builds an Integer Programming (IP)

model to solve this problem. The algorithm starts from an initial arbitrary tra-

jectory and it is proven that the algorithm will find a feasible trajectory in each

subsequent iteration, and the trajectory at each iteration is guaranteed to be

no worse than the previous one.

DMPC works with very little data and converges only in a few iterations. Two

examples with different forms of unknown functions and dynamical systems

were presented to examine the performance of the algorithm in constrained

models. The first example is similar to obstacle avoidance except that the

controller can enter the area but for a cost, and more importantly, the shape

and the position of the obstacles are not known to the controller. In the sec-

ond example, the unknown stage cost is a nonlinear and non-convex function

and in both of examples it is assumed that there is an exogenous system that

provides the controller with samples from these functions and the controller

uses them to gradually converge to the optimal solution. The second example

was implemented for bot linear and nonlinear dynamical systems.



6.2 User guide for developed algorithms

This section provides some guidelines to use the developed algorithms in this

dissertation. Most important factors that are determinants can be listed as

follows:

• Existence of a reference trajectory that guides the controller to drive the

system from the initial to the terminal state

• Having a linear or nonlinear system

• Dealing with a continuous or discrete data-driven variable

• Availability of data for the mathematically unknown factor

• Importance of asymptotic stability of the equilibrium point

GP-MPC can be chosen when the dynamics of the system is nonlinear and

the data is readily available to explore the data-driven variable space. But, the

computational cost of GP-MPC is more than other algorithms developed in

this dissertation as it needs more data to build its proxy model. On the other

hand, it is easy and fast to adopt this approach for different applications. In

the case that reaching to the equilibrium is critical, it is notable that GP-MPC

does not guarantee the asymptotic stability of equilibrium point.

The preliminary version of learning based model predictive control can be

used when there is no reference trajectory. This algorithm requires an initial

trajectory from the initial to terminal state which is not expensive to generate.

If the dynamics of the system is linear and the data-driven variable can be de-

scribed by a few number of discrete values, this algorithm can converge to an

optimal solution fast. This algorithm will change the finite time optimal control

problem to a mixed integer linear programming model.



In the case that the data-driven variable is continuous or there are more than

few discrete value for it we should used DMPC which is a more general ap-

proach.

6.3 Future work

This section explains the possible future directions of the methodologies pre-

sented in this dissertation for the addressed problem.

In this dissertation, we tried to develop and study the characteristics of the

developed algorithms on two connected autonomous vehicles. Although this

is the building block of a platoon of vehicles and can be generalized to multi-

ple number of vehicles, a discussion on string stability of a platoon with more

than two vehicles can be fruitful to study the highway usage and overall perfor-

mance.

6.3.1 Iterative GP-MPC

In the GP-MPC algorithm, it is assumed that the data-driven variable is defined

using a proxy model developed by GP and is merged with MPC to solve for

both the model and data driven systems. Even though, two approaches were

devloped to overcome the computational burden of the algorithm, it still needs

improvement to be used in the real-world cases. To further reduce the compu-

tational cost of the algorithm, the algorithm can perform few iterations start-

ing from the trajectory that ignores the data-driven variable and explore the

state spaces in the neighborhood of the predicted trajectory by finite time op-

timal control problem for the data-driven variable. In the second iteration of

the process, the algorithm will add a very small proxy to OCP that is build by

GP to represent the approximated cost related to the data-driven variable. The



number of data to build this model in the first iteration will be zero, for the sec-

ond iteration N samples, for the third iteration 2N , and so on. Because the first

N − 1 states of the initial trajectory are optimal, the algorithm will start from a

good trajectory to converge to the final optimal trajectory.

6.3.2 Generating the initial solution for DMPC

In this work a systematic approach was not provided to generate an initial tra-

jectory for DMPC. As it was mentioned earlier, DMPC requires an initial fea-

sible trajectory from the initial to the terminal state. This initial solution can

be generated using a sequence of optimal control problem in which the initial

state of the current OCP is set to be the terminal state of the most recent OCP.

However, it was not clarified how the terminal state of the current OCP should

be selected.

The initial solution plays an important role in the optimality of the final solu-

tion. If this solution is generated inappropriately, the algorithm can easily get

stuck in a local optima without making a significant improvement in it.

6.3.3 Escaping Local Optima in DMPC

DMPC can stuck in a local optimal trajectory, and the current version of DMPC

that was presented in this dissertation is unable to escape such a solution.

The following feature can be added to DMPC to be called in this situations.

Preliminary steps of this approach are presented here.

In addition to a vector ẑ, the exogenous system is called to measure/predict
∂ẑt
∂x
, ∀x ∈ x∗,j−1. The gradient of the overall cost function∇J j−1 is defined

as:



∇J j−1 =
∂ẑ

∂x∗,j−1
+

∂J

∂x∗,j−1
(6.1)

where,

x∗,j−1 = [xS, x
∗,j−1
1 , . . . , x∗,j−1

t , . . . , xF ] (6.2a)

∇J j−1 = [∇J j−1
0 ,∇J j−1

1 , . . . ,∇J j−1
t , . . . ,∇J j−1

F ] (6.2b)

and

∇J j−1
t =

∂ẑ

∂x∗,j−1
t

+
∂J

∂x∗,j−1
t

, ∀t (6.3)

At the end, the following constraints can be added to DMPC to force the con-

troller to not generate the most recently created full trajectory.

xjt ≤ xj−1
t − α∇J j−1

t if ∇J j−1
t ≥ 0 (6.4a)

xjt > xj−1
t − α∇J j−1

t if ∇J j−1
t < 0 (6.4b)

where α is a positive number as a tuning parameter. This approach can be ap-

plied in different ways. It can be implemented when two most recent full tra-

jectories are the same and also it can iterated for multiple time with a small

value of α and then be added as constraints.

6.3.4 Optimal control of unknown systems using DMPC

GPMPC has been used to control a system with unknown dynamics before.

The presented algorithm is called PILCO and it has been used to generate a

proxy model and optimally control an inverted pendulum [14, 44]. Applying

DMPC for such a problem setting is very interesting. In this problem, DMPC

will need more data from the solution space and some improvements can be

helpful to increase its performance for example, providing more candidate ter-



minal states same as Learning Model Predictive Control by keeping the previ-

ously generated full trajectories.

In addition, the ideas about generating the initial trajectory and escaping local

optima can be merged to be used in this problem to speed up the algorithm

and improve the final result.



Appendices

6.3.5 Notations

This section provides a complete list and a brief description for notations used

in this dissertation.

Table 6.1: Main Notations

Notation Meaning

xt system state at time t
ut control input at time t
n number of states in system dynamics
m number of control inputs in system dynamics
N time horizon
f known nonlinear map
X feasible state vector space
U feasible control vector space
xS initial state
xF final state
h() known function
ẑ() unknown function
J0→∞ overall cost function
j iteration index
x∗,j optimal state vector of iteration j
u∗,j optimal control vector of iteration j
x∗,jt optimal state at time t and iteration j
u∗,jt optimal control input at time t and iteration j
qj−1() cost-to-go value for each state at iteration j − 1

qj−1 cost-to-go vector at iteration j − 1

xjt:t+N |t optimal state from t to t+N estimated at t
ujt:t+N |t optimal control from t to t+N estimated at t
ujt+N−1|t optimal control at step t+ k estimated at t
xjt+N |t optimal state at step t+ k estimated at t
xF final state
h() known function



Notation Meaning

ẑ() unknown function
J0→∞ overall cost function
j iteration index
x∗,j optimal state vector of iteration j
u∗,j optimal control vector of iteration j
x∗,jt optimum state at time t and iteration j
u∗,jt optimum control at time t and iteration j
qj−1() cost-to-go value for each state at iteration j − 1

qj−1 cost-to-go vector at iteration j − 1

ujt:t+N |t optimal control from t to t+N estimated at t
xjt:t+N |t optimal state from t to t+N estimated at t
ujt+N−1|t optimal control at step t+ k estimated at t
xjt+N |t optimal state at step t+ k estimated at t
Reach(B) one-step reachable set B
RN(X0) N -step reachable set X0

Sjt N -step reachable states of iteration j at time t
C control invariant set
si,jt ith state in set Sjt
ui,jt:t+N |t optimal policy to reach terminal state si,jt
xi,jt:t+N |t optimal state vector from control input ui,jt:t+N |t
ujt:t+N |t optimal control vector to generate xjt:t+N |t
xjt:t+N |t optimal state vector to the best state in set Sjt
J i,j
t→t+N() predicted overall cost of following policy

ẑi,jk|t predicted value of the unknown function following
the control input ui,jt:t+N

J i,jt→t+N() model-based trajectory cost from x∗,jt to si,jt
`(., .) alternative positive definite cost function
P positive semi-definite weighting matrix
R positive definite weighting matrix
J j
t→t+N() minimum overall trajectory cost from x∗,jt to the

best terminal state in Sjt
x∗,j−1
τ the optimal terminal state selected at the previous

time step to reach from state x∗,jt−1

u∗,j−1
τ control input to drive the system from state x∗,j−1

τ

to x∗,j−1
τ+1 along x∗,j−1

ujt:t+N |t−1 control to drive the system from x∗,jt to x∗,j−1
τ+1



Notation Meaning

xjt:t+N |t−1 trajectory obtained by applying ujt−1:t+N−1|t−1

J j
t→t+N |t−1The overall trajectory cost from x∗,jt to x∗,j−1

τ+1

J j
t→t+N() the minimum trajectory cost from state x∗,jt

u∗,jt applied first step of optimal control policy
x∗,jt+1 reached state by applying control input u∗,jt
Qj
t cost to go vector of terminal states based on the

current state x∗,jt
r binary variable index
ξr rth binary variable
ι index of selected terminal state by model (5.44)
ι∗ index of best terminal state
xmin lower bound for feasible state space
xmax upper bound for feasible state space
umin lower bound for feasible control space
umax upper bound for feasible control space
xt x coordination of the vehicle
yt y coordination of the vehicle
ψt heading angle of the vehicle
vt velocity of the vehicle
βt angle of the velocity vector in the vehicle
δt steering angle the vehicle
at acceleration/deceleration of the vehicle
x̃ training input data
ẑ training target data
X̃ matrix of training input data
z̃ vector of training target data
x̃∗ test input data
z∗ test target data
σ2
ε variance of noise
m() mean function of z∗
σ2() variance function of z∗
K Gram matrix
k(., .) entries of K
µµµk|t mean of x̃k|t
ΣΣΣk|t covariance of x̃k|t
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