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Abstract

We apply techniques based on isotach logical time to the problem of maintaining a
coherent shared memory. In isotach logical time systems, processes can predict and con-
trol the logical times at which their messages are received. This control over the logical
receive time of messages provides a powerful basis for implementing coherence protocols.
Existing isotach-based memory coherence protocols are more concurrent than other proto-
cols, but are limited in the topologies on which they work and the reference patterns for
which they are suited. We define a new framework for isotach shared memory systems
that supports protocols that work for arbitrary topologies and are suited to a wide range of
reference patterns. By extending isotach protocols to a wider class of applications and net-
works, we contribute to the solution of the memory coherence problem.

In addition to extending isotach-based coherence protocols, we advance the theory
of isotach systems. We redefine isotach systems to be consistent with potential causality, a
new relation among events that captures causality in a less conservative way than Lam-
port's happens before relatidrhis redefinition expands the class of correct implementa-
tions of isotach systems. We introduce the flex algorithm, a new implementation of
isotach logical time that allows different links to be assigned different logical distances.

We expect that increased flexibility in assigning logical distances will improve the perfor-
mance of isotach systems in cases in which links have significantly different real time

latencies.

Dissertation Advisor: Paul F. Reynolds, Jr.
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Chapter 1.:

Logical Time Coherence Maintenance

1.1. Introduction

Isotach logical time systems support novel, powerful techniques for maintaining
shared memory coherence. They allow processes to control the logical times at which the
messages they send are received and, in some cases, the logical receive times of response
messages as well. Our thesis is that the theory of isotach systems, first given by Williams
[Wil93], can be extended to increase the flexibility of isotach systems in ways that allow

them to serve a wider range of networks and applications.

1.2. The Problem

We address problems in two separate but related areas: coherence maintenance

and isotach systems. We discuss each below.

1.2.1. Coherence Maintenance

The problem we address is how to use isotach systems to maintain coherence in
shared memory. Maintaining memory coherence concerns enforcement of ordering con-
straints on accesses to replicated shared addresses. This problem is known as the cache
coherence problem in parallel computation and the distributed shared memory (DSM)
problem in distributed computation. Coherence maintenance is difficult because copies of
shared memory addresses are distributed but the semantics of memory accesses require

that they appear to occur on a monolithic memory.



Our definition of the coherence maintenance problem differs slightly from that of
other researchers since we include atomicity in the problem. Most solutions enforce
sequencing constraints represented by some type of consistency semantics but leave atom-
icity to be enforced through other mechanisms. We extend the coherence maintenance
problem to include how to enforce atomicity constraints as well as sequencing constraints.

The existing isotach-based memory coherence protocols allow greater concurrency
than other coherence protocols in the following ways: they enforce atomicity constraints
without requiring the use of locks; they allow multiple readers and writers to the same
shared data; and they allow pipelining without sacrificing sequential consistency. In fact,
they can enforce sequential consistency and still offer more concurrency than systems that
enforce weaker consistency semantics with traditional technology. Simulation studies
[dWR96, RWW97] have established the potential of isotach shared memory systems.
These studies show they outperform traditional systems for workloads that include atom-
icity requirements or hot spots. However, previously existing isotach-based protocols are
limited in the topologies on which they work and the reference patterns they support. We

define a theory that enables us to develop protocols without those limitations.

1.2.2. Isotach Logical Time Systems

In addition to addressing the problem of how to use isotach systems to achieve
memory coherence we address improving isotach systems themselves.

The existing theory of isotach systems requires that they be consistent with Lam-
port’s happens beforeslation. We seek a less constraining requirement that would still
capture important causal relations among events. A less constraining requirement is desir-

able because it increases the number of correct implementations.
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Another way in which isotach systems are currently overly constrained is in the
assignment of logical distances to links. Logical distance and logical time are related in
isotach systems and logical distance is important in determining message latency. Existing
algorithms for implementing isotach systems do not allow real time latency to be taken
into account in assigning logical distances. This assumption reduces the applicability of
isotach systems to networks with non-uniform link latencies. We seek a set of less con-

straining rules for assigning logical distances, and algorithms that implement these rules.

1.3. Contributions

We define an extended theory of isotach systems that expands the class of correct
implementations of isotach systems, increases the applicability of isotach systems to net-
works with non-uniform link latencies, and creates a unifying framework for isotach
shared memory systems that supports the design of several new coherence protocols.

Our contributions are as follows:

* We redefine isotach systems to be consistentpaténtial causalitya new
relation among events that captures causality in a less conservative way than
Lamport'shappens beforeslation [Lam78] This change expands the class of
correct implementations of isotach systems. Previously, isotach systems were
required to be consistent with thappens beforeelation. However, proto-
type isotach systems and other proposed implementations can be inconsistent
with thehappens beforeelation although they are causally consistent. Rede-
fining isotach systems to be consistent pibential causalitysupports these
causally consistent implementations, as well as isotach network algorithms
that are difficult to implement under the old definition.

* We introduce a new isotach network algorithm that allows isotach systems to
assign different logical time distances to different links. We expect that
increased flexibility in assigning logical latencies will improve the perfor-
mance of isotach systems in cases in which links have significantly different
real time latencies.

* We redesign the framework for isotach shared memory systems to provide a
unifying theory that addresses several issues that were not integrated in the

Logical Time Coherence Maintenance



previously existing framework. By eliminating the use of a physical canonical
copy, the new framework supports the design of new isotach-based coherence
protocols that extend isotach-based coherence techniques to systems with
arbitrary topologies, to applications with a wider range of access patterns and
to a simpler class of isotach systems than that required by previous isotach-
based coherence protocols. In addition, the new framework directly supports
optimizations not addressed by previous research and demonstrates that each
correct isotach-based protocol represents a class of correct protocols.

1.4. Outline of Thesis

The remainder of this thesis is organized as follows:

In Chapter 2, we discuss three areas of research related to this thesis. We provide
extensive background in coherence maintenance and briefly discuss other logical time
systems, particularly as applied to the coherence maintenance problem. Then, we present
previous research in isotach systems.

In Chapter 3, we defingotential causalityand its system model. Also, we present
conditions that ensure a logical time system (LTS) is consistenpotigimtial causality

In Chapter 4, we present tfiex algorithm the first isotach network algorithm that
allows logical distances to differ from the number of switches through which messages
travel without requiring each pair of network nodes to communicate directly. This flexibil-
ity allows the logical distances in an isotach network to reflect the point-to-point message
latency of the underlying hardware. This ability is an important advance in isotach tech-
nology since end-to-end message latency in isotach networks is proportional to the logical
distance that the message travels. We prove the flex algorithm implements an isotach LTS
and show it provides great flexibility for logical distance assignments. We then present a

Petri net model of the algorithm that allows us to determine if a set of logical distance
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assignments will cause the algorithm to deadlock. This model indicates similar Petri net
models may be a rich source of additional isotach network algorithms.

In Chapter 5, we describe our new framework for isotach shared memory systems.
This framework enables the design of several protocols for non-equidistant networks.
Since all messages travel the same logical distance in an equidistant network, the sender of
a message knows the logical distance that any response message travels even if the desti-
nation of the response is not known. In a non-equidistant network, the sender of the origi-
nal message cannot know the logical distance that the response travels if its destination is
unknown. Our new framework allows the sender to anticipate the logical times of execu-
tion events despite this incomplete knowledge. After defining the framework for systems
without replication, we apply it to isotach-based coherence protocols. Section 5.7 devel-
ops correctness criteria for these coherence protocols and presastasict@mvner update
protocol in which theowner copyis a distinguished copy that services misses and distrib-
utes updates. This protocol extends a previously defined isotach-based coherence protocol
[Wil93] to non-equidistant networks.

In Chapter 6, we present tbemner update protocpivhich modifies the static
owner update protocol to include our mechanism for dynamically relocating the owner
copy. An ownership migration mechanism is desirable since the appropriate location may
not be static and is often difficult to predict. Although Williams’s equidistant protocol
includes a similar migration mechanism, the problem is substantially more difficult in a
non-equidistant network since a migration generally changes the logical distance from the
owner copy location to any other location. Our highly concurrent migration mechanism

does not suspend access to the copies and nodes can retain their copies despite the migra-
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tion. Also in this chapter, we introduce the concept ostteeduling horizoof an isotach
shared memory system and use it to allow a migration to proceed without affecting the
execution of requests that a node scheduled before it received notification of the migration.
In Chapter 7, we present tbevner invalidation protocolthe first invalidation pro-
tocol designed for isotach networks. This protocol provides a writer with exclusive access
through modifications of the migration mechanism of the owner update protocol. Since it
provides a writer with exclusive access, the owner invalidation protocol can exploit long
write runs, a reference pattern in which a single process repeatedly accesses the coherence
unit. Unlike traditional invalidation protocols, our protocol naturally adapts to reference
patterns that do not exhibit long write runs and allows the initiating write to complete prior
to providing the writer with exclusive access. Supporsiplif operationsa mechanism
that allows isotach systems to execute structured atomic actions without using locks, in an
invalidation protocol is difficult. We demonstrate that the owner invalidation protocol
implements split operations correctly.
In Chapter 8, we present tloeal update protocolthe first isotach-based protocol
to support dynamic replication without requiringextensible isotach netwarkn exten-
sible isotach network ensures that the logical send time of a response message is a known
function of the logical receive time of the original message. Extensibility simplifies
dynamic replication of shared data but extensible isotach networks are more complicated
and may have higher message latency than isotach networks that do not support extensi-
bility. The prototype systems being built by the Isotach Project are not extensible. Cur-
rently, these prototype systems create all copies statically during system initialization.

Since the local update protocol can create and destroy copies dynamically in response to
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the observed reference pattern, it should improve performance in these systems signifi-
cantly. As with the existing mechanism, the protocol has the drawback that each copy
must have a directory of all other copies. We show that the local update protocol is correct
and does not require an extensible isotach network.

In Chapter 9, we present our conclusions and ideas for future work.
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Chapter 2:
Coherence, Time and the Anticipated Ordering of

Events

2.1. Introduction

We present basic definitions, concepts and research related to shared memory
coherence maintenance. We review concepts and previous work in coherence mainte-
nance and then discuss causality and logical time, including other applications of these
concepts to coherence maintenance. We conclude with a discussion of isotach systems,

which can anticipate the logical times of causally related events.

2.2. Coherence Maintenance

Coherence maintenance extends the concept of cache coherence to more general
systems. Coherence maintenance was originally explored in systems with memory physi-
cally shared by multiple processors, each associated with a local cache niistoby.
uted shared memoPSM) also requires coherence maintenance. DSM provides
transparent shared memory in systems where physical access to each memory unit is lim-
ited to the local processing node [AbK85, Che85, LiH86]. The coherence maintenance
problem also occurs in distributed object oriented systems that replicate objects to
improve performance [DLA91, LeA92, TKB92]. Our work explores this problem in the

context of cache coherent systems and DSM.



2.2.1. Defining Coherence

We define the coherence maintenance problem as the concurrency control problem
with replication of shared data. The concurrency control problem is to ensure that every
execution of a parallel program is consistent with its ordering constraints. Our definition
of coherence expands other definitions to include all aspects of concurrency control.

The definition of coherence has evolved with the exploration of the ordering con-
straints that a parallel system can enforce. Censier and Feautrier defined a system to be
cache coherent if each read returns the latest write [CeF78]. Unfortunately, the possibility
of concurrent writes complicates the determination of the latest write in a multiprocessor
[DSB86]. Rudolph and Segall defined a virtual serial execution that determines the latest
write in bus-based architectures [RuS84]. However, this total order does not extend to
general networks since it depends on the serialization provided by the memory bus.

Consistencys a later definition of coherence [Col92]. This ordering constraint
requires that all processes observe writes to a given memory location in the same order,
although processes need not observe writes to different locations in the same order
[GLL90, Adv93, AdG96]. Consistency prohibits executions that are allowed by some

ordering constraints, such as causal memory [JOA94].

2.2.2. Coherence Objects

Shared memory systems provide a global address space that is accessible by all
processes. Coherence protocols service shared memory requests. Each request reads or
writes a shared memowgariable the basic unit of all shared memory accesses. Protocols

maintain state information in order to service requests correctly forceaenence unjt
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which is a group of a variables. Tbeherence granularifythe size of a coherence unit, is
a cache line in cache coherent systems and a main memory page in most DSM systems.

Memory systems plaampiesof coherence units near processes that access them
in order to reduce the latency of shared memory requests. The locatstatsoafopies
are determined at the beginning of program execution. Systemdymgimiccopies can
create and destroy copies during program execution.

Shared memory systems can directly support objects of varied sizes or use fixed
size locations, which generally allow more efficient hardware support. In our model, the
system determines the fixed size of a variable. Program-level accesses of varied sizes are
emulated through multiple accesses. Our results only apply to systems that support objects

of varied size if the program-level entities are disjoint.

2.2.3. Shared Memory Executions

In our shared memory model, a program consisk$ pfocesses,dj, ..., PN-1}
that are logically connected by the shared memory system. The processes issue shared
memoryrequestsn addition to performing computation and private memory accesses.
The shared memory system must associate a value with each shared read request and store
the value associated with a shared write request by the process in at least one copy.
Several significant events occur during the service of each requessiiéevent
occurs when the process provides the request to the memory system. The request is associ-
ated with thesendandreceiveevent of each message that its service requireddiver
event of a read request occurs when its value is returned to the process. Exaotgcane
tion eventassociates the value of a copy with any read request. There is at least one execu-

tion event for each write request and each stores its value into a distinct copy.
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An executionof a shared memory program consists of every execution event for
all shared memory requests and their associated values. A total order over the execution
events, the@xecution orderis defined by the real times that the events occur, which we
assume are distindEquivalent executionsonsist of the same requests associated with the
same values. Formally, the executidhs= (&, ...,e,0  &d= L&, ..., e,0 are
equivalent iffJi,0<i<n,[J,0<j<m , such thaet’j executes the same requeshas
associates the same value with the requestaasi]j, 0<j <m, [0,0<i<n , such that
& executes the same requeselas  and associates the same value with the relquest as

For systems without replication, we usmnflict equivalencfPap86]. This simpler
formulation is based otonflictingrequests. Two requests conflict if they access the same
variable and at least one is a write. Accesses to distinct variables never conflict since vari-
ables are disjoint. Without replication, two executions are equivalent if they are identical
other than the order of the execution of non-conflicting requests. Since there is only one

copy of each variable, the same value is associated with each request.
2.2.4. Ordering Constraints

A shared memory system can enforce several types of ordering consGamts.
sistency semanti@re ordering constraints that limit the values that the system can associ-
ate with a read request [AdG96]. Other constraints enforce grouping of requests. Our
shared memory systems enforce the consistency semantics of sequential consistency and
guarantee the grouping constraint of isochronicity. Guaranteeing these properties, like
many other ordering constraints, is non-trivial even in systems without replication.

Ordering constraints definecarrectness seflhis correctness set consists of all

shared memory executions that conform to the constraint. A shared memory system
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enforces an ordering constraint if every possible execution in the system is in the correct-
ness set of the constraint. We relate constraints based on their correctn&spisetient
constraints have the same correctness sets. The correctnessstetrafeaconstraint is a
proper subset of that ofveeakerconstraint. Generally, programming is simpler with a

stronger constraint since fewer executions can occur for a given program.

2.2.4.1. Uniprocessor Ordering Constraints

Program orderis an ordering constraint that requires memory requests appear to
execute in the sequential order specified by the program. With uniprocessors that enforce
program order, every execution is equivalent to one in which each instruction is issued and
completed one at a time. Techniques like interlocks and scoreboarding allow instruction
level parallelism in these uniprocessors. Program orderpoessor consistenchpr
shared memory systems requires that an equivalent execution exists in which the requests
of each process occur in the sequential order specified by its program [Go089].

The apparent indivisibility of writes is another uniprocessor ordering constraint
that is adapted for shared memory systaiiste atomicityrequires that an equivalent
execution exists in which the multiple execution events of each write request occur con-

secutively [Col92, AdG96]. Thus, there exists an equivalent execution without replication.

2.2.4.2. Sequential Consistency

Sequential consisten@xtends uniprocessor memory semantics to multiproces-
sors. A machine is sequentially consistent if “the result of any execution is the same as if
the operations of all the processors were executed in some sequential order, and the opera-

tions of each individual processor appear in this sequence in the order specified by its pro-
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gram [Lam79].” This ordering constraint requires that the shared memory system enforces
write atomicity and program order. Thus, for each possible execution, an equivalent exe-
cution must exist in which the requests of each process occur in the sequential order spec-
ified by its program and the execution events of each write request occur consecutively.
Many sequentially consistent multiprocessors exist. Sequentially consistent bus-
based systems limit pipelining of requests to ensure program order and enforce write ato-
micity with the serialization provided by bus acquisitions. However, bus saturation limits
these machines to about twenty processors even with low bandwidth protocols [ASH88].
Enforcing sequential consistency is more difficult in general interconnection net-
works. Few sequentially consistent protocols for general interconnection networks allow
concurrent write copies. The protocols that do allow them generally require additional
message rounds to ensure a total order of write requests [WiL92, AdG96]. As with the
bus-based systems, most sequentially consistent protocols for general interconnection net-

works limit pipelining to ensure program order.

2.2.4.3. Weak Consistency Semantics

Sequential consistency is generally the strongest consistency semantics that sys-
tems enforce. Several researchers have proposed weaker consistency semantics. Systems
use these semantics to allow pipelining of shared memory requests. Our protocols enforce
sequential consistency and allow pipelining. Weak consistency can alleviate the effect of
false sharing, a problem for coherence protocols that we discuss in Section 2.2.7.

The design space of consistency semantics is large. We discuss consistency
semantics based on causality in Section 2.3.3, after we define causality [HUA90, AHJ91].

Some consistency semantics, such as total store order and partial store order, weaken pro-
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gram order [SPA92]. Semantics that weaken write atomicity are more common. In the
remainder of this section, we explore several of these semantics in more detail.

Strongandweak orderingare early weak consistency semantics [DSB86]. Strong
ordering requires that if proceAsobserves a write by proceBghenA cannot subse-
guently observe a write thBtobserved before its write. Although strong ordering was
proposed as equivalent to sequential consistency, strong ordering is weaker since pro-
cesses may observe concurrent writes in different orders [AdH90]. Weak ordering prohib-
its overlapping a synchronization request with any other shared requests of the same
process, while synchronization requests must be strongly ordered.

Constraints derived from weak ordering use special synchronization primitives to
simplify pipelining of shared requests. Release consistency exploits the semantic differ-
ence between lock (acquire) and unlock (release) synchronization requests [GLL90].
Under release consistency, a process can overlap lock requests with previous requests to
shared variables and unlock requests with later requests to shared variables. Lazy release
consistency (LRC) weakens release consistency by allowing unlock requests to overlap
with previous requests to shared variables [KCZ92]. LRC delays causally subsequent lock
requests by any process until the overlapped shared requests have completed. The Euro-
pean Declarative System previously proposed this optimization [Bol91]. Entry consis-
tency is similar to LRC but only restricts overlapping requests to a shared variable and the
lock with which it is explicitly associated [BeZ91]. Scope consistency provides a similar
benefit but uses program structure to eliminate the need for explicit associations [ISL96].

Most weak consistency semantics have operational definitions. Their specifica-
tions make reasoning about the relationships of consistency semantics difficult. For sev-

eral weak consistency semantics, Adve and Gharachorloo have both explored program
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restrictions for which all possible executions are sequentially consistent [Adv93, Gha95].
Although this improves the situation, demonstrating that a general program conforms to
the restrictions is difficult. Also, this approach does not specify the weak semantics for

programs that do not conform to the restrictions.

2.2.4.4. Isochronicity

In addition to consistency semantics, grouping shared requests is an important
facet of concurrency contrdsochronicity an ordering constraint that most coherence
protocols do not enforce, requires that all possible executionsoaifgonougRWW9I7].

An isochronis a group of requests that are issued consecutively by a process. An execu-
tion is isochronous if an equivalent execution exists in which each isochron executes with-
out interleaving with other requests.

Isochronicity is closely related atomicity[Lom77, OwL82, Lam86]. Atomicity
requires the apparent indivisible executioratafmic actionsAtomic actions are also
groups of shared memory requests. An atomic action is often a fault tolerance unit for
which a system must guarantee that either all or none of the requests execute. Isochrons
assume fault freedom. A more important distinction between isochrons and atomic actions
involves internal dependences. An atomic action with internal dependences, such as
A = B, is astructured atomic actiarA flat atomic actiorhas no internal true (i.e. read/
write) dependences. Isochrons are flat atomic actions in fault free systems. Although iso-
chrons are not as powerful as structured atomic actions, isochrons can execute structured
atomic actions when used wiplit operationdWil93].

A split operation divides a write request into two parts. A process uses a split oper-

ation to reserve a position in the execution order for a write before it determines the asso-
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ciated value. It declares its intention to write a variable wgbheedrequest. Arassign

request associates a value with the sched. No value is associated with a sched. When a
sched is executed on a copy, then the value of the copgidbstantiated/Vhen the inter-

nal dependences of a structured atomic action are satisfied, the process determines the
value to associate with the write. Execution of the corresponding asdigtantiateshe

write with this value. Systems that use isochronous techniques for executing structured
atomic actions must represent unsubstantiated values and have a method tmsulffer
stantiated readswhich are read requests that are executed on unsubstantiated copies. The
read is associated with the value and delivered when the write is substantiated.

Most systems provide low level primitives, such as locks, that support techniques
to group shared memory requests. The programmer must use these primitives correctly to
enforce atomicity. Lock-based techniques use mutual exclusion to execute atomic actions.
Isochronous techniques do not rely on mutual exclusion, and thus offer greater concur-
rency. Several researchers have proposed more efficient lock implementations, such as
distributed queues [GVW89, GrT90]. Other systems incorporate fine grain locking capa-
bilities into the coherence protocol [BiD86, RaL96]. Although these techniques can
improve lock performance, they do not recover the concurrency lost to mutual exclusion.
In addition, lock-based systems generally do not allow pipelining of isochrons or atomic
actions, regardless of the enforced consistency semantics.

Shared Regions and the C Region Library (CRL) are DSM systems that enforce
atomic access to explicitly allocated data regions [SGZ93, JKW95]. Special region opera-
tions delimit atomic accesses to regions in CRL. Explicit coherence requests are required

with Shared Regions. The consistency semantics of these systems, which enforce sequen-

Coherence, Time and the Anticipated Ordering of Events



17

tial consistency across regions, are similar to entry consistency. Unlike isochronous tech-
niques, they do not support atomic access of arbitrary combinations of variables.

To enforce atomicity, Transactional Memory (TM) and the Oklahoma Update
(OU) modify any coherence protocol that uses an exclusive copy to execute a write
request [HeM92, HeM93, SSH93]. In the bus-based TM implementation, a “busy”
response locks any coherence unit that an unfinished atomic action reads or writes. The
general interconnection network TM implementation only locks coherence units that an
unfinished atomic action writes. In OU, a two phase locking strategy groups execution of
the write requests of an atomic action. Ultimately, TM and OU enforce atomicity with

fine-grain locks, while isochronous techniques do not use locks.

2.2.5. Coherence Mechanisms

We divide mechanisms to maintain coherence into two major categories. The first
category involves methods to track the locations and states of copies. Coherence opera-
tions, which determine how a protocol distributes the values associated with write requests
to the copies, form the second category. Several mechanisms exist for both functions. The
appropriate choice of mechanism depends on the reference patterns of shared memory
requests, the physical components of the system and the enforced ordering constraints. We

present the mechanisms in this section. We discuss reference patterns in Section 2.2.6.

2.2.5.1. Copy Tracking

When a process issues a write request and non-local copies exist, it must send
coherence operations to the copies. The protocol can broadcast each coherence operation

or multicast it only to existing copies. The interconnection network usually determines the
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choice, although other factors, such as memory overhead, influence the decision. We dis-
cuss copy tracking methods in this section and coherence operations in Section 2.2.5.2.
Snoopycoherence protocols rely on the inherent serialization of bus accesses to
enforce sequential consistency [Goo83, PaP84, RuS84, KEW85, KMR88, TSS88,
TCS92]. In these systems, each casr@opghe bus for shared memory requests. When it
detects a request, the cache controller checks for a local copy of the requested variable. If
a local copy exists, the cache takes whatever action the coherence protocol requires.
General interconnection networks do not provide the efficient broadcast mecha-
nism that snoopy protocols require. Although protocols for general interconnection net-
works can still use broadcasts, most accurately track the locations of all copies. Censier
and Feautrier proposed a bit vector directory per coherence unit for accurate copy tracking
[CeF78]. Tang made a similar proposal that required more memory overhead [Tan76].
Each directory requires a bit per processing node, which is significant memory
overhead in large systems. Several methods reduce directory memory requirements. One
method is to use large coherence units. However, this solution can increase false sharing,
as we discuss in Section 2.2.7. Reserving regions of the memory space for private data,
and thus providing fewer directories, is another simple method [BMR89]. Tamir and Jana-
kiraman propose a dynamic scheme that uses both of these solutions [TaJ92]. This scheme
maintains state information for two granularities. Only if the state of the larger coherence
unit is shared are directories maintained for the smaller contained units.
Most coherence units have few, if any, copies since most variables are not actively
shared [WeG89]. Thus, most directory hardware is wasted with full directory methods.
Several methods rely on this observation. In order to reduce the cost for hardware direc-

tory entries, these methods incur additional costs when large directories are required.
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A number of schemes provide a limited number of hardware pointers. Some proto-
cols broadcast coherence operations if there are more copies than hardware pointers
[ArB84]. Limited directory protocolsestrict the number of copies to the number of point-
ers [SiH91]. These protocols exchange additional messages and cache misses for directory
memory spaceSoftware extended directoriggp to software routines that use ordinary
memory to provide full bit vector directories when the number of copies is large [CKA91,
WCF93, ChA94]. Thus, directory memory overhead is exchanged for longer directory
accesses. At the extreme, all directory functions are performed in software [GrS95].

Several solutions to the memory overhead problem reorganize the directory hard-
ware. The Scalable Coherent Interface and the Galactica Net use a linked list directory,
wherein each copy has a pointer to the next copy [Jam90, WiL92]. This organization
avoids directory overflow but increases the latency of coherence operations with the num-
ber of copies. Other alternatives use an associative memory. Organizations of this memory
include a cache of directories or pointers [GWM290, LiY90]. O’Krafka and Newton use
associative memory that replaces software extended directories with hardware [OKN90].

Other methods for locating copies require specific network topologies. The Ken-
dall Square Research Allcache system, the Data Diffusion Machine and the Hector multi-
processor have hierarchical networks, such as trees of buses or rings [HHW90, FBR93,
FVS95]. Each subnetwork supports efficient broadcasts. A snoopy mechanism propagates
coherence operations up and down the network tree when necessary. Directory informa-
tion is maintained for entire subnetworks, which significantly reduces memory require-
ments. Other topology-specific protocols have been designed for a grid of buses in the
Wisconsin Multicube and for multistage interconnection networks with modified switches

[Gow88, GhS91, YTB92, NaB93].
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2.2.5.2. Coherence Actions and Operations

Coherence actionsatisfy shared memory requests. If a local copy does not exist
then amissoccurs and the protocol must locate the most recent version of the variable.
Most protocols provide a local copy with a miss response. Performance can improve if a
local copy is not always provided [KMR88, CoF89]. If a local copy exists, then read
requests are executed on it. The protocol must sentexrence operatioto each non-
local copy to execute a write request. In this section, we discuss coherence operations and

actions and the mechanisms to implement them.

2.2.5.2.1. Miss Actions

When a miss occurs, the protocol must locate the most recent version of the vari-
able. Li and Hudak explored several solutions to this problem, which they callieagthe
management problefhiH89]. Our protocols use their fixed distributed manager solution.

A hash function determines the location dfcane copyrom the address of the variable.
The home copy may not always have the current version, but maintains a pointer to a loca-
tion that does. Li and Hudak also explored dynamic distributed page manager algorithms.

We leave for future work adaptations of these algorithms for our systems.

2.2.5.2.2. Dynamic Protocols

Hardwareor dynamicprotocols use run-time coherence operations. Coherence
protocols can execute a write on every copy thraygtatedMcC85, TSS88, TKB92,
WiL92, DKC93, GDF93, BLV94] or usmvalidationsto provide the writer with an exclu-

sive copy [Goo83, PaP84, KEW85, CoF93, DSR93, SBS93].
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The comparative cost of using updates versus invalidations depends on the future
requests to the variable, and the optimal choice can vary during the lifetime of a program.
Since the future requests are unknown, the coherence problem is similar to the page
replacement problem in uniprocess@$-line algorithms use the optimal choice based
on knowledge of future requests. However, systems impleomelirie algorithms, which
do not use future knowledge. Competitive analysis evaluates the performance of on-line
algorithms [SIT85]. LeC,,; be the optimal cost and,,_ji,e the cost of an on-line algo-
rithm. The on-line algorithm isompetitivef Cqn_jine < € * Cop for any set of requests
wherec is a constant called tlimpetitive coefficienfn on-line algorithm istrongly
competitivaf ¢ is the minimum possible competitive coefficient.

Karlin, et al. identified a strongly competitive algorithm for the coherence problem
in bus-based architectures with direct-mapped caches and developed protocols with low
competitive coefficients for other cache structures [KMR88]. In these protocols, processes
discard local copies if the cost of updates received between local requests to the coherence
unit equals the cost of a miss operation. They assumed requests were sequential and used
the number of bus cycles to service all requests as the cost of an algorithm.

Many researchers have proposed update protocols for general interconnection net-
works that discard copies if the number of updates between local requests exceeds some
threshold value [WiL92, BLV94, DDS94, SSR95]. Researchers frequently call these pro-
tocols competitive although they do not provide competitive analysis. Many researchers
have explored competitive algorithms for page migration and replication of read-only data
[BIS89, BGW89, BFR92, ABF93, Wes94, BFR95].

Adaptive protocolsdentify and exploit specific reference patterns dynamically.

For example, some protocols adapiriigratory variableswhich exhibit periods during
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which only one process issues requests to them [CoF93, SBS93]. These protocols provide

an exclusive copy for any request only if the coherence unit exhibits this pattern.

2.2.5.2.3. Software-Assisted or Static Protocols

Software-assistedr static protocols ensure an exclusive copy exists when a write
is issued, and thus eliminate coherence operations. Compiler inserted coherence directives
invalidate other copies before a write occurs in these protocols. These protocols generally
incur more misses but do not require hardware support since they do not track copies.

Simple static protocols do not replicate shared variables or invalidate all copies at
major program boundaries, such as a critical section exit [OwA89]. Many techniques that
invalidate copies when a request would access stale data improve this method [CKM88,
SGZ93]. These methods often need special hardware to detect when a copy contains stale
data, which blurs the hardware/software distinction [ChV88, PST91, MiB92, ChY96].

Static analysis and other software techniques can improve the performance of
dynamic coherence protocols, further blurring the distinction. Skeppstedt and Stenstrom
use compiler directives with invalidation protocols to obtain an exclusive copy on a read
request that precedes a write request [SkS94]. Mounes-Toussi and Lilja select invalida-
tions or updates for each write request based on static analysis [MoL95].

Static methods can predict the expected reference pattern of a coherence unit to
improve protocol performance [VeF92, DCZ96]. Many methods rely on accurate predic-
tion of reference patterns by the programmer to improve performance. Munin uses pro-
grammer hints, while Tempest integrates the coherence protocol into the application,
which allows the programmer to tune the protocol to the reference patterns of the applica-

tion [BCZ90, CBZ91, FLR94].

Coherence, Time and the Anticipated Ordering of Events



23

2.2.5.2.4. Hardware and Software DSM

An additional hardware and software distinction arises in DSM systems. Most
DSM systems modify the virtual memory mechanism to implement coherence operations
[LiH89, LiS89, FIP89].SoftwareDSM systems implement the coherence protocol entirely
in software, either in the operating system kernel or user level rodiagsvare DSM
systems increase performance with special purpose hardware [CDK94, KoS95, IDF96,
BKP96, RPW96, ZIL96]. Several systems link hardware coherent systems with software

DSM systems, which blurs this hardware/software distinction [CDK94, ENC96, YKA96].

2.2.6. Locality and Coherence

Caching techniques improve uniprocessor performance becalgsaldf, the
tendency of future requests to reflect previous requests. Most programs texhgatal
locality, the tendency of programs to request recently requested variables again. Larger
cache lines improve uniprocessor performance since most programs spaitait local-
ity, the tendency to request variables with addresses near recently requested variables.
Creating copies dynamically in shared memory systems improves performance because of
locality. In this section, we discuss the reference patterns of shared memory programs.
Assuming a fixed total amount of local memory, the number of local copies is a
function of coherence granularity. Smaller coherence units allow more copies, which
increases the amount of temporal locality that the system can exploit. Larger coherence
units exploit spatial locality. Goodman observed that spatial locality of write accesses
decreases the cost of coherence maintenance as coherence granularity increases, although

reduced exploitation of temporal locality eventually outweighs this benefit [Goo83].
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Shared memory reference patterns not only include the locality exhibited by the
programs of individual processes, but also interactions between the requests of the pro-
cesses. Requests by different processes to the same variable detérog@rsharingref-
erence patterrkalse sharingwhich we discuss in Section 2.2.7, occurs when two
processes access the same coherence unit although they request distinct variables.

Agarwal and Gupta proposegrbocessor locality the tendency of a processor to
access a block repeatedly before an access from another processor” as a general character-
ization of sharing [AgG88Write run lengthsa measure of processor locality, indicate
whether an invalidation or an update protocol would provide better performance [EgK88].
The length of a write run is the number of consecutive write requests to a coherence unit
by one process before any read or write request by another process. Long write runs favor
invalidation protocols, while short write runs favor update protocols. Short write runs
often correspond tping-pongingunder an invalidation protocol. In this situation, two
processes alternate write requests, repeatedly invalidating the other copy. Most reference
studies provide little evidence of long write runs, with average lengths generally under 2
on small systems [EgK88, FuP93].

Other proposed types of locality suit particular systébhsster localitycharacter-
izes the pattern where a proper subset of processes actively share a variable, as seems
likely for a number of regular parallel algorithms [PiB9dLltigrain locality extends
cluster locality to indicate benefits of using multiple coherence granularities [YKA96].

Other researchers identify specific sharing patterns that suit certain coherence pro-
tocols [WeG89, BCZ90a]. We discussed migratory variables in Section 2.2%y8:2.
chronization variablesre locks implemented in shared memory, which are usually

replaced with special synchronization primitives. Update protocols suit the pattern of
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mostly read variableor which several processes read each write. Producer/consumer
variables and variables that are frequently read and written by multiple processes also suit
variations of update protocols. The Shrimp project classifies variables and coherence units
by the number of producers and consumers [ISL96]. Coherence unit sharing patterns,

which include false sharing, determine system performance.

2.2.7. False Sharing

False sharing, which is not easily detected, reduces the performance of shared
memory systems. The systems incur the cost of coherence maintenance although the
ordering constraints do not require it since processes access distinct variables. Measuring
and reducing false sharing are important areas of research for shared memory systems.

False sharing metrics allow the evaluation of methods to reduce false sharing.
Measuring false sharing or its cost is difficult because spatial locality can reduce the num-
ber of coherence operations required as the coherence granularity increases. Bolosky and
Scott conclude that separating the effects of false sharing from other performance effects
related to coherence granularity may be impossible [BoS93]. Most researchers use metrics
that categorize the causes of misses, but these metrics only apply to invalidation protocols
[EgJ91, DSR93, TLH94, JeE95]. Others have proposed more general metrics. One metric
compares the number of processes that access a variable to the number of processes that
access the coherence unit that contains the variable [KLE93]. Hyde and Fleisch identify
sharing patterns in reference strings with regular expressions [HyF96]. They measure
unnecessary coherence operations based on several false sharing patterns.

Several methods reduce false sharing. Small coherence units can substantially

reduce false sharing in DSM systems [BoS92, SFL94]. The programmer or compiler can
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allocate distinct program objects to different coherence units to prevent false sharing
[BFS89, TLH94, JeE95]. This approach suffers from internal fragmentation and does not
reclaim any temporal locality lost due to the larger coherence units. Another compiler-
based approach to reduce false sharing restructures data to group variables accessed as a
unit (essentially isochronously) into the same coherence units [BFS89, EgJ91, JeE95].
Adjustable coherence unit sizes, chosen dynamically or at compile time, also reduce false
sharing and exploit spatial locality [DuL92, DSR93, SGT96].

Lazy release consistent protocols can delay and combine invalidations, which can
reduce false sharing [KCZ92, DSR93, IDF96, ZIL96]. Delayed invalidations can elimi-
nate misses to other variables in the coherence unit. Combined invalidations reduce net-
work congestion, thus decreasing latency. Most release consistent update protocols

combine updates, which can reduce the cost of true and false sharing [GDF93, BLV94].

2.3. Logical Time

A logical time systenLTS) is a method for numbering the events of a system
based on causality [Lam78]. We use isotach LTS’s to maintain coherence. In this section,
we discuss causality. We then present scalar and vector clocks, two common LTS’s. We

conclude with applications of logical time to coherence maintenance.

2.3.1. Causality and Logical Time

Logical time systems attempt to captaeeisality Leta andb be two events of a
system. Ifa determines or influences the outcome or occurrenbgetb&na causes or

all b. For example, ia andb are respectively the send and receive events of a message,
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thena [ b since a message must be sent in order to be received. Causality, which is an
irreflexive partial order over the events of a system, depends on semantic information
regarding the events.

Thehappens beforeslation formalizes the concept of time in distributed systems
[Lam78]. The transitive closure of two rules determinesh&ppens beforb ora - b:

HB1: if aandb are events in the same processandcurs beford, thena - b;
HB2: if aandb are respectively the send and receive events of a message -thien

If neithera — b norb - athena andb areconcurrent A logical time system isonsis-
tentwith thehappens beforeelation ifa — b impliest, < t,, wheret, andt,, are the logi-
cal times that it assigns to eveatandb. A strongly consisterbgical time system
ensures thad - b < ty <t Most logical time systems are consistent or strongly consis-
tent with thehappens beforeelation.

Thehappens beforeslation captures potential causality siadé b implies
a - b, buta - b does not implya [0 b. Consider an execution of the statement
A =B + C. Letissugs andissug: be the issue events of the read requests to B and C,
respectively. One of these events must occur before the other. Without loss of generality,
letissugs occur first. Themssugy — issug: by HB1. However,ssugs [ issug: is not

true since the opposite order does not change the outcome or occurrence of either event.

2.3.2. Logical Time Systems

Researchers have proposed several logical time systems. A process represents its
logical time with a single scalar clock in Lamport’s original logical time system [Lam78].
The clock is incremented for each event of the process. When a process sends a message,

it includes its current logical time. When a process receives a message, it ensures that its
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logical time is greater than the send time of the message. This LTS is consistent with the
happens beforeelation, although it is not strongly consistent.

LTS’s that are strongly consistent with th&ppens beforeelation incur signifi-
cant overhead. Fidge, Mattern and Schmuck independently proposed logical time systems
that use vector clocks [Sch88, Mat89, Fid91]. For each local event, pracessments
theith component of its vector clock. Each message again includes the local logical time of
its send event. The logical time of a process that receives a message then becomes the
component-wise maximum of its logical clock and the send time of the message. Charron-
Bost demonstrated thhl, the number of processes in the system, is the minimum length
vector for a strongly consistent LTS [Cha91]. This result demonstrates that a strongly con-
sistent LTS has overhead ofMQ(per logical clock or message. Several approaches reduce
this overhead, but either strong consistency is lost or memory overhead remains high

[SiK92, JaJ94, RaS96].
2.3.3. Coherence Maintenance and Logical Time

Consistency semantics that are based on causality include causal memory and
extended causal memofyausal memorgllows any execution that is consistent with a
causal relationship defined by program order and write/read dependences [ANK94].
Causal memory is weaker than sequential consistency since processes may observe con-
current writes in different orders. Researchers have investigated program restrictions that
ensure executions with causal memory are sequentially consistent [ANK94, RaS95].
Extended causal memomeakens causal memory. It allows executions that are consistent
with a causal relationship that reflects synchronization requests [JoA94]. Hybrid consis-

tency is similar to extended causal memory [AtF92].
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Many coherence protocols use logical time to enforce weak consistency semantics.
Most implementations of causality-based consistency semantics are based on vector logi-
cal time. Some causal memory implementations reduliresplication, which locates a
static copy at each node [ANK94, Fri95]. Using a vector timestamp per copy allows
dynamic replication [AHJ91]. Extended causal memory implementations that allow
dynamic replication have similar overhead [JOA94]. Lazy release consistency (LRC) uses
a causal relationship to delay coherence operations [KCZ92]. LRC protocols also associ-
ate a vector timestamp with each copy. These timestamps detect stale copies based on lock
acquisition timestamps [ACD96, IDF96, ZIL96].

A sequentially consistent protocol can combine vector clocks with a central shared
memory process to establish a total order for write operations [MRS93]. Many sequen-
tially consistent coherence protocols use atomic broadcasts to distribute writes, which
guarantees that processes receive messages in the same total order [ABM93, AtW94,
Fri95]. Many systems implement atomic broadcast, which the protocols use to enforce
write atomicity, with logical time. Atomic broadcast systems often focus on fault toler-

ance. We do not discuss these systems further.

2.4. Isotach Systems

Our coherence protocols rely on the properties of an isotach LTS. The isotach
invariant distinguishes isotach LTS’s from other LTS’s. This invariant allows the logical
times of causally related events to be anticipated despite stochastic real time message

delays.
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2.4.1. Isotach Logical Time

We present isotach LTS’s in this section. Previously, consistency witiagpens
beforerelation has been required for isotach LTS’s. We degfotential causalityn
Chapter 3. This new relation captures causality more accurately thiaapgbens before
relation for systems that use an intermediate process to send and receive messages. We
require consistency withotential causalityfor isotach LTS’s, which always use such an
intermediate process.

Isotach logical times are lexicographically ordered n-tuples, of which the most sig-
nificant component is always tpalsecomponent. We use two representations in this the-
sis, although others are possible. One representation uses a thregtigdepid-rank ,
issue-ranK) for logical times. Th@id-rank component concatenates the node id with the
local process id to form a unique system-wide process id. The final component is a count
of the messages issued by the process. Shared memory systems can also use a four-tuple
representationpiilse var-name, pid-rank, issue-rank), wherevar-name is the shared
memory location accessed by the message. Throughout this thesis, we assume a three-
tuple representation unless otherwise noted.

Isotach LTS'’s are characterized by tbetach invariant This invariant requires
that if the send event of a message has pulse compotiesr the receive event of the
message must have pulse componed,,,, whered,,, is thelogical distancethat the
message travels. All other components of the receive time must equal those of the send
time. In other words, the message travels at unit speed. Thus, given the logical send time
of a message, a process can anticipate the logical receive time. We use the sherthand

to indicate adding the constanto the pulse component of logical timelhus, the iso-
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tach invariant requires thgt=ts + d,,,, wheretg andt, are, respectively, the logical send
and receive times of the message.
Isotach geometry can be very different from planar geometryl ] gtoe the logi-
cal distance frona to b, wherea andb are nodes of an isotach network. Isotach network
algorithms exist in whickl, , may not equall, 5. Thus, the order of the subscripts con-
forms to the direction in which the logical distance is measured throughout this thesis.
Extensiblesotach networks allow the anticipation of the logical times of the
events ofesponse messagelhe execution of another message can generate a response
message. If, is the logical send time of a response in an extensible network, then
ty = t, +c, wheret, is the logical receive time of the original message. A process can
use the isotach invariant and the logical send time of the original message to control the
logical times of response message events. The logical det&hyanimmediate response
is zero.Delayed responses whichc > 0, can reduce the cost of providing extensibility.

Consistency witlpotential causalityprohibitsc < 0.

2.4.2. Isotach Networks

We discusssotach networkswhich realize isotach LTS’s, in this section. Isotach
network algorithms exist that accommodate arbitrary network topologies. Many of these
algorithms require only local information and avoid any expensive global agreement
methods. In this section, we provide several definitions that we use throughout this thesis.
First, we define the physical components of an isotach network. Then, we discuss several
important concepts for the implementation of isotach logical time. We conclude with the

levels of logical time message service available in isotach networks.
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Physically, a shared memory system is a collection of network elements linked by
some interconnection network (IN), including a bus. The IN allows messages to be sent
between network elements. Example IN’s are a bus, a crossbar network, a multistage
interconnection network (MIN), and an arbitrarily connected switch-based network. In
this thesis, we assume that the IN is switch-based. Formaliyhttsécal topologyf a
shared memory system is a connected graphs)( whereV is the set of network ele-
ments and switches aidis the set of message links.

Each network element ispgiocessing elemefPE) or anemory modul@viM).

An MM does not issue shared memory requests. Each process is located at@RE. A
binedPE includes local memory that acts as an MM. The home copy of every variable is
located at either an MM or a combined PE. The intermediate process that sends and
receives all messages of a network element is locatedsatiith interface uni(SIU), an
intermediate entity that manages logical time for the element. Processes use properties that
the system guarantees, such as ordering constraints, instead of actively using logical time.
In isotach shared memory systems, each process issues its requests to the local SIU, which
is theissuing SIUof the request. The issuing SIU enforces ordering constraints by sched-
uling the logical times of events of the request.

Therouting pathof a message is the set of network nodes (elements or switches)
through which it passes. #xed routing paths known to the sender at the time that the
message is sent. gatic fixed routing pathequires that every message between a given
sender/receiver pair has the same routing pattymamic fixed routing patis chosen at
the time the message is sent. The cost of using dynamic fixed routing paths in isotach net-
works depends, in part, on the properties that the system providgsamic routing path

is determined as the message travels through the network. Most applications of isotach
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logical time systems require that the sender know the logical distance that the message
will travel. This requirement complicates the use of dynamic routing paths in isotach net-
works. We assume static fixed routing paths.

Logical distance is a central concept of isotach networks, which ensure that each
routing path has a constant logical distance.rdbéng distanceof a message is the num-
ber of intermediate nodes on its routing path. Unless otherwise stated, we assume that the
logical distance of a message is its routing distance. We asswireuall messagedor
which the sending node is the destination node, such as a message between collocated pro-
cesses, travel zero logical distance. The maximum logical distance in an isotach network
is itslogical diameteyrD.

We define varioutevels of message serviceisotach networks. Each level pro-
vides a guarantee for the logical receive time of a message based on its logical send time.
All isotach networks must provide the strictest level of service, which requires conform-
ance to the isotach invariant. For a message that travels logical didtandt logical
send and receive timésandt,, respectively, we have identified several useful levels of

service in the following hierarchy:

(0) No guarantee: any logical receive time is allowed
(1) Boundedts<t, < (t5+dy,)

(2) Constrained: for sender chosen logical ttpgich thatg < t; < (tg+ dy),
<t < (tg+dpp)

(3) Standardt, = (ts+d,;,)
The standard level of service enforces the isotach invariant. Any message that uses this
level of service satisfies the restrictions of the other service levels. However, performance
for many applications can improve if an isotach network exploits the less strict require-

ments of the other levels.
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2.4.3. Isotach Applications

In this section, we review applications of isotach logical time. We begin with
applications that were proposed prior to the formal definition of isotach logical time. We
then describe other applications of isotach logical time besides coherence maintenance.
We conclude with a brief introduction of previous isotach-based coherence protocols.

Some applications of isotach logical time precede the theory of isotach logical
time. In the Fluent machine, a concurrent read, concurrent write PRAM emulation uses an
algorithm that implements four-tuple isotach logical time [Ran87, RBJ88, Ran89]. Awer-
buch’s synchronizer algorithms allow an asynchronous system to execute SIMD graph
algorithms [Awe85]. These algorithms all essentially implement a single component iso-
tach logical time system. A single component isotach logical time system also supports
efficient barrier implementations [BGS89].

Significant applications of isotach logical time in message passing systems include
causal message delivery and determining consistent cg{s-If,, wheres, ands, are
the send events of two messages that progessives, theoausal message delivery
requires that, — r,, wherer, andr, are the corresponding receive events. Causal mes-
sage delivery is a consequence of the isotach invariant in logical topologies that maintain
the triangle inequality [Wil93]. Aonsistent cytC, is a subset of the events of a distrib-
uted system such thatb 0 C, if a — b thena [0 C [Mat93]. Consistent cuts simplify
checkpointing and the detection of properties such as deadlock or termination. Each pulse
of isotach logical time represents a consistent cut [Wil97].

There are several applications of isotach logical time in shared memory systems

besides coherence maintenance. Williams and Reynolds presented isotach networks that
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efficiently combine isochrons [WiR95]. An asynchronous production systems algorithm
that uses an isotach logical time system supports multiple concurrent rule firings. This
algorithm can exploit most of the available concurrency in the rule sets [Sri96].
Thedelta coherence protocotse the isotach-based family of coherence proto-
cols. Williams developed two delta update coherence protocols for equidistant networks
[Wil93]. In addition to developing several new members of this protocol family, we com-

bine her protocols and extend them to non-equidistant networks.

2.5. Chapter Summary

This thesis explores coherence maintenance based on logical time. We define
coherence maintenance as the concurrency control problem in systems that allow replica-
tion. We reviewed previous research in coherence maintenance, including other logical
time approaches. We discussed causalityhéppens beforeelation and logical time sys-

tems. We concluded with isotach logical time systems and their properties.
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Chapter 3:

Potential Causality

3.1. Introduction

In this chapter, we defirgotential causalitya new relation over the events of any
distributed system in which intermediate processes send and receive all messages. As with
thehappens beforeslation,potential causalitys a partial order that includes, p) if a
caused (ad b). Potential causalitynore accurately captures causality tharhtéygpens
beforerelation & — b) since both cover causality andaipotentially causeb (all b)
thena - b, while the converse need not hold. Thus, consistencypeténtial causality
allows greater flexibility in assigning logical times since it requires a LTS to enforce no
more non-causal relationships than consistency withdpeens beforeelation.

Previously, isotach logical time systems were required to be consistent with the
happens beforeelation by definition. Now, they must be consistent ittential causal-
ity. The greater flexibility in assigning timestamps allowegdigntial causalitysupports
causally consistent implementations that need not be consistent whizpihens before
relation, including current prototype systems [Reg97, WiR97]. In Chapter 4, we present a
new isotach network algorithm that uses the flexibility provideddigntial causalityto

allow greater flexibility for logical distances than previous algorithms.

3.2. System Model

We assume an intermediat®@ssaging procesends and receives all messages for

each of one or more collocated user processes. Each user process communicates with all
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Figure 3.1: System Model and Message Notation

other user processes, including collocated ones, through exactly one messaging process.
Many systems, such as ISIS, conform to this model since they use messaging processes
[BSS91]. The SIU serves this role in isotach systems.

Figure 3.1 shows the events for messagesxdm’ . User processP; (UP,)
sendsn (m') to user proceddP, (UP,) through their associated messaging processes,
MP, (MP,) andMP, (MP,). The send event ofi in UP; is itsissuing send evens,,,
while thecorrespondingeceive event iMP 4 is itsissuing receive everit ,,. The send
event ofm in MP is itsnetwork send events,,, while thecorrespondingeceive event
in MP,, is itsnetwork receive everir ,,. The send event @ in MP, is itsdelivering
send events,,, while thecorrespondingeceive event iUP, is itsdelivering receive
eventdr,,. (Messagen’ has the same eventsiabut in the reverse direction.) Thus, a
messagen has three pairs @orresponding interprocess evenfis,, ir y), (NSy, Nry)
and @s,,, dr,)); and it has two pairs @orresponding messaging process evéenents
internal to a single messaging process), (ns,,) and @r,, ds,,). Our model assumes
exactly one corresponding event for each message event. We could extend our model to
allow multiple corresponding events. We do not pursue that extension in this thesis.

We assume a local messaging process sends a virtual message to itself for any
message between collocated user processes. The key difference between virtual messages
and other messages, suchrggs that virtual messages loop back through the associated

messaging process, as indicated by the dashed line in Figure 3.1.
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3.3. Defining Potential Causality

Thehappens beforeslation relates all events that occur in the same process since
Lamport used no knowledge about their causal relationgdtential causalitywe use
knowledge of the causal relations of events within the same messaging process. The tran-
sitive closure of the following three rules determinespbtentially causels (all b):

PCL if aandb are events in the same user processaaaturs beforé, thenal b;

PC2 if aandb are corresponding interprocess send and receive eventa/then

PC3: if aandb are corresponding messaging process receive and send everd§] then
Since we assume no knowledge about the causal relations of events within a user process,
if a occurs beford in the same user process, tlaerould causé. We capture this poten-

tial causal relationship IRC1. We know corresponding events are causally related. We
capture the causal relation of corresponding interprocess evét@iand of corre-

sponding messaging process evenB@3. Since all interprocess communication is by
messages, a sequence of causally related messaggs, />, must link any causally
related events andb, that do not occur within the same user process. Since the messages
are causally relatedir,,,  must occur befag in the same user process and, thus,
taking the transitive closure of our three rules ensairéb if a[] b. Eventsa andb are
concurrentif neitheral b norb 0 a.

Potential causalityefines thénappens beforeelation, i.eal b impliesa - b,
buta - b does not necessarily imph/] b. Since Lamport did not distinguish messaging
processes from other processes, b if a occurs beforé within the same messaging
process. For any corresponding messaging process events, the receive event must occur

before the send event. Thus, for any evargadb, al] b impliesa — b. We now give an

example in whicta - b buta does nopotentially caus®. Letb bens,,, the network
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send event of the messageleta be an event of the same messaging procdssash
thata occurs beforé (thus,a — b), but afterir ,,, the corresponding messaging process
event ofb. Sincea occurs afteir ,,, a cannot potentially cause,,. Further, any event that
potentially causel must potentially cause,, sinceir , is the only event that potentially
cause®d without using any transitive applications of our three rules. Tdsges not

potentially causé, althougha - b.

3.4. Consistency with Potential Causality

A logical time system isonsistentvith potential causalityf al] b impliest, < ty,
wheret, andty, are the logical times that it assigns to everaadb. We allow equality in
order to accommodate immediate responses and virtual messages in isotach systems.
Allowing equality also accommodates isotach network algorithms that support a logical
distance of zero between two distinct nodes, such as the flex algorithm that we present in
Chapter 4. The possibility of a chain of equality allows an LTS that is consistent with
potential causalityout is subject to a form of deadlock. Later, we will show an effective
procedure for detecting isotach systems that have this problem. If a logical time system is
consistent witlpotential causalitythen it is consistent with causality sirecél b implies
all b and thereforé, <ty if all b.

A network logical time systefiNet LTS) is an LTS that only numbers network
events. Thus, a Net LTS numbers the network evegisandnr,,,, of the messaga but
not its other eventss,,, ir ,, ds,, anddr,,. We use isotach Net LTS's in this thesis.

We will show that any Net LTS is consistent withtential causalityf it assigns

timestamps that conform to these conditions:
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CL: For any message, t,s <t,

C2. If dr, andis,, are events o"f the same user process sualisghatcurs in the
associated messaging process befoge m%mt

Any logical time system that is consistent wibtential causalitymust conform t&C1
sincens,, 0 nr,, by PC2 C2 ensures the Net LTS assigns logical times that are consistent
with PC1 andPCa3. If the messaging process could directly observe the order of events in
the associated user process, we could substitute the following r@a:fibrdr , andis,,,
are events of the same user process suchithabccurs befores;,. , they, <t,
Since we assume that the messaging process cannot observe events in the user process, we
must use a conservative rule2 is conservative since it requirgg <t~ evenwhen
is,, occurs befordr , in the user process and, thas,, does not potentially causes,,,.

We show tha€C1 andC2 are sufficient to ensure consistency vptiential causality

Theorem 3.1:A Net LTS is consistent withotential causalityf the logical times
that it assigns conform ©1 andC2.

Proof: Leta b for two network eventa andb. Sinceald b, there exists a

sequence of messageas...,m,> such thaa is eitherns,, m, OF
, b is eitherns, omr anais occurs aftdr in the
same user process s for eacﬁlncels '1 occurs aftetr iy m.,
occurs afteds;, inthe assomated messaging process and, thus
tnrm <tnsm byCZ for eachi. Sincetns, <tnr, byCl,
<t, .Thereforef,<t, |f "al band the Net

LTS§0|s conslstent”wnlpofentlal causality QED

Often, we can show the following condition for a Net LTS more easily@2an
C2': If nrp, occurs beforeas;,,,  in the same messaging processtthest,
SinceC2' is more conservative, we can 32 in place ofC2:

Corollary 3.1:A Net LTS is consistent withotential causalityf the logical times
that it assigns conform ©1 andC2'.

Proof: If ds,, occurs beforér ,, in the same messaging processinthen

must occur befores,, sinee,, must occur befords;, andns,,
must occur afterr ., . Thus, a Net LTS conform€if it con-
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forms toC2'. Therefore, any Net LTS that assigns logical times
that conform taC1 andC2' is consistent witlpotential causalityoy
Theorem 3.1. QED
A messaging process can confornC®or C2' without coordination with other
messaging processes sil@2andC?2' are local conditions. We demonstrate in Chapter 4

that both Theorem 3.1 and Corollary 3.1 allow greater flexibility in assigning logical times

than consistency with tHeappens beforeelation allows.

3.5. Chapter Summary

We definedootential causalitya new relation over the events of any distributed
system that uses messaging processes, and presented conditions that ensure a logical time
system is consistent with this relation. Isotach logical time systems must be consistent
with potential causalityas well as enforce the isotach invarid@atential causality
allows greater flexibility for assigning logical times thanllppens beforeelation since
concurrent events can occur in the same messaging process. As we demonstrate in the next
chapter, prototype isotach systems and our flex isotach network algorithm require this

flexibility since thehappens beforeelation is too strict for them.
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Chapter 4:

Flexibility for Logical Distances

4.1. Introduction

This chapter presents oilex algorithm the first isotach network algorithm that
can assign different logical time latencies to different links. This new algorithm general-
izes the isonet network algorithm [RWW97]. The isonet algorithm assumed that the logi-
cal distance of each routing path must equal the number of switches on the routing path,
i.e. each switch added a cost of one unit of logical distance. The flex algorithm allows
each switch to add a cost of any non-negative integer.

We expect that the flexibility in assigning logical latencies that the flex algorithm
provides will improve the performance of isotach systems in which the real time latencies
of links vary significantly. In an isotach network, the logical time latency of a message
that uses the standard level of service equals the logical distance that the message travels.
Assuming that there is little variation in the real time latency of logical pulses, the real
time latency of the message is proportional to its logical distance. Thus, we expect the best
performance from isotach networks in which logical distances reflect the real time latency
of the underlying hardware. We leave confirmation of the hypothesis that the flex algo-
rithm will improve performance for future work.

In this chapter, we show that the flex algorithm correctly implements an isotach
Net LTS. Also, we present a Petri net model of the algorithm that allows us to determine
easily if the pulse component of logical time will ever stop for a given instance of the

algorithm. Finally, we show that Awerbuclssynchronizer [Awe85] is an instance of
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the flex algorithm and thabtential causalityallows us to modify our basic implementa-
tion of the flex algorithm so that no message blocking occurs in the switches due to the

requirements of isotach logical time.

4.2. Flex Algorithm

We present our flex algorithm for a switch-based network in which the physical
topology is an undirected connected graphH), whereV is the set of network nodes
andE is a set of bidirectional FIFO message links. We assume each SIU connects its asso-
ciated network element to exactly one switch.

Each network node has one port for each of its links, with an input buffer and an
output buffer associated with each port. A switmltesa message when it moves the
message from one of its inputs to one of its outputs. Ans8fidsa message when it
places the message in its output ewkivesa message when it removes the message from
its input. Every switch maintains@gical clockfor each of its ports. Each logical clock is
a counter that tracks the numbetaiensthat the switch has routed to the associated out-
put and gives the pulse component of logical time of the port. Each token is a control mes-
sage that indicates when one pulse of logical time ends and the next begins. The network
nodes exchange tokens to keep their logical clocks loosely synchronized.

Every SIU maintains two logical clocks for its port. Thgical send cloclof an
SIU tracks the number of tokens it has sent on its output, whitggitsal receive clock
tracks the number of tokens it has received on its input. Whenever an SIU sends or
receives a message, its logical receive clock equals its logical send clock less any initial

tokens that the SIU places into its output.
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Each switch emits messages from each output in increasing logical time order and
each SIU sends and receives all messages in increasing logical time order. A switch routes
a message in pulséf the logical clock associated with the output into which it places the
message iswhen it routes the message. An SIU sends (receives) a message iifif fiislse
logical send (receive) clock isvhen it sends (receives) the message. Every event of a
message has the satag, the minor components of isotach logical time. The definition of
the logical time representation determines the tag for original messages, while the tag of a
response equals the tag of the original message in extensible networks. By definition, the
tag of a token is greater than that of any non-token message.

Our flex algorithm assigns a type to each port, which is diflberor green A
port’s type applies to both its input and its output buffers. The endpoints of a link are not
necessarily of the same type. Thus, a link can connect two green ports or two blue ports or
it can connect a blue port to a green port. The algorithm is systolic or pulsing since a node
waits to receive a token on each blue port, then “pumps” the tokens on its green ports.
When the tokens return on the green ports, the node then pumps the tokens on its blue
ports. Thus, the algorithm works in phases.

Figure 4.1 gives pseudocode for the switch algorithm. A switch plgee in the
output of each of its portg, Theinitial token countty, can vary with each port and does
not depend on its type.

After placing any initial tokens, the switch alternates betwednutsphasewhen
it routes messages that arrive on its blue ports, agdeien phasewhen it routes mes-
sages that arrive on green ports. The port type from which the switch is routing messages
is thephase typ®f the phase. The switch routes messages one at a time. It compares the

tags of all messages at the heads of input ports of the current phase type and routes the

Flexibility for Logical Distances



45

For eab port,q
Placet tokens in the port's output;
clocky =tg;
Repeat forever
Blue Phase:  Route messages up to next token on all blue inputs in tag order;
Remove token from each blue input, if any;
Place a token in each green output, if any;
Increment clock of each green port, if any;
Green Phase: Route messages up to next token on all green inputs in tag order;
Remove token from each green input, if any;
Place a token in each blue output, if any;
Increment clock of each blue port, if any;

Figure 4.1: Switch Routing Algorithm
message with the lowest tag. The switch waits if any input of the current phase type is
empty. Thus, each switch routes messages arriving on the same input type in tag order.
When each input of the phase type has a token at its head, the switch removes the tokens
and places tokens in the outputs of the next phase type and ends the phase. A switch with
only one type of port only executes the steps of each phase performed on that port type.

Switches use a pair of output buffers per port to ensure messages are emitted in
logical time order. A single output buffer per port does not suffice since messages can be
routed to a port out of tag order. Although messages arriving on the same input type are
routed in tag order, messages arriving on different input types might be routed out of
order. Messages that arrive on the same type as the output port are routed before messages
routed in the same pulse that arrive on the opposite type, regardless of their tags.

Figure 4.2 shows an output buffer pair. To route a message, a switch enqueues it in
the input to the splitter of the appropriate output buffer. The splitter enqueues each mes-
sage routed to the port in a from-green queue or a from-blue queue depending on the input
type on which the message arrives at the switch. However, the splitter enqueues a token in

both intermediate queues for each token input to it. The merger emits the message with the
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recave dock =0;
Placet tokens in output; /* Each SIU has one port, ot/
send clock=tg;
If (port type is green) {
Repeat forever {
Blue Phase: Place a token in output;
Incrementsend clock
Green Phase: Send and receive messages in tag order;
Remove token from input;
Incrementreceive clock } }
Else {/* Port type is blue */
Repeat forever {
Blue Phase:  Send and receive messages in tag order;
Remove token from input;
Incrementreceive clock }
Green Phase: Place a token in output;
Incrementsend clock } }

Figure 4.3: SIU Send/Receive Algorithm
lowest available tag, as well as recombining tokens for emission. Since each phase routes
messages in tag order, our output buffer pair emits messages in logical time order.
Our switch algorithm is impractical since
splitter

it routes messages one at a time and requires the

special output buffers. Thus, we increase the

From-green From-blue
latency through the switch significantly. This queue —» +«—queue

switch algorithm simplifies our analysis of the
flex algorithm. We discuss more practical imple- T
mentations of the flex algorithm in Section 4. Figure 4.2: Output Buffer Pair

We give pseudocode for the SIU algorithm in Figure 4.3, which is essentially the
switch algorithm when all ports are the same type. The only other differences arise from
the maintenance of threceive clockin addition to thesend clockof the switch algorithm.

An SIU begins by placing any initial tokens in its output. The initial token count can vary

with each SIU. Similar to a switch with all green ports, an SIU with a green port places an
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additional token into its output before it sends or receives any messages. The SIU then
sends and receives messages in tag order. The SIU incremestsiite clockwhen it
removes a token from its input andsend clockwhen it places a token in its output. The
difference between the two clocks (isend clock- receive clock is the same for any

send or receive event at the SIU since the SIU does not send or receive any messages
between removing a token from its input and placing one in its output.

An SIU may send no messages or several messages in a pulse. We assume an SIU
will eventually move any token at the head of its input to its output. The SIU sends two
message streams that it merges into tag order: messages originated by an associated user
process and response messages. We assume the SIU interleaves send and receive events so
they occur in tag order. The network is extensible if the SIU blocks after it delivers a mes-
sage while the message executes and then immediately places any response in its output.

The response is delayed by the constant difference between its send and receive clocks.

4.3. Correctness

We demonstrate that our flex algorithm implements an isotach Net LTS. First, we
define the logical distances that apply to the algorithm. Then, we demonstrate that it main-
tains the isotach invariant for all messages and is consistenpotéhtial causalityWe
conclude this section with a discussion of how the flex algorithm generalizes both Awer-
buch’sp-synchronizer and the isonet algorithm [Awe85, RWW97].

We refine the concept of logical distance. In previous isotach network algorithms,
logical distances equal the number of intermediate nodes on a message’s routing path.

However, our applications of isotach logical time only require that each routing path has a
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known and fixed logical distance. In the flex algorithm, the logical distance of a routing
path depends on the initial token counts of its switch outputs and the relationship of its
input and output types at each switch. Each routing path has a known and fixed logical dis-
tance since we assume all port type assignments and initial token counts are disseminated
during system initialization.

The logical distance that a message travels is independent of the initial token count
and port type of its sending SIU in the flex algorithm. If the send pulse of a message is
then the sending SIU has placed exaictbkens in its output before it places the message
in its output. These tokens, and no more, always arrive before the message at the first
switch of its routing path. These tokens include the initial tokens that the SIU places in its
output. Therefore, the send pulse of the message, not its logical distance, is determined by
the initial tokens of its sending SIU. The port type of the SIU affects the send pulse simi-
larly since the only difference between the two types for an SIU is the token generated
during the first blue phase of an SIU with a green port.

The logical distance that a message travels is also independent of the initial token
count and port type of its receiving SIU. If the receive pulse of a mesdageeis the
receiving SIU has removed exaciliokens from its input before it removes the message
from its input. The initial token count and port type of an SIU do not contribute to the
number of tokens that it has removed from its input.

We use thdogical routing distanceacross a switch to define logical distances in
the flex algorithm. The logical routing distance across a svgtdf,any message,, that

arrives on portg;, of sands routes to its porg,, is:

if g; andq, are both green ports

Irdo(q;,q,) =ty + L
st e %o Ep otherwise
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wheret, is the initial token count gf. Let the switches, s;,...,s,>, be the intermediate

nodes of the routing path from elemartb elemenb of a messagen. The logical dis-
n
tance of the routing path i{ Irdsj(qi, d,) wherearrives on porj; of 5 ands; routes
j=0
m to its portg,. The logical distance of a routing path is essentially the sum of the initial

token counts on the routing path. However, the initial token count must include the token
placed in a green output during the first blue phase of any switch for which both its input
and output ports on the routing path are green ports. Now, we prove logical time increases
by the logical routing distance across a switch when the switch routes a message:

Lemma 4.1: If messagen is sent to switcls by an adjacent SIU in pulser
routed tos by an adjacent switch in pulgehens routesm to port
do In pulsei + Ird4(q;, g,), wherem arrives as on portg;.

Proof: Sincem is sent (routed) in pulsethe adjacent SIU (switch) has
sent (routed) exactlytokens tcs when it sends (routes).

We begin with the case wheggis a blue port. Whesaroutesm, it
has removed exactiytokens from every blue port.

Therefores has placed exactiytokens after the initial tokens in
each green port when it routes Thus, ifg, is a green porg has
incrementect:locqu exactlytimes after setting its initial value
ands routesm to g, In pulsei g = i +1Irdg(q;, qg) -

Sincem arrives as on a blue ports must routem in the { + 1)
iteration of its blue phase. Thisshas completed exactiyterations
of its green phase and has placed exadtiens after the initial
tokens in each blue port when it routesThus, ifq, is a blue port,
shas mcrementedlockq exacilylmes after setting its initial
value ands routesm toqoln pulsei +t, = i+Irdg(q;, q,) . Since
do must be either a blue port or a green porbutesm in pulse

I +Irdg(q;, 9o) if g; is a blue port.

We now consider the case whegas a green port. Whesroutes
m, it has removed exactlytokens from every green port.

Therefores has placed exactiytokens after the initial tokens in
each blue port when it routes Thus, ifq, is a blue ports has
incrementectlock,  exactlytimes after setting its initial value
ands routesm to qO ‘in pulsei ttg = = i+Irdy(q;, 9,) -
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Sincem arrives as on a green pors must routem in the { + 1)
iteration of its green phase. Thes)as completed exactiy+ 1
iterations of its blue phase and has placed exa¢tlly tokens after
the initial tokens in each green port when it romed hus, ifq, is a
green portshas incrementedlockqo exacily 1 times after setting
its initial value ands routesm toq, in pulsei +tq0+1 =i+Ird(q;,q,) -
Sinceq, must be either a blue port or a green mnoutesm in pulse

i +Irdg(q;, o) If q; is a green port.

Thus,s routesm in pulsei + Irdg(q;, qo) Sinceq; must be either a
blue port or a green port. QED

We add up the logical time that a message takes to cross any individual link to
prove that the flex algorithm maintains the isotach invariant for all messages:
Lemma 4.2: The flex algorithm maintains the isotach invariant.

Proof: A switch, s, routes a message that arrives on its gydd its portqg,
exactly Irdy(q;, qo) pulses after the previous switch (SIU) routed
(sent) the message by Lemma 4.1. The receiving SIU removes
exactlyi tokens from its output before receiving a message if the
adjacent switch routes the message to it in gulBbus, it receives
the message in the same pulse that the preceding switch routes it.
Therefore, the difference between the send and receive pulse of any
message is the sum of the logical routing distances on its routing
path, which is the logical distance that it travels. Thus, the flex
algorithm maintains the isotach invariant. QED

Now, we show that the flex algorithm satisfies the other requirement of an isotach
logical time system, consistency wjtbtential causality
Lemma 4.3: The flex algorithm is consistent wigiotential causality

Proof: If a andb are the send and receive events, respectively, of a mes-
sagem, thenty <t, =t + dpy, by Lemma 4.2 sincg, = 0 for every
portg and, thus, all logical distances are non-negative. Thus, the
flex algorithm conforms to the conditi@i of Section 3.4.

If ais a receive event aris a send event that occurs at the same
SIU aftera, thent, <ty since each SIU interleaves send and receive
events so as to handle all messages in tag order and its send clock is
never less than its receive clock when it sends or receives a mes-
sage. Thus, the flex algorithm conforms to the cond@2hand is
consistent wittpotential causalitypy Corollary 3.1. QED
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Lemmas 4.2 and 4.3 directly imply that the flex algorithm is correct.
Theorem 4.1:The flex algorithm implements an isotach Net LTS.

Proof: The flex algorithm maintains the isotach invariant for all messages
by Lemma 4.2 and is consistent wtbtential causalityppy Lemma
4.3. Thus, it implements isotach logical time. QED

Thereceive clockof any SIU lags behind igend clockbytg if its port is blue and
to + 1 if its port is green. A send evestcan occur before a receive evengt an SIU
with a green port dip > 0 such thatg > t,. Thus, the flex algorithm need not be consistent
with thehappens beforeelation. However, i§ occurs before and yet¢ > t,, s cannot
cause since the algorithm is consistent wgbtential causalitypy Lemma 4.3Potential
causalityaccommodates the separate logical send and receive clocks because it models
causality more accurately.

The flex algorithm generalizes the isonet algorithm. In the isonet algorithm, SIU’s
do not emit any initial tokens, each switch emits exactly one initial token on each link and
switches consume tokens in a single step. Many port assignments and initial token counts
result in identical behavior under the flex algorithm. For example, if every port is a blue
port andtg = 1 for every switch porq andt,, = O for every SIU port), then the switch and
SIU algorithms of our flex algorithm reduce to those of the isonet algorithm.

Logical distances in the flex algorithm are significantly more flexible than in the
isonet algorithm. The flex algorithm supports logical distances greater than the routing
distance through initial token counts greater than one. If the input or output of a switch on
a routing path is a blue port and the initial token count of the output is zero, then the logi-
cal routing distance across the switch for that routing path is zero. Thus, the flex algorithm

supports logical distances that are less than the routing distance.
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We define amxtended isonet algoriththat allows flexibility for logical distances
without requiring two port types. The extended isonet algorithm is simpler than the flex
algorithm, but less flexible. For brevity, we present the extended algorithm as an instance
of the flex algorithm. As with the original isonet algorithm, every port is a blue port. How-
ever, we allow the initial token counts to vary so tha O for every porg.

The flex algorithm provides greater flexibility for logical distances than the
extended isonet algorithm if we consider the issuegital time deadlockwhich
describes the condition in which the pulse component of logical time never again
increases. This condition leads to messages not being received since their logical receive
times never arrive. Logical time deadlock occurs under the extended isonet algorithm if
any link between two switches has zero cost. Under the extended isonet algorithm, a link
between two switches has zero cost only if its associated ports have initial token counts of
zero. Recall that a switch must route a token from a blue port before it routes any tokens to
the port. Therefore, logical time deadlock occurs if both endpoints of any link are blue and
its associated ports have initial token counts of zero. Thus, the extended isonet algorithm
cannot allow a zero cost link between two switches. We will show that the multiple port
types allow the flex algorithm to support a zero cost link between two switches.

Example:We discuss the use of both the flex and the extended isonet algorithm

with the physical topology in Figure 4.4 to demonstrate the additional power of the flex

Ao Sge @ S5 B

Figure 4.4: Example Isotach Network

algorithm. In this topologyA

andB are network elements,
while Sy andS, are switches.
In our flex algorithm example, the initial token count is zero for every port, while

an arrow in Figure 4.4 indicates a green port. Thus, ports 0, 2 and 5 are green ports and

Flexibility for Logical Distances



53

ports 1, 3 and 4 are blue ports. Any logical routing distance across either switch is zero
since all initial token counts are zero and no switch has two green ports. Since all logical
routing distances are zemy g =dg A =0.

We can use the extended isonet algorithm with the example isotach network. In
this case, all ports are blue. However, the extended isonet algorithm does not support
da, g =dp, A = 0 since that would require the link betwegandS, to have zero cost,
which would imply that logical time deadlock must occur.

Logical time deadlock does not occur in this network under the flex algorithm.
Since they have green ports, bétlandB place a token in their output during their first
blue phase before they receive any tokens. The tokenArallows S, to complete its
first blue phase and place a token in the output of port 2. Shusceives a token on both
its inputs and completes its first blue phase. It then immediately completes its first green
phase and returns tokensB@ndS,. S, then completes its first green phase and returns a
token toA, returning the network to its initial state. Thus, tokens continually puls&jnto
and back out. We formalize this discussion in Section 4.4, where we present a necessary
and sufficient condition for logical time deadlock under the flex algorithm.

The flex algorithm can suppatf, g =dg A = 0 in the preceding example because
we require consistency wittotential causalityather than with theappens beforeela-
tion. As previously discussed, if we require consistency witthdéppens beforeelation,
then we must use a single clock at each SIU. Since each SIU has a green port, its receive
clock lags behind its send clock by one pulse. This difference prevents logical time dead-
lock. If we use a single clock at each SIU, this difference must be reflected in the logical

distances, which would then be one.
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Now, we discuss the relationship of the flex algorithm and Awerbuch’s network
synchronizers [Awe85]. Previously, it has been observed that Awerlmuayschronizer
is equivalent to the isonet algorithm [RWW97]. Since the isonet algorithm is an instance
of the flex algorithm so is thee-synchronizer. An adaptation of AwerbucBsynchro-
nizer to implement n-tuple isotach logical time is an instance of the flex algorithr3- The
synchronizer sends tokens up a spanning tree of the network graph. When the root
receives the token, it sends the token back down the tree. Now, we give port assignments
that reduce the flex algorithm t@asynchronizer when all initial token counts are zero. If
a portq connects a network node to a child in the spanning tree of the netword,ithen
blue port, while ifg connects the node to its father, tlygis a green port. The relationship

of the flex algorithm to Awerbuchigsynchronizer is more complex.

4.4. Logical Time Deadlock

We present a Petri net model of the flex algorithm. We show that logical time
deadlock will occur under a given instance of the flex algorithm if, and only if, the model
for the instance is not live. Also, we show our model belongs to a class of Petri nets for
which liveness is easily determined.

First, we briefly present Petri net models, as described by Peterson [Pe®8fr. A
net structureC, is a four-tupleR®, T, I, O), whereP is a finite set of places, is a finite
set of transitiond, is an input function an@ is an output function. BothandO map
transitions to bags of places. Recall that a bag is a collection of objects in which each
object can occur multiple times. Throughout this chaptet,B)(is function that returns
the number of occurrences of placen bagB. A Petri net is anarked graphf each place

is an input of exactly one transition and an output of exactly one transitidn,p.e.P,
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Ot;, to O T such that #, 1 (t;)) = #(p, O(ty)) = 1, #p, I1(t)) =0 if t Zt; and #p, O(t)) =0
if t #t,. Many analysis questions are easily answered for marked graphs.

A marking u, of a Petri net structure is a function that assigns tokens to the places
and, thus, mapB to the non-negative integers. Initially, we differentiate Petri net tokens
from logical time tokens. Marking enables transitionif each placep, has at least as
many tokens as there are inputs froto t, i.e.pu(p) = #(p, I1(t)). A transition can fire if it
is enabled. Firing transitianin markingp results in a new markingy’ , in which a token
is consumed from each input of the transition and a token is created in each of its outputs,
thus p O P, p'(p) = H(p) —#(p.I (t)) + #(p,O(1)).

Marking 1’ is reachable from markingof Petri netC if there exists a series of
enabled transition firings i@ starting fromyu that results ind’ . The reachability set,

R(C, p) of Petri netC with markingu is the set of all reachable markings frprm C.
Transitiont of Cis live inp if O p' O R(C, W), there exists a series of enabled transition
firings that enablé. Petri netlC with markingu is live if every transition is live ip.. A
marked graph is live if, and only if, every directed cycle has at least one token on it.

Now, we present our Petri net model of the flex algorithm. Determining a neces-
sary and sufficient condition for logical time deadlock is the primary goal of this model.
Recall that logical time deadlock occurs if the pulse component of logical time never
again increases. Under the flex algorithm, logical time deadlock occurs if any logical
clock is never again incremented since the stoppage of one logical clock will eventually
stop all other logical clocks. Since the incrementing of any logical clock occurs when a
token is placed in its associated output, all token movement stops if logical time deadlock
occurs. Therefore, we only model logical time token movement and the Petri net tokens in

our model correspond directly to the logical time tokens.
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| | | /‘\( jfi <|>
since we are only concerned with S L

v v v v
token movement. As we indicated ‘ @ ‘

Section 4.2, the differences between

We use the model that Figure

4.5 shows for every network node

—he

Figure 4.5: Model of Network Node v;

the switch and SIU algorithms do not
affect token movement. Thus, this model applies to both the switch and SIU algorithms.
For each network node;, our model has two internal transitiofs, ~ dpd

green

We usefiblue to model the blue phase, when the algorithm removes tokens from the inputs

of blue ports and places tokens into the outputs of green ports. Sinﬁ;Lgerely, models the
green phase. Thus, we create two plapggr{n p@ggt , for each,puiny;. If g is a

blue port, therpi‘qin is an input b{blue arpx;lyqout is an outpu‘tig(?gfen Wwhitgif a

green port, thermi,qin is an input tp; apgqout is an outpdgblcgz . Thus, these
transitions model the internal logical time token movement of each phase of the algorithm.
We label the places for the portswby their types in Figure 4.5. Thus, ed&h or G, is

ap; o andeacByy orGyyis ap; 4 in Figure 4.5.

Two additional places, the run placre;*gue an , model how a node alternates

reen

its phases. Thursiblue is an inputfg)bfue and an outpﬂitgrcg;‘n , while is an input of

green

f; _andanoutputof,  .The blue phase can proceed if a tokem;is in . The blue

gree

phase completes Whépblue fires, which removes the tokenrfiglagn and places a token

inr;

i This token allows the green phase to proceed, which completed i\é\(eklnen fires.

gre
Figure 4.6 shows our model of a network link between nedasdv,. We model
the link with transitiond; , andfy ;. The only input of; \ isp; ; ~and its only output is

Py,1, » Where the link connects pgrof v; to portl of v.. Thus f; | models the movement
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of a logical time token frona; to v

and combines with ; to model
token movement over the link.

Now, we specify the initial

marking,u, of our model. For each

portq of every network node,, Figure 4.6: Model of Link Between v; and v

u(pi,qm) =0 andu(pi,qom) =t , the initial token count of These markings capture

all logical time tokens created during the initialization phase of the algorithm. We mark

the run places to ensure only one phase runs at a time. Since every node begins in its blue
phasep(riblue) =1 anqh(rigreen) = 0 . Thenitial tokenripblue requires a node with no
blue ports to place a token in each of its green ports before it removes any tokens from its
ports. Our example at the end of Section 4.3 indicates this aspect of the flex algorithm is
an important element in the flexibility for logical distances that it provides.

Our Petri net model of the flex algorithm is a marked graph. Every run place is
clearly the input of exactly one transition and the output of exactly one transition. For
every portg of any nodey;, Pi.g, is an input of eithe’riblue o‘rigreen , but not both. Simi-
larly, Pi, g is an output of exactly one internal transitiorg fonnects; to vy, then
Pi,q.,, is an input of; | and Pi.g, is an output df; ;. These are the only transitions for
which Pi.g, a”dpi,qom are inputs or outputs and, thus, our model is a marked graph.

Logical time deadlock occurs if our model is not live since its transitions capture
all token movement and token movement stops if logical time deadlock occurs under the
flex algorithm. Since our model is a marked graph, determining if it is live only requires

determining if every cycle has a token on it. System initialization can check our Petri net

model to ensure that port assignments and initial token counts do not cause logical time
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Figure 4.7: Model of Example Isotach Network

deadlock. If logical time deadlock will occur, we can use our model to revise the initial
token counts so that logical time deadlock does not occur.

Example:Figure 4.7 shows our Petri net model for the example that we used at the
end of Section 4.3 to demonstrate the power of the flex algorithm. Since all initial token
counts are zero in this example, the only tokens in the initial marking of the model are in
the blue run places. At least one of these tokens is on every directed cycle of the model

and, thus, logical time deadlock will not occur, as we informally argued previously.

4.5. Performance Optimizations

Our flex algorithm ensures that every SIU receives all messages in logical time
order similarly to the isonet algorithm [RWW97]. Significant message blocking occurs in
the switches and the sending SIU’s in order to ensure that they route or send the message

with the earliest logical route or send time. In prototype isotach systems that use the isonet
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algorithm, each SIU sorts messages that arrive on its input into logical time order in order
to reduce message blocking in the switches and at the sending SIU [Reg97, WiR97]. We
can apply similar techniques to the flex algorithm.

The non-blocking isonet algorithm implementation assumes FIFO links between
adjacent network nodes, which allows the implementation to ensure that a token never
leaves a node before a message that previously arrived on the same input. The implemen-
tation removes tokens from the message stream. Tokens are sent on each output after one
has been removed from each input. This removal and reinsertion of tokens allows mes-
sages to pass tokens but not vice versa. A similar flex algorithm implementation matches
tokens on inputs of the same type and sends tokens on the appropriate output type.

In the non-blocking implementation, the receiving SIU must sort messages into
logical time order since the network can emit messages out of order. Since the receiving
SIU sorts messages into logical time order, we allow SIU’s to send messages out of logical
time order. The SIU sends each message as soon as it determines the receive pulse. When
a token arrives at an SIU, the SIU has received all messages with receive times in the pulse
that the token ends. The SIU then sorts and delivers these messages.

The non-blocking implementation uses the same logical distances as the imple-
mentation described in Section 4.2. The sending SIU appends a timestamp to the message
that indicates the receive pulse, which the SIU determines from the logical time of the
message and the distance to the receiving SIU. The sending SIU ensures that it sends mes-
sages on time, i.e. the send pulse of a message is at least theeBtUdockvalue when
the message is sent. Since tokens cannot pass messagasitigeclockof the receiving
SIU is never greater than the receive pulse of the message. For any message that is not a

response, we assume the SIU schedules a send pulse greater than the value of its receive
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clock at the time that it schedules the message. This assumption ensures that the logical
send time of any messagm, is greater than the logical receive time of any message that
the SIU delivers beform is issued and, thus, the implementation conforms to the condi-
tion C2 of Section 3.4. Since it also enforces the isotach invariant, the implementation
conforms to the conditio@1 and, thus, is consistent witlotential causality

This implementation further demonstrates the powg@oténtial causalityTwo
send events, or two receive events, can occur at the same SIU out of logical time order,
which is not consistent with tHeppens beforeslation. However, no causal relation

exists between such events, reflecting the increased accuraatgnfial causality

4.6. Chapter Summary

We presented the flex algorithm for isotach networks. The flex algorithm has sig-
nificantly more flexibility for logical distances than previous algorithms. This flexibility is
a significant advance for isotach technology since logical distances can reflect the raw
message latency of each link. We proved that the flex algorithm implements an isotach
logical time system. We presented a Petri net model of the flex algorithm that allows the
inexpensive detection of logical time deadlock during system initialization. Our imple-
mentations of the flex algorithm demonstrate the powpot#ntial causalityover the
happens beforeelation. We leave performance analysis of the flex algorithm for future

work.
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Chapter 5:

Execution Time and Replication

5.1. Introduction

In this chapter, we present a new framework that provides a unifying theory for
isotach shared memory systems. By eliminating the use of a physical canonical copy, this
framework supports the design of new delta coherence protocols that extend isotach-based
coherence techniques to a wider range of networks and applications. Our framework sup-
ports optimizations not addressed by previous research and demonstrates that a correct
delta coherence protocol represents a class of correct protocols.

Our framework uses concepts similar to Williams’s formulation of delta coherence
protocols based on effective execution times [Wil93]. Her formulation assigns logical
times to execution events performed on cache copies that can be different from the logical
receive times of the requests at the copies. However, the memory copy is a physical
canonical copy for which execution times must equal the corresponding logical receive
times. Our framework completes the separation between execution times and the logical
receive times by eliminating the use of a physical canonical copy.

Our framework uses a modular design based omteta-isotach logical time sys-
tems logical time systems that are built on top of an underlying isotach Net LTS. The log-
ical times that these systems assign are derived from the logical times that the Net LTS
assigns to send and receive events between messaging processes. Our design allows iso-
tach shared memory systems to exploit the flexibility inherent in equivalent shared mem-

ory executions without altering the requirements of an isotach logical time system.
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5.2. System Assumptions

We assume isotach shared memory systems use the system model discussed in
Chapter 3. Ordinary user processes issue all shared memory relfleestsy processes
are special user processes that implement the shared memory space. Also, we assume:
1) Each SIU hosts a messaging process;
2) Shared memory requests are issued to the collocated SIU in program order;
3) The last request of each isochron is distinguished;
4) An SIU uses messages to service requests;

5) Memory processes do not perform any computation;
6) Any execution event for a shared request occurs in a memory process.

5.3. Logical Execution Time

Logical execution timea meta-isotach logical time system, assignsxacution
time t,, to each execution evemt,of the system. Execution equivalence motivates our
definition of logical execution time. Previous isotach shared memory systems assigned
execution times within the messaging isotach logical time system [Wil93, RWW97].
Thus, those systems required execution times to be consistepiobgtitial causality
Our separation of the time systems requires logical execution time only to be consistent
with the causal relations captured by execution equivalence.

The execution events performed on a copy must occur in the order of their execu-
tion times. Theexecution time functioof the copy, a strictly increasing function of the
logical receive times of the requests at the copy, determines these execution times. For-
mally, if ey ande; are two execution events performed on a copyrgmahdr ; are their
corresponding receive events, thegidccurs beforey) « (ty <tg ) = (t, <t ).

Althoughr [0 ewheneis an execution event ands its corresponding receive event, we

do not requird, < tg since they are assigned by different logical time systems.
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The execution time functions of copies of different variables or different copies of
the same variable can vary, even if they are collocated. The logical receive and execution
times of two execution events do not constrain the order in which the events occur if they
are performed on distinct copies. Also, the relationship of their logical receive times does
not constrain their execution times.

A well understood principle related to conflict equivalence justifies our execution
time functions [Pap86]. Any two executions that differ only in the interleaving of execu-
tion events to different copies are equivalent. The real time order of the execution events
can differ from their execution time order. However, the actual execution atud)ited
executionthe execution in which all execution events occur in their execution time order,
are equivalent since execution events performed on each copy occur in the same order.

Logical execution time may not be consistent with causality since our execution
time requirements do not preclute<t,  wiegii] e, for execution events ande;
performed on different copies. However, logical execution time is useful because it is con-
sistent with the causality between certain critical (i.e. write/read) events that occur on the
same copy. Thus, logical execution time is consistent with the causal relations captured by
execution equivalence. Execution equivalence only captures the causal relationship of out-
put dependence, i.e. the causal relationship between a read,the writew, that stored
the value that returns. Our execution times are consistent with this relationship since the
copy that executasmust have previously executedand, thustew <tg

Our execution time requirements support many optimizations. For example, a
memory process can execute read requests before previously received write requests to

different variables. Previous isotach research did not address this optimization.
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Theexecution displacemerd, of a copy is the amount by which the execution
time function for that copy shifts execution times relative to logical receive times If
the receive event at a copy of a request that is executed on the copy g dvemthe
execution time function of a copytis=t, + d, for some integer constaditWe leave
investigating general execution time functions for future work.

The execution displacement for each copy

maps the logical receive time line to an execution

time line, as Figure 5.1 shows ok 0. We stress t

execution times and logical receive times are dis-

tinct, although related. The logical receive time F19uré 5.1: Time Line Mapping

need not equal the execution time when the execution event occurs. In fact, the logical
receive time cannot equal the execution time wher®. We allowd # 0, even in systems
without replication, unlike previous research that assumed every execution time function
was the identity function [Wil93, RWW97]. The original delta coherence protocols used a
similar mechanism that shifted the effective, or apparent, execution time of execution
events performed on some copies. We eliminate this replication-based distinction.
Theexecution distancep, of an execution eventfig- tg, wheret, is the execution
time andiq is theinitial send timeof the request, which is the logical send time of the first
message used to service the request. In extensible networks, an intermediate location can
forward the request to the copy. Many of our coherence protocoteqieest forwarding
Request forwarding with immediate responses resulis n 5 de+ 0 , the execution
displacement of the copy plus the sum of the distances trar\r/lelled by the messages that

bring the request to the copy. With delayed responses, the execution distance includes the
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sum of the logical delays. Systems without replication do not use request forwarding, so
® =d,, + 9, whered,, is the logical distance between the issuing SIU and the copy.

Example:Examples throughout this PE, MM,

chapter use the physical topology depicteo‘_lTlo_

Figure 5.2. Switches, shown as circles, con-
MM,

PE,
OO0 sIu] py |

MM's, each with two variables. Figure 5.2: Example Physical Topology

nect two PE’s, each with one process, and

An isotach network’$ogical topology

between two elements is the logical distance _
Figure 5.3: Example Logical Topology

between them. Figure 5.3 shows the logical

is a weighted graph in which the edge weig

topology for our example physical topology
assuming all messages travel the shortest %
ing path and logical distances equal routing
distances. Since MM’s do not communicate in
our examples, we omit that edge. Figure 5.4: Example Effective Topology
Non-zero execution displacements effectively change the logical topology. Figure
5.4 shows the execution distances wbgn=1 9, ,= o, =0 qnd= -1 . Thus,

v effectively moves away from each PE anceffectively moves closer.

5.4. Scheduled Logical Time

Scheduled logical timeur other meta-isotach logical time system, assigns a
scheduled execution tinte to each request when theheduling decisionf the request

occurs. Its scheduling decision occurs when the issuing SIU determines its initial send
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Execution Displacemend  Scheduling Displacemen: tg
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T

tS
Figure 5.5: Shared Memory Meta-Isotach Time Systems

time. We ensure that the scheduling decisions of an isotach shared memory system con-
form to its ordering constraints. We also ensure that every execution agrees with the
scheduling decisions, thus solving the concurrency control problem.

The issuing SIU selects tlseheduling displacemery, of a request in order to
assign its scheduled execution time. We discuss how the SIU selecgstems without
replication in Section 5.5 and in systems with replication in Section 5.7.3. For any request,
T =tg+ X, wheretgis the initial send time of the request. The scheduled execution times of
the requests of an isotach shared memory system defsohéduled execution order
The scheduled execution order defines an executioschezluled executipwhich has
exactly one execution event for each request. These execution events occur in the sched-
uled execution order. By definition, the scheduled execution associates the same value
with each write request as the actual execution, while it associates with the read request,
the value associated with the most closely preceding write in the scheduled execution
order to the same variable, itg, < T, and now’ exists such thaf, <1, <T,

Figure 5.5 summarizes the notation of our meta-isotach logical time systems. Note

that the definitions of andtg imply thatt =t if X = ®.

5.5. Sequentially Consistent and Isochronous Isotach Systems

As discussed in Section 5.3, our rules for assigning execution times ensure that the

actual and logical executions are equivalent. In this section, we present send order rules
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Actual ~_ Logical 5 Scheduled 5  Ordering
Execution = Execution = Execution Constraints

Figure 5.6: Correctness Framework
that ensure the scheduled execution of an isotach shared memory system conforms to its
ordering constraints. Given that the system enforces these send order rules, the system is
correct if the scheduled and logical executions are equivalent. We conclude this section by
showing how isotach shared memory systems without replication ensure this equivalence.
Figure 5.6 shows our correctness framework for isotach shared memory systems.

The issuing SIU of a request determines the request’s initial send time with the
scheduling algorithnof the system. The scheduling algorithm must ensure scheduled exe-
cution times conform to the ordering constraints of the system. The scheduling algorithm
controls thescheduled execution pulséeach request, the pulse component of its sched-
uled execution timet. A correct scheduling algorithm implements these send order rules:

IRule: Send the requests of an isochron so each has the same scheduled execution pulse.
SCRule Send each request so its scheduled execution pulse is at least that of the request
issued before it by the same process.
The issuing SIU can enfor&CRule since it chooses each scheduling displacement. It
also can enforcHRule since isochrons have no internal true dependences. We now prove
thatSCRuleensures the scheduled execution is sequentially consistelR@adensures

the requests of each isochron occur consecutively in the scheduled execution.

Lemma 5.1: Every scheduled executiog, is isochronous and sequentially
consistent if the scheduling algorithm is correct.

Proof: By definition, the requests of any isochrbnare issued by the
same process and have consecutive issue ranks. Since the requests
of | have the same scheduled execution puld&ble, their sched-
uled execution times form a contiguous interval of logical time.
Thus, the requests bfare executed ikg without interleaving with
other requests arfk is isochronous.

Execution Time and Replication



68

Leta andb be any two requests where the same process i@sues
beforeb. Issue rank is a strictly increasing function of issue order
by definition and the scheduled execution pulse isfat least that
of a by SCRule Thus,t, < 1,, Soa occurs befor® in Eg andEg is
sequentially consistent. QED
An isotach system is isochronous and sequentially consistent if its scheduling
algorithm is correct and it ensures each execution is equivalent to its scheduled execution.
We present a correct scheduling algorithm in Section 5.6. Throughout this chapter, we
develop conditions that ensure every execution is equivalent to its scheduled execution.
In an isotach system without replication, we can show the scheduled and logical
executions are equivalent by showig@lways equals, i.e. the execution time of any

execution event equals the scheduled execution time of the request:

Lemma 5.2: Any executionE, is equivalent to its scheduled executigg, in
an isotach system without replicatioridfalways equals.

Proof: Leta andb be any two requests to the same variable suclethat
occurs before, in E, wheree, ande, are the respective execution
events of the requests. Since the execution times of execution
events performed on the same copy are consistent with the order in
which the events occur, <t, . Sintgalways equals, T, <T,.
Thus,E andEg are confllct equwalent siné&; preserves the order
of conflicting requests. Conflict equivalence is equivalence for our
purposes. QED

We assume each SIU knows the logical distadgeto each copy, and its execu-
tion displacemen®. Thus, the issuing SIU can selgct d,,, + 8 = ®, which ensures
te = T. We now show that an isotach system without replication is correct if it implements
our send order rules since we assume the issuing SIU always getatis+ o:

Theorem 5.1:Any executionE, is isochronous and sequentially consistent in an iso-
tach system without replication that implemeiRRale andSCRule

Proof: By Lemma 5.1Fg, the scheduled executionBf is isochronous
and sequentially consistent. Since d,, + d = ®, t; always equals
1. Thus,E is equivalent t&eg by Lemma 5.2. Thereforg, is also
isochronous and sequentially consistent. QED
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Subsequently, we will extend this result to systems with replication.

In systems with replicatiory, depends on the state of the copy, if any, associated
with the issuing SIU. Ensuring that= @ is more difficult, in part because the issuing SIU
often does not know the location of some copies that must execute the request. In Section
5.7, we discuss the selection of scheduling displacements in systems with replication.

Example:We return to our example from the end of Section 5.3. In an example
program that we reuse later in this chagiglisochronously readg, and writes/,, and
subsequently writes, while p; isochronously writesy and reads;. Figure 5.4 show®
for each process, variable pair. Siixce @, xo = 3 andy; = 2 for both processes and
X2 = 3 forpg. IRule requires that each process send its requegtdne pulse earlier than
its request tar;. SCRuleallows an initial send time for the write wf by pg up to one

pulse less than the initial send time of its write' {o

Figure 5.7 shows sche- Po n P
0 IrRead vg Write v;: Write v, |IrWrite vo Read VI:
mata for one possible execution ; | !; | t, 1
t+1,04 | 3 '
of our example. In our sche- ’ | i h P11
. . t+2, 01— ' L '
mata, horizontal lines corre- — : o 42,1
cal t+ 3, 0l AN !
spond to the logical times | } 1 FO—Ht+3,1
o | I 1 |
indicated. A dashed rectangle T ———3 I |
JC —=——=7
depicts the grouping of reques Figure 5.7: Possible Example Execution

into an isochron. The solid rectangle indicates both the scheduled execution afibe
request and the execution tinig,of its execution event. The black dot shows its initial
send time. The oval indicates the logical receive time of the request. The gaps shown
between the logical receive times and execution timegfare due to its execution time

function, which shifts execution times to one pulse greater than the corresponding receive

Execution Time and Replication



70

times. Solid vertical lines are messages that use the standard level of service. The dotted
vertical lines are messages that use the bounded level of service. A question mark indi-
cates the indeterminate logical receive titneof a bounded message. Since the logical
receive time of a read response does not affect the logical execution order, it only needs to
be consistent with causality, i.e. it should not appear to be received before it was sent.
Sending the response at the bounded level of service ehgsitgs

In our example, the scheduling algorithm happens to select t + 3 for the scheduled
execution pulse of all requests. Since the requests have the same scheduled execution
pulse, the requests Ipy precede those @ in the scheduled execution due to i
rank component of the scheduled execution times. In our discussion, we assume that the
execution events occur in the order of the corresponding logical receive times. Thus, the
actual execution igq: readvg, pq: Write Vg, po: Write vq; po: Write vo; pq: readv;.

Our actual execution interleaves the isochrons. For example, the execution event
of the write tovy by p; occurs before the write tg by po. However, the actual execution
is equivalent to the scheduled execution, in which the isochrons are not interleaved, since
conflict equivalence allows us to reorder requests to different variables. Graphically, the
execution events of, shift a uniform amount of logical time, preserving the order of con-
flicting requests. Note that our example execution pipelines the write to

Previous results for isotach systems without replication assume that all execution
displacements are zero and that each MM executes requests in their logical receive time
order [Wil93, RWW97]. These assumptions prohibit the actual execution that we assume
with a three-tuple isotach logical time system swandv, are located at the same MM.

Our new framework for isotach shared memory systems allows this execution and more.
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5.6. Basic Scheduling Algorithm

A correct scheduling algorithm ensures scheduling decisions conform to the send
order rules and, thus, the scheduled execution is isochronous and sequentially consistent.
In this section, we describe a completely distributed scheduling algorithm that assumes the
issuing SIU buffers an isochron until it is completely issued. We can safely suspend a user
process while issuing an isochron if the SIU buffers isochrons separately for each process.

For each procesp, that issues isochrons to the SIU, we use a varikistg, that
tracks the scheduled execution pulse of the last isochron schedyped fer initial value
of last, does not affect the correctness of the algorithm. We use two more variables to
schedule a completely issued isochiomvariablemin_send which is the current mini-
mum possible local send pulse for messagespidatiiank componenp; and variabley,
which bounds the maximum scheduling displacement of any requeshisome of our
protocols, some requests have multiple possible scheduling displacements before the algo-
rithm determines their scheduled execution times. In Stgp 1, is the maximum of the
possible scheduling displacements for the requeBhe following procedure specifies
our basic scheduling algorithm:

Input: All requests of isochrohissued by procegs

Step 1:  Determiney, equal maxxaMAX ) over every requestofl.

Step 2:  Setmin_sendto the current minimum possible local send pulse.

Step 3:  Setlast, to max(nin_send+ ¥, last,).

Step 4:  For each requesa, makelast,, - X5 the pulse component d)‘,I:a :
wherey, is the scheduling displacementeof

For systems without replication, the SIU selectsd,, + 8 in Step 1 for each
scheduling displacement as discussed previously. We discuss how the SIU selects each

scheduling displacement in isotach systems with replication in Section 5.7.3. The first

term in the max operation specified by Stem,_send+ X;, ensures that the initial send
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times that are required by the scheduled execution pulse that the algorithm compgutes for
are possible. The second term in the max operation specified by &tsig,3mplements
SCRuleby ensuring the scheduled execution pulse is at least that of the isochron before
by p. We implementRule by usinglast, for the scheduled execution pulse for each
request of the isochron when Step 4 computes their initial send times.
We now show that this basic scheduling algorithm is correct.

Lemma 5.3: The basic scheduling algorithm implemeliRsile andSCRule
Proof: The algorithm sends every requestof | such thatast, - x5 is the

pulse component of its initial send time. By definition, the sched-

uled execution time aiis 1, = tg+ X,. Thus, the value dés

determined in Step 3 is the scheduled execution pulse of every

request of and the algorithm enforcéRule.

Since isochrons are scheduled in the order that they are istgd,

tracks the scheduled execution pulse of the isochron most recently

issued byp. Since Step 3 sekast, to max(asty, min_send+ x;), the

scheduled execution pulselak at least that of the isochron most

recently issued by, which includes the request most recently issued

by p. Since every request bhas the same scheduled execution

pulse, the algorithm enforc&CRule QED

All of our systems can use the basic scheduling algorithm.

5.7. Delta Coherence Protocols

We now develop our correctness framework for delta coherence protocols. Our
framework extends the results established in the preceding sections to systems with repli-
cation. First, we present several basic issues and concepts for delta coherence protocols,
which we illustrate with thetatic owner update protoga protocol that extends the static

early protocol to non-equidistant networks [Wil93].
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5.7.1. Copy Types

Our coherence protocols use two primary types of copies, the home and local copy
types. Alocal copyis a copy located at a PE that services many of the requests that the PE
issues. A local copy is a cache copy in a cache coherence protocol. We use a different term
since our protocols also apply to DSM. The coherence action that the issuing SIU selects
for a request depends on the type of request (i.e. read or write) and the state of the local
copy. In all of our protocols, the issuing SIU uses a miss action if no local copy exists or
the local copy state is invalid when a request is scheduled. Each coherence unit has exactly
onehome copywhich is the destination of the initial message of any miss action. We
assume the address of the coherence unit determines the location of its home copy.

Theowner copyis a distinguished local copy that is used to track copies in our
owner protocols. The term owner does not mean the owner copy has exclusive access. The
home copy tracks the owner copy location since it forwards misses to that location. The
names of our protocols indicate their primary coherence operation and the copy that dis-
tributes that operation. Thus, the owner copy sends update messages in the static owner
update protocol, in which the owner copy location is static. In Chapter 6, we present a pro-
tocol that allows the owner copy location to change dynamically.

Our coherence protocols can create and destroy local copies dynamically. We
associate two special execution events with a local copy’s creationsthstiation event
which initializes the new copy; and teepplying eventwhich provides the values associ-
ated with the instantiation event. We also associate a special execution evéesrine
tion eventwith a local copy’s destruction. A copyietimeis the logical time period

between the execution times of its instantiation and destruction events. All of our proto-
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cols eventually create a local copy at any issuing SIU that uses a miss action. The new
copy’s instantiation event usually occurs when a response to the first miss is received.

Local copies are stored in local memory coherence units, which are cache blocks
or local DSM pages. Local memory coherence units that are not allocated to local copies
are invalid. In all of our protocols, a local memory coherence unit is allocated for the new
local copy if one does not exist when a request is scheduled. The state of the local copy
becomedilling when the SIU schedules the first miss. It remains filling until the copy’s
instantiation event occurs. Most of our protocols use miss actions if the state of the local
copy is filling when the issuing SIU schedules the request. Thus, the SIU can schedule
additional misses since we support pipelined requests.

Thereplacement policgelects aictim copyin order to provide space for the new
local copy when all local memory coherence units are in use. The new copy uses the space
that the victim copy had occupied. Our protocols serlease message the copy that
tracks copies for the coherence unit of the victim copy. Thus, the owner copy receives the
release message in our owner protocols. Execution of a release message removes the
sender from the directory, which saves the cost of unnecessary coherence operations.
Release messages can use the bounded level of service. The destruction event of the vic-
tim copy occurs when the release message is sent.

Our protocols can use any replacement policy, although the policy cannot select a
home copy, an owner copy oreservedocal copy. A local copy is reserved if iesser-
vation counis non-zero. The SIU associated with the copy increments the reservation
count whenever it schedules a request to the coherence unit. It decrements the reservation

count when it delivers a message for a locally issued request to the local memory process.
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Figure 5.8: Static Owner Update Protocol Coherence Actions

5.7.2. Static Owner Update Protocol Coherence Actions

Coherence actions consist of the messages and execution events that service a
request. Figure 5.8 shows schemata for the coherence actions of our static owner update
protocol wherdpome, owner< deopy, owner Other relationships between these distances
only move lineA relative to lineB. These coherence actions use the standard level of ser-
vice for all messages. The triangle of the write hit schema indicates that the owner copy
sends a multicast update message. The dashed triangle of the miss schema indicates that
the owner copy sends the updates if the request is a write. The bottom of each triangle
indicates the logical receive time of the update at the issuing SIU. The logical receive
times at other local copies depend on their distances from the owner copy. The miss
actions have execution events at the owner copy and the new local copy. The write actions
have execution events at every copy that is valid when it receives the update. The ovals in
the schemata for these actions indicate the logical receive time at the owner copy.

The home copy, which does not execute any requests, is always invalid and its
value is not maintained. Local copy states in the static owner update protocol can be:
valid, filling or invalid. Hit actions are used only if the local copy state is valid. The owner
copy is always valid and, thus, its SIU always uses hit actions. As discussed in Section

5.7.1, afilling local copy has not been initialized. The copy becomes valid when its instan-
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tiation event occurs. An issuing SIU cannot schedule hit actions with a filling local copy,
since we assume it does not know the owner copy location until its first miss returns.

The only difference between a write miss and a read miss is the sending of updates
for writes. The issuing SIU sends a miss action to the home copy, which immediately for-
wards the request to the owner copy. If the issuing SIU is not in the directory of the owner
copy, the owner copy adds its location to the directory and executes the supplying event
for the location’s new local copy by sending the values of the entire coherence unit to it.
Read misses are always executed on the owner copy and returned to the issuing SIU.

The issuing SIU sends a write hit directly to the owner copy. As just described, the
home copy forwards a write miss to the owner copy. For any write request, the owner
copy sends an immediate response update message to the copies in its directory, including
itself. A local copy stores the associated value when it receives the update. If the local
copy no longer exists (i.e. it was released), then the update is discarded.

Figure 5.9 shows the schema of either hit action

dhome, owner E
Whendcopy, owner = owner, copy = 0. the distance Figure 5.9: Owner Action
between the owner and itself. Owner actions execute locally as soon as they are sent. Any
read hit executes on the local copy as soon as it is sent. However, only the owner copy
location executes a write hit on its local copy as soon as it is sent. Other locations send
write hits to the owner copy location, which returns them in an update for local execution.

Each release is sent directly to the owner copy in our owner protocols. We assume
that the isotach network algorithm supports the triangle inequality, which ensures that the
owner does not receive a subsequent miss action before the release. The owner receives

the release no later thagypy, ownerafter it is sent. The owner receives any subsequent
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miss at leastlcopy, homet Uhome, owner@fter the release is sent. The triangle inequality

ensures thalc,py, owner<S Aeopy, home™ dhome, owner SO the release is received first.

5.7.3. Scheduling and Execution Displacements with Replication

The scheduling and execution displacements of a delta coherence protocol are an
extremely important aspect of its design. The protocol determines the execution displace-
ment of each copy and associates a scheduling displacement with each coherence action.
The issuing SIU selects the scheduling displacement associated with a coherence action
when it uses that coherence action. Our protocols ensune tivatfor every execution
event of each coherence action and, ttwalways equals, which allows us to show that
the scheduled and logical executions are equivalent, as we discussed in Section 5.5.

The issuing SIU often does not know the locations of some copies that execute the
request. For example, the issuing SIU of a miss action does not know the location of the
owner copy in our owner protocols. We use execution and scheduling displacements in
our protocols that allow the issuing SIU to schedule the request correctly despite any
incomplete knowledge about the locations of the execution events of the coherence action.
In addition, we ensure the same execution distance applies to each execution event of any
coherence action that has multiple execution events. Thus, our protocols can ensure that
X = ® for every execution event of each coherence action andtffalways equals.

Table 5.1 shows the scheduling displacements and the execution distances for
every execution event of each coherence action of the static owner update protocol. We
derive the second and third columns of Table 5.1 directly from the descriptions of the
coherence actions in Section 5.7.2. The second column indicates the copy on which the

execution event is performed. The third column indicates the logical distance that mes-
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. Execution
Action z dn o P X
Event T
Oowner co deopy, home * | _g d d
py Home. owner home, owner copy, home copy, home
Miss d +
Local copy q copy, home N -Ahome, owner - d d
home, owner ' copy, home copy, home
(other than owner) | | W downer, loc_copy Py Py
owner, loc_copy
o) d d dcopy, owner ~ dcopy, owner ~
wner copy copy, owner “Uhome, owner
. . home, owner home, owner
Write Hit
Local copy dcopy, owner * | “dhome, owner - dcopy, owner ~ dcopy, owner ~
(other than owner) | doyner, loc_copy downer, loc_copy home, owner home, owner
: . -d - |-d -|-d -
Read Hit Issumg copy 0 home, owner home, owner home, owner
downer, copy downer, copy downer, copy

sages travel to bring the request to the copy in column two. We emphasize that the miss
and write hit actions have multiple execution events by separating the owner copy from
other local copies, while the only execution event of a read hit is performed iestting
copy the local copy associated with the issuing SIU. The execution events of a read miss
are the execution event of the read performed on the owner copy and, if it is the first miss,
the instantiation event of the issuing copy.

For any local copycopy = -Ohome, owner~ Gowner, copy Which is €home, ownerfor
the owner. The fourth colum®, of Table 5.1 shows the appropriate execution displace-
ment. We add the third and fourth columns to derive the fifth column, the execution dis-
tances,® = 5‘%%” 0 . The sixth column shows the scheduling displacement that the
issuing SIU seTects when it schedules that coherence action. As we discussed, these dis-
placements compensate for any incomplete knowledge about the locations of execution
events and ensure that the same execution distance applies to each execution event of the
coherence actions that have multiple execution events. TJalgjays equals under the

static owner update protocol singe ® for every execution event, as Table 5.1 verifies.
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Logical Execution Time Requirement:
Execution events, e; and e, on a copy, | |Correct Scheduling Algorithm:
Corresponding receive events, ro and rq: Implement send order rules,
ep occurs beforee; =t <t =t <t IRule and SCRule
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Execution = Execution — Execution Constraints

Uniform Copy:
Initialized correctly and execute:
Write if tinstantiate < T < tdestroy »
Read only if tinstantiate < T < tdestroy

Execution Times Equal
Scheduled Execution Times:
te always equals 1

Figure 5.10: Components of Correctness Framework

5.7.4. Protocol Correctness

Figure 5.10 elaborates our correctness framework. We assign execution times that
ensure the actual and logical executions are equivalent. A correct scheduling algorithm
ensures an isochronous and sequentially consistent scheduled execution by Lemma 5.1. In
this section, we prove that every logical execution is equivalent to its scheduled execution
if te always equals and every copy igniform

A copy is uniform if it is initialized correctly, executes all write requests that have
scheduled execution times during its lifetime and only executes read requests that have
scheduled execution times during its lifetime. The scheduled executior tiofe,
request is during the lifetime of a copYiifstantiate < T < tdestroy Wher€tinstantiate and
tdestroy are the execution times of the instantiation and destruction events of the copy. A
copy is initialized correctly if the value associated with its instantiation event is the value
associated with the write request,such that,, < tj,stantiate @Nd NOW' exists such that
for each variable of the coherence unit.

Ty <Ty <t

w instantiate
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In a system with replication, ensuritigalways equals does not ensure that the
scheduled and logical executions are equivalent. Even if, for every execution event,
the executions can associate different values with a read requstnow show the exe-
cutions associate the same value witht, always equals and every copy is uniform:

Lemma 5.4: Any executionE, and its scheduled executidty, are equivalent if
te always equals and all copies are uniform.

Proof: We must shovE andEg consist of the same requests and associate
the same value with each request.

Every request is scheduled and every request has at least one execu-
tion event by our shared memory execution model defined in Sec-
tion 2.2.3. ThuskE andEg consist of the same requests.

Egassociates the same value with each write request as each execu-
tion event of the request by definition.

For any read request,Eg associates the value of the write request,
w, such that,, <1, and now’ exists such thaf, <1, <1, . let
be the execution event Ehof any read request, E associates the
value at. of the copy on whicle is performed. Since the copy is
uniform, T, is during the copy’s lifetime. Sindg always equals,

E associates the valuettof the copy witlr. Sincet,, <t,, either

T,y IS also during its lifetime o, < tihstantiate @Nd NOW'  exists

such that,, < T, <t stantiate - SiNCE the copy is uniform, an exe-
cution event fow is performed on it. Sindg always equals,

write execution events on the copy occur in the scheduled execu-
tion order and, thus, its valuettis the value associated with
Thus,E andEg associate the same value with QED

Our next theorem underlies the correctness framework of our coherence protocols.

Theorem 5.2: Any executionE, is isochronous and sequentially consistetitalways
equalst, all copies are uniform and the scheduling algorithm is correct.

Proof: Since the scheduling algorithm is correct, the scheduled exedagon,
of E is isochronous and sequentially consistent by Lemma 5.1. Since
te always equals and all copies are uniforrg, is equivalent tdeg by
Lemma 5.4. Thug is isochronous and sequentially consistéED
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We derive a simple method to prove the correctness of a delta protocol from Theo-
rem 5.2, assuming the scheduling algorithm is correct. First we skoWw for every exe-
cution event and, thuk, always equals. Then we show every copy is uniform.

Figure 5.11 shows conditions we use to show that a copy is initialized correctly.
The supplying event of a copy is actually a read execution event that is performed on

another copy. Given th&hstantiate = tsupply the logic of the proof of Lemma 5.4 applies

to show that the value associated with ‘“Rgsociate value of write. w-

Ty < tinstantiate 2N

inste
No w' with T, <T,, <t stantiate

read execution event is the value assodi-

ated with the correct write request if thg Holds if: tg always equals T,

tins.tantiate = tsupply and
copy on which it is performed is uniform Uniform copy supplies value

Figure 5.11: Copy Initialization

andt, always equals.

We refine our condition that a uniform copy executes exactly those writes with
scheduled execution times during its lifetime. In isotach systems with replication, a write
execution event is performed on a copy if, and only if, the copy receives an update for the
request during iteeceive lifetimethe interval of local logical receive times that corre-
spond to its lifetime. Thus, the receive lifetime of a copy with execution displacement
dcopy IS the period of local logical receive time betw&g§antiate - Ocopy 2N
tgestroy - Ocopy The scheduled execution time of any write request that the copy executes
is during its lifetime iftg always equals.

Every update is sent by some directory. We extend logical execution time to exe-
cution events performed on the directories in order to prove that each copy executes every
write request with a scheduled execution time during its lifetime. This extension supports

replication of directories. Similarly to our copies, the execution displacedgntof a
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directory,Dir, determines the execution time of each execution event perfornigid.on
For the directory of the static owner update protaligl, = -dnome. owner

Several execution events can be performed on a directory. An execution event that
reads the contents of a directory determines the destinations of updates for a write request.
A memory process issues @stantiation requesfiR) in order to acquire a new local
copy. The execution everiddp;,, of an IR performed on a directoBir, with execution

timet, 4 adds the location of the new copyDio. The execution eventgmovey;,, of

Dir

a release performed @nr with execution timé, .., removes the location froxn.

Some protocols create and destroy directories dynamically. An instantiation event initial-
izes a directory and a destruction event destroys a directory.

A directory iscorrectif it is completeat all execution times during its lifetime. A
directory is complete at execution tintg,if the location of any copy whose lifetime

includest, (i.e. t < te <tdestroy,,,, ) IS In the directory. A location can be in

instantiate,,,,

the directory although there is no copy at the location whose lifetime in¢uddais, a
directory is incorrect if, and only if, at sorfgit does not include the location of some
copy whose lifetime includeg. Every copy receives an update for every write with a
scheduled execution time during its lifetime if all directories are correct.

Figure 5.12 shows conditions that ensure that a dire@aryis correctDir must
be complete initially (i.e. &t siantiate,, )- ABAdp;y Must be performed dbir for any
copy that is created during the lifetimef before the lifetime of the copy begins (i.e. if

t thent,gy <t , )- Also, the lifetime

instantiatep;, < tinstantiate < tdestroyDir instantiate;,,

copy

of a copy must end before@movey;, is performed omir for it (i.e. T removey;, per-

formed onDir, tgestroy,, < tremove,, )- E@CMaddp;, executes before the corresponding

removey;, sincet by definition. However, we must ensure that

instantiate,,, < tdestroyCopy
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O te such tllljat tinstantiateDir = te < tdestroyDir:
t.

,nstamiatempyg t, < tdestroymy then copy [ Dir

Holds if: Complete initially:
If t.

instantiate,,, < tinstantiateDir < tdestroywp

, copy O Dir at t

instantiatep;,

tinstantiateDir = tinstantiate,,,,  ~destroyp;
execute add p;, such that tada,, St
r

[ remove pj performed on Dir, tyegioy .= tremovey,
If Dinstantiate pey such that tyegyroy,
execute remove p;,,then

execute add p;; for next such that t, oy <taqq,,

instantiate,,,,

instantiatenext< destroyp;, and

Figure 5.12: Directory Correctness

eachaddp;, executes after themovey;, for any preceding copy at the same location (i.e.

t <t

removey;, < taddDir if tdestroyCopy instantiate,q; < tdestroyDir)'

We do not require thatr@amovey;, be performed oDir for every release since a
complete directory can include extra locations. Similarly, if all locations are always in a
directory, the directory is correct since it broadcasts its updates and, thus, sends each
update to any location that requires it. However, our protocols are designed for networks
in which broadcasts are expensive and, thus, our protocols benefit from the more accurate
directories that our directory execution events provide.

We assume that a directory is complete initially if its lifetime begins during system
initialization. In the static owner update protocol, we assume that the owner copy is the
only copy whose lifetime begins during system initialization and its location is the only
entry in the initial directory. We now show that throughout the lifetime of any copy in the
static owner update protocol, the copy is in the directory.

Lemma 5.5: The directory of the static owner update protocol is correct.
Proof: The initial directory is complete since it includes the owner copy.
A location implicitly includes an IR in its first miss. Awaldp;,

adds the location to the directory when the execution event for the
miss is performed on the owner copy. The instantiation event of the
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new local copy is the execution event performed on the issuing
copy for the miss. Table 5.1 shows that the execution times of these

two execution events are equal and, thyg, = linstantiate,o,,

The destruction event of any local copy occurs when the associated
SIU releases it. From the execution time function of the copy, we
derive that the executlon tiM&estroy,,,  Of the destruction event
IS t + 6 Sr dhome owner— owner, copy’ Wheret iS
thesloglcal send time of the release. Since the release uSes the
bounded level of service, <t, < tg * d , Where

copy, owner
t, | is the logical receive fime o+ the release.
re

The execution timet , Of the release on the directory is
t, *0p =t home, owner- SiNCety <t, ~ and all logical
diStances are non- negatl\tgestroycopy_t

removey,,

removey;,

Eachaddp;, executes after themovey;, for any preceding copy

at the same location. Lef ~ be the logical send time of an IR sent
after a release from the same location. Sipcects +dcopy, owner ,
tremoveD s|R+dcopy owner dhome owner The exeCUtlon tlme Of

theaddp;, t addy, » 1Sts +d from Table 5.1. Since by

)é copy, home
the t“angle 'nequa“t copy,owner homeownergdcopy home
tremove,, <tadd,, - Thus, the directory of the static owner update

protocof is correct since it is complete at all execution tint@ED
We assume any copy whose lifetime begins during system initialization, such as
the owner copy, has initial values that conform to the programming language semantics.
We now show the static owner update protocol is correct:

Theorem 5.3: The static owner update protocol enforces isochronicity and
sequential consistency if the scheduling algorithm is correct.

Proof: Sincey = @ for every execution event of each coherence adtjon,
always equals (see Table 5.1).

The owner copy executes every write request and, thus, any write

request with a scheduled execution time during its lifetime. Since it
is never destroyed, it only executes read requests with scheduled

execution times during its lifetime. Since we assume that its initial

values are correct, it is uniform.

We now show thatopy, any local copy other than the owner copy,
1) is initialized correctly; 2) executes all writes with scheduled exe-
cution times during its lifetime; and 3) only executes reads with
scheduled execution times during its lifetime. Thoagy is uniform.
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Table 5.2: Example Scheduling Displacements

Request |0 home, owner |downer, copy — dcopy, owner X
Po: read Vo dMM o Po =2 dpL Po = dpo- P, =3 -dhome, owner = downer, copy — -5
Po: write v 1 dMM o Po =2 dp0, Po =0 dcopy, owner - Ahome, owner = -2
Po: write V o ||dyy o = 3 dp,p, = O dcopy, owner = Ahome, owner = -3
pq:write v g dMM 0P 2 dpl‘ P, — 0 dcopy, owner - Ahome, owner = -2
Pq: read Vi dMMO, P, =2 dpo, P, = dpl, Po =3 -dhome, owner - downer, copy — -5

1) The instantiation and supplying eventsopy are the execution
events for the first miss from the location performed on the owner
copy andcopy, respectively. Thuginstantiate = tsupply PY Table

5.1. Thusgcopy s initialized correctly sincg, always equals and

the owner copy is uniform.

2) Since the directory is correct by Lemma 5.5 gralways equals

T, the owner copy sends an updatedpy for each write with a
scheduled execution time during the lifetimecopy. Sincet,

always equals, the logical receive time of the update is during the
receive lifetime otopy. Sincecopy executes any update that it
receives during its receive lifetime, it executes any write with a
scheduled execution time during its lifetime.

3) All read execution events performedampy are for read hits.

Read hits are not scheduled before its instantiation event and the
reservation count ensures it is not destroyed if any already sched-
uled read hits have not executed. Therefore, every read executed on
copy has a scheduled execution time during the lifetimepp¥.

Thus, the static owner update protocol enforces isochronicity and
sequential consistency by Theorem 5.2. QED

Example:We now use our static owner update protocol in our continuing example.
Assume thapy ownsv, andv, and has a local copy @, while p; ownsvy and has a
local copy ofv,. Assume no other local copieswgfexist. In our example prograipy, iso-
chronously readgy and writes/4, and then subsequently writeg while p, isochro-

nously writesvg and reads;. Table 5.2 shows the applicable scheduling displacements.
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Figure 5.13 shows an

F— — —Po I — —"L
Read vy Write leWrite Vo IrWrite Vo Read vI'
example execution in which all  t, 1H—11 — |I '
l Ii Ft2
requests happen to have the t+1, 1! : |I | i1
T I I 1
. 1
same scheduled execution ~ t+2, 1! ® I | |
| | L& [t+2,2
: . I 1
pulset. The execution times oft+3, 1! / \\ | ® 'L /ﬁ\ I (130
T I I + 1
: | 1
the requests by are again ear-t+ 4, 1! / \\ , It / \\ ; v
T I I 1
. - | A / \l . / \
- - t+5 1 (s -
lier by theirpid-rank compo Y |:—/ % J. (45 2
I — — — —
nent. If the real times of the Figure 5.13: Possible Owner Update Execution

execution events correspond to their logical receive times, the actual execution interleaves
the processes’ requests. However, it is equivalent to the scheduled execution and, thus, is
isochronous and sequentially consistent. In our example exequgicegds the old value
of vg, while p; reads the new value of and the actual execution is isochronous.

Our example demonstrates the benefit of an exclusive owner copypginas
the only local copy, its write t@, does not require any network traffic. Note that the write
to v, by pg is pipelined since it is sent before the readyafeturns.

An advantage of the static owner update protocol is that read hits on a copy exe-
cute locally as soon as they are sent. Read requests generally account for more than 60%
of shared memory requests [BaR89, WOT95]. Owner writes also execute locally as soon
as they are sent and copies that are clustered around the owner derive a similar benefit for
write requests. Thus, the static owner update protocol exploits cluster locality when the
owner copy location is within the cluster. In Chapter 6, we present a dynamic owner

update protocol that can exploit dynamically detected cluster locality.
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5.7.5. Implementing Split Operations

Our coherence protocols can implement split operations [Wil93] efficiently. We
require that any location that receives a sched and its corresponding assign receives the
sched first. Our protocols include the issuing SIU in the destinations to which the sched is
distributed. We assume the issuing SIU sends the corresponding assign after the sched
returns. This assumption simplifies meeting, but does not guarantee, the requirement that a
sched/assign pair arrives at each location in the correct order. We note that this assumption
has little cost when used with isochronous techniques for structured atomic actions.

A version identifie(viD) associates a sched with its corresponding assign. The
issuing SIU determines thD when it schedules the sched. System wide process identi-
fiers (i.e.pid-rank) can bevID’s if we limit each process to one unsubstantiated write
request per variable. The issuing SIU cannot schedule a sched to the same variable until
the previous sched is substantiated locally.

Our implementation of split operations uses one bit per variable in each copy to
indicate whether the variable is unsubstantiated. Execution of a sched sets the associated
unsubstantiated bit and storesv® in the variable. Any unsubstantiated read is buffered
at the copy that executes the request until it is substantiated. We use the reservation count
to ensure that the lifetime of the copy does not end before the read is substantiated. We
increment the reservation count for the copy if the unsubstantiated read is not a locally
issued request. Note that the count already includes the read if it was locally issued.

Execution of an assign has two parts: first, it clears the unsubstantiated bit and
stores the associated value in the copy if the bit is set amthaf the assign matches

that of the copy; second, it substantiates any buffered, unsubstantiated reads that have the
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samevID and returns the reads to the issuing SIU’s. The reservation count is decremented

for each read that the assign substantiates. The assign is discardd®ifdites not

match that of the copy or any unsubstantiated reads. No assign is improperly discarded if

the protocol ensures that the copy logically receives the corresponding sched request first.

A sched is treated as a special kind of write. Thus, the issuing SIU uses either the
miss or write hit action for each sched request in the static owner update protocol. The res-
ervation count of a local copy increases when the issuing SIU schedules the sched request.
The count decreases when the corresponding assign returns.

Assign requests also use write coherence actions, but with some modifications.
Assign requests do not have scheduled execution times. Most assign coherence action
messages do not require the standard level of service to ensure that the corresponding
sched request is received first. Our protocols send each assign to any location that could
have an unsubstantiated read to the correspontingn order to substantiate all reads.

In the static owner update protocol, the owner copy multicasts sched and assign
updates to the locations in its directory. If a location reads the unsubstawliajedther
the owner copy sent the sched update to it, or the values associated with the instantiation
event of its local copy included the unsubstantiatéd In either case, the location is in
the owner’s directory. An unsubstantiated read reserves the local copy, preventing its
release. Thus, any location that reads the unsubstanti@taeceives the assign update.

An issuing SIU can always use the write hit action for an assign request in the
static owner update protocol. Since we assume that it sends the assign after the corre-
sponding sched returns, its local copy must be valid when it sends the assign. Thus, the
owner location is known. The issuing SIU can send assigns to the owner copy at the

bounded level of service. Since the issuing SIU does not send the assign before the sched
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returns from the owner copy, the owner copy must receive the sched before the assign.
Any technique that ensures each location receives the sched and assign updates from the
owner copy in FIFO order ensures that any other local copy receives the sched first if it

receives both the sched and the corresponding assign.

5.7.6. Protocol Design Space

Now, we discuss significant design choices for delta coherence protocols. We first
explore options available to any coherence protocol. Our naming scheme, described in
Section 5.7.1, indicates the importance of the primary type of coherence operation that the
protocol uses and the copy that distributes the operations. In this thesis, we present both
update and invalidation protocols and protocols with two different choices for the type of
copy that distributes the operations. A distinguished local copy holds this responsibility in
our owner protocols, while the protocol that we present in Chapter 8 distributes it among
all local copies. Competitive protocols, limited directory protocols and dynamic page
management algorithms are among the traditional options that we leave for future work.

Traditional protocols could use replicated directories. However, maintaining con-
sistent directories is difficult without message delivery guarantees such as those provided
by an isotach logical time system. The local update protocol that we present in Chapter 8
associates a copy of the directory with each local copy. Since a location that has a direc-
tory can distribute coherence operations, a location with a directory copy has special write
privileges. Protocols that separate directory replication from data replication and, thus,
allow a location to have those write privileges without requiring it to hold read privileges
would suit some access patterns, such as that exhibited by producer/consumer variables.

We leave delta protocols that separate directory and data replication for future work.

Execution Time and Replication



90

There are many design options specific to delta coherence protocols. Most of our
protocols require extensibility, although our local update protocol of Chapter 8 does not.
All of our protocols use the standard level of service for coherence operations, although
protocols that use other levels of service for coherence operations are possible. In isotach
systems, theend disciplinef a multicast message determines the relationship of the log-
ical send and receive times for different destinations of the multicast. In non-equidistant
networks, the send discipline of coherence operations is an important design choice. The
static owner update protocol uses the same logical send time for every destination of an
update multicast, while our local update protocol uses the isotach invariant to ensure that
the logical receive time of an update multicast is the same at each destination.

Now, we present a very basic design choice specific to delta protocols that we
derive from our framework for isotach shared memory systerpsotacol variantadds
the same constar, to every scheduling and execution displacement of the protocol. A
variant does not change the original protocol in any other way. Since any execution dis-
tance,®, involves exactly one execution displacementyardC = ® + C if, and only if,

X = @, tg always equals when the variant is used if and onlydfalways equals when

the original protocol is used. Since the variant does not change any other aspect of the
original protocol, all copies of a variant are uniform if and only if the copies of the original
protocol are uniform. Thus, a variant is correct if and only if the original protocol is cor-
rect and any correct delta protocol, such as the static owner update protocol, represents a
class of correct protocols. We anticipate that the complexity of using a protocol class in
many isotach implementations will depend on the variant considered.

Delta coherence protocols are mutually compatible. If two protocols ensutg that

always equals and all copies are uniform when they are used separatelythievays
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equalst and all copies are uniform when they are used concurrently for different coher-
ence units. Thus, a correct isotach shared memory system can use different correct proto-

cols concurrently for different coherence units.

5.7.7. Previously Identified Delta Protocols

Now, we discuss the relationship of our static owner update protocol to previously
published delta coherence protocols. Williams identified the late protocol and two types of
early protocols for equidistant networks [Wil93]. We have introduced new terminology
that supports many new theoretical results for delta protocols. We apply this terminology
to her protocols in the following discussion.

Our static owner update protocol extends her static early protocol to non-equidis-
tant networks. In her protocol, the execution displacement of all local copies other than the
owner copy was zero. This choice requires that the scheduled execution time of a miss
action is the logical receive time of the response at the issuing SIU. In an equidistant net-
work, every message travels the same distance. Thus, the issuing SIU could anticipate
when the miss returns event though it does not know the location of the owner copy. Non-
equidistant networks do not support this assumption, so we had to adjust the displace-
ments of the protocol to accommodate the lack of knowledge of the issuing SIU.

Our static owner update protocol is identical to the late protocol if the home and
owner copies are collocated. In this case, the home copy distributes updates. Thus, her late

protocol is an instance of our static owner update protocol.
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5.8. Chapter Summary

We presented a new framework that supports a unified theory for isotach shared
memory systems. Williams separated the logical times of execution events that are per-
formed on cache copies from the logical receive times at the copies. We complete the sep-
aration of execution times from the corresponding logical receive times with logical
execution time. Eliminating the use of a physical canonical copy in delta coherence proto-
cols allowed us to extend her early update protocol to non-equidistant topologies and to

show that each correct delta protocol represents a class of correct protocols.
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Chapter 6:

Owner Update Protocol

6.1. Introduction

In this chapter, we present an owner update protocol that can relocate the owner
copy. The static owner update protocol can exploit cluster locality and producer/consumer
variables when the appropriate location of the owner copy is static and known, which is
unlikely in general. A migration mechanism, such a the one introduced here, allows
dynamically detected access patterns to determine the owner copy location.

Our non-equidistant protocol extends the equidistant early update protocol
[Wil93]. We solved several significant problems that do not arise in equidistant topologies
for migration mechanisms. In Chapter 7, we present an invalidation protocol that is easily
derived from our migration mechanism.

We introduce the concept of the scheduling horizon of an isotach shared memory
system. This concept bounds the scheduled logical times of previously scheduled requests.
We use this concept to allow the elegant execution of messages that alter local state used

to schedule requests, such as the local record of the owner location.

6.2. Overview

The dynamic owner update protocol is identical to the static owner update protocol

except when a migration is in progress. Migration is a special coherence action that causes
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an ownership transition. This highly concurrent action does not suspend access to the
coherence unit and nodes that have local copies prior to it can retain copies throughout it.

Figure 6.1 shows that two local copies are dis- Home Copy

tinguished during an ownership transition. The

dhome, new

Old ©wner

owner copyis the owner copy initially. Theew dord new

New Owner

owner copybecomes the owner copy as a result of th%}opy' old
old, copy

transition. A migration changes most scheduling and Local Copy

Figure 6.1: Migration Distances
execution displacements since in general the dis-
tances that involve the owner copy change. However, the scheduling displacement of the
miss actiondcqpy, home does not change since the home copy location is static.

Conceptually, our migration action destroys each copy of the coherence unit and
creates a new one in its place. éxisting copys any local copy that the migration action
destroys, including the old owner copyréplacement copis any local copy that
replaces an existing copy, including the new owner copy.

As with any coherence action, the ownership transition has a scheduled execution
time, t1, which is the scheduled execution time of its execution events. The lifetime of
any existing copy ends &. The lifetime of any replacement copy beginsatSince the
old owner copy is an existing copy and the new owner copy is a replacement copy, the
owner location changes . If the scheduled execution time of a miss or a write is before
11, then the old owner copy services it, while the new owner copy services it otherwise.

In addition to the three local copy states of the static protocol (valid, filling and
invalid), our dynamic owner update protocol has three local tapgition statesmigrat-

ing, disjoint, and overlapping. We describe the roles of the transition states as we describe

our migration mechanism. An issuing SIU uses hit actions if its local copy is in a transition
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state. The scheduling displacement that it selects for these hit actions is based on the dis-
tances applicable to the old owner copy if the scheduled execution tioi¢he request is
less thartt and on the distances applicable to the new owner copy otherwise. Similarly, it
sends a write hit to the old owner copy ¥ t1 and to the new owner copy otherwise. For
each local copy in a transition state, each SIU hemnaition recordthat stores informa-
tion it requires to schedule requests, suctiyeand the location of the new owner copy.

Recall that in the static owner update protocol, two logical time lines are relevant
to each copy: the receive and execution time lines. In a dynamic owner update protocol, a
third time line is important: the replacement copy’s execution time line. An existing
copy’s execution displacement uses distances that involve the old owner copy, while its
replacement copy’s execution displacement uses distances that involve the new owner

copy. Thusﬁexisting = -Ghome, old~ dold, copy a-ndéreplace: -dhome, new™ Gnew, copy

An existing copy’s receive lifetime endstat = 11 -9 . Its replacement’s

existing

receive lifetime begins af = T — 9 ace - AN €Xisting copy and its replacement are

overlappingif their receive lifetimes overlap, ¢

that ist, <t, , andiisjointotherwise. From the Recelve Time Line

-
A
—+
-
P

definitions 0fdeyisting aNddrepiace We derive  Existing Copy

that the copies are overlapping if, and only if, Replacement Copy

4

T
T
dhome, new™ dnew, copy < dhome, old* dold, copy Figure 6.2: Overlapping Copies

If the distance from the home copy through the t t

My
Receive Time Line [/Z/Z/7//7,

new owner copy to the node is less than through

r.

N

the old owner copy, the copies are overlappingdexisting Copy|

They are disjoint otherwise. Figures 6.2 and 6.3 Replacement Copy

N4

Tr
illustrate the two cases. The hatched area of *  Figure 6.3: Disjoint Copies
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logical receive time line in Figure 6.2 represents the interval of the local logical receive
time line during which the existing and replacement copies both exist, while the hatched
area in Figure 6.3 represents the interval during which neither copy exists.

Since we assume the isotach network supports the triangle inequality and the dis-
tance between a copy and itself is zero, the distance directly from the home copy to the old
owner copy is never greater than the distance from the home copy to the old owner copy
through the new owner copy. Thus, the old owner copy and its replacement are disjoint
copies. Similarly, the new owner copy and its existing local copy are overlapping copies.

The existing copy always supplies the initial values of its replacement copy in our
migration action. We use the values of the existing copy at the end of its lifetime, which
ensures thalystantiate = tsupply: Thus, the replacement copy is initialized correctly if the
existing copy is uniform. When the copies are disjoint, the existing copy can easily supply
the initial values since its receive lifetime ends before the receive lifetime of its replace-
ment copy begins. When the copies are overlapping, the receive lifetime of the existing
copy ends after the receive lifetime of the replacement begins. In this case, we associate
values with the instantiation event of the replacement copy after the event occurs. Since
the existing copy can execute a write during the overlap period, the initial values of the
replacement copy are unknown when its instantiation event ocayrs at . Therefore, when
we schedule the binding of these initial values with that event, we associate a special tran-
sitionviD. When the receive lifetime of the existing copy ends and its final values are
known at logical receive timlgd , We assign its values to the version thdDtheames.

We would like to use the same local memory coherence unit for each existing copy
and its replacement since their lifetimes are disjoint. However, their receive lifetimes

determine when we need physical storage for the copies. Since the receive lifetimes of dis-
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joint copies are disjoint, we can use the same local memory coherence unit for them. How-
ever, if the copies are overlapping, we require physical storage for both copies tteitween
andtrd . Therefore, we include storage for the replacement copy in the transition record.
We associate the transitioiD with the initially unsubstantiated version of this storage.

If the copies are overlapping, we perform two actions at local logical receive time
t,- First, the existing copy provides the initial values of its replacement by assigning its
final values to the version named by the transwi@n Second, we copy its replacement
from the storage of the transition record to the local memory coherence unit used by the
existing copy. Both actions are necessary in general. Updates from the new owner copy

betweentri and.  overwrite the initial version of the replacement copy. Thus, we must

My
copy the storage of the transition record to the local memory coherence unit. Further,
although the initial version may have been overwritten in the storage of the transition
record, the assign to the initial version also substantiates any unsubstantiated reads of that
version that executed during the overlap period betw,qen tr?nd

We determine the correct owner location and distances to use for a request from
the relationship of its scheduled execution timéo tr. If T < T, the old owner location
is the correct location. if > 1, the new owner location is the correct location. Every
request message includes an owner location field that is used in the overlapping case to
determine on which copy to execute the request. Since the issuing SIU does not know the
owner location when it schedules a miss, the home copy writes the location to which it for-
wards a miss in this field, while the issuing SIU writes the location that it uses to deter-
mine the scheduling displacement of a hit in this field. Lemma 6.7 shows that these rules

record the correct location in this field for all requests, including hits that the issuing SIU

schedules before learning about the migration.

Owner Update Protocol



98

When a node executes a request during an overlap period, it uses the owner loca-
tion field to determine the copy on which to execute the request. It executes the request on
the existing copy if the field has the old owner location. Otherwise, it executes the request
on the replacement copy. Since the field always has the correct location, it executes the
request on the copy whose lifetime includes the scheduled execution time of the request.

With disjoint copies, neither copy exists betweegdn qind . We show in Section
6.5 that the receive lifetime of any copy that executes a request includes the request’s log-
ical receive time since the request’s owner location field is corredt ahslays equals.

Thus, no coherence actions arrive during the disjoint period.

We associate a directory copy with each owner copy. A directory at execution time
te is exactif it includes exactly the locations with a copy whose lifetime incliiglen
exact directory is a complete directory without any spurious locations. The lifetime of the
new owner directory begins &, when the new owner copy becomes the owner copy.
Lemmas 6.4 and 6.5 show that the new owner directory is exact initially.

Our migration action ensures the correct execution of all requests that an issuing
SIU schedules before it knows about the transition. The SIU must have used the old owner
location and distances to schedule these requests since it did not know about the transition.
We ensure thaty is greater than the scheduled execution times of these requests, which

ensures that we do not need to reschedule them.

6.3. Scheduling Horizon

We introduce thecheduling horizorH, of an isotach shared memory system. The

scheduling horizon bounds the scheduled execution time of any locally issued request rel-
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ative to local logical receive times. By definitidp;+ H > 1,55, Wheret 5 is the maxi-
mum scheduled execution time of any request already scheduled by that SIU. We can
combine the scheduling horizon with the isotach invariant to bound scheduled execution
times at the receiver when we send a message.

The bound provided by the scheduling horizon are useful. Remotely generated
coherence actions can affect scheduling decisions by changing the state of local copies.

For example, the replacement of existing local copies by our migration action affects

scheduling decisions by changing the scheduling displacements. If a coherence action can

affect the scheduling decision of a previously scheduled request, we must be able to
reschedule requests. Since this solution is expensive, we use the scheduling horizon to
prevent the problem. We delay any scheduling effects of these coherence actions by at
leastH. Sincet, + H > 1,5, Wheret, is the logical receive time of the action at the node,
we do not have to reschedule any requests.

We deriveH in two parts: 1) we bound the scheduled execution time of any locally
issued request relative to the minimum possible scheduled logical send time; and 2) we
bound the minimum possible scheduled logical send time relative to local logical receive
times.H is the sum of these bounds since it bounds the scheduled execution time of any
locally issued request relative to local logical receive times.

The scheduling algorithm establishes the first bound. For example, in a system that
uses the basic scheduling algoritiast, = max(ast,, min_send+ x;) is the scheduled
execution pulse. Singain_sendis the pulse of the minimum possible logical send time,
the scheduled execution time of any locally issued request exceeds the minimum possible

scheduled logical send time by at mgsk,y, the maximum scheduling displacement.
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We can establish the second bound if the network is extensible. We assume an
extensible network unless stated otherwise. Bounding H is more difficult, and may be
impossible, in non-extensible networks. If the network supports immediate responses,
min_sendis at most one more than the current local receive pulse. Suppose a message that
has gpid-rank component greater than thiel-rank of the issuing process is delivered to
the issuing process immediately before it issues the last request of the isochron, so that the
current local receive pulse has not changed when the isochron is scheduled. Consistency
with potential causalityequires thaiin_sendis greater than the current local receive
pulse. Sincenin_sendis the minimum possible send pulsan_sendmust be exactly
one pulse greater than the current local receive pulse. Aiheix,,4 + 1 in a system that

uses the basic scheduling algorithm and supports immediate responses.

6.4. Migration Action Details

In this section, we present details of the migration action in four parts after we dis-
cuss its basic mechanics. The simplest part changes the home copy record of the owner
location. Another part replaces existing local copies with new local copies. The third part
involves the instantiation of new local copies that are not replacement copies. The final

part of the migration action initializes the new owner directory.

6.4.1. Basic Mechanics

We assume the new owner location is already selected in our description of the
migration action. The new owner copy replaces the existing copy at that location. If there

IS no existing copy at the new owner location, our migration action creates one. We leave
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the migration initiation policy and the selection mechanism of the new owner location for
future work. Possible migration initiation policies include the owner copy observing few
local requests or repeated write requests by another copy. The initiation policy might
determine the new owner location. Alternatively, ownership requests could determine it.

In our initial description of the migration action, no local copy in a transition state
can be a victim copy. We relax this restriction in Section 6.7. The owner copy must be
valid in order to initiate a migration action. We leave for future work a protocol that
allows concurrent migration actions of the same coherence unit.

The old owner changes state to migrating and multicastgvaarship transition
coherence operatio(lrO) to its directory, the home copy and the new owner copy. The
old owner sends the TO so that its logical receive timT(Oe, , Is the same at each destina-
tion. If no local copy exists at the new owner location, then the TO to that location
includes the values of the coherence unit and creates its existing copy.

We definety ast, _+ Xy , whergy is the scheduling displacement of the owner-

ship transition. The old owner sengs= maxH, max(d5)+d as

old, new_dhome ne\/\)
part of the TO, where mad{g) is the maximum logical distance from any recipient of the
TO to the old owner locatiom is non-negative since the home copy receives the TO and
dhome, old ¥ dold, new= Ahome, newbY the triangle inequality. The scheduled execution

time of any request scheduled priortfo IS less thasincext = H. We explain in

Section 6.4.5 how using; > max(d;g) +d , ensures the correct ini-

old, new_dhome, new
tialization of the new owner directory. Table 6.1 summarizes the notation for an owner-

ship transition. We introduce the last two entries of Table 6.1 in Section 6.4.5.
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Concept Symbol Definition

TO Logical Receive Time trTO Determined by locations in old owner directory
Scheduled Execution Time T trTO + Xt
Scheduling Displacement XT max(H,max(d+g)+ doig new 9home new
Existing Copy Execution S _

Displacement existing -d home, old dold, copy
Replacement Copy Execution 5 d —d

Displacement replace home, new new, copy
Instantiation Message Logical t e —d

Receive Time ri T “replace
Destruction Message Logical t Te &

Receive Time M T “existing
Directory Message Logical t +d d

Send Time Spir Tr home new™ “old, new
Directory Message Logical I +d

Receive Time Mbir T home new

6.4.2. Home Copy Algorithm

The home copy algorithm ensures that the honngO
copy forwards any miss action with a scheduled execy- |

tion time less thamy to the old owner and any miss

® 7'y

\ dold, home

XT

TI I T N— 4
I N A

Figure 6.4: Home Action

action with a scheduled execution time greater thai.

to the new owner. The scheduled execution time of a miss cannotrecirate requests

have unique tags. Table 6.2 shows the home copy algorithm of an ownership transition

and Figure 6.4 shows its schema. The old owner sends the TO to the home copy. The

home copy sends itself a response delayegrbyWhen the home copy receives this

response, its record of the owner location becomes the new owner location.

Table 6.2: Home Copy Algorithm

Event Logical Receive Time Actions
Receive TO tho Send TO response to self;
Receive TO response Tt = trTo + Xt Owner = new owner;
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Lemma 6.1: If the scheduled execution time of a miss action is lesstthahen
the home copy forwards it to the old owner copy. Otherwise, the
home copy forwards the miss action to the new owner copy.

Proof: The scheduled execution time of a miss actidg+sd¢opy, home
since its scheduling displacementig,y, home Since the issuing
SIU sends the miss action to the home copy, the home copy
receives each miss at its scheduled execution time. The home copy
forwards each miss action at its scheduled execution time since the
forwarding message is an immediate response. Since the home
copy changes its record of the owner location to the new owner
location atty = t, _+ Xy , the lemma follows. QED

The owner location field of any miss has the correct location by Lemma 6.1.
6.4.3. Replacement of Existing Copies

Table 6.3 shows the local copy algorithm that replaces the existing local copies.
Any location that has a valid local copy when it receives the TO, including those of the
new and old owner copies, executes this algorithm. When the SIU receives therT'I(')O at
it allocates and initializes a transition record, sets the state of its copy to migrating and
sends two delayed responses to itselfdémtruction messagend thanstantiation mes-
sage The destruction message causes the destruction event of its existing local copy,
while the instantiation message causes the instantiation event of its replacement.

We want the delays of these messages to make their execution-tirBasce the
destruction message destroys the existing @Riing is the execution displacement that
applies to it. ThUST1 —O¢yisting = tr,, + X1~ existing Should be its logical receive
time, t, , which requires a logical delayof — deyisting: Similarly, we delayt, , the logi-
cal receive time of the instantiation messagexpy drepiace 1hese delays are non-nega-
tive sincext 2 0 (see Section 6.4.1), Whidgyisting = -Uhome, old~ dold, copy < 0 and

Oreplace = “Uhome, new™ dnew, copy< 0. We now prove that these delays are correct.
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Table 6.3: Local Copy Algorithm

Execution Event |t o te Actions
Send destruction message to self;
Send instantiation message to self;
Execute TO tho 6ex'5“”9 trTO 6ex'5“”9 Allocate and initialize transition record;
State = migrating;
If (state is migrating) {
State = disjoint; }
Else /* state is overlapping */ {
Destroy t S I State = valid,;
existing copy rq | existing T Assign to initial version of replacement;
Copy transition storage to main storage;
Owner = new owner;
Discard transition record; }
If (state is migrating) {
. State = overlapping; }
ré”?;igtr':;i ¢ t 5 I Else /* state is disjoint */ {
P o ry | “replace T State = valid;
Py Owner = new owner;
Discard transition record; }
If ((state is overlapping) and
Execute 5existing (owner is not request owner)) {
concurrent t, or T, Execute on replacement copy; }
request, a * | Oreplace Else {
Execute on existing copy; }

Lemma 6.2: The lifetime of any existing copy endstat The lifetime of any
replacement copy beginswt

Proof: The lifetime of a copy ends &jesyroy the execution time of its
destruction event. For any existing CoRjstroy IS the sum of the
logical receive time of its destruction message and its execution
QI'SF?'aceme”ttrd + 6existing S 6existing + 6existing : ThUS, the

lifetime of any existing copy ends &t.

Similarly, the lifetime of a copy begins &siantiate. the €xecution

time of its instantiation event. For any replacement coYantiate

ISt +Oreplace = T1 ~Oreplace * Oreplace: THUS, the lifetime of

any replacement copy beginstat QED

Figure 6.5 shows the schema for the local copy algorithm when the copies are dis-
joint, while Figure 6.6 shows the schema when the copies are overlapping. The only dif-
ference between these schemata is the order of the receive events of the instantiation and

destruction messages. In both cases, the old owner sends the TO to the associated SIU.
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The SIU sends the virtual responses to itself, aIIocate[sST

initiali iti t, ° T doid, copy
and initializes a transition record, and changes the {(; [ &xq
iarati : : S
local copy state to migrating, as previously described.t, 1 <7 existing
Orepl
The actions of the local copy algorithm for the t, ¥ """y

instantiation and destruction messages depend o1 Figure 6.5: Disjoint Action

order in which they are received. We encode this ordgr

St
. . . . t, ° T dolg, copy
in the local copy state. The state remains migrating {(; —A X7

5replace

until one of these messages is received. We change thg

N_—
yéexisting
N_—

state to disjoint when the destruction message is £
received first, and to overlapping when the instant Figure 6.6: Overlapping Action
tion message is received first. The local copy state does not change again until the second
message is received since a local copy in a transition state cannot be a victim copy.

When the destruction message is received first, the copies are disjoint, so we
change the local copy state to disjoint. When the node receives its instantiation message,
we change the local copy state to valid and the local record of the owner location to the
new owner location. We then discard the transition record.

When the instantiation message is received first, the copies are overlapping so we
change the local copy state to overlapping. When the node receives its destruction mes-
sage, we change the local copy state to valid and assign the existing copy values to the ini-
tial version of the replacement copy. These values substantiate any reads of that version
and any variables of the storage of the transition record that have not been overwritten by
an update from the new owner copy. We then copy this storage into the local memory

coherence unit used by the existing copy, change the local record of the owner location to

the new owner location and discard the transition record.
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The last row of Table 6.3 shows how we determine the copy on which to execute a
request that has a logical receive time during an overlap period. If the request’s owner
location field equals the local record of the owner location, it is executed on the existing
copy. Otherwise, the request’s owner location field must equal the new owner location

and it is executed on the replacement copy.

6.4.4. Instantiation of New Local Copies

Instantiating a new local copy during an ownership transition is difficult because it
must be replaced and the initial new owner directory must include its location. We avoid
these difficulties by not instantiating any new local copies during ownership transitions.
Therefore, the supplying event for a new local copy is not performed on the old owner
copy after it begins sending the TO. Instead, we separate the instantiation of new local
copies from the service of miss requests during an ownership transition.

After it begins sending the TO, the old owner copy continues to receive miss
requests, which it services at their scheduled execution times. The old owner copy ser-
vices each read miss by sending its value to the issuing SIU and each write miss by send-
ing an update multicast to its directory. If the issuing SIU is not in its directory, the old
owner copy sendsdistinguished updat® the SIU. A distinguished update decrements
the reservation count for the coherence unit but is never stored in the new local copy, i.e. it
satisfies the read or write request but does not supply a new copy.

The issuing SIU explicitly indicates if a miss includes an instantiation request (IR).
Pipelined misses, which the SIU uses until the new local copy is instantiated, do not
include an IR. Ordinarily, the owner copy executes the supplying event for the new copy

when it services a miss that includes an IR. During an ownership transition, the old owner
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Table 6.4: Separated IR Action

Execution
t o) t
Event r e
Supplying event max(t 1 ) -Ahome, new max(trlR’tri) - dhome, new
Instantiation event max(trm’tri) + dnew, copy |-dhome, new - new, copy max(tfm’tfa) - dhome, new

copy separates the IR from the miss. It forwards the IR to the new owner copy at the

bounded level of service. The issuing SIU location is not added to the old owner directory.
The execution time of any supplying event performed on the new owner copy must

be at leastt, when its lifetime begins. The logical receive time that correspongsab

=t

the new owner copy i = 1 -9 ro T X7 tdhome new - the logical receive

replace
time of its instantiation message. The new owner copy buffers any separated IR that it
receives beforderi . When the new owner copy receives its instantiation message, it sends
an instantiation multicast for these requests at the standard level of service.

The new owner copy can receive separated IR’s after it receives its instantiation
message. It can also receive IR’s that are included with miss requests that the home copy
forwards to it. For any of these IR’s, the new owner copy perforrasidg), execution
event on its directory and sends its values to the location at the standard level of service.

Table 6.4 shows the logical times and displacements relevant to the execution
events of the separated IR action, wrtelng is the logical receive time of the IR at the
new owner copy. We now prove that the execution times of the supplying event and
instantiation event are equal when the IR is separated from the miss.

Lemma 6.3: If the separated IR is used, thgfantiate = tsupply

Proof: If t, <t,,then the new owner copy buffers the IR um;ll . The
executlon tlme of the supplying eventtjs—dyome new  Since the
execution displacement of the new owner cop¥iSime. new

Since the new owner copy uses the standard level of service for the
instantiation multicast, the issuing SIU receives the message at
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t, +dnew, copy- Since the execution displacement of the new local
COPY iS €home, new™ Anew, copy tinstantiate = tsupply:

Otherwise, the new owner copy executes the supplying event when
it receives the IR. Thus$; —d;;me new IS its €xecution time.
Since the new owner copy uses the standard level of service to

return the IR, the issuing SIU receives itat + d, o\, copy - We
again add the execution displacement of the new local copy to
derive thatnstantiate = tsupply QED

The separated IR can result in unreserved local copies in the filling state. The
replacement policy cannot select an unreserved filling local copy as a victim copy since
we cannot differentiate the response to its IR from that of a subsequently requested copy.
We can relax this restriction if we associate a generation number with the new local copy.
We do not detail the relaxed mechanism further.

Since the new owner location has overlapping copies, it can receive its destruction
message after a separated IR or an IR included with a miss. The new owner location
assigns the final values of its existing copy to the initial version of its replacement copy
when it receives its destruction message. Therefore, the trandDiazan represent the
initial value of new local copies for which the supplying event is performed on the new
owner copy. In order to substantiate the initial version of these copies, the new owner
location sends an update multicast to its entire directory when it receives its destruction
message. This update assigns the final values of its existing copy to the initial version of

any new local copy that the transitioiD names and to any reads of that version.

6.4.5. New Owner Directory Initialization

Table 6.5 shows the execution events of our algorithm that ensures the new owner

directory is exact initially. Figure 6.7 shows the schema that applies to it. The old owner
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Table 6.5: New Owner Directory Initialization Algorithm

Execution .
t 0 t Actions
Event r €
Read old 58xisting =t -d Message directory = directory;
owner directory | Soir | -dpome, oig | Soir ~ "°Me: 0ld ISend directory message to new owner copy;
Instantiate new 6rep|ace = I Directory = message directory [
owner directory | Toir [-dphome. new T destinations of instantiation multicast;
copy sends the contents of its directory at t
1o
_ . t @
b o = trTO Xt dhome new_dold, new iN the Rk X XT
T ——
directory message. Although a copy cannot be doid, new dhome, new
A 4 v
Moir

destroyed after it receives the TO, the old owne  Figure 6.7: Directory Action

copy can receive releases after it begins sending the TO. We now show that before the old
owner copy sends its directory, it executes any release that is sent to it.

Lemma 6.4: Any release sent to the old owner copy is receivquQy

Proof: We first show that, 2t +dcqpy gig2ts,, Whereopyis any
recipient of the TO. §|nc;¢T 2max(dro) +dgignew—9home new
ER S O dhome new—dold, new by deflnltlpn,
t. =t, +max(d;gy). The desired relation follows since

DIR . IT
maxdof = d by definition.

copy, old

If the TO is not sent to the released copy’s location, then a
removey;, for the release was performed on the old owner direc-
tory beforetSTO . Thus, the release was received beggi(e

If the TO is sent to the released copy'’s location, then the release is
sent bytrT since a local copy in a transition state cannot be a vic-

tim copy. Therefore, the old owner copy receives the release by
t, _ *dcopy, olg @Nd, thustg . QED

M
If the old owner directory is correct, the directory message provides exactly the
locations of the replacement copies. The destinations of the instantiation multicast that the
new owner copy sends are the only other locations that have a copy whose lifetime

includestt and, thus, must be in the new owner directory initially. The instantiation event

of the new owner directory, which occurs when the directory message is executed, initial-
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izes it to the message directory plus the destinations of the instantiation multicast. Every

location that has a copy whose lifetime includgess in the initial new owner directory.

Lemma 6.5: The new owner directory is complete initially if the old owner

Proof:

directory is correct.
Lettinsiantiate,, € the execution time of the instantiation event of
the new owner directory. We must show that any location that has a

copy such thfatinstantiatecopyg tinstantiateDir < tdestroycopy is in the
new owner dlrectory aqnstamiaten

First, we showt;gantiate,,  €0UAIS. The execution displacement
of the new owner directory islome, new The new owner directory
is instantiated when the directory message is received. Since

trDIR = trTo X1 +dhome new’ tinstantiateDir = trTo+XT =17

We now show that if the lifetime of a copy includgsthen the
location of the copy is in the initial new owner directory.

The lifetime of the new local copy at any destination of the instanti-
ation multicast begins at. We construct the initial owner direc-
tory to include these locations.

Any other copy whose lifetime includesg is a replacement copy.
Sincet S2tg and each replacement copy location receives the
TO, the directory message includes the location of any replacement
copy. Thus, the new owner directory is complete initially. QED

Lemma 6.5 shows our new owner directory initialization algorithm is correct,

while Lemma 6.4 shows that no releases are lost.

6.5. Protocol Correctness

The correctness of our dynamic owner update protocol is derived primarily from

that of the static owner update protocol. Any execution without migration actions is iden-

tical to an execution of the static owner protocol. Thus, the execution is isochronous and

sequentially consistent. This section shows that executions remain isochronous and

sequentially consistent. in the presence of migration actions.
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A transition aware requess any request scheduled when the local copy of its
issuing SIU is in a transition state. The scheduling displacement of a correctly scheduled
transition aware request is based on the old owner locatientf and on the new owner
location otherwise, which we now show the basic scheduling algorithm does:

Lemma 6.6: The basic scheduling algorithm schedules every transition aware
request correctly.

Proof: There are two possible scheduling displacements that determine
Xa,,, IN Step 1 of the algorithm if the local copy is in a transition
state. For a read request, the possible scheduling displacement
based on the old owner locatiorHsl ;e o1a— o1 co , While it

. y ..
i —dhome new™ Anew, copy P@sed on ths new owner FOC&'[IOI’]. Fora
an
d

write requeSchopy, old™ Yhome, ol copy, new_dhome new
are the possible scheduling displacements. In Step 4, we then com-

parett with 1, the scheduled execution time of the request that is
implied by the value dfst, determined in Step 3. tf< 1y, the
algorithm bases the scheduling displacement on the old owner loca-
tion and on the new owner location otherwise. Thus, it schedules
every transition aware request correctly. QED

Many other scheduling algorithms exist that schedule transition aware requests
correctly. We do not discuss the choice of scheduling algorithms further. If a request is not
a transition aware request, its owner location field is correct, as we now show:

Lemma 6.7: The owner location field of every request has the correct location if
every transition aware request is scheduled correctly.

Proof: Recall that the old owner location is the correct locatiar<iftt
wheret is the scheduled execution time of the request. Otherwise,
the new owner location is the correct location.

The home copy records the location to which it forwards the
request in the owner location field of any miss. Thus, the field of
any miss has the correct location by Lemma 6.1.

The issuing SIU records the owner location that it uses to determine
the scheduling displacement in the owner location field of any hit.
We divide hit actions into three groups: 1) those scheduled before
t, i 2) those scheduled aftgr ~ but before the transition com-
pletes for the issuing SIU; 3) those scheduled after the transition
completes for the issuing SIU.
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1) The issuing SIU uses the old owner location to determine the
scheduling displacement of any hit action scheduled beg‘ore
Sincext = H by definition,T < t. Thus, the owner location field
of the request has the correct location.

2) Any hit action scheduled afte,r but before the transition com-
pletes for the issuing SIU is scheduled when the local copyisina
transition state and, thus, is a transition aware request. By assump-
tion, the owner location field of the request is correct.

3) The issuing SIU uses the new owner location to determine the
scheduling displacement of any hit action scheduled after the tran-
sition completes for the issuing SIU. Thus, the owner location field
of the request has the correct location¥t1.We now show that
T=t,+x>t, JHXT =T wheretg is the initial send time of the
request ang{ i |s ts scheduling dlsplacement

The issuing SIU’s local copy is either a replacement copy or a copy
for which the supplying event was performed on the new owner
copy. In either casés>t, _+ X1 +dpome newt dnew, copy  SiNCe

ts must be greater than the logical receive time of the message that
caused the instantiation event of the copy. If the request is a read,
thenX = Orgplace = “Ghome, new™ dnew, copy If it Is @ write, then

X = dnew, copy™ dhome, new= Oreplace ThUS,T > 11 and the owner
location field of the request has the correct location. QED

We can now show that= @ for every execution event of each coherence action.

Lemma 6.8: The property t, always equals” holds assuming every transition
aware request is scheduled correctly.

Proof: The execution distanc®, of each execution event of any request is
determined by the same owner location as its scheduling displace-
ment,¥, since the request’s owner location has the correct location
by Lemma 6.7. Table 5.1 shoys= ® and, thust = t.. QED

We can now show that the final values of an existing copy always determine the
initial values of its replacement:

Lemma 6.9: For any replacement COfyystantiate = tsupply if €Very transition
aware request is scheduled correctly.

Proof: We show that the destruction event of any existing copy is the sup-
plying event of its replacement and, thugpny = T = tinstantiate
by Lemma 6.2. The destruction event of any existing copy occurs
when the destruction message is executed.
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If the copies are disjoint, the replacement copy initially uses the
local memory coherence unit that the existing copy had used. Since
the owner location field of any write is correct by Lemma 6.7, the
scheduled execution time of any write is during the lifetime of the
owner copy that distributes its updates. Sipadways equals by
Lemma 6.8, no node receives any updates during a disjoint period.
Thus, the local memory coherence unit holds the final value of the
existing copy at, and the existing copy’s destruction event is its
replacement’s su'pplying event when the copies are disjoint.

For overlapping copies, the execution of the destruction message
assigns the final value of the existing copy to the initial version of
the replacement copy. Thus, the destruction event of the existing
copy is also the supplying event of its replacement copy.QED

In order to show that every copy is uniform, we divide the scheduled execution
time line of each coherence unit into epochs with a unique owner copy. By Lemma 6.2,
the lifetime of each local copy belongs to exactly one of theser epochsThe owner
copy of thei owner epoch is the new owner of ()% migration action and the old
owner of tha® migration action.

Lemma 6.10: All copies in the dynamic owner update protocol are uniform if
every transition aware request is scheduled correctly.

Proof: We use induction on the number of owner epochs to show that
every directory is correct and all copies are uniform.

Basis: Consider the first owner epoch. The first owner directory is
correct by the same logic that showed the directory of the static pro-
tocol is correct in Lemma 5.5. The first owner distributes updates
for all writes with scheduled execution times during its owner
epoch by Lemma 6.7. The lifetimes of the existing copies of the
first migration action end at ity by Lemma 6.2. Thus, the logic of
Theorem 5.3 that showed the copies of the static protocol are uni-
form applies and all copies of the first owner epoch are uniform.

Inductive step: Consider tmd" owner epoch. We assume that the
(n-1)Stowner directory is correct and all copies of thel)> owner
epoch are uniform in order to show that tifeowner directory is
correct and all copies of tmd" owner epoch are uniform.
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Since then-1)% owner directory is correct, tmd" owner directory
is complete initially by Lemma 6.5. The remainder of the logic of
Lemma 5.5 applies and, thus, tiB owner directory is correct.

Sincet, always equals by Lemma 6.8 and the" owner directory

is correct, any copy of the" owner epoch executes every write
request with a scheduled execution time during its lifetime. Since
the owner location field of every read request is correct by Lemma
6.7, no copy of the™ owner epoch executes any read with a
scheduled execution time outside its lifetime. Thus, any copy of the
nt" owner epoch is uniform if it is initialized correctly.

Any replacement copy of thé" owner epoch, including thg"
owner copy, is initialized by an existing copy of thel)> migra-
tion action, which is uniform by the inductive hypothesis. Since
tinstantiate = tsupply PY Lemma 6.9 ant}, always equals by
Lemma 6.8, the copy is initialized correctly.

Any other copy oht" owner epoch is initialized by thé" owner

copy. SinClinstantiate = tsupply PY €ither Lemma 6.3 or Table 5.1

andt, always equals by Lemma 6.8, any copy of" owner epoch

that is not a replacement copy is initialized correctly. QED
We can now easily prove that the protocol is correct:

Theorem 6.1: The dynamic owner update protocol enforces isochronicity and
sequential consistency if the scheduling algorithm is correct and
every transition aware request is scheduled correctly.

Proof: Every copy is uniform by Lemma 6.10 andalways equals by
Lemma 6.8 if every transition aware request is scheduled correctly.
Thus, by Theorem 5.2, the protocol enforces isochronicity and
sequential consistency if the scheduling algorithm is corr@&D

Thus, our highly concurrent migration action moves the owner copy while still

maintaining isochronicity and sequential consistency.

6.6. Split Operations and Migration

The migration action has implications for our implementation of split operations.

We assume that all assigns use the standard level of service. If different copies distribute a
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sched and the corresponding assign, the triangle inequality ensures that the copy that dis-
tributes the assign receives the sched before the assign.

The old owner copy must receive any assign that it distributes before the destruc-
tion event of its directory occurs gt = t, + Xy +dpgme o1 - Therefore, the issuing

SIU sends any assign to the new owner copy &fteft X1 + dy,,me o1g—d . Any

copy, old
assign that is sent earlier is sent to the new owner copy if it distributed the corresponding
sched; otherwise the assign is sent to the old owner copy.

Before the new owner copy receives the directory message, it can receive assigns
for which the old owner copy distributed the corresponding sched. It distributes these
assigns when it receives the directory message in a single multicast.

A new local copy that a separated IR instantiates can receive a distinguished
update for a local sched before it is instantiated. It can send the assign directly to the new

owner if the distinguished update includes that location. Alternatively, another application

of the triangle inequality shows that the assign can be sent through the home copy.

6.7. Releases During Migration

We can eliminate our restriction on the release of a local copy in a transition state.
We send a release for a copy in a transition state to both the new and old owner locations.
The new owner copy can receive this release before the directory message. The new
owner copy collects these releases in a temporary release directory. These releases are sent
before any separated IR since the local copy is in a transition state. Therefore, we subtract
the release directory from the message directory and then add the destinations of the

instantiation multicast to obtain the initial new owner directory.
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Any release of a local copy that the new owner copy receives after the directory
message executes correctly. Any such release is sent directly to the new owner copy. Cor-
rect execution of the release requires that the new owner copy receives the release before
any subsequent IR from the same location. If the home copy forwards the IR directly to
the new owner copy, the triangle inequality ensures that the new owner copy receives the
release first, as in the static protocol. If the separated IR is used, another application of the
triangle inequality shows a separated IR travels at least as far to the new owner location as
an IR that the home copy forwards directly to the new owner copy and, thus, the release is

received before the separated IR.

6.8. Optimizations

Other optimizations of our migration action are possible. For instance, the new
owner can use the directory message as its instantiation message, since they have the same
logical receive time. This change probably has little effect on performance since virtual
messages do not create any network traffic and only use buffer space at the SIU.

We can reduce the network traffic of the migration action slightly. The new owner
sends the assign for the transitidD to its entire directory. Only new local copies that
the new owner instantiates can require this update. Thus, we can reduce the number of
destinations for this message if the new owner tracks these copies until it sends the update.

We delay the execution time of the supplying and instantiation events of the new
local copy with our separated IR. Many other options for the instantiation of new local
copies during migration allow the supplying events of some or all of the new local copies
to be performed on the old owner copy, eliminating the delay on their execution times.

These new local copies are existing copies of the migration. The local copy algorithm for

Owner Update Protocol



117

these copies is more complex since their receive lifetimes can beginr%fter . Some
options also complicate the home copy algorithm. The benefit of these options in relation

to the cost of the additional complexity is uncertain.

6.9. Chapter Summary

We presented an owner update protocol that can relocate the owner copy while
maintaining isochronicity and sequential consistency. Our highly concurrent migration
action solves several problems that do not arise in equidistant topologies, such as changing
the execution displacements of every local copy. We modify this action in the next chapter
to create the first delta invalidation protocol. Finally, we introduced the concept of the

scheduling horizon of an isotach shared memory system.
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Chapter 7:

Owner Invalidation Protocol

7.1. Introduction

In this chapter, we present tbener invalidation protocglthe first invalidation
protocol designed for isotach systems. As with other invalidation protocols, this protocol
provides a writer with exclusive access in order to take advantage of reference streams
that exhibit processor locality, but unlike other invalidation protocols, it allows writers to
execute writes without obtaining ownership. This separation of the acquisition of owner-
ship from the service of writes increases concurrency and allows the protocol to adapt to
reference streams that do not exhibit processor locality. The owner invalidation protocol

provides this benefit while retaining the advantages of other delta protocols.

7.2. Protocol Overview

The owner invalidation protocol is a variation of the owner update protocol. The
protocols use the same coherence actions and scheduling displacements for requests and
the same execution displacements for copies. Thus the values from Table 5.1 apply to this
protocol as well as to the owner update protocol. Both protocols support non-owner as
well as owner copies.

The principal difference between the protocols is in the ownership transition
actions, and even these are similar. Recall that the migration action, the ownership transi-
tion action of the owner update protocol, destroys each copy while creating a replacement

copy for each copy it destroys. In the owner invalidation protocol, the ownership transi-
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tion action, called thevalidation action destroys existing copiegithout creating new
copiesexcept at the new owner. Thus the new owner starts with an exclusive copy. Since
the new owner copy is the only new copy created by the invalidation action, the new
owner is the only location that needs a transition record.

In this respect, the invalidation protocol is simpler than the update protocol, but in
others it is more complicated, notably in the need for an additional directory at the owner
copy. This directory, called thassign directoryis required to support split operations.

The principal challenge we faced in designing an invalidation protocol for isotach systems
was in finding a way to invalidate copies without breaking split operations. In a system

that supports split operations, a copy can have outstanding unsubstantiated reads, i.e.,
reads that were executed while the value of the copy was unsubstantiated. A copy with an
unsubstantiated read must continue to receive assigns until the read is substantiated. Thus
in an isotach system that supports split operations, copies cannot be destroyed unilaterally.
The owner invalidation protocol continues to send assigns to each invalidated copy until
the copy explicitly consents to its destruction by sending a release. The owner uses the
assign directory to track locations that have not sent a release. It distributes assign updates
to both directories, the ordinary directory, which we callitreecopy directoryas well as

the assign directory, but distributes write updates only to the live copy directory. In this
chapter, we use the termsite andwrite updatedo include scheds and sched updates.

Another difference between the protocols concerns the instantiation of new copies
in response to miss requests that overlap the ownership transition. As in the update proto-
col, every miss request that contains an IR results in the issuing SIU receiving a copy.
However, the instantiation of new non-owner copies during an ownership transition is

delayed to a time later in the ownership transition by the invalidation protocol than by the
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update protocol. Delaying the instantiation of new copies gives the new owner a logical
time interval during which it is guaranteed to have an exclusive copy. The delay also
allows a location that acquires a new copy during an invalidation action that invalidates
the location’s existing copy to use the same local memory coherence unit for both copies.
Without the delay, the receive lifetimes of the copies potentially overlap, necessitating the
use of a local memory coherence unit for each copy. We will show in Lemma 7.1 that the
receive lifetimes of these copies can not overlap. With the exception of the delay in the
instantiation of new non-owner copies during an invalidation action, the instantiation of
new copies, both owner and non-owner, is the same in both protocols.

We leave exploration of policies for initiating invalidation actions for future work.
and assume here that an invalidation action begins when the owner copy receives a write
request. Unless it has an exclusive copy, the owner executes a locally issued write in the
same way as any other write, with the result that it obtains a new, now exclusive, owner
copy for itself. The owner does not initiate an invalidation action in response to a locally
issued write if it already has an exclusive copy.

Neither protocol allows concurrent ownership transition actions. If the owner
receives a write request while an invalidation is in progress, it executes the write and sends
any updates required, but does not initiate an invalidation action on the writer’s behalf. In
traditional invalidation protocols, the execution of a write request requires exclusive
access and a busy response prevents concurrent accesses to the coherence unit during an
invalidation action. The separation of the acquisition of ownership from the service of
write requests in our protocol makes it more concurrent than traditional invalidation proto-

cols and allows it to adapt gracefully to accommodate multiple concurrent writers.
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An invalidation action begins in the same way as a migration action: the owner
multicasts a transition operation (TO) with the same logical receive tme at all desti-
nations. The execution time of the TO i;TO plus the execution displacement of the copy
on which it is executed. The execution time of the ownership transition itsglfiisboth
the migration and invalidation actions, the lifetime of the new owner copy begips at
and the lifetime of every existing copy endsthyIn both actionsty is t ot Xt where
X1= max(H, maX(dTO)+ dold, new_dhoma ne\/\) :

When a location other than the new owner location receives a TO, it invalidates its
existing copy. A location with an invalid copy must use a miss action for any subsequently
scheduled request. However, previously scheduled requests must execute on the existing
copy. Thus, a copy must continue to execute updates until all outstanding scheduled
requests on the copy have been executed. ineeH and all scheduled requests are exe-
cuted withinH pulsesit is an upper bound on the lifetime of existing copies. The old
owner copy is an existing copy with the special responsibility of servicing misses and
writes with scheduled execution times ug4oThus, its lifetime ends exactly gt.

In the invalidation protocol, a copy can go through as many as three phases before
it completely disappears: 1) invalidation; 2) death; and 3) release. When a copy is invali-
dated, no new requests can be scheduled on it; when its lifetime ends, it no longer receives
write updates; and when the copy is released, it no longer receives even assign updates. A
copy sends its release as soon as possible, so not every copy goes through all three phases.

The initialization of the new owner directory in the invalidation action reflects the
protocol’s use of two directories. Recall that the invalidation protocol associates an assign
directory and a live copy directory with the owner copy. The initialization of the new

owner live copy directory is trivial — since the new owner copy is initially an exclusive

Owner Invalidation Protocol



122

copy, the new owner location is the only location in its initial live copy directory. Initial-
ization of the assign directory at the new owner is the same as the initialization of the new
owner directory in the migration action except the directory sent by the old owner in the
directory message is the union of its directories. The locations in the old owner live copy
directory do not belong in the new owner live copy directory because these locations will
no longer have live copies Bt when the new owner starts using its directories. However

the locations must remain in the current owner’s assign directory until they send releases.

7.3. Invalidation Action Details

If a valid owner copy receives a write request, it begins an invalidation action. It
multicasts a TO with a uniform logical receive tirlrpgo to the home copy and the loca-
tions in its directories, including the new owner location. If the write request that triggers
the invalidation action is not locally issued, then owner copy’s state changes to invalid.
Otherwise, its state changes to migrating and it uses the local copy algorithm of the migra-
tion action. As in the update protocol, an ownership transition migrates the owner copy
from the old owner location to the new owner location, and, in this case, these locations
happen to be the same. The owner copy also sends an update operation for the write
request, as shown in write schemata of Figure 5.8. Except in equidistant networks, the
update is sent separately from the TO since the TO must have a uniform logical receive
time and the update a uniform logical send time.

The home copy algorithm of the invalidation action is identical to that of the
migration action that we presented in Section 6.4.2. Thus, Lemma 6.1 applies and the

owner location field of any miss is correct. We present the rest of the invalidation action:
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1) the algorithm that destroys the existing copies; 2) the instantiation of new local copies

during the invalidation; and 3) the algorithm that initializes the new owner directories.
7.3.1. Destruction of Existing Copies

The local copy algorithm of the invalidation action is significantly simpler than
that of the migration action since it does not create replacement copies. This change elim-
inates the need for an instantiation message. Also, the destruction message is eliminated
since the local copy state changes to invalid when the TO is executed.

Upon receiving a TO, a non-owner local copy sends a release when its reservation
count equals zero. A reservation count of zero indicates that all previously scheduled
requests have completed, including all outstanding unsubstantiated reads. The old owner
copy follows the same rule except that it must not send a release before executign time
since it must service misses and write requests until that time. Thus, the old owner copy
sends a release at execution tirpglogical send timay —O¢,jg;ing ) if it is Not reserved;
otherwise it sends the release it when it later becomes unreserved. Finally, the algorithm
does not release an invalidated copy if its SIU is acquiring a new local copy, i.e. if the
local copy’s state has changed from invalid to filling.

The lifetime of each existing copy ends as soon as possible after it is invalidated.
We definetgestroy the execution time of its destruction eventiras(t,  + dqyisting Tr) ,
wheretSrel is the send time of the invalidation acknowledging release. The lifetime of the
old owner copy, which is an invalidated copy, always ends since the old owner copy
cannot send a release befofe— 0, iing

As noted before, a copy can be invalid but still alive. A copy’s state always

changes to invalid when it executes the TO, but its lifetime does not end until execution
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Table 7.1: Local Copy Algorithm (Except at the New Owner Location)

Execution Event |t o te Actions

State = invalid;
If (not (reserved or old owner copy)) {
Execute TO t Oexisting 6+ Oexisting | Send release; }
Else {
Send COA to self; }

If ((state is invalid) and (not reserved) and
(old owner copy)) {

Execute COA |t | Oexisting i (_ijOpyv old ” | Send release to new owner; }
con old, copy || (reserved) {
Owner = new owner; }
Execute If ((state is invalid) and (not reserved) and
concurrent t, 5exi5tmg T, (owner is not self)) {
request, a ? Send release; }

time ty if it is still reserved. Also, a copy’s lifetime can end before the copy sends a
release. If the copy has executed any reads that are still unsubstantigiénatist con-

tinue to receive assigns. In this case, the destruction event of the copy occurs before the
invalidation acknowledging release is sent. Thus, its release can be sent after its receive
lifetime ends.

If an issuing SIU has an invalid local copy when it sends an IR, it uses the same
local memory coherence unit for the new local copy, which changes the state of the invalid
copy to filling. If the invalid copy was reserved, the local copy algorithm never acknowl-
edges the invalidation and the lifetime of the invalidated copy ergs dust as with a
reserved invalid copy, the filling copy must execute updates since previously scheduled
read hits may be executed on it.

Table 7.1 shows the three parts of the local copy algorithm of the invalidation
action. These parts are: 1) execution of the TO; 2) executionharaye of address
(COA) virtual message that the algorithm uses to ensure assigns and releases are sent to

the correct location; and 3) execution of concurrent requests. We now describe each part.
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The algorithm always changes the copy’s state to invalid when it executes the TO.
Also, if the copy is neither reserved nor the old owner copy, the algorithm sends a release
to the old owner copy when the TO is executed. Otherwise, a COA virtual message is sent.
The COA ensures the old owner directories are destroyed after the old owner copy
receives all assigns sent to it. After an issuing SIU receives the COA, it sends any assign
to the new owner copy. Before it receives the COA, it sends any assign to the new owner
copy if the new owner copy distributed the corresponding sched and to the old owner copy
otherwise. Since the execution time of the old owner directory’s destruction evgnt is
the old owner copy must receive all assignI py- O, isting = tr. . + X1 + dhome old
We maket, + Xt +dyome ola—Ycopy, ola  the logical receive time of the CQA, ~ ,in
order to ensure the old owner copy receives any assigns in time. The COA’s logical delay

iS X1 * dhome old— deopy, olg» Which is at leastly,, e g+ d since

old, new ™ dhome new
Xt 2 Max(drg) +dgig new = home new @NdMax(drg)2d;qpy 01g DY definition. Since
dhome oid* Yoid, new= dhome new PY the triangle inequality, the delay is non-negative.

The old owner copy has completed its ownership responsibilities when the local
copy algorithm executes its COA since the execution time of its COA &hus, the
algorithm releases the old owner copy when it executes the COA if the copy is invalid and
unreserved. When any location executes the COA, the algorithm changes the local record
of the owner location to point to the new owner location if the local copy is reserved.

As noted, a local copy that is reserved when it receives the TO must execute
requests concurrent with the transition. An invalidated copy can receive updates and pre-

viously scheduled read hits. After executing any concurrent request that it receives, the

copy sends the invalidation acknowledging release if appropriate. We note that the algo-
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rithm uses the local record of the owner location to ensure it does not release the old
owner copy before the copy’s ownership responsibilities are completed.

The invalidation acknowledging release is sent to both the old owner copy and the
new owner copy if it is sent before the COA is executed. The rule is the same as the rule
used in the owner update protocol for releases concurrent with a transition (see Section
6.7). This similarity in the protocols is not surprising since an invalidation acknowledging
release is the same as a transitional release. After execution of the COA, the release is sent
only to the new owner copy. As in the owner update protocol, the new owner copy can
receive releases before its directories are instantiated. It collects these releaslease a
directory. We discuss the execution of these releases in Section 7.3.2.

Although the new owner location has an existing copy, it does not execute the
local copy algorithm shown in Table 7.1. Unlike the other existing copy locations, the
existing copy at the new owner location is replaced and, thus, the algorithm of Table 7.1
does not apply. Instead, the new owner location executes the local copy algorithm of the

migration action shown in Table 6.3. We do not discuss that algorithm further.

7.3.2. Instantiation of New Local Copies

The instantiation of new local copies during an invalidation is nearly identical to
their instantiation during a migration. The only differences in the invalidation protocol are
that the new owner location uses a variation of the separated IR during the ownership tran-
sition and it sends the instantiation multicast later. These differences allow a site to store
an invalidated copy and a new local copy in the same local memory coherence unit safely.

They also ensure a period of logical execution time during which the new owner copy is
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Table 7.2: Separated IR Action

Execution
t, o) te
Event
Supplying event trd -Ahome, new trd - dhome, new
Instantiation event trd + dnew, copy -dhome, new - Anew, copy trd - dhome, new

the only copy. As in the owner update protocol, the separated IR can result in an unre-
served local copy in the filling state. We assume a filling local copy is never released.

In the update protocol, the new owner location sends the instantiation multicast at
t, when it receives its instantiation message. In the invalidation protocol, it sends the
instantiation multicast at when it receives its destruction message. Logical receive
time t, is always later that}i at a new owner copy since a hew owner copy is an over-
lapping copy. In addition to the separated IR’s that the old owner copy forwards to it, the
new owner location can receive IR's betwéen  gnd  that are included with a miss that
the home copy forwards to it. In this case, the new owner copy services the miss immedi-
ately, while it buffers the IR until it sends its instantiation multicast, exactly as if the IR
was forwarded to it by the old owner copy. Table 7.2 shows the logical times relevant to
the separated IR of the invalidation protocol. Observethaintiate = tsupply for new
local copies instantiated by a separated IR.

We note that the new owner copy does not send an assign update for the transition
vID in the owner invalidation protocol. The new owner location substantiatedEhat
when it receives its destruction message. We assume that action precedes the supplying
events performed on the new owner copy for the instantiation multicast.

The new owner copy is the only copy whose lifetime includes the period of logical

execution time betweery andtrd the execution time of any supplying

_dhome new:

event of a separated IR. The old owner copy does not instantiate any copies after it begins
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Table 7.3: Initialization of New Owner Directories Algorithm

Execution .
Event & 5 le Actions
A Message directory =
Read old owner 5ex|stmg It live copy directory [ assign directory:

. . - d
directories Soir | -d Spir - home, old _
home, old Send directory message to new owner copy;

Live copy directory = self;

Instantiate S _ Assign directory =
new owner '[rDIR i replace Tr message directory - release directory;
directories home, new Discard release directory
Send assign multicast to assign directory;
sending the TO and the lifetime of every existing copy t

t
ri My
, |Receive| Time
ends bytt. No supplying events are performed by the

new owner copy before it sends the instantiation mul- Execution Time

Tr trd_dhome new
Figure 7.1: Exclusive Period
period of exclusive access that Figure 7.1 illustrates.

ticast. Thus, the new owner copy always has the

Notetr <t sincet, = T;-9 = Tr + dhome otg T d

_dhome, new existing,ew old, new

and, by the triangle inequalityly, ; me new< 9home old* doid, new

Delaying the instantiation multicast tp also ensures that an invalidated copy
and a new local copy can safely use the same local memory coherence unit. Any invali-

dated copy’s receive lifetime ends by—o since

existinggqpy = TT+ dhome old+ dold, copy

its lifetime ends byt. The receive lifetime of any new local copy at that location cannot

+d when the location would receive the

begm beforaT + dhoma old+ dold, new new, copy

instantiation multicast. These receive lifetimes do not overlap, as we now prove:

Lemma 7.1: The receive lifetimes of any invalidated copy and any new local
copy at the same location do not overlap.

Proof: Since an invalidated copy’s lifetime endstyy its receive lifetime
ends bytr + dpome ola* doid, copy  Since the instantiation multi-
castis sent aty + dpome o1gtd , the copy'’s location would

+d which is the

recglve itatry + dhome oldt dold, new = ~'new, copy '’ .
earliest that a new local copy'’s receive lifetime can begin at that

old, new
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location. Sincedy g ey + Anew, copy dold, copy  PY the triangle

inequality, the lemma follows. QED
By Lemma 7.1, the invalidated copy and a new local copy can use the same local

memory coherence unit.
7.3.3. New Owner Assign Directory Initialization

Table 7.3 shows the algorithm that initializes the new owner directories. The logi-
cal times of the events that initialize the new owner directories in the owner invalidation
protocol are identical to those that initialize the new owner directory in the owner update
protocol. The actions associated with the events change slightly since the new owner copy
has assign and live copy directories and the existing copies are not replaced. Figure 6.7
shows the schemata that applies to the initialization of the new owner directories.

Since the new owner copy delays the instantiation of any new local copies, it is the
only copy whose lifetime includas. Thus, its location is the only location in its initial
live copy directory. When the new owner copy sends the instantiation multicast, the desti-
nations are added to its live copy directory, which ensures that it is correct:

Lemma 7.2: Every live copy directory is correct.

Proof: Each live copy directory is initially complete: We assume the live
copy directory of the first owner copy is initially complete since its
lifetime begins during system initialization. The new owner copy is
the only replacement copy. The execution time of the instantiation
event of any new local copy is after. Since the new owner live
copy directory includes the new owner copy, it is initially complete.
For any copy instantiated by a separated |IRad;, is performed
on the new owner live copy directory when the instantiation multi-
cast is sent. By the logic of Lemma 5.5 that showed the static owner
update protocol directory is correct, @adp;, is correctly per-

formed on the directory for any other new local copy and a
removey;, is correctly performed on it for any release.  QED
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We use the directory message to initialize the new owner assign directory. The
message directory is assigned the union of the old owner assign and live copy directories

attg . When the new owner copy receives the directory message, the initial new owner

assign directory is assigned the set difference of the message directory and the new owner
release directory. The new owner copy can then discard its release directory. After its
assign directory is instantiated, the new owner copy sends an update for every assign it
receives befortiarDIR to the locations in its assign directory. We note that these updates can
be combined into a single multicast.

The assign directory ensures all reads are eventually substantiated. As in the owner
update protocol, we assume that each assign is sent at the standard level of service after
the corresponding sched returns. We now prove that the owner invalidation protocol sup-
ports our implementation of split operations:

Lemma 7.3: The owner invalidation protocol eventually substantiates all reads.

Proof: All releases execute correctly. Since a filling copy cannot be
released, any release that the new owner copy receives before it
sends the instantiation multicast must be for an invalidated copy.
These releases can only remove the location from the new owner
assign directory and, thus, execute correctly. The new owner copy
executes all other releases correctly by the logic of Lemma 5.5 that
shows the static owner update protocol executes releases correctly.

Every location receives an assign for the version named byiany

on which it could perform an unsubstantiated read. Since the old
owner live copy directory is correct by Lemma 7.2, it contains
every location that the current ownership transition invalidates.
Thus, the initial new owner assign directory includes any unre-
leased invalidated copies since the directory message contains the
union of the old owner assign and live copy directories. Thus, every
read is eventually substantiated if every assign is received after the
corresponding sched.

Each assign is received after the corresponding sched. If the same

owner copy distributes their updates, then any location receives the
assign after the sched since the issuing SIU sends the assign after
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the sched returns. If different owner copies distribute the updates,
every copy receives the assign after the sched by the triangle ine-
guality since assigns use the standard level of service. QED
Recall no release is sent for an invalidated copy if its SIU is acquiring a new local
copy. The subsequent miss essentially moves the location from the assign directory to the
live copy directory. We assume this movement is not actually performed. Instead, we

assume releases execute on both directories. This assumption does not create unnecessary

message traffic since assign updates are sent to locations in the live copy directory.

7.4. Protocol Correctness

The correctness of the owner invalidation protocol is derived primarily from the
correctness of the owner update protocol. For example, the owner location field of every
request has the correct location in the owner invalidation protocol by the logic of Lemma
6.7 since the protocols use the same coherence actions and home copy algorithm and the
relevant logical times of their ownership transitions are the same.

The protocols use different methods to ensure that no write request is executed on
an existing copy incorrectly. In the update protocol, the owner location field determines
on which copy a concurrent write is executed. In the invalidation protocol, the new owner
location still uses that mechanism, while the separated IR mechanism ensures that writes
with scheduled execution times aftgrare not executed on any invalidated copies.

Lemma 7.4: For any write request executed on an invalidated aop¥;r,
wheret is the scheduled execution time of the request.

Proof: By Lemma 6.7, each owner copy distributes updates for exactly the
writes and scheds with scheduled execution times during its epoch.

An invalid copy only receives updates distributed by the old owner
copy, which is the owner copy of its owner epoch.
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An invalid copy becomes a filling copy if a local miss is scheduled
after the TO is executed. If the miss is a write with a scheduled exe-
cution time greater thary, then a distinguished update for that

write from the new owner copy can arrive at the invalidated copy
during its receive lifetime. However, the write is not executed on

the invalidated copy since distinguished updates are never exe-
cuted. By Lemma 7.1, the invalidated copy’s receive lifetime does
not overlap with the new copy’s receive lifetime and, thus, no other
updates from the new owner copy arrive before the end of the inval-
idated copy’s receive lifetime.

Thus, any write or sched executed on an invalidated copy is distrib-

uted by the old owner copy. Thuss t1 for any write request exe-

cuted on an invalidated copy. QED

Lemma 7.4 implies that the old owner location is the value of the owner location

field of any write executed on an invalidated copy. Further, the old owner location is the
value of the owner location field of any read executed on an invalidated copy since miss
actions are used after the TO is executed. Since the owner location field of every request
has the correct location, any request executed at the new owner location is executed on the
appropriate copy. Thug, always equals since the same owner location determines the
scheduling displacement of any request and the execution distance of its execution events,
as in the proof of Lemma 6.8. We can now show every copy is uniform. As in Lemma

6.10, we use induction on the number of owner epochs.

Lemma 7.5: All copies in the owner invalidation protocol are uniform if every
transition aware request is scheduled correctly.

Proof: Basis: The copies of the first owner epoch are uniform by the same
logic that applied to the owner update protocol in Lemma 6.10.

Inductive step: We show that every copy of tifeowner epoch is
uniform if the copies of thén-1)% owner epoch are uniform. Each
copy of then™ owner epoch executes every write with a scheduled
execution time during its lifetime since the live copy directory of
then™ owner copy is correct by Lemma 7.2.

The scheduled execution tinte,of any read executed on a copy of
then™ owner epoch is during the copy’s lifetime. If it is not exe-
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cuted on an invalidated copy, then the logic used in Lemma 6.10
applies. Otherwiser > 1 sincext = H and misses are used after

the copy is invalidated. The reservation count ensures that the copy
is not released before Thus,t is during the copy’s lifetime and

any correctly initialized copy of tha" owner epoch is uniform.

Each copy is initialized correctly: Sintgalways equals, we need
to show that the supplying event is performed on a uniform copy
such thatinstantiate = tsupply for every copy of the™ owner epoch.
Then'™ owner copy IS |n|t|‘aI|‘zed corrgctly SINGRstantiate = Lsupply
by Lemma 6.9 and its existing copy is uniform by the inductive
hypothesis. Any other copy of tné owner epoch is uniform since
its supplying event is performed on thi8 owner copy such that
tinstantiate = tsupply: @ either Table 7.2 or Table 5.1 showsQED
We can now easily prove that the owner invalidation protocol is correct:
Theorem 7.1:The owner invalidation protocol enforces isochronicity and sequen-
tial consistency if the scheduling algorithm is correct and every
transition aware request is scheduled correctly.
Proof: If every transition aware request is scheduled correctly, every copy
is uniform by Lemma 7.5 artd always equals by the logic of
Lemma 6.8. Therefore, by Theorem 5.2, the owner invalidation
protocol enforces isochronicity and sequential consistency if the
scheduling algorithm is correct. QED
The owner invalidation protocol exploits processor locality since it provides exclu-
sive access for long write runs. Unlike other invalidation protocols, the service of a

request can occur concurrently with an invalidation action in our protocol.

7.5. Optimizations

We can optimize our invalidation action when the old owner copy is also the new
owner copy. Since the owner location does not change, the home copy algorithm is unnec-
essary. Thus, the home copy does not need to receive the TO. The owner copy does not
require a transition copy since its execution displacement does not change. The directory

action moves the locations in the live copy directory to the assign directtg_g}g at
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Also, we canusgr = H . Recallthat 2 max(drg) +dgig new—Yhome new 1N
order to ensure the directory message is sent after the old owner copy receives all releases
sent to it. When the old owner location is the new owner location, the destination of

releases does not change and, thus, no releases are lost if yye sisid

7.6. Chapter Summary

We have presented the first delta invalidation protocol and proven its correctness.
This protocol uses a highly concurrent invalidation action that is an adaptation of the
migration action of the owner update protocol. The owner invalidation protocol supports
our implementation of split operations. The protocol exploits long write runs and adapts
naturally to reference patterns that do not suit invalidation protocols since it uses update

messages for writes concurrent with the invalidation action.
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Chapter 8:

Local Update Protocol

8.1. Introduction

We present thocal update protocoin which each local copy is responsible for
distributing updates for locally issued writes. Prototype isotach systems that use off-the-
shelf components motivated the design of this protocol [Reg97, WiR97]. The initial proto-
type is an all software implementation of an isotach network, while special purpose hard-
ware will improve performance in later prototypes. Support for extensibility incurs
significant performance penalties in these prototypes. The local update protocol supports
dynamic replication without requiring an extensible network. We expect this protocol to
improve performance substantially over the static replication protocol that is currently
used in these systems.

The local update protocol should perform well when used for variables that are
both read and written in an interleaved manner by multiple processes [BCZ90]. Most
coherence protocols perform poorly for this reference pattern since the processes read the
variable frequently but are not likely to read the value of any given write. Thus, invalida-
tions cause many misses, while many updates are unused. The local update protocol does
not invalidate copies and updates for each write are distributed by the issuing SIU instead
of a centralized copy. This choice for update distribution only requires one network cross-
ing to disseminate each write and should reduce the occurrence of network hot spots. The

drawback of this choice is that every copy of the protocol requires a directory.
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8.2. Protocol Overview

If a network is not extensible, the logical send times of response messages cannot
be controlled. Thus, in the absence of an extensible nettym&nnot be ensured to equal
T for any execution event of a request caused by a response message. This restriction
makes it difficult, if not impossible, for an intermediate location, such as the owner loca-
tion, to distribute updates for write requests. The local update protocol can schedule write
requests without relying on extensibility since the issuing SIU distributes every write.

Theinstantiation actiorof the local update protocol, a highly concurrent special
coherence action, creates all new local copies. If an issuing SIU does not have a valid local
copy or an instantiation action in progress when a request is issued, it immediately begins
an instantiation action by sending an IR to the home copy. The IR is never combined with
the request. The issuing SIU delays the scheduling decision for any write request until the
instantiation action initializes the directory associated with the new local copy. Thus, this
protocol replaces the write miss action with an instantiation action followed by a write hit
action. Section 8.5 discusses the instantiation action further.

Figure 8.1 shows the other coherence actions of the local update protocol. The
issuing SIU of a write hit sends an update to each copy in its directory such that the logical
receive time of the update is the same at every destination, while read hits just execute
locally. Since each local copy distributes updates, we must associate a directory with it. In
the read miss action, the issuing SIU sends the request to the home copy, which executes
the request and returns its value to the issuing SIU in a response that uses the bounded

level of service. The read miss response never instantiates a new local copy.
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Figure 8.1: Local Update Protocol Coherence Actions

The logical receive time of each of these coherence actions is the scheduled execu-
tion time of the request. These actions do not rely on extensibility since their execution
events occur after exactly one message. The response message of the read miss action
occurs after its only execution event. Thus, the logical send time of its response can
exceed the logical receive time of the request at the home copy by an indeterminate period

of logical time, as the question mark indicates in the schema.

8.3. Local Copy States

Local copy states can be valid, write-only, filling or invalid. An issuing SIU uses
read hits only if its local copy is valid. It uses write hits with a valid or write-only local
copy. A new local copy is allocated in the filling state when the SIU issues an IR. When
the copy’s directory is instantiated (see Section 8.5), the copy’s state becomes write-only.
When the copy itself is instantiated, its state becomes valid. We show a copy’s directory is
always instantiated before the copy itself in Section 8.5.2.

The home copy must always be valid since it must execute all read misses. In the
instantiation action, the home copy distributes additions to the local copy directories and,
thus, it must have a directory. Since every copy in the protocol has a directory, the home

copy can be viewed as a distinguished local copy.
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Table 8.1: Local Update Protocol Displacements and Distances

Coherence Action [Execution Event z dn, o () X
m
Read Miss Home copy dcopy, home | O | dcopy, home dcopy, home
Read Hit Issuing copy 0 0 0 0
Write Hit Local copy dcopy, loc_copy | © dcopy, loc_copy dcopy, loc_copy

8.4. Request Coherence Actions

Table 8.1 shows the scheduling displacements of the local update protocol. The
execution displacement of every copyyy, is 0. A write hit has multiple scheduling dis-
placements. The scheduling displacemet, ¢opy Of an update sent to the local copy,
loc_copy isdcopy, Ioc_copy HOWeVer, each write request has a single scheduled execution
time, 1. The issuing SIU ensures- t for its execution events by varying the logical send
times of the updates so that the logical receive time is the same at each destination.
Lemma 8.1: The local update protocol ensutgslways equals.

Proof: Table 8.1 shows that= ® and, thust, = 1 for the execution event
of each read request. For any write requestt,, wheret, is the log-
ical receive time of every update for the request. pgg, = 0 for
every copyte = t, =T for any execution event of the reque&QED

Sincet, always equals, the local update protocol is correct if all copies are uni-

form and the scheduling algorithm is correct by Theorem 5.2.

8.5. The Instantiation Action

Our instantiation action is highly concurrent. The issuing SIU can schedule and
send read misses while it acquires the new local copy, and it can schedule and send write

hits when the associated directory is instantiated, which occurs before the instantiation
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action completes. The action uses several response messages, but it does not require an
extensible network since its correctness does not require the anticipation of the logical

receive time of any of the responses.
8.5.1. Overview of the Instantiation Action

The instantiation action must initialize the new local copy and its associated direc-
tory correctly. It must also ensure that the location of the new local copy is added to every
existing directory before its lifetime begins. Sitgalways equals by Lemma 8.1, the
action initializes the new local copy correctly if it performs the supplying event for the
copy on a uniform copy such thgtsantiate = tsupply:

The instantiation action correctly initializes the directory of the new local copy.
When the home copy receives an IR, it adds the location to its directory and sends the con-
tents of its directory to the issuing SIU. The logical receive time of this directory message
is the execution time of the new directory’s instantiation evgt, e, . For the new
local copy (or any local copy that is created for an IR the home copy receives after it sends

the directory message), the instantiation action enspres, i, >t , Where

instantiatep;,

t is the execution time of the new local copy’s instantiation event. Since a new

instantiate
local copy’s location is added to the home copy directory before that copy’s directory
message is sent, the new directory includes any unreleased copy created by a previous IR
and, thus, is complete initially.

We ensure the location of the new local copy is added to every directory before

t The home copy sends a message to every location in its directory when it

instantiate*
receives the IR. When a copy receives this message, it adds the new local copy’s location

to its directory and sends an acknowledgment to the new local copy. The new local copy’s
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instantiation event occurs after it receives every acknowledgment. Thus, its location is
added to every directory before its lifetime begins.

The existing copies must add the new local copy’s location to their directories to
guarantee that the new local copy receives every write request during its lifetime. Each
copy sends its acknowledgment in such a Waytl',llg;[ , the logical receive time of its
acknowledgment is greater tharax(t,,), the maximum previously scheduled execution
time of any locally issued write request to the coherence unit. An update for any subse-
guently scheduled, locally issued write request is sent to the new local copy.

In order to initialize the new local copy correctly, each existing copy sends an
acknowledgment to the home copy as well as to the new local copy’s location, such that
the logical receive time of the acknowledgments is the same at both destinations. The
instantiation event of the new local copy occurs when the new local copy’s location
receives the last acknowledgment and its supplying event occurs when the home copy
receives the last acknowledgment. Since the supplying event is performed on the home
copy and the logical receive time of the last acknowledgment is the same at both destina-
tions, tinstantiate = tsupply @nd the copy is initialized correctly if the home copy is uniform.

The home copy sends its values to the new local copy at the bounded level of ser-
vice when the supplying event occurs. Sitjg&antiate = tsupply @nd the execution dis-
placements of both copies are zero, these values must arrive after the instantiation event of
the new local copy occurs. To accommodate reads occurring beiweerate and when
the values arrive, we initialize the new local copy to an unsubstantiated special transition
vID. The values sent by the home copy are assigned talthis

We assume that the home copy is initialized correctly and its directory is complete

initially since their lifetimes begin during system initialization. The home copy is always
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Table 8.2: Instantiation Action Copy Algorithms

#| Copy Logical Receive Time Actions
t. <t. +d.o, Execute IR:
h . .

Home fir = "8k TISSUING NOME 10 oy sDue [issuing ] = |directory];

1 C Send AA to directory;
opy Add issuing copy location to directory;
Send directory message to issuing copy;
_ trDIR = tSAA + dhome issuing Exe_cute directory message:

> Issuing Directory = message directory;

Copy State = write-only;

AcksDue = |directory| - 1;

Local o = L, t0h Execute AA: . .

3 C Fan S oM COPY | Add issuing copy location to directory;
opy Send ACK to home and issuing copies;
t =t +d -« cing|EXECUte acknowledgment:
. r SACK issui copy,issuin

4 Issuing ACK “ShcKissuing. ~COPY %" Decrement AcksDue ;

Copy If (AcksDue is zero) {

State = valid; }
t, =t +d Execute acknowledgment:
r S, copy,home

5 Home AcK. PACKhome Py Decrement AcksDue [issuing

Copy If (AcksDue [issuing ] is zero) {

Send issuing copy transition vID assign; }

in every directory and, thus, receives an update for every write since it is never released

and its directory initializes all other directories. Thus, it is uniform.

8.5.2. Details

We present details of the instantiation action. Table 8.2 shows its steps essentially
in the order they occur. Figure 8.2 shows its schemata. In Table S8gsuimg copys the
new local copy. The actions shown in rows 2 and 3 are concurrent. Similarly, the actions
shown in rows 4 and 5 are concurrent.

When a request is issued and no local copy exists or its state is invalid, the issuing
SIU sends an IR message to the home copy at the bounded level of service, which we
assume provides point-to-point FIFO delivery. Also, a local memory coherence unit for
the new local copy is allocated if necessary. Its state is set to filling and the trariBition

is associated with its unsubstantiated initial version.
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The home copy performs several te _
to home—2—»:

<d issuing, home

actions when it receives the IR. It sets MR ' X
. tsAA A .
the outstanding acknowledgment count d
home, copy
. . . . t 4
for the issuing copyAcksDudissuing], Fan 5
ACK’s y t
to the current size of its directory. The  tg N dSACK’iSS“i”Q
dCODV: home y e r;:]opy,tlssumg
home copy uses an array for this purpose ——— 4, ax( rACK)

todssuing
y A
vs d home, issuing

in order to support concurrent instantia-

tion actions from different locations tc Figure 8.2: Instantiation Action

the same coherence unit. The home copy also seratidaaddres$AA) coherence oper-

ation to each location in its directory, adds the issuing copy’s location to its directory and

sends the directory message to the issuing SIU. The home copy receives an AA since it is

always in its directory. The AA's and the directory message use the standard level of ser-

vice and all have the same logical send titge, , Which is an indeterminate amount of

logical time after the logical receive time of the tRui . The home copy includes its

AcksDuearray index of the issuing copy in the AA. A local copy includes this index in

the acknowledgments that it sends in response to the AA as an identifier of the AA.
Execution of the directory message instantiates the directory for the issuing copy

and changes that copy’s state to write-only, which allows the issuing SIU to schedule

write hits. It also sets the issuing copy’s outstanding acknowledgment AcksDue, to

one less than the size of the directory since the issuing copy’s location is in that directory.
We can now prove that the home copy receives every write request.

Lemma 8.2: The home copy is uniform.

Proof: We assume the initial values of the home copy are correct since its

lifetime begins during system initialization. Thus, we must show
that it executes every write at its scheduled execution time.
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The home copy is never released and is always in its own directory.

Since the directory of the home copy initializes the directory of any

local copy, the home copy is always in the directory of any local

copy. Thus, the home copy receives and executes an update for

every write. Since it is never released, the scheduled execution time

of any request is during its lifetime. QED

A local copy adds the issuing copy location to its directory when it receives an AA.

It sends an acknowledgment to the home copy and the issuing copy with the same logical
receive timexrACK . Acknowledgments from different local copies can have different logi-
cal receive times, but every pair of acknowledgments from the same source has the same
logical receive time. The pair of acknowledgments with the greatest logical receive time is

shown in the schemata. Since the logical send time of the acknowledgment to the issuing

copy, t , precedes the logical send time of the acknowledgment to the home copy,

sACK,issuing

Sack fome the schemata depicts the case where the distance from their sender is greater to
the issuing copy than to the home copy. The opposite case is also possible.

Each local copy guarantees that the issuing copy receives any update it sends with
a logical receive time greater thanfits . We can easily implement this restriction. If
the reservation count of the sender is zero, then it has no outstanding write requests and
the restriction is met automatically since the acknowledgments use the standard level of
service. Otherwise, the sender can ensure the pulse component of is at least the
scheduled execution pulse of its most recently scheduled isochron.t;l;@lys, is greater
than the receive time of the update for any previously scheduled, locally issued write
request to the coherence unit. In addition, the local copy must send an update for any sub-

sequently scheduled, locally issued write request to the new local copy. If the reading of

the directory to determine the update destinations and the scheduling of the requests is not
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atomic, then the local copy must add the issuing copy location to the update destinations
of any unscheduled write for which the directory has already been read.

Any local copy that receives an AA executes this algorithm regardless of its state.

If the local copy no longer exists or is invalid, then the associated SIU has released it. If
the local copy state is filling then the SIU initiated an instantiation action after releasing a
previously held local copy. In these cases, the issuing copy location does not need to be
added to the released copy’s directory. However, the SIU must send its acknowledgments.

The home copy also sends its acknowledgments. The acknowledgment that it
sends to the issuing copy provides the guarantee that the issuing copy receives its updates.
The acknowledgment that it sends to itself causes the supplying event of the issuing copy
when no other local copies exist.

The issuing copy decrememisksDuewhen it executes an acknowledgment.
WhenAcksDue becomes zero, the issuing copy has received an acknowledgment from
every location in its initial directory and it executes its instantiation event by changing
state to valid. After its state becomes valid, the issuing copy must execute any updates that
it receives. We assume the network supports the triangle inequality. Therefore, the issuing
copy receives the directory message before any acknowledgments. We discuss relaxing
this assumption and other optimizations to the instantiation action in Section 8.8.

The home copy decrememisksDudissuing when it receives an acknowledg-
ment from any local copy for the issuing copyAtksDudissuing is zero, then the home
copy sends an assign of its current values to the issuing copy for the trariBitgince it
has received the last acknowledgment. We now show that the issuing copy is uniform if

releases execute correctly.
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Lemma 8.3: Each local copy is uniform if releases execute correctly.

Proof: The instantiation event of any local copy other than the home copy
occurs when its location receives the last acknowledgment for its
AA and its supplying event occurs when the home copy receives
the last acknowledgment. Since each acknowledgment pair has the
same logical receive time at both destinations and all execution dis-
placements are zemystantiate = tsupply- 1he issuing copy is initial-
ized correctly since the home copy is uniform by Lemma 8.2and
always equals by Lemma 8.1.

Any read execution event performed on a local copy other than the
home copy is for a read hit and must be scheduled after the copy’s
instantiation event. The reservation count ensures the read executes
before the copy’s destruction event. Sihcalways equals, the

read’s scheduled execution time is during the copy’s lifetime.

We now show that the issuing copy of any IR executes any write
requestw, with a scheduled execution tinte during its lifetime.
Since releases execute correctly, the issuing copy receives an
update fow if its location is correctly added to each directory.

Suppose a copy in the initial directory of the issuing copy sends the
updates fow. Sincet, always equals and the scheduled execution
time of any write is the logical receive time of its updates,the
logical receive time of the updates forSincet is during the issu-

ing copy’s lifetime;t must be greater thzztpACK , the logical receive
time of the acknowledgment from the copy that sends the updates.
Since each copy guarantees that the issuing copy receives any
updates that it sends with logical receive times greatert;l;lg(n ,
the issuing copy receives an updatewoi hus, it executew.

Suppose a copy not in the initial directory of the issuing copy sends
the updates faw. Since this local copy is not in the initial directory

of the issuing copy, the home copy must have sent a directory mes-
sage to it after sending the directory message to the issuing copy.

Thus, its initial directory includes the location of the issuing copy
and, thus, the issuing copy execuies QED

8.6. Releases

We now present the release action of the local update protocol. This action ensures

that all releases execute correctly since every location receives instantiation and release
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actions to a coherence unit in the same order. Both actions use a message to the home copy
that causes the home copy to send a mutlicast to its directory. Every destination receives
the actions in the same order since these messages use the standard level of service.

We assume a copy must be instantiated before it is released. Thus, a local copy in
the filling or write-only state cannot be a victim copy. This assumption ensures that each
acknowledgment and directory message is applied to the correct new local copy. We can

relax this assumption if we associate a generation number with each local copy.

A release must inform each directory of <d ;
= Missuing, home AN

the coherence unit about the victim copy. Figure 2% to home

A

When an SIU selects a victim copy, it sends Figure 8.3: Release Action

8.3 shows the schemata of the release action. M@X(dhome, copy )
N

release initiating message to the home copy of the coherence unit at the bounded level of
service. The home copy removes the location from its directory and sends a release at the
standard level of service for the victim copy to every location that remains in its directory.
These releases have a single logical send time and, thus, potentially different receive times
in a logically non-equidistant network. The release coherence action does not require an
extensible network. The home copy can send the release multicast an indeterminate
amount of logical time after it receives the initiating release. A valid or write-only local
copy removes the location of the victim copy from its directory when it receives the
release. Invalid and filling local copies, which do not have a directory, discard any
releases that they receive. We discuss optimizations of the release action in Section 8.6.
We now show that armemovey;, performed for a release executes such that

andt <tadd,, foranyaddp; for a subsequent IR from the

tdestroyS tremovqDir removey;,

same SIU. Thus, the release executes correctly, as discussed in Section 5.7.4.
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Lemma 8.4: All releases execute correctly.

Proof: The execution timegesroy Of the destruction event of a copy
equals the logical send time of the release initiating message that
the copy-owning SIU sends to the home copy. Since that message
uses the bounded level of servitg,q oy <t, , Wheis its logi-
cal receive time. Aemovey;, execution event is performed on the
associated directory of any write-only or valid local copy that
receives the release. Singg, = O for every directory,

t and, thustyegiroy St

remove,, t+ dhome, copy removey, -

The execution timet, ;4  , of araddp;, performed for any sub-
sequent IR issued by the associated SIU is at least

t, +dhome copy Wheret, s the logical receive time at the
home copy of the IR. Since the bounded level of service provides
point-to-point FIFO deliverytrIR >t, and, thus,

tremoveDir < taddDir : QED
Now, we show that the local update protocol is correct:

Theorem 8.1:The local update protocol enforces isochronicity and sequential con-
sistency if the scheduling algorithm implemeiRsle andSCRule

Proof: By Lemma 8.1, always equals. By Lemma 8.4, releases execute

correctly. Thus, every copy is uniform by Lemma 8.3 and the proto-
col is correct by Theorem 5.2. QED

8.7. Split Operations

The local update protocol is compatible with our implementation of split opera-
tions. The reservation count mechanism ensures each local copy receives an assign for any
vID on which it performs an unsubstantiated read. Since the logical receive time of a
sched update is the same for every copy and the issuing SIU sends the corresponding
assign after it receives the sched update, assigns can use the bounded level of service.

The supplying event of the new local copy associates an unsubstantiated value for
the transitiorvID if the home copy is unsubstantiated when the supplying event occurs. If

the home copy is unsubstantiated, then it has not received the corresponding assign for a
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sched request already executed on it. Since the home copy receives the corresponding
assign after the last acknowledgment, the new local copy also receives the corresponding
assign. However, the new local copy can receive the corresponding assign before the
assign that the home copy sends for the transition Therefore, each new local copy

buffers assigns until it receives the assign for the transitidnlt then executes the buff-

ered assigns after it executes the assign for the trangilon

8.8. Optimizations

We discuss some possible optimizations to the instantiation and release actions of
the local update protocol. A simple optimization can be used if the request that causes the
instantiation action is a read. In our description of the instantiation action, the IR is sent
separately from the read miss. These messages can be combined. The benefit of this
choice is uncertain. Although it reduces network traffic, it delays the send time of the IR
until the read request is scheduled and the single message must use the standard level of
service. Thus, the execution events of the instantiation action are delayed, which can result
in more read misses and a longer scheduling delay for write requests.

The AA and release multicasts that the home copy sends use the standard level of
service. These messages can use the bounded level of service. The destinations still
receive the actions in the same order since their messages travel the same paths and point-
to-point FIFO delivery is guaranteed for the bounded level of service. We must alter the
instantiation action to count acknowledgments that arrive at the new local copy before the
directory message if AA messages use the bounded level of service. With this change, we

do not require the network to support the triangle inequality.
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We could use a different release action in which the SIU of the victim copy sends
the releases directly to the locations in its directory. However, we expect our optimized
release and instantiation actions to outperform this solution since our actions ensure a con-
sistent order of their execution inexpensively by using the same message paths. If the SIU
sends releases directly, we must ensure each destination executes release and instantiation
actions from the same location in their issue order. Ensuring this order is difficult with the
bounded level of service since the actions would use different messages paths.

We can alter the local update protocol to exploit extensibility. The home copy
sends the AA and directory messages so that they all have the same logical receive time in
the altered protocol. Since the issuing and home copies can use the scheduling horizon to
bound the scheduled execution time of any write for which the issuing copy does not

receive an update, the altered protocol can eliminate the acknowledgments.

8.9. Chapter Summary

We presented a local update protocol in which every local copy has responsibility
for distributing updates for locally issued write requests. The protocol suits reference pat-
terns with irregular and unpredictable accesses such as exhibited by frequently read and
written variables. Unlike other existing delta protocols, the local update protocol does not
rely on extensibility. Instead, the protocol uses a highly concurrent coherence action that
is separate from the service of requests to create new local copies. We expect the protocol
to improve performance in prototype isotach systems composed primarily of off-the-shelf

components. Finally, we proved the correctness of the local update protocol.
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Chapter 9:

Conclusion

9.1. Introduction

In this thesis, we presented an extended, more unified theory of isotach systems
than that first given by Williams [Wil92]. This extended theory enlarges the class of cor-
rect implementations of isotach networks, increases the applicability of isotach systems to
networks with non-uniform link latencies and creates a unifying framework for isotach
shared memory systems that better supports the design of delta coherence protocols. We
presented new delta coherence protocols that extend isotach-based coherence protocols to

a wider range of topologies and reference patterns and to non-extensible isotach networks.

9.2. Contributions

We have advanced the theory and understanding of isotach systems as follows:

» Identified a new relation over the events of distributed systems that captures
causality more faithfully than Lamportseppens beforeslation;

» Designed an isotach network algorithm that gives greater flexibility in the
assignment of logical distances between communicating nodes;

* Formulated a unifying framework for isotach shared memory systems;

» Extended delta coherence protocols to non-equidistant networks;

» Extended delta coherence protocols to include protocols that target data access
patterns not targeted by the original set of protocols;

» Designed a delta protocol for non-extensible isotach systems, an alternative
class of isotach systems that are easier to build than standard isotach systems.

The extended theory of isotach systems presented in this thesis contributes to the
solution of the coherence maintenance problem. Delta coherence protocols, the isotach-

based family of coherence protocols, support the execution of structured atomic actions
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without the use of locks. They allow more pipelining than traditional coherence protocols.
They also allow increased concurrency for requests by different processes in several ways
compared to traditional protocols. For example, they allow multiple concurrent readers
and writers and can separate the service of requests from the acquisition of a new copy or
exclusive access. Simulation studies show that this additional concurrency can improve
performance significantly.

After we observed that proposed prototype isotach systems appeared to be consis-
tent with causality but were not consistent with Lampdwppens beforeslation, we
defined a new relatiopotential causalityapplicable to isotach systems and other sys-
tems that use a messaging process between the application process and the network.
Instead of thédhappens beforeslation, we now require that isotach systems be consistent
with this new relation. Although the relations are simpatential causalityallows caus-
ally consistent implementations not allowed by Lamport’s relation. Thus, it increases the
flexibility of isotach systems and allows more choices in implementing isotach systems.

We designed the flex algorithm, the first isotach network algorithm that allows the
logical distances in an isotach network to reflect the raw message latency of the individual
links. Since end-to-end message latency in isotach networks is proportional to the logical
distance that the message travels, this algorithm should improve performance in networks
with non-uniform link latencies. We showed that the flex algorithm correctly implements
an isotach Logical time system while providing greater flexibility for logical distance
assignments than a simpler generalization of the previously identified isotach network
algorithm. Also, we presented a Petri net model of the algorithm that allows us to deter-
mine if a set of logical distance assignments will cause the algorithm to deadlock and indi-

cates a potential source of additional isotach network algorithms.
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We developed a new framework for isotach shared memory systems that provides
a unifying theory for these systems. Our framework specifically allows optimizations not
addressed by previous research. Also, it allows an issuing SIU to anticipate logical execu-
tion times although the corresponding logical receive times may not be known, thus sup-
porting the design of delta coherence protocols for non-equidistant networks. Unlike the
existing framework, ours does not use a physical canonical copy, allowing us to demon-
strate that a correct delta protocol represents an infinite class of correct protocols.

Our owner update protocol extends Williams’s early protocol [Wil93] to non-equi-
distant networks and unified it with her late protocol, the only other previously existing
delta protocol. Our owner update protocol includes a highly concurrent migration mecha-
nism that does not suspend access to the copies and allows any node that has a copy to
retain a copy throughout the migration. Relocating the owner copy dynamically was a
much more difficult problem than in equidistant networks since a migration generally
changes the logical distance from the owner copy location to any other location.

Our owner invalidation protocol, the first delta invalidation protocol, modifies the
migration mechanism of the owner update protocol to invalidate the existing copies. This
protocol exploits long write runs since a node that repeatedly writes a coherence unit is
guaranteed exclusive access for a period of logical execution time by our invalidation
mechanism. Unlike traditional invalidation protocols, our invalidation protocol naturally
adapts to reference patterns that do not exhibit long write runs and allows the initiating
write to complete prior to providing the writer with exclusive access.

We can now apply isotach-based coherence techniques to a much wider range of
implementations since our local update protocol supports dynamic replication without

requiring an extensible isotach network. This protocol is an important addition to the fam-
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ily of delta protocols since extensible isotach systems are more complicated and may have
higher message latency than isotach systems that do not support extensibility. The local
update protocol has several unusual features that indicate possible directions for further
research, including the replication of coherence directories and the separation of the cre-

ation of copies from the service of requests.

9.3. Future Work

This thesis has revealed several promising topics for future research. This section
discusses some of these topics in detail and outlines others.

An important topic for future work is the design of an isotach compiler and a body
of isotach programs. Isotach shared memory systems offer consistently good performance
for programs that use isochronous techniques to enforce structured atomicity requirements
[dWR96]. Development of these programs will allow us to simulate our range of coher-
ence protocols using real workloads.

Weak consistency semantics for isotach shared memory systems is another major
topic for future research. We expect that isotach techniques for enforcing traditional weak
consistency semantics, such as release consistency, will provide comparable performance
for programs for which traditional techniques perform well. Highly concurrent isotach-
based lock implementations may allow isotach techniques to improve the performance of
programs that exhibit significant lock contention. Also, we anticipate that a new class of
consistency semantics based on isotach as opposed to lock based coordination of accesses
will emerge from a study of how to write programs that use isochronous techniques.

The non-blocking implementations of isotach network algorithms that we dis-

cussed in Chapter 4 support a rich topic of future research. Under these implementations,
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an SIU can receive messages out of order. In this thesis, we assumed the SIU delivers
messages in order, which requires that messages are buffered while messages with earlier
logical receive times may arrive. Alternativebytimistic isotach systenesuld deliver

messages as they arrive. Correct execution would require the system to support rollback of
messages if the SIU subsequently received a message with an earlier logical receive time.

Many techniques developed for optimistic parallel simulation systems, such as
Time Warp [Jef85], would be applicable to optimistic isotach systems. We expect opti-
mistic isotach systems to be more efficient than other optimistic shared memory systems.
Isotach network algorithms would disseminate the equivalent of global virtual time effi-
ciently in these systems, while the isotach invariant implies a limited logical time interval
for which rollback state must be maintained.

Optimistic isotach systems would reduce the need to use weak consistency seman-
tics. Weak consistency semantics exploit opportunities to proceed with the execution of
requests that program structure ensures will not cause any violations of sequential consis-
tency. Optimistic isotach systems would automatically exploit these opportunities, as well
as other opportunities that program structure cannot reveal. Rollback in optimistic isotach
systems would recover from any violations of sequential consistency. As we have men-
tioned, we expect the isotach invariant to limit the state space requirements, an important
aspect of the cost of rollback. In addition, rollback is only required for write requests,
which usually occur infrequently relative to read requests. This last fact implies lazy can-
cellation techniques will be very useful for optimistic isotach systems.

Performance evaluation is another major topic for future research to emerge from

this thesis. A masters project currently underway is evaluating the use of the non-blocking

Conclusion



155

flex algorithm implementation. In addition, large amounts of additional evaluation of delta
coherence protocols remains, particularly using real programs and machines.
We briefly outline several other topics of future research based on this thesis:

» Applications ofpotential causalityn non-isotach logical time systems;
» Additional isotach network algorithms;
» Development of the theory of the geometry implied by isotach logical time;
» Design of other members of the delta protocol family, including:
—Limited directory protocols;
—Adaptive protocols;
—Competitive protocols;
—Invalidation protocols that do not require an extensible network;
—Owner protocols that selectively replace or invalidate each existing copy during
any ownership transition;
—Protocols that separate directory replication from data replication;
—Protocols that can negatively acknowledge an IR and, thus, not grant a copy;
—Hybrid software/hardware protocols or compiler support for delta protocols;
» Dynamic page management techniques for isotach systems;
» Migration and invalidation policies for the owner protocols;
» Allowing concurrent ownership transitions to the same coherence unit;
» Dynamic use of split operations, i.e. supporting the ability to choose dynami-
cally whether to execute a given assignment as a write or a sched/assign pair.

In addition, we want to explore minor changes to our protocols that we expect to improve
performance under some workloads. For example, in the owner invalidation protocol, the
new owner copy could delay the instantiation multicast if it has any scheduled write

requests, ensuring that the requests occur while it holds exclusive access.

9.4. Concluding Remarks

We extended the theory of isotach systems in several ways that add qualitatively to
known solutions of the coherence maintenance problem. This theory increases their flexi-
bility and allows them to serve a wider range of networks and applications. Isotach sys-
tems are an exciting technology for which there is a substantial and promising body of

future research.
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Appendix: Glossary

AA:

Adaptive protocol:

Add address (AA) operation:

Assign directory:

Assign request:

Atomic action:

Atomicity:

Blue phase:
Blue port:

Causality:

Add address operation; page 142.

Protocol that dynamically identifies and exploits ref-
erence patterns; page 21.

Coherence operation that adds a location to a direc-
tory in the local update protocol; page 142.

Directory of invalidated copies that still need to
receive assign update messages in owner invalida-
tion protocol; page 119.

Part of a split operation that is a request to associate
a value with a write request; page 15.

A group of requests; page 15.

Ordering constraint that requires the apparent indi-
visible execution of atomic actions; page 15.

Phase type in flex algorithm; page 44.
Port type in flex algorithm; page 44.

Concept of an event influencing or determining the
outcome or occurrence of another event; page 26.

Change of address message (COAjrtual message of local copy algorithm of invalida-

Cluster locality:

COA:

Coherence action:

Coherence granularity:

tion action that changes local record of owner loca-
tion; page 124.

The tendency of a processor to access a coherence
unit recently accessed by a physically proximate
processor; page 24.

Change of address virtual message; page 124.

Messages and execution events that satisfy a
request; page 20.

Coherence unit size in number of variables; page 9.
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Coherence maintenance problem:Concurrency control problem with replication;

Coherence operation:

Coherence unit;

Combined processing element:

Complete directory:

Competitive algorithm:

Competitive coefficient:

Concurrency control problem:

Concurrent events:

Conflict equivalence:

Conflicting requests:

Consistency:

Consistency semantics:

page 9.

Message to distribute effect of a write request or
alter state of copies; page 20.

Coherence protocol state information unit; page 9.
PE with local memory that acts as an MM; page 32.
Directory that at a given execution time contains any
location with a copy whose lifetime includes the

given execution time; page 82.

Algorithm for which cost is less than a constant
times the optimal cost for any input; page 21.

Constant that bounds cost of a competitive algo-
rithm for any input relative to the optimal cost;
page 21.

To ensure that every execution of a parallel program
is consistent with its ordering constraints; page 9.

Two events such that neither potentially causes the
other; page 38.

Agree on order of all conflicting requests; page 11.

Requests, at least one a write, that access the same
variable; page 11.

Ordering constraint in which all processes observe
writes to a given memory location in the same order;
page 9.

Ordering constraint that limits the values that the
system can associate with a read request; page 11.

Consistency w/potential causality: @&l bmpliest, <t,; page 39.

Copy:

Correct directory:

Instance of a coherence unit; page 10.

Directory that is complete at every execution time
during its lifetime; page 82.



Correctness set:
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All shared memory executions that conform to an

ordering constraint; page 11.

Corresponding interprocess eventdssuing send and receive events; or network send

and receive events; or delivering send and receive
events; page 37.

Corresponding messaging process events:

Delayed response:

Deliver event:

Delivering receive event:

Delivering send event:

Delta coherence protocol:

Destruction event:

Destruction message:

Directory:

Disjoint copies:

Distinguished update:

Corresponding events internal to a single messaging
process: issuing receive event and network send
event; or network receive event and delivering send
event; page 37.

Response message where logical send time equals
original message’s logical receive time ptus O;
page 31.

Event that returns value associated with a read
request to issuing process; page 10.

Receive event in a user process; page 37.

Send event by a messaging process to a user pro-
cess; page 37.

Isotach-based coherence protocol; page 35.
Execution event that destroys a copy; page 73.

Message that causes destruction event of existing
copy; page 103.

List of locations of copies of a coherence unit;
page 18.

Existing copy and its replacement for which corre-
sponding logical receive times are disjoint; page 95.

Update that decrements the reservation count at
issuing SIU but does not execute; used with sepa-
rated IR in owner protocols; page 106.

Distributed shared memory (DSM):A mechanism that provides transparent shared

memory in systems that limit physical memory
access to the local node; page 8.



DSM:

Dynamic fixed routing path:

Dynamic protocol:

Dynamic replication:

Dynamic routing path:

Equivalent constraints:

Equivalent executions:

Exact directory:

Execution:

Execution displacement:

Execution distance:

Execution event:

Execution order:

Execution time:

Execution time function:

Existing copy:
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Distributed shared memory; page 8.

Routing path chosen at the time the message is sent;
page 32.

Protocol that uses run-time coherence operations;
page 20.

Coherence mechanism that allows copy locations to
change during program execution; page 10.

Routing path chosen as message travels through net-
work; page 32.

Ordering constraints with the same correctness sets;
page 11.

Same requests associated with the same values;
page 11.

Complete directory at a given execution time that
only contains locations that have copies whose life-
times include the given execution time; page 98.

Every execution event of all shared memory
requests and the associated values; page 11.

Integer constan®, added to logical receive time to
determine execution time; page 64.

Difference,®, between execution time of an execu-
tion event and initial send time of the request;
page 64.

Event of storing or associating request value;
page 10.

Real time (total) order of execution events; page 11.

Logical time assigned to an execution event by the
logical execution time system; page 62.

Function for a copy that determines execution time
from logical receive time at node; page 62.

Copy that ownership transition destroys; page 94.



Extended isonet algorithm:

Extensible isotach network:

False sharing:

Filling state:

Fixed routing path:

Flat atomic action:

Flex algorithm:

Frequently read/written variable:

Full replication:
Green phase:
Green port:

Happens before relation:

Hardware DSM:

Hardware protocol:

Highly concurrent action:

Home copy:
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Simple extension of isonet algorithm that allows
logical distances to be different from routing dis-
tances; page 52.

Isotach network in which logical send time of
response message can be a known function of logi-
cal receive time of original message; pages 6, 31.

Requests by different processors to unrelated vari-
ables in same coherence unit; page 24.

State of a local copy that has been allocated but not
instantiated; page 74.

Routing path known to sender at time message is
sent; page 32.

An atomic action with no internal true dependences;
page 15.

Isotach network algorithm that allows logical dis-
tances different from routing distances; pages 4, 42.

Reference pattern characterized by interleaved read
and write requests by many processes; page 24.

Static replication with copy at every node; page 29.
Phase type in flex algorithm; page 44.
Port type in flex algorithm; page 44.

Formalization of concept of time in distributed sys-
tems; page 27.

DSM mechanism that uses special purpose hard-
ware; page 23.

Dynamic protocol; page 20.

A coherence action that does not restrict the concur-
rent use of other coherence actions; page 93.

Query location for miss actions; pages 20, 73.



Immediate response:

IN:

Initial send time:

Initial token count:

Instantiation action:

Instantiation event:

Instantiation message:

Instantiation request (IR):

Invalidation:

Invalidation action:

IR:
Isochron:

Isochronicity:

Isochronous execution:

Isonet algorithm:

Isotach invariant:

Isotach logical time system:
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Response message with logical send time equal to
logical receive time of original message; page 31.

Interconnection network; page 32.

Logical send time of first message used to service a
request; page 64.

Number of tokens, = 0, placed on output of a port
before any messages are routed (sent); page 44.

Coherence action of the local update protocol that
creates a new local copy; page 136.

Execution event of that initializes a new copy;
page 73.

Message that causes instantiation event of replace-
ment copy; page 103.

Request for a new local copy; page 82.

Coherence operation that destroys a copy; page 20.
Ownership transition that destroys all existing cop-
ies but does not create replacements except at new
owner location; page 118.

Instantiation request; page 82.

A flat atomic action in a fault free system; page 15.

Ordering constraint that requires all possible execu-
tions to be isochronous; page 15.

Each isochron appears to execute indivisibly;
page 15.

Original isotach network algorithm; page 42.

Message travels one unit of logical distance per
pulse of logical time, i.e. at unit speed; page 30.

An LTS that is consistent with potential causality
and enforces the isotach invariant; page 30.



Isotach network:
Issue event:

Issuing copy:

Issuing receive event:

Issuing send event:

Issuing SIU:

Level of message service:

Lifetime (of a copy):

Limited directory protocol:

Live copy directory:

Local copy:

Local update protocol:

Locality:

Logical clock:

Logical diameter:
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Network that realizes an isotach LTS; page 31.
Event that provides a request to an SIU; page 10.

Local copy associated with issuing SIU; pages 77,
141.

Receive event in a messaging process that corre-
sponds to an issuing send event; page 37.

Send event by a user process to a messaging pro-
cess; page 37.

SIU associated with process that issued the request;
page 32.

Guarantee for the logical receive time of a message
based on its logical send time; page 33.

Period of logical execution time between the execu-
tion times of the instantiation and destruction events
of the copy; page 73.

Protocol that restricts number of copies to less than
number of nodes; page 19.

Directory with current copies in owner invalidation
protocol; page 119.

Any copy that is located at a PE (including the
owner copy in protocols with an owner copy);
page 73.

Update delta coherence protocol in which issuing
SIU distributes updates; pages 6, 135.

The tendency of future requests to reflect previous
requests; page 23.

Counter for pulse component of logical time of a
port; page 43.

Maximum logical distancd), in an isotach net-
work; page 33.



Logical distance:

Logical execution:

Logical execution time:

Logical receive clock:

Logical routing distance:

Logical send clock:

Logical time deadlock:

Logical time system (LTS):

Logical topology:

LTS:

Marked graph:

Memory process:

Messaging process:

Meta-isotach logical time system:

Migration action:
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Fixed logical timed, g, for a message to travel
from nodeA to nodeB in an isotach network;
page 30.

Execution in which execution events occur in order
of their execution times; page 63.

Meta-isotach logical time system of isotach shared
memory systems that models execution equivalence;
page 62.

Counter for pulse component of logical time of
receive event at an SIU; page 43.

Logical time that a switch takes to route a message,;
page 48.

Counter for pulse component of logical time of send
event at an SIU; page 43.

Condition in which the pulse component of logical
time never again increases; page 52.

Causality-based method for numbering system
events; page 26.

Fully connected weighted graph of network ele-
ments with logical distance edge weights; page 65.

Logical time system; pages 4, 26.
Petri net structure in which each place is an input of
exactly one transition and an output of exactly one

transition; page 54.

Process that executes shared memory requests;
page 62.

Process that sends and receives messages for a node;
page 36.

Logical time system built on top of an underlying
isotach Net LTS; page 61.

Ownership transition that replaces all existing cop-
ies; page 93.



Migratory variable:

MIN:

Miss action

Memory module:

MM:

Mostly read variable:

Network element:
Network (Net) LTS:

Network receive event:

Network send event:
New owner copy:

Off-line algorithm:

Old owner copy:

On-line algorithm:

Optimistic isotach systems:

Overlapping copies:
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Reference pattern characterized by periods during
which only one process issues requests to variable;
page 21.

Multistage interconnection network; page 32.

Coherence action used when no local copy exists;
page 20.

Network element that is location of home copies;
page 32.

Memory module; page 32.

Reference pattern characterized by read requests by
many processes and few write requests by any pro-
cesses; page 24.

Processing element or memory module; page 32.

LTS that only numbers network events; page 39.

Corresponding receive event for a network send
event; page 37.

Send event between messaging processes; page 37.
Owner copy after ownership transition; page 94.

Algorithm that uses knowledge of the future;
page 21.

Owner copy before ownership transition; page 94.

Algorithm that does not use knowledge of the
future; page 21.

Isotach systems that deliver messages as they arrive
and recover from out of logical time order delivery;
page 153.

Existing copy and its replacement for which corre-
sponding logical receive times overlap; page 95.



Owner copy:

Owner epoch:

Owner invalidation protocol:

Owner update protocol:

Ownership transition:

Page management problem:
PE:

Phase type:

Physical topology:

Ping-ponging:

Pipelined requests:

Potential causality:

Processing element (PE):

Processor consistency:

Processor locality:
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Distinguished local copy with responsibility for
tracking copies and distributing coherence opera-
tions, pages 5, 73.

Logical execution time period with single owner
copy; page 113.

Invalidation protocol derived by modifying migra-
tion action of owner update protocol; pages 6, 118.

Update delta coherence protocol that allows owner
location to change dynamically; page 5.

A coherence action that changes owner location;
page 93.

To locate current version; page 20.
Processing element; page 32.

In flex algorithm, type of ports from which mes-
sages are currently being routed; page 44.

Connected graph, (V, E), where V is the set of net-
work elements and switches and E is the set of mes-
sage links; page 32.

Effect of alternating write requests to same coher-
ence by two processors with an invalidation proto-
col; page 24.

Concurrently serviced requests by the same process;
page 74.

Refinement of the happens before relation for sys-
tems that use messaging processes; pages 3, 38.

Network element that can serve as a process loca-
tion; page 32.

Program order and write atomicity simultaneously;
page 12.

The tendency of a processor to access a block
repeatedly before an access from another processor;
page 24.



Producer/consumer variable:

Program order:

Protocol variant:

Pulse component:

Receive event:

Receive lifetime (of a copy):

Release directory:

Release message:

Replacement copy:

Replacement policy:

Request:

Request forwarding

Reservation count:

Reserved copy:

Response message:
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Reference pattern characterized by all write requests
by one process and read requests by one or more
other processes; page 24.

Ordering constraint that requires an equivalent exe-
cution exists in which the requests of each process
occur in the sequential order specified by its pro-
gram; page 12.

Protocol that adds same constant to every execution
and scheduling displacement of original protocol,
page 90.

Major component of isotach logical time; page 30.

Process event that occurs when it receives a mes-
sage; pages 10, 43..

Period of local logical receive time line that corre-
sponds to lifetime of the copy; page 81.

Directory in which the new owner stores releases
until it receives the directory message in the owner
invalidation protocol; page 126.

Message to remove location of victim copy from
directory; page 74.

Any copy that replaces an existing copy in owner
protocols; page 94.

Policy that determines copy to select as a victim;
page 74.

Shared memory access; page 10.

Intermediate location forwards request to copy that
executes the request; page 64.

Number of scheduled locally issued requests to
coherence unit that have not completed; page 74.

Copy with non-zero reservation count; page 74.

Message that execution of another message gener-
ates; page 31.



Routing distance:

Routing event:

Routing path:

Sched request:

Scheduled execution:

Scheduled execution order:

Scheduled execution pulse:

Scheduled execution time:

Scheduled logical time:

Scheduling algorithm:

Scheduling decision:

Scheduling displacement:

Scheduling horizon:

Send discipline:

Send event:
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Number of intermediate nodes on routing path;
page 33.

Switch moving message from input to output;
page 43.

Set of network nodes (elements or switches) through
which a message passes; page 32.

Part of a split operation that is a request to schedule
the execution event of a write request; page 15.

Execution with requests in the scheduled execution
order; page 66.

Scheduled execution time (total) order of requests;
page 66.

Pulse component of scheduled execution time;
page 67.

Sum,t, of initial send time of a request and its
scheduling displacement; page 65.

Meta-isotach logical time system of isotach shared
memory systems that models its ordering con-
straints; page 65.

Method to select scheduled execution times and ini-
tial send times of requests; page 67.

Determination of initial send time of request;
page 65.

Offset,x, of scheduled execution time from initial
send time; selected by issuing SIU; page 66.

Bound,H, of scheduled execution time of any
locally issued request relative to local logical
receive times; page 98.

Relationship of logical send and receive times for
different destinations of a multicast; page 90.

Process event that occurs when it sends a message;
pages 10, 43.



Separated IR:

Sequential consistency:
SIU:
Software-assisted protocol:

Software DSM:

Software extended directory:

Spatial locality:

Split operation:

Standard level of service:

Static fixed routing path:

Static owner update protocol:

Static protocol:

Static replication:

Strongly competitive algorithm:

Structured atomic action:

Substantiate:
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Instantiation request that the old owner copy sepa-
rates from a miss request and forwards to the new
owner copy in owner protocols; page 106.
Program order and write atomicity; page 12.
Switch interface unit; page 32.

Static protocol; page 22.

DSM mechanism implemented entirely in software;
page 23.

Software mechanism that allows number of copies
to exceed number of hardware pointers; page 19.

The tendency of programs to request variables
whose addresses are near recently requested vari-
ables; page 23.

Mechanism that divides a write request into a sched
request and an assign request; pages 6, 15.

Level of message service which maintains isotach
invariant; page 33.

Known routing path used by every message between
a sender/receiver pair; page 32.

Delta coherence protocol with fixed owner copy
location; pages 5, 72.

Protocol that uses static methods to guarantee an
exclusive copy exists whenever a write request is
issued; page 22.

Coherence mechanism that determines copy loca-
tions at start of program execution; page 10.

Algorithm with minimum possible competitive
coefficient; page 21.

Atomic action with internal dependences; page 15.

Execute an assign request; page 15.



Supplying event:

Switch interface unit (SIU):

Synchronization variable:

Tag (message tag):

Temporal locality:

TO:

Token (logical time token):

Transition aware request:

Transition operation (TO):

Transition record:

Transition states:

Transition vID:

True sharing:

Uniform copy:

Unsubstantiated read:
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Event that supplies the values associated with an
instantiation event; page 73.

Intermediate entity that manages isotach logical
time for a network element; page 32.

Locks implemented in shared memory; page 24.

Minor components of logical times of all events of
the message; page 44.

The tendency of programs to request recently
requested variables again; page 23.

Transition operation; page 101.

Control message that marks the end of a pulse;
page 43.

Any request scheduled when the local copy of its
issuing SIU is in a transition state; page 111.

Coherence operation that announces ownership tran-
sition; page 101.

Local record of ownership transition information;
page 94.

Local copy states used during ownership transition:
migrating, disjoint and overlapping; page 94.

Special version identifier associated with initial
value of a copy; page 96.

Requests by different processors to same variable;
page 24.

A copy that is initialized correctly, executes all write
requests with scheduled execution times during its
lifetime and only executes read requests with sched-
uled execution times during its lifetime; page 79.

Read request associated with an unsubstantiated
value; page 15.



Unsubstantiated value:

Update:

Variable:

Version identifier (vID):

Victim copy:

vID:

Virtual message:

Write atomicity:

Write run length:
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The value of a write request for which the assign
request has not executed; page 15.

Coherence operation that executes write request on a
copy; page 20.

Basic unit of all shared memory accesses; page 9.

Tag that associates sched request and corresponding
assign; page 87.

Copy that is destroyed to free storage for a new
copy; page 74.

Version identifier; page 87.

Message for which the sending node is the destina-
tion node; page 33.

Ordering constraint that requires an equivalent exe-
cution exists in which the multiple execution events
of each write request occur consecutively; page 12.

Number of consecutive write requests to a coher-
ence unit by one process before any read or write
request by another process; a measure of processor
locality; page 24.



