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Abstract 

 

 

This study reviews growth modeling techniques, and then focused specifically on the use 

of explanatory item response models for studying growth while accounting for lack of 

time-invariance among item properties. Using this framework, results suggested there 

was a significant amount of growth in kindergarteners’ alphabet knowledge from fall to 

spring of a school year. Individual differences in latent ability and growth were large 

initially, but became considerably smaller by the end of the year. The difficulty of 

different item properties influenced examinee’s responses and the person properties have 

significant impact on the amount of latent growth. Implications were discussed from both 

substantive and methodological perspectives. 

Key words: growth, explanatory item response model, lack of invariance, alphabet 

recognition, letter sounds 
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Chapter 1 Introduction 

The purpose of the present study is to review the literature on growth models with 

a particular focus on latent growth explanatory item response models (LG-EIRMs). It 

applies a LG-EIRM that accounts for time-varying item parameters, investigates latent 

growth in alphabet knowledge, and examines the impact of certain child properties on 

growth. Item responses to the lower-case alphabet recognition subtest and the letter 

sounds subtest of Phonological Awareness Literacy Screening-Kindergarten (PALS-K) 

were studied and analyzed for growth. These two subtests are two required tasks of 

PALS-K that measure a child’s performance in the alphabet knowledge construct 

(Invernizzi et al., 2011). To be more specific, the lower-case alphabet recognition subtest 

measures a child’s ability to provide names of all lower-case alphabet letters. It includes 

26 binary items representing 26 lower-case alphabet letters. The letter sounds subtest 

measures a child’s ability to produce sounds associated with individual letters. It includes 

26 binary items as well. 

Data comprise item-level responses of examinees to the lower-case alphabet 

recognition subtest and the letter sounds subtest that were measured on three occasions, 

fall, mid-year, and spring of the 2013-2014  school year. The sample used in the study 

consisted of 5,000 examinees randomly selected from a large sample of kindergarteners 

from a mid-Atlantic state who took PALS-K test in 2013-2014 school year.  
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Growth Modeling 

Castellano and Ho (2013a) defined growth broadly as "the academic performance 

of a student or group over two or more time points."  Briggs & Betebenner (2009) stated 

growth is reflected by changes in student achievement over time and typical questions 

about growth concern the magnitude of growth and adequacy of growth. Growth studies 

utilize statistical methods to examine student achievement data and model growth over 

different time points. Different statistical models are available for studying growth.  

Old approaches of studying growth, such as ANOVA and multiple regression 

techniques, only analyze the average change of the variable of interest between different 

time points and ignore individual differences. To capture information about individual 

differences in growth researchers may employ a different set of statistical methods such 

as multilevel growth models, linear mixed models, and student growth percentiles (SGP; 

Betebenner & Linn, 2009). Most of these methods focus on observed scores and fail to 

recognize the role of measurement error, but methods that focus on latent growth 

overcome this limitation. One such approach involves structural equation modeling 

(SEM). The involvement of SEM creates an effective way to take measurement error into 

consideration and study growth on the latent construct, instead of the observed score. 

Using SEM techniques, growth curve models (GCMs) provide the capability to account 

for measurement errors and to examine not only within-person growth over time but also 

between-person variability in the within-person growth. One limitation of GCMs is that 

they are designed for continuous outcome variables (Finney & DiStefano, 2006) which 

are usually observed test scores, instead of item scores. They can be adapted for 

categorical data through use of polychoric correlations (Muthén, 1983; Muthén, 1984). 
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However, Item Response Theory (IRT) provides a more direct approach for studying 

latent growth with categorical data.  

IRT refers to a conceptual framework for studying the relationship between the 

probability of a categorical response outcome and examinee ability and item 

characteristics (Lord & Novick 1968; van der Linden & Hambleton, 1997; Embretson & 

Reise, 2000). Traditional unidimensional IRT models are descriptive (DeBoeck & 

Wilson, 2004) in that they include a parameter for person ability (i.e. the latent trait or 

measured construct) and one or more parameters for item characteristics such as 

difficulty or discrimination. Building upon descriptive models, generalized linear mixed 

models (GLMM) and nonlinear mixed models (McCulloch & Searle, 2001) allow person 

properties, item properties, or both item and person properties to be included in an item 

response model. As such, Wilson and DeBoeck (2004) refer to these methods as 

explanatory item response models (EIRMs). A major feature of EIRM is the combination 

of measurement of person ability and estimation of research design factors (DeBoeck & 

Wilson, 2004, p.26). EIRM is able to accommodate research designs based on between-

person factors, such as person groups defined by certain person properties (e.g. gender, 

intervention group, or race). It can also be used to incorporate within-person design 

factors, such as measurement occasions and item properties (Wilson & Moore, 2011).  

If only item properties are included, the EIRM becomes a linear logistic test 

model (LLTM) which uses item properties to explain differences between item 

difficulties (Fischer, 1973; DeBoeck & Wilson, 2004, p.61). Instead of modeling 

individual item’s contribution to person response, the LLTM models the effect of each 
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item property on an item response. It also allows for modeling interactions between item 

properties. If only person properties are included in the model, the EIRM becomes a 

latent regression model which regress the latent trait on person properties, such as gender, 

race, or disability status. As a person explanatory model, latent regression models the 

effect of person properties on an item response (Verhelst & Eggen, 1989; DeBoeck & 

Wilson, 2004, p58). When both item and person properties are included, the EIRM 

becomes the latent regression LLTM, a doubly explanatory model which allows for 

estimation of effect of both item and person properties on response. Each of these EIRMs 

focuses on measurement at a single time point, but they can be extended to account for 

longitudinal data and examinee growth. 

Within the conceptual framework of IRT, a variety of models have been 

developed to study longitudinal growth (Andersen, 1985; Embretson, 1991; Wilson, 

Zheng, & McGuire, 2013; Pastor & Beretvas, 2006). Some of those models have been 

extended to longitudinal EIRMs that incorporate person and item properties (Cho et al., 

2013; Wilson, Zheng, & McGuire, 2013; Stevenson et al., 2013), which are referred as 

latent growth explanatory item response model (LG-EIRM) in this study. The LG-EIRMs 

provide a flexible set of tools for studying growth and combining the measurement and 

explanatory phases into a single model. LG-EIRMs can also be specified to incorporate 

interactions between person and item properties or between time and item properties 

(DeBoeck & Wilson, 2004; Wilson, Zheng, & McGuire, 2013). This study used LG-

EIRM to study latent growth in alphabet knowledge. 
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Early Literacy and Alphabet Knowledge 

In recent years, increasing interest has focused on literacy development among 

kindergarteners and younger children (Missall & McConnell, 2010). It is hypothesized 

that preschool years are a crucial period for educators to apply strategies to shape and 

positively impact a child's literacy growth trajectories (VanDerHeyden, Snyder, 

Broussard, & Ramsdell, 2008). Early literacy assessment data allows a child’s learning 

progress to be monitored, and as a result, early literacy growth studies have become 

important. There are two primary benefits from early literacy growth studies. One is to 

obtain information about the relation between early reading performance and later 

reading achievement (Dickinson, Tabors, & Roach, 1996). Another benefit is to explore 

and understand the influences of different factors on literacy growth of children. The 

information about sources of individual differences in growth can guide customization of 

instructional support provided by teacher or school.  

Alphabet knowledge is one of the core components of early literacy. Invernizzi et 

al. (2004) wrote that early literacy mainly consists of four components: phonological 

awareness, alphabet knowledge, concepts of word, and grapheme-phoneme 

correspondence. Among those, alphabet knowledge refers to a child's knowledge and 

ability to recognize all respects of written letters, including letter forms, letter names, and 

letter sounds (Huang, Tortorelli, & Invernizzi, 2014). Multiple studies have indicated that 

alphabet knowledge is one of the most powerful predictors of later reading performance 

(Adams, 1990; Foulin, 2005; Hammill, 2004; Stevenson & Newman, 1986). Additionally, 

Scarborough (1998) conducted a comparison study and found that alphabet knowledge 
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could be as powerful a predictor of future reading performance as an entire literacy 

assessment. 

As the two essential components of alphabet knowledge, alphabet recognition 

refers to a child’s ability to identify the names of letters given their corresponding graphic 

shapes (Evans et al., 2006) and letter sounds is defined as a child’s ability to “provide the 

sounds associated with a particular letter form,” (Huang et al., 2014). A child’s 

performance in alphabet recognition and letter sounds is affected by letter-specific 

features, such as visual confusability (i.e. shape confusability) and letter-name structure. 

Shape confusability is defined as the shape similarity of the letter to other letters (or 

numbers) (Huang & Invernizzi, 2014) and it has impact on child’s ability of naming 

different letters. Letter-name structure is determined by the phonological relationship 

between letter sounds and their letter names (Huang & Invernizzi, 2012; McBride-Chang, 

1999) and it influences how child learn to identify the sounds of different letters. 

Research Questions 

To better understand how a child develops alphabet knowledge, this study 

examined latent growth in alphabet knowledge (consisting of letter names and letter 

sounds) within one school year. Factors associated with individual differences in growth 

and various item properties were also investigated. Person properties included pre-k 

schooling, English language learner status, disability status, and a child’s age in fall. Item 

properties included letter-shape visual confusability and letter-name structure. Given that 

item parameter estimates do not necessarily stay constant across groups or test occasions 

(Embretson & Reise, 2000; Rupp & Zumbo, 2006) this study also evaluated of the 
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tenability of assuming time-invariant item properties and adjusted the model whenever 

this assumption was not feasible. Therefore, this study addressed the following research 

questions: 

1. What is the amount of average latent growth in alphabet recognition and letter 

sounds over three time points?  

2. What examinee properties (e.g. pre-k schooling, English Language Learner 

status) influence the latent growth? 

3. Does any item property (i.e. letter-shape confusability and letter-name 

structure) show a lack of time-invariance? 

Method 

This study constructed multiple LG-EIRMs based on an IRT-based latent growth 

model developed by Embretson (1991) and its extensions proposed by Wilson, Zheng, 

and McGuire (2013). The foundational model of this study was Embretson’s (1991) 

Multidimensional Rasch Model for Learning and Change (MRMLC). Her MRMLC 

includes an initial latent trait dimension representing initial status and one or more latent 

growth dimension representing the change between successive time points. The 

dimensions are assumed to be correlated and item difficulty parameters of the same item 

are assumed to be invariant across time points in the model. In my study, item properties 

(i.e. letter-shape confusability and letter-name structure) and person properties (e.g. pre-K 

schooling and English language learner status) were included in the LG-EIRMs to 

explain the influence from those item- and person-associated factors. All constructed LG-

EIRMs (see Chapter 3) were compared and model fit to the data was evaluated.  
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Implications 

From a methodological perspective, this study provided insight into the benefits 

and challenges of using explanatory IRT approach to analyze categorical response data 

and examine the growth of latent constructs. The approach utilized by this study was able 

to identify person properties that significantly influence the latent growth. Additionally, it 

built upon Embretson’s MRMLC and demonstrated the way to test for time-invariance of 

item properties or how to incorporate time-varying item properties if necessary. 

With respect to early literacy, the results of this study promoted understandings of 

kindergartener’s developmental growth in alphabet knowledge. The findings will shed 

light on alphabet knowledge curricular planning and instructional design. The 

relationship between item properties and kindergartener’s performance can be taken 

advantage by teachers to understand kindergartener’s learning progress of letters with 

different particular features and make more effective use of instructional time. Moreover, 

children are heterogeneous group (Cabell, Justice, Konold, & McGinty, 2011). 

Understanding how growth in alphabet knowledge is attributable to different person 

properties benefits future differentiated curricula design and customized intervention for 

children with specific characteristics.  
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Chapter 2 Literature Review 

A variety of growth modeling techniques, including item response theory-based 

growth modeling approach, are available to be utilized to examine measurement data and 

estimate academic growth. The availability of longitudinal data of early literacy 

assessment allows for growth models to investigate child's developmental growth and 

monitor a child's learning progress of early literacy core skills. This chapter gives a 

review on growth modeling and its application in the field of early literacy. 

Growth Models 

High-stakes testing in education has traditionally focused on measuring student 

performance at a single point in time (see No Child Left Behind Act of 2001). This type 

of testing only measures a student’s current state of knowledge or achievement status but 

it does not reflect student growth – a student’s learning or achievement over time 

(Castellano & Ho, 2013a; Briggs & Betebenner, 2009). Measuring status is easier to 

accomplish as it requires data collection at a single point in time. Growth measurement, 

on the other hand, is more difficult to accomplish as it requires data collection at multiple 

time points with the same or very similar measure on each occasion (Castellano & Ho, 

2013a). Complicating matters are the multitude of statistical methods for studying 

growth. Available methods include gain-score models, multilevel growth models, growth 

curve models, latent growth models, and student growth percentiles (SGP; Betebenner & 
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Linn, 2009). They all answer questions related to the magnitude of growth or the 

adequacy of growth (Briggs & Betebenner, 2009), but each method has its strengths and 

limitations.  A researcher should understand the benefits of each approach and choose a 

method most suited for the research questions at hand.  

Briggs and Betebenner (2009) broadly classified growth models as either relative 

or absolute growth models. A relative growth model evaluates test performance relative to 

prior achievement, whereas an absolute growth model evaluates test performance 

conditional on time. The main idea of relative growth is borrowed from pediatrics where 

physicians measure and describe the height and weight of infant in pediatrics in terms of 

growth percentiles. In education, student growth percentiles (SGPs) are the percentile 

rank of a student’s current test score conditional on prior achievement (Betebenner, 

2009). SGPs provide a relative (i.e. norm-referenced) interpretation of growth. Linn 

(2008) believes SGPs are an appropriate and compelling descriptive measure of growth 

which can serve as the basis of a more systematic and proper educational accountability 

system. There are multiple approaches to estimating SGPs, but the simplest method is 

one that calculates percentile ranks from the test scores at the current time point based on 

examinee test scores from a previous time point. For example, examinees that score in the 

bottom ten percent on the initial exam are combined into a group, and percentile ranks of 

the current exam scores are then computed for this group. The process is repeated for 

students scoring in the second ten percent on the initial exam and so on until there are ten 

sets of growth percentiles characterizing relative growth for the entire group of 

examinees. The STAR Assessments (Renaissance Learning, 2012) and AIMS Web 

(Pearson, 2012b) are two examples of operational educational measures that use this 
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method. A limitation of this simple approach is that it can only be used to compare two 

time points (current test score and prior test score; Grady, Lewis, & Gao, 2010). To look 

at test scores obtained from multiple points in time, you must consider all possible 

pairings of them. 

Betebenner (2009) introduced the use of quantile regression as a more 

sophisticated method for computing SGPs and studying relative growth. This method 

allows one to compute percentiles ranks of current exam performance conditional on one 

or more prior test scores or even conditional on other data such as student gender. 

Betebenner’s method is widely used in high-stakes educational settings such as the 

Colorado Growth Model Program (Briggs & Betebenner, 2009). Relative growth models 

provide an interpretive framework that helps test users understand how a student’s change 

in achievement compares to other students who started at a similar level of achievement. 

They do not provide a way to quantify the actual amount of growth. Absolute growth 

models overcome this limitation and quantify not only the amount of growth, but also the 

type of growth (e.g. linear, quadratic). 

Examples of absolute growth models include gain-score models, multilevel 

models, growth curve models, and latent growth models. The gain-score model is the 

most intuitive approach to quantify the amount of growth, since the gain score is simply 

the difference in a student's performance on the same test administered at two different 

time points (Castellano & Ho, 2013a). The gain-score model can be extended to describe 

the average growth at the group level by taking average of gain scores of a group of 

examinees. Traditional approaches of studying absolute growth are primarily ANOVA 
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and multiple regression. These two approaches compute the average change in the 

variable of interest between different time points and consider it as growth. The main 

limitation of such early approaches is that they ignore differences among individuals and 

treat those differences as error variance. Consequently, useful and valuable information 

about growth hidden in the error variance would not be analyzed.  

Random-effects ANOVA, random coefficient modeling, and multilevel modeling 

(Preacher, Wichman, MacCallum, & Briggs, 2008) allow for individual differences in 

growth. Specifically speaking, these methods include random coefficients in their models 

and estimations of those random effects reflect individual differences in growth. In a 

multilevel model, level-one involves the measures obtained from each time point, and 

individual variation in initial status and growth at level-two. Multilevel models allow 

researchers to explore the relationship between person-specific covariates and individual 

differences in growth (Duncan & Duncan, 2004; Pastor & Beretvas, 2006; Preacher et al., 

2008). They have a number of strengths including their ability to capture individual 

difference in growth via using random coefficients and their well-established statistical 

estimation procedures (Duncan & Duncan, 2004). They also make it easy to incorporate 

many time points for each individual and for each individual to have different numbers of 

time points measured at unequal intervals. A limitation of using a multilevel model to 

study growth is that it is essentially a univariate method that does not extend easily to 

multivariate outcomes (Kaplan, 2009).  

Growth curve models (GCMs) provide a way to study growth with structural 

equation modeling techniques. It therefore allows for multiple outcome variables and 
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ways to examine the relationship between growth and various covariates such as 

examinee property variables that are consistent over time and environmental variables 

that change over time (Duncan & Duncan, 2004; Kaplan, 2009). GCMs also provide the 

capability to examine not only within-person growth over time but also between-person 

variability in the within-person growth. GCMs and multilevel models are not mutually 

exclusive methods for studying growth. Indeed, the same model can be constructed from 

either framework. Raudenbush and Bryk (2002) described a multilevel modeling 

approach for GCM. A limitation of GCMs is that they are designed for continuous 

outcome variables (Finney & DiStefano, 2006). They can be adapted for categorical data 

through use of polychoric correlations (Muthén, 1983; Muthén, 1984). However, item 

response theory provides a more direct approach for studying growth with categorical 

data. 

Explanatory Item Response Models 

Item response theory (IRT) models refer to a set of models for studying the 

relationship between the probability of a categorical response outcome and examinee 

ability and item properties (Linden & Hambleton, 1997; Embretson & Reise, 2000). 

Traditional unidimensional IRT models are descriptive (DeBoeck & Wilson, 2004) in that 

they include a parameter for person ability and one or more parameters for item 

characteristics such as difficulty and discrimination. The most basic IRT model is the 

Rasch model (Rasch, 1960/1980). Given a person’s ability p  and an item’s difficulty, i

, the probability of person p  responding correctly to the item i  is given by, 
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exp( )

( 1| )
1 exp( )

p i

pi p

p i

P X
 


 


 

 
,  (2.1) 

and the logit of Equation 2.1 is logit[ ( 1| )]pi p pi p iP X        . The difficulty 

parameter describes the location of an item characteristic curve such that smaller values 

move the curve to the left and larger values move it to the right. Additional parameters 

may be included in the model to control the slope of the curve and its lower asymptote. 

These additions result in the two-parameter logistic and three-parameter logistic models, 

respectively. Descriptive IRT models also exist for polytomous items. Two examples are 

the partial credit model (Masters, 1982) and the generalized partial credit model (Muraki, 

1992). 

Researchers have demonstrated the way IRT can be situated within a generalized 

linear mixed model (Adams, Wilson, & Wang, 1997; Adams, Wilson, & Wu, 1997; Wu, 

Adams, & Wilson 1998; Kamata, 2001; Wilson & DeBoeck, 2004) and generalized 

nonlinear mixed model (Rijmen, Tuerlinckx, DeBoeck, & Kuppens, 2003). Generalized 

linear mixed models (GLMM) and nonlinear mixed models (NLMM; McCulloch & 

Searle, 2001) allow person covariates, item covariates, or both item and person covariates 

to be included in an item response model. As such, Wilson and DeBoeck  (2004) refer to 

these methods as explanatory item response models (EIRMs).  

The EIRM is defined as the item response model that seeks to explain item 

response in terms of its relation to other covariates (DeBoeck & Wilson, 2004). As 

implied by its name, EIRM uses explanatory approach to reveal the nature of the relation 

among item response and item-relevant or person-relevant property variables in the 
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model. Specifically speaking, in the context of item response modeling, EIRM explains 

and depicts the mathematical relationship among item response, person latent ability, and 

item characteristics. Depending on the properties included in the model, an EIRM can be 

explanatory on either person side, item side or both. 

A GLMM is a generalized case of linear mixed model that extends to categorical 

outcomes. A Linear mixed model is basically one type of linear regression model, but 

with two important unique features. First, the model contains two types of independent 

variables, variables with fixed weights estimating fixed effects which do not vary as a 

function of observed individual units and variables with random weights estimating 

individual-specific random effects which vary across observed individual units. The 

second feature is that the distribution of individual regression weights follows a specified 

mathematical format (DeBoeck & Wilson, 2004, p.21). However, generally, linear mixed 

models can only be applied to continuous outcome data and the error term in the model is 

continuous which would not recognize the boundaries of categorical variable. The 

generalized linear mixed model is able to handle categorical data. To be more specific, it 

involves three parts to connect the categorical observed dependent variable to a 

combination of independent variables in a linear function: (a) the observed dependent 

variable piY  is related to its expected value pi  through an independent Bernoulli 

distribution, (b) a link function connects the expected value of the categorical dependent 

variable pi  to the expected value pi  of the underlying continuous variable, and (c) the 

expected value of the underlying continuous variable pi  is linked to the combination of 

a number of independent variables in the linear mixed function (see McCullagh & 
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Nelder, 1989; DeBoeck & Wilson, 2004, p.28). As a result, the categorical observed 

dependent variable is mathematically related to the independent variables within a linear 

mixed function.  

 Equation 2.2 show the most general form of the GLMM for binary data (DeBoeck 

& Wilson, 2004). 

 
1 0

J K

pi pj ij k ik

j k

Z X  
 

   .  (2.2) 

where p are the random effects assumed to have a multivariate normal distribution, 

( , )p MVN 0 Σ . The 
k  are fixed regression weights, typically representing item 

characteristics such as item difficulty. It is common practice to multiply the 
k  by 1 , so 

that the parameters are interpreted as difficulty and not easiness. With such 

multiplication, equation 2.2 becomes,  

 
0 0

J K

pi pj ij k ik

j k

Z X  
 

   . (2.3)  

 Finally, the vectors iZ  and iX  contain person and item property variables. They can be 

dummy coded to produce different types of item response models. 

 Coding pZ with a vector of ones, the random effect component becomes 0p , 

which is viewed as the person ability parameter in the IRT framework. Coding iX  such 

that 1ikX   when i k  and 0ikX  otherwise results in the Rasch model,   

 ippi     (2.4) 
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where pi  is the logit of person p 's probability of correctly answering item i , p  is the 

latent ability parameter of person p , and i  is the item difficulty of item i .  

 Person or item property variables can be coded in  iZ  and iX  to model the 

relationship between different person or item characteristics and the latent ability. For 

example, a Rasch model with covariates indicating both person properties and item 

properties is referred to as a doubly explanatory Rasch model in equation 2.5 (DeBoeck 

& Wilson, 2004) such that the model includes a latent regression for person ability and 

fixed item effects, 

 ik

K

k

kppj

J

j

jpi XZ 



01

   (2.5) 

where p is an error term for person p  after all person group property effects are 

accounted for (i.e. the random person effect). In this doubly explanatory item response 

model, person and item-relevant property covariates include fixed effects. As for 

contribution from the person’s side, an error term is added to the equation since person 

ability is usually seen as random effect and the fixed effect of person property may not be 

able to account for all variances in the item response. On the item side, there is no error 

term for individual item property or item group attribute effect since contribution from 

item’s side is assumed to be fully explained in terms of individual item parameter or item 

property effect. However, explanatory Rasch models have variations. Depending on the 

research interest on certain item or person properties, the basic components of the general 

formulation 2.5 can be modified. 
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If only item property covariates are included, the EIRM becomes a linear logistic 

test model (LLTM) which uses item properties to explain differences between items 

(Fischer, 1973; DeBoeck & Wilson, 2004, p.61). Unlike Rasch model which models 

individual item's contribution to person response, the LLTM estimates the effect of item 

properties on person response and the value of each property for individual items. 

Particularly, the LLTM also allows for estimation of interaction effect between item 

properties. DeBoeck and Wilson (2004) present the formulation of LLTM as equation 

2.6: 

 ik

K

k

kppi X



0

   (2.6) 

where ikX  is now coded such that it equal 1 if item i  involves item property k  

),...,0( Kk  , and it is zero otherwise. The coefficient k  is interpreted as the regression 

weight of item property k . A limitation of the LLTM is that it attempts to account for all 

of the variation in item difficulty. That is, it makes the strong assumption that those item 

properties are able to fully explain the item effects (DeBoeck & Wilson, 2004). Janssen 

and DeBoeck (2006) developed the random weight LLTM (RW-LLTM) by adding a 

random term to the item side,  

 
1

( )
K

pi p k ik i

k

X   


    (2.7) 

where ),0(~
2

 Ni . This model is essentially a linear regression on item difficulty 

such that the covariates in iX  predict difficulties of item properties.  
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If only person property covariates are included, the EIRM becomes a person 

explanatory model, a latent regression model which regresses latent trait on a number of 

external person properties (e.g. gender, race, intelligence). The latent regression Rasch 

model is given by, 

 ippj

J

j

jpi Z  
1

  (2.8) 

where j  is the fixed regression weight of person property j , and p is an error term for 

person p representing the remain effect after accounting for all person properties. As 

indicated by its formulation, the latent regression model uses person properties to explain 

differences among person ability. 

 One major feature of EIRM is the combination of measurement of person ability 

and estimation of research design factors (DeBoeck & Wilson, 2004, p.26). Since 

property covariates represent information pertaining to person properties, item properties, 

or the interactions between them, item response in an EIRM can be linked to information 

which explains variances in item response. Wilson and Moore (2011) pointed out that a 

regular IRT model simply provides a description of items and persons via addressing their 

locations on a common scale, whereas the EIRM explains their locations by using 

properties of items or persons. Additionally, due to its explanatory nature, EIRM is able 

to accommodate research designs based on between-person factors, such as person 

groups defined by certain person properties (e.g. gender, intervention group, or race). It 

can also be used to incorporate within-person design factors, such as item properties, 
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since all persons take the same set of items and item properties vary among items within 

the item set (Wilson & Moore, 2011). 

Explanatory Item Response Models for Latent Growth (LG-EIRM) 

Andersen (1985) developed a longitudinal growth model for dichotomous 

response data based on the Rasch model. In his model, the same items are taken by 

examinees at multiple time points, and the item parameters are assumed to be invariant 

across time points. His model uses a separate latent trait to describe achievement at each 

time point, and these time-varying latent traits are assumed to be correlated. Andersen’s 

model does not have a parameter to estimate overall latent growth, but it allows for any 

type of growth between time points (Wilson et al., 2011).  Since the underlying latent trait 

being measured in the model is essentially the same, the correlations between each time-

point-specific latent trait are usually quite strong.  

Embretson (1991) developed another Rasch-based growth model referred to as the 

Multidimensional Rasch Model for Learning and Change (MRMLC). Her model includes 

at least two dimensions, an initial latent trait dimension representing initial status, and a 

latent growth dimension representing the change between successive time points. The 

dimensions are assumed to be correlated and item difficulty parameters of the same item 

are assumed to be invariant across time points in the model. For an item given at 

1,...,t T  time points, the MRMLC is given by,  

 
1

T

pit t pt p i

t

Z   


   ,  (2.9) 
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where 
pZ  is a matrix coded with a Weiner simplex process (Embretson,1991). An 

example of this matrix for three time points is given by, 

 

1 0 0

1 1 0

1 1 1

pZ

 
 

  
 
 

. 

The random effect 
p  is obtained from the first column of 

pZ , and it indicates an 

examinee’s initial status on the latent trait. The parameter 1  reflects the change in latent 

trait from time one to time two, and 2  indicates the amount of change from time two to 

time three. The Figure 2.1 presents a simple case of MRMLC with two items and three 

test occasions (see Wilson, Zheng, & McGuire, 2011). 

 

  

 

 

 

 

 

Figure 2.1 An example of Embretson’s (1991) MRMLC 
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Embretson’s model can also be extended to link latent growth to changes in 

cognitive processes and knowledge structures by adding a structural model for item 

difficulty parameter (Embretson, 1995). It can also be adapted to include additional 

person property covariates. Stevenson, Hickendorff, Resing, Heiser, and de Boeck (2013) 

expanded on Embretson’s model by incorporating item and person property covariates 

into the model. Specifically, they added to Embretson’s work by incorporating a RW-

LLTM with a continuous item property covariate and a random error term for items, 

instead of fixed individual item effects.  

The logit of their model is,  

 
1 1

J K

pit jt pjt pt k ik i

j k

Z X    
 

   
      

  
  ,  (2.10) 

where p  and i  are normally distributed with zero means and variances 2

p
  and 2

i
 . 

With both time points and person properties included, an example of the matrix pjtZ  for 

three time points with person property j  can be shown as, 

1 0 0

1 1 0

1 1 1

p

pjt p

p

j

Z j

j

 
 

  
 
 

 , 

where pj  represents the value of person property j  for person p . In using this model, 

Stevenson and her colleagues (Stevenson et al., 2013) successively added person and 

item property covariates to construct a series of nested longitudinal EIRMs. Each model 

was compared to the previous one in terms of model fit and the model with better fit was 
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selected. In the best fitting growth model, estimates of the effects of those person 

properties were used to explain individual differences in growth. In another extension of 

Embretson’s work, Cho, Athay, and Preacher (2013) proposed a Generalized Explanatory 

Longitudinal Item Response Model (GELIRM) that can be used with multidimensional 

tests.  

Andersen’s work, Embretson’s MRMLC, and the various extensions provide a 

flexible set of tools for studying growth. Their main limitation is that the dimensionality 

increases as the number of time points increases. This feature is not a limitation when 

examinees are tested on just a few occasions, but it presents notable difficulties or 

estimation when examinees are observed many times. Adding restrictions to the model 

can overcome this limitation. For example, the change parameters can be constrained to 

represent a linear trend across all time points (see Wilson, Zheng, & McGuire, 2013; 

Pastor & Beretvas, 2006). 

All LG-EIRM discussed above assume that item parameters (or item group 

parameters) are invariant across all time points. If the assumption is incorrect, then 

estimates of examinee ability and growth will be compromised (Wells, Subkoviak, & 

Serlin, 2002; Pastor & Beretvas; 2006). The next section discussed parameter invariance 

in more detail and the subsequent section presents an LG-EIRM that accounts for a lack 

of invariance. 

Item Response Theory and Parameter Invariance 

Parameter invariance is a fundamental property of item response theory (IRT). It 

applies to both item and person parameters. Item parameter invariance refers to the 
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equality of item parameters, up to a linear transformation, over different samples of 

examinees. Invariance makes IRT models a popular choice over other measurement 

models (Rupp & Zumbo, 2006) as it allows for innovative testing procedures such as 

computerized adaptive testing.  

Invariance is a property of the parameters and it is not guaranteed to hold true for 

parameter estimates. Lack of invariance (LOI) refers to the condition when invariance 

fails to hold. Invariance must be empirically tested and not just assumed to be true. Item 

parameter drift (IPD) and differential item function (DIF) are two concepts that reflect the 

existence of a LOI. Goldstein (1983) defined IPD as the change in an item’s parameters 

over multiple points in time. It may also be considered as the difference in an item’s 

parameters when the item is given to examinees taking different test forms. Differential 

item function (DIF) is related to this latter concept in that it refers to a difference in an 

item’s parameters when the item is given to different groups of examinees such as male 

and female test takers (Camili, 2006; Holland & Wainer, 1993; Zumbo, 1999). IPD and 

DIF are different manifestations of a LOI.  

LOI in item parameters affects examinee’s response probability and ability scores 

(Rupp & Zumbo, 2006). Hence, any violation of the parameter invariance property 

jeopardizes model parameter estimation and person ability score interpretation. The 

impact of LOI on ability estimates has been investigated and addressed by several studies 

(Bock, Muraki, & Pfeiffenberger, 1988; Wells, Subkoviak & Serlin, 2002; Wollack, Sung, 

and Kang, 2005; Wollack, Sung, and Kang, 2006; Han & Guo, 2011), however, results so 

far are not conclusive in terms of how serious the consequences are. Moreover, since the 
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invariance property of IRT implies that item parameters are independent of examinee 

groups, it technically provides the foundation of test fairness. Any type of violation to this 

property would become a threat to test fairness because it means that an item may be 

easier for some examinees solely because of their group membership (e.g. race, gender). 

Hence, LOI should be detected and neutralized before interpreting the test scores and 

making the inferences from the test results. Or, the response model should not assume 

invariance and include parameters that account for it. 

Item parameter invariance is more complex in growth models as it must hold true 

in multiple ways. Broadly speaking in longitudinal studies, invariance is defined as the 

“stability in the psychometric properties of a measure across populations or occasions.” 

(Mellenbergh, 1994; Meredith & Millsap, 1992). More specifically, Cho, Athay, and 

Preacher (2013) note that invariance in growth models refers to the stability of item 

parameters: (a) across person groups, (b) across time points (drift), (c) across person 

groups within a time point, and (d) across time points within a person group. Any 

violation of invariance at item level impacts person ability estimation such as a person’s 

initial status and growth (Wells, Subkoviak, & Serlin, 2002; Pastor & Beretvas; 2006; 

Rupp & Zumbo, 2006). To eliminate or minimize the impact of any violation of 

measurement invariance, two options are typically available. The first one is to detect any 

lack of invariance before analyzing the growth and drop the items with serious LOI effect 

(see Cho, Athay, & Preacher, 2013; Kim & Camilli, 2014). The second one is to modify 

the growth model by incorporating time-by-item or group-by-item interactions (see Paster 

& Beretvas, 2006; Wilson, Zheng, & McGuire, 2011). Significant interaction effects 

would indicate a LOI. This study will use the latter approach. 
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Accounting for LOI in an LG-EIRM 

LOI can be incorporated into a LG-EIRM through various interaction terms. A 

person-by-item interaction represents the difference in difficulty for various person 

groups (i.e. DIF). It is derived as the product of a person group membership indicator and 

an item indicator (DeBoeck & Wilson, 2004). A LG-IRM with a DIF effect is given by, 

            
1 1

J K

pit jt pjt p k ik k pik i

j k

Z X W     
 

   
       

  
    (2.11) 

where k  is the person group-by-item interaction effect, and pikW  is the indicator of 

interaction effect which equals to the product of person group indicator and an item 

indicator. If the DIF effects, k , are not statistically significant they can be eliminated 

from the model and the result is Embretson’s MRMLC (Equation 2.9). 

 Extending  the application of interaction effect to longitudinal EIRM, a time-by-

item interaction term can be used to model lack of invariance of item parameters across 

different time points (i.e. drift). The LG-EIRM with this type of interaction can be used to 

test the time invariance of item parameters or item properties while analyzing growth. It 

is given by  

                 
1 1

J K

pit jt pjt p k ik k tik i

j k

Z X V     
 

   
       

  
   (2.12) 

where k  is the time-by-item interaction effect, and 
tikV  is the indicator of interaction 

effect which equals to the product of the time-point indicator and an item indicator iX . 

Equation 2.12 is very similar to Equation 2.11. The only difference is the nature of the 
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interaction term. Like Equation 2.11, if the drift effects k , are not statistically 

significant or the model with the interaction terms does not improve the overall fit to the 

data, they can be eliminated from the model and the result is also Embretson’s MRMLC 

(Equation 2.9).  

I used a series of LG-EIRMs to study growth in early literacy skills and test for 

item parameter invariance.  This approach is well-suited for early literacy measures 

because of what the research says about item properties in measures of early literacy and 

what is known about the development of early literacy skills. The next section provides a 

brief review of early literacy research. It focuses on information that is aligned with my 

research questions and is therefore included in various LG-EIRMs in this study. 

Estimation Methods of LG-EIRM 

 Maximum likelihood (ML) estimation is the most widely applied method for 

estimating item parameters of item response models. All approaches of ML estimation are 

applied under the assumption that person ability levels are unknown and both item and 

person parameters have to be estimated from the same response data. Depending on how 

unknown person abilities are handled in estimation process, three popular approaches of 

ML are available.  

Among them, Joint Maximum Likelihood (JML) estimation uses provisional 

person ability levels as known person ability parameter values at the beginning of 

estimation. Then the estimated person parameters will be used to improve the provisional 

person ability parameters by replacing them. It is an iterative procedure which involves 
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multiple estimations of persona and item parameters. In the GLMM framework, JML 

approach treats person ability parameters as fixed effects, the same way as it views item 

parameters (DeBoeck & Wilson, 2004, p.344). JML has its strengths, such as that it is 

easily programmable and computationally efficient. In addition, it can be applied to 

various IRT models although it is typically applied to Rasch model and its extensions. 

However, its major limitation is the inconsistency of item parameter estimates for fixed 

length texts because the item parameter estimates from using JML change as sample size 

changes. In addition, it also produces biased item parameter estimates and does not 

provide parameter estimates of items with perfect scores (Embretson & Reise, 2000).  

Compared to JML, the Conditional Maximum Likelihood (CML) approach is 

more restrained since it requires that a sufficient statistic for estimating person abilities is 

available in the data (Embretson & Reise, 2000, p. 215). So CML can only be applied to 

Rasch model and its extensions, such as partial credit model and rating scale model. In 

CML, the sum score, instead of person ability parameter, is used to express response 

pattern probability. It involves an iterative procedure to search for the item parameter 

estimate that maximizes the response pattern likelihood. In the GLMM framework, CML 

approach does not need person-specific effects to estimate item parameters or item-

specific effects (DeBoeck & Wilson, 2004, p.345).An important strength of CML is it 

factors out the person ability parameters during estimation and as a result, the item 

parameter estimates are not influenced by the person ability distribution of the sample. 

However, the limitations of CML include its inability to provide estimates for item or 

person with perfect scores, its restrained applicability and loss of information due to 
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maximization of the conditional likelihood (Embreston & Reise, 2000; DeBoeck & 

Wilson, 2004, p.345). 

The Marginal Maximum Likelihood (MML) approach treats probabilities of 

response patterns as expectations from a population distribution and views the observed 

response data as a random sample of a population (Bock & Lieberman, 1970). Bock and 

Aitkin (1981) developed the Expectation-Maximization (EM) algorithm for MML to 

estimate item parameters which is also an iterative procedure. In MML estimation for 

GLMM, person-specific effects (i.e. person ability parameters) are treated as random 

effects. The vector of unknown population parameters that describes the characteristic of 

the person ability distribution is estimated together with the fixed effects in the model. 

Notably, MML has a wide range of applications, including all types of IRT models, even 

multidimensional models. Additionally, the MML is highly efficient for parameter 

estimation, regardless of the length of the test. It also provides estimates for items with 

perfect score. Furthermore, MML data likelihoods can be used for model fit indices 

(Embreston & Reise, 2000, p.214). However, one limitation of MML is its computational 

complexity. It also usually requires an assumed distribution of person ability levels for 

item parameter estimation which may lead to biased estimates. Nevertheless, MML is 

currently the most popular estimation approach for IRT models.  

When using MML for LG-EIRM estimation, the random effects are assumed to be 

normally distributed and the optimization of the marginal likelihood of the binary 

response data requires an integral that is intractable, which means there is no definite 

solution to the marginal likelihood maximization. To solve this problem, two types of 
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approximations are available in general, approximation to integral and approximation to 

integrand. Those approximating processes aim to provide an expression of the integral of 

the marginal likelihood optimization as a closed-form solution (DeBoeck & Wilson, 

2004, p.347; Doran et al., 2007). Laplace’s method (Tierney & Kadane, 1986) is a 

commonly applied approach that provides approximation to integrand.  In Laplace’s 

method, the integrand of the contribution of person p  to the marginal likelihood is 

transformed to an exponent 2ˆexp(log(Pr( | , ) ( | 0, )))p p py      , where py is the 

response of person p  ,   is the item difficulty, p  is the latent trait of  person p , and 

2

  is the variance of p . This exponent is then approximated by a second-order Taylor 

series expansion about its maximum p  (see Wilson & DeBoeck, 2004, p.352; Doran et 

al., 2007). 

All ML estimation approaches can be implemented through different software 

programs, including IRT-specific software programs (e.g. jMetrik, IRTPRO, WINSTEPS, 

PARSCALE) and general statistical programs (e.g. SAS, R). 

Early Literacy and Alphabet Knowledge 

As the foundation of children's development of reading skills and strategies, early 

literacy skills acquired in kindergarten and early grades of school have attracted a lot of 

attention (Coyne & Harn, 2006). This section presents an overview of important 

components of early literacy and stresses on one of the core early literacy fundamentals, 

alphabet knowledge, which was the construct this study applies growth models to. In 

addition, particular letter-specific properties discussed in this section were used as item 

properties in the LG-EIRMs. 
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Early literacy mainly consists of four dimensions/components: phonological 

awareness, alphabet knowledge, concept of word, and grapheme-phoneme 

correspondence (Invernizzi et al., 2004). Phonological awareness is defined as the 

“awareness of sounds in spoken (not written) words that is revealed by such abilities as 

rhyming, matching initial consonants, and counting the number of phonemes in spoken 

words,” (Stahl & Murray, 1994, p. 221).  Alphabet knowledge refers to child’s knowledge 

and ability to recognize all features of written letters, including letter forms, letter names, 

and letter sounds (Invernizzi, 2004; Huang, Tortorellu, & Invernizzi, 2014). Concept of 

word describes children's ability to “segment spoken sentences and phrases into words 

and to match spoken words with their counterparts text,” (Invernizzi et al., 2004). 

Grapheme-phoneme correspondence refers to a child’s ability to recognize the 

relationship between graphemes (i.e. letters) and corresponding phonemes (i.e. sounds) 

and to decode and write based on such relationship (Adams, 1990; Invernizzi et al., 

2004). These four early literacy dimensions cover key abilities that can predict a child's 

future reading achievement. Therefore, Invernizzi, Sullivan, Meier, and Swank (2001, 

2004) emphasized that in order to achieve early success in reading, children have to 

master those core constructs of early literacy. Among those core skills, alphabet 

knowledge is one of the constructs strongly associated with children's reading 

performance (Adams, 1990; NELP, 2008; Snow, et al., 1998). Scarborough (1998) 

conducted a comparison study which found alphabet knowledge could be as powerful a 

predictor as an entire early reading literacy test in terms of the ability to project children’s 

future reading performance. Alphabet knowledge typically refers to a child’s knowledge 

of letter names and letter sounds and the ability to recognize all aspects of letters 
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(Invernizzi et al., 2004; Puranik, Lonigan & Kim, 2011; Adams, 1990; Stevenson & 

Newman, 1986; Treiman, 2006). It is an essential element of early literacy that children 

need for reading and spelling (Adams, 1990; Piasta & Wagner, 2010; Lonigan et al., 

2000). Assessment of alphabet knowledge usually includes tasks measuring children's 

ability to identify letter names and letter sounds (Piasta & Wagner, 2010; McBride-

Chang, 1998; Treiman & Broderich, 1998; Levin & Ehri, 2009). 

 Among the two important components of alphabet knowledge, letter-name 

knowledge refers to children's ability to identify the names of letters given their 

corresponding graphic shapes (Huang and Invernizzi, 2014; Evans et al., 2006; Foulin, 

2005). It makes significant contribution to children's visual recognition of words and 

acquisition of core literacy skills, especially spelling and reading (Foulin, 2005; McGee, 

Lomax, & Head, 1988; Adams, 1990). Huang and Invernizzi (2014) emphasized children 

who fail to obtain good letter-name knowledge and alphabet recognition skill will likely 

be at risk for future reading difficulties. However, Arciuli and Simpson (2011) pointed 

out all letters are not equally difficult because letter-specific features have impact on a 

child’s probability of naming a letter correctly (Evans et al., 2006).  For example, visual 

confusability (i.e. shape confusability) is defined as the shape similarity of the letter to 

other letters (or numbers) (Huang & Invernizzi, 2014). Children may have greater 

probability of mistaking the letter with strong visual confusability for another letter (Ehri 

& Roberts, 2006; Treiman, 2006). This letter-specific property has been studied for its 

influence on children's performance in naming letters (Briggs & Hocevar, 1975; Cohn & 

Stricker, 1976; Evans et al., 2006; Fiset et al., 2008; Huang & Invernizzi, 2014).  

Considering this literature, the 26 alphabet letters can be classified as letters that are not 
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often confused (i.e. o, r, x), letter that are sometimes confused (i.e. a, c, e, f, s, t, y, z), 

letters that are often confused (i.e. i, j, k, l, m, w), and letters that are very often confused 

(i.e. b, d, g, h, n, p, q, u, v) (Huang & Invernizzi, 2014). 

 The other important component of alphabet knowledge, letter-sound knowledge, 

is defined as a child’s ability to “provide the sounds associated with a particular letter 

form,” (Huang et al., 2014). It plays an important role in a child’s grasp of alphabetic 

principle, word decoding skills, and understanding of phonics instruction (Huang et al., 

2014). As a result, children without a good mastery of letter-sound knowledge will very 

likely have difficulties in developing more complex reading and writing skills later 

(Hammill, 2004; Storch & Whitehurst, 2002). Huang and Invernizzi (2012) pointed out 

the difficulties of learning different letter sounds vary and some letter sounds are easier 

for children to learn than others, due to a set of factors associated with the characteristics 

of individual letters, such as the relative difficulty of identifying a letter's sound, the 

relationship between letter name and its sound, and the number of sounds the letter 

presents (Huang & Invernizzi, 2012; Evans et al., 2006; McBride-Chang, 1999). 

Particularly, the phonological relationship between letter sounds and their letter names 

(i.e. name-and-sound relationship) determines different letter-name structures, which 

affect how children use such name-and-sound relationship to learn letter sounds (Huang, 

et al., 2014; Evans et al., 2006). To be more specific, the letter-name structure property 

provides information about how letter sounds are related to their names and according to 

it, letters sounds can be classified into four categories, sounds associated with consonant-

vowel (CV) pattern, sounds associated with vowel-consonant (VC) pattern, sounds not 

associated with letter's primary sound (NA) pattern, and vowel sounds (VO) (see Evans 
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et al., 2006; Treiman & Broderick, 1998; Huang et al., 2014). However, in regards of how 

letter-name structure affects relative easiness of letter sounds for children to learn are not 

entirely conclusive (Evans et al., 2006; McBride-Chang, 1999; Share, 2004; Treiman & 

Broderick, 1998; Huang et al., 2014). 

The letter-associated properties have detectable impact on alphabet knowledge 

teaching and learning. Using the relationship between letter properties and alphabet 

knowledge instruction as rationales, various organizational patterns of alphabet 

knowledge instruction were formed and studied (Jones, Clark, & Reutzel, 2012; Rohrer 

& Pashler, 2010). Likewise, as to alphabet knowledge assessment, letter properties may 

have impact on examinee's responses to different test items since those letter properties 

are associated with children's learning advantages. Investigation of relationship among 

letter properties, test items, and examinee responses can help improve our understanding 

of children's developmental process of alphabet knowledge and inform the design of 

early literacy instruction and assessment.   

Early Literacy Assessment 

In recent years, growing attention has been focused on child's literacy 

development in kindergarten and even before (Missall & McConnell, 2010). It is believed 

that preschool years are a crucial period for educators to apply proper strategies to shape 

and positively impact children's literacy growth trajectories (VanDerHeyden, Snyder, 

Broussard, & Ramsdell, 2008). The beginning stage of kindergarten is especially critical 

to children to acquire reading and writing skills because their early literacy skills are in “a 

state of gradual maturation” (Invernizzi et al., 2004; Chaney, 1992; Snow, et al., 1998). 
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Those early literacy skills taught and assessed at kindergarten will precede and facilitate 

the later development of conventional reading skills of children (Invernizzi, 2004). 

Additionally, there is an increasing interest on child-specific information and its 

connection to his/her early literacy developmental progress because such progress is 

strongly associated with the child’s later academic success (Missall & McConnell, 2010).  

Early literacy assessments are a vital part of understanding a child’s early literacy 

development. The National Association for the Education of Young Children (NAEYC, 

1991) described the key purposes of early literacy assessment as “to plan instruction for 

individuals and groups and for communicating with parents” and “to identify children 

who may be in need of specialized services or intervention.” As suggested by NAEYC 

(1991), one of the main purposes of early literacy assessment is to help educators identify 

children with risk of future reading difficulty at early stage of schooling. Notably, 

Dickson and Neuman (2007) argued that the emphasis should be placed on the 

identification and planning of instructional support to those children at risk rather than 

sole classification of children in the testing pool. Compared to later remediation, early 

intervention is a means with less cost and higher efficacy (Heckman & Masterov, 2007). 

Therefore, the screening results are used to initiate appropriate early interventions for 

those children with problems acquiring early literacy skills. Justice, Invernizzi, and Meier 

(2002) also noted that assessment outcomes can be used for timely detection of 

difficulties of children in literacy achievement and for guidance of intervention design 

and implementation. For instance, Helman (2005) suggested interpretation of results from 

early literacy assessments may provide useful information for instructing non English 

Language Learners (ELL) to learn core early literacy skills. Speech-language pathologists 
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can also use information extracted from early literacy assessment to help design their 

instruction or intervention (Justice et al., 2002).  

To address the functions of early literacy assessment more specifically, Invernizzi 

et al. (2004) summarized that an appropriate early literacy assessment tool should be able 

to serve four purposes: screening, diagnosis, progress monitoring, and outcome 

assessment. She pointed out a successful systematic assessment should be able to provide 

functions to document children's early literacy achievement as well as to link 

achievement information to instruction planning. In practice, most assessments function 

as instruments to screen children for school readiness, identify children with reading 

difficulty, hold teacher or school accountable for children's achievement or funding 

expenditure, and inform the design of specific instruction (Dickinson& Neuman, 2007). 

To illustrate how those functions are implemented, Coyne and Harn (2006) provided a 

series of school-based empirical examples. In Coyne’s study, the DIBELS assessment 

was used to measure early literacy skills and inform school on instruction-relevant 

decision making. First, the assessment tool demonstrates its power of screening by 

identifying the group of early-grade children at risk of developing reading skills when the 

fall semester starts. Based on the outcome, the research-based reading instructional plan 

and intervention program are implemented. As for the progress monitoring function, the 

results from weekly literacy assessment help teachers decide if a group of children at risk 

for reading problems are making adequate growth towards standards. Additional 

instructional adjustments could be prepared based on those assessment data. As showed 

by Coyne’s examples, the data from multiple early literacy assessments allow schools and 

teachers to access important information about children's initial performance level and 
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their growth trajectories. Therefore, the validity and perceived importance of instructional 

efforts and intervention programs targeting those children with reading difficulties would 

increase (Coyne & Harn, 2006). 

From the perspective of children who experience difficulty in understanding and 

acquiring those literacy skills, benefits of having early literacy assessment are significant. 

The result of such assessment helps educators accurately identify domains or areas of 

needs and craft assistance to those children to neutralize the impact of any problem on 

later reading ability attainment (Snow et al., 1998; Invernizzi et al., 2004). For lots of 

states, the ultimate goal is to develop and implement effective and efficient strategies to 

prevent reading difficulty of children and enhance the efficacy of classroom instruction. 

The success of achieving such goal depends on precise identification of children who 

have requests of customized intervention and continuous monitoring of their literacy 

development progress (Invernizzi et al., 2004).   

In recent decades, a variety of assessments have been developed and widely 

applied to measure children's performance of early literacy skills, such as Phonological 

Awareness Literacy Screening (PALS), Dynamic Indicators of Basic Early Literacy Skills 

(DIBELS), and AIMSweb, etc. (Invernizzi et al., 2011; Deno & Fuchs, 1987; Pearson, 

2012a). The availability of these assessments allows for not only the monitoring of 

children's developmental growth and but also the examination of relationship among 

children's growth, test characteristics, and children properties. 

For any early literacy assessment instrument, the utmost important key to 

successful and effective measurement of the construct of early literacy skills is sound 

psychometric quality. More specifically, the reliability and validity of a measure reflect 
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its psychometric soundness which directly affect the degree of to which we can trust the 

score inferences. Reliability is generally defined as an index indicating the degree of 

consistency between two sets of test scores produced from two similar hypothetical or 

practical measurement processes (Meyer, 2010). Validity refers to “an integrated 

evaluative judgment of the degree to which empirical evidence and theoretical rationale 

support the adequacy and appropriateness of inferences and actions based on test scores 

and other modes of assessment” (Messick, 1990, p.1).  As suggested, validity is a matter 

of degree, not all or none. 

For example, DIBELS is a measurement instrument for assessing essential early 

literacy and reading skills from kindergarten to 6th grade with the purpose to identify 

children who are at risk acquiring basic early literacy skills and need early additional 

support to prevent them from experiencing later reading difficulties. It comprises a set of 

measures which respectively assess phonemic awareness, phonics, accuracy and fluency 

with connected text, vocabulary and language skills, and reading comprehension. Good et 

al. (2011) addressed technical properties about DIBELS which showed it has consistently 

high reliability coefficients across all skill domains within the construct being measured. 

Strong content validity, criterion-related validity, and discriminant validity evidence of 

DIBELS were also reported, which suggests it is an effective and trustworthy instrument. 

Their report also emphasized DIBELS's sensitivity to children's developmental growth in 

early literacy in response to interventional support in different skill domains. National 

Reading Panel (2000) described DIBELS measures as key indicators of foundational 

early reading. Another example is AIMSweb, a web-based assessment for early literacy 

and early numeracy skills for Grades K-12. It provides schools and teachers with 
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functions of universal screening, progressing monitoring, and data management (Pearson, 

2012a). One of AIMSweb measures, test of early literacy, contains tasks of letter naming 

fluency, letter sound fluency, phonemic segmentation fluency, and nonsense word 

fluency. The reliability of this measure was addressed from three aspects, the alternate-

form reliability with average value above 0.80, and the test–retest reliability above 0.85, 

and the inter-rater reliability above 0.82. Its criterion validity was demonstrated by decent 

correlations with other similar assessments (i.e. Woodcock-Johnson revised broad 

reading, Woodcock-Johnson revised reading skills, test of phonological awareness, 

teacher rating, and developmental skills checklist) which ranges between 0.44 and 0.75 

on average (Pearson, 2012a).  

The PALS is an assessment tool that measures a child’s knowledge of early 

literacy fundamentals that are effective predictors of future reading performance. The 

major purpose of PALS is to identify children who have difficulty reaching certain 

performance standards and may need additional intervention (Invernizzi, Juel, Swank, & 

Meier, 2011). PALS-K is the version of PALS administered to kindergarteners. 

The conceptual framework of PALS-K (Invernizzi et al., 2011) involves two components, 

phonological awareness and literacy skills, that are measured through six required 

subtests and one optional subtest (see Table 2.1). 
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Table 2.1  

Conceptual Framework for PALS-K 

Component Subtest 

Phonological Awareness Rhyme Awareness 

Beginning Sound Awareness 
  

Literacy Skills Alphabet Knowledge  

Letter Sounds 

Spelling 

Concept of Word 

Word Recognition in Isolation (optional) 

 

Invernizzi et al. (2011) report that PALS-K has test-retest reliability estimates that 

range from 0.78 to 0.95, internal consistency estimates from each subtest that average 

0.86, and inter-rater reliability estimates that range between 0.96 and 0.99. Validity 

evidence for PALS-K consists of content validity, criterion-related validity, and construct 

validity. Its content validity is ensured by careful item selection by experts. Criterion-

related validity is addressed by comparing PALS-K scores to Stanford Achievement Test 

(1996) scores. The results of comparison showed there were medium to high correlations. 

Finally, construct validity has been assessed by evaluating the internal structure of PALS-

K and classical item analysis and results indicated its internal consistency. 

Huang and Konold (2014) studied the structure of PALS-K and their results 

indicated the actual factorial structure of PALS-K data is slightly different from its 

original conceptual framework. The result from their confirmatory factor analysis 

suggested the best-fit factorial structure model for PALS-K is a three-level hierarchical 

model, where a single second-order factor, early literacy, has influence on three first-
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order factors, phonological awareness, alphabet knowledge, and contextual knowledge. 

The model presented by Huang and Konold (2014) is shown in Figure 2.2 (error terms 

are not shown in the graph). In this model, two subtests are constructed to measure each 

first-order factor. Aligned with PALS-K conceptual framework, there are six required 

subtests in total. Among the three first-order factors, alphabet knowledge consists of the 

alphabet recognition subtest and the letter sounds subtest. The letter sounds subtest will 

be where the interest of this study is centered on.  

 

Figure 2.2 Factor Structure of PALS-K Data 

Early Literacy Development Studies 

Access to early literacy assessment data has significant practical meanings to 

tracking a child’s learning progress, and as a result, research interest on early literacy 

development and growth has been rising. One benefit from early literacy growth studies 

is to obtain information about the relation between early reading performance and later 

reading achievement (Dickinson, Tabors, & Roach, 1996). Another benefit of analyzing 

growth data obtained from early literacy assessments is to explore and understand the 
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influences of different factors on literacy development of children. The information about 

sources of individual differences in growth can guide customization of instructional 

support provided by teacher or school.  

Some early literacy longitudinal studies examined the predictive validity of 

important early literacy skills for later literacy performance, instead of estimating actual 

growth in either observed score or latent construct. The data used in those studies are 

usually collected across multiple years. Lonigan, Burgess, and Anthony (2000) conducted 

a study to examine the predictive significance of some emergent literacy skills of 

preschool children. Participants were two groups of preschool children whose 

performance were tracked from early to late preschool and from late preschool to 

kindergarten or first grade respectively. They used SEM to build longitudinal latent 

variable models with those literacy tasks as latent variables and subtask scale scores as 

observed variables. Their models merely focus on examining the relations between 

emergent literacy skill factors and later literacy and reading skill factors. Results of their 

study revealed phonological sensitivity and letter knowledge demonstrated strong 

predictive relations with later reading abilities and significant contributions to the 

influence on children's literacy development. A similar study conducted by McCormick 

and Haack (2010) investigated the predictive validity of Early Literacy Individual 

Growth and Development indicators (EI-IGDIs; Missall & McConnell, 2010) for child’s 

later academic success. It was a longitudinal study that examined the relations between 

children's literacy skills in prekindergarten measured by EI-IGDIs and later literacy skills 

in kindergarten through 2nd grade measured by DIBELS and Measures of Academic 

Progress (MAP; NWEA, 2011). Multiple regression was utilized to determine if the EI-
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IGDIs score and DIBELS score were significant predictors of MAP score. Their study 

suggested the successful instructional approach and school district's appropriate 

education strategy could help improve children's growth in early literacy and positively 

influence their later literacy success.  

Another group of early literacy growth studies focus on examining children's 

literacy and reading development based on their absolute growth in either observed 

variables or latent variable. Those studies collected multiple-wave data within one year 

and used growth curve modeling for data analysis, which permitted the study to track 

growth trajectory and analyze growth trend (Pan, Rowe, Singer, & Snow, 2005; Speece, 

Ritchey, Cooper, Roth, & Schatschneider, 2004; McCoach,et al. 2006; Hammer, 

Lawrence, & Miccio, 2007). For example, McCoach,et al. (2006) used a multilevel 

growth curve model to estimate initial status and growth rate of children's performance of 

Early Childhood Longitudinal Study—Kindergarten cohort (ECLS–K; Tourangeau et al., 

2009) over first 2 years of school. ECLS–K measures a set of core early literacy skills. 

Four waves of longitudinal data of children's performance were collected from 

kindergarten to 1st grade.  Additionally, child property variables (e.g. socioeconomic 

status, ethnicity) and school-related (e.g. percentage of minority students, percentage of 

free-lunch students) variables were added to the model to examine their contribution to 

between-school and within-school variability. Results suggested overall, children grow 

much faster in reading skills in 1st grade than what they did in kindergarten. As for 

variances in initial performance and growth rate of children among schools, those child 

property variables explained a significant portion of it. Another example is the growth 

study conducted by Gutierrez & Vanderwood (2013). Their study investigated early 
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literacy growth of 2nd graders and examined the variations among ELLs at different 

English language proficiency levels. Children's skills in phonological awareness, 

alphabetic principle, and oral reading fluency were measured in the fall, winter, and 

spring of 2nd grade and three-wave data were collected. Assuming a linear growth, this 

study used a 2-level growth curve model to analyze the individual differences in growth 

trajectory of the observed scale scores. Their result revealed the initial status and growth 

trajectory were significantly different among different English-proficiency groups of 

examinees. In addition, children's growth in different components of early literacy varied. 

One notable feature of this type of growth studies is they offered the opportunity to 

examine concurrent development of children in those early literacy skills since 

measurement data were available at the beginning and the end of a school year.  

Overall, the above studies were interested in investigating growth in some 

important early literacy skills which were addressed earlier in this chapter, including 

phonological awareness, alphabet knowledge, word decoding, etc. They were also 

interested in examining the impact from person property covariates (such as English 

language learner, gender, age, socioeconomic status) on differences in growth trajectories 

among children. However, one big limitation of those studies is most of them were not 

using latent variable growth models to measure the latent growth. Also, even the SEM 

approach was used to construct latent variable models, they used scale score or item 

parcel scores, instead of categorical item-level response data, assuming that scores are 

normally distributed. They did not take characteristics of individual items into 

consideration even those characteristics may have influence on children's growth.  

Although few studies on alphabet knowledge discussed earlier (Huang and Invernizzi, 
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2012; Huang et al., 2014) used item-level response as dependent variables in their logistic 

regression models, only cross-sectional data, rather than longitudinal data, were analyzed. 

To address those limitations, my study utilized IRT-based latent growth models and item-

level response data to examine child's developmental growth in alphabet knowledge 

within one school year. Item properties (e.g. letter-shape confusability, letter-name 

structure) and important examinee properties (e.g. disability status, age, ELL status) were 

also examined with respect to their relationship with latent growth. 

Research Questions 

Due to the importance of understanding a child’s developmental progress in 

alphabet knowledge, I utilized a series of LG-EIRMs to investigate the latent growth of 

alphabet knowledge including alphabet recognition and letter sounds within one school 

year. Additionally, multiple factors associated with individual differences in growth were 

examined. Moreover, the lack of time-invariance of item properties was tested. Therefore, 

this study provided answers to the following questions: 

1. What is the amount of average latent growth in alphabet recognition and letter 

sounds respectively over three time points?  

2. What examinee properties (e.g. pre-k schooling, English Language Learner 

status) influence the latent growth? 

3. Does any item property (i.e. letter-shape confusability and letter-name 

structure) show a lack of time-invariance (i.e. drift)? 
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Chapter 3 Method 

PALS-K Measure 

The PALS is an assessment for children that measures knowledge of early literacy 

fundamentals that are effective predictors of future reading performance. A major purpose 

of PALS is to identify children who have difficulty reaching certain performance 

standards and may need additional intervention (Invernizzi, Juel, Swank, & Meier, 2011). 

PALS-K is the version of PALS administered to kindergarteners. PALS-K has two 

primary forms in use, Form A and Form B, which are designed to be parallel and are 

given to the examinees in alternating school years. The same test form is used for a whole 

school year and the test is administered once in fall and once in spring. An optional test 

form, Form C, is administered in midyear. 

 PALS-K has exhibited sound psychometric quality and technical adequacy in 

prior research. Invernizzi et al. (2011) report that PALS-K has test-retest reliability 

estimates that range from 0.78 to 0.95, internal consistency estimates from each subtest 

that average 0.86, and inter-rater reliability estimates that range between 0.96 and 0.99. 

Validity evidence for PALS-K consists of content-, criterion-, and construct-related forms 

of validity evidence. Their report has also evaluated PALS-K items for differential item 

functioning (DIF) using the Mantel-Haenszel (MH) statistic to compare children in need 

of additional instruction to those who do not need extra instruction. The result revealed 

no substantial amounts of DIF between the two groups. 
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Organization of PALS-K Measure 

 The conceptual framework of PALS-K (Invernizzi et al., 2011) includes two main 

components, phonological awareness and literacy skills, which are measured by six 

required subtests and one optional subtest together (see Table 2.1). However, according to 

Huang and Konold (2014)'s study, empirical data indicated the actual factorial structure 

of PALS-K data is a three-level hierarchical model, where a single second-order factor, 

early literacy, has influence on three first-order factors which can also be seen as three 

constructs: phonological awareness, alphabet knowledge, and contextual knowledge (see 

Figure 2.2). In their model, each first-order factor/construct is measured by two subtests. 

According to PALS-K conceptual framework, there are six required subtests in total 

which are the Rhyme Awareness task, Beginning Sound Awareness task, Alphabet 

knowledge task, Letter Sounds task, Spelling task, and Concept of Word task. These six 

subtests are aggregated to create the examinee's sum score. 

 Among the required subtests, the alphabet knowledge (also named lower-case 

alphabet recognition) task and Letter Sounds task are used to measure a child’s 

performance on alphabet knowledge, a construct that refers to knowledge of letter names 

and letter sounds and the ability to recognize all aspects of letters (Invernizzi, 2004; 

Puranik, Lonigan & Kim, 2011; Adams, 1990; Stevenson & Newman, 1986; Treiman, 

2006).  

 Letter-name knowledge is usually described as a child’s knowledge of the names 

of all of the letters of the alphabet in upper and lower case. It makes significant 
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contribution to a child’s visual recognition of words and acquisition of core literacy skills, 

especially spelling and reading (Foulin, 2005; McGee, Lomax, & Head, 1988; Adams, 

1990). However, Arciuli and Simpson (2011) pointed out all letters are not equally 

difficult because letter-specific properties impact a child’s probability of naming a letter 

correctly (Evans et al., 2006). Among those properties, visual confusability (i.e. shape 

confusability) refers to the shape similarity of the letter to other letters (or numbers) 

(Huang & Invernizzi, 2014). Children may have a greater probability of mistaking the 

letter with strong visual confusability for another letter (Ehri & Roberts, 2006; Treiman, 

2006).   

In PALS-K, the lower-case alphabet recognition task measures a child’s ability to 

provide names of all lower-case alphabet letters. It includes 26 items representing 26 

lower-case alphabet letters which can be classified into groups based on letter-specific 

shape confusability property. All items are binary items with an incorrect answer scored 

as 0 points and a correct answer scored as 1 point. Table 3.1 shows item property groups 

of the 26 alphabet recognition items of PALS-K based on shape confusability: 

Table 3.1  

Item Properties of Lower-case Alphabet Recognition Subtest 

Shape confusability 
Lower-case alphabet recognition 

items 

Not often confused (NOFC; shape1) o, r, x 

Sometimes confused (SC; shape2) a, c, e, f, s, t, y, z 

Often confused (OFC; shape3) i, j, k, l, m, w 

very often confused (VOFC; shape4) b, d, g, h, n, p, q, u, v 
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 Not only does the shape of a letter affect a child’s ability to learn it, but also the 

sound of a letter. Huang and Invernizzi (2012) pointed out that the difficulty of learning 

different letter sounds varies and some letter sounds are easier for children to learn than 

others. Particularly, the letter-name structure provides information about how letter 

sounds are related to their letter names, and different letter-name structures have effect on 

how children utilize name-and-sound relationship to learn letter sounds (Huang, 

Tortorellu, & Invernizzi, 2014). Letters can be classified into four groups: sounds 

associated with letter names in a consonant-vowel (CV) pattern (i.e. b, d, j, k, p, t, v, z), 

sounds associated with letter names in a vowel-consonant (VC) pattern (i.e. s, r, f, l, n, 

m), sounds associated with letter names unrelated to their primary sounds (NA; i.e. w, h, 

c, y, g), and sounds associated with vowel-sound letters (VO; i.e. a, e, i, o, u; see Evans et 

al., 2006; Treiman et al., 1998; Huang, Tortorellu, & Invernizzi, 2014).  

The Letter Sounds task of PALS-K measures a child’s ability to produce sounds 

associated with individual letters. It includes 26 binary items with an incorrect answer 

scored as 0 points and a correct answer scored as 1 point. Table 3.2 shows the item 

property groups of the 26 letter-sound items of PALS-K based on letter-name structure 

property:  
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Table 3.2  

Item Properties of Letter Sounds Subtest 

Letter-name structure  Letter-sound items 

CV (sound1) B,T, J, K, V, P, Z, D 

VC (sound2) S, R, F, L, N 

VO (sound3) O, A, I, U, E 

NA (sound4) W, H, C, Y, G 

Digraph (sound5) Ch, Sh, Th 

 

Notably, the alphabet recognition subtest consists of 26 lower-case alphabet letters 

as 26 individual items and the letter sounds subtest contains 23 upper-case alphabet 

letters and 3 digraphs together as 26 individual items. Therefore, 23 letters from the 

alphabet string appear on both subtests but in different formats, lower-case and upper-

case respectively. Different formats of the same letter are treated as two separate items 

belonging to different subtests. For example, the lower-case letter “a” appeared as one 

item of the alphabet recognition subtest, and the upper-case letter “A” is an item in the 

other subtest, letter sounds.  

As described below, growth analysis was conducted on the alphabet recognition 

subtest and the letter sounds subtest separately. Models for each subtest include 

coefficients for the item properties in Tables 3.1 and 3.2 in addition to other coefficients 

that represent person properties. 
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Sample 

This study explored the magnitude of growth in the construct of Alphabet 

Knowledge among kindergarten children. The examinee sample used in the study 

included 5,000 kindergarten children from a mid-Atlantic state. Data comprised item-

level responses to the Lower-case Alphabet Recognition subtest and Letter Sounds 

subtest from PALS-K that measured during fall, mid-year, and spring of the 2013-2014 

school year.  

Although Form A was used for fall and spring test administrations and Form C 

was used for mid-year test administration, items of both the alphabet recognition subtest 

and the letter sounds subtest stay constant across test forms. Responses to total 52 

alphabet knowledge items were extracted from the PALS-K database, along with 

demographic variables of interest, including pre-k schooling , disability status, ELL 

status, and age in fall. The 5,000 examinees used in the study were randomly selected 

from a larger sample of examinees who took PALS-K during the 2013-2014 school year.  

Table 3.3 gives descriptive statistics of the 5,000 sample. 
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Table 3.3 

Descriptive Statistics of the Sample 

Variable Number % of total 

Gender 
Male 2,572 51.44% 

Female 2,428 48.56% 

Pre-k schooling 
No 2,275 45.50% 

yes 2,725 54.50% 

ELL status 
non-ELL 4,699 93.98% 

ELL 301 6.02% 

Disability status 
No 4,680 93.60% 

yes 320 6.40% 

Age in fall Mean= 66.80 months 

 SD=4.09 months 

 

Person properties, including pre-k schooling, ELL status, disability status, and age 

in fall, were included as person properties in some growth models described below to 

understand their effect on child’s latent ability and growth in alphabet knowledge. All 

person property variables are categorical except for a child’s age in fall 2013 which is a 

continuous variable. Table 3.4 lists all the person properties in this study and how they 

were coded in the dataset. 
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Table 3.4  

Person Properties  

Person property Person groups 

ELL status non-ELL (ell=0) 

ELL (ell=1) 

Pre-k schooling non-pre-k(prek=0) 

pre-k (prek=1) 

Disability status non-disability (dis=0) 

disability (dis=1) 

Age in fall Mean=66.80 months   

Standard Deviation=4.09 moths 

 

Latent Growth Models  

EIRMs use an explanatory approach to reveal the nature of the relationships 

among item response and item- or person-properties in the model. Recently, EIRMs have 

been extended to latent growth studies. Several LG-EIRMs have been developed and 

tested using empirical data, including Embretson(1991)’s MRMCL, Wilson et al.’s (2011) 

LG-IRM, Pastor and Beretvas (2006)’s P-HGLM, and Cho et al.’s (2013) GELIRM. 

Similar to regular EIRMs, LG-EIRMs aim to provide explanation of item responses 

through effects contributed by person properties, item properties, or both, and they also 

aim to help improve the understanding of what certain person or item characteristics 

influence those responses. 

As a latent growth item response model, Embretson (1991)’s MRMLC, was used 

as the framework for this study to build a series of LG-EIRMs. As shown in equation 2.9, 

for an item given at 1,...,t T  time points, the MRMLC is given by 
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1

T

pit t pt p i

t

Z   


   . Extending it to include additional person and item property 

covariates, equation 2.10 presents the LG-EIRM by incorporating RW-LLTM elements, 

which is 
1 1

J K

pit jt pjt p k ik i

j k

Z X    
 

   
      

  
  . Importantly, to test the invariance of 

item parameters or item properties while analyzing growth, the LG-EIRM shown above 

can be revised to incorporate a time-by-item interaction. It can also be extended to 

include person-by-item interaction terms to study the effect of group membership on 

latent growth. 

This study used a series of LG-EIRMs to study growth in alphabet recognition 

and letter sounds and test for item property time-invariance. Given research about item 

properties in measures of early literacy and what is known about the development of 

alphabet knowledge, this approach is well-suited for alphabet knowledge measures. 

Equation 3.1 (also see equation 2.12) shows the general form of LG-EIRM for 

unidimensional Rasch model-based data with interaction term to test time-invariance of 

items: 

           
1 1

J K

pit jt pjt p k ik k tik i

j k

Z X V     
 

   
       

  
                  (3.1) 

where the parameter 1 reflects the change in latent trait from time one to time two, and 

2 indicates the amount of change from time two to time three, pZ  is a matrix coded 

with a Weiner simplex process (Embretson,1991), p  indicates variance of individual 

examinee’s initial status and growth on the latent trait after group effects are accounted 
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for which is normally distributed with zero means and variances 2

p
 . ikX  is equals 1 if 

item i  involves item property k  ( 1,..., )k K  and zero otherwise, k  is the regression 

weight of item property k , k  is the time-by-item interaction effect, 
tikV  is the indicator 

of interaction effect which equals to the product of the time-point indicator and an item 

indicator, and 
i  represents the error term of item i  which is normally distributed with 

zero means and variances 
2

i
 .  

Data Analysis Procedures 

Data analysis included two major steps: psychometric evaluation of data from 

each single time point and latent growth modeling of three-time-point longitudinal data. 

Step one. Descriptive analysis and classical item analysis were performed on 

item-level response data of the sample. Descriptive statistics of the sum score of the 

alphabet-recognition subtest and the letter-sounds subtest at each test occasion provided 

basic statistical characteristics of the distribution of each subtest sum score at each time 

point. Classical item analysis provided classical item difficulties and discriminations of 

all items. The classical reliability of each subtest was also evaluated respectively as an 

indication of the general psychometric quality of the subtest.  

Step two. Multiple LG-EIRMs were constructed and applied to the three-time-

point item response data of alphabet recognition subtest and letter sounds subtest 

respectively. As the two components of the alphabet knowledge construct, alphabet 

recognition ability (i.e. letter-name knowledge) and letter-sound knowledge are each 

treated as unidimensional construct being measured by their corresponding subtest. The 
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unidimensionality of the item response data to each subtest was therefore assumed. As 

mentioned earlier, the unidimensional Rasch model-based LG-EIRM (see Equation 2.9) 

was utilized as the base model and multiple LG-EIRMs were built upon it and compared 

in the current study.  

To answer all research questions, modifications were made on the most general 

model (see Equation 3.1) to construct the following types of LG-EIRMs:  

1. Item properties model (M1). This model is the most basic model to be tested. Estimates 

from this model provide information about amount of latent growth across time points 

and mean difficulty of each item property (see Tables 3.1 and 3.2). This model answers 

research question 1 regarding the latent growth over three time points, when neither lack 

of time-invariance of item properties nor person group differences in growth is taken into 

consideration. It is given by Equation 3.2 which includes fixed effects of average growth 

(i.e. time effect) of person p , fixed effects of item properties, random effect of individual 

initial status and growth of person p , and random error term for item i : 

       
1

( )
k

pit t pt p k ik i

k

Z X    


                                      (3.2) 

2. Item properties and time-by-item property interaction models (M2 – M5/M2 – M6). 

The main purpose of these models is to answer research question 3 and determine 

whether any item property exhibits a lack of time-invariance (i.e. drift). If these models 

do not fit better than M1, then time invariance of item properties may be assumed and 

item property by time interactions will be omitted from subsequent models. On the other 

hand, if these models fit better than M1, then subsequent models must include the 
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interactions to account for drift.  These models shown by Equation 3.3 include fixed 

effects for average growth, item properties, and the interaction of time by an item 

property (i.e. drift). Random effects include individual initial status and growth of person

p at times two and three, and a random error term for item i : 

      
1

K

pit t pt p k ik k tik i

k

Z X V     


 
     

 
                              (3.3) 

3. Item properties and person properties model (M7/M8). Estimates from this model 

provide information about average latent growth across time points, difficulties of item 

properties, and group differences in latent ability.  It is given by Equation 3.4, which 

includes fixed effects for average growth, item properties, and overall difference in latent 

ability between examinees who belong to person group j and examinees who do not, and 

random effects for individual initial status and growth of person p  and an error term for 

item i . It is given by Equation 3.5 when controlling for a lack of time-invariance of item 

properties. Two equations are presented as: 
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                                  
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   
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  
               (3.5) 

In Equation 3.5, k  is the time-by-item property interaction effect and 
tikV  is the 

indicator of interaction effect which equals to the product of the time-point indicator and 

an item property indicator kX . If significant drift is identified, Equation 3.5 will be used 

instead of Equation 3.4. 
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4. Item properties, person properties, and person property-by-time interaction model 

(M8/M9). Estimates of interest from this model include group differences in latent 

growth and difficulties of item properties. This model is able to answer research question 

2 regarding the impact of examinee properties on latent growth. It is given by Equation 

3.6, which includes fixed effects for average growth, item properties, overall difference in 

latent ability between different person groups categorized by person property j , and 

average difference in growth between person groups categorized by person property j .  

Random effects include individual initial status and growth of person p  and an error term 

for item i . M8/M9 is given by Equation 3.7 if accounting for a lack of time-invariance of 

item properties. Two equations are presented as:  

1 1

( ) ( )
J k

pit jt pjt j pjt p k ik i

j k

Z W X     
 

 
     
 
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 

   
        

  
                     (3.7) 

where j  is the time-by-person property interaction effect, pjtW  is the indicator of 

interaction effect which equals to the product of the time-point indicator and a person 

property indicator jZ . Notably, M8/M9 is the most complex and most general model to 

be tested in this study.  

To obtain LG-EIRM parameter estimates, the Laplace approximation method was 

used for most models as implemented in lme4 package (Bates, Mächler, Bolker, & 

Walker, 2014) in R.  Due to the large size of data and the complexity of some models, a 
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Bayesian-based MML method was used to incorporate priors on fixed effects and the 

random effect covariance matrix. This change to the estimation allowed the complex LG-

EIRMs converge and produce parameter estimates. Bayes modal estimation methods 

were implemented using the blme package (Dorie, 2015) in R. 

Model comparison. All LG-EIRMs are compared based on multiple model 

information criteria, including log likelihood ratio test (Wilks, 1938; Mood & Graybill, 

1963), Akaike Information Criterion (AIC; Akaike, 1998), and Bayesian Information 

Criterion (BIC; Schwarz, 1978).  

Chi-square test of log likelihood ratio (LR test) is the most commonly used model 

comparison method. It basically includes two steps: fitting models to the data using a 

maximum likelihood criterion and performing a chi-square test to compare models based 

on the log likelihood ratio statistics (Wilks, 1938; Mood & Graybill, 1963; Busemeyer & 

Wang, 2000). The LR test technically measures the change of likelihood discrepancy 

from one model to another model. However, its main limitation is that it is only 

applicable to comparisons among nested models. Another limitation is its dependency on 

sample size when picking better models. For example, it tends to pick the over-complex 

model when sample size is large and statistical power is high (see Cudeck & Browne, 

1983; Busemeyer & Wang, 2000). 

To overcome the limitations of LR test, AIC and BIC became widely applied 

model selection criteria because they permit comparisons of both nested and non-nested 

models that may differ in the number of free parameters. The model that minimizes AIC 
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and BIC values should be selected as the better-fitting model (Busemeyer & Wang, 

2000). AIC and BIC can be expressed mathematically in Equation 3.8 and 3.9:  

2 ( ) 2AIC ln L k          (3.8) 

2 ( ) (ln )BIC ln L N k          (3.9) 

where L  is the maximized value of the likelihood function of the model, k  is the number 

of model parameters to be estimated, and N is the number of individual cases in the 

sample. As shown above, they differ only by how strongly they panelize the large model. 

Normally speaking, using BIC tend to select models that are more parsimonious than the 

models chosen by AIC (Kadane & Lazar, 2004). 

Through comparisons, the best-fitting LG-EIRM was selected and its estimates 

were particularly discussed.
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Chapter 4 Results 

This chapter presents the results from data analyses, including descriptive 

statistics, results of the psychometric property analysis of item response data at each time 

point, and results from latent growth modeling. 

Descriptive Statistics of Sum Scores 

 Data includes item responses to 26 alphabet recognition (ABC) items and 26 

letter sounds (LS) items from PALS-K. Data were collected in fall, mid-year, and spring 

of the 2013-2014 school year.  

The average sum score of each subtest increased at each time point, while the 

standard deviation decreased over time (see Table 4.1). In addition, sum scores became 

increasingly negatively skewed and leptokurtic on each occasion.  These statistics 

indicate that for both subtests, scores became higher and less variable over time. 

Moreover, the amount of growth resulted in a ceiling effect with average scores near the 

maximum possible score at the last time point.  



 

62 

 

 

Table 4.1  

Descriptive Statistics of Subtest Sum Scores  

  Mean SD Min Max Skewness Kurtosis 

Alphabet 

Recognition 

(ABC)  

Fall 19.28 7.57 0 26 -1.09 2.92 

Mid-year 23.98 3.91 0 26 -3.20 14.76 

Spring 25.30 2.15 0 26 -6.30 53.10 

        

Letter Sounds 

(LS) 

Fall 13.57 7.76 0 26 -0.30 1.85 

Mid-year 20.73 5.35 0 26 -1.64 5.86 

Spring 24.10 3.35 0 26 -3.58 20.26 

 

Classical Item Analyses  

To evaluate basic psychometric properties of each item, I performed a classical 

item analyses using jMetrik (Meyer, 2014) on ABC and LS subtests separately. Results 

suggested difficulties and discriminations of all 52 items were within the appropriate 

range. No item exhibited abnormality, such as irregular value of difficulty or negative 

value of discrimination. Thus, we conclude that all items maintained proper basic 

psychometric characteristics across three test administrations. Descriptive statistics of 

classical item difficulty and discrimination and reliability coefficients of the two subtests 

are reported in Table 4.2: 
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Table 4.2  

Classical Item Analysis Results  

  
Difficulty Discrimination 

Reliability SEM 
Mean SD Range Mean SD Range 

ABC Fall 0.74 0.11 0.48~0.94 0.66 0.08 0.42~0.74 0.96 1.60 

Mid-year 0.92 0.06 0.76~0.99 0.56 0.09 0.34~0.67 0.92 1.11 

Spring 0.97 0.03 0.89~0.997 0.52 0.10 0.30~0.65 0.89 0.71 

          

LS Fall 0.52 0.22 0.10~0.87 0.62 0.12 0.34~0.73 0.95 1.76 

Mid-year 0.80 0.19 0.34~0.98 0.55 0.07 0.42~0.65 0.92 1.52 

Spring 0.93 0.08 0.69~0.99 0.53 0.04 0.45~0.61 0.89 1.10 

 

As shown by Table 4.2, average item difficulty for both subtests rose over time, 

which means the average number of students who answered the items correctly increased 

over the three test occasions of the year (i.e. items became easier). Item difficulty also 

became less variable over three time points as indicted by decreasing standard deviations 

at each time point. The discriminations for all items across all time points ranged from 

0.30 to 0.74 which indicated good discriminating ability of items Item discrimination 

decreased slightly over time, but item discrimination for ABC was slightly higher than 

item discrimination for LS at each time point. 

The reliability of the ABC subtest ranged from 0.89 to 0.96 and the reliability of 

the LS subtest ranged from 0.90 to 0.95 over three test occasions. For both subtests 

reliability slightly decreased over time, but this result is most likely due to the decreasing 

variance in sum scores (i.e. more homogenous scores). Taken together, results indicate 

both subtests at each time point have good internal consistency and sound psychometric 

properties.  



 

64 

 

LG-EIRM Analysis  

LG-EIRM growth analyses were performed on ABC subtest and LS subtest 

separately and results for each subtest are presented in separate parts of this section. 

Lower-case Alphabet Recognition (ABC). As shown by ABC-M1 in Table 4.3, 

average latent growth was 2.33 at mid-year and 4.08 in spring on the logit scale, both of 

which were statistically significant. Random effect estimates shown by ABC-M1 in Table 

4.4 indicate the variance of examinee initial ability was 7.07, 2.14, and 1.65 in fall, mid-

year, and spring, respectively. Individual differences in ABC were large initially, but 

considerably smaller by the end of the year. Thus, not only did students improve learning 

across time points, but their performance became less variable. The fixed and random 

effects also support the notion of a ceiling effect such that by the end of the year most 

students can recognize all of the letter names. Looking at the correlations between person 

estimates (see Table 4.4), initial latent ability in fall is negatively correlated with latent 

growth at midyear (r = -0.49) and also spring (r = -0.30). This shows that examinees with 

lower initial latent ability grow more than examinees with higher initial latent ability.  
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Table 4.3 

Fixed Effects of  ABC Models 

Fixed effect ABC-M 1 S.E. ABC-M7 S.E. 
Odds 

ratio 
ABC-M8 S.E. 

Odds 

ratio 

Intercept -- -- 3.97‡ 0.25  3.28‡ 0.39  

Time 2 2.33‡ 0.04 2.49‡ 0.09  2.65‡ 0.09  

Time 3 4.08‡ 0.07 4.56‡ 0.15  4.64‡ 0.16  

Shape 1 (NOFC) 4.16‡ 0.24 -- --  -- --  

Shape 2 (SC) 2.67‡ 0.20 -1.48‡ 0.30  -0.88
*
 0.46  

Shape 3 (OFC) 2.32‡ 0.21 -1.76‡ 0.32  -1.14
*
 0.48  

Shape 4 (VOFC) 1.03‡ 0.17 -3.06‡ 0.29  -2.43‡ 0.45  

Time2:Shape2   0.03 0.08  0.05 0.08  

Time3:Shape2   -0.29
*
 0.14  -0.22 0.15  

Time2:Shape3   -0.17
*
 0.08  -0.15 0.09  

Time3:Shape3   -0.61‡ 0.14  -0.54† 0.15  

Time2:Shape4   -0.16
*
 0.08  -0.14 0.08  

Time3:Shape4   -0.41† 0.14  -0.33
*
 0.15  

Prek   0.49‡ 0.07 1.63 0.73‡ 0.08  

Disability   -1.15‡ 0.14 0.32 -0.81‡ 0.16  

ELL   -1.09‡ 0.14 0.34 -1.49‡ 0.16  

Age in fall   0.06‡ 0.01 1.06 0.08‡ 0.01  

Time 2: Prek      -0.38‡ 0.06 0.68 

Time 3: Prek      -0.48‡ 0.09 0.62 

Time 2: Disability      -0.45‡ 0.11 0.64 

Time 3: Disability      -0.56† 0.16 0.57 

Time 2: ELL      0.51‡ 0.12 1.67 

Time 3: ELL      1.00‡ 0.18 2.72 

Time 2: Age in fall      -0.04‡ 0.01 0.96 

Time 3: Age in fall      -0.05‡ 0.01 0.95 

 

Fixed effect estimates of item properties in ABC-M1 represent the average 

easiness (on the logit scale) of items with each property. Interpretation of item easiness is 

that larger coefficients indicate items or item properties that are easier than those with 
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smaller coefficients. As shown by ABC-M1 estimates in Table 4.3, the very-often-

confused property (VOFC) is most difficult with easiness of 1.03, followed by the often-

confused property (OFC) with easiness of 2.32 and the sometimes-confused property 

(SC) with easiness of 2.67. The not-often-confused property (NOFC) with easiness of 

4.16 was the easiest property for examinees. This ordered pattern of easiness indicates 

that a child’s probability of recognizing the letter decreases as shape confusability 

increases. It also confirms expectations about letter shape confusability. Item properties 

of the ABC subtest did not account for all of the variance in item difficulty as indicated 

by a variance of 0.38 (see Table 4.4). 

 

Table 4.4 

Random Effects of  ABC Models 

    Person Correlations 

Model Effect Variance SD Time 1 Time 2 

ABC-M1 Person Time 1 7.07    2.66   

 Person Time 2 2.14    1.46    -0.49  

 Person Time 3 1.65    1.28    -0.30 0.17 

 Item Properties 0.38    0.62   

      

ABC-M7 Person Time 1 6.59    2.57   

 Person Time 2 2.14    1.46    -0.45  

 Person Time 3 1.71    1.31   -0.29 0.15 

 Item Properties 0.39    0.62   

      

ABC-M8 Person Time 1 6.61    2.57   

 Person Time 2 2.03    1.42    -0.46  

 Person Time 3 1.63    1.28   -0.30 0.14 

 Item Properties 0.45    0.67   
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Models ABC-M2 to ABC-M5 were used to test the lack of time-invariance of 

each item property separately. In these four LG-EIRMs, the interaction effect of the 

particular item property by each time point was tested (see Table 4.5; De Boeck et al., 

2011). Each of the four models was compared to ABC-M1 to evaluate the degree of lack 

of time-invariance (i.e. drift).  

Table 4.5 

Fixed Effects of  Item Property Drift of ABC  

Model Fixed effect Estimate S. E. 

ABC-M2 drift of NOFT at Time 2 0.09 0.08 

drift of NOFT at Time 3 0.40 ‡ 0.14 

ABC-M3 drift of SC at Time 2 0.18 ‡ 0.04 

drift of SC at Time 3 0.14 * 0.06 

ABC-M4 
drift of OFC at Time 2 -0.08 * 0.04 

drift of OFC at Time 3 -0.26 ‡ 0.06 

ABC-M5 drift of VOFC at Time 2 -0.10 ‡ 0.03 

drift of VOFC at Time 3 0.03 0.05 
*  

p. 0.05 

† p. < 0.01 

‡ p. < 0.001 

 

Table 4.6 

Model Comparisons of ABC-M1 to ABC-M5 

Model AIC BIC 
Log 

Likelihood 
Deviance Chi sq df p value 

ABC-M1 152501 152642 -76237 152475    

ABC-M2 152496 152659 -76233 152466 8.69 2 0.01  

ABC-M3 152481 152644 -76226 152451 23.50 2 <0.001  

ABC-M4 152483 152646 -76226 152453 21.67 2 <0.001  

ABC-M5 152495 152658 -76233 152465 9.45 2 0.01  
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Table 4.5 shows that most interactions were statistically significant, which 

indicates that all four shape-confusability item properties showed lack of time-invariance. 

These results are confirmed by most model fit statistics (see Table 4.6). AIC, deviance, 

and LR test supported the more complex model, but BIC favored ABC-M1. More 

specifically, NOFC property only exhibited drift in spring and VOFC property only 

showed drift at mid-year. However, SC and OFC properties exhibited drift in both 

midyear and spring test administrations. It is interesting to look at the directions of the 

drift effects. NOFC and SC became easier because their interaction estimates were 

positive values. On the contrary, OFC and VOFC shifted to be more difficult since the 

values of their interaction estimates were negative. Thus, it seems that easy items become 

easier and difficult items became more difficult over time.  

ABC-M6 also tested the drift effects (time by letter shape confusability 

interaction) but instead of testing each interaction separately, all interactions were 

included simultaneously. The purpose was to compare the fit of a model with all drift 

terms to a model without any drift terms (i.e. ABC-M1). All model fit criteria in Table 4.7 

except BIC suggested ABC-M6 had a better fit than ABC-M1. Therefore, ABC-M6 was 

selected as the basis for subsequent model comparisons. 

Table 4.7 

Model Comparison of ABC-M1 and ABC-M6 

Model AIC BIC 
Log 

Likelihood 
Deviance Chi sq df P value 

ABC-M1 152501 152642 -76237 152475    

ABC-M6 152464 152671 -76213 152426 48.072 6 <0.001 
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 ABC-M7 was built upon ABC-M6 by including several person properties. The 

purpose of ABC-M7 was to investigate the influence of age and group membership on 

latent ability. Group effects included pre-k schooling, disability status, and ELL status. 

ABC-M7 estimates in Table 4.3 show that all four person properties were statistically 

significant. Students who attended pre-k school had scores that were an average of 0.49 

logits (1.63 odds ratio) higher than the children who did not attend pre-k school. Children 

with disabilities were an average of 1.15 logits (0.32 odds ratio) lower than students 

without any disability. Similarly, the average latent ability of ELLs was 1.09 logits (0.34 

odds ratio) lower than non-ELLs. Age in fall variable was centered to the grand mean of 

child age in fall 2013, so the value of 0.06 logits (1.06 odds ratio) indicates that 

performance increased as age increased. Random effect estimates shown in Table 4.4 

suggest that person random effects and correlations between person estimates of ABC-

M7 showed a very similar pattern to ABC-M1 even after controlling for the item property 

drift and overall person group difference in the model. That is, variance decreased over 

time and lower scoring students showed more growth over time. 

ABC-M7 was compared to ABC-M6 to determine which model fits the data 

better. The result shown in Table 4.10 revealed that ABC-M7 was a better-fitting model 

based on all criteria. Thus, ABC-M7 was selected as the new basis for the next model 

comparison. 
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Table 4.8 

Model Comparison of ABC-M6 and ABC-M7 

Model AIC BIC 
Log 

Likelihood 
Deviance Chi sq df P value 

ABC-M6 152464 152671 -76213 152426    

ABC-M7 152265 152515 -76110 152219 207.29 4 <0.001 

 

ABC-M8 is the most complex as it includes everything from ABC-M7 plus 

additional terms for the person property-by-time interactions. All interactions between 

time point and person properties were statistically significant (see Table 4.3). As such, we 

focus on reporting and interpreting the time-by-person property interactions in this model 

and ignore the main effects. As for pre-k schooling, the difference in the average amount 

of latent growth on the logit scale between children who attended pre-k school and 

children who did not was -0.38 logits (0.68 odds ratio) at midyear and -0.48 logits (0.62 

odds ratio) in spring respectively. The direction of both interactions indicated that 

children who attended pre-k actually had less growth in alphabet recognition than 

children who did not attend pre-k. As for disability status, the latent growth of children 

with disability was 0.45 logits (0.64 odds ratio) smaller at mid-year and 0.56 logits (0.57 

odds ratio) smaller in spring than it was for children without a disability. Looking at the 

interaction of time point by ELL status, ELLs had more growth than non-ELLs with the 

magnitude of 0.51 logits (1.67 odds ratio) at midyear and 1.00 logits (2.72 odds ratio) in 

spring. Age in fall is the only continuous person property variable in the model and the 

two interaction estimates for it were -0.04 logits (0.96 odds ratio) at midyear and -0.05 

logits (0.95 odds ratio) in spring. This indicates that on average, older children grew less 

than younger children across time. With respect to person effects and correlations 
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between person estimates, random effect estimates of ABC-M8 shown in Table 4.4 

indicate a very similar pattern to ABC-M1 and ABC-M7, even though item property drift 

and overall difference in latent ability and growth between person groups were accounted 

for in ABC-M8; children’s scores showed less variability over time and low initial scores 

were related to more growth than high initial scores. 

In Table 4.4, the variance component of items after controlling for the four item 

properties and item property-by-time point interactions was 0.45, which indicates that 

notable variance remained among ABC item difficulty even after the letter shape 

confusability properties and item property drift were taken into account.  

Model comparison shows ABC-M8 fits the data significantly better than ABC-

M7, according to all model fit criteria listed in Table 4.9, including LR test, deviance, 

AIC, and BIC. In other words, ABC-M8 is the best-fitting LG-EIRM for the ABC subtest. 

Table 4.9 

Model Comparison of ABC-M7 and ABC-M8 

Model AIC BIC 
Log 

Likelihood 
Deviance Chi sq df P value 

ABC-M7 152265 152515 -76110 152219    

ABC-M8 152141 152479 -76040 152079 139.7 8 <0.001 

 

Letter Sounds (LS).  Model LS-M1 was the most basic LG-EIRM to be tested 

(see Table 4.10 and 4.11). With latent ability in fall as the baseline, the average latent 

growth in letter-sound knowledge was 2.88 at mid-year and 5.33 in spring on the logit 

scale, both of which were statistically significant. This suggests that, on average, a 

kindergartener grew significantly in LS from fall to midyear and continued to grow to 
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spring. Random effect estimates shown in Table 4.11 indicate a large amount of variance 

in fall ( 2ˆ 7.11  ), a smaller amount of variance at midyear ( 2ˆ 2.23  ), and even less 

variance at the spring time point ( 2ˆ 1.74  ), which suggests individual differences in LS 

decreased over time. The fixed and random effects also provide evidences of the 

appearance of a ceiling effect such that by the end of the year most students can 

pronounce all of the letter sounds. Looking at the correlations between variance 

components of persons, the latent ability in fall was negatively associated with the latent 

growth at midyear and in spring, with correlations of -0.49 and -0.16, respectively. This 

reveals that examinees with lower initial latent ability grow more than examinees with 

higher initial latent ability.  
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Table 4.10 

Fixed Effects for LS Models 

Fixed effect LS-M1 S.E. LS-M8 S.E. 
Odds 

ratio 
LS-M9 S.E. 

Odds 

ratio 

Intercept -- -- 0.23 0.41  -0.08 0.61  

Time 2 2.88‡ 0.03 2.79‡ 0.04  3.01‡ 0.05  

Time 3 5.33‡ 0.05 5.34‡ 0.05  5.66‡ 0.06  

Sound 1 (CV) 0.27 0.40 -- --  -- --  

Sound 2 (VC) 1.50† 0.43 1.18 0.77  1.01 0.10  

Sound 3 (VO) -0.16 0.42 -0.34 0.69  -0.17 0.10  

Sound 4 (NA) -0.16 0.43 -0.42 0.66  -0.23 0.10  

Sound 5 (Digraph) -2.05‡ 0.45 -2.46† 0.72  -1.58 1.16  

Time2:Sound2   0.20‡ 0.05  0.20‡ 0.04  

Time3:Sound2   0.08 0.07  0.08 0.07  

Time2:Sound3   -0.10
*
 0.04  -0.10† 0.04  

Time3:Sound3   -0.38‡ 0.05  -0.37‡ 0.05  

Time2:Sound4   0.12† 0.04  0.12† 0.04  

Time3:Sound4   -0.36‡ 0.05  -0.35‡ 0.05  

Time2:Sound5   0.08 0.05  0.09 0.05  

Time3:Sound5   0.40‡ 0.06  0.41‡ 0.06  

Prek   0.35‡ 0.07 1.42 0.70‡ 0.08  

Disability   -1.37‡ 0.14 0.25 -0.10‡ 0.16  

ELL   -1.08‡ 0.14 0.34 -1.56‡ 0.16  

Age in fall   0.06‡ 0.01 1.06 0.09‡ 0.01  

Time 2: Prek      -0.44‡ 0.05 0.64 

Time 3: Prek      -0.66‡ 0.07 0.52 

Time 2: Disability      -0.43‡ 0.10 0.65 

Time 3: Disability      -0.71† 0.14 0.49 

Time 2: ELL      0.59‡ 0.11 1.80 

Time 3: ELL      0.87‡ 0.15 2.39 

Time 2: Age in fall      -0.04‡ 0.01 0.97 

Time 3: Age in fall      -0.05‡ 0.01 0.95 
*  

p. 0.05 

† p. < 0.01 

‡ p. < 0.001 
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As for item properties, fixed effect estimates in Table 4.10 represent the average 

easiness of the five LS item properties on the logit scale. Comparing them to each other, 

the Digraph property is most difficult with easiness of -2.05, followed by NA and VO 

with easiness of -0.16 for both. The CV and VC were easier than the other three 

properties with easiness of 0.27 and 1.50 respectively. Among them, VC turned out to be 

the easiest property for examinees. This suggests that a child has the highest probability 

of correctly recognizing the sounds of letters with VC name structure and the lowest 

probability of correctly identifying the sounds of letters with Digraph name structure. The 

variance of items shown in Table 4.11 was 2.66, which suggests there was a large amount 

of variance among LS items even after accounting for the five item properties. 

Table 4.11 

Random Effects for LS Models 

    Person Correlations 

Model Effect Variance SD Time 1 Time 2 

LS-M1 Person Time 1 7.11    2.67   

 Person Time 2 2.23    1.49    -0.49  

 Person Time 3 1.74    1.32    -0.16 0.14 

 Item Properties 2.66    1.63   

      

LS-M8 Person Time 1 6.76    2.60   

 Person Time 2 2.59    1.50    -0.45  

 Person Time 3 1.66    1.29   -0.22 0.13 

 Item Properties 2.69    1.64   

      

LS-M9 Person Time 1 6.74    2.60   

 Person Time 2 2.16    1.47    -0.46  

 Person Time 3 1.62    1.27   -0.22 0.10 

 Item Properties 2.95    1.72   
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Models LS-M2 to LS-M6 were used to test a lack of time-invariance of each item 

property of LS items separately. In each of these five LG-EIRMs, the interaction effects 

of a particular item property by time points were created and tested (De Boeck et al., 

2011). Considering the main purpose of these models, only estimates of those interaction 

effects were of interest and reported in Table 4.12. Additionally, each of the five models 

was compared to LS-M1 to evaluate the degree of the lack of time-invariance of item 

properties (i.e. drift). The model comparison results were listed in Table 4.13. 

 
Table 4.12 

Fixed Effects of  Item Property Drift of LS 

Model Fixed effect Estimate S. E. 

LS-M2 drift of CV at Time 2 -0.04  0.03 

drift of CV at Time 3 0.08 
*
 0.04 

LS-M3 drift of VC at Time 2 0.19 ‡ 0.04 

drift of VC at Time 3 0.22 ‡ 0.06 

LS-M4 
drift of VO at Time 2 -0.17 ‡ 0.04 

drift of VO at Time 3 -0.38 ‡ 0.06 

LS-M5 drift of NA at Time 2 0.11 ‡ 0.03 

drift of NA at Time 3 -0.36 ‡ 0.04 

LS-M6 drift of Digraph at Time 2 0.06 0.04 

 drift of Digraph at Time 3 0.58 ‡ 0.05 
*  

p. 0.05 

† p. < 0.01 

‡ p. < 0.001 

 

From Table 4.12, we can see that most item property–by-time point interactions 

were statistically significant and all five letter-name structure properties showed different 

degrees of lack of time-invariance. More specifically, CV and Digraph properties only 
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exhibited drift in spring test and the other three properties exhibited drift in both midyear 

and spring test administrations. Looking at the directions of the drift effects, CV, VC, and 

Digraph became easier because their interaction estimates were positive values. In 

contrast, VO shifted to be more difficult since the values of its interaction estimates were 

below 0 in both midyear and spring tests. As for NA, the result is mixed as the directions 

of its drift were not consistent across time. Besides, Table 4.13 showed that multiple 

model fit criteria (i.e. AIC, LR test, and deviance) indicated LS-M2 to LS-M6 fit better to 

the data than LS-M1, although BIC favored LS-M1 over LS-M2. 

 

Table 4.13 

Model Comparisons of LS-M1 to LS-M6 

 

Model AIC BIC 
Log 

Likelihood 
Deviance Chi sq df p value 

LS-M1 210207 210359 -105090 210179    

LS-M2 210201 210375 -105085 210169 9.52 2 0.01  

LS-M3 210182 210356 -105075 210150 28.83 2 <0.001 

LS-M4 210131 210304 -105049 210099 80.50 2 <0.001 

LS-M5 210099 210273 -105034 210067 111.80 2 <0.001 

LS-M6 210044 210218 -105006 210012 167.01 2 <0.001 

 

Model LS-M7 included all interactions of time point by item property 

simultaneously. It aimed to compare the fit of a model with all drift terms to a model 

without any drift terms (i.e. LS-M1). Table 4.14 shows LS-M7 had better fit than LS-M1. 

Therefore, LS-M7 was selected as the basis for subsequent model comparisons. 
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Table 4.14 

Model Comparison of LS-M1 and LS-M7 

Model AIC BIC 
LogLike 

lihood 
Deviance Chi sq df P value 

LS-M1 210207 210359 -105090 210179    

LS-M7 209902 210142 -104929 209858 320.53 8 <0.001 

 

 In model LS-M8, fixed effects of person properties were all statistically 

significant (see Table 4.10), indicating all four person properties were significantly 

related to the individual differences in latent ability of letter sounds among 

kindergarteners. As for pre-k schooling, the average latent ability of children who 

attended pre-k school was 0.35 logits (1.42 odds ratio) higher than the children who did 

not attend pre-k school. Children who have a disability were 1.37 logits (0.25 odds ratio) 

lower on average than those without a disability. Similarly, the average latent ability of 

ELLs was 1.08 logits (0.34 odds ratio) lower than non-ELLs. As a continuous variable 

that was centered to the grand mean, the estimate with value of 0.06 logits (1.06 odds 

ratio) of age in fall indicates on average, older children have higher latent ability than 

younger children. Random effect estimates of LS-M8 shown in Table 4.11 suggest that its 

person random effects and correlations between person estimates of showed a very 

similar pattern to LS-M1 even after controlling for the item property drift and overall 

person group difference in the model. 

Table 4.15 shows that LS-M8 fit the data better than LS-M7, based on all criteria 

that include AIC, BIC, LR test, and deviance. Thus, LS-M8 was selected as the new basis 

for the next model comparison. 
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Table 4.15 

Model Comparison of LS-M7 and LS-M8 

Model AIC BIC 
Log 

Likelihood 
Deviance Chi sq df P value 

LS-M7 209902 210142 -104929 209858    

LS-M8 209686 209969 -104817 209634 224.58 4 <0.001 

 

Model LS-M9 is the most complex and general LG-EIRM to be tested for LS. 

Table 4.10 presents fixed effect estimates of LS-M9 which show all interactions between 

time point and person properties were statistically significant. Thus, we only focus on 

reporting and interpreting those time-by-person property interactions in this model using 

average latent ability in fall as the reference level. As for pre-k schooling, the difference 

in average amount of latent growth between children who attended pre-k school and 

children who did not was -0.44 logits (0.64 odds ratio) at midyear and -0.66 logits (0.52 

odds ratio) in spring, respectively. The directions of these interactions indicated that 

children who attended pre-k school actually grew less in letter sounds than children who 

did not attend pre-k school. As for disability, compared to children without a disability, 

the average latent growth of children with a disability was 0.43 logits (0.65 odds ratio) 

smaller at midyear and 0.71 logits (0.49 odds ratio) smaller in spring. Looking at the 

interaction of time point by ELL status, we find ELLs grew more in letter sounds than 

non ELLs, with a magnitude of 0.59 logits (1.80 odds ratio) at midyear and 0.87 logits 

(2.39 odds ratio) in spring. Age in fall is the only continuous person property variable in 

the model and the two interaction estimates of it were -0.04 logits (0.97 odds ratio) at 

midyear and -0.05 logits (0.95 odds ratio) in spring. This indicates older children grew 

less than younger children across time points. In regard to its person effects and their 
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correlations, random effect estimates of LS-M9 shown in Table 4.11 indicate a very 

similar pattern to LS-M1 and LS-M8, even though item property drift and overall 

difference in latent ability and growth between person groups were controlled in the 

model; variance in latent growth decreased over time and lower initial scores were related 

to more growth at fall and spring. Item properties of LS did not account for all of the 

variance in item difficulty as indicated by a variance of 2.95 (see Table 4.11). 

Model comparison shows that LS-M9 fit the data significantly better than LS-M8, 

according to all criteria listed in Table 4.16, including LR test, deviance, AIC, and BIC. 

In other words, LS-M9 is the best-fitting LG-EIRM for LS. This confirms the results 

from analyzing the fixed effects of LS-M9 that all four person properties have significant 

impact on the average latent growth of examinees in LS. 

 

Table 4.16 

Model Comparison of LS-M8 and LS-M9 

Model AIC BIC 
Log 

Likelihood 
Deviance Chi sq df P value 

LS-M8 209686 209969 -104817 209634    

LS-M9 209494 209864 -104713 209426 208.06 8 <0.001 

 

  



 

80 

 

 

 

Chapter 5 Discussion 

The present study applied an explanatory item response model approach to 

examine kindergartener’s latent growth in two aspects of alphabet knowledge: alphabet 

recognition and letter sounds. Item- and person-relevant factors associated with child’s 

latent ability and latent growth in alphabet knowledge were also investigated. This 

chapter answers the research questions and discusses the implications of results.  

Growth  

The results of the study revealed that kindergarteners grew significantly in both 

alphabet recognition and letter sound knowledge. The largest amount of growth occurred 

from fall to midyear, but growth continued to spring. 

Figure 5.1 illustrates the variability in kindergartener’s growth across three time 

points. Not all children showed the same magnitude or pattern of growth. As shown in the 

figure, student scores improve over time but for some the improvement is linear while it 

is quadratic for others. Moreover, variability among scores decreases over time. This 

result is also illustrated in Figure 5.1 and the random effects from the various LG-EIRMs. 
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Figure 5.1 Sum score-based growth trajectories of a 100 random sample 

Factors Influencing Growth 

By incorporating several person properties into the LG-EIRMs, the study was able 

to compare different person groups in terms of their overall ability and growth. The 

results from LG-EIRM growth analysis suggested all four person properties examined in 

this study, including pre-k schooling, disability status, ELL status, and child’s age in fall, 

were statistically significant in models for both ABC and LS subtests. To give a more 

intuitive sense of the results, Figure 5.2 shows average growth trajectories for both ABC 

and LS subtests. 
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Figure 5.2 Average growth trajectories of multiple person groups 

As for pre-k schooling, examinees who attended pre-k school had significantly 

higher overall latent ability level in alphabet knowledge than examinees who did not, as 

suggested by estimates of ABC-M7 and LS-M8.  However, when it comes to latent 

growth, examinees with pre-k schooling grew significantly less over the year than 

examinees without pre-k schooling as shown by estimates of ABC-M8 and LS-M9. In 

Figure 5.2, the slope of the non-pre-k group was steeper than the pre-k group, indicating 

the non-pre-k group grew more. However, the pre-k group scored higher than the non- 

pre-k group, especially at the first time point. Regarding the differences, there are few 

explanations. Most children who attend pre-k school are taught letter names and letter 

sounds which are constrained skills (Paris, 2005). Thus, they have already mastered a 

large portion of the 26 alphabet letters before attending kindergarten leading to better 

initial performance in fall than children without pre-k school experience (Bear, 

Invernizzi, Templeton, & Johnston, 2000). Due to the ceiling effect, they had less room to 

grow than children who never attended pre-k school and thus their performance scores 
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appeared to increase less. From Figure 5.2, we also see that it approximately took until 

midyear for non-pre-k children to catch up with pre-k children in terms of their overall 

performance. Thus, children with pre-k school experience are prepared for early literacy 

skills sooner because they are about a half of a school year ahead of children without pre-

k school experience. 

According to LG-EIRM analysis, examinees with a disability had significantly 

lower overall ability and a significantly smaller amount of latent growth in alphabet 

knowledge than examinees without a disability. Earlier studies have shown that 

differences between children with a reading disability and normal children in alphabet 

knowledge measure diminish over kindergarten (Smith et al., 2008; Compton et al., 

2006). Our results also show that the difference gets smaller, but non-disabled children 

show more growth and a gap between disabled and non-disabled children persists until 

the end of kindergarten. What suggested by the plots in Figure 5.2 confirmed the 

information we obtained from LG-EIRM analysis. In Figure 5.2, the average growth 

trajectory of the disability group is clearly located below the trajectory of no-disability 

group and the slope of the average growth trajectory of the disability group was 

detectably smaller than that of disability group. The reason behind the fact that disabled 

children scored lower initially and grew less than non-disabled children is clear. In our 

random sample, disabled children with disability mostly fell into the three largest 

categories: learning disability, speech/language impairment, and developmental delay. So 

it was expected that children with those types of disabilities experienced difficulties in 

developing their alphabet knowledge and achieving high scores. 
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Growth analysis results for ELL students were similar to those for students 

without pre-k schooling. ELLs had significantly lower overall latent ability level in 

alphabet knowledge than non-ELLs, but they grew significantly more over time than non-

ELLs (see Figure 5.2). However, non-ELLs still outperformed ELLs in terms of overall 

ability in alphabet recognition and letter sounds. As for the difference between ELLs and 

non-ELLs, there could be two primary sources. Children who are non-ELLs have better 

knowledge of and more exposure to alphabet knowledge at home because their parents 

teach them letters via a variety of daily activities and talk to them in English. On the 

contrary, it is very likely that ELLs speak their first languages other than English at 

home. So ELLs scored lower initially in fall but had more room to grow, compared to 

non-ELLs. Another important reason is the bilingual advantage in metalinguistic 

development (Vygotsky, 1962; Campbell & Sais, 1995). A sizable amount of studies 

found exposure to the second language may help improve children’s development of 

metalinguistic skills (Hakuta, 1986; Campbell & Sais, 1995; Galambos & Hakuta, 1988). 

Particularly, being bilingual benefits children’s speech-sound awareness development 

(Campbell & Sais, 1995). The results from this study showed evidence that being 

bilingual may bring benefits to kindergarteners during their developmental progress of 

alphabet knowledge. 

As for the only continuous person property child’s age in fall, the estimates from 

LG-EIRM analysis revealed that older children grew significantly less than younger 

children. Therefore, a child’s age in fall has a significant impact on the amount of growth 

of his/hers in alphabet knowledge. However, older children had better performances in 

both alphabet recognition and letter sounds than younger children, which corroborates 
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findings from some previous studies that suggested upon kindergarten entry, older child 

outperform younger children on average (Oshima & Domaleski, 2006; Stipek, 2002; 

Huang & Invernizzi, 2012). The way that age influences child’s growth in alphabet 

knowledge is similar to pre-k schooling. Older children got longer exposure to letters and 

know more letter names and letter sounds before attending kindergarten, so they 

performed significantly better initially but appeared to grow less over time than younger 

children. Accordingly, the early-age achievement gap will narrow down over time. 

However, it will not completely disappear (Huang & Invernizzi, 2012). 

Item properties and their lack of time-invariance  

Results showed that the degree of letter-shape confusability was ordered. NOFC 

property appeared to be the easiest, followed by SC and OFTC in turn. VOFC property 

was the most difficult. This order is expected because the more distinguishable the shape, 

the easier it is for child to learn and recognize it.  

LS item properties did not show the same strict ordering as did ABC item 

properties. VC and CV properties were the two easiest properties, followed by VO and 

NA properties. Digraph was determined to be the most difficult. In general, this is 

consistent with the findings from prior studies that letter sounds which are more tightly 

associated to their names are more easily for early-age children to learn and master 

(McBride-Chang, 1999; Evans et al., 2006; Huang, Tortorelli, & Invernizzi, 2014). 

However, specifically regarding the ordering of VC and CV, this study showed that CV 

letter sounds are more difficult than VC letter sounds, which is not consistent with 

previous studies (Huang, Tortorelli, & Invernizzi, 2014; Evans et al., 2006). However, 
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Huang and Invernizzi’s (2014) controlled for the letter frequency in the English language 

in their study when comparing the difficulty of CV and VC letters, whereas this study did 

not . Controlling for letter frequency may have led to a different ordering of CV and VC 

difficulties. More specifically, the median frequency for CV letters is 18.55 and the 

median frequency for VC letters is 26.10. This indicates VC letters are more common 

than CV letters, which may make VC letters easier to learn because of more exposure to 

them of children.  

Furthermore, the results from models testing item property drift showed that most 

ABC item properties and LS item properties exhibited different degrees and directions of 

lack of time-invariance. The causes would certainly not be from children’s ability growth 

because the growth has been accounted for in all LG-EIRMs. A few possible explanations 

could be children’s perceptions of items, practice effect of children at school and home, 

and teachers’ emphasis on particular letters that they believe to be more difficult during 

instruction. For instance, from ABC models, we found easy item properties (i.e. NOFT, 

SC) drifted to be even easier and hard item properties (i.e. OFC, VOFT) became more 

difficult over time. This might be due to children having more confidence and more self-

efficacy for items they recognize and perceive as easy. Conversely, children may show 

lack of confidence and low self-efficacy for letters they recognize and perceive as 

difficult, thereby making difficult letters more difficult to recognize. Another example is 

that LS models showed the Digraph property drifted to become significant easier in 

spring. The reason might be that teachers believed the sounds of digraphs were generally 

harder than that of single letters and such that put stronger emphasis and allocate more 

time on digraphs during their instructions. Thus, children had more practice with digraph 
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items and as a result, most children learned to pronounce them correctly at the end of 

school year. In addition, VC property was found to become easier across time which 

could be due to that children being more confident and showing high self-efficacy for VC 

letters which they recognized as the easiest. 

Implications 

Alphabet knowledge is deemed to be one of the core early literacy skills, which 

mainly includes two components, letter-name knowledge and letter-sound knowledge 

(Invernizzi, 2004; Huang, Tortorelli, & Invernizzi, 2014). Previous studies indicated 

alphabet knowledge is a strong predictor of child’s future reading performance and 

contributes greatly to child’s success in future reading and writing (Adams, 1990; Foulin, 

2005; Snow, et al., 1998; Stevenson & Newman, 1986). Although numerous studies have 

examined the role of alphabet knowledge as a predictor of a child’s later reading 

performance (Dickinson, Tabors, & Roach, 1996; Scarborough 1998; Lonigan, Burgess, 

and Anthony, 2000; Missall & McConnell, 2010; NELP, 2008), studies rarely investigate 

the development of alphabet knowledge over time. To promote understandings of a 

child’s growth in alphabet knowledge, the present study focused on measuring 

kindergarteners’ growth in both alphabet recognition and letter sounds and explored 

various factors that influence such growth. The results of the study revealed that 

kindergarteners grow significantly in alphabet recognition and letter sounds, from fall to 

spring, but there is a lot of variation among overall performance and growth trajectory. 

This confirms that kindergarten is a crucial period for child to develop knowledge of 

alphabet letters (VanDerHeyden, Snyder, Broussard, & Ramsdell, 2008) and also 
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suggests that it is essentially important to examine concurrent development of children in 

early literacy skills if multiple-time-point assessment data are available for one school 

year. 

Furthermore, the present study indicates access to item-level early literacy 

assessment data has significant practical meanings to tracking a child’s learning progress 

and exploring the influences of different factors on literacy growth of children. Unlike the 

majority of previous growth studies that used task scores or sum scores to estimate 

growth (Pan, et al., 2005; McCoach,et al. 2006; Hammer, Lawrence, & Miccio, 2007; 

Connor, Morrison, & Slominski, 2006; Gutierrez & Vanderwood, 2013), the present study 

used item-level responses and an IRT approach to analyze growth on the scale of the 

latent construct directly. The impact from factors that are related to items and persons on 

the latent growth was also analyzed and the information of such impact can be used for 

practical purposes, such as pinpointing student understanding in various meaningful 

ways. For example, the item property estimates can be used to connect child’s initial 

score and change scores to the certain group of items and thus associate child’s 

probability of correctly answering the letter to the specific feature that the letter has (Cho 

et al., 2013). In addition, the information about the person properties as the sources of 

individual differences in growth can be taken advantage of to guide customization of 

instructional support.  

Moreover, the sample size used in this study is larger than most previous 

longitudinal studies of early literacy (Connor, Morrison, & Slominski, 2006; Ding, 2012; 

Morris, Bloodgood, Lomax, & Perney, 2003; Wagner, et al., 1997), which strengthened 
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the validity of its results and inferences. Another notable feature of it is the inclusion and 

investigation of various person properties (i.e. pre-k schooling, disability, ELL status, 

age) in one study which has rarely be done by other growth studies.      

However, this study has few limitations. Due to the model complexity, this study 

only used a 5,000 random sample instead of the full population of examinees. 

Additionally, the absolute model fit of LG-EIRMs have not been evaluated in this study. 

These limitations can be used to provide possible directions of future studies. 
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Appendix: The glmer and bglmer code for LG-EIRM analysis 

 

#ABC-M1 

 

mod1<-glmer(resp ~ -1+shape+time+(1|itemNew)+(t1+t2+t3-1|person), data=abc, 

family=binomial("logit"), control=glmerControl(optimizer="bobyqa", optCtrl = 

list(maxfun = 100000))) 

 

#ABC-M2 

# drift effectof shape 1 

s1dft2<-with(abc,factor(0+(time==2&shape==1))) 

s1dft3<-with(abc,factor(0+(time==3&shape==1))) 

 

mod1_s1<-glmer(resp~-1+shape+s1dft2+s1dft3+time+(1|itemNew)+(t1+t2+t3-1|person), 

data=abc,family=binomial("logit"), control=glmerControl(optimizer="bobyqa", optCtrl = 

list(maxfun = 100000))) 

 

#ABC-M3 

# drift effect of shape 2 

s2dft2<-with(abc,factor(0+(time==2&shape==2))) 

s2dft3<-with(abc,factor(0+(time==3&shape==2))) 

 

mod1_s2<-glmer(resp~ -1+shape+s2dft2+s2dft3+time+(1|itemNew)+(t1+t2+t3-

1|person), data=abc,family=binomial("logit"),control=glmerControl(optimizer="bobyqa", 

optCtrl = list(maxfun = 100000))) 

 

#ABC-M4 

# drift effect of shape 3 

s3dft2<-with(abc,factor(0+(time==2&shape==3))) 

s3dft3<-with(abc,factor(0+(time==3&shape==3))) 

 

mod1_s3<-glmer(resp~ -1+shape+s3dft2+s3dft3+time+(1|itemNew)+(t1+t2+t3-

1|person),data=abc,family=binomial("logit"), control=glmerControl(optimizer="bobyqa", 

optCtrl = list(maxfun = 100000))) 
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#ABC-M5 

# drift effect of shape 4 

s4dft2<-with(abc,factor(0+(time==2&shape==4))) 

s4dft3<-with(abc,factor(0+(time==3&shape==4))) 

 

mod1_s4<-glmer(resp~ -1+shape+s4dft2+s4dft3+time+(1|itemNew)+(t1+t2+t3-

1|person), data=abc,family=binomial("logit"),control=glmerControl(optimizer="bobyqa", 

optCtrl = list(maxfun = 100000))) 

 

#ABC-M6 

mod2_drift<-glmer(resp~ -1+shape*time+(1|itemNew)+(t1+t2+t3-1|person), data=abc, 

family=binomial("logit"), control=glmerControl(optimizer="bobyqa", optCtrl = 

list(maxfun = 100000))) 

 

#ABC-M7 

mod3_drift<-glmer (resp~1+time+shape+time:shape+prek+dis+ell+agefall+(1|itemNew) 

+ (t1+t2+t3-1|person), data=abc, family=binomial("logit"), 

control=glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000))) 

 

#ABC-M8 

mod4_pr001<-bglmer (resp~1+time+shape+time:shape+prek+dis+ell+agefall + 

time:prek+time:dis+time:ell+time:agefall+(1|itemNew) +(t1+t2+t3-1|person), data=abc, 

family = binomial("logit"),control = glmerControl(optimizer="bobyqa", optCtrl = 

list(maxfun = 200000)), cov.prior = wishart,fixef.prior = normal(cov=diag(2,24))) 

 

#LS-M1 

mod1<-glmer(resp ~ -1+sound+time+(1|itemNew)+(t1+t2+t3-1|person), 

data=ls,family=binomial("logit"),control=glmerControl(optimizer="bobyqa",check.conv.

grad=.makeCC("warning",0.005), optCtrl = list(maxfun = 100000))) 

 

#LS-M2 

#drift effect of sound 1 

s1dft2<-with(ls,factor(0+(time==2&sound==1))) 

s1dft3<-with(ls,factor(0+(time==3&sound==1))) 
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mod1_s1<-glmer(resp~-1+sound+s1dft2+s1dft3+time+(1|itemNew)+(t1+t2+t3-1|person), 

data=ls,family=binomial("logit"),control=glmerControl(optimizer="bobyqa",check.conv.

grad=.makeCC("warning",0.005), optCtrl = list(maxfun = 100000))) 

 

#LS-M3 

#drift effect of sound 2 

s2dft2<-with(ls,factor(0+(time==2&sound==2))) 

s2dft3<-with(ls,factor(0+(time==3&sound==2))) 

 

mod1_s2<-glmer(resp~ -1+sound+s2dft2+s2dft3+time+(1|itemNew)+(t1+t2+t3-

1|person),data=ls,family=binomial("logit"),control=glmerControl(optimizer="bobyqa",ch

eck.conv.grad=.makeCC("warning",0.005), optCtrl = list(maxfun = 100000))) 

 

#LS-M4 

#drift effect of sound 3 

s3dft2<-with(ls,factor(0+(time==2&sound==3))) 

s3dft3<-with(ls,factor(0+(time==3&sound==3))) 

 

mod1_s3<-glmer(resp~ -1+sound+s3dft2+s3dft3+time+(1|itemNew)+(t1+t2+t3-

1|person),data=ls,family=binomial("logit"),control=glmerControl(optimizer="bobyqa", 

check.conv.grad=.makeCC("warning",0.005),optCtrl = list(maxfun = 100000))) 

 

#LS-M5 

#drift effct of sound 4 

s4dft2<-with(ls,factor(0+(time==2&sound==4))) 

s4dft3<-with(ls,factor(0+(time==3&sound==4))) 

 

mod1_s4<-glmer(resp~ -1+sound+s4dft2+s4dft3+time+(1|itemNew)+(t1+t2+t3-

1|person),data=ls,family=binomial("logit"),control=glmerControl(optimizer="bobyqa",ch

eck.conv.grad=.makeCC("warning",0.005), optCtrl = list(maxfun = 100000))) 

 

#LS-M6 

#drift effect of sound 5 

s5dft2<-with(ls,factor(0+(time==2&sound==5))) 

s5dft3<-with(ls,factor(0+(time==3&sound==5))) 
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mod1_s5<-glmer(resp~ -1+sound+s5dft2+s5dft3+time+(1|itemNew)+(t1+t2+t3-

1|person),data=ls,family=binomial("logit"),control=glmerControl(optimizer="bobyqa",ch

eck.conv.grad=.makeCC("warning",0.005), optCtrl = list(maxfun = 100000))) 

 

#LS-M7 

mod2_drift<-glmer(resp ~ -1+sound*time+(1|itemNew)+(t1+t2+t3-1|person), 

data=ls,family=binomial("logit"),control=glmerControl(optimizer="bobyqa",check.conv.

grad=.makeCC("warning",0.005), optCtrl = list(maxfun = 100000))) 

 

#LS-M8 

mod3<-glmer(resp ~ 1+time+sound+time:sound+prek+dis+ell+agefall+(1|itemNew)+ 

(t1+t2+t3-1|person), data=ls,family=binomial("logit"), 

control=glmerControl(optimizer="bobyqa",check.conv.grad=.makeCC("warning",0.005), 

optCtrl = list(maxfun = 200000))) 

 

#LS-M9 

mod4_pr<-bglmer(resp~1+time+sound+time:sound+prek+dis+ell+agefall+time:prek+ 

time:dis+ time:ell+time:agefall+(1|itemNew)+(t1+t2+t3-1|person),data=ls, family = 

binomial("logit"),control = glmerControl(optimizer="bobyqa", 

check.conv.grad=.makeCC("warning",0.005),optCtrl = list(maxfun = 100000)), cov.prior 

= wishart, fixef.prior = normal(cov=diag(2,27))) 

 

 


