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Abstract

We apply techniques based on isotach logical time to the problem of maintaining a

coherent shared memory. In isotach logical time systems, processes can predict and con-

trol the logical times at which their messages are received. This control over the logical

receive time of messages provides a powerful basis for implementing coherence protocols.

Existing isotach-based memory coherence protocols are more concurrent than other proto-

cols, but are limited in the topologies on which they work and the reference patterns for

which they are suited. We define a new framework for isotach shared memory systems

that supports protocols that work for arbitrary topologies and are suited to a wide range of

reference patterns. By extending isotach protocols to a wider class of applications and net-

works, we contribute to the solution of the memory coherence problem.

In addition to extending isotach-based coherence protocols, we advance the theory

of isotach systems. We redefine isotach systems to be consistent with potential causality, a

new relation among events that captures causality in a less conservative way than Lam-

port's happens before relation. This redefinition expands the class of correct implementa-

tions of isotach systems. We introduce the flex algorithm, a new implementation of

isotach logical time that allows different links to be assigned different logical distances.

We expect that increased flexibility in assigning logical distances will improve the perfor-

mance of isotach systems in cases in which links have significantly different real time

latencies.

Dissertation Advisor: Paul F. Reynolds, Jr.
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Chapter 1:

Logical Time Coherence Maintenance

1.1. Introduction

Isotach logical time systems support novel, powerful techniques for maintaining

shared memory coherence. They allow processes to control the logical times at which the

messages they send are received and, in some cases, the logical receive times of response

messages as well. Our thesis is that the theory of isotach systems, first given by Williams

[Wil93], can be extended to increase the flexibility of isotach systems in ways that allow

them to serve a wider range of networks and applications.

1.2. The Problem

We address problems in two separate but related areas: coherence maintenance

and isotach systems. We discuss each below.

1.2.1. Coherence Maintenance

The problem we address is how to use isotach systems to maintain coherence in

shared memory. Maintaining memory coherence concerns enforcement of ordering con-

straints on accesses to replicated shared addresses. This problem is known as the cache

coherence problem in parallel computation and the distributed shared memory (DSM)

problem in distributed computation. Coherence maintenance is difficult because copies of

shared memory addresses are distributed but the semantics of memory accesses require

that they appear to occur on a monolithic memory.
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Our definition of the coherence maintenance problem differs slightly from that of

other researchers since we include atomicity in the problem. Most solutions enforce

sequencing constraints represented by some type of consistency semantics but leave atom-

icity to be enforced through other mechanisms. We extend the coherence maintenance

problem to include how to enforce atomicity constraints as well as sequencing constraints.

The existing isotach-based memory coherence protocols allow greater concurrency

than other coherence protocols in the following ways: they enforce atomicity constraints

without requiring the use of locks; they allow multiple readers and writers to the same

shared data; and they allow pipelining without sacrificing sequential consistency. In fact,

they can enforce sequential consistency and still offer more concurrency than systems that

enforce weaker consistency semantics with traditional technology. Simulation studies

[dWR96, RWW97] have established the potential of isotach shared memory systems.

These studies show they outperform traditional systems for workloads that include atom-

icity requirements or hot spots. However, previously existing isotach-based protocols are

limited in the topologies on which they work and the reference patterns they support. We

define a theory that enables us to develop protocols without those limitations.

1.2.2. Isotach Logical Time Systems

In addition to addressing the problem of how to use isotach systems to achieve

memory coherence we address improving isotach systems themselves.

The existing theory of isotach systems requires that they be consistent with Lam-

port’shappens before relation. We seek a less constraining requirement that would still

capture important causal relations among events. A less constraining requirement is desir-

able because it increases the number of correct implementations.
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Another way in which isotach systems are currently overly constrained is in the

assignment of logical distances to links. Logical distance and logical time are related in

isotach systems and logical distance is important in determining message latency. Existing

algorithms for implementing isotach systems do not allow real time latency to be taken

into account in assigning logical distances. This assumption reduces the applicability of

isotach systems to networks with non-uniform link latencies. We seek a set of less con-

straining rules for assigning logical distances, and algorithms that implement these rules.

1.3. Contributions

We define an extended theory of isotach systems that expands the class of correct

implementations of isotach systems, increases the applicability of isotach systems to net-

works with non-uniform link latencies, and creates a unifying framework for isotach

shared memory systems that supports the design of several new coherence protocols.

Our contributions are as follows:

• We redefine isotach systems to be consistent withpotential causality, a new
relation among events that captures causality in a less conservative way than
Lamport'shappens before relation [Lam78]. This change expands the class of
correct implementations of isotach systems. Previously, isotach systems were
required to be consistent with thehappens before relation. However, proto-
type isotach systems and other proposed implementations can be inconsistent
with thehappens before relation although they are causally consistent. Rede-
fining isotach systems to be consistent withpotential causality supports these
causally consistent implementations, as well as isotach network algorithms
that are difficult to implement under the old definition.

• We introduce a new isotach network algorithm that allows isotach systems to
assign different logical time distances to different links. We expect that
increased flexibility in assigning logical latencies will improve the perfor-
mance of isotach systems in cases in which links have significantly different
real time latencies.

• We redesign the framework for isotach shared memory systems to provide a
unifying theory that addresses several issues that were not integrated in the
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previously existing framework. By eliminating the use of a physical canonical
copy, the new framework supports the design of new isotach-based coherence
protocols that extend isotach-based coherence techniques to systems with
arbitrary topologies, to applications with a wider range of access patterns and
to a simpler class of isotach systems than that required by previous isotach-
based coherence protocols. In addition, the new framework directly supports
optimizations not addressed by previous research and demonstrates that each
correct isotach-based protocol represents a class of correct protocols.

1.4. Outline of Thesis

The remainder of this thesis is organized as follows:

In Chapter 2, we discuss three areas of research related to this thesis. We provide

extensive background in coherence maintenance and briefly discuss other logical time

systems, particularly as applied to the coherence maintenance problem. Then, we present

previous research in isotach systems.

In Chapter 3, we definepotential causality and its system model. Also, we present

conditions that ensure a logical time system (LTS) is consistent withpotential causality.

In Chapter 4, we present theflex algorithm, the first isotach network algorithm that

allows logical distances to differ from the number of switches through which messages

travel without requiring each pair of network nodes to communicate directly. This flexibil-

ity allows the logical distances in an isotach network to reflect the point-to-point message

latency of the underlying hardware. This ability is an important advance in isotach tech-

nology since end-to-end message latency in isotach networks is proportional to the logical

distance that the message travels. We prove the flex algorithm implements an isotach LTS

and show it provides great flexibility for logical distance assignments. We then present a

Petri net model of the algorithm that allows us to determine if a set of logical distance
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assignments will cause the algorithm to deadlock. This model indicates similar Petri net

models may be a rich source of additional isotach network algorithms.

In Chapter 5, we describe our new framework for isotach shared memory systems.

This framework enables the design of several protocols for non-equidistant networks.

Since all messages travel the same logical distance in an equidistant network, the sender of

a message knows the logical distance that any response message travels even if the desti-

nation of the response is not known. In a non-equidistant network, the sender of the origi-

nal message cannot know the logical distance that the response travels if its destination is

unknown. Our new framework allows the sender to anticipate the logical times of execu-

tion events despite this incomplete knowledge. After defining the framework for systems

without replication, we apply it to isotach-based coherence protocols. Section 5.7 devel-

ops correctness criteria for these coherence protocols and presents thestatic owner update

protocol, in which theowner copy is a distinguished copy that services misses and distrib-

utes updates. This protocol extends a previously defined isotach-based coherence protocol

[Wil93] to non-equidistant networks.

In Chapter 6, we present theowner update protocol, which modifies the static

owner update protocol to include our mechanism for dynamically relocating the owner

copy. An ownership migration mechanism is desirable since the appropriate location may

not be static and is often difficult to predict. Although Williams’s equidistant protocol

includes a similar migration mechanism, the problem is substantially more difficult in a

non-equidistant network since a migration generally changes the logical distance from the

owner copy location to any other location. Our highly concurrent migration mechanism

does not suspend access to the copies and nodes can retain their copies despite the migra-
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tion. Also in this chapter, we introduce the concept of thescheduling horizon of an isotach

shared memory system and use it to allow a migration to proceed without affecting the

execution of requests that a node scheduled before it received notification of the migration.

In Chapter 7, we present theowner invalidation protocol, the first invalidation pro-

tocol designed for isotach networks. This protocol provides a writer with exclusive access

through modifications of the migration mechanism of the owner update protocol. Since it

provides a writer with exclusive access, the owner invalidation protocol can exploit long

write runs, a reference pattern in which a single process repeatedly accesses the coherence

unit. Unlike traditional invalidation protocols, our protocol naturally adapts to reference

patterns that do not exhibit long write runs and allows the initiating write to complete prior

to providing the writer with exclusive access. Supportingsplit operations, a mechanism

that allows isotach systems to execute structured atomic actions without using locks, in an

invalidation protocol is difficult. We demonstrate that the owner invalidation protocol

implements split operations correctly.

In Chapter 8, we present thelocal update protocol, the first isotach-based protocol

to support dynamic replication without requiring anextensible isotach network. An exten-

sible isotach network ensures that the logical send time of a response message is a known

function of the logical receive time of the original message. Extensibility simplifies

dynamic replication of shared data but extensible isotach networks are more complicated

and may have higher message latency than isotach networks that do not support extensi-

bility. The prototype systems being built by the Isotach Project are not extensible. Cur-

rently, these prototype systems create all copies statically during system initialization.

Since the local update protocol can create and destroy copies dynamically in response to
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the observed reference pattern, it should improve performance in these systems signifi-

cantly. As with the existing mechanism, the protocol has the drawback that each copy

must have a directory of all other copies. We show that the local update protocol is correct

and does not require an extensible isotach network.

In Chapter 9, we present our conclusions and ideas for future work.
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Chapter 2:

Coherence, Time and the Anticipated Ordering of

Events

2.1. Introduction

We present basic definitions, concepts and research related to shared memory

coherence maintenance. We review concepts and previous work in coherence mainte-

nance and then discuss causality and logical time, including other applications of these

concepts to coherence maintenance. We conclude with a discussion of isotach systems,

which can anticipate the logical times of causally related events.

2.2. Coherence Maintenance

Coherence maintenance extends the concept of cache coherence to more general

systems. Coherence maintenance was originally explored in systems with memory physi-

cally shared by multiple processors, each associated with a local cache memory.Distrib-

uted shared memory (DSM) also requires coherence maintenance. DSM provides

transparent shared memory in systems where physical access to each memory unit is lim-

ited to the local processing node [AbK85, Che85, LiH86]. The coherence maintenance

problem also occurs in distributed object oriented systems that replicate objects to

improve performance [DLA91, LeA92, TKB92]. Our work explores this problem in the

context of cache coherent systems and DSM.
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2.2.1. Defining Coherence

We define the coherence maintenance problem as the concurrency control problem

with replication of shared data. The concurrency control problem is to ensure that every

execution of a parallel program is consistent with its ordering constraints. Our definition

of coherence expands other definitions to include all aspects of concurrency control.

The definition of coherence has evolved with the exploration of the ordering con-

straints that a parallel system can enforce. Censier and Feautrier defined a system to be

cache coherent if each read returns the latest write [CeF78]. Unfortunately, the possibility

of concurrent writes complicates the determination of the latest write in a multiprocessor

[DSB86]. Rudolph and Segall defined a virtual serial execution that determines the latest

write in bus-based architectures [RuS84]. However, this total order does not extend to

general networks since it depends on the serialization provided by the memory bus.

Consistency is a later definition of coherence [Col92]. This ordering constraint

requires that all processes observe writes to a given memory location in the same order,

although processes need not observe writes to different locations in the same order

[GLL90, Adv93, AdG96]. Consistency prohibits executions that are allowed by some

ordering constraints, such as causal memory [JoA94].

2.2.2. Coherence Objects

Shared memory systems provide a global address space that is accessible by all

processes. Coherence protocols service shared memory requests. Each request reads or

writes a shared memoryvariable, the basic unit of all shared memory accesses. Protocols

maintain state information in order to service requests correctly for eachcoherence unit,
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which is a group of a variables. Thecoherence granularity, the size of a coherence unit, is

a cache line in cache coherent systems and a main memory page in most DSM systems.

Memory systems placecopies of coherence units near processes that access them

in order to reduce the latency of shared memory requests. The locations ofstatic copies

are determined at the beginning of program execution. Systems withdynamic copies can

create and destroy copies during program execution.

Shared memory systems can directly support objects of varied sizes or use fixed

size locations, which generally allow more efficient hardware support. In our model, the

system determines the fixed size of a variable. Program-level accesses of varied sizes are

emulated through multiple accesses. Our results only apply to systems that support objects

of varied size if the program-level entities are disjoint.

2.2.3. Shared Memory Executions

In our shared memory model, a program consists ofN processes, {p0, ...,pN-1},

that are logically connected by the shared memory system. The processes issue shared

memoryrequests in addition to performing computation and private memory accesses.

The shared memory system must associate a value with each shared read request and store

the value associated with a shared write request by the process in at least one copy.

Several significant events occur during the service of each request. Theissue event

occurs when the process provides the request to the memory system. The request is associ-

ated with thesend andreceive event of each message that its service requires. Thedeliver

event of a read request occurs when its value is returned to the process. Exactly oneexecu-

tion event associates the value of a copy with any read request. There is at least one execu-

tion event for each write request and each stores its value into a distinct copy.
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An execution of a shared memory program consists of every execution event for

all shared memory requests and their associated values. A total order over the execution

events, theexecution order, is defined by the real times that the events occur, which we

assume are distinct.Equivalent executions consist of the same requests associated with the

same values. Formally, the executions  and  are

equivalent if , such that  executes the same request asei and

associates the same value with the request asei and , such that

ei executes the same request as  and associates the same value with the request as .

For systems without replication, we useconflict equivalence [Pap86]. This simpler

formulation is based onconflicting requests. Two requests conflict if they access the same

variable and at least one is a write. Accesses to distinct variables never conflict since vari-

ables are disjoint. Without replication, two executions are equivalent if they are identical

other than the order of the execution of non-conflicting requests. Since there is only one

copy of each variable, the same value is associated with each request.

2.2.4. Ordering Constraints

A shared memory system can enforce several types of ordering constraints.Con-

sistency semantics are ordering constraints that limit the values that the system can associ-

ate with a read request [AdG96]. Other constraints enforce grouping of requests. Our

shared memory systems enforce the consistency semantics of sequential consistency and

guarantee the grouping constraint of isochronicity. Guaranteeing these properties, like

many other ordering constraints, is non-trivial even in systems without replication.

Ordering constraints define acorrectness set. This correctness set consists of all

shared memory executions that conform to the constraint. A shared memory system

E e0 … en, ,〈 〉= E′ e′0 … e′m, ,〈 〉=

i∀ 0 i n≤ ≤ j∃ 0 j m≤ ≤, , , e′j

j∀ 0 j m≤ ≤ i∃ 0 i n≤ ≤, , ,

e′j e′j
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enforces an ordering constraint if every possible execution in the system is in the correct-

ness set of the constraint. We relate constraints based on their correctness sets.Equivalent

constraints have the same correctness sets. The correctness set of astronger constraint is a

proper subset of that of aweaker constraint. Generally, programming is simpler with a

stronger constraint since fewer executions can occur for a given program.

2.2.4.1. Uniprocessor Ordering Constraints

Program order is an ordering constraint that requires memory requests appear to

execute in the sequential order specified by the program. With uniprocessors that enforce

program order, every execution is equivalent to one in which each instruction is issued and

completed one at a time. Techniques like interlocks and scoreboarding allow instruction

level parallelism in these uniprocessors. Program order, orprocessor consistency, for

shared memory systems requires that an equivalent execution exists in which the requests

of each process occur in the sequential order specified by its program [Goo89].

The apparent indivisibility of writes is another uniprocessor ordering constraint

that is adapted for shared memory systems.Write atomicity requires that an equivalent

execution exists in which the multiple execution events of each write request occur con-

secutively [Col92, AdG96]. Thus, there exists an equivalent execution without replication.

2.2.4.2. Sequential Consistency

Sequential consistency extends uniprocessor memory semantics to multiproces-

sors. A machine is sequentially consistent if “the result of any execution is the same as if

the operations of all the processors were executed in some sequential order, and the opera-

tions of each individual processor appear in this sequence in the order specified by its pro-



13

Coherence, Time and the Anticipated Ordering of Events

gram [Lam79].” This ordering constraint requires that the shared memory system enforces

write atomicity and program order. Thus, for each possible execution, an equivalent exe-

cution must exist in which the requests of each process occur in the sequential order spec-

ified by its program and the execution events of each write request occur consecutively.

Many sequentially consistent multiprocessors exist. Sequentially consistent bus-

based systems limit pipelining of requests to ensure program order and enforce write ato-

micity with the serialization provided by bus acquisitions. However, bus saturation limits

these machines to about twenty processors even with low bandwidth protocols [ASH88].

Enforcing sequential consistency is more difficult in general interconnection net-

works. Few sequentially consistent protocols for general interconnection networks allow

concurrent write copies. The protocols that do allow them generally require additional

message rounds to ensure a total order of write requests [WiL92, AdG96]. As with the

bus-based systems, most sequentially consistent protocols for general interconnection net-

works limit pipelining to ensure program order.

2.2.4.3. Weak Consistency Semantics

Sequential consistency is generally the strongest consistency semantics that sys-

tems enforce. Several researchers have proposed weaker consistency semantics. Systems

use these semantics to allow pipelining of shared memory requests. Our protocols enforce

sequential consistency and allow pipelining. Weak consistency can alleviate the effect of

false sharing, a problem for coherence protocols that we discuss in Section 2.2.7.

The design space of consistency semantics is large. We discuss consistency

semantics based on causality in Section 2.3.3, after we define causality [HuA90, AHJ91].

Some consistency semantics, such as total store order and partial store order, weaken pro-
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gram order [SPA92]. Semantics that weaken write atomicity are more common. In the

remainder of this section, we explore several of these semantics in more detail.

Strong andweak ordering are early weak consistency semantics [DSB86]. Strong

ordering requires that if processA observes a write by processB thenA cannot subse-

quently observe a write thatB observed before its write. Although strong ordering was

proposed as equivalent to sequential consistency, strong ordering is weaker since pro-

cesses may observe concurrent writes in different orders [AdH90]. Weak ordering prohib-

its overlapping a synchronization request with any other shared requests of the same

process, while synchronization requests must be strongly ordered.

Constraints derived from weak ordering use special synchronization primitives to

simplify pipelining of shared requests. Release consistency exploits the semantic differ-

ence between lock (acquire) and unlock (release) synchronization requests [GLL90].

Under release consistency, a process can overlap lock requests with previous requests to

shared variables and unlock requests with later requests to shared variables. Lazy release

consistency (LRC) weakens release consistency by allowing unlock requests to overlap

with previous requests to shared variables [KCZ92]. LRC delays causally subsequent lock

requests by any process until the overlapped shared requests have completed. The Euro-

pean Declarative System previously proposed this optimization [BoI91]. Entry consis-

tency is similar to LRC but only restricts overlapping requests to a shared variable and the

lock with which it is explicitly associated [BeZ91]. Scope consistency provides a similar

benefit but uses program structure to eliminate the need for explicit associations [ISL96].

Most weak consistency semantics have operational definitions. Their specifica-

tions make reasoning about the relationships of consistency semantics difficult. For sev-

eral weak consistency semantics, Adve and Gharachorloo have both explored program
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restrictions for which all possible executions are sequentially consistent [Adv93, Gha95].

Although this improves the situation, demonstrating that a general program conforms to

the restrictions is difficult. Also, this approach does not specify the weak semantics for

programs that do not conform to the restrictions.

2.2.4.4. Isochronicity

In addition to consistency semantics, grouping shared requests is an important

facet of concurrency control.Isochronicity, an ordering constraint that most coherence

protocols do not enforce, requires that all possible executions areisochronous [RWW97].

An isochron is a group of requests that are issued consecutively by a process. An execu-

tion is isochronous if an equivalent execution exists in which each isochron executes with-

out interleaving with other requests.

Isochronicity is closely related toatomicity [Lom77, OwL82, Lam86]. Atomicity

requires the apparent indivisible execution ofatomic actions. Atomic actions are also

groups of shared memory requests. An atomic action is often a fault tolerance unit for

which a system must guarantee that either all or none of the requests execute. Isochrons

assume fault freedom. A more important distinction between isochrons and atomic actions

involves internal dependences. An atomic action with internal dependences, such as

A = B, is astructured atomic action. A flat atomic action has no internal true (i.e. read/

write) dependences. Isochrons are flat atomic actions in fault free systems. Although iso-

chrons are not as powerful as structured atomic actions, isochrons can execute structured

atomic actions when used withsplit operations [Wil93].

A split operation divides a write request into two parts. A process uses a split oper-

ation to reserve a position in the execution order for a write before it determines the asso-
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ciated value. It declares its intention to write a variable with asched request. Anassign

request associates a value with the sched. No value is associated with a sched. When a

sched is executed on a copy, then the value of the copy isunsubstantiated. When the inter-

nal dependences of a structured atomic action are satisfied, the process determines the

value to associate with the write. Execution of the corresponding assignsubstantiates the

write with this value. Systems that use isochronous techniques for executing structured

atomic actions must represent unsubstantiated values and have a method to bufferunsub-

stantiated reads, which are read requests that are executed on unsubstantiated copies. The

read is associated with the value and delivered when the write is substantiated.

Most systems provide low level primitives, such as locks, that support techniques

to group shared memory requests. The programmer must use these primitives correctly to

enforce atomicity. Lock-based techniques use mutual exclusion to execute atomic actions.

Isochronous techniques do not rely on mutual exclusion, and thus offer greater concur-

rency. Several researchers have proposed more efficient lock implementations, such as

distributed queues [GVW89, GrT90]. Other systems incorporate fine grain locking capa-

bilities into the coherence protocol [BiD86, RaL96]. Although these techniques can

improve lock performance, they do not recover the concurrency lost to mutual exclusion.

In addition, lock-based systems generally do not allow pipelining of isochrons or atomic

actions, regardless of the enforced consistency semantics.

Shared Regions and the C Region Library (CRL) are DSM systems that enforce

atomic access to explicitly allocated data regions [SGZ93, JKW95]. Special region opera-

tions delimit atomic accesses to regions in CRL. Explicit coherence requests are required

with Shared Regions. The consistency semantics of these systems, which enforce sequen-
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tial consistency across regions, are similar to entry consistency. Unlike isochronous tech-

niques, they do not support atomic access of arbitrary combinations of variables.

To enforce atomicity, Transactional Memory (TM) and the Oklahoma Update

(OU) modify any coherence protocol that uses an exclusive copy to execute a write

request [HeM92, HeM93, SSH93]. In the bus-based TM implementation, a “busy”

response locks any coherence unit that an unfinished atomic action reads or writes. The

general interconnection network TM implementation only locks coherence units that an

unfinished atomic action writes. In OU, a two phase locking strategy groups execution of

the write requests of an atomic action. Ultimately, TM and OU enforce atomicity with

fine-grain locks, while isochronous techniques do not use locks.

2.2.5. Coherence Mechanisms

We divide mechanisms to maintain coherence into two major categories. The first

category involves methods to track the locations and states of copies. Coherence opera-

tions, which determine how a protocol distributes the values associated with write requests

to the copies, form the second category. Several mechanisms exist for both functions. The

appropriate choice of mechanism depends on the reference patterns of shared memory

requests, the physical components of the system and the enforced ordering constraints. We

present the mechanisms in this section. We discuss reference patterns in Section 2.2.6.

2.2.5.1. Copy Tracking

When a process issues a write request and non-local copies exist, it must send

coherence operations to the copies. The protocol can broadcast each coherence operation

or multicast it only to existing copies. The interconnection network usually determines the



18

Coherence, Time and the Anticipated Ordering of Events

choice, although other factors, such as memory overhead, influence the decision. We dis-

cuss copy tracking methods in this section and coherence operations in Section 2.2.5.2.

Snoopy coherence protocols rely on the inherent serialization of bus accesses to

enforce sequential consistency [Goo83, PaP84, RuS84, KEW85, KMR88, TSS88,

TCS92]. In these systems, each cachesnoops the bus for shared memory requests. When it

detects a request, the cache controller checks for a local copy of the requested variable. If

a local copy exists, the cache takes whatever action the coherence protocol requires.

General interconnection networks do not provide the efficient broadcast mecha-

nism that snoopy protocols require. Although protocols for general interconnection net-

works can still use broadcasts, most accurately track the locations of all copies. Censier

and Feautrier proposed a bit vector directory per coherence unit for accurate copy tracking

[CeF78]. Tang made a similar proposal that required more memory overhead [Tan76].

Each directory requires a bit per processing node, which is significant memory

overhead in large systems. Several methods reduce directory memory requirements. One

method is to use large coherence units. However, this solution can increase false sharing,

as we discuss in Section 2.2.7. Reserving regions of the memory space for private data,

and thus providing fewer directories, is another simple method [BMR89]. Tamir and Jana-

kiraman propose a dynamic scheme that uses both of these solutions [TaJ92]. This scheme

maintains state information for two granularities. Only if the state of the larger coherence

unit is shared are directories maintained for the smaller contained units.

Most coherence units have few, if any, copies since most variables are not actively

shared [WeG89]. Thus, most directory hardware is wasted with full directory methods.

Several methods rely on this observation. In order to reduce the cost for hardware direc-

tory entries, these methods incur additional costs when large directories are required.
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A number of schemes provide a limited number of hardware pointers. Some proto-

cols broadcast coherence operations if there are more copies than hardware pointers

[ArB84]. Limited directory protocols restrict the number of copies to the number of point-

ers [SiH91]. These protocols exchange additional messages and cache misses for directory

memory space.Software extended directories trap to software routines that use ordinary

memory to provide full bit vector directories when the number of copies is large [CKA91,

WCF93, ChA94]. Thus, directory memory overhead is exchanged for longer directory

accesses. At the extreme, all directory functions are performed in software [GrS95].

Several solutions to the memory overhead problem reorganize the directory hard-

ware. The Scalable Coherent Interface and the Galactica Net use a linked list directory,

wherein each copy has a pointer to the next copy [Jam90, WiL92]. This organization

avoids directory overflow but increases the latency of coherence operations with the num-

ber of copies. Other alternatives use an associative memory. Organizations of this memory

include a cache of directories or pointers [GWM90, LiY90]. O’Krafka and Newton use

associative memory that replaces software extended directories with hardware [OKN90].

Other methods for locating copies require specific network topologies. The Ken-

dall Square Research Allcache system, the Data Diffusion Machine and the Hector multi-

processor have hierarchical networks, such as trees of buses or rings [HHW90, FBR93,

FVS95]. Each subnetwork supports efficient broadcasts. A snoopy mechanism propagates

coherence operations up and down the network tree when necessary. Directory informa-

tion is maintained for entire subnetworks, which significantly reduces memory require-

ments. Other topology-specific protocols have been designed for a grid of buses in the

Wisconsin Multicube and for multistage interconnection networks with modified switches

[GoW88, GhS91, YTB92, NaB93].
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2.2.5.2. Coherence Actions and Operations

Coherence actions satisfy shared memory requests. If a local copy does not exist

then amiss occurs and the protocol must locate the most recent version of the variable.

Most protocols provide a local copy with a miss response. Performance can improve if a

local copy is not always provided [KMR88, CoF89]. If a local copy exists, then read

requests are executed on it. The protocol must send acoherence operation to each non-

local copy to execute a write request. In this section, we discuss coherence operations and

actions and the mechanisms to implement them.

2.2.5.2.1. Miss Actions

When a miss occurs, the protocol must locate the most recent version of the vari-

able. Li and Hudak explored several solutions to this problem, which they called thepage

management problem [LiH89]. Our protocols use their fixed distributed manager solution.

A hash function determines the location of ahome copy from the address of the variable.

The home copy may not always have the current version, but maintains a pointer to a loca-

tion that does. Li and Hudak also explored dynamic distributed page manager algorithms.

We leave for future work adaptations of these algorithms for our systems.

2.2.5.2.2. Dynamic Protocols

Hardware or dynamic protocols use run-time coherence operations. Coherence

protocols can execute a write on every copy throughupdates [McC85, TSS88, TKB92,

WiL92, DKC93, GDF93, BLV94] or useinvalidations to provide the writer with an exclu-

sive copy [Goo83, PaP84, KEW85, CoF93, DSR93, SBS93].
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The comparative cost of using updates versus invalidations depends on the future

requests to the variable, and the optimal choice can vary during the lifetime of a program.

Since the future requests are unknown, the coherence problem is similar to the page

replacement problem in uniprocessors.Off-line algorithms use the optimal choice based

on knowledge of future requests. However, systems implementon-line algorithms, which

do not use future knowledge. Competitive analysis evaluates the performance of on-line

algorithms [SlT85]. LetCopt be the optimal cost andCon-line the cost of an on-line algo-

rithm. The on-line algorithm iscompetitive if Con-line ≤ c * Copt for any set of requests

wherec is a constant called thecompetitive coefficient.An on-line algorithm isstrongly

competitive if c is the minimum possible competitive coefficient.

Karlin, et al. identified a strongly competitive algorithm for the coherence problem

in bus-based architectures with direct-mapped caches and developed protocols with low

competitive coefficients for other cache structures [KMR88]. In these protocols, processes

discard local copies if the cost of updates received between local requests to the coherence

unit equals the cost of a miss operation. They assumed requests were sequential and used

the number of bus cycles to service all requests as the cost of an algorithm.

Many researchers have proposed update protocols for general interconnection net-

works that discard copies if the number of updates between local requests exceeds some

threshold value [WiL92, BLV94, DDS94, SSR95]. Researchers frequently call these pro-

tocols competitive although they do not provide competitive analysis. Many researchers

have explored competitive algorithms for page migration and replication of read-only data

[BlS89, BGW89, BFR92, ABF93, Wes94, BFR95].

Adaptive protocols identify and exploit specific reference patterns dynamically.

For example, some protocols adapt tomigratory variables, which exhibit periods during
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which only one process issues requests to them [CoF93, SBS93]. These protocols provide

an exclusive copy for any request only if the coherence unit exhibits this pattern.

2.2.5.2.3. Software-Assisted or Static Protocols

Software-assisted or static protocols ensure an exclusive copy exists when a write

is issued, and thus eliminate coherence operations. Compiler inserted coherence directives

invalidate other copies before a write occurs in these protocols. These protocols generally

incur more misses but do not require hardware support since they do not track copies.

Simple static protocols do not replicate shared variables or invalidate all copies at

major program boundaries, such as a critical section exit [OwA89]. Many techniques that

invalidate copies when a request would access stale data improve this method [CKM88,

SGZ93]. These methods often need special hardware to detect when a copy contains stale

data, which blurs the hardware/software distinction [ChV88, PST91, MiB92, ChY96].

Static analysis and other software techniques can improve the performance of

dynamic coherence protocols, further blurring the distinction. Skeppstedt and Stenstrom

use compiler directives with invalidation protocols to obtain an exclusive copy on a read

request that precedes a write request [SkS94]. Mounes-Toussi and Lilja select invalida-

tions or updates for each write request based on static analysis [MoL95].

Static methods can predict the expected reference pattern of a coherence unit to

improve protocol performance [VeF92, DCZ96]. Many methods rely on accurate predic-

tion of reference patterns by the programmer to improve performance. Munin uses pro-

grammer hints, while Tempest integrates the coherence protocol into the application,

which allows the programmer to tune the protocol to the reference patterns of the applica-

tion [BCZ90, CBZ91, FLR94].
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2.2.5.2.4. Hardware and Software DSM

An additional hardware and software distinction arises in DSM systems. Most

DSM systems modify the virtual memory mechanism to implement coherence operations

[LiH89, LiS89, FlP89].Software DSM systems implement the coherence protocol entirely

in software, either in the operating system kernel or user level routines.Hardware DSM

systems increase performance with special purpose hardware [CDK94, KoS95, IDF96,

BKP96, RPW96, ZIL96]. Several systems link hardware coherent systems with software

DSM systems, which blurs this hardware/software distinction [CDK94, ENC96, YKA96].

2.2.6. Locality and Coherence

Caching techniques improve uniprocessor performance because oflocality, the

tendency of future requests to reflect previous requests. Most programs exhibittemporal

locality, the tendency of programs to request recently requested variables again. Larger

cache lines improve uniprocessor performance since most programs exhibitspatial local-

ity, the tendency to request variables with addresses near recently requested variables.

Creating copies dynamically in shared memory systems improves performance because of

locality. In this section, we discuss the reference patterns of shared memory programs.

Assuming a fixed total amount of local memory, the number of local copies is a

function of coherence granularity. Smaller coherence units allow more copies, which

increases the amount of temporal locality that the system can exploit. Larger coherence

units exploit spatial locality. Goodman observed that spatial locality of write accesses

decreases the cost of coherence maintenance as coherence granularity increases, although

reduced exploitation of temporal locality eventually outweighs this benefit [Goo83].
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Shared memory reference patterns not only include the locality exhibited by the

programs of individual processes, but also interactions between the requests of the pro-

cesses. Requests by different processes to the same variable determine atrue sharing ref-

erence pattern.False sharing, which we discuss in Section 2.2.7, occurs when two

processes access the same coherence unit although they request distinct variables.

Agarwal and Gupta proposed “processor locality - the tendency of a processor to

access a block repeatedly before an access from another processor” as a general character-

ization of sharing [AgG88].Write run lengths, a measure of processor locality, indicate

whether an invalidation or an update protocol would provide better performance [EgK88].

The length of a write run is the number of consecutive write requests to a coherence unit

by one process before any read or write request by another process. Long write runs favor

invalidation protocols, while short write runs favor update protocols. Short write runs

often correspond toping-ponging under an invalidation protocol. In this situation, two

processes alternate write requests, repeatedly invalidating the other copy. Most reference

studies provide little evidence of long write runs, with average lengths generally under 2

on small systems [EgK88, FuP93].

Other proposed types of locality suit particular systems.Cluster locality character-

izes the pattern where a proper subset of processes actively share a variable, as seems

likely for a number of regular parallel algorithms [PiB92].Multigrain locality extends

cluster locality to indicate benefits of using multiple coherence granularities [YKA96].

Other researchers identify specific sharing patterns that suit certain coherence pro-

tocols [WeG89, BCZ90a]. We discussed migratory variables in Section 2.2.5.2.2.Syn-

chronization variables are locks implemented in shared memory, which are usually

replaced with special synchronization primitives. Update protocols suit the pattern of
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mostly read variables for which several processes read each write. Producer/consumer

variables and variables that are frequently read and written by multiple processes also suit

variations of update protocols. The Shrimp project classifies variables and coherence units

by the number of producers and consumers [ISL96]. Coherence unit sharing patterns,

which include false sharing, determine system performance.

2.2.7. False Sharing

False sharing, which is not easily detected, reduces the performance of shared

memory systems. The systems incur the cost of coherence maintenance although the

ordering constraints do not require it since processes access distinct variables. Measuring

and reducing false sharing are important areas of research for shared memory systems.

False sharing metrics allow the evaluation of methods to reduce false sharing.

Measuring false sharing or its cost is difficult because spatial locality can reduce the num-

ber of coherence operations required as the coherence granularity increases. Bolosky and

Scott conclude that separating the effects of false sharing from other performance effects

related to coherence granularity may be impossible [BoS93]. Most researchers use metrics

that categorize the causes of misses, but these metrics only apply to invalidation protocols

[EgJ91, DSR93, TLH94, JeE95]. Others have proposed more general metrics. One metric

compares the number of processes that access a variable to the number of processes that

access the coherence unit that contains the variable [KLE93]. Hyde and Fleisch identify

sharing patterns in reference strings with regular expressions [HyF96]. They measure

unnecessary coherence operations based on several false sharing patterns.

Several methods reduce false sharing. Small coherence units can substantially

reduce false sharing in DSM systems [BoS92, SFL94]. The programmer or compiler can
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allocate distinct program objects to different coherence units to prevent false sharing

[BFS89, TLH94, JeE95]. This approach suffers from internal fragmentation and does not

reclaim any temporal locality lost due to the larger coherence units. Another compiler-

based approach to reduce false sharing restructures data to group variables accessed as a

unit (essentially isochronously) into the same coherence units [BFS89, EgJ91, JeE95].

Adjustable coherence unit sizes, chosen dynamically or at compile time, also reduce false

sharing and exploit spatial locality [DuL92, DSR93, SGT96].

Lazy release consistent protocols can delay and combine invalidations, which can

reduce false sharing [KCZ92, DSR93, IDF96, ZIL96]. Delayed invalidations can elimi-

nate misses to other variables in the coherence unit. Combined invalidations reduce net-

work congestion, thus decreasing latency. Most release consistent update protocols

combine updates, which can reduce the cost of true and false sharing [GDF93, BLV94].

2.3. Logical Time

A logical time system (LTS) is a method for numbering the events of a system

based on causality [Lam78]. We use isotach LTS’s to maintain coherence. In this section,

we discuss causality. We then present scalar and vector clocks, two common LTS’s. We

conclude with applications of logical time to coherence maintenance.

2.3.1. Causality and Logical Time

Logical time systems attempt to capturecausality. Leta andb be two events of a

system. Ifa determines or influences the outcome or occurrence ofb, thena causesb or

a ⇒ b. For example, ifa andb are respectively the send and receive events of a message,
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thena ⇒ b since a message must be sent in order to be received. Causality, which is an

irreflexive partial order over the events of a system, depends on semantic information

regarding the events.

Thehappens before relation formalizes the concept of time in distributed systems

[Lam78]. The transitive closure of two rules determines ifa happens beforeb or a → b:

HB1: if a andb are events in the same process anda occurs beforeb, thena → b;
HB2: if a andb are respectively the send and receive events of a message, thena → b.

If neithera → b norb → a thena andb areconcurrent. A logical time system isconsis-

tent with thehappens before relation ifa → b impliesta < tb, whereta andtb are the logi-

cal times that it assigns to eventsa andb. A strongly consistent logical time system

ensures thata → b ⇔ ta < tb. Most logical time systems are consistent or strongly consis-

tent with thehappens before relation.

Thehappens before relation captures potential causality sincea ⇒ b implies

a → b, buta → b does not implya ⇒ b. Consider an execution of the statement

A = B + C. Let issueB andissueC be the issue events of the read requests to B and C,

respectively. One of these events must occur before the other. Without loss of generality,

let issueB occur first. ThenissueB → issueC by HB1. However,issueB ⇒ issueC is not

true since the opposite order does not change the outcome or occurrence of either event.

2.3.2. Logical Time Systems

Researchers have proposed several logical time systems. A process represents its

logical time with a single scalar clock in Lamport’s original logical time system [Lam78].

The clock is incremented for each event of the process. When a process sends a message,

it includes its current logical time. When a process receives a message, it ensures that its
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logical time is greater than the send time of the message. This LTS is consistent with the

happens before relation, although it is not strongly consistent.

LTS’s that are strongly consistent with thehappens before relation incur signifi-

cant overhead. Fidge, Mattern and Schmuck independently proposed logical time systems

that use vector clocks [Sch88, Mat89, Fid91]. For each local event, processi increments

theith component of its vector clock. Each message again includes the local logical time of

its send event. The logical time of a process that receives a message then becomes the

component-wise maximum of its logical clock and the send time of the message. Charron-

Bost demonstrated thatN, the number of processes in the system, is the minimum length

vector for a strongly consistent LTS [Cha91]. This result demonstrates that a strongly con-

sistent LTS has overhead of O(N) per logical clock or message. Several approaches reduce

this overhead, but either strong consistency is lost or memory overhead remains high

[SiK92, JaJ94, RaS96].

2.3.3. Coherence Maintenance and Logical Time

Consistency semantics that are based on causality include causal memory and

extended causal memory.Causal memory allows any execution that is consistent with a

causal relationship defined by program order and write/read dependences [ANK94].

Causal memory is weaker than sequential consistency since processes may observe con-

current writes in different orders. Researchers have investigated program restrictions that

ensure executions with causal memory are sequentially consistent [ANK94, RaS95].

Extended causal memory weakens causal memory. It allows executions that are consistent

with a causal relationship that reflects synchronization requests [JoA94]. Hybrid consis-

tency is similar to extended causal memory [AtF92].
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Many coherence protocols use logical time to enforce weak consistency semantics.

Most implementations of causality-based consistency semantics are based on vector logi-

cal time. Some causal memory implementations requirefull replication, which locates a

static copy at each node [ANK94, Fri95]. Using a vector timestamp per copy allows

dynamic replication [AHJ91]. Extended causal memory implementations that allow

dynamic replication have similar overhead [JoA94]. Lazy release consistency (LRC) uses

a causal relationship to delay coherence operations [KCZ92]. LRC protocols also associ-

ate a vector timestamp with each copy. These timestamps detect stale copies based on lock

acquisition timestamps [ACD96, IDF96, ZIL96].

A sequentially consistent protocol can combine vector clocks with a central shared

memory process to establish a total order for write operations [MRS93]. Many sequen-

tially consistent coherence protocols use atomic broadcasts to distribute writes, which

guarantees that processes receive messages in the same total order [ABM93, AtW94,

Fri95]. Many systems implement atomic broadcast, which the protocols use to enforce

write atomicity, with logical time. Atomic broadcast systems often focus on fault toler-

ance. We do not discuss these systems further.

2.4. Isotach Systems

Our coherence protocols rely on the properties of an isotach LTS. The isotach

invariant distinguishes isotach LTS’s from other LTS’s. This invariant allows the logical

times of causally related events to be anticipated despite stochastic real time message

delays.
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2.4.1. Isotach Logical Time

We present isotach LTS’s in this section. Previously, consistency with thehappens

before relation has been required for isotach LTS’s. We definepotential causality in

Chapter 3. This new relation captures causality more accurately than thehappens before

relation for systems that use an intermediate process to send and receive messages. We

require consistency withpotential causality for isotach LTS’s, which always use such an

intermediate process.

Isotach logical times are lexicographically ordered n-tuples, of which the most sig-

nificant component is always thepulse component. We use two representations in this the-

sis, although others are possible. One representation uses a three-tuple, (pulse, pid-rank ,

issue-rank) for logical times. Thepid-rank  component concatenates the node id with the

local process id to form a unique system-wide process id. The final component is a count

of the messages issued by the process. Shared memory systems can also use a four-tuple

representation, (pulse, var-name, pid-rank , issue-rank), wherevar-name is the shared

memory location accessed by the message. Throughout this thesis, we assume a three-

tuple representation unless otherwise noted.

Isotach LTS’s are characterized by theisotach invariant. This invariant requires

that if the send event of a message has pulse componenti, then the receive event of the

message must have pulse componenti + dm, wheredm is thelogical distance that the

message travels. All other components of the receive time must equal those of the send

time. In other words, the message travels at unit speed. Thus, given the logical send time

of a message, a process can anticipate the logical receive time. We use the shorthandt + c

to indicate adding the constantc to the pulse component of logical timet. Thus, the iso-
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tach invariant requires thattr = ts + dm, wherets andtr  are, respectively, the logical send

and receive times of the message.

Isotach geometry can be very different from planar geometry. Letda, b be the logi-

cal distance froma to b, wherea andb are nodes of an isotach network. Isotach network

algorithms exist in whichda, b may not equaldb, a. Thus, the order of the subscripts con-

forms to the direction in which the logical distance is measured throughout this thesis.

Extensible isotach networks allow the anticipation of the logical times of the

events ofresponse messages. The execution of another message can generate a response

message. If  is the logical send time of a response in an extensible network, then

, wheretr  is the logical receive time of the original message. A process can

use the isotach invariant and the logical send time of the original message to control the

logical times of response message events. The logical delay,c, of animmediate response

is zero.Delayed responses, in whichc > 0, can reduce the cost of providing extensibility.

Consistency withpotential causality prohibitsc < 0.

2.4.2. Isotach Networks

We discussisotach networks, which realize isotach LTS’s, in this section. Isotach

network algorithms exist that accommodate arbitrary network topologies. Many of these

algorithms require only local information and avoid any expensive global agreement

methods. In this section, we provide several definitions that we use throughout this thesis.

First, we define the physical components of an isotach network. Then, we discuss several

important concepts for the implementation of isotach logical time. We conclude with the

levels of logical time message service available in isotach networks.

ts′

ts′ t r c+=
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Physically, a shared memory system is a collection of network elements linked by

some interconnection network (IN), including a bus. The IN allows messages to be sent

between network elements. Example IN’s are a bus, a crossbar network, a multistage

interconnection network (MIN), and an arbitrarily connected switch-based network. In

this thesis, we assume that the IN is switch-based. Formally, thephysical topology of a

shared memory system is a connected graph, (V, E), whereV is the set of network ele-

ments and switches andE is the set of message links.

Each network element is aprocessing element (PE) or amemory module (MM).

An MM does not issue shared memory requests. Each process is located at a PE. Acom-

bined PE includes local memory that acts as an MM. The home copy of every variable is

located at either an MM or a combined PE. The intermediate process that sends and

receives all messages of a network element is located at itsswitch interface unit (SIU), an

intermediate entity that manages logical time for the element. Processes use properties that

the system guarantees, such as ordering constraints, instead of actively using logical time.

In isotach shared memory systems, each process issues its requests to the local SIU, which

is theissuing SIUof the request. The issuing SIU enforces ordering constraints by sched-

uling the logical times of events of the request.

Therouting path of a message is the set of network nodes (elements or switches)

through which it passes. Afixed routing path is known to the sender at the time that the

message is sent. Astatic fixed routing path requires that every message between a given

sender/receiver pair has the same routing path. Adynamic fixed routing path is chosen at

the time the message is sent. The cost of using dynamic fixed routing paths in isotach net-

works depends, in part, on the properties that the system provides. Adynamic routing path

is determined as the message travels through the network. Most applications of isotach
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logical time systems require that the sender know the logical distance that the message

will travel. This requirement complicates the use of dynamic routing paths in isotach net-

works. We assume static fixed routing paths.

Logical distance is a central concept of isotach networks, which ensure that each

routing path has a constant logical distance. Therouting distance of a message is the num-

ber of intermediate nodes on its routing path. Unless otherwise stated, we assume that the

logical distance of a message is its routing distance. We assume allvirtual messages, for

which the sending node is the destination node, such as a message between collocated pro-

cesses, travel zero logical distance. The maximum logical distance in an isotach network

is its logical diameter, D.

We define variouslevels of message service in isotach networks. Each level pro-

vides a guarantee for the logical receive time of a message based on its logical send time.

All isotach networks must provide the strictest level of service, which requires conform-

ance to the isotach invariant. For a message that travels logical distancedm with logical

send and receive timests andtr, respectively, we have identified several useful levels of

service in the following hierarchy:

(0) No guarantee: any logical receive time is allowed

(1) Bounded:ts ≤ tr ≤ (ts + dm)

(2) Constrained: for sender chosen logical timetl such thatts ≤ tl < (ts + dm),
tl ≤ tr ≤ (ts + dm)

(3) Standard:tr = (ts + dm)

The standard level of service enforces the isotach invariant. Any message that uses this

level of service satisfies the restrictions of the other service levels. However, performance

for many applications can improve if an isotach network exploits the less strict require-

ments of the other levels.
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2.4.3. Isotach Applications

In this section, we review applications of isotach logical time. We begin with

applications that were proposed prior to the formal definition of isotach logical time. We

then describe other applications of isotach logical time besides coherence maintenance.

We conclude with a brief introduction of previous isotach-based coherence protocols.

Some applications of isotach logical time precede the theory of isotach logical

time. In the Fluent machine, a concurrent read, concurrent write PRAM emulation uses an

algorithm that implements four-tuple isotach logical time [Ran87, RBJ88, Ran89]. Awer-

buch’s synchronizer algorithms allow an asynchronous system to execute SIMD graph

algorithms [Awe85]. These algorithms all essentially implement a single component iso-

tach logical time system. A single component isotach logical time system also supports

efficient barrier implementations [BGS89].

Significant applications of isotach logical time in message passing systems include

causal message delivery and determining consistent cuts. Ifs1 → s2, wheres1 ands2 are

the send events of two messages that processi receives, thencausal message delivery

requires thatr1 → r2, wherer1 andr2 are the corresponding receive events. Causal mes-

sage delivery is a consequence of the isotach invariant in logical topologies that maintain

the triangle inequality [Wil93]. Aconsistent cut, C, is a subset of the events of a distrib-

uted system such that∀ b ∈ C, if a → b thena ∈ C [Mat93]. Consistent cuts simplify

checkpointing and the detection of properties such as deadlock or termination. Each pulse

of isotach logical time represents a consistent cut [Wil97].

There are several applications of isotach logical time in shared memory systems

besides coherence maintenance. Williams and Reynolds presented isotach networks that
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efficiently combine isochrons [WiR95]. An asynchronous production systems algorithm

that uses an isotach logical time system supports multiple concurrent rule firings. This

algorithm can exploit most of the available concurrency in the rule sets [Sri96].

Thedelta coherence protocols are the isotach-based family of coherence proto-

cols. Williams developed two delta update coherence protocols for equidistant networks

[Wil93]. In addition to developing several new members of this protocol family, we com-

bine her protocols and extend them to non-equidistant networks.

2.5. Chapter Summary

This thesis explores coherence maintenance based on logical time. We define

coherence maintenance as the concurrency control problem in systems that allow replica-

tion. We reviewed previous research in coherence maintenance, including other logical

time approaches. We discussed causality, thehappens before relation and logical time sys-

tems. We concluded with isotach logical time systems and their properties.
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Potential Causality

3.1. Introduction

In this chapter, we definepotential causality, a new relation over the events of any

distributed system in which intermediate processes send and receive all messages. As with

thehappens before relation,potential causality is a partial order that includes (a, b) if a

causesb (a ⇒ b). Potential causality more accurately captures causality than thehappens

before relation (a → b) since both cover causality and ifa potentially causesb (a b)

thena → b, while the converse need not hold. Thus, consistency withpotential causality

allows greater flexibility in assigning logical times since it requires a LTS to enforce no

more non-causal relationships than consistency with thehappens before relation.

Previously, isotach logical time systems were required to be consistent with the

happens before relation by definition. Now, they must be consistent withpotential causal-

ity. The greater flexibility in assigning timestamps allowed bypotential causality supports

causally consistent implementations that need not be consistent with thehappens before

relation, including current prototype systems [Reg97, WiR97]. In Chapter 4, we present a

new isotach network algorithm that uses the flexibility provided bypotential causality to

allow greater flexibility for logical distances than previous algorithms.

3.2. System Model

We assume an intermediatemessaging process sends and receives all messages for

each of one or more collocated user processes. Each user process communicates with all

↵
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other user processes, including collocated ones, through exactly one messaging process.

Many systems, such as ISIS, conform to this model since they use messaging processes

[BSS91]. The SIU serves this role in isotach systems.

Figure 3.1 shows the events for messagesm and . User processUP1 (UP2)

sendsm ( ) to user processUP2 (UP1) through their associated messaging processes,

MP1 (MP2) andMP2 (MP1). The send event ofm in UP1 is its issuing send event, ism,

while thecorresponding receive event inMP1 is its issuing receive event, ir m. The send

event ofm in MP1 is itsnetwork send event, nsm, while thecorresponding receive event

in MP2 is itsnetwork receive event, nrm. The send event ofm in MP2 is itsdelivering

send event, dsm, while thecorresponding receive event inUP2 is itsdelivering receive

event, drm. (Message  has the same events asm, but in the reverse direction.) Thus, a

messagem has three pairs ofcorresponding interprocess events: (ism, ir m), (nsm, nrm)

and (dsm, drm); and it has two pairs ofcorresponding messaging process events (events

internal to a single messaging process): (ir m, nsm) and (nrm, dsm). Our model assumes

exactly one corresponding event for each message event. We could extend our model to

allow multiple corresponding events. We do not pursue that extension in this thesis.

We assume a local messaging process sends a virtual message to itself for any

message between collocated user processes. The key difference between virtual messages

and other messages, such asm, is that virtual messages loop back through the associated

messaging process, as indicated by the dashed line in Figure 3.1.

Figure 3.1: System Model and Message Notation

MP1UP1

nsmism ir m

dr m′ dsm′ nr m′

MP2 UP2

nrm drmdsm

ism′ir m′nsm′

virtual message
loopback
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3.3. Defining Potential Causality

Thehappens before relation relates all events that occur in the same process since

Lamport used no knowledge about their causal relations. Forpotential causality, we use

knowledge of the causal relations of events within the same messaging process. The tran-

sitive closure of the following three rules determines ifa potentially causesb (a b):

PC1: if a andb are events in the same user process anda occurs beforeb, thena b;
PC2: if a andb are corresponding interprocess send and receive events, thena b;
PC3: if a andb are corresponding messaging process receive and send events, thena b;

Since we assume no knowledge about the causal relations of events within a user process,

if a occurs beforeb in the same user process, thena could causeb. We capture this poten-

tial causal relationship inPC1. We know corresponding events are causally related. We

capture the causal relation of corresponding interprocess events inPC2 and of corre-

sponding messaging process events inPC3. Since all interprocess communication is by

messages, a sequence of causally related messages, <m0,…,mn>, must link any causally

related events,a andb, that do not occur within the same user process. Since the messages

are causally related,  must occur before  in the same user process and, thus,

taking the transitive closure of our three rules ensuresa b if a ⇒ b. Eventsa andb are

concurrent if neithera b norb a.

Potential causality refines thehappens before relation, i.e.a b impliesa → b,

buta → b does not necessarily implya b. Since Lamport did not distinguish messaging

processes from other processes,a → b if a occurs beforeb within the same messaging

process. For any corresponding messaging process events, the receive event must occur

before the send event. Thus, for any eventsa andb, a b impliesa → b. We now give an

example in whicha → b buta does notpotentially causeb. Letb be nsm, the network

↵

↵
↵

↵

dr mi
ismi 1+

↵

↵ ↵

↵

↵

↵
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send event of the messagem. Leta be an event of the same messaging process asb such

thata occurs beforeb (thus,a → b), but afterir m, the corresponding messaging process

event ofb. Sincea occurs afterir m, a cannot potentially causeir m. Further, any event that

potentially causesb must potentially causeir m sinceir m is the only event that potentially

causesb without using any transitive applications of our three rules. Thus,a does not

potentially causeb, althougha → b.

3.4. Consistency with Potential Causality

A logical time system isconsistent with potential causality if a b impliesta ≤ tb,

whereta andtb are the logical times that it assigns to eventsa andb. We allow equality in

order to accommodate immediate responses and virtual messages in isotach systems.

Allowing equality also accommodates isotach network algorithms that support a logical

distance of zero between two distinct nodes, such as the flex algorithm that we present in

Chapter 4. The possibility of a chain of equality allows an LTS that is consistent with

potential causality but is subject to a form of deadlock. Later, we will show an effective

procedure for detecting isotach systems that have this problem. If a logical time system is

consistent withpotential causality, then it is consistent with causality sincea ⇒ b implies

a b and thereforeta ≤ tb if a ⇒ b.

A network logical time system (Net LTS) is an LTS that only numbers network

events. Thus, a Net LTS numbers the network events,nsm andnrm, of the messagem but

not its other events:ism, ir m, dsm, anddrm. We use isotach Net LTS’s in this thesis.

We will show that any Net LTS is consistent withpotential causality if it assigns

timestamps that conform to these conditions:

↵

↵
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C1: For any messagem, .
C2: If drm and  are events of the same user process such thatdsm occurs in the

associated messaging process before , then .

Any logical time system that is consistent withpotential causality must conform toC1

sincensm nrm by PC2. C2 ensures the Net LTS assigns logical times that are consistent

with PC1 andPC3. If the messaging process could directly observe the order of events in

the associated user process, we could substitute the following rule forC2: if drm and

are events of the same user process such thatdrm occurs before , then .

Since we assume that the messaging process cannot observe events in the user process, we

must use a conservative rule.C2 is conservative since it requires  even when

 occurs beforedrm in the user process and, thus,nrm does not potentially cause .

We show thatC1 andC2 are sufficient to ensure consistency withpotential causality:

Theorem 3.1:A Net LTS is consistent withpotential causality if the logical times
that it assigns conform toC1 andC2.

Proof: Let a b for two network eventsa andb. Sincea b, there exists a
sequence of messages <m0,…,mn> such thata is either  or

, b is either  or  and  occurs after  in the
same user process for eachi. Since  occurs after ,
occurs after  in the associated messaging process and, thus,

 by C2 for eachi. Since  byC1,
. Therefore,ta ≤ tb if a b and the Net

LTS is consistent withpotential causality. QED

Often, we can show the following condition for a Net LTS more easily thanC2:

C2 : If nrm occurs before  in the same messaging process, then .

SinceC2  is more conservative, we can useC2  in place ofC2:

Corollary 3.1:A Net LTS is consistent withpotential causality if the logical times
that it assigns conform toC1 andC2 .

Proof: If dsm occurs before  in the same messaging process, thennrm
must occur before  sincenrm must occur beforedsm and
must occur after . Thus, a Net LTS conforms toC2 if it con-

tnsm
tnr m

≤
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≤
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forms toC2 . Therefore, any Net LTS that assigns logical times
that conform toC1 andC2  is consistent withpotential causality by
Theorem 3.1. QED

A messaging process can conform toC2 or C2  without coordination with other

messaging processes sinceC2 andC2  are local conditions. We demonstrate in Chapter 4

that both Theorem 3.1 and Corollary 3.1 allow greater flexibility in assigning logical times

than consistency with thehappens before relation allows.

3.5. Chapter Summary

We definedpotential causality, a new relation over the events of any distributed

system that uses messaging processes, and presented conditions that ensure a logical time

system is consistent with this relation. Isotach logical time systems must be consistent

with potential causality, as well as enforce the isotach invariant.Potential causality

allows greater flexibility for assigning logical times than thehappens before relation since

concurrent events can occur in the same messaging process. As we demonstrate in the next

chapter, prototype isotach systems and our flex isotach network algorithm require this

flexibility since thehappens before relation is too strict for them.

′
′

′

′
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Chapter 4:

Flexibility for Logical Distances

4.1. Introduction

This chapter presents ourflex algorithm, the first isotach network algorithm that

can assign different logical time latencies to different links. This new algorithm general-

izes the isonet network algorithm [RWW97]. The isonet algorithm assumed that the logi-

cal distance of each routing path must equal the number of switches on the routing path,

i.e. each switch added a cost of one unit of logical distance. The flex algorithm allows

each switch to add a cost of any non-negative integer.

We expect that the flexibility in assigning logical latencies that the flex algorithm

provides will improve the performance of isotach systems in which the real time latencies

of links vary significantly. In an isotach network, the logical time latency of a message

that uses the standard level of service equals the logical distance that the message travels.

Assuming that there is little variation in the real time latency of logical pulses, the real

time latency of the message is proportional to its logical distance. Thus, we expect the best

performance from isotach networks in which logical distances reflect the real time latency

of the underlying hardware. We leave confirmation of the hypothesis that the flex algo-

rithm will improve performance for future work.

In this chapter, we show that the flex algorithm correctly implements an isotach

Net LTS. Also, we present a Petri net model of the algorithm that allows us to determine

easily if the pulse component of logical time will ever stop for a given instance of the

algorithm. Finally, we show that Awerbuch’sβ-synchronizer [Awe85] is an instance of
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the flex algorithm and thatpotential causality allows us to modify our basic implementa-

tion of the flex algorithm so that no message blocking occurs in the switches due to the

requirements of isotach logical time.

4.2. Flex Algorithm

We present our flex algorithm for a switch-based network in which the physical

topology is an undirected connected graph, (V, E), whereV is the set of network nodes

andE is a set of bidirectional FIFO message links. We assume each SIU connects its asso-

ciated network element to exactly one switch.

Each network node has one port for each of its links, with an input buffer and an

output buffer associated with each port. A switchroutes a message when it moves the

message from one of its inputs to one of its outputs. An SIUsends a message when it

places the message in its output andreceives a message when it removes the message from

its input. Every switch maintains alogical clock for each of its ports. Each logical clock is

a counter that tracks the number oftokens that the switch has routed to the associated out-

put and gives the pulse component of logical time of the port. Each token is a control mes-

sage that indicates when one pulse of logical time ends and the next begins. The network

nodes exchange tokens to keep their logical clocks loosely synchronized.

Every SIU maintains two logical clocks for its port. Thelogical send clock of an

SIU tracks the number of tokens it has sent on its output, while itslogical receive clock

tracks the number of tokens it has received on its input. Whenever an SIU sends or

receives a message, its logical receive clock equals its logical send clock less any initial

tokens that the SIU places into its output.
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Each switch emits messages from each output in increasing logical time order and

each SIU sends and receives all messages in increasing logical time order. A switch routes

a message in pulsei if the logical clock associated with the output into which it places the

message isi when it routes the message. An SIU sends (receives) a message in pulsei if its

logical send (receive) clock isi when it sends (receives) the message. Every event of a

message has the sametag, the minor components of isotach logical time. The definition of

the logical time representation determines the tag for original messages, while the tag of a

response equals the tag of the original message in extensible networks. By definition, the

tag of a token is greater than that of any non-token message.

Our flex algorithm assigns a type to each port, which is eitherblue or green. A

port’s type applies to both its input and its output buffers. The endpoints of a link are not

necessarily of the same type. Thus, a link can connect two green ports or two blue ports or

it can connect a blue port to a green port. The algorithm is systolic or pulsing since a node

waits to receive a token on each blue port, then “pumps” the tokens on its green ports.

When the tokens return on the green ports, the node then pumps the tokens on its blue

ports. Thus, the algorithm works in phases.

Figure 4.1 gives pseudocode for the switch algorithm. A switch placestq ≥ 0 in the

output of each of its ports,q. Theinitial token count, tq, can vary with each port and does

not depend on its type.

After placing any initial tokens, the switch alternates between itsblue phase, when

it routes messages that arrive on its blue ports, and itsgreen phase, when it routes mes-

sages that arrive on green ports. The port type from which the switch is routing messages

is thephase typeof the phase. The switch routes messages one at a time. It compares the

tags of all messages at the heads of input ports of the current phase type and routes the
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message with the lowest tag. The switch waits if any input of the current phase type is

empty. Thus, each switch routes messages arriving on the same input type in tag order.

When each input of the phase type has a token at its head, the switch removes the tokens

and places tokens in the outputs of the next phase type and ends the phase. A switch with

only one type of port only executes the steps of each phase performed on that port type.

Switches use a pair of output buffers per port to ensure messages are emitted in

logical time order. A single output buffer per port does not suffice since messages can be

routed to a port out of tag order. Although messages arriving on the same input type are

routed in tag order, messages arriving on different input types might be routed out of

order. Messages that arrive on the same type as the output port are routed before messages

routed in the same pulse that arrive on the opposite type, regardless of their tags.

Figure 4.2 shows an output buffer pair. To route a message, a switch enqueues it in

the input to the splitter of the appropriate output buffer. The splitter enqueues each mes-

sage routed to the port in a from-green queue or a from-blue queue depending on the input

type on which the message arrives at the switch. However, the splitter enqueues a token in

both intermediate queues for each token input to it. The merger emits the message with the

For each port,q
Placetq tokens in the port’s output;
clockq = tq;

Repeat forever
Blue Phase: Route messages up to next token on all blue inputs in tag order;

Remove token from each blue input, if any;
Place a token in each green output, if any;
Increment clock of each green port, if any;

Green Phase: Route messages up to next token on all green inputs in tag order;
Remove token from each green input, if any;
Place a token in each blue output, if any;
Increment clock of each blue port, if any;

Figure 4.1: Switch Routing Algorithm
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lowest available tag, as well as recombining tokens for emission. Since each phase routes

messages in tag order, our output buffer pair emits messages in logical time order.

Our switch algorithm is impractical since

it routes messages one at a time and requires the

special output buffers. Thus, we increase the

latency through the switch significantly. This

switch algorithm simplifies our analysis of the

flex algorithm. We discuss more practical imple-

mentations of the flex algorithm in Section 4.5.

We give pseudocode for the SIU algorithm in Figure 4.3, which is essentially the

switch algorithm when all ports are the same type. The only other differences arise from

the maintenance of thereceive clock in addition to thesend clock of the switch algorithm.

An SIU begins by placing any initial tokens in its output. The initial token count can vary

with each SIU. Similar to a switch with all green ports, an SIU with a green port places an

Figure 4.2: Output Buffer Pair

From-green

merger

splitter

queue
From-blue

queue

receive clock = 0;
Placet0 tokens in output; /* Each SIU has one port, port0 * /
send clock = t0;
If (port type is green) {

Repeat forever {
Blue Phase: Place a token in output;

Incrementsend clock;
Green Phase: Send and receive messages in tag order;

Remove token from input;
Incrementreceive clock; } }

Else { /* Port type is blue * /
Repeat forever {

Blue Phase: Send and receive messages in tag order;
Remove token from input;
Incrementreceive clock; }

Green Phase: Place a token in output;
Incrementsend clock; } }

Figure 4.3: SIU Send/Receive Algorithm
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additional token into its output before it sends or receives any messages. The SIU then

sends and receives messages in tag order. The SIU increments itsreceive clock when it

removes a token from its input and itssend clock when it places a token in its output. The

difference between the two clocks (i.e.send clock - receive clock) is the same for any

send or receive event at the SIU since the SIU does not send or receive any messages

between removing a token from its input and placing one in its output.

An SIU may send no messages or several messages in a pulse. We assume an SIU

will eventually move any token at the head of its input to its output. The SIU sends two

message streams that it merges into tag order: messages originated by an associated user

process and response messages. We assume the SIU interleaves send and receive events so

they occur in tag order. The network is extensible if the SIU blocks after it delivers a mes-

sage while the message executes and then immediately places any response in its output.

The response is delayed by the constant difference between its send and receive clocks.

4.3. Correctness

We demonstrate that our flex algorithm implements an isotach Net LTS. First, we

define the logical distances that apply to the algorithm. Then, we demonstrate that it main-

tains the isotach invariant for all messages and is consistent withpotential causality. We

conclude this section with a discussion of how the flex algorithm generalizes both Awer-

buch’sβ-synchronizer and the isonet algorithm [Awe85, RWW97].

We refine the concept of logical distance. In previous isotach network algorithms,

logical distances equal the number of intermediate nodes on a message’s routing path.

However, our applications of isotach logical time only require that each routing path has a
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known and fixed logical distance. In the flex algorithm, the logical distance of a routing

path depends on the initial token counts of its switch outputs and the relationship of its

input and output types at each switch. Each routing path has a known and fixed logical dis-

tance since we assume all port type assignments and initial token counts are disseminated

during system initialization.

The logical distance that a message travels is independent of the initial token count

and port type of its sending SIU in the flex algorithm. If the send pulse of a message isi,

then the sending SIU has placed exactlyi tokens in its output before it places the message

in its output. These tokens, and no more, always arrive before the message at the first

switch of its routing path. These tokens include the initial tokens that the SIU places in its

output. Therefore, the send pulse of the message, not its logical distance, is determined by

the initial tokens of its sending SIU. The port type of the SIU affects the send pulse simi-

larly since the only difference between the two types for an SIU is the token generated

during the first blue phase of an SIU with a green port.

The logical distance that a message travels is also independent of the initial token

count and port type of its receiving SIU. If the receive pulse of a message isi, then the

receiving SIU has removed exactlyi tokens from its input before it removes the message

from its input. The initial token count and port type of an SIU do not contribute to the

number of tokens that it has removed from its input.

We use thelogical routing distance across a switch to define logical distances in

the flex algorithm. The logical routing distance across a switch,s, of any message,m, that

arrives on port,qi, of s ands routes to its port,qo, is:

lrds qi qo,( ) tqo

1

0

if qi andqo are both green ports

otherwise



+=
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where  is the initial token count ofqo. Let the switches, <s0,…,sn>, be the intermediate

nodes of the routing path from elementa to elementb of a message,m. The logical dis-

tance of the routing path is  wherem arrives on portqi of sj  andsj  routes

m to its portqo. The logical distance of a routing path is essentially the sum of the initial

token counts on the routing path. However, the initial token count must include the token

placed in a green output during the first blue phase of any switch for which both its input

and output ports on the routing path are green ports. Now, we prove logical time increases

by the logical routing distance across a switch when the switch routes a message:

Lemma 4.1: If messagem is sent to switchs by an adjacent SIU in pulsei or
routed tos by an adjacent switch in pulsei, thens routesm to port
qo in pulsei + lrds(qi, qo), wherem arrives ats on portqi.

Proof: Sincem is sent (routed) in pulsei, the adjacent SIU (switch) has
sent (routed) exactlyi tokens tos when it sends (routes)m.

We begin with the case whereqi is a blue port. Whens routesm, it
has removed exactlyi tokens from every blue port.

Therefore,s has placed exactlyi tokens after the initial tokens in
each green port when it routesm. Thus, ifqo is a green port,s has
incremented  exactlyi times after setting its initial value
ands routesm to qo in pulse .

Sincem arrives ats on a blue port,s must routem in the (i + 1)st

iteration of its blue phase. Thus,s has completed exactlyi iterations
of its green phase and has placed exactlyi tokens after the initial
tokens in each blue port when it routesm. Thus, ifqo is a blue port,
s has incremented  exactlyi times after setting its initial
value ands routesm to qo in pulse . Since
qo must be either a blue port or a green port,s routesm in pulse
i + lrds(qi, qo) if qi is a blue port.

We now consider the case whereqi is a green port. Whens routes
m, it has removed exactlyi tokens from every green port.

Therefore,s has placed exactlyi tokens after the initial tokens in
each blue port when it routesm. Thus, ifqo is a blue port,s has
incremented  exactlyi times after setting its initial value
ands routesm to qo in pulse .

tqo

lrdsj
qi qo,( )

j 0=

n

∑

clockqo
i t qo
+ i lrds qi qo,( )+=

clockqo
i t qo
+ i lrds qi qo,( )+=

clockqo
i t qo
+ i lrds qi qo,( )+=
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Sincem arrives ats on a green port,s must routem in the (i + 1)st

iteration of its green phase. Thus,s has completed exactlyi + 1
iterations of its blue phase and has placed exactlyi + 1 tokens after
the initial tokens in each green port when it routesm. Thus, ifqo is a
green port,s has incremented  exactlyi + 1 times after setting
its initial value ands routesm toqo in pulse .
Sinceqo must be either a blue port or a green port,s routesm in pulse
i + lrds(qi, qo) if qi is a green port.

Thus,s routesm in pulsei + lrds(qi, qo) sinceqi must be either a
blue port or a green port. QED

We add up the logical time that a message takes to cross any individual link to

prove that the flex algorithm maintains the isotach invariant for all messages:

Lemma 4.2: The flex algorithm maintains the isotach invariant.

Proof: A switch,s, routes a message that arrives on its portqi to its portqo
exactly lrds(qi, qo) pulses after the previous switch (SIU) routed
(sent) the message by Lemma 4.1. The receiving SIU removes
exactlyi tokens from its output before receiving a message if the
adjacent switch routes the message to it in pulsei. Thus, it receives
the message in the same pulse that the preceding switch routes it.
Therefore, the difference between the send and receive pulse of any
message is the sum of the logical routing distances on its routing
path, which is the logical distance that it travels. Thus, the flex
algorithm maintains the isotach invariant. QED

Now, we show that the flex algorithm satisfies the other requirement of an isotach

logical time system, consistency withpotential causality.

Lemma 4.3: The flex algorithm is consistent withpotential causality.

Proof: If a andb are the send and receive events, respectively, of a mes-
sage,m, thenta ≤ tb = ta + dm by Lemma 4.2 sincetq ≥ 0 for every
portq and, thus, all logical distances are non-negative. Thus, the
flex algorithm conforms to the conditionC1 of Section 3.4.

If a is a receive event andb is a send event that occurs at the same
SIU aftera, thenta ≤ tb since each SIU interleaves send and receive
events so as to handle all messages in tag order and its send clock is
never less than its receive clock when it sends or receives a mes-
sage. Thus, the flex algorithm conforms to the conditionC2  and is
consistent withpotential causality by Corollary 3.1. QED

clockqo
i tqo

1+ + i lrds qi qo,( )+=

′
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Lemmas 4.2 and 4.3 directly imply that the flex algorithm is correct.

Theorem 4.1:The flex algorithm implements an isotach Net LTS.

Proof: The flex algorithm maintains the isotach invariant for all messages
by Lemma 4.2 and is consistent withpotential causality by Lemma
4.3. Thus, it implements isotach logical time. QED

Thereceive clock of any SIU lags behind itssend clock by t0 if its port is blue and

t0 + 1 if its port is green. A send event,s, can occur before a receive event,r, at an SIU

with a green port ort0 > 0 such thatts > tr. Thus, the flex algorithm need not be consistent

with thehappens before relation. However, ifs occurs beforer  and yetts > tr, s cannot

causer  since the algorithm is consistent withpotential causality by Lemma 4.3.Potential

causality accommodates the separate logical send and receive clocks because it models

causality more accurately.

The flex algorithm generalizes the isonet algorithm. In the isonet algorithm, SIU’s

do not emit any initial tokens, each switch emits exactly one initial token on each link and

switches consume tokens in a single step. Many port assignments and initial token counts

result in identical behavior under the flex algorithm. For example, if every port is a blue

port andtq = 1 for every switch portq andtq = 0 for every SIU portq, then the switch and

SIU algorithms of our flex algorithm reduce to those of the isonet algorithm.

Logical distances in the flex algorithm are significantly more flexible than in the

isonet algorithm. The flex algorithm supports logical distances greater than the routing

distance through initial token counts greater than one. If the input or output of a switch on

a routing path is a blue port and the initial token count of the output is zero, then the logi-

cal routing distance across the switch for that routing path is zero. Thus, the flex algorithm

supports logical distances that are less than the routing distance.
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We define anextended isonet algorithm that allows flexibility for logical distances

without requiring two port types. The extended isonet algorithm is simpler than the flex

algorithm, but less flexible. For brevity, we present the extended algorithm as an instance

of the flex algorithm. As with the original isonet algorithm, every port is a blue port. How-

ever, we allow the initial token counts to vary so thattq ≥ 0 for every portq.

The flex algorithm provides greater flexibility for logical distances than the

extended isonet algorithm if we consider the issue oflogical time deadlock, which

describes the condition in which the pulse component of logical time never again

increases. This condition leads to messages not being received since their logical receive

times never arrive. Logical time deadlock occurs under the extended isonet algorithm if

any link between two switches has zero cost. Under the extended isonet algorithm, a link

between two switches has zero cost only if its associated ports have initial token counts of

zero. Recall that a switch must route a token from a blue port before it routes any tokens to

the port. Therefore, logical time deadlock occurs if both endpoints of any link are blue and

its associated ports have initial token counts of zero. Thus, the extended isonet algorithm

cannot allow a zero cost link between two switches. We will show that the multiple port

types allow the flex algorithm to support a zero cost link between two switches.

Example:We discuss the use of both the flex and the extended isonet algorithm

with the physical topology in Figure 4.4 to demonstrate the additional power of the flex

algorithm. In this topology,A

andB are network elements,

while S0 andS1 are switches.

In our flex algorithm example, the initial token count is zero for every port, while

an arrow in Figure 4.4 indicates a green port. Thus, ports 0, 2 and 5 are green ports and

Figure 4.4: Example Isotach Network

A 0 B5S0 21 S1 43
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ports 1, 3 and 4 are blue ports. Any logical routing distance across either switch is zero

since all initial token counts are zero and no switch has two green ports. Since all logical

routing distances are zero,dA, B = dB, A = 0.

We can use the extended isonet algorithm with the example isotach network. In

this case, all ports are blue. However, the extended isonet algorithm does not support

dA, B = dB, A = 0 since that would require the link betweenS0 andS1 to have zero cost,

which would imply that logical time deadlock must occur.

Logical time deadlock does not occur in this network under the flex algorithm.

Since they have green ports, bothA andB place a token in their output during their first

blue phase before they receive any tokens. The token fromA allowsS0 to complete its

first blue phase and place a token in the output of port 2. Thus,S1 receives a token on both

its inputs and completes its first blue phase. It then immediately completes its first green

phase and returns tokens toB andS0. S0 then completes its first green phase and returns a

token toA, returning the network to its initial state. Thus, tokens continually pulse intoS1

and back out. We formalize this discussion in Section 4.4, where we present a necessary

and sufficient condition for logical time deadlock under the flex algorithm.

The flex algorithm can supportdA, B = dB, A = 0 in the preceding example because

we require consistency withpotential causality rather than with thehappens before rela-

tion. As previously discussed, if we require consistency with thehappens before relation,

then we must use a single clock at each SIU. Since each SIU has a green port, its receive

clock lags behind its send clock by one pulse. This difference prevents logical time dead-

lock. If we use a single clock at each SIU, this difference must be reflected in the logical

distances, which would then be one.
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Now, we discuss the relationship of the flex algorithm and Awerbuch’s network

synchronizers [Awe85]. Previously, it has been observed that Awerbuch’sα-synchronizer

is equivalent to the isonet algorithm [RWW97]. Since the isonet algorithm is an instance

of the flex algorithm so is theα-synchronizer. An adaptation of Awerbuch’sβ-synchro-

nizer to implement n-tuple isotach logical time is an instance of the flex algorithm. Theβ-

synchronizer sends tokens up a spanning tree of the network graph. When the root

receives the token, it sends the token back down the tree. Now, we give port assignments

that reduce the flex algorithm to aβ-synchronizer when all initial token counts are zero. If

a portq connects a network node to a child in the spanning tree of the network, thenq is a

blue port, while ifq connects the node to its father, thenq is a green port. The relationship

of the flex algorithm to Awerbuch’sγ-synchronizer is more complex.

4.4. Logical Time Deadlock

We present a Petri net model of the flex algorithm. We show that logical time

deadlock will occur under a given instance of the flex algorithm if, and only if, the model

for the instance is not live. Also, we show our model belongs to a class of Petri nets for

which liveness is easily determined.

First, we briefly present Petri net models, as described by Peterson [Pet81]. APetri

net structure, C, is a four-tuple (P, T, I , O), whereP is a finite set of places,T is a finite

set of transitions,I  is an input function andO is an output function. BothI  andO map

transitions to bags of places. Recall that a bag is a collection of objects in which each

object can occur multiple times. Throughout this chapter, #(p, B) is function that returns

the number of occurrences of placep in bagB. A Petri net is amarked graph if each place

is an input of exactly one transition and an output of exactly one transition, i.e.∀ p ∈ P,
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∃ ti, to ∈ T such that #(p, I (ti)) = #(p, O(to)) = 1, #(p, I (t)) = 0 if t ≠ ti and #(p, O(t)) = 0

if t ≠ to. Many analysis questions are easily answered for marked graphs.

A marking, µ, of a Petri net structure is a function that assigns tokens to the places

and, thus, mapsP to the non-negative integers. Initially, we differentiate Petri net tokens

from logical time tokens. Markingµ enables transitiont if each place,p, has at least as

many tokens as there are inputs fromp to t, i.e.µ(p) ≥ #(p, I (t)). A transition can fire if it

is enabled. Firing transitiont in markingµ results in a new marking, , in which a token

is consumed from each input of the transition and a token is created in each of its outputs,

thus∀ p ∈ P, .

Marking  is reachable from markingµ of Petri netC if there exists a series of

enabled transition firings inC starting fromµ that results in . The reachability set,

R(C, µ) of Petri netC with markingµ is the set of all reachable markings fromµ in C.

Transitiont of C is live inµ if ∀ ∈ R(C, µ), there exists a series of enabled transition

firings that enablet. Petri netC with markingµ is live if every transition is live inµ. A

marked graph is live if, and only if, every directed cycle has at least one token on it.

Now, we present our Petri net model of the flex algorithm. Determining a neces-

sary and sufficient condition for logical time deadlock is the primary goal of this model.

Recall that logical time deadlock occurs if the pulse component of logical time never

again increases. Under the flex algorithm, logical time deadlock occurs if any logical

clock is never again incremented since the stoppage of one logical clock will eventually

stop all other logical clocks. Since the incrementing of any logical clock occurs when a

token is placed in its associated output, all token movement stops if logical time deadlock

occurs. Therefore, we only model logical time token movement and the Petri net tokens in

our model correspond directly to the logical time tokens.

µ′

µ′ p( ) µ p( ) p I t( )( , )#– p O t( )( , )#+=

µ′

µ′

µ′
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We use the model that Figure

4.5 shows for every network node

since we are only concerned with

token movement. As we indicated in

Section 4.2, the differences between

the switch and SIU algorithms do not

affect token movement. Thus, this model applies to both the switch and SIU algorithms.

For each network node,vi, our model has two internal transitions,  and .

We use  to model the blue phase, when the algorithm removes tokens from the inputs

of blue ports and places tokens into the outputs of green ports. Similarly,  models the

green phase. Thus, we create two places,  and , for each port,q, of vi. If q is a

blue port, then  is an input of  and  is an output of ,while ifq is a

green port, then  is an input of  and  is an output of . Thus, these

transitions model the internal logical time token movement of each phase of the algorithm.

We label the places for the ports ofvi by their types in Figure 4.5. Thus, eachBin or Gin is

a  and eachBout or Gout is a  in Figure 4.5.

Two additional places, the run places  and , model how a node alternates

its phases. Thus,  is an input of  and an output of , while  is an input of

 and an output of . The blue phase can proceed if a token is in . The blue

phase completes when  fires, which removes the token from  and places a token

in . This token allows the green phase to proceed, which completes when  fires.

Figure 4.6 shows our model of a network link between nodesvi andvk. We model

the link with transitionsfi, k andfk, i. The only input offi, k is  and its only output is

, where the link connects portj  of vi to portl of vk. Thus,fi, k models the movement

Figure 4.5: Model of Network Node vi
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of a logical time token fromvi to vk

and combines withfk, i to model

token movement over the link.

Now, we specify the initial

marking,µ, of our model. For each

portq of every network nodevi,

 and , the initial token count ofq. These markings capture

all logical time tokens created during the initialization phase of the algorithm. We mark

the run places to ensure only one phase runs at a time. Since every node begins in its blue

phase,  and . The initial token in  requires a node with no

blue ports to place a token in each of its green ports before it removes any tokens from its

ports. Our example at the end of Section 4.3 indicates this aspect of the flex algorithm is

an important element in the flexibility for logical distances that it provides.

Our Petri net model of the flex algorithm is a marked graph. Every run place is

clearly the input of exactly one transition and the output of exactly one transition. For

every portq of any nodevi,  is an input of either  or , but not both. Simi-

larly,  is an output of exactly one internal transition. Ifq connectsvi to vk, then

 is an input offi, k and  is an output offk, i. These are the only transitions for

which  and  are inputs or outputs and, thus, our model is a marked graph.

Logical time deadlock occurs if our model is not live since its transitions capture

all token movement and token movement stops if logical time deadlock occurs under the

flex algorithm. Since our model is a marked graph, determining if it is live only requires

determining if every cycle has a token on it. System initialization can check our Petri net

model to ensure that port assignments and initial token counts do not cause logical time

Figure 4.6: Model of Link Between vi and vk
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deadlock. If logical time deadlock will occur, we can use our model to revise the initial

token counts so that logical time deadlock does not occur.

Example:Figure 4.7 shows our Petri net model for the example that we used at the

end of Section 4.3 to demonstrate the power of the flex algorithm. Since all initial token

counts are zero in this example, the only tokens in the initial marking of the model are in

the blue run places. At least one of these tokens is on every directed cycle of the model

and, thus, logical time deadlock will not occur, as we informally argued previously.

4.5. Performance Optimizations

Our flex algorithm ensures that every SIU receives all messages in logical time

order similarly to the isonet algorithm [RWW97]. Significant message blocking occurs in

the switches and the sending SIU’s in order to ensure that they route or send the message

with the earliest logical route or send time. In prototype isotach systems that use the isonet

Figure 4.7: Model of Example Isotach Network
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algorithm, each SIU sorts messages that arrive on its input into logical time order in order

to reduce message blocking in the switches and at the sending SIU [Reg97, WiR97]. We

can apply similar techniques to the flex algorithm.

The non-blocking isonet algorithm implementation assumes FIFO links between

adjacent network nodes, which allows the implementation to ensure that a token never

leaves a node before a message that previously arrived on the same input. The implemen-

tation removes tokens from the message stream. Tokens are sent on each output after one

has been removed from each input. This removal and reinsertion of tokens allows mes-

sages to pass tokens but not vice versa. A similar flex algorithm implementation matches

tokens on inputs of the same type and sends tokens on the appropriate output type.

In the non-blocking implementation, the receiving SIU must sort messages into

logical time order since the network can emit messages out of order. Since the receiving

SIU sorts messages into logical time order, we allow SIU’s to send messages out of logical

time order. The SIU sends each message as soon as it determines the receive pulse. When

a token arrives at an SIU, the SIU has received all messages with receive times in the pulse

that the token ends. The SIU then sorts and delivers these messages.

The non-blocking implementation uses the same logical distances as the imple-

mentation described in Section 4.2. The sending SIU appends a timestamp to the message

that indicates the receive pulse, which the SIU determines from the logical time of the

message and the distance to the receiving SIU. The sending SIU ensures that it sends mes-

sages on time, i.e. the send pulse of a message is at least the SIU’ssend clock value when

the message is sent. Since tokens cannot pass messages, thereceive clock of the receiving

SIU is never greater than the receive pulse of the message. For any message that is not a

response, we assume the SIU schedules a send pulse greater than the value of its receive
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clock at the time that it schedules the message. This assumption ensures that the logical

send time of any message,m, is greater than the logical receive time of any message that

the SIU delivers beforem is issued and, thus, the implementation conforms to the condi-

tion C2 of Section 3.4. Since it also enforces the isotach invariant, the implementation

conforms to the conditionC1 and, thus, is consistent withpotential causality.

This implementation further demonstrates the power ofpotential causality. Two

send events, or two receive events, can occur at the same SIU out of logical time order,

which is not consistent with thehappens before relation. However, no causal relation

exists between such events, reflecting the increased accuracy ofpotential causality.

4.6. Chapter Summary

We presented the flex algorithm for isotach networks. The flex algorithm has sig-

nificantly more flexibility for logical distances than previous algorithms. This flexibility is

a significant advance for isotach technology since logical distances can reflect the raw

message latency of each link. We proved that the flex algorithm implements an isotach

logical time system. We presented a Petri net model of the flex algorithm that allows the

inexpensive detection of logical time deadlock during system initialization. Our imple-

mentations of the flex algorithm demonstrate the power ofpotential causality over the

happens before relation. We leave performance analysis of the flex algorithm for future

work.
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Execution Time and Replication

5.1. Introduction

In this chapter, we present a new framework that provides a unifying theory for

isotach shared memory systems. By eliminating the use of a physical canonical copy, this

framework supports the design of new delta coherence protocols that extend isotach-based

coherence techniques to a wider range of networks and applications. Our framework sup-

ports optimizations not addressed by previous research and demonstrates that a correct

delta coherence protocol represents a class of correct protocols.

Our framework uses concepts similar to Williams’s formulation of delta coherence

protocols based on effective execution times [Wil93]. Her formulation assigns logical

times to execution events performed on cache copies that can be different from the logical

receive times of the requests at the copies. However, the memory copy is a physical

canonical copy for which execution times must equal the corresponding logical receive

times. Our framework completes the separation between execution times and the logical

receive times by eliminating the use of a physical canonical copy.

Our framework uses a modular design based on twometa-isotach logical time sys-

tems, logical time systems that are built on top of an underlying isotach Net LTS. The log-

ical times that these systems assign are derived from the logical times that the Net LTS

assigns to send and receive events between messaging processes. Our design allows iso-

tach shared memory systems to exploit the flexibility inherent in equivalent shared mem-

ory executions without altering the requirements of an isotach logical time system.
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5.2. System Assumptions

We assume isotach shared memory systems use the system model discussed in

Chapter 3. Ordinary user processes issue all shared memory requests.Memory processes

are special user processes that implement the shared memory space. Also, we assume:

1) Each SIU hosts a messaging process;
2) Shared memory requests are issued to the collocated SIU in program order;
3) The last request of each isochron is distinguished;
4) An SIU uses messages to service requests;
5) Memory processes do not perform any computation;
6) Any execution event for a shared request occurs in a memory process.

5.3. Logical Execution Time

Logical execution time, a meta-isotach logical time system, assigns anexecution

time, te, to each execution event,e, of the system. Execution equivalence motivates our

definition of logical execution time. Previous isotach shared memory systems assigned

execution times within the messaging isotach logical time system [Wil93, RWW97].

Thus, those systems required execution times to be consistent withpotential causality.

Our separation of the time systems requires logical execution time only to be consistent

with the causal relations captured by execution equivalence.

The execution events performed on a copy must occur in the order of their execu-

tion times. Theexecution time function of the copy, a strictly increasing function of the

logical receive times of the requests at the copy, determines these execution times. For-

mally, if e0 ande1 are two execution events performed on a copy andr0 andr1 are their

corresponding receive events, then (e0 occurs beforee1) ⇔ ( ) ⇔ ( ).

Althoughr ⇒ e whene is an execution event andr  is its corresponding receive event, we

do not requiretr ≤ te since they are assigned by different logical time systems.

te0
te1

< t r 0
t r 1

<
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The execution time functions of copies of different variables or different copies of

the same variable can vary, even if they are collocated. The logical receive and execution

times of two execution events do not constrain the order in which the events occur if they

are performed on distinct copies. Also, the relationship of their logical receive times does

not constrain their execution times.

A well understood principle related to conflict equivalence justifies our execution

time functions [Pap86]. Any two executions that differ only in the interleaving of execu-

tion events to different copies are equivalent. The real time order of the execution events

can differ from their execution time order. However, the actual execution and thelogical

execution, the execution in which all execution events occur in their execution time order,

are equivalent since execution events performed on each copy occur in the same order.

Logical execution time may not be consistent with causality since our execution

time requirements do not preclude  whene0 ⇒ e1 for execution eventse0 ande1

performed on different copies. However, logical execution time is useful because it is con-

sistent with the causality between certain critical (i.e. write/read) events that occur on the

same copy. Thus, logical execution time is consistent with the causal relations captured by

execution equivalence. Execution equivalence only captures the causal relationship of out-

put dependence, i.e. the causal relationship between a read,r, and the write,w, that stored

the value thatr  returns. Our execution times are consistent with this relationship since the

copy that executesr  must have previously executedw and, thus .

Our execution time requirements support many optimizations. For example, a

memory process can execute read requests before previously received write requests to

different variables. Previous isotach research did not address this optimization.

te1
te0

<

tew
ter

<
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Theexecution displacement, δ, of a copy is the amount by which the execution

time function for that copy shifts execution times relative to logical receive times. Ifr  is

the receive event at a copy of a request that is executed on the copy in evente, then the

execution time function of a copy iste = tr + δ, for some integer constantδ. We leave

investigating general execution time functions for future work.

The execution displacement for each copy

maps the logical receive time line to an execution

time line, as Figure 5.1 shows forδ < 0. We stress

execution times and logical receive times are dis-

tinct, although related. The logical receive time

need not equal the execution time when the execution event occurs. In fact, the logical

receive time cannot equal the execution time whenδ < 0. We allowδ ≠ 0, even in systems

without replication, unlike previous research that assumed every execution time function

was the identity function [Wil93, RWW97]. The original delta coherence protocols used a

similar mechanism that shifted the effective, or apparent, execution time of execution

events performed on some copies. We eliminate this replication-based distinction.

Theexecution distance, Φ, of an execution event iste - ts, wherete is the execution

time andts is theinitial send time of the request, which is the logical send time of the first

message used to service the request. In extensible networks, an intermediate location can

forward the request to the copy. Many of our coherence protocols userequest forwarding.

Request forwarding with immediate responses results in , the execution

displacement of the copy plus the sum of the distances travelled by the messages that

bring the request to the copy. With delayed responses, the execution distance includes the

Execution Time Line of Copy

Logical Receive Time Line

Figure 5.1: Time Line Mapping

t r 0
t r 1

te1
t r 1

δ+=te0
t r 0

δ+=

Φ dm
m
∑ 

  δ+=
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sum of the logical delays. Systems without replication do not use request forwarding, so

Φ = dm + δ, wheredm is the logical distance between the issuing SIU and the copy.

Example:Examples throughout this

chapter use the physical topology depicted in

Figure 5.2. Switches, shown as circles, con-

nect two PE’s, each with one process, and two

MM’s, each with two variables.

An isotach network’slogical topology

is a weighted graph in which the edge weight

between two elements is the logical distance

between them. Figure 5.3 shows the logical

topology for our example physical topology

assuming all messages travel the shortest rout-

ing path and logical distances equal routing

distances. Since MM’s do not communicate in

our examples, we omit that edge.

Non-zero execution displacements effectively change the logical topology. Figure

5.4 shows the execution distances when ,  and . Thus,

v0 effectively moves away from each PE andv1 effectively moves closer.

5.4. Scheduled Logical Time

Scheduled logical time, our other meta-isotach logical time system, assigns a

scheduled execution time, τ, to each request when thescheduling decision of the request

occurs. Its scheduling decision occurs when the issuing SIU determines its initial send

SIU v0, v1

MM0

p0 SIU

v2, v3 SIU SIU p1

PE0

PE1MM1

Figure 5.2: Example Physical Topology

Figure 5.3: Example Logical Topology
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Figure 5.4: Example Effective Topology
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time. We ensure that the scheduling decisions of an isotach shared memory system con-

form to its ordering constraints. We also ensure that every execution agrees with the

scheduling decisions, thus solving the concurrency control problem.

The issuing SIU selects thescheduling displacement, χ, of a request in order to

assign its scheduled execution time. We discuss how the SIU selectsχ in systems without

replication in Section 5.5 and in systems with replication in Section 5.7.3. For any request,

τ = ts + χ, wherets is the initial send time of the request. The scheduled execution times of

the requests of an isotach shared memory system define itsscheduled execution order.

The scheduled execution order defines an execution, thescheduled execution, which has

exactly one execution event for each request. These execution events occur in the sched-

uled execution order. By definition, the scheduled execution associates the same value

with each write request as the actual execution, while it associates with the read request,r,

the value associated withw, the most closely preceding write in the scheduled execution

order to the same variable, i.e.τw < τr  and no  exists such that .

Figure 5.5 summarizes the notation of our meta-isotach logical time systems. Note

that the definitions ofτ andte imply thatτ = te if χ = Φ.

5.5. Sequentially Consistent and Isochronous Isotach Systems

As discussed in Section 5.3, our rules for assigning execution times ensure that the

actual and logical executions are equivalent. In this section, we present send order rules

w′ τw τw′ τr< <

Figure 5.5: Shared Memory Meta-Isotach Time Systems
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that ensure the scheduled execution of an isotach shared memory system conforms to its

ordering constraints. Given that the system enforces these send order rules, the system is

correct if the scheduled and logical executions are equivalent. We conclude this section by

showing how isotach shared memory systems without replication ensure this equivalence.

Figure 5.6 shows our correctness framework for isotach shared memory systems.

The issuing SIU of a request determines the request’s initial send time with the

scheduling algorithm of the system. The scheduling algorithm must ensure scheduled exe-

cution times conform to the ordering constraints of the system. The scheduling algorithm

controls thescheduled execution pulse of each request, the pulse component of its sched-

uled execution time,τ. A correct scheduling algorithm implements these send order rules:

IRule: Send the requests of an isochron so each has the same scheduled execution pulse.
SCRule: Send each request so its scheduled execution pulse is at least that of the request

issued before it by the same process.

The issuing SIU can enforceSCRule since it chooses each scheduling displacement. It

also can enforceIRule since isochrons have no internal true dependences. We now prove

thatSCRule ensures the scheduled execution is sequentially consistent andIRule ensures

the requests of each isochron occur consecutively in the scheduled execution.

Lemma 5.1: Every scheduled execution,ES, is isochronous and sequentially
consistent if the scheduling algorithm is correct.

Proof: By definition, the requests of any isochron,I , are issued by the
same process and have consecutive issue ranks. Since the requests
of I  have the same scheduled execution pulse byIRule, their sched-
uled execution times form a contiguous interval of logical time.
Thus, the requests ofI  are executed inES without interleaving with
other requests andES is isochronous.

⇒

Figure 5.6: Correctness Framework

Actual
Execution

Logical
Execution

Scheduled
Execution

Ordering
Constraints= =

?
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Let a andb be any two requests where the same process issuesa
beforeb. Issue rank is a strictly increasing function of issue order
by definition and the scheduled execution pulse ofb is at least that
of a by SCRule. Thus,τa < τb soa occurs beforeb in ES andES is
sequentially consistent. QED

An isotach system is isochronous and sequentially consistent if its scheduling

algorithm is correct and it ensures each execution is equivalent to its scheduled execution.

We present a correct scheduling algorithm in Section 5.6. Throughout this chapter, we

develop conditions that ensure every execution is equivalent to its scheduled execution.

In an isotach system without replication, we can show the scheduled and logical

executions are equivalent by showingte always equalsτ, i.e. the execution time of any

execution event equals the scheduled execution time of the request:

Lemma 5.2: Any execution,E, is equivalent to its scheduled execution,ES, in
an isotach system without replication ifte always equalsτ.

Proof: Let a andb be any two requests to the same variable such thatea
occurs beforeeb in E, whereea andeb are the respective execution
events of the requests. Since the execution times of execution
events performed on the same copy are consistent with the order in
which the events occur, . Sincete always equalsτ, .
Thus,E andES are conflict equivalent sinceES preserves the order
of conflicting requests. Conflict equivalence is equivalence for our
purposes. QED

We assume each SIU knows the logical distance,dm, to each copy, and its execu-

tion displacement,δ. Thus, the issuing SIU can selectχ = dm + δ = Φ, which ensures

te = τ. We now show that an isotach system without replication is correct if it implements

our send order rules since we assume the issuing SIU always selectsχ = dm + δ:

Theorem 5.1:Any execution,E, is isochronous and sequentially consistent in an iso-
tach system without replication that implementsIRule andSCRule.

Proof: By Lemma 5.1,ES, the scheduled execution ofE, is isochronous
and sequentially consistent. Sinceχ = dm + δ = Φ, te always equals
τ. Thus,E is equivalent toES by Lemma 5.2. Therefore,E is also
isochronous and sequentially consistent. QED

tea
teb

< τa τb<
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Subsequently, we will extend this result to systems with replication.

In systems with replication,χ depends on the state of the copy, if any, associated

with the issuing SIU. Ensuring thatχ = Φ is more difficult, in part because the issuing SIU

often does not know the location of some copies that must execute the request. In Section

5.7, we discuss the selection of scheduling displacements in systems with replication.

Example:We return to our example from the end of Section 5.3. In an example

program that we reuse later in this chapter,p0 isochronously readsv0 and writesv1, and

subsequently writesv2 while p1 isochronously writesv0 and readsv1. Figure 5.4 showsΦ

for each process, variable pair. Sinceχ = Φ, χ0 = 3 andχ1 = 2 for both processes and

χ2 = 3 forp0. IRule requires that each process send its request tov0 one pulse earlier than

its request tov1. SCRule allows an initial send time for the write ofv2 by p0 up to one

pulse less than the initial send time of its write tov1.

Figure 5.7 shows sche-

mata for one possible execution

of our example. In our sche-

mata, horizontal lines corre-

spond to the logical times

indicated. A dashed rectangle

depicts the grouping of requests

into an isochron. The solid rectangle indicates both the scheduled execution time,τ, of the

request and the execution time,te, of its execution event. The black dot shows its initial

send time. The oval indicates the logical receive time of the request. The gaps shown

between the logical receive times and execution times forv0 are due to its execution time

function, which shifts execution times to one pulse greater than the corresponding receive

Write v2 Read v1Write v0

p1

Write v1

t + 1, 0

t + 2, 0

Read v0
t, 0

t + 1, 1

t + 2, 1

t, 1

p0

t + 3, 0
t + 3, 1

Figure 5.7: Possible Example Execution

?

?
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times. Solid vertical lines are messages that use the standard level of service. The dotted

vertical lines are messages that use the bounded level of service. A question mark indi-

cates the indeterminate logical receive time,tr, of a bounded message. Since the logical

receive time of a read response does not affect the logical execution order, it only needs to

be consistent with causality, i.e. it should not appear to be received before it was sent.

Sending the response at the bounded level of service ensurests ≤ tr.

In our example, the scheduling algorithm happens to select t + 3 for the scheduled

execution pulse of all requests. Since the requests have the same scheduled execution

pulse, the requests byp0 precede those ofp1 in the scheduled execution due to thepid-

rank  component of the scheduled execution times. In our discussion, we assume that the

execution events occur in the order of the corresponding logical receive times. Thus, the

actual execution is:p0: readv0; p1: write v0; p0: write v1; p0: write v2; p1: readv1.

Our actual execution interleaves the isochrons. For example, the execution event

of the write tov0 by p1 occurs before the write tov1 by p0. However, the actual execution

is equivalent to the scheduled execution, in which the isochrons are not interleaved, since

conflict equivalence allows us to reorder requests to different variables. Graphically, the

execution events ofv0 shift a uniform amount of logical time, preserving the order of con-

flicting requests. Note that our example execution pipelines the write tov2.

Previous results for isotach systems without replication assume that all execution

displacements are zero and that each MM executes requests in their logical receive time

order [Wil93, RWW97]. These assumptions prohibit the actual execution that we assume

with a three-tuple isotach logical time system sincev0 andv1 are located at the same MM.

Our new framework for isotach shared memory systems allows this execution and more.



71

Execution Time and Replication

5.6. Basic Scheduling Algorithm

A correct scheduling algorithm ensures scheduling decisions conform to the send

order rules and, thus, the scheduled execution is isochronous and sequentially consistent.

In this section, we describe a completely distributed scheduling algorithm that assumes the

issuing SIU buffers an isochron until it is completely issued. We can safely suspend a user

process while issuing an isochron if the SIU buffers isochrons separately for each process.

For each process,p, that issues isochrons to the SIU, we use a variable,lastp, that

tracks the scheduled execution pulse of the last isochron scheduled forp. The initial value

of lastp does not affect the correctness of the algorithm. We use two more variables to

schedule a completely issued isochron,I : variablemin_send, which is the current mini-

mum possible local send pulse for messages with pid-rank  componentp; and variable,χI ,

which bounds the maximum scheduling displacement of any request inI . In some of our

protocols, some requests have multiple possible scheduling displacements before the algo-

rithm determines their scheduled execution times. In Step 1,  is the maximum of the

possible scheduling displacements for the requesta. The following procedure specifies

our basic scheduling algorithm:

Input: All requests of isochronI  issued by processp.
Step 1: DetermineχI  equal max( ) over every request,a, of I .
Step 2: Setmin_send to the current minimum possible local send pulse.
Step 3: Setlastp to max(min_send+ χI , lastp).
Step 4: For each request,a, makelastp - χa the pulse component of ,

whereχa is the scheduling displacement ofa.

For systems without replication, the SIU selectsχ = dm + δ in Step 1 for each

scheduling displacement as discussed previously. We discuss how the SIU selects each

scheduling displacement in isotach systems with replication in Section 5.7.3. The first

term in the max operation specified by Step 3,min_send+ χI , ensures that the initial send

χaMAX

χaMAX

tsa
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times that are required by the scheduled execution pulse that the algorithm computes forI

are possible. The second term in the max operation specified by Step 3,lastp, implements

SCRule by ensuring the scheduled execution pulse is at least that of the isochron beforeI

by p. We implementIRule by usinglastp for the scheduled execution pulse for each

request of the isochron when Step 4 computes their initial send times.

We now show that this basic scheduling algorithm is correct.

Lemma 5.3: The basic scheduling algorithm implementsIRule andSCRule.

Proof: The algorithm sends every request,a, of I  such thatlastp - χa is the
pulse component of its initial send time. By definition, the sched-
uled execution time ofa is τa = ts + χa. Thus, the value oflastp
determined in Step 3 is the scheduled execution pulse of every
request ofI  and the algorithm enforcesIRule.

Since isochrons are scheduled in the order that they are issued,lastp
tracks the scheduled execution pulse of the isochron most recently
issued byp. Since Step 3 setslastp to max(lastp, min_send+ χI), the
scheduled execution pulse ofI is at least that of the isochron most
recently issued byp, which includes the request most recently issued
by p. Since every request ofI  has the same scheduled execution
pulse, the algorithm enforcesSCRule. QED

All of our systems can use the basic scheduling algorithm.

5.7. Delta Coherence Protocols

We now develop our correctness framework for delta coherence protocols. Our

framework extends the results established in the preceding sections to systems with repli-

cation. First, we present several basic issues and concepts for delta coherence protocols,

which we illustrate with thestatic owner update protocol, a protocol that extends the static

early protocol to non-equidistant networks [Wil93].
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5.7.1. Copy Types

Our coherence protocols use two primary types of copies, the home and local copy

types. Alocal copy is a copy located at a PE that services many of the requests that the PE

issues. A local copy is a cache copy in a cache coherence protocol. We use a different term

since our protocols also apply to DSM. The coherence action that the issuing SIU selects

for a request depends on the type of request (i.e. read or write) and the state of the local

copy. In all of our protocols, the issuing SIU uses a miss action if no local copy exists or

the local copy state is invalid when a request is scheduled. Each coherence unit has exactly

onehome copy, which is the destination of the initial message of any miss action. We

assume the address of the coherence unit determines the location of its home copy.

Theowner copy is a distinguished local copy that is used to track copies in our

owner protocols. The term owner does not mean the owner copy has exclusive access. The

home copy tracks the owner copy location since it forwards misses to that location. The

names of our protocols indicate their primary coherence operation and the copy that dis-

tributes that operation. Thus, the owner copy sends update messages in the static owner

update protocol, in which the owner copy location is static. In Chapter 6, we present a pro-

tocol that allows the owner copy location to change dynamically.

Our coherence protocols can create and destroy local copies dynamically. We

associate two special execution events with a local copy’s creation: theinstantiation event,

which initializes the new copy; and thesupplying event, which provides the values associ-

ated with the instantiation event. We also associate a special execution event, thedestruc-

tion event, with a local copy’s destruction. A copy’slifetime is the logical time period

between the execution times of its instantiation and destruction events. All of our proto-
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cols eventually create a local copy at any issuing SIU that uses a miss action. The new

copy’s instantiation event usually occurs when a response to the first miss is received.

Local copies are stored in local memory coherence units, which are cache blocks

or local DSM pages. Local memory coherence units that are not allocated to local copies

are invalid. In all of our protocols, a local memory coherence unit is allocated for the new

local copy if one does not exist when a request is scheduled. The state of the local copy

becomesfilling when the SIU schedules the first miss. It remains filling until the copy’s

instantiation event occurs. Most of our protocols use miss actions if the state of the local

copy is filling when the issuing SIU schedules the request. Thus, the SIU can schedule

additional misses since we support pipelined requests.

Thereplacement policy selects avictim copy in order to provide space for the new

local copy when all local memory coherence units are in use. The new copy uses the space

that the victim copy had occupied. Our protocols send arelease message to the copy that

tracks copies for the coherence unit of the victim copy. Thus, the owner copy receives the

release message in our owner protocols. Execution of a release message removes the

sender from the directory, which saves the cost of unnecessary coherence operations.

Release messages can use the bounded level of service. The destruction event of the vic-

tim copy occurs when the release message is sent.

Our protocols can use any replacement policy, although the policy cannot select a

home copy, an owner copy or areserved local copy. A local copy is reserved if itsreser-

vation count is non-zero. The SIU associated with the copy increments the reservation

count whenever it schedules a request to the coherence unit. It decrements the reservation

count when it delivers a message for a locally issued request to the local memory process.
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5.7.2. Static Owner Update Protocol Coherence Actions

Coherence actions consist of the messages and execution events that service a

request. Figure 5.8 shows schemata for the coherence actions of our static owner update

protocol whendhome, owner< dcopy, owner. Other relationships between these distances

only move lineA relative to lineB. These coherence actions use the standard level of ser-

vice for all messages. The triangle of the write hit schema indicates that the owner copy

sends a multicast update message. The dashed triangle of the miss schema indicates that

the owner copy sends the updates if the request is a write. The bottom of each triangle

indicates the logical receive time of the update at the issuing SIU. The logical receive

times at other local copies depend on their distances from the owner copy. The miss

actions have execution events at the owner copy and the new local copy. The write actions

have execution events at every copy that is valid when it receives the update. The ovals in

the schemata for these actions indicate the logical receive time at the owner copy.

The home copy, which does not execute any requests, is always invalid and its

value is not maintained. Local copy states in the static owner update protocol can be:

valid, filling or invalid. Hit actions are used only if the local copy state is valid. The owner

copy is always valid and, thus, its SIU always uses hit actions. As discussed in Section

5.7.1, a filling local copy has not been initialized. The copy becomes valid when its instan-

Read hitWrite hitMiss

dcopy, home

Figure 5.8: Static Owner Update Protocol Coherence Actions

to home

dhome, owner

downer, copy

dcopy, owner

to owner
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tiation event occurs. An issuing SIU cannot schedule hit actions with a filling local copy,

since we assume it does not know the owner copy location until its first miss returns.

The only difference between a write miss and a read miss is the sending of updates

for writes. The issuing SIU sends a miss action to the home copy, which immediately for-

wards the request to the owner copy. If the issuing SIU is not in the directory of the owner

copy, the owner copy adds its location to the directory and executes the supplying event

for the location’s new local copy by sending the values of the entire coherence unit to it.

Read misses are always executed on the owner copy and returned to the issuing SIU.

The issuing SIU sends a write hit directly to the owner copy. As just described, the

home copy forwards a write miss to the owner copy. For any write request, the owner

copy sends an immediate response update message to the copies in its directory, including

itself. A local copy stores the associated value when it receives the update. If the local

copy no longer exists (i.e. it was released), then the update is discarded.

Figure 5.9 shows the schema of either hit action

whendcopy, owner= downer, copy= 0, the distance

between the owner and itself. Owner actions execute locally as soon as they are sent. Any

read hit executes on the local copy as soon as it is sent. However, only the owner copy

location executes a write hit on its local copy as soon as it is sent. Other locations send

write hits to the owner copy location, which returns them in an update for local execution.

Each release is sent directly to the owner copy in our owner protocols. We assume

that the isotach network algorithm supports the triangle inequality, which ensures that the

owner does not receive a subsequent miss action before the release. The owner receives

the release no later thandcopy, owner after it is sent. The owner receives any subsequent

Figure 5.9: Owner Action

dhome, owner
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miss at leastdcopy, home+ dhome, owner after the release is sent. The triangle inequality

ensures thatdcopy, owner≤ dcopy, home+ dhome, owner, so the release is received first.

5.7.3. Scheduling and Execution Displacements with Replication

The scheduling and execution displacements of a delta coherence protocol are an

extremely important aspect of its design. The protocol determines the execution displace-

ment of each copy and associates a scheduling displacement with each coherence action.

The issuing SIU selects the scheduling displacement associated with a coherence action

when it uses that coherence action. Our protocols ensure thatχ = Φ for every execution

event of each coherence action and, thus,te always equalsτ, which allows us to show that

the scheduled and logical executions are equivalent, as we discussed in Section 5.5.

The issuing SIU often does not know the locations of some copies that execute the

request. For example, the issuing SIU of a miss action does not know the location of the

owner copy in our owner protocols. We use execution and scheduling displacements in

our protocols that allow the issuing SIU to schedule the request correctly despite any

incomplete knowledge about the locations of the execution events of the coherence action.

In addition, we ensure the same execution distance applies to each execution event of any

coherence action that has multiple execution events. Thus, our protocols can ensure that

χ = Φ for every execution event of each coherence action and, thus,te always equalsτ.

Table 5.1 shows the scheduling displacements and the execution distances for

every execution event of each coherence action of the static owner update protocol. We

derive the second and third columns of Table 5.1 directly from the descriptions of the

coherence actions in Section 5.7.2. The second column indicates the copy on which the

execution event is performed. The third column indicates the logical distance that mes-
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sages travel to bring the request to the copy in column two. We emphasize that the miss

and write hit actions have multiple execution events by separating the owner copy from

other local copies, while the only execution event of a read hit is performed on theissuing

copy, the local copy associated with the issuing SIU. The execution events of a read miss

are the execution event of the read performed on the owner copy and, if it is the first miss,

the instantiation event of the issuing copy.

For any local copy,δcopy = -dhome, owner- downer, copy, which is -dhome, owner for

the owner. The fourth column,δ, of Table 5.1 shows the appropriate execution displace-

ment. We add the third and fourth columns to derive the fifth column, the execution dis-

tances, . The sixth column shows the scheduling displacement that the

issuing SIU selects when it schedules that coherence action. As we discussed, these dis-

placements compensate for any incomplete knowledge about the locations of execution

events and ensure that the same execution distance applies to each execution event of the

coherence actions that have multiple execution events. Thus,te always equalsτ under the

static owner update protocol sinceχ = Φ for every execution event, as Table 5.1 verifies.

Table 5.1: Owner Update Protocol Displacements and Distances

Action Execution
Event δ Φ χ

Miss

Owner copy
dcopy, home +
dhome, owner

-dhome, owner dcopy, home dcopy, home

Local copy
(other than owner)

dcopy, home +
dhome, owner +
downer, loc_copy

-dhome, owner -
downer, loc_copy

dcopy, home dcopy, home

Write Hit
Owner copy dcopy, owner -dhome, owner

dcopy, owner -
dhome, owner

dcopy, owner -
dhome, owner

Local copy
(other than owner)

dcopy, owner +
downer, loc_copy

-dhome, owner -
downer, loc_copy

dcopy, owner -
dhome, owner

dcopy, owner -
dhome, owner

Read Hit Issuing copy 0
-dhome, owner -

downer, copy

-dhome, owner -
downer, copy

-dhome, owner -
downer, copy

dm
m
∑

Φ dm
m
∑ 

  δ+=
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5.7.4. Protocol Correctness

Figure 5.10 elaborates our correctness framework. We assign execution times that

ensure the actual and logical executions are equivalent. A correct scheduling algorithm

ensures an isochronous and sequentially consistent scheduled execution by Lemma 5.1. In

this section, we prove that every logical execution is equivalent to its scheduled execution

if te always equalsτ and every copy isuniform.

A copy is uniform if it is initialized correctly, executes all write requests that have

scheduled execution times during its lifetime and only executes read requests that have

scheduled execution times during its lifetime. The scheduled execution time,τ, of a

request is during the lifetime of a copy iftinstantiate ≤ τ < tdestroy, wheretinstantiate and

tdestroy are the execution times of the instantiation and destruction events of the copy. A

copy is initialized correctly if the value associated with its instantiation event is the value

associated with the write request,w, such thatτw < tinstantiate and no  exists such that

 for each variable of the coherence unit.

Figure 5.10: Components of Correctness Framework
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Scheduled Execution Times:

te always equals τ
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IRule  and SCRule

Uniform Copy:
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Read only if tinstantiate ≤ τ < tdestroy

⇒
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In a system with replication, ensuringte always equalsτ does not ensure that the

scheduled and logical executions are equivalent. Even ifτ = te for every execution event,

the executions can associate different values with a read request,r. We now show the exe-

cutions associate the same value withr  if te always equalsτ and every copy is uniform:

Lemma 5.4: Any execution,E, and its scheduled execution,ES, are equivalent if
te always equalsτ and all copies are uniform.

Proof: We must showE andES consist of the same requests and associate
the same value with each request.

Every request is scheduled and every request has at least one execu-
tion event by our shared memory execution model defined in Sec-
tion 2.2.3. Thus,E andES consist of the same requests.

ES associates the same value with each write request as each execu-
tion event of the request inE by definition.

For any read request,r, ES associates the value of the write request,
w, such thatτw < τr  and no  exists such that . Lete
be the execution event inE of any read request,r. E associates the
value atte of the copy on whiche is performed. Since the copy is
uniform,τr  is during the copy’s lifetime. Sincete always equalsτ,
E associates the value atτr  of the copy withr. Sinceτw < τr, either
τw is also during its lifetime orτw < tinstantiate and no  exists
such that . Since the copy is uniform, an exe-
cution event forw is performed on it. Sincete always equalsτ,
write execution events on the copy occur in the scheduled execu-
tion order and, thus, its value atτr  is the value associated withw.
Thus,E andES associate the same value withr. QED

Our next theorem underlies the correctness framework of our coherence protocols.

Theorem 5.2:Any execution,E, is isochronous and sequentially consistent ifte always
equalsτ, all copies are uniform and the scheduling algorithm is correct.

Proof: Since the scheduling algorithm is correct, the scheduled execution,ES,
of E is isochronous and sequentially consistent by Lemma 5.1. Since
te always equalsτ and all copies are uniform,E is equivalent toES by
Lemma 5.4. Thus,E is isochronous and sequentially consistent.QED

w′ τw τw′ τr< <

w′
τw τw′ t instantiate< <
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We derive a simple method to prove the correctness of a delta protocol from Theo-

rem 5.2, assuming the scheduling algorithm is correct. First we showχ = Φ for every exe-

cution event and, thus,te always equalsτ. Then we show every copy is uniform.

Figure 5.11 shows conditions we use to show that a copy is initialized correctly.

The supplying event of a copy is actually a read execution event that is performed on

another copy. Given thattinstantiate = tsupply, the logic of the proof of Lemma 5.4 applies

to show that the value associated with that

read execution event is the value associ-

ated with the correct write request if the

copy on which it is performed is uniform

andte always equalsτ.

We refine our condition that a uniform copy executes exactly those writes with

scheduled execution times during its lifetime. In isotach systems with replication, a write

execution event is performed on a copy if, and only if, the copy receives an update for the

request during itsreceive lifetime, the interval of local logical receive times that corre-

spond to its lifetime. Thus, the receive lifetime of a copy with execution displacement

δcopy is the period of local logical receive time betweentinstantiate - δcopy and

tdestroy - δcopy. The scheduled execution time of any write request that the copy executes

is during its lifetime ifte always equalsτ.

Every update is sent by some directory. We extend logical execution time to exe-

cution events performed on the directories in order to prove that each copy executes every

write request with a scheduled execution time during its lifetime. This extension supports

replication of directories. Similarly to our copies, the execution displacement,δDir , of a

Figure 5.11: Copy Initialization

Associate value of write, w:
τw < tinstantiate and
No  with

Holds if: te always equals τ,
tinstantiate = tsupply and
Uniform copy supplies value

w′ τw τw′ t instantiate< <
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directory,Dir , determines the execution time of each execution event performed onDir .

For the directory of the static owner update protocol,δDir = -dhome, owner.

Several execution events can be performed on a directory. An execution event that

reads the contents of a directory determines the destinations of updates for a write request.

A memory process issues aninstantiation request (IR) in order to acquire a new local

copy. The execution event,addDir , of an IR performed on a directory,Dir , with execution

time  adds the location of the new copy toDir . The execution event,removeDir , of

a release performed onDir  with execution time  removes the location fromDir .

Some protocols create and destroy directories dynamically. An instantiation event initial-

izes a directory and a destruction event destroys a directory.

A directory iscorrect if it is complete at all execution times during its lifetime. A

directory is complete at execution time,te, if the location of any copy whose lifetime

includeste (i.e. ) is in the directory. A location can be in

the directory although there is no copy at the location whose lifetime includeste. Thus, a

directory is incorrect if, and only if, at somete it does not include the location of some

copy whose lifetime includeste. Every copy receives an update for every write with a

scheduled execution time during its lifetime if all directories are correct.

Figure 5.12 shows conditions that ensure that a directory,Dir , is correct.Dir  must

be complete initially (i.e. at ). AnaddDir  must be performed onDir  for any

copy that is created during the lifetime ofDir  before the lifetime of the copy begins (i.e. if

, then ). Also, the lifetime

of a copy must end before aremoveDir  is performed onDir  for it (i.e.∀ removeDir  per-

formed onDir , ). EachaddDir  executes before the corresponding

removeDir  since  by definition. However, we must ensure that

taddDir

t removeDir

t instantiatecopy
te tdestroycopy

<≤

t instantiateDir

t instantiateDir
t instantiatecopy

tdestroyDir
<≤ tAddDir

t instantiatecopy
≤

tdestroycopy
t removeDir

≤

t instantiatecopy
tdestroycopy

<
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eachaddDir  executes after theremoveDir  for any preceding copy at the same location (i.e.

 if ).

We do not require that aremoveDir  be performed onDir  for every release since a

complete directory can include extra locations. Similarly, if all locations are always in a

directory, the directory is correct since it broadcasts its updates and, thus, sends each

update to any location that requires it. However, our protocols are designed for networks

in which broadcasts are expensive and, thus, our protocols benefit from the more accurate

directories that our directory execution events provide.

We assume that a directory is complete initially if its lifetime begins during system

initialization. In the static owner update protocol, we assume that the owner copy is the

only copy whose lifetime begins during system initialization and its location is the only

entry in the initial directory. We now show that throughout the lifetime of any copy in the

static owner update protocol, the copy is in the directory.

Lemma 5.5: The directory of the static owner update protocol is correct.

Proof: The initial directory is complete since it includes the owner copy.

A location implicitly includes an IR in its first miss. AnaddDir
adds the location to the directory when the execution event for the
miss is performed on the owner copy. The instantiation event of the

t removeDir
taddDir

< tdestroycopy
t instantiatenext

tdestroyDir
< <

Figure 5.12: Directory Correctness
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tdestroyDir
<≤
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≤
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taddDir

<



84

Execution Time and Replication

new local copy is the execution event performed on the issuing
copy for the miss. Table 5.1 shows that the execution times of these
two execution events are equal and, thus, .

The destruction event of any local copy occurs when the associated
SIU releases it. From the execution time function of the copy, we
derive that the execution time, , of the destruction event
is , where  is
the logical send time of the release. Since the release uses the
bounded level of service, , where

 is the logical receive time of the release.

The execution time, , of the release on the directory is
. Since  and all logical

distances are non-negative, .

EachaddDir  executes after theremoveDir  for any preceding copy
at the same location. Let  be the logical send time of an IR sent
after a release from the same location. Since ,

. The execution time of
theaddDir , , is  from Table 5.1. Since by
the triangle inequality ,

. Thus, the directory of the static owner update
protocol is correct since it is complete at all execution times.QED

We assume any copy whose lifetime begins during system initialization, such as

the owner copy, has initial values that conform to the programming language semantics.

We now show the static owner update protocol is correct:

Theorem 5.3:The static owner update protocol enforces isochronicity and
sequential consistency if the scheduling algorithm is correct.

Proof: Sinceχ = Φ for every execution event of each coherence action,te
always equalsτ (see Table 5.1).

The owner copy executes every write request and, thus, any write
request with a scheduled execution time during its lifetime. Since it
is never destroyed, it only executes read requests with scheduled
execution times during its lifetime. Since we assume that its initial
values are correct, it is uniform.

We now show thatcopy, any local copy other than the owner copy,
1) is initialized correctly; 2) executes all writes with scheduled exe-
cution times during its lifetime; and 3) only executes reads with
scheduled execution times during its lifetime. Thus,copy is uniform.

taddDir
t instantiatecopy

=

tdestroycopy
tsrel

δcopy+ tsrel
dhome owner,– downer copy,–= tsrel

t srel
t r rel

t srel
dcopy owner,+≤ ≤

t r rel

t removeDir
t r rel

δDir+ t r rel
dhome owner,–= tsrel

t r rel
≤

tdestroycopy
t removeDir

≤

tsIR
tr rel

tsIR
dcopy owner,+<

t removeDir
t sIR

dcopy owner, dhome owner,–+<
taddDir
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1) The instantiation and supplying events ofcopy are the execution
events for the first miss from the location performed on the owner
copy andcopy, respectively. Thus,tinstantiate = tsupply by Table
5.1. Thus,copy is initialized correctly sincete always equalsτ and
the owner copy is uniform.

2) Since the directory is correct by Lemma 5.5 andte always equals
τ, the owner copy sends an update tocopy for each write with a
scheduled execution time during the lifetime ofcopy. Sincete
always equalsτ, the logical receive time of the update is during the
receive lifetime ofcopy. Sincecopy executes any update that it
receives during its receive lifetime, it executes any write with a
scheduled execution time during its lifetime.

3) All read execution events performed oncopy are for read hits.
Read hits are not scheduled before its instantiation event and the
reservation count ensures it is not destroyed if any already sched-
uled read hits have not executed. Therefore, every read executed on
copy has a scheduled execution time during the lifetime ofcopy.

Thus, the static owner update protocol enforces isochronicity and
sequential consistency by Theorem 5.2. QED

Example:We now use our static owner update protocol in our continuing example.

Assume thatp0 ownsv1 andv2 and has a local copy ofv0, whilep1 ownsv0 and has a

local copy ofv1. Assume no other local copies ofv2 exist. In our example program,p0 iso-

chronously readsv0 and writesv1, and then subsequently writesv2, whilep1 isochro-

nously writesv0 and readsv1. Table 5.2 shows the applicable scheduling displacements.

Table 5.2: Example Scheduling Displacements

Request d home, owner downer, copy = dcopy, owner χ

p0: read v 0 -dhome, owner - downer, copy = -5

p0: write v 1 dcopy, owner - dhome, owner = -2

p0: write v 2 dcopy, owner - dhome, owner = -3

p1: write v 0 dcopy, owner - dhome, owner = -2

p1: read v 1 -dhome, owner - downer, copy = -5

dMM 0 p0, 2= dp1 p0, dp0 p1, 3= =

dMM 0 p0, 2= dp0 p0, 0=

dMM 1 p0, 3= dp0 p0, 0=

dMM 0 p1, 2= dp1 p1, 0=

dMM 0 p1, 2= dp0 p1, dp1 p0, 3= =
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Figure 5.13 shows an

example execution in which all

requests happen to have the

same scheduled execution

pulse,t. The execution times of

the requests byp0 are again ear-

lier by theirpid-rank  compo-

nent. If the real times of the

execution events correspond to their logical receive times, the actual execution interleaves

the processes’ requests. However, it is equivalent to the scheduled execution and, thus, is

isochronous and sequentially consistent. In our example execution,p0 reads the old value

of v0, whilep1 reads the new value ofv1 and the actual execution is isochronous.

Our example demonstrates the benefit of an exclusive owner copy. Sincep0 has

the only local copy, its write tov2 does not require any network traffic. Note that the write

to v2 by p0 is pipelined since it is sent before the read ofv0 returns.

An advantage of the static owner update protocol is that read hits on a copy exe-

cute locally as soon as they are sent. Read requests generally account for more than 60%

of shared memory requests [BaR89, WOT95]. Owner writes also execute locally as soon

as they are sent and copies that are clustered around the owner derive a similar benefit for

write requests. Thus, the static owner update protocol exploits cluster locality when the

owner copy location is within the cluster. In Chapter 6, we present a dynamic owner

update protocol that can exploit dynamically detected cluster locality.

Write v2 Read v1Write v0

p1
Write v1

t + 1, 1

t + 2, 1

Read v0

t, 1

t + 1, 2

t + 2, 2

t, 2

p0

t + 3, 1
t + 3, 2

Figure 5.13: Possible Owner Update Execution

t + 4, 1
t + 4, 2

t + 5, 1
t + 5, 2



87

Execution Time and Replication

5.7.5. Implementing Split Operations

Our coherence protocols can implement split operations [Wil93] efficiently. We

require that any location that receives a sched and its corresponding assign receives the

sched first. Our protocols include the issuing SIU in the destinations to which the sched is

distributed. We assume the issuing SIU sends the corresponding assign after the sched

returns. This assumption simplifies meeting, but does not guarantee, the requirement that a

sched/assign pair arrives at each location in the correct order. We note that this assumption

has little cost when used with isochronous techniques for structured atomic actions.

A version identifier (vID ) associates a sched with its corresponding assign. The

issuing SIU determines thevID  when it schedules the sched. System wide process identi-

fiers (i.e.pid-rank ) can bevID ’s if we limit each process to one unsubstantiated write

request per variable. The issuing SIU cannot schedule a sched to the same variable until

the previous sched is substantiated locally.

Our implementation of split operations uses one bit per variable in each copy to

indicate whether the variable is unsubstantiated. Execution of a sched sets the associated

unsubstantiated bit and stores itsvID  in the variable. Any unsubstantiated read is buffered

at the copy that executes the request until it is substantiated. We use the reservation count

to ensure that the lifetime of the copy does not end before the read is substantiated. We

increment the reservation count for the copy if the unsubstantiated read is not a locally

issued request. Note that the count already includes the read if it was locally issued.

Execution of an assign has two parts: first, it clears the unsubstantiated bit and

stores the associated value in the copy if the bit is set and thevID  of the assign matches

that of the copy; second, it substantiates any buffered, unsubstantiated reads that have the
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samevID  and returns the reads to the issuing SIU’s. The reservation count is decremented

for each read that the assign substantiates. The assign is discarded if itsvID  does not

match that of the copy or any unsubstantiated reads. No assign is improperly discarded if

the protocol ensures that the copy logically receives the corresponding sched request first.

A sched is treated as a special kind of write. Thus, the issuing SIU uses either the

miss or write hit action for each sched request in the static owner update protocol. The res-

ervation count of a local copy increases when the issuing SIU schedules the sched request.

The count decreases when the corresponding assign returns.

Assign requests also use write coherence actions, but with some modifications.

Assign requests do not have scheduled execution times. Most assign coherence action

messages do not require the standard level of service to ensure that the corresponding

sched request is received first. Our protocols send each assign to any location that could

have an unsubstantiated read to the correspondingvID  in order to substantiate all reads.

In the static owner update protocol, the owner copy multicasts sched and assign

updates to the locations in its directory. If a location reads the unsubstantiatedvID , either

the owner copy sent the sched update to it, or the values associated with the instantiation

event of its local copy included the unsubstantiatedvID . In either case, the location is in

the owner’s directory. An unsubstantiated read reserves the local copy, preventing its

release. Thus, any location that reads the unsubstantiatedvID  receives the assign update.

An issuing SIU can always use the write hit action for an assign request in the

static owner update protocol. Since we assume that it sends the assign after the corre-

sponding sched returns, its local copy must be valid when it sends the assign. Thus, the

owner location is known. The issuing SIU can send assigns to the owner copy at the

bounded level of service. Since the issuing SIU does not send the assign before the sched
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returns from the owner copy, the owner copy must receive the sched before the assign.

Any technique that ensures each location receives the sched and assign updates from the

owner copy in FIFO order ensures that any other local copy receives the sched first if it

receives both the sched and the corresponding assign.

5.7.6. Protocol Design Space

Now, we discuss significant design choices for delta coherence protocols. We first

explore options available to any coherence protocol. Our naming scheme, described in

Section 5.7.1, indicates the importance of the primary type of coherence operation that the

protocol uses and the copy that distributes the operations. In this thesis, we present both

update and invalidation protocols and protocols with two different choices for the type of

copy that distributes the operations. A distinguished local copy holds this responsibility in

our owner protocols, while the protocol that we present in Chapter 8 distributes it among

all local copies. Competitive protocols, limited directory protocols and dynamic page

management algorithms are among the traditional options that we leave for future work.

Traditional protocols could use replicated directories. However, maintaining con-

sistent directories is difficult without message delivery guarantees such as those provided

by an isotach logical time system. The local update protocol that we present in Chapter 8

associates a copy of the directory with each local copy. Since a location that has a direc-

tory can distribute coherence operations, a location with a directory copy has special write

privileges. Protocols that separate directory replication from data replication and, thus,

allow a location to have those write privileges without requiring it to hold read privileges

would suit some access patterns, such as that exhibited by producer/consumer variables.

We leave delta protocols that separate directory and data replication for future work.
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There are many design options specific to delta coherence protocols. Most of our

protocols require extensibility, although our local update protocol of Chapter 8 does not.

All of our protocols use the standard level of service for coherence operations, although

protocols that use other levels of service for coherence operations are possible. In isotach

systems, thesend discipline of a multicast message determines the relationship of the log-

ical send and receive times for different destinations of the multicast. In non-equidistant

networks, the send discipline of coherence operations is an important design choice. The

static owner update protocol uses the same logical send time for every destination of an

update multicast, while our local update protocol uses the isotach invariant to ensure that

the logical receive time of an update multicast is the same at each destination.

Now, we present a very basic design choice specific to delta protocols that we

derive from our framework for isotach shared memory systems. Aprotocol variant adds

the same constant,C, to every scheduling and execution displacement of the protocol. A

variant does not change the original protocol in any other way. Since any execution dis-

tance,Φ, involves exactly one execution displacement andχ + C = Φ + C if, and only if,

χ = Φ, te always equalsτ when the variant is used if and only ifte always equalsτ when

the original protocol is used. Since the variant does not change any other aspect of the

original protocol, all copies of a variant are uniform if and only if the copies of the original

protocol are uniform. Thus, a variant is correct if and only if the original protocol is cor-

rect and any correct delta protocol, such as the static owner update protocol, represents a

class of correct protocols. We anticipate that the complexity of using a protocol class in

many isotach implementations will depend on the variant considered.

Delta coherence protocols are mutually compatible. If two protocols ensure thatte

always equalsτ and all copies are uniform when they are used separately, thente always
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equalsτ and all copies are uniform when they are used concurrently for different coher-

ence units. Thus, a correct isotach shared memory system can use different correct proto-

cols concurrently for different coherence units.

5.7.7. Previously Identified Delta Protocols

Now, we discuss the relationship of our static owner update protocol to previously

published delta coherence protocols. Williams identified the late protocol and two types of

early protocols for equidistant networks [Wil93]. We have introduced new terminology

that supports many new theoretical results for delta protocols. We apply this terminology

to her protocols in the following discussion.

Our static owner update protocol extends her static early protocol to non-equidis-

tant networks. In her protocol, the execution displacement of all local copies other than the

owner copy was zero. This choice requires that the scheduled execution time of a miss

action is the logical receive time of the response at the issuing SIU. In an equidistant net-

work, every message travels the same distance. Thus, the issuing SIU could anticipate

when the miss returns event though it does not know the location of the owner copy. Non-

equidistant networks do not support this assumption, so we had to adjust the displace-

ments of the protocol to accommodate the lack of knowledge of the issuing SIU.

Our static owner update protocol is identical to the late protocol if the home and

owner copies are collocated. In this case, the home copy distributes updates. Thus, her late

protocol is an instance of our static owner update protocol.
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5.8. Chapter Summary

We presented a new framework that supports a unified theory for isotach shared

memory systems. Williams separated the logical times of execution events that are per-

formed on cache copies from the logical receive times at the copies. We complete the sep-

aration of execution times from the corresponding logical receive times with logical

execution time. Eliminating the use of a physical canonical copy in delta coherence proto-

cols allowed us to extend her early update protocol to non-equidistant topologies and to

show that each correct delta protocol represents a class of correct protocols.
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Owner Update Protocol

6.1. Introduction

In this chapter, we present an owner update protocol that can relocate the owner

copy. The static owner update protocol can exploit cluster locality and producer/consumer

variables when the appropriate location of the owner copy is static and known, which is

unlikely in general. A migration mechanism, such a the one introduced here, allows

dynamically detected access patterns to determine the owner copy location.

Our non-equidistant protocol extends the equidistant early update protocol

[Wil93]. We solved several significant problems that do not arise in equidistant topologies

for migration mechanisms. In Chapter 7, we present an invalidation protocol that is easily

derived from our migration mechanism.

We introduce the concept of the scheduling horizon of an isotach shared memory

system. This concept bounds the scheduled logical times of previously scheduled requests.

We use this concept to allow the elegant execution of messages that alter local state used

to schedule requests, such as the local record of the owner location.

6.2. Overview

The dynamic owner update protocol is identical to the static owner update protocol

except when a migration is in progress. Migration is a special coherence action that causes
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an ownership transition. This highly concurrent action does not suspend access to the

coherence unit and nodes that have local copies prior to it can retain copies throughout it.

Figure 6.1 shows that two local copies are dis-

tinguished during an ownership transition. Theold

owner copyis the owner copy initially. Thenew

owner copy becomes the owner copy as a result of the

transition. A migration changes most scheduling and

execution displacements since in general the dis-

tances that involve the owner copy change. However, the scheduling displacement of the

miss action,dcopy, home, does not change since the home copy location is static.

Conceptually, our migration action destroys each copy of the coherence unit and

creates a new one in its place. Anexisting copy is any local copy that the migration action

destroys, including the old owner copy. Areplacement copy is any local copy that

replaces an existing copy, including the new owner copy.

As with any coherence action, the ownership transition has a scheduled execution

time,τT, which is the scheduled execution time of its execution events. The lifetime of

any existing copy ends atτT. The lifetime of any replacement copy begins atτT. Since the

old owner copy is an existing copy and the new owner copy is a replacement copy, the

owner location changes atτT. If the scheduled execution time of a miss or a write is before

τT, then the old owner copy services it, while the new owner copy services it otherwise.

In addition to the three local copy states of the static protocol (valid, filling and

invalid), our dynamic owner update protocol has three local copytransition states: migrat-

ing, disjoint, and overlapping. We describe the roles of the transition states as we describe

our migration mechanism. An issuing SIU uses hit actions if its local copy is in a transition

Figure 6.1: Migration Distances

Home Copy

Old Owner
New Owner

Local Copy

dhome, old dhome, new

dcopy, old dcopy, new

dold, new

and dold, copy and dnew, copy
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state. The scheduling displacement that it selects for these hit actions is based on the dis-

tances applicable to the old owner copy if the scheduled execution time,τ, of the request is

less thanτT and on the distances applicable to the new owner copy otherwise. Similarly, it

sends a write hit to the old owner copy ifτ < τT and to the new owner copy otherwise. For

each local copy in a transition state, each SIU has atransition record that stores informa-

tion it requires to schedule requests, such asτT and the location of the new owner copy.

Recall that in the static owner update protocol, two logical time lines are relevant

to each copy: the receive and execution time lines. In a dynamic owner update protocol, a

third time line is important: the replacement copy’s execution time line. An existing

copy’s execution displacement uses distances that involve the old owner copy, while its

replacement copy’s execution displacement uses distances that involve the new owner

copy. Thus,δexisting = -dhome, old− dold, copy andδreplace= -dhome, new− dnew, copy.

An existing copy’s receive lifetime ends at . Its replacement’s

receive lifetime begins at . An existing copy and its replacement are

overlapping if their receive lifetimes overlap,

that is , anddisjoint otherwise. From the

definitions ofδexisting andδreplace, we derive

that the copies are overlapping if, and only if,

dhome, new+ dnew, copy< dhome, old+ dold, copy.

If the distance from the home copy through the

new owner copy to the node is less than through

the old owner copy, the copies are overlapping.

They are disjoint otherwise. Figures 6.2 and 6.3

illustrate the two cases. The hatched area of the

t r d
τT δexisting–=

t r i
τT δreplace–=

Receive Time Line

Replacement Copy

Figure 6.2: Overlapping Copies

t r i
t r d
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τT
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Figure 6.3: Disjoint Copies
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logical receive time line in Figure 6.2 represents the interval of the local logical receive

time line during which the existing and replacement copies both exist, while the hatched

area in Figure 6.3 represents the interval during which neither copy exists.

Since we assume the isotach network supports the triangle inequality and the dis-

tance between a copy and itself is zero, the distance directly from the home copy to the old

owner copy is never greater than the distance from the home copy to the old owner copy

through the new owner copy. Thus, the old owner copy and its replacement are disjoint

copies. Similarly, the new owner copy and its existing local copy are overlapping copies.

The existing copy always supplies the initial values of its replacement copy in our

migration action. We use the values of the existing copy at the end of its lifetime, which

ensures thattinstantiate = tsupply. Thus, the replacement copy is initialized correctly if the

existing copy is uniform. When the copies are disjoint, the existing copy can easily supply

the initial values since its receive lifetime ends before the receive lifetime of its replace-

ment copy begins. When the copies are overlapping, the receive lifetime of the existing

copy ends after the receive lifetime of the replacement begins. In this case, we associate

values with the instantiation event of the replacement copy after the event occurs. Since

the existing copy can execute a write during the overlap period, the initial values of the

replacement copy are unknown when its instantiation event occurs at . Therefore, when

we schedule the binding of these initial values with that event, we associate a special tran-

sitionvID . When the receive lifetime of the existing copy ends and its final values are

known at logical receive time , we assign its values to the version that thevID  names.

We would like to use the same local memory coherence unit for each existing copy

and its replacement since their lifetimes are disjoint. However, their receive lifetimes

determine when we need physical storage for the copies. Since the receive lifetimes of dis-

t r i

t r d
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joint copies are disjoint, we can use the same local memory coherence unit for them. How-

ever, if the copies are overlapping, we require physical storage for both copies between

and . Therefore, we include storage for the replacement copy in the transition record.

We associate the transitionvID  with the initially unsubstantiated version of this storage.

If the copies are overlapping, we perform two actions at local logical receive time

. First, the existing copy provides the initial values of its replacement by assigning its

final values to the version named by the transitionvID . Second, we copy its replacement

from the storage of the transition record to the local memory coherence unit used by the

existing copy. Both actions are necessary in general. Updates from the new owner copy

between  and  overwrite the initial version of the replacement copy. Thus, we must

copy the storage of the transition record to the local memory coherence unit. Further,

although the initial version may have been overwritten in the storage of the transition

record, the assign to the initial version also substantiates any unsubstantiated reads of that

version that executed during the overlap period between  and .

We determine the correct owner location and distances to use for a request from

the relationship of its scheduled execution time,τ, to τT. If τ < τT, the old owner location

is the correct location. Ifτ > τT, the new owner location is the correct location. Every

request message includes an owner location field that is used in the overlapping case to

determine on which copy to execute the request. Since the issuing SIU does not know the

owner location when it schedules a miss, the home copy writes the location to which it for-

wards a miss in this field, while the issuing SIU writes the location that it uses to deter-

mine the scheduling displacement of a hit in this field. Lemma 6.7 shows that these rules

record the correct location in this field for all requests, including hits that the issuing SIU

schedules before learning about the migration.

t r i

t r d

t r d

t r i
t r d

t r i
t r d
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When a node executes a request during an overlap period, it uses the owner loca-

tion field to determine the copy on which to execute the request. It executes the request on

the existing copy if the field has the old owner location. Otherwise, it executes the request

on the replacement copy. Since the field always has the correct location, it executes the

request on the copy whose lifetime includes the scheduled execution time of the request.

With disjoint copies, neither copy exists between  and . We show in Section

6.5 that the receive lifetime of any copy that executes a request includes the request’s log-

ical receive time since the request’s owner location field is correct andte always equalsτ.

Thus, no coherence actions arrive during the disjoint period.

We associate a directory copy with each owner copy. A directory at execution time

te is exact if it includes exactly the locations with a copy whose lifetime includeste. An

exact directory is a complete directory without any spurious locations. The lifetime of the

new owner directory begins atτT, when the new owner copy becomes the owner copy.

Lemmas 6.4 and 6.5 show that the new owner directory is exact initially.

Our migration action ensures the correct execution of all requests that an issuing

SIU schedules before it knows about the transition. The SIU must have used the old owner

location and distances to schedule these requests since it did not know about the transition.

We ensure thatτT is greater than the scheduled execution times of these requests, which

ensures that we do not need to reschedule them.

6.3. Scheduling Horizon

We introduce thescheduling horizon, H, of an isotach shared memory system. The

scheduling horizon bounds the scheduled execution time of any locally issued request rel-

t r d
t r i
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ative to local logical receive times. By definition,tr + H > τmax, whereτmax is the maxi-

mum scheduled execution time of any request already scheduled by that SIU. We can

combine the scheduling horizon with the isotach invariant to bound scheduled execution

times at the receiver when we send a message.

The bound provided by the scheduling horizon are useful. Remotely generated

coherence actions can affect scheduling decisions by changing the state of local copies.

For example, the replacement of existing local copies by our migration action affects

scheduling decisions by changing the scheduling displacements. If a coherence action can

affect the scheduling decision of a previously scheduled request, we must be able to

reschedule requests. Since this solution is expensive, we use the scheduling horizon to

prevent the problem. We delay any scheduling effects of these coherence actions by at

leastH. Sincetr + H > τmax, wheretr  is the logical receive time of the action at the node,

we do not have to reschedule any requests.

We deriveH in two parts: 1) we bound the scheduled execution time of any locally

issued request relative to the minimum possible scheduled logical send time; and 2) we

bound the minimum possible scheduled logical send time relative to local logical receive

times.H is the sum of these bounds since it bounds the scheduled execution time of any

locally issued request relative to local logical receive times.

The scheduling algorithm establishes the first bound. For example, in a system that

uses the basic scheduling algorithm,lastp = max(lastp, min_send+ χI) is the scheduled

execution pulse. Sincemin_send is the pulse of the minimum possible logical send time,

the scheduled execution time of any locally issued request exceeds the minimum possible

scheduled logical send time by at mostχmax, the maximum scheduling displacement.
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We can establish the second bound if the network is extensible. We assume an

extensible network unless stated otherwise. Bounding H is more difficult, and may be

impossible, in non-extensible networks. If the network supports immediate responses,

min_send is at most one more than the current local receive pulse. Suppose a message that

has apid-rank  component greater than thepid-rank  of the issuing process is delivered to

the issuing process immediately before it issues the last request of the isochron, so that the

current local receive pulse has not changed when the isochron is scheduled. Consistency

with potential causality requires thatmin_send is greater than the current local receive

pulse. Sincemin_send is the minimum possible send pulse,min_send must be exactly

one pulse greater than the current local receive pulse. Thus,H = χmax + 1 in a system that

uses the basic scheduling algorithm and supports immediate responses.

6.4. Migration Action Details

In this section, we present details of the migration action in four parts after we dis-

cuss its basic mechanics. The simplest part changes the home copy record of the owner

location. Another part replaces existing local copies with new local copies. The third part

involves the instantiation of new local copies that are not replacement copies. The final

part of the migration action initializes the new owner directory.

6.4.1. Basic Mechanics

We assume the new owner location is already selected in our description of the

migration action. The new owner copy replaces the existing copy at that location. If there

is no existing copy at the new owner location, our migration action creates one. We leave
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the migration initiation policy and the selection mechanism of the new owner location for

future work. Possible migration initiation policies include the owner copy observing few

local requests or repeated write requests by another copy. The initiation policy might

determine the new owner location. Alternatively, ownership requests could determine it.

In our initial description of the migration action, no local copy in a transition state

can be a victim copy. We relax this restriction in Section 6.7. The owner copy must be

valid in order to initiate a migration action. We leave for future work a protocol that

allows concurrent migration actions of the same coherence unit.

The old owner changes state to migrating and multicasts anownership transition

coherence operation (TO) to its directory, the home copy and the new owner copy. The

old owner sends the TO so that its logical receive time, , is the same at each destina-

tion. If no local copy exists at the new owner location, then the TO to that location

includes the values of the coherence unit and creates its existing copy.

We defineτT as , whereχT is the scheduling displacement of the owner-

ship transition. The old owner sends  as

part of the TO, where max(dTO) is the maximum logical distance from any recipient of the

TO to the old owner location.χT is non-negative since the home copy receives the TO and

dhome, old+ dold, new ≥ dhome, new by the triangle inequality. The scheduled execution

time of any request scheduled prior to  is less thanτT sinceχT ≥ H. We explain in

Section 6.4.5 how using , ensures the correct ini-

tialization of the new owner directory. Table 6.1 summarizes the notation for an owner-

ship transition. We introduce the last two entries of Table 6.1 in Section 6.4.5.

t r TO

t r TO
χT+

χT max H max dTO( ) dold new, dhome new,–+,( )=

t r TO

χT max dTO( ) dold new, dhome new,–+≥
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6.4.2. Home Copy Algorithm

The home copy algorithm ensures that the home

copy forwards any miss action with a scheduled execu-

tion time less thanτT to the old owner and any miss

action with a scheduled execution time greater thanτT

to the new owner. The scheduled execution time of a miss cannot equalτT since requests

have unique tags. Table 6.2 shows the home copy algorithm of an ownership transition

and Figure 6.4 shows its schema. The old owner sends the TO to the home copy. The

home copy sends itself a response delayed byχT. When the home copy receives this

response, its record of the owner location becomes the new owner location.

Table 6.1: Ownership Transition Notation

Concept Symbol Definition

TO Logical Receive Time Determined by locations in old owner directory

Scheduled Execution Time

Scheduling Displacement

Existing Copy Execution
Displacement

δexisting -dhome, old − dold, copy

Replacement Copy Execution
Displacement

δreplace -dhome, new − dnew, copy

Instantiation Message Logical
Receive Time

Destruction Message Logical
Receive Time

Directory Message Logical
Send Time

Directory Message Logical
Receive Time

Table 6.2: Home Copy Algorithm

Event Logical Receive Time Actions

Receive TO Send TO response to self;

Receive TO response Owner = new owner;

t r TO

τT t r TO
χT+

χT max H max dTO( ) dold new, dhome new,–+,( )

t r i
τT δreplace–

t r d
τT δexisting–

tsDIR
τT dhome new, dold new,–+

t r DIR
τT dhome new,+

Figure 6.4: Home Action

τT

tsTO

t r TO

dold, home

χT

t r TO

τT t= r TO
χT+
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Lemma 6.1: If the scheduled execution time of a miss action is less thanτT, then
the home copy forwards it to the old owner copy. Otherwise, the
home copy forwards the miss action to the new owner copy.

Proof: The scheduled execution time of a miss action ists + dcopy, home
since its scheduling displacement isdcopy, home. Since the issuing
SIU sends the miss action to the home copy, the home copy
receives each miss at its scheduled execution time. The home copy
forwards each miss action at its scheduled execution time since the
forwarding message is an immediate response. Since the home
copy changes its record of the owner location to the new owner
location at , the lemma follows. QED

The owner location field of any miss has the correct location by Lemma 6.1.

6.4.3. Replacement of Existing Copies

Table 6.3 shows the local copy algorithm that replaces the existing local copies.

Any location that has a valid local copy when it receives the TO, including those of the

new and old owner copies, executes this algorithm. When the SIU receives the TO at ,

it allocates and initializes a transition record, sets the state of its copy to migrating and

sends two delayed responses to itself, thedestruction message and theinstantiation mes-

sage. The destruction message causes the destruction event of its existing local copy,

while the instantiation message causes the instantiation event of its replacement.

We want the delays of these messages to make their execution timesτT. Since the

destruction message destroys the existing copy,δexisting is the execution displacement that

applies to it. Thus,  should be its logical receive

time, , which requires a logical delay ofχT − δexisting. Similarly, we delay , the logi-

cal receive time of the instantiation message, byχT − δreplace. These delays are non-nega-

tive sinceχT ≥ 0 (see Section 6.4.1), whileδexisting = -dhome, old− dold, copy ≤ 0 and

δreplace= -dhome, new− dnew, copy≤ 0. We now prove that these delays are correct.

τT t r TO
χT+=

t r TO

τT δexisting– t r TO
χT δexisting–+=

t r d
t r i
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Lemma 6.2: The lifetime of any existing copy ends atτT. The lifetime of any
replacement copy begins atτT.

Proof: The lifetime of a copy ends attdestroy, the execution time of its
destruction event. For any existing copy,tdestroy is the sum of the
logical receive time of its destruction message and its execution
displacement, . Thus, the
lifetime of any existing copy ends atτT.

Similarly, the lifetime of a copy begins attinstantiate, the execution
time of its instantiation event. For any replacement copy,tinstantiate
is . Thus, the lifetime of
any replacement copy begins atτT. QED

Figure 6.5 shows the schema for the local copy algorithm when the copies are dis-

joint, while Figure 6.6 shows the schema when the copies are overlapping. The only dif-

ference between these schemata is the order of the receive events of the instantiation and

destruction messages. In both cases, the old owner sends the TO to the associated SIU.

Table 6.3: Local Copy Algorithm

Execution Event t r δ te Actions

Execute TO δexisting + δexisting

Send destruction message to self;
Send instantiation message to self;
Allocate and initialize transition record;
State = migrating;

Destroy
existing copy

δexisting τT

If (state is migrating) {
State = disjoint; }

Else /* state is overlapping */ {
State = valid;
Assign to initial version of replacement;
Copy transition storage to main storage;
Owner = new owner;
Discard transition record; }

Instantiate
replacement

copy
δreplace τT

If (state is migrating) {
State = overlapping; }

Else /* state is disjoint */ {
State = valid;
Owner = new owner;
Discard transition record; }

Execute
concurrent
request, a

δexisting
or

δreplace

τa

If ((state is overlapping) and
(owner is not request owner)) {
Execute on replacement copy; }

Else {
Execute on existing copy; }

t r TO
t r TO

t r d

t r i

t r a

t r d
δexisting+ τT δexisting– δexisting+=

t r i
δreplace+ τT δreplace– δreplace+=
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The SIU sends the virtual responses to itself, allocates

and initializes a transition record, and changes the

local copy state to migrating, as previously described.

The actions of the local copy algorithm for the

instantiation and destruction messages depend on the

order in which they are received. We encode this order

in the local copy state. The state remains migrating

until one of these messages is received. We change the

state to disjoint when the destruction message is

received first, and to overlapping when the instantia-

tion message is received first. The local copy state does not change again until the second

message is received since a local copy in a transition state cannot be a victim copy.

When the destruction message is received first, the copies are disjoint, so we

change the local copy state to disjoint. When the node receives its instantiation message,

we change the local copy state to valid and the local record of the owner location to the

new owner location. We then discard the transition record.

When the instantiation message is received first, the copies are overlapping so we

change the local copy state to overlapping. When the node receives its destruction mes-

sage, we change the local copy state to valid and assign the existing copy values to the ini-

tial version of the replacement copy. These values substantiate any reads of that version

and any variables of the storage of the transition record that have not been overwritten by

an update from the new owner copy. We then copy this storage into the local memory

coherence unit used by the existing copy, change the local record of the owner location to

the new owner location and discard the transition record.

Figure 6.5: Disjoint Action

τT

tsTO

t r TO

t r d

t r i

χT

dold, copy

δexisting

δreplace

τT

tsTO

t r TO

t r i

t r d

χT

dold, copy

δreplace

δexisting

Figure 6.6: Overlapping Action
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The last row of Table 6.3 shows how we determine the copy on which to execute a

request that has a logical receive time during an overlap period. If the request’s owner

location field equals the local record of the owner location, it is executed on the existing

copy. Otherwise, the request’s owner location field must equal the new owner location

and it is executed on the replacement copy.

6.4.4. Instantiation of New Local Copies

Instantiating a new local copy during an ownership transition is difficult because it

must be replaced and the initial new owner directory must include its location. We avoid

these difficulties by not instantiating any new local copies during ownership transitions.

Therefore, the supplying event for a new local copy is not performed on the old owner

copy after it begins sending the TO. Instead, we separate the instantiation of new local

copies from the service of miss requests during an ownership transition.

After it begins sending the TO, the old owner copy continues to receive miss

requests, which it services at their scheduled execution times. The old owner copy ser-

vices each read miss by sending its value to the issuing SIU and each write miss by send-

ing an update multicast to its directory. If the issuing SIU is not in its directory, the old

owner copy sends adistinguished update to the SIU. A distinguished update decrements

the reservation count for the coherence unit but is never stored in the new local copy, i.e. it

satisfies the read or write request but does not supply a new copy.

The issuing SIU explicitly indicates if a miss includes an instantiation request (IR).

Pipelined misses, which the SIU uses until the new local copy is instantiated, do not

include an IR. Ordinarily, the owner copy executes the supplying event for the new copy

when it services a miss that includes an IR. During an ownership transition, the old owner
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copy separates the IR from the miss. It forwards the IR to the new owner copy at the

bounded level of service. The issuing SIU location is not added to the old owner directory.

The execution time of any supplying event performed on the new owner copy must

be at leastτT, when its lifetime begins. The logical receive time that corresponds toτT at

the new owner copy is , the logical receive

time of its instantiation message. The new owner copy buffers any separated IR that it

receives before . When the new owner copy receives its instantiation message, it sends

an instantiation multicast for these requests at the standard level of service.

The new owner copy can receive separated IR’s after it receives its instantiation

message. It can also receive IR’s that are included with miss requests that the home copy

forwards to it. For any of these IR’s, the new owner copy performs anaddDir  execution

event on its directory and sends its values to the location at the standard level of service.

Table 6.4 shows the logical times and displacements relevant to the execution

events of the separated IR action, where  is the logical receive time of the IR at the

new owner copy. We now prove that the execution times of the supplying event and

instantiation event are equal when the IR is separated from the miss.

Lemma 6.3: If the separated IR is used, thentinstantiate = tsupply.

Proof: If , then the new owner copy buffers the IR until . The
execution time of the supplying event is  since the
execution displacement of the new owner copy is -dhome, new.
Since the new owner copy uses the standard level of service for the
instantiation multicast, the issuing SIU receives the message at

Table 6.4: Separated IR Action

Execution
Event tr δ te

Supplying event -dhome, new - dhome, new

Instantiation event + dnew, copy -dhome, new - dnew, copy - dhome, new

max t r IR
t r i

( , ) max t r IR
t r i

( , )

max t r IR
t r i

( , ) max t r IR
t r i

( , )

t r i
τT δreplace– t r TO

χT dhome new,+ += =

t r i

t r IR

t r IR
t r i

< t r i
t r i

dhome new,–
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. Since the execution displacement of the new local
copy is -dhome, new- dnew, copy, tinstantiate = tsupply.

Otherwise, the new owner copy executes the supplying event when
it receives the IR. Thus,  is its execution time.
Since the new owner copy uses the standard level of service to
return the IR, the issuing SIU receives it at . We
again add the execution displacement of the new local copy to
derive thattinstantiate = tsupply. QED

The separated IR can result in unreserved local copies in the filling state. The

replacement policy cannot select an unreserved filling local copy as a victim copy since

we cannot differentiate the response to its IR from that of a subsequently requested copy.

We can relax this restriction if we associate a generation number with the new local copy.

We do not detail the relaxed mechanism further.

Since the new owner location has overlapping copies, it can receive its destruction

message after a separated IR or an IR included with a miss. The new owner location

assigns the final values of its existing copy to the initial version of its replacement copy

when it receives its destruction message. Therefore, the transitionvID  can represent the

initial value of new local copies for which the supplying event is performed on the new

owner copy. In order to substantiate the initial version of these copies, the new owner

location sends an update multicast to its entire directory when it receives its destruction

message. This update assigns the final values of its existing copy to the initial version of

any new local copy that the transitionvID  names and to any reads of that version.

6.4.5. New Owner Directory Initialization

Table 6.5 shows the execution events of our algorithm that ensures the new owner

directory is exact initially. Figure 6.7 shows the schema that applies to it. The old owner

t r i
dnew copy,+

t r iR
dhome new,–

t r iR
dnew copy,+
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copy sends the contents of its directory at

 in the

directory message. Although a copy cannot be

destroyed after it receives the TO, the old owner

copy can receive releases after it begins sending the TO. We now show that before the old

owner copy sends its directory, it executes any release that is sent to it.

Lemma 6.4: Any release sent to the old owner copy is received by .

Proof: We first show that  wherecopy is any
recipient of the TO. Since
and  by definition,

. The desired relation follows since
 by definition.

If the TO is not sent to the released copy’s location, then a
removeDir  for the release was performed on the old owner direc-
tory before . Thus, the release was received before .

If the TO is sent to the released copy’s location, then the release is
sent by  since a local copy in a transition state cannot be a vic-
tim copy. Therefore, the old owner copy receives the release by

 and, thus, . QED

If the old owner directory is correct, the directory message provides exactly the

locations of the replacement copies. The destinations of the instantiation multicast that the

new owner copy sends are the only other locations that have a copy whose lifetime

includesτT and, thus, must be in the new owner directory initially. The instantiation event

of the new owner directory, which occurs when the directory message is executed, initial-

Table 6.5: New Owner Directory Initialization Algorithm

Execution
Event tr δ te Actions

Read old
owner directory

δexisting =
-dhome, old

- dhome, old
Message directory = directory;
Send directory message to new owner copy;

Instantiate new
owner directory

δreplace =
-dhome, new

τT
Directory = message directory ∪

destinations of instantiation multicast;

tsDIR
tsDIR

tr DIR

Figure 6.7: Directory Action

τT
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tsDIR
t r TO

χT dhome new, dold new,–+ +=

tsDir

t sDIR
t r TO

dcopy old,+ tsTO
≥ ≥

χT max dTO( ) dold new, dhome new,–+≥
tsDIR

t r TO
χT dhome new, dold new,–+ +=

tsDIR
t r TO

max dTO( )+≥
max dTO( ) dcopy old,≥

tsTO
tsDir

t r TO

t r TO
dcopy old,+ tsDir
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izes it to the message directory plus the destinations of the instantiation multicast. Every

location that has a copy whose lifetime includesτT is in the initial new owner directory.

Lemma 6.5: The new owner directory is complete initially if the old owner
directory is correct.

Proof: Let  be the execution time of the instantiation event of
the new owner directory. We must show that any location that has a
copy such that  is in the
new owner directory at .

First, we show  equalsτT. The execution displacement
of the new owner directory is -dhome, new. The new owner directory
is instantiated when the directory message is received. Since

, .

We now show that if the lifetime of a copy includesτT, then the
location of the copy is in the initial new owner directory.

The lifetime of the new local copy at any destination of the instanti-
ation multicast begins atτT. We construct the initial owner direc-
tory to include these locations.

Any other copy whose lifetime includesτT is a replacement copy.
Since  and each replacement copy location receives the
TO, the directory message includes the location of any replacement
copy. Thus, the new owner directory is complete initially.QED

Lemma 6.5 shows our new owner directory initialization algorithm is correct,

while Lemma 6.4 shows that no releases are lost.

6.5. Protocol Correctness

The correctness of our dynamic owner update protocol is derived primarily from

that of the static owner update protocol. Any execution without migration actions is iden-

tical to an execution of the static owner protocol. Thus, the execution is isochronous and

sequentially consistent. This section shows that executions remain isochronous and

sequentially consistent. in the presence of migration actions.

t instantiateDir

t instantiatecopy
t instantiateDir

tdestroycopy
<≤

t instantiateDir

t instantiateDir

t r DIR
t r TO

χT dhome new,+ += t instantiateDir
t r TO

χT+ τT= =

tsDIR
tsTO

≥



111

Owner Update Protocol

A transition aware requestis any request scheduled when the local copy of its

issuing SIU is in a transition state. The scheduling displacement of a correctly scheduled

transition aware request is based on the old owner location ifτ < τT and on the new owner

location otherwise, which we now show the basic scheduling algorithm does:

Lemma 6.6: The basic scheduling algorithm schedules every transition aware
request correctly.

Proof: There are two possible scheduling displacements that determine
 in Step 1 of the algorithm if the local copy is in a transition

state. For a read request, the possible scheduling displacement
based on the old owner location is , while it
is  based on the new owner location. For a
write request,  and
are the possible scheduling displacements. In Step 4, we then com-
pareτT with τ, the scheduled execution time of the request that is
implied by the value oflastp determined in Step 3. Ifτ < τT, the
algorithm bases the scheduling displacement on the old owner loca-
tion and on the new owner location otherwise. Thus, it schedules
every transition aware request correctly. QED

Many other scheduling algorithms exist that schedule transition aware requests

correctly. We do not discuss the choice of scheduling algorithms further. If a request is not

a transition aware request, its owner location field is correct, as we now show:

Lemma 6.7: The owner location field of every request has the correct location if
every transition aware request is scheduled correctly.

Proof: Recall that the old owner location is the correct location ifτ < τT
whereτ is the scheduled execution time of the request. Otherwise,
the new owner location is the correct location.

The home copy records the location to which it forwards the
request in the owner location field of any miss. Thus, the field of
any miss has the correct location by Lemma 6.1.

The issuing SIU records the owner location that it uses to determine
the scheduling displacement in the owner location field of any hit.
We divide hit actions into three groups: 1) those scheduled before

; 2) those scheduled after  but before the transition com-
pletes for the issuing SIU; 3) those scheduled after the transition
completes for the issuing SIU.

χaMAX

dhome old,– dold copy,–
dhome new,– dnew copy,–

dcopy old, dhome old,– dcopy new, dhome new,–

t r TO
t r TO
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1) The issuing SIU uses the old owner location to determine the
scheduling displacement of any hit action scheduled before .
SinceχT ≥ H by definition,τ < τT. Thus, the owner location field
of the request has the correct location.

2) Any hit action scheduled after  but before the transition com-
pletes for the issuing SIU is scheduled when the local copy is in a
transition state and, thus, is a transition aware request. By assump-
tion, the owner location field of the request is correct.

3) The issuing SIU uses the new owner location to determine the
scheduling displacement of any hit action scheduled after the tran-
sition completes for the issuing SIU. Thus, the owner location field
of the request has the correct location ifτ > τT.We now show that

 wherets is the initial send time of the
request andχ is its scheduling displacement.

The issuing SIU’s local copy is either a replacement copy or a copy
for which the supplying event was performed on the new owner
copy. In either case,  since
ts must be greater than the logical receive time of the message that
caused the instantiation event of the copy. If the request is a read,
thenχ = δreplace= -dhome, new− dnew, copy. If it is a write, then
χ = dnew, copy− dhome, new≥ δreplace. Thus,τ > τT and the owner
location field of the request has the correct location. QED

We can now show thatχ = Φ for every execution event of each coherence action.

Lemma 6.8: The property “te always equalsτ” holds assuming every transition
aware request is scheduled correctly.

Proof: The execution distance,Φ, of each execution event of any request is
determined by the same owner location as its scheduling displace-
ment,χ, since the request’s owner location has the correct location
by Lemma 6.7. Table 5.1 showsχ = Φ and, thus,τ = te. QED

We can now show that the final values of an existing copy always determine the

initial values of its replacement:

Lemma 6.9: For any replacement copy,tinstantiate = tsupply if every transition
aware request is scheduled correctly.

Proof: We show that the destruction event of any existing copy is the sup-
plying event of its replacement and, thus,tsupply = τT = tinstantiate
by Lemma 6.2. The destruction event of any existing copy occurs
when the destruction message is executed.

t r TO

t r TO

τ ts χ+ t r TO
χT+> τT= =

ts t r TO
χT dhome new, dnew copy,+ + +>
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If the copies are disjoint, the replacement copy initially uses the
local memory coherence unit that the existing copy had used. Since
the owner location field of any write is correct by Lemma 6.7, the
scheduled execution time of any write is during the lifetime of the
owner copy that distributes its updates. Sincete always equalsτ by
Lemma 6.8, no node receives any updates during a disjoint period.
Thus, the local memory coherence unit holds the final value of the
existing copy at  and the existing copy’s destruction event is its
replacement’s supplying event when the copies are disjoint.

For overlapping copies, the execution of the destruction message
assigns the final value of the existing copy to the initial version of
the replacement copy. Thus, the destruction event of the existing
copy is also the supplying event of its replacement copy.QED

In order to show that every copy is uniform, we divide the scheduled execution

time line of each coherence unit into epochs with a unique owner copy. By Lemma 6.2,

the lifetime of each local copy belongs to exactly one of theseowner epochs. The owner

copy of theith owner epoch is the new owner of the(i-1)st migration action and the old

owner of theith migration action.

Lemma 6.10: All copies in the dynamic owner update protocol are uniform if
every transition aware request is scheduled correctly.

Proof: We use induction on the number of owner epochs to show that
every directory is correct and all copies are uniform.

Basis: Consider the first owner epoch. The first owner directory is
correct by the same logic that showed the directory of the static pro-
tocol is correct in Lemma 5.5. The first owner distributes updates
for all writes with scheduled execution times during its owner
epoch by Lemma 6.7. The lifetimes of the existing copies of the
first migration action end at itsτT by Lemma 6.2. Thus, the logic of
Theorem 5.3 that showed the copies of the static protocol are uni-
form applies and all copies of the first owner epoch are uniform.

Inductive step: Consider thenth owner epoch. We assume that the
(n-1)st owner directory is correct and all copies of the(n-1)st owner
epoch are uniform in order to show that thenth owner directory is
correct and all copies of thenth owner epoch are uniform.

t r i
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Since the(n-1)st owner directory is correct, thenth owner directory
is complete initially by Lemma 6.5. The remainder of the logic of
Lemma 5.5 applies and, thus, thenth owner directory is correct.

Sincete always equalsτ by Lemma 6.8 and thenth owner directory
is correct, any copy of thenth owner epoch executes every write
request with a scheduled execution time during its lifetime. Since
the owner location field of every read request is correct by Lemma
6.7, no copy of thenth owner epoch executes any read with a
scheduled execution time outside its lifetime. Thus, any copy of the
nth owner epoch is uniform if it is initialized correctly.

Any replacement copy of thenth owner epoch, including thenth

owner copy, is initialized by an existing copy of the(n-1)st migra-
tion action, which is uniform by the inductive hypothesis. Since
tinstantiate = tsupply by Lemma 6.9 andte always equalsτ by
Lemma 6.8, the copy is initialized correctly.

Any other copy ofnth owner epoch is initialized by thenth owner
copy. Sincetinstantiate = tsupply by either Lemma 6.3 or Table 5.1
andte always equalsτ by Lemma 6.8, any copy ofnth owner epoch
that is not a replacement copy is initialized correctly. QED

We can now easily prove that the protocol is correct:

Theorem 6.1:The dynamic owner update protocol enforces isochronicity and
sequential consistency if the scheduling algorithm is correct and
every transition aware request is scheduled correctly.

Proof: Every copy is uniform by Lemma 6.10 andte always equalsτ by
Lemma 6.8 if every transition aware request is scheduled correctly.
Thus, by Theorem 5.2, the protocol enforces isochronicity and
sequential consistency if the scheduling algorithm is correct.QED

Thus, our highly concurrent migration action moves the owner copy while still

maintaining isochronicity and sequential consistency.

6.6. Split Operations and Migration

The migration action has implications for our implementation of split operations.

We assume that all assigns use the standard level of service. If different copies distribute a
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sched and the corresponding assign, the triangle inequality ensures that the copy that dis-

tributes the assign receives the sched before the assign.

The old owner copy must receive any assign that it distributes before the destruc-

tion event of its directory occurs at . Therefore, the issuing

SIU sends any assign to the new owner copy after . Any

assign that is sent earlier is sent to the new owner copy if it distributed the corresponding

sched; otherwise the assign is sent to the old owner copy.

Before the new owner copy receives the directory message, it can receive assigns

for which the old owner copy distributed the corresponding sched. It distributes these

assigns when it receives the directory message in a single multicast.

A new local copy that a separated IR instantiates can receive a distinguished

update for a local sched before it is instantiated. It can send the assign directly to the new

owner if the distinguished update includes that location. Alternatively, another application

of the triangle inequality shows that the assign can be sent through the home copy.

6.7. Releases During Migration

We can eliminate our restriction on the release of a local copy in a transition state.

We send a release for a copy in a transition state to both the new and old owner locations.

The new owner copy can receive this release before the directory message. The new

owner copy collects these releases in a temporary release directory. These releases are sent

before any separated IR since the local copy is in a transition state. Therefore, we subtract

the release directory from the message directory and then add the destinations of the

instantiation multicast to obtain the initial new owner directory.

t r d
t r TO

χT dhome old,+ +=

t r TO
χT dhome old, dcopy old,–+ +
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Any release of a local copy that the new owner copy receives after the directory

message executes correctly. Any such release is sent directly to the new owner copy. Cor-

rect execution of the release requires that the new owner copy receives the release before

any subsequent IR from the same location. If the home copy forwards the IR directly to

the new owner copy, the triangle inequality ensures that the new owner copy receives the

release first, as in the static protocol. If the separated IR is used, another application of the

triangle inequality shows a separated IR travels at least as far to the new owner location as

an IR that the home copy forwards directly to the new owner copy and, thus, the release is

received before the separated IR.

6.8. Optimizations

Other optimizations of our migration action are possible. For instance, the new

owner can use the directory message as its instantiation message, since they have the same

logical receive time. This change probably has little effect on performance since virtual

messages do not create any network traffic and only use buffer space at the SIU.

We can reduce the network traffic of the migration action slightly. The new owner

sends the assign for the transitionvID  to its entire directory. Only new local copies that

the new owner instantiates can require this update. Thus, we can reduce the number of

destinations for this message if the new owner tracks these copies until it sends the update.

We delay the execution time of the supplying and instantiation events of the new

local copy with our separated IR. Many other options for the instantiation of new local

copies during migration allow the supplying events of some or all of the new local copies

to be performed on the old owner copy, eliminating the delay on their execution times.

These new local copies are existing copies of the migration. The local copy algorithm for
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these copies is more complex since their receive lifetimes can begin after . Some

options also complicate the home copy algorithm. The benefit of these options in relation

to the cost of the additional complexity is uncertain.

6.9. Chapter Summary

We presented an owner update protocol that can relocate the owner copy while

maintaining isochronicity and sequential consistency. Our highly concurrent migration

action solves several problems that do not arise in equidistant topologies, such as changing

the execution displacements of every local copy. We modify this action in the next chapter

to create the first delta invalidation protocol. Finally, we introduced the concept of the

scheduling horizon of an isotach shared memory system.

t r TO



118

Chapter 7:

Owner Invalidation Protocol

7.1. Introduction

In this chapter, we present theowner invalidation protocol, the first invalidation

protocol designed for isotach systems. As with other invalidation protocols, this protocol

provides a writer with exclusive access in order to take advantage of reference streams

that exhibit processor locality, but unlike other invalidation protocols, it allows writers to

execute writes without obtaining ownership. This separation of the acquisition of owner-

ship from the service of writes increases concurrency and allows the protocol to adapt to

reference streams that do not exhibit processor locality. The owner invalidation protocol

provides this benefit while retaining the advantages of other delta protocols.

7.2. Protocol Overview

The owner invalidation protocol is a variation of the owner update protocol. The

protocols use the same coherence actions and scheduling displacements for requests and

the same execution displacements for copies. Thus the values from Table 5.1 apply to this

protocol as well as to the owner update protocol. Both protocols support non-owner as

well as owner copies.

The principal difference between the protocols is in the ownership transition

actions, and even these are similar. Recall that the migration action, the ownership transi-

tion action of the owner update protocol, destroys each copy while creating a replacement

copy for each copy it destroys. In the owner invalidation protocol, the ownership transi-
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tion action, called theinvalidation action, destroys existing copieswithout creating new

copies except at the new owner. Thus the new owner starts with an exclusive copy. Since

the new owner copy is the only new copy created by the invalidation action, the new

owner is the only location that needs a transition record.

In this respect, the invalidation protocol is simpler than the update protocol, but in

others it is more complicated, notably in the need for an additional directory at the owner

copy. This directory, called theassign directory, is required to support split operations.

The principal challenge we faced in designing an invalidation protocol for isotach systems

was in finding a way to invalidate copies without breaking split operations. In a system

that supports split operations, a copy can have outstanding unsubstantiated reads, i.e.,

reads that were executed while the value of the copy was unsubstantiated. A copy with an

unsubstantiated read must continue to receive assigns until the read is substantiated. Thus

in an isotach system that supports split operations, copies cannot be destroyed unilaterally.

The owner invalidation protocol continues to send assigns to each invalidated copy until

the copy explicitly consents to its destruction by sending a release. The owner uses the

assign directory to track locations that have not sent a release. It distributes assign updates

to both directories, the ordinary directory, which we call thelive copy directory, as well as

the assign directory, but distributes write updates only to the live copy directory. In this

chapter, we use the termswrite andwrite updates to include scheds and sched updates.

Another difference between the protocols concerns the instantiation of new copies

in response to miss requests that overlap the ownership transition. As in the update proto-

col, every miss request that contains an IR results in the issuing SIU receiving a copy.

However, the instantiation of new non-owner copies during an ownership transition is

delayed to a time later in the ownership transition by the invalidation protocol than by the
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update protocol. Delaying the instantiation of new copies gives the new owner a logical

time interval during which it is guaranteed to have an exclusive copy. The delay also

allows a location that acquires a new copy during an invalidation action that invalidates

the location’s existing copy to use the same local memory coherence unit for both copies.

Without the delay, the receive lifetimes of the copies potentially overlap, necessitating the

use of a local memory coherence unit for each copy. We will show in Lemma 7.1 that the

receive lifetimes of these copies can not overlap. With the exception of the delay in the

instantiation of new non-owner copies during an invalidation action, the instantiation of

new copies, both owner and non-owner, is the same in both protocols.

We leave exploration of policies for initiating invalidation actions for future work.

and assume here that an invalidation action begins when the owner copy receives a write

request. Unless it has an exclusive copy, the owner executes a locally issued write in the

same way as any other write, with the result that it obtains a new, now exclusive, owner

copy for itself. The owner does not initiate an invalidation action in response to a locally

issued write if it already has an exclusive copy.

Neither protocol allows concurrent ownership transition actions. If the owner

receives a write request while an invalidation is in progress, it executes the write and sends

any updates required, but does not initiate an invalidation action on the writer’s behalf. In

traditional invalidation protocols, the execution of a write request requires exclusive

access and a busy response prevents concurrent accesses to the coherence unit during an

invalidation action. The separation of the acquisition of ownership from the service of

write requests in our protocol makes it more concurrent than traditional invalidation proto-

cols and allows it to adapt gracefully to accommodate multiple concurrent writers.
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An invalidation action begins in the same way as a migration action: the owner

multicasts a transition operation (TO) with the same logical receive time  at all desti-

nations. The execution time of the TO is  plus the execution displacement of the copy

on which it is executed. The execution time of the ownership transition itself isτT. In both

the migration and invalidation actions, the lifetime of the new owner copy begins atτT

and the lifetime of every existing copy ends byτT. In both actions,τT is , where

.

When a location other than the new owner location receives a TO, it invalidates its

existing copy. A location with an invalid copy must use a miss action for any subsequently

scheduled request. However, previously scheduled requests must execute on the existing

copy. Thus, a copy must continue to execute updates until all outstanding scheduled

requests on the copy have been executed. SinceχT ≥ H and all scheduled requests are exe-

cuted withinH pulses,τT is an upper bound on the lifetime of existing copies. The old

owner copy is an existing copy with the special responsibility of servicing misses and

writes with scheduled execution times up toτT. Thus, its lifetime ends exactly atτT.

In the invalidation protocol, a copy can go through as many as three phases before

it completely disappears: 1) invalidation; 2) death; and 3) release. When a copy is invali-

dated, no new requests can be scheduled on it; when its lifetime ends, it no longer receives

write updates; and when the copy is released, it no longer receives even assign updates. A

copy sends its release as soon as possible, so not every copy goes through all three phases.

The initialization of the new owner directory in the invalidation action reflects the

protocol’s use of two directories. Recall that the invalidation protocol associates an assign

directory and a live copy directory with the owner copy. The initialization of the new

owner live copy directory is trivial — since the new owner copy is initially an exclusive

t r TO

t r TO

t r TO
χT+

χT max H max dTO( ) dold new, dhome new,–+,( )=
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copy, the new owner location is the only location in its initial live copy directory. Initial-

ization of the assign directory at the new owner is the same as the initialization of the new

owner directory in the migration action except the directory sent by the old owner in the

directory message is the union of its directories. The locations in the old owner live copy

directory do not belong in the new owner live copy directory because these locations will

no longer have live copies atτT when the new owner starts using its directories. However

the locations must remain in the current owner’s assign directory until they send releases.

7.3. Invalidation Action Details

If a valid owner copy receives a write request, it begins an invalidation action. It

multicasts a TO with a uniform logical receive time  to the home copy and the loca-

tions in its directories, including the new owner location. If the write request that triggers

the invalidation action is not locally issued, then owner copy’s state changes to invalid.

Otherwise, its state changes to migrating and it uses the local copy algorithm of the migra-

tion action. As in the update protocol, an ownership transition migrates the owner copy

from the old owner location to the new owner location, and, in this case, these locations

happen to be the same. The owner copy also sends an update operation for the write

request, as shown in write schemata of Figure 5.8. Except in equidistant networks, the

update is sent separately from the TO since the TO must have a uniform logical receive

time and the update a uniform logical send time.

The home copy algorithm of the invalidation action is identical to that of the

migration action that we presented in Section 6.4.2. Thus, Lemma 6.1 applies and the

owner location field of any miss is correct. We present the rest of the invalidation action:

t r TO
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1) the algorithm that destroys the existing copies; 2) the instantiation of new local copies

during the invalidation; and 3) the algorithm that initializes the new owner directories.

7.3.1. Destruction of Existing Copies

The local copy algorithm of the invalidation action is significantly simpler than

that of the migration action since it does not create replacement copies. This change elim-

inates the need for an instantiation message. Also, the destruction message is eliminated

since the local copy state changes to invalid when the TO is executed.

Upon receiving a TO, a non-owner local copy sends a release when its reservation

count equals zero. A reservation count of zero indicates that all previously scheduled

requests have completed, including all outstanding unsubstantiated reads. The old owner

copy follows the same rule except that it must not send a release before execution timeτT

since it must service misses and write requests until that time. Thus, the old owner copy

sends a release at execution timeτT (logical send time ) if it is not reserved;

otherwise it sends the release it when it later becomes unreserved. Finally, the algorithm

does not release an invalidated copy if its SIU is acquiring a new local copy, i.e. if the

local copy’s state has changed from invalid to filling.

The lifetime of each existing copy ends as soon as possible after it is invalidated.

We definetdestroy, the execution time of its destruction event, as ,

where  is the send time of the invalidation acknowledging release. The lifetime of the

old owner copy, which is an invalidated copy, always ends atτT since the old owner copy

cannot send a release before .

As noted before, a copy can be invalid but still alive. A copy’s state always

changes to invalid when it executes the TO, but its lifetime does not end until execution

τT δexisting–

min tsrel
δexisting+ τT,( )

tsrel

τT δexisting–
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time τT if it is still reserved. Also, a copy’s lifetime can end before the copy sends a

release. If the copy has executed any reads that are still unsubstantiated atτT, it must con-

tinue to receive assigns. In this case, the destruction event of the copy occurs before the

invalidation acknowledging release is sent. Thus, its release can be sent after its receive

lifetime ends.

If an issuing SIU has an invalid local copy when it sends an IR, it uses the same

local memory coherence unit for the new local copy, which changes the state of the invalid

copy to filling. If the invalid copy was reserved, the local copy algorithm never acknowl-

edges the invalidation and the lifetime of the invalidated copy ends atτT. Just as with a

reserved invalid copy, the filling copy must execute updates since previously scheduled

read hits may be executed on it.

Table 7.1 shows the three parts of the local copy algorithm of the invalidation

action. These parts are: 1) execution of the TO; 2) execution of achange of address

(COA) virtual message that the algorithm uses to ensure assigns and releases are sent to

the correct location; and 3) execution of concurrent requests. We now describe each part.

Table 7.1: Local Copy Algorithm (Except at the New Owner Location)

Execution Event t r δ te Actions

Execute TO δexisting + δexisting

State = invalid;
If (not (reserved or old owner copy)) {

Send release; }
Else {

Send COA to self; }

Execute COA δexisting
τT - dcopy, old -

dold, copy

If ((state is invalid) and (not reserved) and
(old owner copy)) {
Send release to new owner; }

If (reserved) {
Owner = new owner; }

Execute
concurrent
request, a

δexisting τa

If ((state is invalid) and (not reserved) and
(owner is not self)) {
Send release; }

t r TO
t r TO

t r COA

t r a
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The algorithm always changes the copy’s state to invalid when it executes the TO.

Also, if the copy is neither reserved nor the old owner copy, the algorithm sends a release

to the old owner copy when the TO is executed. Otherwise, a COA virtual message is sent.

The COA ensures the old owner directories are destroyed after the old owner copy

receives all assigns sent to it. After an issuing SIU receives the COA, it sends any assign

to the new owner copy. Before it receives the COA, it sends any assign to the new owner

copy if the new owner copy distributed the corresponding sched and to the old owner copy

otherwise. Since the execution time of the old owner directory’s destruction event isτT,

the old owner copy must receive all assigns by .

We make  the logical receive time of the COA, , in

order to ensure the old owner copy receives any assigns in time. The COA’s logical delay

is , which is at least  since

 and  by definition. Since

 by the triangle inequality, the delay is non-negative.

The old owner copy has completed its ownership responsibilities when the local

copy algorithm executes its COA since the execution time of its COA isτT. Thus, the

algorithm releases the old owner copy when it executes the COA if the copy is invalid and

unreserved. When any location executes the COA, the algorithm changes the local record

of the owner location to point to the new owner location if the local copy is reserved.

As noted, a local copy that is reserved when it receives the TO must execute

requests concurrent with the transition. An invalidated copy can receive updates and pre-

viously scheduled read hits. After executing any concurrent request that it receives, the

copy sends the invalidation acknowledging release if appropriate. We note that the algo-

τT δexisting– t r TO
χT dhome old,+ +=

t r TO
χT dhome old, dcopy old,–+ + t r COA

χT dhome old, dcopy old,–+ dhome old, dold new, dhome new,–+

χT max dTO( ) dold new, dhome new,–+≥ max dTO( ) dcopy old,≥

dhome old, dold new,+ dhome new,≥
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rithm uses the local record of the owner location to ensure it does not release the old

owner copy before the copy’s ownership responsibilities are completed.

The invalidation acknowledging release is sent to both the old owner copy and the

new owner copy if it is sent before the COA is executed. The rule is the same as the rule

used in the owner update protocol for releases concurrent with a transition (see Section

6.7). This similarity in the protocols is not surprising since an invalidation acknowledging

release is the same as a transitional release. After execution of the COA, the release is sent

only to the new owner copy. As in the owner update protocol, the new owner copy can

receive releases before its directories are instantiated. It collects these releases in arelease

directory. We discuss the execution of these releases in Section 7.3.2.

Although the new owner location has an existing copy, it does not execute the

local copy algorithm shown in Table 7.1. Unlike the other existing copy locations, the

existing copy at the new owner location is replaced and, thus, the algorithm of Table 7.1

does not apply. Instead, the new owner location executes the local copy algorithm of the

migration action shown in Table 6.3. We do not discuss that algorithm further.

7.3.2. Instantiation of New Local Copies

The instantiation of new local copies during an invalidation is nearly identical to

their instantiation during a migration. The only differences in the invalidation protocol are

that the new owner location uses a variation of the separated IR during the ownership tran-

sition and it sends the instantiation multicast later. These differences allow a site to store

an invalidated copy and a new local copy in the same local memory coherence unit safely.

They also ensure a period of logical execution time during which the new owner copy is
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the only copy. As in the owner update protocol, the separated IR can result in an unre-

served local copy in the filling state. We assume a filling local copy is never released.

In the update protocol, the new owner location sends the instantiation multicast at

 when it receives its instantiation message. In the invalidation protocol, it sends the

instantiation multicast at  when it receives its destruction message. Logical receive

time  is always later than  at a new owner copy since a new owner copy is an over-

lapping copy. In addition to the separated IR’s that the old owner copy forwards to it, the

new owner location can receive IR’s between  and  that are included with a miss that

the home copy forwards to it. In this case, the new owner copy services the miss immedi-

ately, while it buffers the IR until it sends its instantiation multicast, exactly as if the IR

was forwarded to it by the old owner copy. Table 7.2 shows the logical times relevant to

the separated IR of the invalidation protocol. Observe thattinstantiate = tsupply for new

local copies instantiated by a separated IR.

We note that the new owner copy does not send an assign update for the transition

vID  in the owner invalidation protocol. The new owner location substantiates thatvID

when it receives its destruction message. We assume that action precedes the supplying

events performed on the new owner copy for the instantiation multicast.

The new owner copy is the only copy whose lifetime includes the period of logical

execution time betweenτT and , the execution time of any supplying

event of a separated IR. The old owner copy does not instantiate any copies after it begins

Table 7.2: Separated IR Action

Execution
Event tr δ te

Supplying event -dhome, new - dhome, new

Instantiation event + dnew, copy -dhome, new - dnew, copy - dhome, new

t r d
t r d

t r d
t r d

t r i

t r d

t r d
t r i

t r i
t r d

t r d
dhome new,–
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sending the TO and the lifetime of every existing copy

ends byτT. No supplying events are performed by the

new owner copy before it sends the instantiation mul-

ticast. Thus, the new owner copy always has the

period of exclusive access that Figure 7.1 illustrates.

Note  since

and, by the triangle inequality, .

Delaying the instantiation multicast to  also ensures that an invalidated copy

and a new local copy can safely use the same local memory coherence unit. Any invali-

dated copy’s receive lifetime ends by  since

its lifetime ends byτT. The receive lifetime of any new local copy at that location cannot

begin before , when the location would receive the

instantiation multicast. These receive lifetimes do not overlap, as we now prove:

Lemma 7.1: The receive lifetimes of any invalidated copy and any new local
copy at the same location do not overlap.

Proof: Since an invalidated copy’s lifetime ends byτT, its receive lifetime
ends by  Since the instantiation multi-
cast is sent at , the copy’s location would
receive it at , which is the
earliest that a new local copy’s receive lifetime can begin at that

Table 7.3: Initialization of New Owner Directories Algorithm

Execution
Event tr δ te Actions

Read old owner
directories

δexisting =
-dhome, old

- dhome, old

Message directory =
live copy directory ∪ assign directory;

Send directory message to new owner copy;

Instantiate
new owner
directories

δreplace =
-dhome, new

τT

Live copy directory = self;
Assign directory =

message directory - release directory;
Discard release directory
Send assign multicast to assign directory;

tsDIR
tsDIR

tr DIR

Receive Time
t r i

t r d

τT

Figure 7.1: Exclusive Period

t r d
dhome new,–

Execution Time

τT t r d
dhome new,–≤ t r d

τT δexistingnew
– τT dhome old, dold new,+ += =

dhome new, dhome old, dold new,+≤

t r d

τT δexistingcopy
– τT dhome old, dold copy,+ +=

τT dhome old, dold new, dnew copy,+ + +

τT dhome old, dold copy,+ +
τT dhome old, dold new,+ +

τT dhome old, dold new, dnew copy,+ + +
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location. Since  by the triangle
inequality, the lemma follows. QED

By Lemma 7.1, the invalidated copy and a new local copy can use the same local

memory coherence unit.

7.3.3. New Owner Assign Directory Initialization

Table 7.3 shows the algorithm that initializes the new owner directories. The logi-

cal times of the events that initialize the new owner directories in the owner invalidation

protocol are identical to those that initialize the new owner directory in the owner update

protocol. The actions associated with the events change slightly since the new owner copy

has assign and live copy directories and the existing copies are not replaced. Figure 6.7

shows the schemata that applies to the initialization of the new owner directories.

Since the new owner copy delays the instantiation of any new local copies, it is the

only copy whose lifetime includesτT. Thus, its location is the only location in its initial

live copy directory. When the new owner copy sends the instantiation multicast, the desti-

nations are added to its live copy directory, which ensures that it is correct:

Lemma 7.2: Every live copy directory is correct.

Proof: Each live copy directory is initially complete: We assume the live
copy directory of the first owner copy is initially complete since its
lifetime begins during system initialization. The new owner copy is
the only replacement copy. The execution time of the instantiation
event of any new local copy is afterτT. Since the new owner live
copy directory includes the new owner copy, it is initially complete.

For any copy instantiated by a separated IR, anaddDir  is performed
on the new owner live copy directory when the instantiation multi-
cast is sent. By the logic of Lemma 5.5 that showed the static owner
update protocol directory is correct, anaddDir  is correctly per-
formed on the directory for any other new local copy and a
removeDir  is correctly performed on it for any release. QED

dold new, dnew copy,+ dold copy,≥
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We use the directory message to initialize the new owner assign directory. The

message directory is assigned the union of the old owner assign and live copy directories

at . When the new owner copy receives the directory message, the initial new owner

assign directory is assigned the set difference of the message directory and the new owner

release directory. The new owner copy can then discard its release directory. After its

assign directory is instantiated, the new owner copy sends an update for every assign it

receives before  to the locations in its assign directory. We note that these updates can

be combined into a single multicast.

The assign directory ensures all reads are eventually substantiated. As in the owner

update protocol, we assume that each assign is sent at the standard level of service after

the corresponding sched returns. We now prove that the owner invalidation protocol sup-

ports our implementation of split operations:

Lemma 7.3: The owner invalidation protocol eventually substantiates all reads.

Proof: All releases execute correctly. Since a filling copy cannot be
released, any release that the new owner copy receives before it
sends the instantiation multicast must be for an invalidated copy.
These releases can only remove the location from the new owner
assign directory and, thus, execute correctly. The new owner copy
executes all other releases correctly by the logic of Lemma 5.5 that
shows the static owner update protocol executes releases correctly.

Every location receives an assign for the version named by anyvID
on which it could perform an unsubstantiated read. Since the old
owner live copy directory is correct by Lemma 7.2, it contains
every location that the current ownership transition invalidates.
Thus, the initial new owner assign directory includes any unre-
leased invalidated copies since the directory message contains the
union of the old owner assign and live copy directories. Thus, every
read is eventually substantiated if every assign is received after the
corresponding sched.

Each assign is received after the corresponding sched. If the same
owner copy distributes their updates, then any location receives the
assign after the sched since the issuing SIU sends the assign after

tsDIR

t r DIR
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the sched returns. If different owner copies distribute the updates,
every copy receives the assign after the sched by the triangle ine-
quality since assigns use the standard level of service. QED

Recall no release is sent for an invalidated copy if its SIU is acquiring a new local

copy. The subsequent miss essentially moves the location from the assign directory to the

live copy directory. We assume this movement is not actually performed. Instead, we

assume releases execute on both directories. This assumption does not create unnecessary

message traffic since assign updates are sent to locations in the live copy directory.

7.4. Protocol Correctness

The correctness of the owner invalidation protocol is derived primarily from the

correctness of the owner update protocol. For example, the owner location field of every

request has the correct location in the owner invalidation protocol by the logic of Lemma

6.7 since the protocols use the same coherence actions and home copy algorithm and the

relevant logical times of their ownership transitions are the same.

The protocols use different methods to ensure that no write request is executed on

an existing copy incorrectly. In the update protocol, the owner location field determines

on which copy a concurrent write is executed. In the invalidation protocol, the new owner

location still uses that mechanism, while the separated IR mechanism ensures that writes

with scheduled execution times afterτT are not executed on any invalidated copies.

Lemma 7.4: For any write request executed on an invalidated copy,τ < τT,
whereτ is the scheduled execution time of the request.

Proof: By Lemma 6.7, each owner copy distributes updates for exactly the
writes and scheds with scheduled execution times during its epoch.

An invalid copy only receives updates distributed by the old owner
copy, which is the owner copy of its owner epoch.
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An invalid copy becomes a filling copy if a local miss is scheduled
after the TO is executed. If the miss is a write with a scheduled exe-
cution time greater thanτT, then a distinguished update for that
write from the new owner copy can arrive at the invalidated copy
during its receive lifetime. However, the write is not executed on
the invalidated copy since distinguished updates are never exe-
cuted. By Lemma 7.1, the invalidated copy’s receive lifetime does
not overlap with the new copy’s receive lifetime and, thus, no other
updates from the new owner copy arrive before the end of the inval-
idated copy’s receive lifetime.

Thus, any write or sched executed on an invalidated copy is distrib-
uted by the old owner copy. Thus,τ < τT for any write request exe-
cuted on an invalidated copy. QED

Lemma 7.4 implies that the old owner location is the value of the owner location

field of any write executed on an invalidated copy. Further, the old owner location is the

value of the owner location field of any read executed on an invalidated copy since miss

actions are used after the TO is executed. Since the owner location field of every request

has the correct location, any request executed at the new owner location is executed on the

appropriate copy. Thus,te always equalsτ since the same owner location determines the

scheduling displacement of any request and the execution distance of its execution events,

as in the proof of Lemma 6.8. We can now show every copy is uniform. As in Lemma

6.10, we use induction on the number of owner epochs.

Lemma 7.5: All copies in the owner invalidation protocol are uniform if every
transition aware request is scheduled correctly.

Proof: Basis: The copies of the first owner epoch are uniform by the same
logic that applied to the owner update protocol in Lemma 6.10.

Inductive step: We show that every copy of thenth owner epoch is
uniform if the copies of the(n-1)st owner epoch are uniform. Each
copy of thenth owner epoch executes every write with a scheduled
execution time during its lifetime since the live copy directory of
thenth owner copy is correct by Lemma 7.2.

The scheduled execution time,τ, of any read executed on a copy of
thenth owner epoch is during the copy’s lifetime. If it is not exe-
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cuted on an invalidated copy, then the logic used in Lemma 6.10
applies. Otherwise,τT > τ sinceχT ≥ H and misses are used after
the copy is invalidated. The reservation count ensures that the copy
is not released beforeτ. Thus,τ is during the copy’s lifetime and
any correctly initialized copy of thenth owner epoch is uniform.

Each copy is initialized correctly: Sincete always equalsτ, we need
to show that the supplying event is performed on a uniform copy
such thattinstantiate = tsupply for every copy of thenth owner epoch.
Thenth owner copy is initialized correctly sincetinstantiate = tsupply
by Lemma 6.9 and its existing copy is uniform by the inductive
hypothesis. Any other copy of thenth owner epoch is uniform since
its supplying event is performed on thenth owner copy such that
tinstantiate = tsupply, as either Table 7.2 or Table 5.1 shows.QED

We can now easily prove that the owner invalidation protocol is correct:

Theorem 7.1:The owner invalidation protocol enforces isochronicity and sequen-
tial consistency if the scheduling algorithm is correct and every
transition aware request is scheduled correctly.

Proof: If every transition aware request is scheduled correctly, every copy
is uniform by Lemma 7.5 andte always equalsτ by the logic of
Lemma 6.8. Therefore, by Theorem 5.2, the owner invalidation
protocol enforces isochronicity and sequential consistency if the
scheduling algorithm is correct. QED

The owner invalidation protocol exploits processor locality since it provides exclu-

sive access for long write runs. Unlike other invalidation protocols, the service of a

request can occur concurrently with an invalidation action in our protocol.

7.5. Optimizations

We can optimize our invalidation action when the old owner copy is also the new

owner copy. Since the owner location does not change, the home copy algorithm is unnec-

essary. Thus, the home copy does not need to receive the TO. The owner copy does not

require a transition copy since its execution displacement does not change. The directory

action moves the locations in the live copy directory to the assign directory at .tsDIR
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Also, we can use . Recall that  in

order to ensure the directory message is sent after the old owner copy receives all releases

sent to it. When the old owner location is the new owner location, the destination of

releases does not change and, thus, no releases are lost if we use .

7.6. Chapter Summary

We have presented the first delta invalidation protocol and proven its correctness.

This protocol uses a highly concurrent invalidation action that is an adaptation of the

migration action of the owner update protocol. The owner invalidation protocol supports

our implementation of split operations. The protocol exploits long write runs and adapts

naturally to reference patterns that do not suit invalidation protocols since it uses update

messages for writes concurrent with the invalidation action.

χT H= χT max dTO( ) dold new, dhome new,–+≥

χT H=



135

Chapter 8:

Local Update Protocol

8.1. Introduction

We present thelocal update protocol in which each local copy is responsible for

distributing updates for locally issued writes. Prototype isotach systems that use off-the-

shelf components motivated the design of this protocol [Reg97, WiR97]. The initial proto-

type is an all software implementation of an isotach network, while special purpose hard-

ware will improve performance in later prototypes. Support for extensibility incurs

significant performance penalties in these prototypes. The local update protocol supports

dynamic replication without requiring an extensible network. We expect this protocol to

improve performance substantially over the static replication protocol that is currently

used in these systems.

The local update protocol should perform well when used for variables that are

both read and written in an interleaved manner by multiple processes [BCZ90]. Most

coherence protocols perform poorly for this reference pattern since the processes read the

variable frequently but are not likely to read the value of any given write. Thus, invalida-

tions cause many misses, while many updates are unused. The local update protocol does

not invalidate copies and updates for each write are distributed by the issuing SIU instead

of a centralized copy. This choice for update distribution only requires one network cross-

ing to disseminate each write and should reduce the occurrence of network hot spots. The

drawback of this choice is that every copy of the protocol requires a directory.
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8.2. Protocol Overview

If a network is not extensible, the logical send times of response messages cannot

be controlled. Thus, in the absence of an extensible network,te cannot be ensured to equal

τ for any execution event of a request caused by a response message. This restriction

makes it difficult, if not impossible, for an intermediate location, such as the owner loca-

tion, to distribute updates for write requests. The local update protocol can schedule write

requests without relying on extensibility since the issuing SIU distributes every write.

The instantiation action of the local update protocol, a highly concurrent special

coherence action, creates all new local copies. If an issuing SIU does not have a valid local

copy or an instantiation action in progress when a request is issued, it immediately begins

an instantiation action by sending an IR to the home copy. The IR is never combined with

the request. The issuing SIU delays the scheduling decision for any write request until the

instantiation action initializes the directory associated with the new local copy. Thus, this

protocol replaces the write miss action with an instantiation action followed by a write hit

action. Section 8.5 discusses the instantiation action further.

Figure 8.1 shows the other coherence actions of the local update protocol. The

issuing SIU of a write hit sends an update to each copy in its directory such that the logical

receive time of the update is the same at every destination, while read hits just execute

locally. Since each local copy distributes updates, we must associate a directory with it. In

the read miss action, the issuing SIU sends the request to the home copy, which executes

the request and returns its value to the issuing SIU in a response that uses the bounded

level of service. The read miss response never instantiates a new local copy.
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The logical receive time of each of these coherence actions is the scheduled execu-

tion time of the request. These actions do not rely on extensibility since their execution

events occur after exactly one message. The response message of the read miss action

occurs after its only execution event. Thus, the logical send time of its response can

exceed the logical receive time of the request at the home copy by an indeterminate period

of logical time, as the question mark indicates in the schema.

8.3. Local Copy States

Local copy states can be valid, write-only, filling or invalid. An issuing SIU uses

read hits only if its local copy is valid. It uses write hits with a valid or write-only local

copy. A new local copy is allocated in the filling state when the SIU issues an IR. When

the copy’s directory is instantiated (see Section 8.5), the copy’s state becomes write-only.

When the copy itself is instantiated, its state becomes valid. We show a copy’s directory is

always instantiated before the copy itself in Section 8.5.2.

The home copy must always be valid since it must execute all read misses. In the

instantiation action, the home copy distributes additions to the local copy directories and,

thus, it must have a directory. Since every copy in the protocol has a directory, the home

copy can be viewed as a distinguished local copy.

≤ dhome, copy

Read hitRead Miss

dcopy, home

Write hit

Figure 8.1: Local Update Protocol Coherence Actions

max(dcopy, dir_copy )to home

?

to copy
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8.4. Request Coherence Actions

Table 8.1 shows the scheduling displacements of the local update protocol. The

execution displacement of every copy,δcopy, is 0. A write hit has multiple scheduling dis-

placements. The scheduling displacement,χloc_copy, of an update sent to the local copy,

loc_copy, is dcopy, loc_copy. However, each write request has a single scheduled execution

time,τ. The issuing SIU ensuresτ = te for its execution events by varying the logical send

times of the updates so that the logical receive time is the same at each destination.

Lemma 8.1: The local update protocol ensureste always equalsτ.

Proof: Table 8.1 shows thatχ = Φ and, thus,te = τ for the execution event
of each read request. For any write request,τ = tr, wheretr is the log-
ical receive time of every update for the request. Sinceδcopy = 0 for
every copy,te = tr = τ for any execution event of the request.QED

Sincete always equalsτ, the local update protocol is correct if all copies are uni-

form and the scheduling algorithm is correct by Theorem 5.2.

8.5. The Instantiation Action

Our instantiation action is highly concurrent. The issuing SIU can schedule and

send read misses while it acquires the new local copy, and it can schedule and send write

hits when the associated directory is instantiated, which occurs before the instantiation

Table 8.1: Local Update Protocol Displacements and Distances

Coherence Action Execution Event δ Φ χ

Read Miss Home copy dcopy, home 0 dcopy, home dcopy, home

Read Hit Issuing copy 0 0 0 0

Write Hit Local copy dcopy, loc_copy 0 dcopy, loc_copy dcopy, loc_copy

dm
m
∑
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action completes. The action uses several response messages, but it does not require an

extensible network since its correctness does not require the anticipation of the logical

receive time of any of the responses.

8.5.1. Overview of the Instantiation Action

The instantiation action must initialize the new local copy and its associated direc-

tory correctly. It must also ensure that the location of the new local copy is added to every

existing directory before its lifetime begins. Sincete always equalsτ by Lemma 8.1, the

action initializes the new local copy correctly if it performs the supplying event for the

copy on a uniform copy such thattinstantiate = tsupply.

The instantiation action correctly initializes the directory of the new local copy.

When the home copy receives an IR, it adds the location to its directory and sends the con-

tents of its directory to the issuing SIU. The logical receive time of this directory message

is the execution time of the new directory’s instantiation event, . For the new

local copy (or any local copy that is created for an IR the home copy receives after it sends

the directory message), the instantiation action ensures , where

 is the execution time of the new local copy’s instantiation event. Since a new

local copy’s location is added to the home copy directory before that copy’s directory

message is sent, the new directory includes any unreleased copy created by a previous IR

and, thus, is complete initially.

We ensure the location of the new local copy is added to every directory before

. The home copy sends a message to every location in its directory when it

receives the IR. When a copy receives this message, it adds the new local copy’s location

to its directory and sends an acknowledgment to the new local copy. The new local copy’s

t instantiateDir

t instantiate t instantiateDir
>

t instantiate

t instantiate
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instantiation event occurs after it receives every acknowledgment. Thus, its location is

added to every directory before its lifetime begins.

The existing copies must add the new local copy’s location to their directories to

guarantee that the new local copy receives every write request during its lifetime. Each

copy sends its acknowledgment in such a way that , the logical receive time of its

acknowledgment is greater thanmax(τw), the maximum previously scheduled execution

time of any locally issued write request to the coherence unit. An update for any subse-

quently scheduled, locally issued write request is sent to the new local copy.

In order to initialize the new local copy correctly, each existing copy sends an

acknowledgment to the home copy as well as to the new local copy’s location, such that

the logical receive time of the acknowledgments is the same at both destinations. The

instantiation event of the new local copy occurs when the new local copy’s location

receives the last acknowledgment and its supplying event occurs when the home copy

receives the last acknowledgment. Since the supplying event is performed on the home

copy and the logical receive time of the last acknowledgment is the same at both destina-

tions,tinstantiate = tsupply and the copy is initialized correctly if the home copy is uniform.

The home copy sends its values to the new local copy at the bounded level of ser-

vice when the supplying event occurs. Sincetinstantiate = tsupply and the execution dis-

placements of both copies are zero, these values must arrive after the instantiation event of

the new local copy occurs. To accommodate reads occurring betweentinstantiate and when

the values arrive, we initialize the new local copy to an unsubstantiated special transition

vID . The values sent by the home copy are assigned to thisvID .

We assume that the home copy is initialized correctly and its directory is complete

initially since their lifetimes begin during system initialization. The home copy is always

t r ACK
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in every directory and, thus, receives an update for every write since it is never released

and its directory initializes all other directories. Thus, it is uniform.

8.5.2. Details

We present details of the instantiation action. Table 8.2 shows its steps essentially

in the order they occur. Figure 8.2 shows its schemata. In Table 8.2, theissuing copy is the

new local copy. The actions shown in rows 2 and 3 are concurrent. Similarly, the actions

shown in rows 4 and 5 are concurrent.

When a request is issued and no local copy exists or its state is invalid, the issuing

SIU sends an IR message to the home copy at the bounded level of service, which we

assume provides point-to-point FIFO delivery. Also, a local memory coherence unit for

the new local copy is allocated if necessary. Its state is set to filling and the transitionvID

is associated with its unsubstantiated initial version.

Table 8.2: Instantiation Action Copy Algorithms

# Copy Logical Receive Time Actions

1 Home
Copy

Execute IR:
AcksDue [issuing ] = |directory|;
Send AA to directory;
Add issuing copy location to directory;
Send directory message to issuing copy;

2 Issuing
Copy

Execute directory message:
Directory = message directory;
State = write-only;
AcksDue  = |directory| - 1;

3 Local
Copy

Execute AA:
Add issuing copy location to directory;
Send ACK to home and issuing copies;

4 Issuing
Copy

Execute acknowledgment:
Decrement AcksDue ;
If (AcksDue  is zero) {

State = valid; }

5 Home
Copy

Execute acknowledgment:
Decrement AcksDue [issuing ];
If (AcksDue [issuing ] is zero) {

Send issuing copy transition vID assign; }

t r IR
tsIR

dissuing home,+≤

t r DIR
tsAA

dhome issuing,+=

t r AA
tsAA

dhome copy,+=

trACK
tsACK issuing,

dcopy issuing,+=

t r ACK
tsACK home,

dcopy home,+=
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The home copy performs several

actions when it receives the IR. It sets

the outstanding acknowledgment count

for the issuing copy,AcksDue[issuing],

to the current size of its directory. The

home copy uses an array for this purpose

in order to support concurrent instantia-

tion actions from different locations to

the same coherence unit. The home copy also sends anadd address (AA) coherence oper-

ation to each location in its directory, adds the issuing copy’s location to its directory and

sends the directory message to the issuing SIU. The home copy receives an AA since it is

always in its directory. The AA’s and the directory message use the standard level of ser-

vice and all have the same logical send time, , which is an indeterminate amount of

logical time after the logical receive time of the IR, . The home copy includes its

AcksDue array index of the issuing copy in the AA. A local copy includes this index in

the acknowledgments that it sends in response to the AA as an identifier of the AA.

Execution of the directory message instantiates the directory for the issuing copy

and changes that copy’s state to write-only, which allows the issuing SIU to schedule

write hits. It also sets the issuing copy’s outstanding acknowledgment count,AcksDue, to

one less than the size of the directory since the issuing copy’s location is in that directory.

We can now prove that the home copy receives every write request.

Lemma 8.2: The home copy is uniform.

Proof: We assume the initial values of the home copy are correct since its
lifetime begins during system initialization. Thus, we must show
that it executes every write at its scheduled execution time.

≤ dhome, issuing

dcopy, issuing

Figure 8.2: Instantiation Action

dhome, copy

?

?

≤ dissuing, home
to home

?
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dcopy, home
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max t r ACK
( )
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to issuing

ACK’s
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The home copy is never released and is always in its own directory.
Since the directory of the home copy initializes the directory of any
local copy, the home copy is always in the directory of any local
copy. Thus, the home copy receives and executes an update for
every write. Since it is never released, the scheduled execution time
of any request is during its lifetime. QED

A local copy adds the issuing copy location to its directory when it receives an AA.

It sends an acknowledgment to the home copy and the issuing copy with the same logical

receive time, . Acknowledgments from different local copies can have different logi-

cal receive times, but every pair of acknowledgments from the same source has the same

logical receive time. The pair of acknowledgments with the greatest logical receive time is

shown in the schemata. Since the logical send time of the acknowledgment to the issuing

copy, , precedes the logical send time of the acknowledgment to the home copy,

, the schemata depicts the case where the distance from their sender is greater to

the issuing copy than to the home copy. The opposite case is also possible.

Each local copy guarantees that the issuing copy receives any update it sends with

a logical receive time greater than its . We can easily implement this restriction. If

the reservation count of the sender is zero, then it has no outstanding write requests and

the restriction is met automatically since the acknowledgments use the standard level of

service. Otherwise, the sender can ensure the pulse component of  is at least the

scheduled execution pulse of its most recently scheduled isochron. Thus,  is greater

than the receive time of the update for any previously scheduled, locally issued write

request to the coherence unit. In addition, the local copy must send an update for any sub-

sequently scheduled, locally issued write request to the new local copy. If the reading of

the directory to determine the update destinations and the scheduling of the requests is not

t r ACK

tsACK issuing,

tsACK home,

t r ACK

t r ACK

t r ACK
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atomic, then the local copy must add the issuing copy location to the update destinations

of any unscheduled write for which the directory has already been read.

Any local copy that receives an AA executes this algorithm regardless of its state.

If the local copy no longer exists or is invalid, then the associated SIU has released it. If

the local copy state is filling then the SIU initiated an instantiation action after releasing a

previously held local copy. In these cases, the issuing copy location does not need to be

added to the released copy’s directory. However, the SIU must send its acknowledgments.

The home copy also sends its acknowledgments. The acknowledgment that it

sends to the issuing copy provides the guarantee that the issuing copy receives its updates.

The acknowledgment that it sends to itself causes the supplying event of the issuing copy

when no other local copies exist.

The issuing copy decrementsAcksDue when it executes an acknowledgment.

WhenAcksDue becomes zero, the issuing copy has received an acknowledgment from

every location in its initial directory and it executes its instantiation event by changing

state to valid. After its state becomes valid, the issuing copy must execute any updates that

it receives. We assume the network supports the triangle inequality. Therefore, the issuing

copy receives the directory message before any acknowledgments. We discuss relaxing

this assumption and other optimizations to the instantiation action in Section 8.8.

The home copy decrementsAcksDue[issuing] when it receives an acknowledg-

ment from any local copy for the issuing copy. IfAcksDue[issuing] is zero, then the home

copy sends an assign of its current values to the issuing copy for the transitionvID  since it

has received the last acknowledgment. We now show that the issuing copy is uniform if

releases execute correctly.
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Lemma 8.3: Each local copy is uniform if releases execute correctly.

Proof: The instantiation event of any local copy other than the home copy
occurs when its location receives the last acknowledgment for its
AA and its supplying event occurs when the home copy receives
the last acknowledgment. Since each acknowledgment pair has the
same logical receive time at both destinations and all execution dis-
placements are zero,tinstantiate = tsupply. The issuing copy is initial-
ized correctly since the home copy is uniform by Lemma 8.2 andte
always equalsτ by Lemma 8.1.

Any read execution event performed on a local copy other than the
home copy is for a read hit and must be scheduled after the copy’s
instantiation event. The reservation count ensures the read executes
before the copy’s destruction event. Sincete always equalsτ, the
read’s scheduled execution time is during the copy’s lifetime.

We now show that the issuing copy of any IR executes any write
request,w, with a scheduled execution time,τ, during its lifetime.
Since releases execute correctly, the issuing copy receives an
update forw if its location is correctly added to each directory.

Suppose a copy in the initial directory of the issuing copy sends the
updates forw. Sincete always equalsτ and the scheduled execution
time of any write is the logical receive time of its updates,τ is the
logical receive time of the updates forw. Sinceτ is during the issu-
ing copy’s lifetime,τ must be greater than , the logical receive
time of the acknowledgment from the copy that sends the updates.
Since each copy guarantees that the issuing copy receives any
updates that it sends with logical receive times greater than ,
the issuing copy receives an update forw. Thus, it executesw.

Suppose a copy not in the initial directory of the issuing copy sends
the updates forw. Since this local copy is not in the initial directory
of the issuing copy, the home copy must have sent a directory mes-
sage to it after sending the directory message to the issuing copy.
Thus, its initial directory includes the location of the issuing copy
and, thus, the issuing copy executesw. QED

8.6. Releases

We now present the release action of the local update protocol. This action ensures

that all releases execute correctly since every location receives instantiation and release

t r ACK

t r ACK
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actions to a coherence unit in the same order. Both actions use a message to the home copy

that causes the home copy to send a mutlicast to its directory. Every destination receives

the actions in the same order since these messages use the standard level of service.

We assume a copy must be instantiated before it is released. Thus, a local copy in

the filling or write-only state cannot be a victim copy. This assumption ensures that each

acknowledgment and directory message is applied to the correct new local copy. We can

relax this assumption if we associate a generation number with each local copy.

A release must inform each directory of

the coherence unit about the victim copy. Figure

8.3 shows the schemata of the release action.

When an SIU selects a victim copy, it sends a

release initiating message to the home copy of the coherence unit at the bounded level of

service. The home copy removes the location from its directory and sends a release at the

standard level of service for the victim copy to every location that remains in its directory.

These releases have a single logical send time and, thus, potentially different receive times

in a logically non-equidistant network. The release coherence action does not require an

extensible network. The home copy can send the release multicast an indeterminate

amount of logical time after it receives the initiating release. A valid or write-only local

copy removes the location of the victim copy from its directory when it receives the

release. Invalid and filling local copies, which do not have a directory, discard any

releases that they receive. We discuss optimizations of the release action in Section 8.6.

We now show that anyremoveDir  performed for a release executes such that

 and  for anyaddDir  for a subsequent IR from the

same SIU. Thus, the release executes correctly, as discussed in Section 5.7.4.

Figure 8.3: Release Action

max(dhome, copy )

≤ dissuing, home

to home?

tdestroy t removeDir
≤ t removeDir

taddDir
<
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Lemma 8.4: All releases execute correctly.

Proof: The execution time,tdestroy, of the destruction event of a copy
equals the logical send time of the release initiating message that
the copy-owning SIU sends to the home copy. Since that message
uses the bounded level of service, , wheretr  is its logi-
cal receive time. AremoveDir  execution event is performed on the
associated directory of any write-only or valid local copy that
receives the release. SinceδDir = 0 for every directory,

 and, thus, .

The execution time, , of anyaddDir  performed for any sub-
sequent IR issued by the associated SIU is at least

, where  is the logical receive time at the
home copy of the IR. Since the bounded level of service provides
point-to-point FIFO delivery,  and, thus,

. QED

Now, we show that the local update protocol is correct:

Theorem 8.1:The local update protocol enforces isochronicity and sequential con-
sistency if the scheduling algorithm implementsIRule andSCRule.

Proof: By Lemma 8.1,te always equalsτ. By Lemma 8.4, releases execute
correctly. Thus, every copy is uniform by Lemma 8.3 and the proto-
col is correct by Theorem 5.2. QED

8.7. Split Operations

The local update protocol is compatible with our implementation of split opera-

tions. The reservation count mechanism ensures each local copy receives an assign for any

vID  on which it performs an unsubstantiated read. Since the logical receive time of a

sched update is the same for every copy and the issuing SIU sends the corresponding

assign after it receives the sched update, assigns can use the bounded level of service.

The supplying event of the new local copy associates an unsubstantiated value for

the transitionvID  if the home copy is unsubstantiated when the supplying event occurs. If

the home copy is unsubstantiated, then it has not received the corresponding assign for a

tdestroy t r≤

t removeDir
t r dhome copy,+= tdestroy t removeDir

≤

taddDir

t r IR
dhome copy,+ t r IR

t r IR
t r>

t removeDir
taddDir

<
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sched request already executed on it. Since the home copy receives the corresponding

assign after the last acknowledgment, the new local copy also receives the corresponding

assign. However, the new local copy can receive the corresponding assign before the

assign that the home copy sends for the transitionvID . Therefore, each new local copy

buffers assigns until it receives the assign for the transitionvID . It then executes the buff-

ered assigns after it executes the assign for the transitionvID .

8.8. Optimizations

We discuss some possible optimizations to the instantiation and release actions of

the local update protocol. A simple optimization can be used if the request that causes the

instantiation action is a read. In our description of the instantiation action, the IR is sent

separately from the read miss. These messages can be combined. The benefit of this

choice is uncertain. Although it reduces network traffic, it delays the send time of the IR

until the read request is scheduled and the single message must use the standard level of

service. Thus, the execution events of the instantiation action are delayed, which can result

in more read misses and a longer scheduling delay for write requests.

The AA and release multicasts that the home copy sends use the standard level of

service. These messages can use the bounded level of service. The destinations still

receive the actions in the same order since their messages travel the same paths and point-

to-point FIFO delivery is guaranteed for the bounded level of service. We must alter the

instantiation action to count acknowledgments that arrive at the new local copy before the

directory message if AA messages use the bounded level of service. With this change, we

do not require the network to support the triangle inequality.
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We could use a different release action in which the SIU of the victim copy sends

the releases directly to the locations in its directory. However, we expect our optimized

release and instantiation actions to outperform this solution since our actions ensure a con-

sistent order of their execution inexpensively by using the same message paths. If the SIU

sends releases directly, we must ensure each destination executes release and instantiation

actions from the same location in their issue order. Ensuring this order is difficult with the

bounded level of service since the actions would use different messages paths.

We can alter the local update protocol to exploit extensibility. The home copy

sends the AA and directory messages so that they all have the same logical receive time in

the altered protocol. Since the issuing and home copies can use the scheduling horizon to

bound the scheduled execution time of any write for which the issuing copy does not

receive an update, the altered protocol can eliminate the acknowledgments.

8.9. Chapter Summary

We presented a local update protocol in which every local copy has responsibility

for distributing updates for locally issued write requests. The protocol suits reference pat-

terns with irregular and unpredictable accesses such as exhibited by frequently read and

written variables. Unlike other existing delta protocols, the local update protocol does not

rely on extensibility. Instead, the protocol uses a highly concurrent coherence action that

is separate from the service of requests to create new local copies. We expect the protocol

to improve performance in prototype isotach systems composed primarily of off-the-shelf

components. Finally, we proved the correctness of the local update protocol.
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Conclusion

9.1. Introduction

In this thesis, we presented an extended, more unified theory of isotach systems

than that first given by Williams [Wil92]. This extended theory enlarges the class of cor-

rect implementations of isotach networks, increases the applicability of isotach systems to

networks with non-uniform link latencies and creates a unifying framework for isotach

shared memory systems that better supports the design of delta coherence protocols. We

presented new delta coherence protocols that extend isotach-based coherence protocols to

a wider range of topologies and reference patterns and to non-extensible isotach networks.

9.2. Contributions

We have advanced the theory and understanding of isotach systems as follows:

• Identified a new relation over the events of distributed systems that captures
causality more faithfully than Lamport’shappens before relation;

• Designed an isotach network algorithm that gives greater flexibility in the
assignment of logical distances between communicating nodes;

• Formulated a unifying framework for isotach shared memory systems;
• Extended delta coherence protocols to non-equidistant networks;
• Extended delta coherence protocols to include protocols that target data access

patterns not targeted by the original set of protocols;
• Designed a delta protocol for non-extensible isotach systems, an alternative

class of isotach systems that are easier to build than standard isotach systems.

The extended theory of isotach systems presented in this thesis contributes to the

solution of the coherence maintenance problem. Delta coherence protocols, the isotach-

based family of coherence protocols, support the execution of structured atomic actions
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without the use of locks. They allow more pipelining than traditional coherence protocols.

They also allow increased concurrency for requests by different processes in several ways

compared to traditional protocols. For example, they allow multiple concurrent readers

and writers and can separate the service of requests from the acquisition of a new copy or

exclusive access. Simulation studies show that this additional concurrency can improve

performance significantly.

After we observed that proposed prototype isotach systems appeared to be consis-

tent with causality but were not consistent with Lamport’shappens before relation, we

defined a new relation,potential causality, applicable to isotach systems and other sys-

tems that use a messaging process between the application process and the network.

Instead of thehappens before relation, we now require that isotach systems be consistent

with this new relation. Although the relations are similar,potential causality allows caus-

ally consistent implementations not allowed by Lamport’s relation. Thus, it increases the

flexibility of isotach systems and allows more choices in implementing isotach systems.

We designed the flex algorithm, the first isotach network algorithm that allows the

logical distances in an isotach network to reflect the raw message latency of the individual

links. Since end-to-end message latency in isotach networks is proportional to the logical

distance that the message travels, this algorithm should improve performance in networks

with non-uniform link latencies. We showed that the flex algorithm correctly implements

an isotach Logical time system while providing greater flexibility for logical distance

assignments than a simpler generalization of the previously identified isotach network

algorithm. Also, we presented a Petri net model of the algorithm that allows us to deter-

mine if a set of logical distance assignments will cause the algorithm to deadlock and indi-

cates a potential source of additional isotach network algorithms.
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We developed a new framework for isotach shared memory systems that provides

a unifying theory for these systems. Our framework specifically allows optimizations not

addressed by previous research. Also, it allows an issuing SIU to anticipate logical execu-

tion times although the corresponding logical receive times may not be known, thus sup-

porting the design of delta coherence protocols for non-equidistant networks. Unlike the

existing framework, ours does not use a physical canonical copy, allowing us to demon-

strate that a correct delta protocol represents an infinite class of correct protocols.

Our owner update protocol extends Williams’s early protocol [Wil93] to non-equi-

distant networks and unified it with her late protocol, the only other previously existing

delta protocol. Our owner update protocol includes a highly concurrent migration mecha-

nism that does not suspend access to the copies and allows any node that has a copy to

retain a copy throughout the migration. Relocating the owner copy dynamically was a

much more difficult problem than in equidistant networks since a migration generally

changes the logical distance from the owner copy location to any other location.

Our owner invalidation protocol, the first delta invalidation protocol, modifies the

migration mechanism of the owner update protocol to invalidate the existing copies. This

protocol exploits long write runs since a node that repeatedly writes a coherence unit is

guaranteed exclusive access for a period of logical execution time by our invalidation

mechanism. Unlike traditional invalidation protocols, our invalidation protocol naturally

adapts to reference patterns that do not exhibit long write runs and allows the initiating

write to complete prior to providing the writer with exclusive access.

We can now apply isotach-based coherence techniques to a much wider range of

implementations since our local update protocol supports dynamic replication without

requiring an extensible isotach network. This protocol is an important addition to the fam-
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ily of delta protocols since extensible isotach systems are more complicated and may have

higher message latency than isotach systems that do not support extensibility. The local

update protocol has several unusual features that indicate possible directions for further

research, including the replication of coherence directories and the separation of the cre-

ation of copies from the service of requests.

9.3. Future Work

This thesis has revealed several promising topics for future research. This section

discusses some of these topics in detail and outlines others.

An important topic for future work is the design of an isotach compiler and a body

of isotach programs. Isotach shared memory systems offer consistently good performance

for programs that use isochronous techniques to enforce structured atomicity requirements

[dWR96]. Development of these programs will allow us to simulate our range of coher-

ence protocols using real workloads.

Weak consistency semantics for isotach shared memory systems is another major

topic for future research. We expect that isotach techniques for enforcing traditional weak

consistency semantics, such as release consistency, will provide comparable performance

for programs for which traditional techniques perform well. Highly concurrent isotach-

based lock implementations may allow isotach techniques to improve the performance of

programs that exhibit significant lock contention. Also, we anticipate that a new class of

consistency semantics based on isotach as opposed to lock based coordination of accesses

will emerge from a study of how to write programs that use isochronous techniques.

The non-blocking implementations of isotach network algorithms that we dis-

cussed in Chapter 4 support a rich topic of future research. Under these implementations,
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an SIU can receive messages out of order. In this thesis, we assumed the SIU delivers

messages in order, which requires that messages are buffered while messages with earlier

logical receive times may arrive. Alternatively,optimistic isotach systems could deliver

messages as they arrive. Correct execution would require the system to support rollback of

messages if the SIU subsequently received a message with an earlier logical receive time.

Many techniques developed for optimistic parallel simulation systems, such as

Time Warp [Jef85], would be applicable to optimistic isotach systems. We expect opti-

mistic isotach systems to be more efficient than other optimistic shared memory systems.

Isotach network algorithms would disseminate the equivalent of global virtual time effi-

ciently in these systems, while the isotach invariant implies a limited logical time interval

for which rollback state must be maintained.

Optimistic isotach systems would reduce the need to use weak consistency seman-

tics. Weak consistency semantics exploit opportunities to proceed with the execution of

requests that program structure ensures will not cause any violations of sequential consis-

tency. Optimistic isotach systems would automatically exploit these opportunities, as well

as other opportunities that program structure cannot reveal. Rollback in optimistic isotach

systems would recover from any violations of sequential consistency. As we have men-

tioned, we expect the isotach invariant to limit the state space requirements, an important

aspect of the cost of rollback. In addition, rollback is only required for write requests,

which usually occur infrequently relative to read requests. This last fact implies lazy can-

cellation techniques will be very useful for optimistic isotach systems.

Performance evaluation is another major topic for future research to emerge from

this thesis. A masters project currently underway is evaluating the use of the non-blocking
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flex algorithm implementation. In addition, large amounts of additional evaluation of delta

coherence protocols remains, particularly using real programs and machines.

We briefly outline several other topics of future research based on this thesis:

• Applications ofpotential causality in non-isotach logical time systems;
• Additional isotach network algorithms;
• Development of the theory of the geometry implied by isotach logical time;
• Design of other members of the delta protocol family, including:

–Limited directory protocols;
–Adaptive protocols;
–Competitive protocols;
–Invalidation protocols that do not require an extensible network;
–Owner protocols that selectively replace or invalidate each existing copy during

any ownership transition;
–Protocols that separate directory replication from data replication;
–Protocols that can negatively acknowledge an IR and, thus, not grant a copy;
–Hybrid software/hardware protocols or compiler support for delta protocols;

• Dynamic page management techniques for isotach systems;
• Migration and invalidation policies for the owner protocols;
• Allowing concurrent ownership transitions to the same coherence unit;
• Dynamic use of split operations, i.e. supporting the ability to choose dynami-

cally whether to execute a given assignment as a write or a sched/assign pair.

In addition, we want to explore minor changes to our protocols that we expect to improve

performance under some workloads. For example, in the owner invalidation protocol, the

new owner copy could delay the instantiation multicast if it has any scheduled write

requests, ensuring that the requests occur while it holds exclusive access.

9.4. Concluding Remarks

We extended the theory of isotach systems in several ways that add qualitatively to

known solutions of the coherence maintenance problem. This theory increases their flexi-

bility and allows them to serve a wider range of networks and applications. Isotach sys-

tems are an exciting technology for which there is a substantial and promising body of

future research.
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Appendix: Glossary

AA: Add address operation; page 142.

Adaptive protocol: Protocol that dynamically identifies and exploits ref-
erence patterns; page 21.

Add address (AA) operation: Coherence operation that adds a location to a direc-
tory in the local update protocol; page 142.

Assign directory: Directory of invalidated copies that still need to
receive assign update messages in owner invalida-
tion protocol; page 119.

Assign request: Part of a split operation that is a request to associate
a value with a write request; page 15.

Atomic action: A group of requests; page 15.

Atomicity: Ordering constraint that requires the apparent indi-
visible execution of atomic actions; page 15.

Blue phase: Phase type in flex algorithm; page 44.

Blue port: Port type in flex algorithm; page 44.

Causality: Concept of an event influencing or determining the
outcome or occurrence of another event; page 26.

Change of address message (COA):Virtual message of local copy algorithm of invalida-
tion action that changes local record of owner loca-
tion; page 124.

Cluster locality: The tendency of a processor to access a coherence
unit recently accessed by a physically proximate
processor; page 24.

COA: Change of address virtual message; page 124.

Coherence action: Messages and execution events that satisfy a
request; page 20.

Coherence granularity: Coherence unit size in number of variables; page 9.
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Coherence maintenance problem:Concurrency control problem with replication;
page 9.

Coherence operation: Message to distribute effect of a write request or
alter state of copies; page 20.

Coherence unit: Coherence protocol state information unit; page 9.

Combined processing element: PE with local memory that acts as an MM; page 32.

Complete directory: Directory that at a given execution time contains any
location with a copy whose lifetime includes the
given execution time; page 82.

Competitive algorithm: Algorithm for which cost is less than a constant
times the optimal cost for any input; page 21.

Competitive coefficient: Constant that bounds cost of a competitive algo-
rithm for any input relative to the optimal cost;
page 21.

Concurrency control problem: To ensure that every execution of a parallel program
is consistent with its ordering constraints; page 9.

Concurrent events: Two events such that neither potentially causes the
other; page 38.

Conflict equivalence: Agree on order of all conflicting requests; page 11.

Conflicting requests: Requests, at least one a write, that access the same
variable; page 11.

Consistency: Ordering constraint in which all processes observe
writes to a given memory location in the same order;
page 9.

Consistency semantics: Ordering constraint that limits the values that the
system can associate with a read request; page 11.

Consistency w/potential causality: a b impliesta ≤ tb; page 39.

Copy: Instance of a coherence unit; page 10.

Correct directory: Directory that is complete at every execution time
during its lifetime; page 82.

↵
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Correctness set: All shared memory executions that conform to an
ordering constraint; page 11.

Corresponding interprocess events:Issuing send and receive events; or network send
and receive events; or delivering send and receive
events; page 37.

Corresponding messaging process events:
Corresponding events internal to a single messaging
process: issuing receive event and network send
event; or network receive event and delivering send
event; page 37.

Delayed response: Response message where logical send time equals
original message’s logical receive time plusc > 0;
page 31.

Deliver event: Event that returns value associated with a read
request to issuing process; page 10.

Delivering receive event: Receive event in a user process; page 37.

Delivering send event: Send event by a messaging process to a user pro-
cess; page 37.

Delta coherence protocol: Isotach-based coherence protocol; page 35.

Destruction event: Execution event that destroys a copy; page 73.

Destruction message: Message that causes destruction event of existing
copy; page 103.

Directory: List of locations of copies of a coherence unit;
page 18.

Disjoint copies: Existing copy and its replacement for which corre-
sponding logical receive times are disjoint; page 95.

Distinguished update: Update that decrements the reservation count at
issuing SIU but does not execute; used with sepa-
rated IR in owner protocols; page 106.

Distributed shared memory (DSM):A mechanism that provides transparent shared
memory in systems that limit physical memory
access to the local node; page 8.
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DSM: Distributed shared memory; page 8.

Dynamic fixed routing path: Routing path chosen at the time the message is sent;
page 32.

Dynamic protocol: Protocol that uses run-time coherence operations;
page 20.

Dynamic replication: Coherence mechanism that allows copy locations to
change during program execution; page 10.

Dynamic routing path: Routing path chosen as message travels through net-
work; page 32.

Equivalent constraints: Ordering constraints with the same correctness sets;
page 11.

Equivalent executions: Same requests associated with the same values;
page 11.

Exact directory: Complete directory at a given execution time that
only contains locations that have copies whose life-
times include the given execution time; page 98.

Execution: Every execution event of all shared memory
requests and the associated values; page 11.

Execution displacement: Integer constant,δ, added to logical receive time to
determine execution time; page 64.

Execution distance: Difference,Φ, between execution time of an execu-
tion event and initial send time of the request;
page 64.

Execution event: Event of storing or associating request value;
page 10.

Execution order: Real time (total) order of execution events; page 11.

Execution time: Logical time assigned to an execution event by the
logical execution time system; page 62.

Execution time function: Function for a copy that determines execution time
from logical receive time at node; page 62.

Existing copy: Copy that ownership transition destroys; page 94.
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Extended isonet algorithm: Simple extension of isonet algorithm that allows
logical distances to be different from routing dis-
tances; page 52.

Extensible isotach network: Isotach network in which logical send time of
response message can be a known function of logi-
cal receive time of original message; pages 6, 31.

False sharing: Requests by different processors to unrelated vari-
ables in same coherence unit; page 24.

Filling state: State of a local copy that has been allocated but not
instantiated; page 74.

Fixed routing path: Routing path known to sender at time message is
sent; page 32.

Flat atomic action: An atomic action with no internal true dependences;
page 15.

Flex algorithm: Isotach network algorithm that allows logical dis-
tances different from routing distances; pages 4, 42.

Frequently read/written variable: Reference pattern characterized by interleaved read
and write requests by many processes; page 24.

Full replication: Static replication with copy at every node; page 29.

Green phase: Phase type in flex algorithm; page 44.

Green port: Port type in flex algorithm; page 44.

Happens before relation: Formalization of concept of time in distributed sys-
tems; page 27.

Hardware DSM: DSM mechanism that uses special purpose hard-
ware; page 23.

Hardware protocol: Dynamic protocol; page 20.

Highly concurrent action: A coherence action that does not restrict the concur-
rent use of other coherence actions; page 93.

Home copy: Query location for miss actions; pages 20, 73.
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Immediate response: Response message with logical send time equal to
logical receive time of original message; page 31.

IN: Interconnection network; page 32.

Initial send time: Logical send time of first message used to service a
request; page 64.

Initial token count: Number of tokens,tq ≥ 0, placed on output of a port
before any messages are routed (sent); page 44.

Instantiation action: Coherence action of the local update protocol that
creates a new local copy; page 136.

Instantiation event: Execution event of that initializes a new copy;
page 73.

Instantiation message: Message that causes instantiation event of replace-
ment copy; page 103.

Instantiation request (IR): Request for a new local copy; page 82.

Invalidation: Coherence operation that destroys a copy; page 20.

Invalidation action: Ownership transition that destroys all existing cop-
ies but does not create replacements except at new
owner location; page 118.

IR: Instantiation request; page 82.

Isochron: A flat atomic action in a fault free system; page 15.

Isochronicity: Ordering constraint that requires all possible execu-
tions to be isochronous; page 15.

Isochronous execution: Each isochron appears to execute indivisibly;
page 15.

Isonet algorithm: Original isotach network algorithm; page 42.

Isotach invariant: Message travels one unit of logical distance per
pulse of logical time, i.e. at unit speed; page 30.

Isotach logical time system: An LTS that is consistent with potential causality
and enforces the isotach invariant; page 30.
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Isotach network: Network that realizes an isotach LTS; page 31.

Issue event: Event that provides a request to an SIU; page 10.

Issuing copy:  Local copy associated with issuing SIU; pages 77,
141.

Issuing receive event: Receive event in a messaging process that corre-
sponds to an issuing send event; page 37.

Issuing send event: Send event by a user process to a messaging pro-
cess; page 37.

Issuing SIU:  SIU associated with process that issued the request;
page 32.

Level of message service: Guarantee for the logical receive time of a message
based on its logical send time; page 33.

Lifetime (of a copy): Period of logical execution time between the execu-
tion times of the instantiation and destruction events
of the copy; page 73.

Limited directory protocol: Protocol that restricts number of copies to less than
number of nodes; page 19.

Live copy directory: Directory with current copies in owner invalidation
protocol; page 119.

Local copy: Any copy that is located at a PE (including the
owner copy in protocols with an owner copy);
page 73.

Local update protocol: Update delta coherence protocol in which issuing
SIU distributes updates; pages 6, 135.

Locality: The tendency of future requests to reflect previous
requests; page 23.

Logical clock: Counter for pulse component of logical time of a
port; page 43.

Logical diameter: Maximum logical distance,D, in an isotach net-
work; page 33.
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Logical distance: Fixed logical time,dA, B, for a message to travel
from nodeA to nodeB in an isotach network;
page 30.

Logical execution: Execution in which execution events occur in order
of their execution times; page 63.

Logical execution time: Meta-isotach logical time system of isotach shared
memory systems that models execution equivalence;
page 62.

Logical receive clock: Counter for pulse component of logical time of
receive event at an SIU; page 43.

Logical routing distance: Logical time that a switch takes to route a message;
page 48.

Logical send clock: Counter for pulse component of logical time of send
event at an SIU; page 43.

Logical time deadlock: Condition in which the pulse component of logical
time never again increases; page 52.

Logical time system (LTS): Causality-based method for numbering system
events; page 26.

Logical topology: Fully connected weighted graph of network ele-
ments with logical distance edge weights; page 65.

LTS: Logical time system; pages 4, 26.

Marked graph: Petri net structure in which each place is an input of
exactly one transition and an output of exactly one
transition; page 54.

Memory process: Process that executes shared memory requests;
page 62.

Messaging process: Process that sends and receives messages for a node;
page 36.

Meta-isotach logical time system: Logical time system built on top of an underlying
isotach Net LTS; page 61.

Migration action: Ownership transition that replaces all existing cop-
ies; page 93.
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Migratory variable: Reference pattern characterized by periods during
which only one process issues requests to variable;
page 21.

MIN: Multistage interconnection network; page 32.

Miss action Coherence action used when no local copy exists;
page 20.

Memory module: Network element that is location of home copies;
page 32.

MM: Memory module; page 32.

Mostly read variable: Reference pattern characterized by read requests by
many processes and few write requests by any pro-
cesses; page 24.

Network element: Processing element or memory module; page 32.

Network (Net) LTS: LTS that only numbers network events; page 39.

Network receive event: Corresponding receive event for a network send
event; page 37.

Network send event: Send event between messaging processes; page 37.

New owner copy: Owner copy after ownership transition; page 94.

Off-line algorithm: Algorithm that uses knowledge of the future;
page 21.

Old owner copy: Owner copy before ownership transition; page 94.

On-line algorithm: Algorithm that does not use knowledge of the
future; page 21.

Optimistic isotach systems: Isotach systems that deliver messages as they arrive
and recover from out of logical time order delivery;
page 153.

Overlapping copies: Existing copy and its replacement for which corre-
sponding logical receive times overlap; page 95.
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Owner copy: Distinguished local copy with responsibility for
tracking copies and distributing coherence opera-
tions, pages 5, 73.

Owner epoch: Logical execution time period with single owner
copy; page 113.

Owner invalidation protocol: Invalidation protocol derived by modifying migra-
tion action of owner update protocol; pages 6, 118.

Owner update protocol: Update delta coherence protocol that allows owner
location to change dynamically; page 5.

Ownership transition: A coherence action that changes owner location;
page 93.

Page management problem: To locate current version; page 20.

PE: Processing element; page 32.

Phase type: In flex algorithm, type of ports from which mes-
sages are currently being routed; page 44.

Physical topology: Connected graph, (V, E), where V is the set of net-
work elements and switches and E is the set of mes-
sage links; page 32.

Ping-ponging: Effect of alternating write requests to same coher-
ence by two processors with an invalidation proto-
col; page 24.

Pipelined requests: Concurrently serviced requests by the same process;
page 74.

Potential causality: Refinement of the happens before relation for sys-
tems that use messaging processes; pages 3, 38.

Processing element (PE): Network element that can serve as a process loca-
tion; page 32.

Processor consistency: Program order and write atomicity simultaneously;
page 12.

Processor locality: The tendency of a processor to access a block
repeatedly before an access from another processor;
page 24.
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Producer/consumer variable: Reference pattern characterized by all write requests
by one process and read requests by one or more
other processes; page 24.

Program order: Ordering constraint that requires an equivalent exe-
cution exists in which the requests of each process
occur in the sequential order specified by its pro-
gram; page 12.

Protocol variant: Protocol that adds same constant to every execution
and scheduling displacement of original protocol;
page 90.

Pulse component: Major component of isotach logical time; page 30.

Receive event: Process event that occurs when it receives a mes-
sage; pages 10, 43..

Receive lifetime (of a copy): Period of local logical receive time line that corre-
sponds to lifetime of the copy; page 81.

Release directory: Directory in which the new owner stores releases
until it receives the directory message in the owner
invalidation protocol; page 126.

Release message: Message to remove location of victim copy from
directory; page 74.

Replacement copy: Any copy that replaces an existing copy in owner
protocols; page 94.

Replacement policy: Policy that determines copy to select as a victim;
page 74.

Request: Shared memory access; page 10.

Request forwarding Intermediate location forwards request to copy that
executes the request; page 64.

Reservation count: Number of scheduled locally issued requests to
coherence unit that have not completed; page 74.

Reserved copy: Copy with non-zero reservation count; page 74.

Response message: Message that execution of another message gener-
ates; page 31.
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Routing distance: Number of intermediate nodes on routing path;
page 33.

Routing event: Switch moving message from input to output;
page 43.

Routing path: Set of network nodes (elements or switches) through
which a message passes; page 32.

Sched request: Part of a split operation that is a request to schedule
the execution event of a write request; page 15.

Scheduled execution: Execution with requests in the scheduled execution
order; page 66.

Scheduled execution order: Scheduled execution time (total) order of requests;
page 66.

Scheduled execution pulse: Pulse component of scheduled execution time;
page 67.

Scheduled execution time: Sum,τ, of initial send time of a request and its
scheduling displacement; page 65.

Scheduled logical time: Meta-isotach logical time system of isotach shared
memory systems that models its ordering con-
straints; page 65.

Scheduling algorithm: Method to select scheduled execution times and ini-
tial send times of requests; page 67.

Scheduling decision: Determination of initial send time of request;
page 65.

Scheduling displacement: Offset,χ, of scheduled execution time from initial
send time; selected by issuing SIU; page 66.

Scheduling horizon: Bound,H, of scheduled execution time of any
locally issued request relative to local logical
receive times; page 98.

Send discipline: Relationship of logical send and receive times for
different destinations of a multicast; page 90.

Send event: Process event that occurs when it sends a message;
pages 10, 43.
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Separated IR: Instantiation request that the old owner copy sepa-
rates from a miss request and forwards to the new
owner copy in owner protocols; page 106.

Sequential consistency: Program order and write atomicity; page 12.

SIU: Switch interface unit; page 32.

Software-assisted protocol: Static protocol; page 22.

Software DSM: DSM mechanism implemented entirely in software;
page 23.

Software extended directory: Software mechanism that allows number of copies
to exceed number of hardware pointers; page 19.

Spatial locality: The tendency of programs to request variables
whose addresses are near recently requested vari-
ables; page 23.

Split operation: Mechanism that divides a write request into a sched
request and an assign request; pages 6, 15.

Standard level of service: Level of message service which maintains isotach
invariant; page 33.

Static fixed routing path: Known routing path used by every message between
a sender/receiver pair; page 32.

Static owner update protocol: Delta coherence protocol with fixed owner copy
location; pages 5, 72.

Static protocol: Protocol that uses static methods to guarantee an
exclusive copy exists whenever a write request is
issued; page 22.

Static replication: Coherence mechanism that determines copy loca-
tions at start of program execution; page 10.

Strongly competitive algorithm: Algorithm with minimum possible competitive
coefficient; page 21.

Structured atomic action: Atomic action with internal dependences; page 15.

Substantiate: Execute an assign request; page 15.
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Supplying event: Event that supplies the values associated with an
instantiation event; page 73.

Switch interface unit (SIU): Intermediate entity that manages isotach logical
time for a network element; page 32.

Synchronization variable: Locks implemented in shared memory; page 24.

Tag (message tag): Minor components of logical times of all events of
the message; page 44.

Temporal locality: The tendency of programs to request recently
requested variables again; page 23.

TO: Transition operation; page 101.

Token (logical time token): Control message that marks the end of a pulse;
page 43.

Transition aware request: Any request scheduled when the local copy of its
issuing SIU is in a transition state; page 111.

Transition operation (TO): Coherence operation that announces ownership tran-
sition; page 101.

Transition record: Local record of ownership transition information;
page 94.

Transition states: Local copy states used during ownership transition:
migrating, disjoint and overlapping; page 94.

Transition vID: Special version identifier associated with initial
value of a copy; page 96.

True sharing: Requests by different processors to same variable;
page 24.

Uniform copy: A copy that is initialized correctly, executes all write
requests with scheduled execution times during its
lifetime and only executes read requests with sched-
uled execution times during its lifetime; page 79.

Unsubstantiated read: Read request associated with an unsubstantiated
value; page 15.
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Unsubstantiated value: The value of a write request for which the assign
request has not executed; page 15.

Update: Coherence operation that executes write request on a
copy; page 20.

Variable: Basic unit of all shared memory accesses; page 9.

Version identifier (vID): Tag that associates sched request and corresponding
assign; page 87.

Victim copy: Copy that is destroyed to free storage for a new
copy; page 74.

vID: Version identifier; page 87.

Virtual message: Message for which the sending node is the destina-
tion node; page 33.

Write atomicity: Ordering constraint that requires an equivalent exe-
cution exists in which the multiple execution events
of each write request occur consecutively; page 12.

Write run length: Number of consecutive write requests to a coher-
ence unit by one process before any read or write
request by another process; a measure of processor
locality; page 24.


