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Abstract

Natural language processing (NLP) has illuminated the world by enabling understanding, com-

munication, and interaction between computers and humans. NLP has a wide range of practical

applications in various fields, such as processing and extracting information from unstructured data,

translating di↵erent languages to support communication, and building dialog systems or virtual

assistants for social good. The development of NLP is driven by neural network models. Over

the past decades, NLP models have grown ever larger and more sophisticated and demonstrated

impressive learning abilities to handle a variety of tasks. On the other hand, the interpretability of

NLP models has diminished due to the incremental complexity of neural networks and the limited

access to their inner working or training data. The lack of interpretability has raised much concern

about the trustworthiness and reliability of NLP models in real-world applications. Besides, the

black-box nature of neural network models has hindered humans from understanding them, finding

their weaknesses, and avoiding unexpected failures.

In this dissertation, I cultivate neural model interpretability for trustworthy NLP. Specifically, I

integrate interpretation techniques into model development, covering three main phases of a model

life cycle—training, testing, and debugging. During training, I build interpretable models by de-

signing learning strategies to make model prediction behavior transparent and reasonable. In the

testing phase, with limited access to a black box model, I develop explanation methods to explain

the model decision-making on each test example. I evaluate explanations (e.g., informativeness),

as complementary to traditional evaluations on predictions (e.g., accuracy), to understand model

prediction behavior. Finally, I diagnose and debug models (e.g., robustness) through the lens of ex-

planations and develop solutions to improve them. My research has the potential to benefit NLP and

AI developers, providing them with a better understanding of neural network models and helping

them build trustworthy and reliable intelligent systems.
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Chapter 1

Introduction

1.1 Motivation

With the rapid development of deep learning techniques and neural network models, natural language

processing (NLP) has entered a new era where computers are able to understand, process, and

generate natural languages and communicate and interact with humans [5, 6, 7, 8]. NLP has spread

its applications in various fields, such as analyzing the sentiments expressed in customer reviews and

social media, translating di↵erent languages to support communication, extracting and summarizing

useful information from large amounts of unstructured data, and building chatbots and virtual

assistants for customer support, helpdesk services, and other applications that require human-like

interactions.

Despite the promising advances in NLP, neural language models have grown ever larger and more

sophisticated, from recurrent neural networks [9, 10], convolutional neural networks [11, 12], to large

pre-trained language models containing millions and billions of parameters [13, 14, 15]. In addition to

the incremental complexity, the limited access to models’ inner-working or training data also blocks

humans from understanding them. In other words, deep neural networks are black-box models,

lacking interpretability. The black-box nature can result in severe pitfalls in real-world applications.

For example, a medical chatbot shows unexpected behavior, providing harmful advice to suicidal

patients. 1 Improving interpretability is crucial for helping AI developers debug and diagnose

models, find their weaknesses and vulnerability, and develop trustworthy and reliable intelligent

systems [16, 17, 18, 19]. Especially, in some high-stakes scenarios (e.g., health care and criminal

justice), people would not use deep neural networks if they do not trust them [1, 20, 21].

1https://www.artificialintelligence-news.com/2020/10/28/medical-chatbot-openai-gpt3-patient-kill-themselves/
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The recent literature on improving model interpretability broadly falls into two categories: (1)

explaining black-box models from a post-hoc manner [22]; (2) building interpretable neural network

models [23]. For the first direction, most work focuses on attributing single-feature contributions

to model predictions, such as perturbation-based methods [1, 24], gradient-based methods [25, 26],

attention-based methods [27, 28], and information bottleneck-based methods [29, 30]. Natural lan-

guages are generally complex: containing negations, transitions, etc. For example, the sentiment

of “a waste of good performance” is negative. Current language models (e.g., BERT [13]) are able

to capture the semantic meaning of composite sentences by encoding context information. This re-

quires explanations to detect feature interactions in model processing input tokens, e.g., “a waste of”

flips the sentiment of “good performance” from positive to negative, and provide a comprehensive

picture showing model decision-making based on feature interactions. In other words, it is crucial

to generate explanations that are faithful to models and reflect their true reasoning processes. For

the second direction, building interpretable models is essential for trustworthiness since they have

transparent decision making. In practice, interpretable neural network models have been applied to

solve specific tasks, such as recidivism prediction with categorical data [31] and MNIST digit recog-

nition with simple image data [32]. However, designing interpretable language models for text data

with complex representations (e.g. word embeddings) is more challenging and requires much engi-

neering e↵ort [33]. In fact, it is almost impossible to design interpretable models from scratch that

can achieve comparable performance as existing large pre-trained language models. Thus, balancing

model performance and interpretability is a critical question in NLP.

With model explanations, many research questions arise, such as How faithful are explanations

to model predictions?, To what extent do explanations help users understand model predictions?,

What insights can we get from explanations to understand model behavior?, etc. All those ques-

tions involve one specific research problem—explanation evaluation. Generally, explanations are

evaluated along two dimensions: (1) faithfulness to model predictions; (2) plausibility to human

understanding [34]. Faithfulness measures to which extent explanations reflect the decision mak-

ing of models. Plausibility evaluates to which extent explanations help humans understand model

predictions. Although these two evaluations cover basic properties of explanations, other properties

are also significant, such as informativeness in justifying model reasoning, factuality in reflecting

true knowledge, sensitivity under input perturbations, etc. However, there is still a lack of holistic

formalism for explanation evaluation.

Building upon a better understanding of models, it is natural to move to the next stage—diagnosing

and debugging models through the lens of explanations [18, 35]. For example, analyzing explanations
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can help identify spurious correlations captured by models [36]. And aligning model explanations

with human annotations can guide models to focus on right reasons to make correct predictions

[37]. Besides, exploring the interplay between model interpretability with other properties (e.g.,

robustness, fairness) is a promising direction for developing trustworthy and reliable intelligent

systems.

1.2 Dissertation Statement

This dissertation explores model interpretability and integrates interpretation techniques into dif-

ferent stages of model development—training, testing, and debugging—for trustworthy NLP.

Figure 1.1: Three threads of the dissertation. (1) generating and evaluating explanations for model
understanding; (2) transparentizing model decision-making for interpretability; (3) diagnosing and
debugging models through the lens of explanations.

As Figure 1.1 shows, this dissertation is composed of three threads: (1) generating and evaluating

explanations for model understanding; (2) transparentizing model decision-making for interpretabil-

ity; (3) diagnosing and debugging models through the lens of explanations. The three threads cover

three main phases of a model life cycle—training, testing, and debugging. During training, we have

full access to build interpretable models. Without designing an interpretable model from scratch,

I transparentize a black box model by controlling its prediction beahvior to be transparent and

interpretable. The core idea is to teach models to focus on task-specific important features to make

predictions, hence improving their interpretability. Given limited access to a model’s inner-working

or training, a feasible way to understand it is to explain its predictions in a post-hoc manner by

inferring the relationships between its inputs and outputs. I develop explanation methods to ex-

plain model decision-making on each test example. Besides, I design evaluation metrics to assess
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explanations and get insights into model prediction behavior. With explanations, I diagnose and

debug neural language models, especially their robustness and fairness. I identify model patholo-

gies and develop solutions to address them. The interpretation techniques I have developed bridge

the trustworthy gap between models and humans. Next, I elaborate the main contributions of this

dissertation.

1.3 Contributions

This dissertation advances neural model interpretability for trustworthy NLP along three directions:

• Building interpretable neural language models by transparentizing their decision-

making . I design learning strategies to make model decision making transparent and inter-

pretable. The core idea is to teach models to focus on task-specific important features to make

predictions. For example, if a model learns to predict “an interesting movie” as positive by

relying on “interesting”, its prediction would be trustworthy. I propose two data augmentation

methods that create additional training examples to help models learn task-specific important

features: one utilizes a predefined word list as external knowledge to identify important fea-

tures; the other one identifies important features by perturbing input texts via adversarial

attacks. In addition, I propose inserting a variational word mask layer into a neural network,

after the input layer (e.g., word embedding layer), which learns to restrict the information of

irrelevant or noisy features flowing to subsequent network layers, hence forcing the model to

focus on important features to make predictions. This variational word mask layer is plug-

and-play and automatically learns important features without resorting to external knowledge

or human annotations.

• Explaining neural language models and evaluating their explanations for model

understanding . I develop explanation methods to explain black box models by inferring

the relationships between their inputs and outputs. To ensure the generated explanations are

qualified to explain models and understandable to humans, I evaluate explanations in sev-

eral aspects (e.g., faithfulness, informativeness). An explanation usually highlights important

features in the input to explain the model’s prediction. For example, if a model predicts the

sentiment of “good performance” as positive and the explanation highlights “good”, the predic-

tion would be trusted. However, natural languages are generally complex, containing negations

and transitions. For example, “a waste of” can flip the sentiment of “good performance” from
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positive to negative. To capture feature interactions, I propose a hierarchical explanation,

visualizing the process of di↵erent granularities of features (e.g., words, phrases) interacting

with each other within a model towards the final prediction. The hierarchical explanation

demonstrates both faithfulness to model predictions and plausibility to humans by providing

a comprehensive picture of model decision making. I further design an e�cient explanation

dedicated to models that take in multiple input texts, because computing feature interactions

across sentences is computationally ine�cient. I propose to implicitly detect word correlations

by grouping correlated words from input texts together and measure their overall contribu-

tion to the corresponding NLP tasks. This method significantly decreases the computational

complexity and fills a void in explaining sentence-pair modeling tasks (e.g., natural language

inference). In addition to explaining prediction labels, explaining predictive uncertainty is also

important for model understanding. Especially when a model makes a correct prediction with

low confidence, people may doubt it and wonder what causes the uncertainty. My work is

among the first in NLP, arguing a comprehensive explanation should explain both prediction

label and uncertainty. I propose a simple method to generate uncertainty explanations by

extracting uncertain words (e.g., negations, those against model prediction labels) in inputs

and demonstrate their necessity in helping users understand model prediction behavior.

In evaluating model explanations, an open research question is to what extent an explanation

explains a label, or how much new information (e.g., background knowledge, reasoning) an

explanation supplies to explain a label beyond the original input. Take commonsense question-

answering for example, the input question is “Why do people go hiking?”, and the model

prediction is “enjoy nature”. An explanation “Hiking means the activity of going for long

walks especially across country, or in the nature. People who go hiking enjoy nature.” contains

more information than a vacuous one “People go hiking to enjoy nature”, though both satisfy

existing evaluations (e.g., faithfulness, plausibility). I propose an information-theoretic metric

to quantify the new information in an explanation that supports a given label beyond the

information already available in the input or the label. This metric demonstrates consistent

evaluations with human judgements and o↵ers deeper insights into a model’s reasoning and

prediction processes.

• Diagnosing and debugging models via explanations for trustworthy NLP . I identify

model robustness and fairness issues through the lens of explanations. I discover the discrep-

ancy between models’ decision-making on original examples and their adversarial counterparts
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via explanations. For example, a model correctly predicts an example “a fantastic movie”

as positive based on “fantastic”, while for its adversarial counterpart “a marvelous movie”,

the model makes a positive prediction based on a neutral word “movie”. This reveals a

model robustness issue. To address the problem, I propose a feature-level adversarial training

method, teaching models to behave consistently on predicting original/adversarial example

pairs by focusing on the corresponding important features (e.g., fantastic and marvelous),

hence improving model robustness to adversarial attacks. In addition, I discover many model

pathologies in few-shot settings (with scarce training data) through explanations. For exam-

ple, pre-trained language models have strong prediction bias across labels; while fine-tuning

with a few examples can mitigate the prediction bias, the model prediction behavior might

be pathological (e.g., capturing spurious features from data). This provides insights for future

research on building more reliable and trustworthy NLP models under data scarcity.

The research in this dissertations is expected to benefit NLP and AI developers, providing them

with a better understanding of neural network models and helping them build trustworthy and

reliable intelligent systems

List of publications
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1.4 Dissertation Outline

For the rest of the dissertation, I first discuss the background in Chapter 2, including interpretable

model design and development, post-hoc explanations, explanation evaluations, and interpretability

for model diagnosis and debugging. Then I elaborate the three threads of my research. Chapter

3 summarizes my work on improving model interpretability via data augmentation and variational

word masks. Chapter 4 introduces the hierarchical explanation, e�cient explanation, and uncer-

tainty explanation methods. Chapter 5 proposes an information-theoretic evaluation metric for

free-text rationales. Chapter 6 demonstrates a novel feature-level adversarial training method for

improving model robustness and reports model pathologies in few-shot fine-tuning. Finally, I con-

clude the dissertation and discuss the outlook for future work in Chapter 7.
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Chapter 2

Background

Over the past years, neural model interpretability has been explored for cultivating trustworthy AI.

This chapter provides a literature review on model interpretability from the following perspectives:

interpretable model design and development, post-hoc explanations, explanation evaluations, and

interpretability for model diagnosis and debugging.

2.1 Interpretable Model Design and Development

Building interpretable models is essential for trustworthiness. An interpretable model obeys a

domain-specific set of constraints to allow it (or its predictions, or the data) to be more easily

understood by humans [23]. For example, the constraints can be applied to regularize model struc-

tures to be transparent, such as linear additive models. A complex interpretable model can be

composed of a stack of interpretable components (e.g., linear models, decision trees) under the con-

strain of transparent decision-making, such as generalized additive models [38]. The constraints can

also be applied to regularize model predictions to be more interpretable. A representative example

is to enforce sparsity in model predictions, such as restricting the number of features the model

focuses on or the number of neurons being activated [39]. Those constraints make a model simpler

and more comprehensible to humans.

Despite the promising side of building interpretable models, there is much debate on the trade-

o↵ between model interpretability and prediction performance [17]. Intuitively, sophisticated deep

neural networks have better capability of capturing semantic information of inputs and handling

more complicated tasks compared to simple models. However, deep neural networks are black-

box models. Their lack of interpretability can result in catastrophic problems, especially in high-
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stakes applications, such as health care, criminal justice, etc. Although adding constrains into the

development of black-box models can make them more transparent and interpretable, their prediction

performance can drop significantly. For example, enforcing sparsity in input features or activated

neurons can cause information loss or blocks in the transmission of information. Additionally, simply

applying interpretability regularizations to model training can force the model to find suboptimal

solutions [23].

Designing interpretable models is particularly challenging for NLP [32]. On the one hand, text

data are usually represented by high-dimensional representations (e.g., word embeddings). NLP

models are designed to encode the complex information and capture the high-level semantic meaning

of input texts to make predictions. It is not trivial to enforce sparsity in input representations

or intermediate computations within the model. On the other hand, simple models or a stack

of simple networks may fall short in solving complex NLP tasks, such as commonsense question-

answering [40] and natural language inference [41], which require understanding and reasoning on

texts. Considering the prevalence of large pre-trained language models in NLP [13, 14, 15], it is

not reasonable to keep people from using them. Additionally, it is almost impossible to design

an interpretable model from scratch that can reach the same performance as the state-of-the-art

language models. Some work builds self-explaining models based on existing neural networks by

incorporating interpretable layers [33]. The (globally or locally) interpretable layers identify the

most influential concepts in the training set for a given example or quantify the contribution of

each local input concept by computing a relevance score relative to the predicted label. Although

self-explaining models provide explanations for their predictions, they are partially interpretable or

transparent and require thoughtful engineering design.

Another line of works improve interpretability by regularizing model prediction behavior [42,

43, 44, 45]. For example, human-annotated rationales are applied to regularize model explana-

tions [42, 43]. The idea is to align model decision-making with human reasoning, hence making

model prediction more interpretable. Those methods mostly rely on human annotations or exter-

nal resources, which are expensive and time-consuming for collection. Despite the enhancement of

interpretability, model prediction performance may drop due to the inconsistency between model

decision-making and human reasoning [34]. Besides, many human annotations have quality issues

and are not su�cient for solving the task or guiding model learning [46].

Without relying on human annotations, my work proposes to automatically learn task-specific

important features and teach models to focus on those features to make predictions, hence improving

their interpretability in Chapter 3.
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2.2 Post-hoc Explanations

A main direction in explainable AI is explaining neural model predictions in the post-hoc manner.

Specifically, a post-hoc explanation is produced to explain why the model makes the prediction.

Post-hoc explanations broadly fall into two categories: model-agnostic (black-box) explanations

and model-specific (white-box) explanations [39]. The former explains a model by inferring the

relationship between its inputs and outputs without requiring access to the model’s internals [1, 24].

The latter is dedicated to specific models and requires access to the model inside or additional

information from the model (e.g., attention weights, gradients) [25, 47].

Model-agnostic explanations are generally applied to any black-box models regardless of their

architectures or implementations. Many model-agnostic explanation methods are based on input

perturbations. For example, Li et al. [48] propose Leave-one-out to identify feature attributions by

erasing a certain feature and observing model prediction probability change. This method o↵ers

insights into which part of the input is important to model prediction. However, leaving one feature

out at each time cannot quantify the influence of multiple features on model predictions. To ad-

dress this limitation, a line of Shapley-based methods are proposed, such as Sampling Shapley [2],

KernelSHAP [24], and L/C-Shapley [49]. The Shapley value [50] originally stems from coalitional

game theory, providing an axiomatic solution to attribute the contribution of each player in a game

in a fair way. Shapley-based methods adapt the Shapley value to quantify feature contributions to

model predictions. They compute feature contributions by considering coalitions between features,

hence providing more faithful explanations than Leave-one-out. LIME proposed by Ribeiro et al. [1]

estimates individual feature attributions locally by linear approximation from perturbed examples.

Specifically, an interpretable proxy model (e.g., linear model, decision tree) is applied to approximate

the black-box model in a local region. Then the explanation for the proxy model is used to explain

the black-box model locally. Although model-agnostic methods are useful, they pose certain risks

as we cannot ensure that the explanation accurately reflects the model’s true reasoning processes.

Model-specific explanations are designed for specific types of models. For example, Murdoch et al.

[51] propose a contextual decomposition (CD) method for explaining Long Short Term Memory

networks (LSTMs) [9]. The idea is to decompose the output of a LSTM into two parts—those

resulting solely from the given feature and those involving other features. CD is able to capture

the contributions of combinations of features (e.g., words) to the prediction of an LSTM model. A

hierarchical version of CD called agglomerative contextual decomposition (ACD) is further proposed

to aggregate feature attributions and form a hierarchical explanation [3]. Jin et al. [52] identify the
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limitations of CD and ACD in calculating phrase interactions in a formal context and propose

to quantify context independent importance of words and phrases. Attention-based methods are

proposed to explain models that contain attention layers [47, 53, 27, 28]. Although attention weights

explain the workings of neural models to some extent, there has been a debate casting doubt on the

explanatory power of attentions [54]. Jain and Wallace [28] question the fundamental of attention

explanations based on their poor correlations to other explanations and model predictions. Wiegre↵e

and Pinter [55] challenge some viewpoints of Jain and Wallace [28], arguing “attention is not not

explanation”. To this day, the debate is still continuing. Gradient-based methods attribute feature

contributions by computing the gradients of the output towards the input [56, 25, 26, 57]. The

fundamental hypothesis is that a larger gradient indicates a more influential feature to the model

prediction. Gradient-based methods are known for their implementation e�ciency. However, due to

the need for multiple forward and back propagation calculations, these methods may produce noisy

results (e.g., fuzzy and blurry saliency maps). Adebayo et al. [58] report that some gradient-based

methods fail in explaining the tasks that are sensitive to either data or model.

Another line of works explain neural models by analyzing the functions of di↵erent parts (e.g.,

layers, neurons) of neural networks [59, 60, 61]. For example, we can comprehend layers by evalu-

ating their capacity to aid in resolving diverse problems that di↵er from the ones the network was

initially trained to tackle. In addition, the role of individual neurons can be understood qualita-

tively, by creating visualizations of the input patterns that maximize the response of a single unit,

or quantitatively, by testing the ability of a unit to solve a transfer problem [62]. Closely related

to characterizing individual neurons, some works interprets the representations from neural network

models to understand their prediction behavior [61]. Meng et al. [63] propose a causal intervention

method to identify neuron activations that are important for model predictions and reveal the impor-

tant role of mid-layer feed-forward modules in storing factual associations. Developing explanations

from model internals is beneficial for many other directions, such as model editing, diagnosing and

debugging, and e�ciency. However, the limited access to some pre-trained language models (e.g.,

GPT-3 [15]) poses challenge and di�culty.

Another way of explaining neural network models is from the information-theoretic perspective

[29, 64, 65, 66]. For example, Chen et al. [65] propose an information-based framework to learn

instancewise informative features that have the maximal mutual information with the model output

variable. Schulz et al. [29] proposes an information bottleneck framework to learn to attribute a

relevance score to each individual input feature. The main challenge of information-based methods

is to solve the optimization problem with mutual information items.
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This dissertation focuses more on model-agnostic explanations. In addition to the limitations

discussed above, most work focuses on identifying individual feature attributions (e.g., word-level

saliency maps). Since natural languages are generally complex—containing negations and transi-

tions—explanations should be able to capture feature interactions in model processing input tokens

(as discussed in Chapter 1). Previous work proposed to generate higher-level explanations (e.g.,

phrase-level and hierarchical explanations). For example, Tsang et al. [67] generate hierarchical

explanations by considering the interactions between any features with exhaustive search, which is

computationally expensive. Singh et al. [3] propose ACD which utilizes CD scores [51] for feature

importance evaluation and employ a hierarchical clustering algorithm to aggregate features together

for hierarchical explanation. Lundberg et al. [68] calculate features interactions via SHAP interac-

tion values along a given tree structure. Chen and Jordan [69] utilize a linguistic tree structure to

capture the contributions beyond individual features for text classification. Di↵erent from previous

methods that require decomposition of neural network layers or hierarchical structures available, I

propose a model-agnostic method in Section 4.1 to construct hierarchical explanations solely based

on feature interaction detection without resorting external structural information.

For sentence-pair classification tasks (e.g., natural language inference), computing feature inter-

actions between all word pairs is computationally ine�cient [67]. The methods [3, 52] that only

consider the interactions between adjacent words are not applicable to sentence pair modeling tasks

as critical interactions usually form between words from di↵erent sentences. To address these issues,

I propose to implicitly detect correlated words from a sentence pair and distribute them into a group

and learn the group importance in Section 4.2. Then weighted word attributions are computed based

word distributions and group importance.

In addition to explaining prediction labels, explaining predictive uncertainty is significant for

comprehensively understanding model prediction behavior. Predictive uncertainty estimation of

pretrained language models is an important measure of how likely people can trust their predictions

[70, 71]. However, little is known about what makes a model prediction uncertain. Explaining

predictive uncertainty is an important complement to explaining prediction labels in helping users

understand model decision making and gaining their trust on model predictions, while has been

largely ignored in prior works. In Section 4.3, I propose to explain the predictive uncertainty of

pre-trained language models by extracting uncertain words from existing model explanations. I

find the uncertain words are those identified as making negative contributions to prediction labels,

while actually explaining the predictive uncertainty. Uncertainty explanations are indispensable to

explaining models and helping humans understand model prediction behavior.
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2.3 Explanation Evaluations

Evaluating model explanations is critical for ensuring the information being provided is accurate and

trustworthy. Generally, explanations are evaluated from two perspectives—faithfulness to models

and plausibility to humans [34]. Faithfulness measures to which extent rationales reflect the true

reasoning process of models, while plausibility assesses how convincing rationales are to humans.

The evaluation of faithfulness can be further divided into comprehensiveness and su�ciency [72].

Comprehensiveness quantifies the influence of a feature by leaving it out and then observing the

model predicted probability change on the same class. Intuitively, the model is expected to be less

confident in its prediction once important features are removed from the input. Su�ciency evaluates

the degree to which the important features identified by the explanation are su�cient for the model

to make the prediction. Most automatic evaluations assess model explanations in these two aspects

[73, 72, 34]. Beyond evaluating important features, the degradation test [74, 29] considers both most

important features and least important features and their influence on model predictions.

The assessment of plausibility involves human evaluations. Doshi-Velez and Kim [16] design

binary forced choice, forward simulation, and counterfactual simulation. Specifically, humans are

asked to compare the quality of pairs of explanations, predict the model’s outputs based on expla-

nations, or guess what has to be changed to change the model’s predictions. Hase and Bansal [75]

conduct human studies by separating explained instances from test instances and blocking users

from guessing model (correct) predictions solely based on inputs. Lage et al. [76] conduct carefully

controlled human-subject experiments across di↵erent tasks to understand what factors make mod-

els interpretable. Furthermore, Arora et al. [77] evaluate explanations via a crowdsourcing study,

allowing participants to interact with models.

In addition to faithfulness and plausibility, the robustness of explanations is also crucial for

evaluation. Many works have demonstrated the vulnerability of explanations to input or model

perturbations [78, 79, 80, 81]. Particularly, Wang et al. [82] reveal that gradient-based explanations

are fragile to manipulations, such as increasing the gradient on the stop words or the first input word.

Sinha et al. [83] propose a method to perturb input words to identify fragile explanations. Tang et al.

[84] further investigate the source of vulnerability by disentangling models and explanation methods.

Other evaluation perspectives include the ability of explanations in helping a student model simulate

a teacher model [85] or bridging the communication between a classifier and a layperson [86].

With the appearance of natural language explanations (or free-text rationales) [42, 87, 88, 46,

89]—explaining models in the form of natural language, some evaluation metrics (e.g., su�ciency,
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comprehensiveness) have become inapplicable because they are only applied to features identified

within the input. Some evaluation metrics proposed for natural language explanations focus on the

association between explanations and labels [90, 91]. Specifically, the utility of an explanation is

evaluated based on how much it helps a model proxy predict the given label, which is inspired by

human simulatability [16]. Chan et al. [92] further propose a framework to evaluate the automatic

metrics. However, none of them consider measuring the amount of additional new information (e.g.,

background or commonsense knowledge) in the explanation, beyond what is contained in the input

or the label. Sun et al. [93] conduct a human study on the additional knowledge provided by natural

language explanations. In Chapter 5, I propose an information-theoretic metric to quantify the new

information in natural language explanations.

2.4 Interpretability for Model Diagnosis and Debugging

Model interpretability o↵ers an access for people to understand, diagnose, debug, and improve

models. For example, explanations have been utilized to regularize models’ prediction behavior by

forcing them to align with human-annotated rationales [94, 37, 35, 18]. Explanations have also been

leveraged to debug and improve model robustness, fairness and some other properties [95, 96].

Neural networks have shown vulnerability to adversarial examples which are formed by applying

small but intentionally worst-case perturbations to their original counterparts [97, 98, 99]. Ross and

Doshi-Velez [100] proposed to improve model robustness by regularizing input gradients. Boopathy

et al. [95] and Chen et al. [101] showed that regularizing interpretation discrepancy between orig-

inal and adversarial examples can improve model robustness. The above methods were proposed

to defence adversarial attacks in image domain, while not directly applicable to NLP due to the

discreteness of text data. Most adversarial examples in text domain are generated by heuristically

manipulating input texts, such as replacing words with their synonyms [102, 103]. A common way to

improve model robustness is adversarial training which follows two steps: (1) collecting adversarial

examples by attacking a target model and (2) fine-tuning the model on the augmented dataset with

these adversarial examples [103, 104]. The objective of traditional adversarial training is making

a model produce the same correct predictions on original/adversarial example pairs. Nevertheless,

a robust model should behave consistently on predicting similar texts beyond producing the same

predictions. Regularizing model prediction behavior should be considered in improving model ro-

bustness during adversarial training. In Section 6.1, I propose to improve model robustness through

the lens of explanations by making models produce the same predictions based on the same reasons.
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Pre-trained language models like BERT [13], RoBERTa [105] and GPT-3 [106] have shown re-

markable adaptation performance on downstream tasks due to their learning ability and prior knowl-

edge gained during pre-training [107]. Moreover, this adaptation power is also expected when the

number of task-specific examples is limited, which is likely to happen in the real world, such as data

privacy or expense constraints. To fulfill this goal, much e↵ort has been put into improving model

adaptation performance in few-shot or zero-shot settings [108, 109, 110]. However, there is a lack of

work on analyzing model adaptation behavior or explicit evidence supporting that the performance

gain is truly based on useful information. Utama et al. [111] disclosed that models obtained from

few-shot prompt-based fine-tuning tend to adopt inference heuristics (i.e. lexical overlap) to make

predictions on sentence pair classification tasks. Ma et al. [112] revealed the performance variance

of entailment-based models across zero-shot text classification tasks. Zhao et al. [113] discovered the

instability of model performance towards di↵erent prompts in few-shot learning. These works either

focused on a specific scheme (e.g. prompt) in few-shot learning or a common problem (e.g. lexical

overlap) associated with a type of sentence pair classification tasks. Di↵erently, I study a more gen-

eral adaptation process of pre-trained language models in standard few-shot fine-tuning. Besides,

I explain model adaptation behavior via post-hoc explanations and discover many pathologies of

pre-trained language models in few-shot settings in Section 6.2.

In terms of fairness, neural language models can rely on shortcuts (e.g., dataset biases, spurious

correlations) to make predictions [114, 115, 116]. Some shortcut features (e.g., negation words) are

highly associated with a specific label, resulting in biased and unfair model predictions [111, 117,

118]. It is promising to identify and mitigate shortcut features or spurious correlations via model

explanations.
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Chapter 3

Improving Model Interpretability

I build interpretable models by teaching them to focus on critical information to make predic-

tions—making their prediction behavior interpretable. In this chapter, I introduce two data aug-

mentation methods in Section 3.1 and the variational word masks (VMASK) method in Section 3.2.

These methods improve the interpretability of existing models while maintaining their prediction

performance.

3.1 Improving the Interpretability of Neural Sentiment Clas-

sifiers via Data Augmentation

Sentiment analysis is one of the most widely-used applications of natural language processing (NLP),

where neural sentiment classifiers help enterprises gauge pubic opinion, conduct market research,

monitor brand and product reputation, and understand customer experiences [119, 120, 121]. The

recent development of neural network modeling has largely boosted the prediction performance (e.g.,

accuracy) on sentiment classification [122, 123, 124, 125], while the nonlinearity of neural network

models hinders the understanding on predictions. A fair question with no easy answer for neural

sentiment classifiers is why the prediction on this text is positive (or negative)? Moreover, the lack

of interpretability on model prediction will raise the issue of trustworthy and fairness of sentiment

classifiers in practice [62, 126].

To address the interpretability issue of neural classifiers, various approaches have been developed

recently to provide model-agnostic explanations on predictions [1, 127, 24]. Particularly, this work

focuses on local explanations, which aims to explain predictions for individual data. The most
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Review a truly moving experience, and a perfect example
of how art when done right can help heal, clarify,
and comfort.

Pred. A Positive
Exp. A a, moving, can

Pred. B Positive
Exp. B perfect, comfort, truly

Table 3.1: Explanations generated by the local explanation method LIME from two neural sentiment
classifiers. The ground-truth sentiment polarity of the text is positive and both models give the right
prediction.

common way of generating local explanations in sentiment classification is identifying the important

part of a text associated with predicted sentiment polarity [128, 65, 129]. For example, a widely-

adopted local explanation method LIME [1] can identify a set of keywords as an explanation.

Table 3.1 presents an example of movie reviews and the explanations based on two neural senti-

ment classifiers. Although both classifiers give the right prediction on this example, the explanation

A is harder to be interpreted than the explanation B, in terms of why the prediction is positive.

This di↵erence on the interpretability of explanations leads us to trust more on prediction B than

A, which will eventually discriminate the practical values of these two sentiment classifiers.

In general, a prediction explanation can be generated by using any local explanation method

[1, 130, 131]. However, the real challenge in practice is that whether an explanation is easy to

be interpreted, as demonstrated in Table 3.1. By noticing the connection and di↵erence between

explanations and their interpretability, we would like to study the problem on improving the inter-

pretability of neural sentiment classifiers. We consider this as a learning problem and propose

to resolve it with some data augmentation methods. The goal is to increase the interpretability of

existing neural sentiment classifiers while maintaining similar prediction performance.

In this work, we explore the strategy of using data augmentation to improve the interpretability

of neural sentiment classifiers. We propose two data augmentation methods: one with a predefined

sentiment word list as external knowledge and the other with adversarial examples. Experiments on

the two base models and three benchmark datasets show that the proposed methods improve the

model interpretability with respect to both automatic and human evaluation.

3.1.1 Data Augmentation Methods

The basic idea is to teach the models to make predictions based on critical information. In the

scenario of sentiment classification, the task is to teach model to make predictions by grasping

17



Original text the only problem is that, by the end, no one in the audience or
the film seems to really care

Da-Ek the only that , by the end, one in the audience or the film seems
to care

Adversarial example the only di�culty is that, by the end, no one in the audience or
the movie seems to really caring

DA-Adv the only is that, by the end, no one in the audience or the seems
to really

Original text michel piccoli’s moving performance is this films reason for being
Da-Ek michel piccoli’s this films reason for being

Adversarial example michel piccoli’s moving play is this movie reason for being
DA-Adv michel piccoli’s moving is this reason for being

Table 3.2: Some examples of the augmented data created by Da-Ek and DA-Adv.

sentiment words. This section presents two proposed methods for data augmentation and a unified

method of using augmented data for training.

Augmenting via External Knowledge

The first method is called data augmentation with external knowledge (Da-Ek). We propose a

simple method to create some examples that are similar to training examples with respect to their

surface forms, but those examples do not belong to any of the predefined classes Y. To be specific,

the augmented examples for sentiment analysis are the examples that are similar to original training

examples but have no sentiment polarity, as illustrated in Table 3.2.

A simple way to create an augmented example x̃ is that, for a given sentence x, removing

words {xi} from x if xi belongs to a predefined sentiment word list. In this work, we use the

words listed in the SentiWordNet corpus [132] and their sentiment polarity scores. For a given

sentence x, removing xi from x if xi is in the word list will create an augmented example x̃.

Table 3.2 presents two examples of the original text and its augmented counterpart after removing

words with clear sentiment polarity. For some simple texts, removing sentiment words will cause

their augmented counterparts to be incomplete sentences, which can still be used as augmented

data points. For example, if we remove the sentiment word in text I like this movie, then the

augmented training example is I this movie. However, with the training framework proposed in

Section 3.1.2, this augmented example will help the model to emphasize the sentiment prediction on

the original sentence.

There is a critical distinction between the augmented examples created by Da-Ek and the

example from the neutral class in sentiment classification. In multi-class sentiment classification,

there is often a class with an average sentiment score called the neutral class. The major di↵erence
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is that texts from a neutral class still have sentiment, or at least contains some sentiment words. For

example, the movie review The Cockettes provides a window into a subculture hell-bent

on expressing itself in every way imaginable. is a neutral but not augmented example.

With words like hell-bent and imaginable, it shows sentiment inclination of this movie review

even though it is not strong. To construct an augmented example from this text, the proposed

method still needs to remove the sentiment words. Empirical results show that adding neutral

examples can only lead to a minor improvement on interpretability.

Augmenting with Adversarial Examples

This method is called data augmentation with adversarial examples or DA-Adv. We adopt the

method proposed by Alzantot et al. [102] to generate adversarial examples, which may have similar

surface forms and semantic meanings to training examples. To be specific, this method aims to

minimize the number of modified words between the original and adversarial examples, and maintain

semantic and syntactic similarity by substituting only a few synonyms. A well-known challenge on

generating adversarial examples in text data is that texts are discrete, which causes the di�culty

in generating adversarial examples by using the popular gradient-based methods [98, 133, 134].

Alzantot et al. [102] developed an attack algorithm via genetic algorithms. In each generation, a

group of candidate examples are generated by substituting synonyms, and those most fit within the

context surrounding are selected by the Google 1-billion words language model [135]. The candidates

that can successfully attack the model to flip prediction polarity are adversarial examples. Like many

other adversarial attack methods, there is a budget about how many words can be replaced. Beyond

that budget limit will cause a fail attack. In our case, it means not every text can get an adversarial

example.

As adversarial examples can flip model predictions, the replaced words from original texts must

be critical to sentiment prediction. Similar to the previous data augmentation method, we can

construct augmented examples by taking the replaced words as the sentiment words in Da-Ek.

Comparison. Table 3.2 presents some examples of two data augmentation methods. With Da-

Ek, we have a high-precision method for data augmentation. If any word in a text matches one

entry in the SentiWordNet, then it is very likely to be a sentiment word. However, the word

list in the SentiWordNet is predefined and definitely not comprehensive. The missing sentiment

words imply Da-Ek could be a data augmentation method with low recall. With DA-Adv, we

have a low-precision method for data augmentation. Words identified by adversarial attacks can
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be sentiment words or simply can be non-sentiment words that are sensitive to neural sentiment

classifiers. Besides, finding adversarial examples is very time consuming, as further explained in

Section 3.1.4. But DA-Adv has the potential to extend this method to other text classification

tasks, where we do not have a pre-defined word list.

3.1.2 Learning with Augmented Examples

We extend the training set D = {(x(k), y(k))} as by adding the augmented examples {(x̃(k0),aug)}

generated by either Da-Ek or DA-Adv and extend it as eD = D[{(x̃(k0),aug)}. Similarly, the label

set Y is also extended as eY = Y [ {aug}. Note that, the proposed methods only create augmented

examples for the training set and development set. No modification is on the test set.

Once we have the extended training and development set, learning a neural sentiment classifier

with data augmentation is straightforward. Specifically, we optimize the following loss function

argmax
✓

X

eD

L(ŷ(k), y(k)), (3.1)

to achieve the best prediction accuracy on the augmented development set, where ŷ(k) is decoded

from the decision function defined in Equation 3.2 with extended label set eY, L(·, ·) is the cross-

entropy loss, and ✓ is the collection of parameters, which is the same as the base model. During

test, with no augmented example, the trained neural classifier simply ignores any prediction on the

label aug and picks the label from Y that maximizes the decision value in Equation 3.2.

3.1.3 Experimental Setup

This section describes the experimental setup used in this work. We test the proposed data augmen-

tation methods with two neural sentiment classifiers, a convolutional neural network in [11, Cnn ]

and a recurrent neural network with LSTM [9, Rnn ], on three benchmark datasets, SST [136], MR

[137], and IMDB [138]. Local explanations were generated from LIME [1] with model predictions

and the cosine similarity method based on text representations.

Datasets. We use three sentiment benchmark datasets for evaluation.

• SST. This dataset was proposed in [136] for sentence-level sentiment classification. We used

the SST-2, which is the 2-class version of this dataset. There are 6,920 examples in the

training set, 872 examples in the development set, and 1,821 examples in the test set. For
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data augmentation with Da-Ek, additional 1,624 and 229 augmented examples were added

to the training and development sets respectively. With DA-Adv, 4,885 and 539 augmented

examples were added to the training and development sets respectively.

• MR. This dataset was proposed by Pang and Lee [137]. These reviews in this dataset were

divided into 9,596 training and 1066 test examples. In our experiments, 90% of the training

examples are used for training, and the rest is used as development set. With Da-Ek, we

added additional 4,318 and 480 augmented examples to the training and development sets

respectively.

• IMDB. This dataset was proposed by Maas et al. [138]. These reviews in this dataset were

divided into 25,000 training and 25,000 test examples. We split 90% of the training examples

for training, and the rest as the development set. With Da-Ek, additional 11,250 and 1,250

augmented examples were added to the training and development sets respectively.

Neural sentiment classifiers. In this work, we use a convolutional neural network in [11, Cnn

] and a recurrent neural network with LSTM [9, Rnn ] as our baseline models.

The Cnn consists of an input layer that takes word embeddings as inputs, a convolutional layer

followed by a max-pooling layer for composing word embeddings into text representations, and a

softmax layer for classification. For a given text x, f(·) denotes the representation function in

Cnn, which maps x into a d-dimensional numeric vector f(x) as text representation. The decision

function is defined as

h(x, y) = uT
yf(x), (3.2)

where y 2 Y is the class label, and uy 2 Rd is the corresponding classification weight vector. For

prediction, we use ŷ = argmaxy h(x, y).

The Rnn consists of uni-directional one-layer LSTM. For a given text, the last hidden state of

this RNN is used as the text representation f(x). The same decision function defined in Equation

3.2 is employed for sentiment prediction.

Even though the main focus of this work is on model explainability, the prerequisite is to match

the classification performance in prior work with the similar model architectures. Here are some

implementation details that we adopted from prior work [11]. For both the Cnn, Cnn-Ek and

Cnn-Adv, we used a single convolutional layer with filters of the window sizes ranging from 3 to 5.

For both Rnn and Rnn-Ek, we used a single layer LSTM. For all of the models, the input param-

eters were initialized with the 300-dimensional pretrained word embeddings [139, word2vec] and all
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other parameters were randomly initialized with the default method in PyTorch. Hyperparameters,

including kernel size (for CNN only), hidden size (for RNN only), learning rate, minibatch size, etc.,

were tuned separately on the development set for di↵erent datasets. We used Adam [140] to update

the parameters.

Local Explanation Generation

To generate local explanations, we adopt the LIME proposed by Ribeiro et al. [1] to generate expla-

nations on model predictions. Besides, we also suggest another way of generating local explanations

based on the cosine similarity between word representations and text representations.

LIME with model predictions. The basic idea of the LIME is that, for a given example x,

it finds an explanation based on a locally linear approximation g(z(l), y) of the decision function

h(z, y), in which z is a perturbation of x obtained by subsampling the words from x. Given a set

of subsamples {z(l)} from x, the loss function of the LIME is defined as

L(h, g) =
qX

i=1

Dx,z(l)(h(z(l), y)� g(z(l), y))2, (3.3)

where the linear approximation function g is usually defined as g(z, y) = wT
y z. Dx,z(l) measures

the similarity between x and z(l),

Dx,z(l) = exp

✓
�d(f(x),f(z(l)))2

�2

◆
, (3.4)

with d(f(x),f(z(l)) as the cosine distance between the latent representations of x and z(l), as

suggested in [1].

Optimizing Equation 3.3 will try to match the decision values from linear approximation g(z(l), y)

with h(z(l), y) and also produce a set of linear weights {wy}y2Y associated with Y. The values of

{wy,i} indicate the importance of {xi}. If the predicted label is ŷ, then top t words according to

{wŷ,i} will be selected as an explanation of x on the corresponding prediction.

Cosine similarity on text representations. For a given text x, the basic idea of using cosine

similarity generating explanations is to measure the similarity between its text representation f(x)

and word representations f(xi), where xi is the embedding of the i-th word in text x. In this way,

we can find the most similar words with respect to the text representation f(x), and choose the top

t words as an explanation. The underlying assumption of this idea is that, if a text representation

22



f(x) could facilitate sentiment prediction, the sentiment polarity indicated by the top t similar

words should be consistent with its overall sentiment polarity.

To compute cosine similarity, we first need to map all the word embeddings {x1, . . . ,xn} into the

text representation space using f(·). Then, the similarity between a text and the i-th word within

this text is measured by the cosine value of these two vectors,

cos-sim(f(x),f(xi)) =
hf(x),f(xi)i

kf(x)k2 · kf(xi)k2
. (3.5)

After applying Equation 3.5 to every word in text x, then we pick the top t words with respect to

their cosine similarities as an explanation of f(x).

3.1.4 Experiments

Although there are di↵erent ways to evaluate prediction explanations as suggested in prior work [1,

62], the interpretability of explanations should be the most of important criterion. As argued by

Gilpin et al. [62], a good explanation should be easily interpretable and “simple enough for a person

to understand using a vocabulary that is meaningful to the user”. For sentiment classification, as

demonstrated in the running example (Table 3.1), a good explanation on sentiment prediction should

be easy enough for a human user to understand together with the prediction. Following this intuition,

we define the interpretability measurement for both automatic evaluation and human evaluation.

Automatic Evaluation

Our automatic evaluation method measures the interpretability of an local explanation (consisting

of a set of keywords) by predicting its sentiment polarity and comparing with the model prediction.

Specifically, for each keyword in an explanation, we retrieve its sentiment scores from the SentiWord-

Net. SentiWordNet o↵ers three scores for a sentiment word: a positive score, a negative score, and

a neutral score. For the word truly, its positive score is 0.625, negative score is 0 and neutral score

is 0.375, which indicates that it is a word with positive polarity. On the other hand, the positive

score of word a is 0 and its neutral score is 1. With the sentiment scores of these words, the overall

scores of an explanation is the accumulation of the sentiment scores of its keywords.

Consider the local explanations in Table 3.1, the sentiment scores of explanation A with respect

to the positive sentiment polarity is 0 and the positive socre of explanation B is 0.625. Under

this simple automatic evaluation measurement, the explanation A is easier to be interpreted than

explanation B, which is consistent with our expectation.

23



Coherence

Dataset Model Accuracy LIME Cos-Sim

SST Cnn 0.85 0.65 0.58
Cnn-Ek 0.85 0.70 0.60
Cnn-Adv 0.85 0.68 0.59

Rnn 0.84 0.64 0.61
Rnn-Ek 0.84 0.66 0.62

MR Cnn 0.81 0.63 0.50
Cnn-Ek 0.80 0.66 0.55
Cnn-Adv 0.80 0.65 0.55

Rnn 0.80 0.64 0.59
Rnn-Ek 0.80 0.65 0.60

IMDB Cnn 0.90 0.76 0.23
Cnn-Ek 0.90 0.80 0.53
Cnn-Adv 0.90 0.78 0.47

Rnn 0.87 0.78 0.74
Rnn-Ek 0.87 0.81 0.78

Table 3.3: The classification and explainability evaluation results of di↵erent models on SST, MR
and IMDB. The models trained with augmented data from Da-Ek are named with -Ek. The model
trained with the augmented data from DA-Adv is named with -Adv.

To quantificationally evaluate prediction explanations, we propose the coherence score defined

as follow: for a given test example, depending on the sentiment polarities predicted by the model,

indicated by the explanation and the ground truth, it will be counted as a coherent case, if it satisfies

one of the two conditions:

• Condition 1: if the sentiment polarity indicated by the explanation is not none and is consis-

tent with the model prediction; or

• Condition 2: if the sentiment polarity indicated by the explanation is none and the model

prediction is not the same as the ground truth.

The coherence between the model prediction and its prediction in condition 1 is obvious. About

condition 2, we consider that an explanation with no sentiment polarity is also coherent with a

wrong prediction. Intuitively, an explanation with no sentiment polarity explains why the prediction

is wrong. For a collection of explanations, the coherence score is the ratio of the number of coherent

cases to the total number of instances.
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Results

Table 3.3 shows the prediction accuracies and coherence scores of di↵erent models on the all three

datasets. As indicated in the third column, the models trained with augmented data, including

both Da-Ek and DA-Adv, maintain the prediction accuracies comparing to their counterparts.

This observation matches our expectation that data augmentation for improving interpretability

should not hurt prediction accuracy.

More important, all models trained with augmented data outperform the base models with

respect to the coherence score (column 4 and 5). Comparing the coherence scores with the same base

model and the same dataset, we found that, in most of the cases, both data augmentation methods

help improve the coherence score, regardless which explanation generation we use. Comparing the

scores across multiple datasets and models, we also notice that the improvement on LIME-based

explanations has a smaller variance than the explanations generated by the cosine similarity method.

We suspect that this is because local explanations are always tied with model predictions, while the

cosine similarity method only use text representations to generate explanations.

As shown in the experiments with the Cnn-Adv, data augmentation with adversarial examples

does provide some benefit to improve the coherence scores of the Cnn model on all of the three

datasets. The state-of-the-art method [102] generating adversarial examples can be extended to

other neural calssifiers (e.g. Rnn) and text classification tasks in the future work.

Human Evaluation

We propose the coherence score and use it to automatically evaluate the local explanations. Even

though it is easy to compute, the major limitation is from the pre-defined list of sentiment words.

For a specific test example, this evaluation method will fail if the sentiment words in the generated

explanation are not the SentiWordNet word list. Furthermore, as discussed in the beginning of this

section, interpretability is about whether an explanation is understandable to human users. Human

evaluation is necessary if we would like to measure the interpretability improvement. Besides the

human evaluation results can provide further justification of the coherence scores from automatic

evaluation.

To conduct a human evaluation task, we random pick 100 test examples from the SST and MR

datasets. Explanations of these examples are generated by LIME based on the Cnn and Cnn-Ek

models. We have 7 graduate students with proficient English skills as volunteers to evaluate the

quality of these explanations.
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Dataset Model Human Evaluation Automatic Evaluation

SST Cnn 0.85 0.56
Cnn-Ek 0.92 0.63

MR Cnn 0.84 0.55
Cnn-Ek 0.90 0.60

Table 3.4: Human and automatic evaluation results on the sets of the SST and MR datasets. The
augmented examples are from Da-Ek and the explanations are generated by LIME.

With a given test example with an explanation pair generated from the Cnn and Cnn-Ek models

respectively, a human evaluator needs to a two-step evaluation. First, for each explanation, the

human evaluator needs to analyze whether it can interpret the corresponding prediction, and mark

with a score (”1” for coherent, ”0” for incoherent) according to the two conditions, only with the

evaluator himself to give the sentiment polarity of the explanation. Then, for the explanation pair,

the evaluator will be asked to pick which one better explains the corresponding model prediction.

Note that, two explanations within each pair are presented to our human evaluators randomly to

eliminate any possible bias.

Finally, the human evaluation score is calculated as the ratio of the sum of the scores to the

number of examples. We also calculate the coherence scores on the 100 test examples and compare

them with the human evaluation scores.

Results

Table 3.4 presents both the human evaluation scores and also the coherence scores. On both datasets,

human evaluation scores indicate that data augmentation with additional examples improves the

interpretability of Cnn. As shown in Table 3.5, the explanations from Cnn-Ek are more inter-

pretable and the sentiment polarity indicated by these two explanations are clear. In addition, the

comparison between the human evaluation and the automatic evaluation also shows the coherence

scores are positively correlated with the human evaluation scores, which provides a justification for

our automatic evaluation measurement.

We also notice that the coherence scores are constantly lower than the human evaluation scores,

even though the computations of these two scores are similar. One possible reason is that the

pre-defined sentiment word list from the SentiWordNet is not comprehensive enough, while human

evaluators can always tell which explanation is better than the other.
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Input text Models Prediction Keywords Indication

[Pos] at about 95 minutes, trea-
sure planet maintains a brisk
pace as it races through the fa-
miliar story

Cnn Positive treasure, pace, a None

Cnn-Ek Positive brisk, treasure, familiar Positive

[Neg] unfortunately, they’re
sandwiched in between the
most impossibly dry account of
kahlo’s life imaginable

Cnn Negative dry, ’re, sandwiched None

Cnn-Ek Negative unfortunately, dry, account Negative

Table 3.5: Examples of the explanations generated by LIME from the Cnn and Cnn-Ek models,
where the ground truth of each input text is marked in front of it as ”Pos” or ”Neg”.

3.1.5 Conclusion

We showed that the interpretability of neural sentiment classifiers can be improved by training

with augmented data. We proposed two data augmentation methods by employing a predefined

word list and adversarial examples respectively. In this work, we focused on the interpretability

of local explanations, which were generated by LIME and the cosine similarity method. Then, the

improvement of model interpretability was assessed with both automatic evaluation and human

evaluation. Experiments showed that the proposed data augmentation methods could successfully

improve the model interpretability.
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3.2 Learning Variational Word Masks to Improve the Inter-

pretability of Neural Text Classifiers

Neural network models have achieved remarkable performance on text classification due to their

capacity of representation learning on natural language texts [12, 122, 141, 13]. However, the lack

of understanding of their prediction behaviors has become a critical issue for reliability and trust-

worthiness and hindered their applications in the real world [17, 1, 34]. Many explanation methods

have been proposed to provide post-hoc explanations for neural networks [1, 24, 25], but they are

only able to explain model predictions and cannot help improve their interpretability.

Ex. Model Text & Explanation

1
A An exceedingly clever piece of cinema

B An exceedingly clever piece of cinema

2
A It becomes gimmicky instead of compelling

B It becomes gimmicky instead of compelling

Table 3.6: Model A and B are two neural text classifiers with similar network architectures. They all
make correct sentiment predictions on both texts (ex. 1: positive; ex. 2: negative). Two post-hoc
explanation methods, LIME [1] and SampleShapley [2], are used to explain the model predictions
on example 1 and 2 respectively. Top three important words are shown in pink or blue for model
A and B. Whichever post-hoc method is used, explanations from model B are easier to understand
because the sentiment keywords “clever” and “gimmicky” are highlighted.

In this work, we consider interpretability as an intrinsic property of neural network models.

Furthermore, we hypothesize that neural network models with similar network architectures could

have di↵erent levels of interpretability, even though they may have similar prediction performance.

Table 3.6 shows explanations extracted from two neural text classifiers with similar network archi-

tectures.1 Although both models make correct predictions of the sentiment polarities of two input

texts (positive for example 1 and negative for example 2), they have di↵erent explanations for their

predictions. In both examples, no matter which explanation generation method is used, explanations

from model B are easier to be interpreted regarding the corresponding predictions. Motivated by

the di↵erence of interpretability, we would like to investigate the possibility of building more inter-

pretable neural classifiers with a simple modification on input layers. The proposed method does

not demand significant e↵orts on engineering network architectures [142, 143]. Also, unlike prior

work on improving interpretability [44, 144], it does not require pre-defined important attributions

or pre-collected explanations.

1The similarity will be detailed in Section 3.2.4 and more examples are provided in Table 3.10.
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Specifically, we propose variational word masks (Vmask) that are inserted into a neural text clas-

sifier, after the word embedding layer, and trained jointly with the model. Vmask learns to restrict

the information of globally irrelevant or noisy word-level features flowing to subsequent network

layers, hence forcing the model to focus on important features to make predictions. Experiments in

Section 3.2.5 show that this method can improve model interpretability and prediction performance.

As Vmask is deployed on top of the word-embedding layer and the major network structure keeps

unchanged, it is model-agnostic and can be applied to any neural text classifiers.

The contribution of this work is three-fold: (1) we proposed the Vmask method to learn global

task-specific important features that can improve both model interpretability and prediction accu-

racy; (2) we formulated the problem in the framework of information bottleneck (IB) [145, 146]

and derived a lower bound of the objective function via the variational IB method [147]; and (3)

we evaluated the proposed method with three neural network models, CNN [11], LSTM [9], and

BERT [13], on seven text classification tasks via both quantitative and qualitative evaluations.

3.2.1 Interpretable Text Classifier with Word Masks

For an input text x = [x1, · · · , xT ], where xt (t 2 {1, . . . , T}) indicates the word or the word

index in a predefined vocabulary. In addition, we use xt 2 Rd as the word embedding of xt. A

neural text classifier is denoted as f✓(·) with parameter ✓, which by default takes x as input and

generates a probability of output Y , p(Y |x), over all possible class labels. In this work, beyond

prediction accuracy, we also expect the neural network model to be more interpretable, by focusing

on important words to make predictions.

To help neural network models for better feature selection, we add a random layer R after the

word embeddings, where R = [Rx1 , . . . , RxT ] has the same length of x. Each Rxt 2 {0, 1} is a binary

random variable associated with the word type xt instead of the word position. This random layer

together with word embeddings form the input to the neural network model, i.e.,

Z = R� x, (3.6)

where � is an element-wise multiplication and each Zt = Rxt · xt. Intuitively, Z only contains a

subset of x, which is selected randomly by R. Since R is applied directly on the words as a sequence

of 0-1 masks, we also call it the word mask layer in this work.

To ensure Z has enough information on predicting Y while contains the least redundant infor-

mation from x, we follow the standard practice in the information bottleneck theory [145], and write
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the objective function as

max
Z

I(Z;Y )� � · I(Z;X), (3.7)

where X as a random variable representing a generic word sequence as input, Y is the one-hot

output random variable, I(·; ·) is the mutual information, and � 2 R+ is a coe�cient to balance

the two mutual information items. This formulation reflects our exact expectation on Z. The main

challenge here is to compute the mutual information.

3.2.2 Variational Word Masks

Inspired by the variational information bottleneck proposed by Alemi et al. [147], instead of com-

puting p(X,Y ,Z), we start from an approximation distribution q(X,Y ,Z). Then, with a few

assumptions specified in the following, we construct a tractable lower bound of the objective in

Equation 3.7.

For I(Z;Y ) under q, we have I(Z;Y ) =
P

y,z q(y, z) log(q(y|z)/q(y)). By replacing log q(y|z)

with the conditional probability derived from the true distribution log p(y|z), we introduce the

constraint between Y and Z from the distribution and also obtain a lower bound of I(Z;Y ),

I(Z;Y ) �
X

y,z

q(y, z) log p(y|z) +Hq(Y )

=
X

y,z,x

q(x,y)q(z|x) log p(y|z) +Hq(Y ), (3.8)

where Hq(·) is entropy, and the last step uses q(x,y, z) = q(x)q(y|x)q(z|x), which is a factorization

based on the conditional dependency 2.

Given a specific observation (x(i),y(i)), we define the empirical distribution q(X(i),Y (i)) as a

multiplication of two Delta functions q(X(i) = x(i),Y (i) = y(i)) = �x(i)(x)·�y(i)(y). Then, Equation

3.8 can be further simplified as

I(Z;Y (i)) �
X

z

q(z|x(i)) log p(y(i)|z)

= Eq(z|x(i))[log p(y
(i)|z)]. (3.9)

2Y $X $ Z: Y and Z are independent given X.
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Similarly, for I(Z;X) under q, we have an upper bound of I(Z;X) by replacing p(Z|X) with a

predefined prior distribution p0(Z)

I(Z;X)  Eq(x)[KL[q(z|x)kp0(z)]]

= KL[q(z|x(i))kp0(z)], (3.10)

where KL[·k·] denotes Kullback-Leibler divergence. The simplification in the last step is similar to

Equation 3.9 with the empirical distribution q(X(i)).

Substituting (3.10) and (3.9) into Equation 3.7 gives us a lower bound L of the informaiton

bottleneck

L =Eq(z|x(i))[log p(y
(i)|z)]� � ·KL[q(z|x(i))kp0(z)]. (3.11)

The learning objective is to maximize Equation 3.11 with respect to the approximation distribu-

tion q(X,Y ,Z) = q(X,Y )q(Z|X). As a classification problem, X and Y are both observed and

q(X,Y ) has already been simplified as an empirical distribution, the only one left in the approxima-

tion distribution is q(Z|X). Similarly to the objective function in variational inference [147, 148],

the first term in L is to make sure the information in q(Z|X) for predicting Y , while the second

term in L is to regularize q(Z|X) with a predefined prior distribution p0(Z).

The last step of obtaining a practical objective function is to notice that, given X(i)
t = x(i)

t every

Zt can be redefined as

Zt = Rxt · x
(i)
t , (3.12)

where Rxt 2 {0, 1} is a standard Bernoulli distribution. Then, Z can be reparameterized as Z =

R � x(i) with R = [Rx1 , . . . , RxT ]. The lower bound L can be rewritten with the random variable

R as

L =Eq(r|x(i))[log p(y
(i)|R,x(i))]

� � ·KL[q(R|x(i))kp0(R)].
(3.13)

Note that, although � is inherited from the information bottleneck theory, in practice it will be used

as a tunable hyper-parameter to address the notorious posterior collapse issue [149, 150].
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Proof of the Two Bounds for the Information Bottleneck

The following derivation is similar to the variational information bottleneck, where the di↵erence is

that our starting point is the approximation distribution q(X,Y ,Z) instead of the true distribution

p(X,Y ,Z).

The lower bound for I(Z;Y ).

I(Z,Y ) =
X

y,z

q(y, z) log
q(y, z)

q(y)q(z)

=
X

y,z

q(y, z) log
q(y|z)
q(y)

=
X

y,z

q(y, z) log q(y|z)

+Hq(Y ), (3.14)

whereHq(·) represents entropy. Now, if we replace log q(y|z) with the conditional probability derived

from the true distribution log p(y|z), we have

X

y,z

q(y, z) log q(y|z)

=
X

y,z

q(y, z) log
q(y|z)p(y|z)

p(y|z)

=
X

y,z

q(y, z) log p(y|z) + KL[q(y|z)kp(y|z)]

�
X

y,z

q(y, z) log p(y|z),

(3.15)

where KL[·k·] denotes Kullback-Leibler divergence. Therefore, we can obtain a lower bound of the

mutual information

I(Z,Y ) �
X

y,z

q(y, z) log p(y|z) +Hq(Y )

=
X

y,z,x

q(x,y, z) log p(y|z) +Hq(Y )

=
X

y,z,x

q(x,y)q(z|x) log p(y|z)+Hq(Y ),

(3.16)

where the last step uses q(x,y, z) = q(x)q(y|x)q(z|x), which is a factorization based on the condi-

tional dependency 3.

3Y $X $ Z: Y and Z are independent given X.
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Since q(X,Y ,Z) is the approximation defined by ourselves, given a specific observation

(x(i),y(i)), the empirical distribution q(X(i),Y (i)) is simply defined as a multiplication of two

Delta functions

q(X(i) = x(i),Y (i) = y(i)) = �x(i)(x) · �y(i)(y). (3.17)

Then, Equation 3.16 with X(i) and Y (i) can be further simplified as

I(Z;Y (i)) �
X

z

q(z|x(i)) log p(y(i)|z)

= Eq(z|x(i))[log p(y
(i)|z)]

(3.18)

The upper bound for I(Z;X).

I(Z,X) =
X

x,z

q(x, z) log
q(x, z)

q(x)q(z)

=
X

x,z

q(x, z) log
q(z|x)
q(z)

=
X

x,z

q(x, z) log q(z|x)

�
X

x,z

q(x, z) log q(z) (3.19)

By replacing q(z) with a prior distribution of z, p0(z), we have

X

x,z

q(x, z) log q(z) �
X

x,z

q(x, z) log p0(z). (3.20)

Then we can obtain an upper bound of the mutual information

I(Z,X) 
X

x,z

q(x, z) log q(z|x)

�
X

x,z

q(x, z) log p0(z)

=
X

x

q(x)KL[q(z|x)kp0(z)]

= Eq(x)[KL[q(z|x)kp0(z)]]

= KL[q(z|x(i))kp0(z)]. (3.21)
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Connections

The idea of modifying word embeddings with the information bottleneck method has recently shown

some interesting applications in NLP. For example, Li and Eisner [151] proposed two ways to

transform word embeddings into new representations for better POS tagging and syntactic pars-

ing. According to Equation 3.6, Vmask can be viewed as a simple linear transformation on word

embeddings. The di↵erence is that {Rxt} is defined on the vocabulary, therefore can be used to

represent the global importance of word xt. Recall that Rxt 2 {0, 1}, from a slightly di↵erent per-

spective, Equation 3.6 can be viewed as a generalized method on word-embedding dropout [152].

Although there are two major di↵erences: (1) in Gal and Ghahramani [152] all words share the

same dropout rate, while in Vmask every word has its own dropout rate specified by q(Rxt |xt), i.e.

1 � E[q(Rxt |xt)]; (2) the motivation of word-embedding dropout is to force a model not to rely on

single words for prediction, while Vmask is to learn a task-specific importance for every word.

Another implementation for making word masks sparse is by adding L0 regularization [128, 153,

154], while in the objective Equation 3.13, we regularize masks with a predefined prior distribution

p0(R) as described in Section 3.2.3.

3.2.3 Model Specification and Training

We resort to mean-field approximation [155] to simplify the assumption on our q distribution. For

q�(R|x), we have q�(R|x) =
QT

t=1 q�(Rxt |xt), which means the random variables are mutually

independent and each governed by xt. We use the amortized variational inference [148] to represent

the posterior distribution q�(Rxt |xt) with using an inference network [156]. In this work, we adopt a

single-layer feedforward neural network as the inference network, whose parameters � are optimized

with the model parameters ✓ during training.

Following the same factorization as in q�(R|x), we define the prior distribution p0(R) as p0(R) =
QT

t=1 p0(Rxt) and each of them as p0(Rxt) = Bernoulli(0.5). By choosing this non-informative prior,

it means every word is initialized with no preference to be important or unimportant, and thus has

the equal probability to be masked or selected. As p0(R) is a uniform distribution, we can further

simplify the second term in Equation 3.13 as a conditional entropy,

max
✓,�

Eq[log p(y
(i)|R,x(i))] + � ·Hq(R|x(i)). (3.22)
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Datasets C L #train #dev #test

IMDB 2 268 20K 5K 25K
SST-1 5 18 8544 1101 2210
SST-2 2 19 6920 872 1821
Yelp 2 138 500K 60K 38K
AG News 4 32 114K 6K 7.6K
TREC 6 10 5000 452 500
Subj 2 23 8000 1000 1000

Table 3.7: Summary statistics for the datasets, where C is the number of classes, L is average
sentence length, and # counts the number of examples in the train/dev/test sets.

We apply stochastic gradient descent to solve the optimization problem (Equation 3.22). Par-

ticularly in each iteration, the first term in Equation 3.22 is approximated with a single sample

from q(R|x(i)) [156]. However, sampling from a Bernoulli distribution (like from any other discrete

distributions) causes di�culty in backpropagation. We adopt the Gumbel-softmax trick [157, 158]

to utilize a continuous di↵erentiable approximation and tackle the discreteness of sampling from

Bernoulli distributions. During training, We use Adam [140] for optimization and KL cost anneal-

ing [149] to avoid posterior collapse.

For a given word xt and its word embedding xt, in training stage, the model samples each

rxt from q(Rxt |xt) to decide to either keep or zero out the corresponding word embedding xt. In

inference stage, the model takes the multiplication of the word embedding xt and the expectation

of the word mask distribution, i.e. xt · E[q(Rxt |xt)], as input.

3.2.4 Experiment Setup

The proposed method is evaluated on seven text classification tasks, ranging from sentiment analysis

to topic classification, with three typical neural network models, a long short-term memories [9,

LSTM], a convolutional neural network [11, CNN], and BERT [13].

Datasets. We adopt seven benchmark datasets: movie reviews IMDB [138], Stanford Sentiment

Treebank with fine-grained labels SST-1 and its binary version SST-2 [136], Yelp reviews [12], AG’s

News [12], 6-class question classification TREC [159], and subjective/objective classification Subj

[137]. For the datasets (e.g. IMDB, Subj) without standard train/dev/test split, we hold out

a proportion of training examples as the development set. Table 3.7 shows the statistics of the

datasets.
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Models. The CNN model [11] contains a single convolutional layer with filter sizes ranging from

3 to 5. The LSTM [9] has a single unidirectional hidden layer. Both models are initialized with

300-dimensional pretrained word embeddings [139]. We fix the embedding layer and update other

parameters on di↵erent datasets to achieve the best performance respectively. We use the pretrained

BERT-base model with 12 transformer layers, 12 self-attention heads, and the hidden size of 768.

We fine-tune it with di↵erent downstream tasks, and then fix the embedding layer and train the

mask layer with the rest of the model together.

Baselines and Competitive Methods. As the goal of this work is to propose a novel training

method that improves both prediction accuracy and interpretability, we employ two groups of models

as baselines and competitive systems. Models trained with the proposed method are named with

su�x “-Vmask”. We also provide two baselines: (1) models trained by minimizing the cross-entropy

loss (postfixed with “-base”) and (2) models trained with `2-regularization (postfixed with “-`2”).

The comparison with these two baseline methods mainly focuses on prediction performance as no

explicit training strategies are used to improve interpretability.

Besides, we also propose two competitive methods: models trained with the explanation frame-

work “Learning to Explain” [65] (postfixed with “-L2X”) and the “Information Bottleneck Attribu-

tion” [29] (postfixed with “-IBA”). L2X and IBA were originally proposed to find feature attributions

as post-hoc explanations for well-trained models. We integrated them in model training, working

as the mask layer to directly generate mask values for input features (L2X) or restrict information

flow by adding noise (IBA). In our experiments, all training methods worked with random dropout

(⇢ = 0.2) to avoid overfitting.

• The explanation framework of L2X [65] is a neural network which learns to generate importance

scores w = [w1, w2, · · · , wT ] for input features x = [x1,x2, · · · ,xT ]. The neural network is

optimized by maximizing the mutual information between the selected important features

and the model prediction, i.e. I(xS ; y), where xS contains a subset of features from x. In

our experiments, we adopt a single-layer feedforward neural network as the interpreter to

generate importance scores for an input text, and multiply each word embedding with its

importance score, x0 = w � x. The weighted word embedding matrix x0 is sent to the rest

of the model to produce an output y0. We optimize the interpreter network with the original

model by minimizing the cross-entropy loss between the final output and the ground-truth

label, Lce(yt; y0).
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• We adopt the Readout Bottleneck of IBA which utilizes a neural network to predict mask values

� = [�1,�2, · · · ,�T ], where �t 2 [0, 1]. The information of a feature xt is restricted by adding

noise, i.e. zt = �txt + (1 � �t)✏t, where ✏t ⇠ N (µxt ,�
2
xt
). And z is learned by optimizing

the objective function Equation 3.7. By assuming the variational approximation q(z) as a

Gaussian distribution, the mutual information can be calculated explicitly [29] . We still use a

single-layer feedforward neural network as the Readout Bottleneck to generate continuous mask

valuses � and construct z for model to make predictions. The Readout Bottleneck is trained

jointly with the original model by minimizing the sum of the cross-entropy loss Lce(yt; y) and

an upper bound LI = Ex[KL[p(z|x)kq(z)]] of the mutual information I(Z;X). See Schulz

et al. [29] for the proof of the upper bound.

Models Methods IMDB SST-1 SST-2 Yelp AG News TREC Subj

CNN

CNN-base 89.06 46.32 85.50 94.32 91.30 92.40 92.80
CNN-`2 89.12 46.01 85.56 94.46 91.28 90.62 92.39

CNN-L2X 78.94 37.92 80.01 83.14 84.36 61.00 82.40
CNN-IBA 88.31 41.40 84.24 93.82 91.37 89.80 91.80

CNN-Vmask 90.10 48.92 85.78 94.53 91.60 93.02 93.50

LSTM

LSTM-base 88.39 43.84 83.74 95.06 91.03 90.40 90.20
LSTM-`2 88.40 43.91 83.36 95.00 91.09 90.20 89.10

LSTM-L2X 67.45 36.92 75.45 77.12 77.53 46.00 81.80
LSTM-IBA 88.48 42.99 83.53 94.74 91.14 85.40 89.50

LSTM-Vmask 90.07 44.12 84.35 95.41 92.19 90.80 91.20

BERT

BERT-base 91.80 53.43 92.25 96.42 93.59 96.40 95.10
BERT-`2 91.75 52.08 92.25 96.41 93.52 96.80 94.80

BERT-L2X 71.75 39.23 74.03 87.14 82.59 93.20 86.10
BERT-IBA 91.66 53.80 92.24 96.27 93.45 96.80 95.60

BERT-Vmask 93.04 54.53 92.26 96.80 94.24 97.00 96.40

Table 3.8: Prediction accuracy (%) of di↵erent models with di↵erent training strategies on the seven
datasets.

3.2.5 Results and Discussion

We trained the three models on the seven datasets with di↵erent training strategies. Table 3.8 shows

the prediction accuracy of di↵erent models on test sets. The models trained with Vmask outperform

the ones with similar network architectures but trained di↵erently. The results show that Vmask

can help improve the generalization power.

Except the base models and the models trained with the proposed method, the records of other

three competitors are mixed. For example, the traditional `2-regularization cannot always help

improve accuracy, especially for the BERT model. Although the performance with IBA is slightly
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better than with L2X, training with them does not show a constant improvement on a model’s

prediction accuracy.

To echo the purpose of improving model interpretability, the rest of this section will focus on

evaluating the model interpretability quantitatively and qualitatively.

Quantitative Evaluation

We evaluate the local interpretability of Vmask-based models against the base models via the AOPC

score [129, 73] and the global interpretability against the IBA-based models via post-hoc accuracy

[65]. Empirically, we observed the agreement between local and global interpretability, so there is

no need to exhaust all possible combinations in our evaluation.

Methods Models IMDB SST-1 SST-2 Yelp AG News TREC Subj

LIME

CNN-base 14.47 7.59 16.50 10.69 5.66 15.28 9.77
CNN-Vmask 14.74 8.63 18.86 11.38 9.03 14.81 12.40
LSTM-base 14.34 8.76 17.03 8.72 7.00 11.95 9.67

LSTM-Vmask 15.10 9.52 22.14 9.70 7.39 11.97 11.68
BERT-base 10.63 36.00 35.89 6.30 7.00 59.22 13.08

BERT-Vmask 12.64 36.16 46.87 6.49 8.47 60.37 17.82

SampleShapley

CNN-base 15.53 7.63 13.15 13.57 9.88 14.97 8.84
CNN-Vmask 15.53 8.33 15.95 15.06 9.98 15.03 12.88
LSTM-base 15.80 7.91 22.38 10.55 6.62 11.90 11.66

LSTM-Vmask 16.48 9.73 22.52 10.99 7.65 11.86 12.74
BERT-base 12.97 42.06 43.16 18.06 7.21 57.69 33.22

BERT-Vmask 13.18 44.57 50.44 18.17 10.02 58.26 34.22

Table 3.9: AOPCs (%) of LIME and SampleShapley in interpreting the base and Vmask-based
models on the seven datasets.

Local interpretability: AOPC We adopt two model-agnostic explanation methods, LIME

[1] and SampleShapley [2], to generate local explanations for base and Vmask-based models,

where “local” means explaining each test data individually. The area over the perturbation curve

(AOPC) [129, 73] metric is utilized to evaluate the faithfulness of explanations to models. It cal-

culates the average change of prediction probability on the predicted class over all test data by

deleting top n words in explanations. We adopt this metric to evaluate the model interpretability

to post-hoc explanations. Higher AOPC scores are better.

For TREC and Subj datasets, we evaluate all test data. For each other dataset, we randomly pick

up 1000 examples for evaluation due to computation costs. Table 3.9 shows the AOPCs of di↵erent

models on the seven datasets by deleting top 5 words identified by LIME or SampleShapley. The
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AOPCs of Vmask-based models are significantly higher than that of base models on most of the

datasets, indicating that Vmask can improve model’s interpretability to post-hoc explanations. The

results on the TREC dataset are very close because top 5 words are possible to include all informative

words for short sentences with the average length of 10.

Global Interpretability: Post-hoc accuracy The expectation values {E[q(Rxt |xt)]} represent

the global importance of words for a specific task. To measure the interpretability of a model itself

(aka, global interpretability), we adopt the post-hoc accuracy [65] to evaluate the influence of global

task-specific important features on the predictions of Vmask- and IBA-based models. For each test

data, we select the top k words based on their global importance scores for the model to make a

prediction, and compare it with the original prediction made on the whole input text

post-hoc-acc(k) =
1

M

MX

m=1

[ym(k) = ym],

where M is the number of examples, ym is the predicted label on the m-th test data, and ym(k) is

the predicted label based on the top k important words.

Figure 3.1 shows the results of Vmask- and IBA-based models on the seven datasets with k

ranging from 1 to 10. Vmask-based models (solid lines) outperform IBA-based models (dotted

lines) with higher post-hoc accuracy, which indicates our proposed method is better on capturing

task-specific important features. For CNN-Vmask and LSTM-Vmask, using only top two words

can achieve about 80% post-hoc accuracy, even for the IMDB dataset, which has the average sen-

tence length of 268 tokens. The results illustrate that Vmask can identify informative words for

model predictions. We also noticed that BERT-Vmask has lower post-hoc accuracy than the other

two models. It is probably because BERT tends to use larger context with its self-attentions for

predictions. This also explains that the post-hoc accuracies of BERT-Vmask on the IMDB and

SST-1 datasets are catching up slowly with k increasing.

Qualitative Evaluation

Visualizing post-hoc local explanations. Table 3.10 shows some examples of LIME expla-

nations for di↵erent models on the IMDB dataset. We highlight the top three important words

identified by LIME, where the color saturation indicates word attribution. The pair of base and

Vmask-based models make the same and correct predictions on the input texts. For Vmask-based

models, LIME can capture the sentiment words that indicate the same sentiment polarity as the
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(a) IMDB (b) SST-1 (c) SST-2 (d) Yelp

(e) AG News (f) TREC (g) Subj

Figure 3.1: Post-hoc accuracy of Vmask- and IBA-based models on the seven datasets.

Models Texts Prediction

CNN-base Primary plot , primary direction , poor interpretation . negative
CNN-Vmask Primary plot , primary direction , poor interpretation . negative

LSTM-base John Leguizamo ’s freak is one of the funniest one man shows I
’ve ever seen . I recommend it to anyone with a good sense of
humor .

positive

LSTM-Vmask John Leguizamo ’s freak is one of the funniest one man shows I
’ve ever seen . I recommend it to anyone with a good sense of
humor .

positive

BERT-base Great story , great music . A heartwarming love story that ’ s
beautiful to watch and delightful to listen to . Too bad there is
no soundtrack CD .

positive

BERT-Vmask Great story , great music . A heartwarming love story that ’ s
beautiful to watch and delightful to listen to . Too bad there is
no soundtrack CD .

positive

Table 3.10: Examples of the explanations generated by LIME for di↵erent models on the IMDB
dataset, where the top three important words are highlighted. The color saturation indicates word
attribution.

prediction. While for base models, LIME selects some irrelevant words (e.g. “plot”, “of”, “to”)

as explanations, which illustrates the relatively lower interpretability of base models to post-hoc

explanations.

Visualizing post-hoc global explanations. We adopt SP-LIME proposed by Ribeiro et al.

[1] as a third-party global interpretability of base and Vmask-based models. Without considering

the rectriction on the number of explanations, we follow the method to compute feature global
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importance from LIME local explanations by calculating the sum over all local importance scores of

a feature as its global importance. To distinguish it from the global importance learned by Vmask,

we call it post-hoc global importance.

Table 3.11 lists the top three post-hoc global important words of base and Vmask-based models

on the IMDB dataset. For Vmask-based models, the global important features selected by SP-LIME

are all sentiment words. While for base models, some irrelevant words (e.g. “performances”, “plot”,

“butcher”) are identified as important features, which makes model predictions unreliable.

Models Words

CNN-base excellent, performances, brilliant
CNN-Vmask excellent, fine, favorite

LSTM-base plot, excellent, liked
LSTM-Vmask excellent, favorite, brilliant

BERT-base live, butcher, thrilling
BERT-Vmask powerful, thrilling, outstanding

Table 3.11: Post-hoc global important words selected by SP-LIME for di↵erent models on the IMDB
dataset.

Figure 3.2: Scatter plot of word global importance and frequency (in log scale) of LSTM-Vmask

on the Yelp dataset, where red dots represent top 10 important sentiment words and green dots
represent top 10 high-frequency words.

Frequency-importance correlation. We compute the Pearson correlation coe�cients between

word frequency and global word importance of Vmask-based models. The results show that they

are not significantly correlated, which indicates that Vmask is not simply learning to select high-

frequency words. Figure 3.2 further verifies this by ploting the expectation (E[q(Rxt |xt)]) of word
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masks from the LSTM-Vmask trained on Yelp and the word frequency from the same dataset. Here,

we visualize the top 10 high-frequency words and top 10 important words based the expectation of

word masks. The global importance scores of the sentiment words are over 0.8, even for some low-

frequency words (e.g. “funnest”, “craveable”), while that of the high-frequency words are all around

0.5, which means the Vmask-based models are less likely to focus on the irrelevant words to make

predictions.

(a) CNN-Vmask (b) CNN-IBA (c) LSTM-Vmask (d) LSTM-IBA

(e) BERT-Vmask (f) BERT-IBA

Figure 3.3: Word clouds of top 10 important words, where (a) is CNN-Vmask on the AG News
dataset, (b) is CNN-IBA on the AG News dataset, (c) is LSTM-Vmask on the Yelp dataset, (d) is
LSTM-IBA on the Yelp dataset, (e) is BERT-Vmask on the Subj dataset, and (f) is BERT-IBA on
the Subj dataset.

Task-specific important words. Figure 3.3 visualizes top 10 important words for the Vmask-

and IBA-based models on three datasets via word clouds. We can see that the selected words by

Vmask are consistent with the corresponding topic, such as “funnest”, “awsome” for sentiment

analysis, and “encyclopedia”, “spaceport” for news classification, while IBA selects some irrelevant

words (e.g. “undress”, “slurred”).

3.2.6 Conclusion

In this work, we proposed an e↵ective method, Vmask, learning global task-specific important

features to improve both model interpretability and prediction accuracy. We tested Vmask with

three di↵erent neural text classifiers on seven benchmark datasets, and assessed its e↵ectiveness via

both quantitative and qualitative evaluations.
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Chapter 4

Explaining Neural Language

Models

Explaining neural networks is important for helping users understand model decision-making and

gaining their trust on model predictions. In this chapter, I propose a hierarchical explanation

method (HEDGE) by detecting feature interactions for text classification in Section 4.1 and introduce

the Group Masks (GMASK) method for explaining neural network predictions on sentence-pair

modeling tasks in Section 4.2. I also propose the uncertainty explanation to explain model predictive

uncertainty beyond predicted label in Section 4.3.

4.1 Generating Hierarchical Explanations on Text Classifi-

cation via Feature Interaction Detection

In NLP, most of existing work on local explanation generation focuses on producing word-level or

phrase-level explanations by quantifying contributions of individual words or phrases to a model

prediction [1, 24, 51]. Figure 4.1 (a) and (b) present a word-level and a phrase-level explanation

generated by the LIME [1] and the Contextual Decomposition (CD) [51] respectively for explaining

sentiment classification. Both explanations provide scores to quantify how a word or a phrase

contributes to the final prediction. For example, the explanation generated by LIME captures a

keyword waste and the explanation from CD identifies an important phrase waste of. However,

neither of them is able to explain the model decision-making in terms of how words and phrases are

interacted with each other and composed together for the final prediction. In this example, since
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Figure 4.1: Di↵erent explanations for a negative movie review a waste of good performance,
where the color of each block represents the contribution of the corresponding word/phrase/clause
(feature) to the model prediction. From the hierarchical explanation, we obtain a set of features in
each timestep (t), where the most important one is waste of good.

the final prediction is negative, one question that we could ask is that how the word good or a

phrase related to the word good contributes to the model prediction. An explanation being able to

answer this question will give users a better understanding on the model decision-making and also

more confidence to trust the prediction.

The goal of this work is to reveal prediction behaviors of a text classifier by detecting feature

(e.g., words or phrases) interactions with respect to model predictions. For a given text, we propose

a model-agnostic approach, called Hedge (for Hierarchical Explanation via Divisive Generation),

to build hierarchical explanations by recursively detecting the weakest interactions and then divid-

ing large text spans into smaller ones based on the interactions. As shown in Figure 4.1 (c), the

hierarchical structure produced by Hedge provides a comprehensive picture of how di↵erent gran-

ularity of features interacting with each other within the model. For example, it shows how the

word good is dominated by others in the model prediction, which eventually leads to the correct

prediction. Furthermore, the scores of text spans across the whole hierarchy also help identify the

most important feature waste of good, which can be served as a phrase-level explanation for the

model prediction.
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4.1.1 Generating Hierarchical Explanations

For a classification task, let x = (x1, . . . , xn) denotes a text with n words and ŷ be the prediction

label from a well-trained model. Furthermore, we define P = {x(0,s1],x(s1,s2], . . . ,x(sP�1,n]} be a

partition of the word sequence with P text spans, where x(si,si+1] = (xsi+1, . . . , xsi+1). For a given

text span x(si,si+1], the basic procedure of Hedge is to divide it into two smaller text spans x(si,j]

and x(j,si+1], where j is the dividing point (si < j < si+1), and then evaluate their contributions to

the model prediction ŷ.

Algorithm 1 describes the whole procedure of dividing x into di↵erent levels of text spans and

evaluating the contribution of each of them. Starting from the whole text x, the algorithm first

divides x into two segments. In the next iteration, it will pick one of the two segments and further

split it into even smaller spans. As shown in Algorithm 1, to perform the top-down procedure, we

need to answer the questions: for the next timestep, which text span the algorithm should pick to

split and where is the dividing point?

Algorithm 1 Hierarchical Explanation via Divisive Generation

Input: text x with length n, and predicted label ŷ

Initialize the original partition P0  {x(0,n]}

Initialize the contribution set C0 = ;

Initialize the hierarchy H = [P0]

for t = 1, . . . , n� 1 do

Find x(si,si+1] and j by solving Equation 4.1

Update the partition

P 0
t  Pt�1\{x(si,si+1]}

Pt  P 0
t [ {x(si,j],x(j,si+1]}

H.add(Pt)

Update the contribution set C with

C0
t  Ct�1 [ {(x(si,j], (x(si,j]))}

Ct  C0
t [ {(x(j,si+1], (x(j,si+1]))}

end for

Output: Cn�1, H

Both questions can be addressed via the following optimization problem:

min
x(si,si+1]2P

min
j2(si,si+1)

�(x(si,j],x(j,si+1] | P), (4.1)
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where �(x(si,j],x(j,si+1] | P) defines the interaction score between x(si,j] and x(j,si+1] given the

current partition P. The detail of this score function will be explained in Section 4.1.2.

For a given x(si,si+1] 2 P, the inner optimization problem will find the weakest interaction point

to split the text span x(si,si+1] into two smaller ones. It answers the question about where the

dividing point should be for a given text span. A trivial case of the inner optimization problem is on

a text span with length 2, since there is only one possible way to divide it. The outer optimization

answers the question about which text span should be picked. This optimization problem can

be solved by simply enumerating all the elements in a partition P. A special case of the outer

optimization problem is at the first iteration t = 1, where P0 = {x(0,n]} only has one element, which

is the whole input text. Once the partition is updated, it is then added to the hierarchy H.

The last step in each iteration is to evaluate the contributions of the new spans and update the

contribution set C as in line 9 of the Algorithm 1. For each, the algorithm evaluates its contribution

to the model prediction with the feature importance function  (·) defined in Equation 4.5. The

final output of Algorithm 1 includes the contribution set Cn�1 which contains all the produced text

spans in each timestep together with their importance scores, and the hierarchy H which contains

all the partitions of x along timesteps. A hierarchical explanation can be built based on Cn�1 and

H by visualizing the partitions with all text spans and their importance scores along timesteps, as

Figure 4.1 (c) shows.

4.1.2 Detecting Feature Interaction

For a given text span x(si,si+1] 2 P and the dividing point j, the new partition will be N =

P\{x(si,si+1]} [ {x(si,j],x(j,si+1]} = {x(0,s1], . . . ,x(si,j],x(j,si+1], . . . ,x(sP�1,n]}. We consider the

e↵ects of other text spans in N when calculate the interaction between x(si,j] and x(j,si+1], since the

interaction between two words/phrases is closely dependent on the context [160, 161]. We adopt the

Shapley interaction index from coalition game theory [162, 163, 164] to calculate the interaction. For

simplicity, we denote x(si,j] and x(j,si+1] as j1 and j2 respectively. The interaction score is defined

as [68],

�(j1, j2 | P) =
X

S✓N\{j1,j2}

|S|!(P � |S|� 1)!

P !
�(j1, j2, S), (4.2)

where S represents a subset of text spans in N\{j1, j2}, |S| is the size of S, and �(j1, j2, S) is defined

as follows,

�(j1, j2, S) = E[f(x0) | S [ {j1, j2}]� E[f(x0) | S [ {j1}]� E[f(x0) | S [ {j2}] + E[f(x0) | S], (4.3)
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where x0 is the same as x except some missing words that are not covered by the given subset

(i.g. S), f(·) denotes the model output probability on the predicted label ŷ, and E[f(x0) | S] is the

expectation of f(x0) over all possible x0 given S. In practice, the missing words are usually replaced

with a special token <pad>, and f(x0) is calculated to estimate E[f(x0)|S] [49, 165, 24]. We also adopt

this method in our experiments. Another way to estimate the expectation is to replace the missing

words with substitute words randomly drawn from the full dataset, and calculate the empirical mean

of all the sampling data [2, 166], which has a relatively high computational complexity.

With the number of text spans (features) increasing, the exponential number of model evaluations

in Equation 4.2 becomes intractable. We calculate an approximation of the interaction score based

on the assumption [49, 3, 52]: a word or phrase usually has strong interactions with its neighbours

in a sentence. The computational complexity can be reduced to polynomial by only considering m

neighbour text spans of j1 and j2 in N . The interaction score is rewritten as

�(j1, j2 | P) =
X

S✓Nm\{j1,j2}

|S|!(M � |S|� 2)!

(M � 1)!
�(j1, j2, S), (4.4)

where Nm is the set containing j1, j2 and their neighbours, and M = |Nm|. In experiments, we set

m = 2, which performs well. The performance can be further improved by increasing m, but at the

cost of increased computational complexity.

4.1.3 Quantifying Feature Importance

To measure the contribution of a feature x(si,si+1] to the model prediction, we define the importance

score as

 (x(si,si+1]) = fŷ(x(si,si+1])� max
y0 6=ŷ,y02Y

fy0(x(si,si+1]), (4.5)

where fŷ(x(si,si+1]) is the model output on the predicted label ŷ; maxy0 6=ŷ,y02Y fy0(x(si,si+1]) is the

highest model output among all classes excluding ŷ. This importance score measures how far the

prediction on a given feature is to the prediction boundary, hence the confidence of classifying

x(si,si+1] into the predicted label ŷ. Particularly in text classification, it can be interpreted as the

contribution to a specific class ŷ.
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Models
Dataset

SST IMDB

LSTM 0.842 0.870
CNN 0.850 0.901
BERT 0.924 0.930

Table 4.1: The classification accuracy of di↵erent models on the SST and IMDB datasets.

4.1.4 Experiments

The proposed method is evaluated on text classification tasks with three typical neural network

models, a long short-term memories [9, LSTM], a convolutional neural network [11, CNN], and

BERT [13], on the SST [136] and IMDB [138] datasets, via both automatic and human evaluations.

Setup

We adopt the SST-2 [136] which has 6920/872/1821 examples in the train/dev/test sets with binary

labels. The IMDB [138] also has binary labels with 25000/25000 examples in the train/test sets.

We hold out 10% of the training examples as the development set.

The proposed method is evaluated on text classification tasks with three typical neural network

models, a long short-term memories [9, LSTM], a convolutional neural network [11, CNN], and

BERT [13]. The CNN model [11] includes a single convolutional layer with filter sizes ranging from

3 to 5. The LSTM [9] has a single layer with 300 hidden states. Both models are initialized with

300-dimensional pretrained word embeddings [139]. We use the pretrained BERT model1 with 12

transformer layers, 12 self-attention heads, and the hidden size of 768, which was then fine-tuned with

di↵erent downstream tasks to achieve the best performance. Table 4.1 shows the best performance

of the models on both datasets in our experiments, where BERT outperforms CNN and LSTM with

higher classification accuracy.

Quantitative Evaluation

We adopt two metrics from prior work on evaluating word-level explanations: the area over the

perturbation curve (AOPC) [129, 73] and the log-odds scores [167, 49], and define a new evaluation

metric called cohesion-score to evaluate the interactions between words within a given text span.

The first two metrics measure local fidelity by deleting or masking top-scored words and comparing

the probability change on the predicted label. They are used to evaluate Equation 4.5 in quantifying

1https://github.com/huggingface/transformers
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Datasets Methods
LSTM CNN BERT

AOPC Log-odds AOPC Log-odds AOPC Log-odds

SST

Leave-one-out 0.441 -0.443 0.434 -0.448 0.464 -0.723
CD 0.384 -0.382 - - - -
LIME 0.444 -0.449 0.473 -0.542 0.134 -0.186
L-Shapley 0.431 -0.436 0.425 -0.459 0.435 -0.809
C-Shapley 0.423 -0.425 0.415 -0.446 0.410 -0.754
KernelSHAP 0.360 -0.361 0.387 -0.423 0.411 -0.765
SampleShapley 0.450 -0.454 0.487 -0.550 0.462 -0.836
HEDGE 0.458 -0.466 0.494 -0.567 0.479 -0.862

IMDB

Leave-one-out 0.630 -1.409 0.598 -0.806 0.335 -0.849
CD 0.495 -1.190 - - - -
LIME 0.764 -1.810 0.691 -1.091 0.060 -0.133
L-Shapley 0.637 -1.463 0.623 -0.950 0.347 -1.024
C-Shapley 0.629 -1.427 0.613 -0.928 0.331 -0.973
KernelSHAP 0.542 -1.261 0.464 -0.727 0.223 -0.917
SampleShapley 0.757 -1.597 0.707 -1.108 0.355 -1.037
HEDGE 0.783 -1.873 0.719 -1.144 0.411 -1.126

Table 4.2: AOPCs and log-odds scores of di↵erent interpretation methods in explaining di↵erent
models on the SST and IMDB datasets.

feature contributions to the model prediction. The cohesion-score measures the synergy of words

within a text span to the model prediction by shu✏ing the words to see the probability change on

the predicted label.

AOPC. By deleting top k% words, AOPC calculates the average change in the prediction proba-

bility on the predicted class over all test data as follows,

AOPC(k) =
1

N

NX

i=1

{p(ŷ | xi)� p(ŷ | x̃(k)
i )}, (4.6)

where ŷ is the predicted label, N is the number of examples, p(ŷ | ·) is the probability on the predicted

class, and x̃(k)
i is constructed by dropping the k% top-scored words from xi. Higher AOPCs are

better, which means that the deleted words are important for model prediction. To compare with

other word-level explanation generation methods under this metric, we select word-level features

from the bottom level of a hierarchical explanation and sort them in the order of their estimated

importance to the prediction.

Log-odds. Log-odds score is calculated by averaging the di↵erence of negative logarithmic proba-

bilities on the predicted class over all of the test data before and after masking the top r% features
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with zero paddings,

Log-odds(r) =
1

N

NX

i=1

log
p(ŷ | x̃(r)

i )

p(ŷ | xi)
. (4.7)

The notations are the same as in Equation 4.6 with the only di↵erence that x̃(r)
i is constructed by

replacing the top r% word features with the special token hpadi in xi. Under this metric, lower

log-odds scores are better.

Cohesion-score. We propose cohesion-score to justify an important text span identified by

Hedge. Given an important text span x(a,b], we randomly pick a position in the word sequence

(x1, . . . , xa, xb+1, . . . , xn) and insert a word back. The process is repeated until a shu✏ed version

of the original sentence x̄ is constructed. The cohesion-score is the di↵erence between p(ŷ | x) and

p(ŷ | x̄). Intuitively, the words in an important text span have strong interactions. By perturbing

such interactions, we expect to observe the output probability decreasing. To obtain a robust

evaluation, for each sentence xi, we construct Q di↵erent word sequences {x̄(q)
i }Qq=1 and compute

the average as

Cohesion-score =
1

N

NX

i=1

1

Q

QX

q=1

(p(ŷ | xi)� p(ŷ | x̄(q)
i )), (4.8)

where x̄(q)
i is the qth perturbed version of xi, Q is set as 100, and the most important text span in

the contribution set C is considered. Higher cohesion-scores are better.

Results

We compare Hedge with several competitive baselines, namely Leave-one-out [48], LIME [1],

CD [51], Shapley-based methods, [49, L/C-Shapley], [24, KernelSHAP], and [2, SampleShapley],

using AOPC and log-odds metrics; and use cohesion-score to compare Hedge with another hierar-

chical explanation generation method ACD [3].

Methods Models
Cohesion-score
SST IMDB

HEDGE
CNN 0.016 0.012
BERT 0.124 0.103
LSTM 0.020 0.050

ACD LSTM 0.015 0.038

Table 4.3: Cohesion scores of HEDGE and ACD in interpreting di↵erent models on the SST and
IMDB datasets. For ACD, we adopt the existing application from the original paper [3] to explain
LSTM on text classification.

50



The AOPCs and log-odds scores on di↵erent models and datasets are shown in Table 4.2, where

k = r = 20. For the IMDB dataset, we tested on a subset with 2000 randomly selected samples due

to computation costs.

(a) Hedge for LSTM on the SST.

(b) ACD for LSTM on the SST.

Figure 4.2: Compare Hedge with ACD in interpreting the LSTM model on a negative movie review
from the SST dataset, where LSTM makes a wrong prediction (positive). The importance scores
of Hedge and CD scores are normalized for comparison.

Hedge achieves the best performance on both evaluation metrics. SampleShapley also achieves

a good performance with the number of samples set as 100, but the computational complexity is

200 times than Hedge. Other variants, L/C-Shapley and KernelSHAP, applying approximations

to Shapley values perform worse than SampleShapley and Hedge. LIME performs comparatively

to SampleShapley on the LSTM and CNN models, but is not fully capable of interpreting the

deep neural network BERT. The limitation of context decomposition mentioned by Jin et al. [52]

51



is validated by the worst performance of CD in identifying important words. We also observed

an interesting phenomenon that the simplest baseline Leave-one-out can achieve relatively good

performance, even better than Hedge when k and r are small. And we suspect that is because

the criteria of Leave-one-out for picking single keywords matches the evaluation metrics. Overall,

experimental results demonstrate the e↵ectiveness of Equation 4.5 in measuring feature importance.

And the computational complexity is only O(n), which is much smaller than other baselines (e.g.

SampleShapley, and L/C-Shapley with polynomial complexity).

Table 4.3 shows the cohesion-scores of Hedge and ACD with di↵erent models on the SST and

IMDB datasets. Hedge outperforms ACD with LSTM, achieving higher cohesion-scores on both

datasets, which indicates thatHedge is good at capturing important phrases. Comparing the results

of Hedge on di↵erent models, the cohesion-scores of BERT are significantly higher than LSTM and

CNN. It indicates that BERT is more sensitive to perturbations on important phrases and tends to

utilize context information for predictions.

Qualitative Analysis

For qualitative analysis, we present two typical examples. In the first example, we compare Hedge

with ACD in interpreting the LSTM model. Figure 4.2 visualizes two hierarchical explanations,

generated by Hedge and ACD respectively, on a negative movie review from the SST dataset.

In this case, LSTM makes a wrong prediction (positive). Figure 4.2(a) shows Hedge correctly

captures the sentiment polarities of bravura and emptiness, and the interaction between them as

bravura exercise flips the polarity of in emptiness to positive. It explains why the model makes

the wrong prediction. On the other hand, ACD incorrectly marks the two words with opposite

polarities, and misses the feature interaction, as Figure 4.2(b) shows.

In the second example, we compare Hedge in interpreting two di↵erent models (LSTM and

BERT). Figure 4.3 visualizes the explanations on a positive movie review. In this case, BERT

gives the correct prediction (positive), while LSTM makes a wrong prediction (negative). The

comparison between Figure 4.3(a) and 4.3(b) shows the di↵erence of feature interactions within

the two models and explains how a correct/wrong prediction was made. Specifically, Figure 4.3(b)

illustrates that BERT captures the key phrase not a bad at step 1, and thus makes the positive

prediction, while LSTM (as shown in Figure 4.3(a)) misses the interaction between not and bad,

and the negative word bad pushes the model making the negative prediction. Both cases show

that Hedge is capable of explaining model prediction behaviors, which helps humans understand

the decision-making.
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(a) Hedge for LSTM on SST.

(b) Hedge for BERT on SST.

Figure 4.3: Compare Hedge in interpreting di↵erent models (LSTM and BERT) on a positive movie
review from the SST dataset, where BERT makes the correct prediction (positive), while LSTM
makes a wrong prediction (negative). Hedge explains that BERT captures the important phrase
not a bad for making the correct prediction, while LSTM ignores it and is misled by the negative
word bad.

Comparison between top-down and bottom-up approaches. Given the sentence a waste

of good performance for example, Figure 4.4 shows the hierarchical interpretations for the LSTM

model using the bottom-up and top-down approaches respectively. Figure 4.4(a) shows that the in-

teraction between waste and good can not be captured until the last (top) layer, while the important

phrase waste of good can be extracted in the intermediate layer by top-down algorithm. We can

see that waste flips the polarity of of good to negative, causing the model predicting negative as

well. Top-down segmentation performs better than bottom-up in capturing feature interactions. The

reason is that the bottom layer contains more features than the top layer, which incurs larger errors
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in calculating interaction scores. Even worse, the calculation error will propagate and accumulate

during clustering.

(a) Bottom-up clustering.

(b) Top-down segmentation.

Figure 4.4: Hierarchical interpretations for the LSTM model using the bottom-up and top-down
approaches respectively. Red and blue colors represent the negative and positive sentiments respec-
tively.

Human Evaluation

We had 9 human annotators from the Amazon Mechanical Turk (AMT) for human evaluation.

The features (e.g., words or phrases) with the highest importance score given by Hedge and other

baselines are selected as the explanations. Note that Hedge and ACD can potentially give very long

top features which are not user-friendly in human evaluation, so we additionally limit the maximum

length of selected features to five. We provided the input text with di↵erent explanations in the user
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interface (as shown in Figure 4.5) and asked human annotators to guess the model’s prediction [129]

from {“Negative”, “Positive”, “N/A”} based on each explanation, where “N/A” was selected when

annotators cannot guess the model’s prediction. We randomly picked 100 movie reviews from the

IMDB dataset for human evaluation.

There are two dimensions of human evaluation. We first compare Hedge with other baselines

using the predictions made by the same LSTM model. Second, we compare the explanations gen-

erated by Hedge on three di↵erent models: LSTM, CNN, and BERT. We measure the number of

human annotations that are coherent with the actual model predictions, and define the coherence

score as the ratio between the coherent annotations and the total number of examples.

Table 4.4 shows the coherence scores of eight di↵erent interpretation methods for LSTM on the

IMDB dataset. Hedge outperforms other baselines with higher coherence score, which means that

Hedge can capture important features which are highly consistent with human interpretations.

LIME is still a strong baseline in providing interpretable explanations, while ACD and Shapley-

based methods perform worse. Table 4.5 shows both the accuracy and coherence scores of di↵erent

models. Hedge succeeds in interpreting black-box models with relatively high coherence scores.

Moreover, although BERT can achieve higher prediction accuracy than the other two models, its

coherence score is lower, manifesting a potential tradeo↵ between accuracy and interpretability of

deep models.

Methods Coherence Score

Leave-one-out 0.82
ACD 0.68
LIME 0.85
L-Shapley 0.75
C-Shapley 0.73
KernelSHAP 0.56
SampleShapley 0.78
HEDGE 0.89

Table 4.4: Human evaluation of di↵erent interpretation methods with LSTM model on the IMDB
dataset.

Models Accuracy Coherence scores

LSTM 0.87 0.89
CNN 0.90 0.84
BERT 0.97 0.75

Table 4.5: Human evaluation of HEDGE with di↵erent models on the IMDB dataset.
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4.1.5 Conclusion

We proposed an e↵ective method, Hedge, building model-agnostic hierarchical interpretations via

detecting feature interactions. In this work, we mainly focus on sentiment classification task. We test

Hedge with three di↵erent neural network models on two benchmark datasets, and compare it with

several competitive baseline methods. The superiority of Hedge is approved by both automatic

and human evaluations.

Figure 4.5: Interfaces of Amazon Mechanical Turk where annotators are asked to guess the model’s
prediction based on di↵erent explanations.
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4.2 Explaining Neural Network Predictions on Sentence

Pairs via Learning Word-Group Masks

Explaining deep neural networks is critical for revealing their prediction behaviors and enhancing the

trustworthiness of applying them in real-world applications. Many methods have been proposed to

explain neural network models from the post-hoc manner that generates faithful explanations based

on model predictions [1, 24, 25, 168]. Most existing work focuses on identifying word attributions

[169, 48, 170] for NLP tasks. Knowing which individual features are important might not be enough

for explaining model behaviors. Then, other recent work exploits feature interactions as explana-

tions [3, 171, 172]. However, they could su↵er computation ine�ciency while computing interactions

between all word pairs, and they also fall short for identifying multiple important words correlated

from di↵erent input sources for predictions. Such intuitions are particularly important for explain-

ing sentence pair modeling tasks such as natural language inference (NLI) [173] and paraphrase

identification (PI) [174].

Figure 4.6: An illustration of obtaining individual word attributions (Indiv. Attr.) and weighted
word attributions (Weighted Attr.), where the color of each block represents word importance or
group importance, and the color saturation of purple lines indicates the probability of a word be-
longing to a specific group.

Figure 4.6 shows an example of NLI, where the model makes correct prediction as contradic-

tion. The first column visualizes individual word attributions to the prediction, where the top four

important words are man, banjo, guitar, a. However, the correlations between them are unclear

and intuitively man and a are irrelevant to the model prediction, which makes the explanation un-
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trustworthy. A good explanation should be able to capture correlated words between the sentence

pair, and identify their importance to the model prediction.

In this work, we propose Group Masks (GMASK), a model-agnostic approach that considers

the importance of correlated words from two input sentences. In particular, it distributes correlated

words into a group and learns the group importance. In Figure 4.6, the input words are distributed

in four groups with importance G2 > G1 > G3 > G4. The color saturation of purple lines repre-

sents the probability of a word belonging to a group. Di↵erent from individual word attributions,

GMASK assigns electric, guitar, and banjo into important groups (G2/G1), while man and a

into unimportant groups (G3/G4). The weighted word attributions computed as the weighted sum

of group importance identify the important words electric, guitar from x1 and banjo from x2,

which explains the model prediction.

The contribution of this work is three-fold: (1) we introduceGMASKmethod to explain sentence

pair modeling tasks by learning weighted word attributions based on word correlations; (2) we

propose a sampling-based method to solve the optimization objective of GMASK; and (3) we

evaluate the proposed method with two types neural network models (decomposable attention model

[175] and BERT [13]), for two types of sentence pair modeling tasks on four datasets. Experiments

show the superiority of GMASK in generating faithful explanations compared to other competitive

methods.

4.2.1 GMASK

Figure 4.7: The left part shows that masks are applied on the word embedding layer, selecting
important words for the neural network model. The outputs y and ỹ are corresponding to the
original input x = [x1,x2]T and masked input x̃ = [x̃1, x̃2]T respectively. The right part shows the
sampling process of GMASK. For Z, the color saturation of purple blocks represents the probability
of a word belonging to a specific group (i.e. �i,j(◆)). z is a sample of Z with binary values. For
G, the color of each block represents group importance. g is a one-hot vector sampled from G,
indicating which group being selected. w is a sample of word masks obtained by multiplying z and
g.
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This section introduces the proposed GMASK method. GMASK implicitly learns word correla-

tions, and distributes correlated words from di↵erent input sentences into a group. GMASK learns

the importance of each group by randomly masking out groups of words. Finally, the weighted word

attributions are computed based on word group distributions and group importance.

Explaining Models with Word Masks

As the left part of Figure 4.7 shows, the word masks are applied on input word embeddings, learning

to select important words to explain the model prediction. For each input data, we generate a

post-hoc explanation by learning a set of mask values which represent the word attributions.

For sentence pair modeling tasks, the input contains two sentences x1 = [xT
1,1, . . . ,x

T
1,n1

]T and

x2 = [xT
2,1, . . . ,x

T
2,n2

]T , where xi,j 2 Rd (i 2 {1, 2}, j 2 {1, . . . , ni}) represents the word em-

bedding and n1 and n2 are the number of words in the two texts respectively. We denote the

neural network model as f(·) which takes x1 and x2 as input and outputs a prediction label

y = f(x), where x = [x1,x2]T . To explain the model prediction, we learn a set of word masks

W = [W1,1, . . . ,W1,n1 ,W2,1, . . . ,W2,n2 ]
T to identify important words by multiplying the masks

with input word embeddings,

x̃ = W � x, (4.9)

where � is an element-wise multiplication, the masked input x̃ = [x̃1, x̃2]T , x̃i,j = Wi,j · xi,j

(i 2 {1, 2}, j 2 {1, . . . , ni}), and Wi,j 2 {0, 1} is a binary random variable with 1 and 0 indicating

to select or mask out the word xi,j respectively. To generate an e↵ective explanation, the word

masks W should have the following properties: (1) correctly selecting important words for the model

prediction; (2) removing as many irrelevant words as possible to keep the explanation concise; (3)

selecting or masking out correlated words together from the sentence pair.

Previous work on learning individual word masks only focuses on the first two properties [176,

154]. To satisfy the third property, We propose GMASK to implicitly detect word correlations and

distribute the correlated words into a group (e.g. electric, guitar, and banjo are assigned to G1

or G2 in Figure 4.6), and learn a group mask for these words. Specifically, we decompose each Wi,j

in W into two random variables,

Wi,j =
tX

◆=1

�(Zi,j , ◆)�(G, ◆), (4.10)
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where t is the predefined number of groups, and we will introduce how to pick up a t subsequently.

Zi,j 2 {1, . . . , t} indicates the word xi,j belonging to which group, and G 2 {1, . . . , t} indicates which

group takes the mask value 1, which means all words in this group are selected as important words,

while other words in the rest groups are masked out. �(a, b) is the Delta function with �(a, b) = 1

when a = b, and 0 otherwise. The conditional dependency of W , Z, and G can be represented as a

graphical model 2. The problem of learning W is equivalent to learning Z and G, that is learning

word distributions among the groups and group importance. According to �(Zi,j , ◆) and �(G, ◆), the

word masks W will keep or mask out all words in group ◆, which satisfies the third property.

Learning GMASK

We formulate the problem of learning GMASK by optimizing the following objective in terms of

the three properties,

max
�, 

E[p(y | x, z, g)]� �1LZ � �2LG, (4.11)

where � and  are parameters of Z and G respectively, and z and g are samples of Z and G

respectively. We denote LZ and LG as regularizations on Z and G respectively, which are applied

to make the learned masks satisfy the required properties. We will introduce the two regularization

terms subsequently. �1, �2 2 R+ are coe�cients.

Optimizing the first term in Equation 4.11 is to make the word masksW satisfy the first property,

that is the model outputs the same prediction on the selected words as on the whole text. Given Z

and G, we have word masks W , and multiply them with input word embeddings, and obtain the

masked input x̃ as in Equation 4.9. The model output on x̃ is ỹ = f(x̃). If the masks correctly

select important words, the predicted label on the selected words should be equal to that on the

whole input text. We can optimize the first term by minimizing the cross entropy loss (Lce(·, ·))

between ỹ and y. The objective Equation 4.11 can be rewritten as

min
�, 

Lce(y, ỹ) + �1LZ + �2LG. (4.12)

The last two terms in the optimization objective are to make word masks satisfy the second

and third properties. We regularize Z to encourage each group contains some words from di↵erent

sentences. We regularize G to ensure only one or few groups are identified as important (with

relatively large probabilities). Optimizing the cross entropy loss with the two regularization terms

2Z !W  G: Z and G are dependent given W .
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can make the word masks select the important group of words, where the words are selected from

the input sentence pair and are correlated.

Regularizations on Z and G. As each Zi,j (i 2 {1, 2}, j 2 {1, . . . , ni}) indicates a word

belonging to a specific group, it follows categorical distribution with probabilities [�i,j(1), . . . ,�i,j(t)],

where t is the predefined number of groups, and �i,j(◆) (◆ 2 {1, . . . , t}) represents the probability of

the word in group ◆. Then we denote the parameters of Z as �,

� =

2

666666666666664

�1,1(1) · · · �1,1(t)
... · · ·

...

�1,n1(1) · · · �1,n1(t)

�2,1(1) · · · �2,1(t)
... · · ·

...

�2,n2(1) · · · �2,n2(t)

3

777777777777775

(4.13)

To ensure that each group contains some words from both input sentences, and also avoid as-

signing a bunch of words into one group, we distribute the words in each sentence evenly among all

groups. Then each group implicitly captures the words from di↵erent sentences. We can regularize

Z to achieve this goal. We sum each column of � along the upper half rows and lower half rows

respectively, and obtain two vectors by taking averages, �U = 1
n1

[
Pn1

j=1 �1,j(1), . . . ,
Pn1

j=1 �1,j(t)],

�L = 1
n2

[
Pn2

j=1 �2,j(1), . . . ,
Pn2

j=1 �2,j(t)]. Then �U and �L are the distributions of two discrete

variables ZU and ZL, which also represent the word distributions of the two input sentences among

groups. To make the distributions of words even, we maximize the entropy of ZU and ZL, and have

LZ = �(H(ZU ) +H(ZL)), (4.14)

where H(·) is entropy.

G 2 {1, . . . , t} also follows categorical distribution with probabilities  = [ (1), . . . , (t)], where

 (◆) (◆ 2 {1, . . . , t}) represents the probability of group ◆ being selected. According to the relation

of W , Z, G in Equation 4.10, the word masks only keep the words assigned to the selected group.

To ensure one or few groups have relatively large probabilities to be selected, we regularize G by

minimizing its entropy, that is LG = H(G). The final optimization objective is

min
�, 

Lce(y, ỹ)� �1(H(ZU ) +H(ZL)) + �2H(G). (4.15)
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Optimization via sampling. We adopt a sampling based method to solve Equation 4.15 by

learning the parameters of Z and G (i.e. {�, }). As the right part of Figure 4.7 shows, we sample

a z from the categorical distributions of Z, where each row zi,j is a one-hot vector, indicating the

word xi,j assigned to a specific group. And we sample a g from the categorical distribution of G,

which is a vertical one-hot vector, indicating the selected group. Then we obtain a sample of word

masks by multiplying z and g, i.e. w = z · g, where the mask values corresponding to the words in

the selected group are 1, while the rest are 0. We apply the masks on the input word embeddings

and optimize Equation 4.15 via stochastic gradient descent.

There are two challenges of the learning process: discreteness and large variance. We apply the

Gumbel-softmax trick [157, 158] to address the discreteness of sampling from categorical distributions

in backpropagation. We do the sampling multiple times and generate a batch of masked inputs of

the original input data to decrease the variance in probing the model, and train for multiple epochs

until the learnable parameters {�, } reach stable values.

Weighted word attributions. After training, we learn the parameters of Z, i.e. �, where each

element �i,j(◆) 2 (0, 1) (i 2 {1, 2}, j 2 {1, . . . , ni}, ◆ 2 {1, . . . , t}) represents the probability of

word xi,j belonging to group ◆. We also learn the parameters of G, i.e.  , where each element

 (◆) 2 (0, 1) represents the importance of group ◆. According to the definition of word masks W , we

know that each mask variable Wi,j follows Bernoulli distribution, and the probability of Wi,j taking

1 is denoted as ✓i,j . We can compute ✓i,j based on the relation of Wi,j , Zi,j and G in Equation 4.10,

that is

✓i,j =
tX

◆=1

�i,j(◆) (◆). (4.16)

We can see that ✓i,j is the expectation of Wi,j , representing the weighted attribution of the

word xi,j to the model predicition. Hence, we have a set of weighted word attributions ⇥ =

[✓1,1, . . . , ✓1,n1 , ✓2,1, . . . , ✓2,n2 ]
T for extracting important words as an explanation.

Complexity. For a set of n words, computing interactions between all word pairs costs O(n2) and

aggregating words step by step to form a tree structure even costs more time [3, 171]. GMASK

circumvents the feature interaction detection by learning word groups. The complexity is O(nt+ t),

where t is the number of groups and usually t⌧ n in practice.
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Implementation Specification

We initialize the parameters of all categorical distributions ({�, }) with 1
t , which means all words

have the same importance and do not have any preference to be in a specific group at the start

of training. To stabilize the learning process, we sample 100 - 1000 examples (depending on the

model and datasets) and train at most 100 epochs until converge. The coe�cients �1 and �2 are

hyperparameters. We empirically found �1 = 10 and �2 = 1 work well in our experiments.

In our pilot experiments, we found that preliminarily filtering out some noisy or irrelevant words

can help decrease the learnable parameters, hence accelerating the training process. Specifically, we

adopt a simple word mask method from [176] to select a set of individual words for an input sentence

pair before running GMASK. This simple method, denoted as IMASK, will learn individual word

attributions as masks R = {Ri,j}i2{1,2}, j2{1,...,ni} 2 {0, 1}n1+n2 regardless any correlation. Then,

based on the expected values of R, we preliminarily select top k words for GMASK to further learn

weighted word attributions. Within these top k words, assume k1 words from the first input text

and k2 words from the second text, then we will set the number of groups as t = min(k1, k2), so that

at least one group contains words from both sentences. k is a hyper-parameter associated with the

average length of input texts. In the experiments, we set k = 10. Note that, the IMASK method

adopted here can also be used as a baseline method for comparison.

4.2.2 Experimental Setup

We evaluate GMASK with two kinds of neural network models, decomposable attention model

(DAttn) [175] and BERT [13], for two types of sentence pair modeling tasks on four datasets. We

compare our method with four baselines.

Datasets. e-SNLI [42] is natural language inference task, where the model predicts the semantic

relationship between two input sentences as entailment, contradiction, or neutral. Quora [177],

QQP [178] and MRPC [179] are paraphrase identification tasks, where the model decides whether

two input texts are semantically equivalent or not. Table 4.6 shows the statistics of the four datasets.

We adopt the data splits of e-SNLI [42] from the ERASER benchmark 3. We adopt the data splits

of Quora released by Wang et al. [177]. The data splits of QQP [178] and MRPC [179] are from the

GLUE benchmark 4.
3https://www.eraserbenchmark.com/
4https://gluebenchmark.com/
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Datasets C L V #train #dev #test

e-SNLI 3 10.2 64291 549K 9K 9K
Quora 2 11.5 85249 384K 10K 10K
QQP 2 11.1 126266 364K 40K 391K
MRPC 2 22 15547 3668 408 1725

Table 4.6: Summary statistics for the datasets, where C is the number of classes, L is average
sentence length, V is vocab size, and # counts the number of examples in the train/dev/test sets.

Models e-SNLI Quora QQP MRPC

DAttn 86.62 86.78 85.00 68.30

BERT 90.38 90.48 89.00 83.70

Table 4.7: The prediction accuracy (%) of di↵erent models on the four datasets.

Models. We adopt the decomposable attention model (DAttn) [175] and BERT [13] model, and

fine-tune the models on each downstream task to achieve the best performance, as Table 4.7 shows.

The test results on QQP and MRPC are scored by the GLUE benchmark.

Baselines. We compare GMASK with four baseline methods: (1) LIME [1]-fitting a local linear

model with perturbations to approximate the neural network and produce word attributions; (2)

L2X [65]-constructing a network to learn feature attributions by maximizing the mutual information

between the selected features and model output; (3) IBA (Per-Sample framework) [29] - learning

feature attributions by optimizing the information bottleneck which restricts feature information

flow by adding noise; (4) IMASK-learning individual word masks. Note that here we use standalone

IMASK as one of the baselines, as oppose to applying it for selecting preliminary important words

for GMASK.

4.2.3 Results and Discussion

We compare the faithfulness of generated post-hoc explanations via both quantitative and qualitative

evaluations.

Quantitative Evaluation

We adopt three metrics from prior work to evaluate the faithfulness of learned feature attributions:

AOPC score [129, 73], post-hoc accuracy [65, 176], and degradation score [74, 29]. We evaluate

explanations on all test data for the MRPC dataset, and on 2000 examples randomly selected from

the test set for other three datasets due to computational complexity.
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Models Methods e-SNLI Quora QQP MRPC

DAttn

LIME 0.286 0.120 0.079 0.064
L2X 0.299 0.128 0.079 0.035
IBA 0.354 0.137 0.104 0.109

IMASK 0.324 0.140 0.087 0.064
GMASK 0.361 0.142 0.095 0.091

BERT

LIME 0.221 0.153 0.110 0.062
L2X 0.310 0.119 0.134 0.083
IBA 0.282 0.199 0.144 0.114

IMASK 0.292 0.232 0.139 0.130
GMASK 0.319 0.309 0.181 0.200

Table 4.8: AOPC scores of di↵erent explanation methods with the DAttn and BERT models on the
four datasets.

AOPC score

We adopt the area over the perturbation curve (AOPC) [129, 73] metric to evaluate the comprehen-

siveness of explanations to models. It calculates the average change of prediction probability on the

predicted class over all examples by removing top 1 . . . u words in explanations.

AOPC =
1

U + 1
h

UX

u=1

p(y|x)� p(y|x\1...u)ix, (4.17)

where p(y|x\1...u) is the probability for the predicted class when words 1 . . . u are removed and h·ix

denotes the average over all test examples. Higher AOPC score indicates better explanations.

Table 4.8 shows the results of AOPC scores of di↵erent explanation methods when U = 10.

GMASK outperforms other baseline methods on most of the datasets. Especially for the BERT

model, GMASK achieves significantly higher AOPC scores than other methods, indicating that

BERT tends to rely on word correlations to make predictions. IBA and IMASK, either learning

continuous or binary individual word masks, perform better than learning word attributions via an

additional network (L2X) or using linear approximation (LIME).

Post-hoc Accuracy

The post-hoc accuracy [65, 176] evaluates the su�ciency of important words to the model prediction.

For each test data, we select top v important words based on word attributions for the model to

make a prediction, and compare it with the original prediction made on the whole input text. We
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(a) DAttn on e-SNLI (b) DAttn on Quora (c) DAttn on QQP (d) DAttn on MRPC

(e) BERT on e-SNLI (f) BERT on Quora (g) BERT on QQP (h) BERT on MRPC

Figure 4.8: Post-hoc accuracy of di↵erent explanation methods with the DAttn and BERT models
on the four datasets.

(a) LIME (b) L2X (c) IBA (d) IMASK (e) GMASK

Figure 4.9: Degradation test of di↵erent explanation methods with the DAttn model on the e-SNLI
dataset.

compute the post-hoc accuracy on M examples,

post-hoc-acc(v) =
1

M

MX

m=1

[y(m)
v = y(m)],

where y(m) is the predicted label on the m-th test data, and y(m)
v is the predicted label based on the

top v important words. Higher post-hoc accuracy indicates better explanations.

Figure 4.8 shows the results of post-hoc accuracy of di↵erent explanation methods where we

increase v from 1 to 10. Similar to the results of the AOPC scores, GMASK achieves higher

post-hoc accuracy than other methods for both DAttn and BERT models.

The explanations of GMASK for the BERT model achieve about 80% post-hoc accuracy on

all datasets except the MRPC dataset. This is only by relying on top 4 important words, which

means that GMASK captures informative words for model predictions. The post-hoc accuracies of

the BERT model on the MRPC dataset are lower than those on other three datasets because the
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average sentence length of MRPC is twice as long as the others, indicating that BERT tends to use

larger context for predictions. The post-hoc accuracies of the DAttn model on the MRPC dataset

are extremely high for all the explanation methods. The reason is that the prediction accuracy of

DAttn model on the MRPC dataset is relatively low (Table 4.7). Any random words picked up by

explanations could make the model output wrong predictions since the original predictions on the

whole texts are also wrong, hence causing high post-hoc accuracy.

Models Methods e-SNLI Quora QQP MRPC

DAttn

LIME 0.502 0.070 0.091 1.367
L2X 0.366 0.002 0.036 1.779
IBA 0.423 0.110 0.197 2.775

IMASK 0.436 0.152 0.214 2.037
GMASK 0.620 0.178 0.238 2.790

BERT

LIME 0.188 0.192 0.087 0.018
L2X 0.303 0.168 0.173 -0.003
IBA 0.166 0.038 0.176 0.050

IMASK 0.369 0.303 0.172 0.251
GMASK 0.576 0.726 0.707 0.533

Table 4.9: Degradation scores of di↵erent explanation methods with the DAttn and BERT models
on the four datasets.

Degradation Test

Degradation test [74, 29] evaluates the ranking of importance by removing the most important words

or least important words first, and observing model prediction probability drop on the predicted class.

We draw two curves as shown in Figure 4.9, one with the most relevant words removed first (MoRF)

and another one with the least relevant words removed first (LeRF). x-axis is the percentage of

words removed (degradation proportion), and y-axis is the normalized model output probability as

S(x⇢) =
p(y|x⇢)� p(y|xo)

p(y|x)� p(y|xo)
, (4.18)

where x is the original input, y is the predicted label, x⇢ means ⇢%(⇢ 2 [0, 100]) degradation of x,

and xo is full degradation. We compute the averages of p(y|x⇢), p(y|x), and p(y|xo) over all test

examples. The degradation score is calculated as the integral between the MoRF and LeRF curves,

degra-score =

Z 100

⇢=0

SL(x⇢)� SM (x⇢)

100
d⇢, (4.19)
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Models Methods Texts

DAttn

LIME a man playing an electric guitar on stage . a man playing banjo on the floor .
L2X a man playing an electric guitar on stage . a man playing banjo on the floor .
IBA a man playing an electric guitar on stage . a man playing banjo on the floor .

IMASK a man playing an electric guitar on stage . a man playing banjo on the floor .
GMASK a man playing an electric guitar on stage . a man playing banjo on the floor .

BERT

LIME why are vikings portrayed wearing horned helmets ? why did vikings have horns on
their helmets ?

L2X why are vikings portrayed wearing horned helmets ? why did vikings have horns on
their helmets ?

IBA why are vikings portrayed wearing horned helmets ? why did vikings have horns on
their helmets ?

IMASK why are vikings portrayed wearing horned helmets ? why did vikings have horns on
their helmets ?

GMASK why are vikings portrayed wearing horned helmets ? why did vikings have horns on
their helmets ?

Table 4.10: Examples of di↵erent explanations, where the top four important words are highlighted.
The important words in the first and second sentences are highlighted in pink and blue colors
respectively. The color saturation indicates word attribution. The first example is from the e-SNLI
dataset, and the DAttn model makes a correct prediction as contradiction. The second example
is from the Quora dataset, and the BERT model makes a correct prediction as paraphrases.

where SL(x⇢) and SM (x⇢) are normalized model outputs by removing the least or most important

words respectively. Higher degradation score is better.

Table 4.9 shows the results of degradation scores of di↵erent explanation methods. GMASK

shows superiority to other baseline methods under this metric. Figure 4.9 shows the degradation

test results of DAttn model on the e-SNLI dataset. GMASK can distinguish both important and

unimportant words, while IBA does not learn the correct order of unimportant words. LIME does

not perform well in identifying important words, but captures the correct order of unimportant

words. The MoRF and LeRF curves of L2X and IMASK are relatively symmetric, but not as

expanded as GMASK.

Qualitative Evaluation

Table 4.10 shows di↵erent explanations on two examples from e-SNLI and Quora respectively. For

the first example, the DAttn model makes a correct prediction as contradiction. For the second

example, the BERT model also makes a correct prediction as paraphrases. We highlight the top

four important words, where the words in the first and second sentences are in pink and blue colors

respectively. The color saturation indicates word attribution.

For the first example, LIME and IBA mainly capture the important words from the first sentence,

while ignoring the ones in the second sentence (e.g. banjo, floor). On the contrary, L2X focuses
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on the words in the second sentence, while ignoring the important word guitar in the first sentence.

IMASK picks up two irrelevant words man and a as important words, which can not explain the

model prediction. GMASK correctly identifies top four important words and captures two correlated

words guitar and banjo from the two input sentences respectively.

For the second example, only GMASK captures the two important correlated words horned

and horns, which explains why the BERT model predicts the two input questions as paraphrases.

LIME captures the overlapped word helmets in the two sentences, while L2X only selects some

irrelevant words. Both IBA and IMASK identify a question mark as the important word, which is

untrustworthy to the model prediction.

4.2.4 Conclusion

We focused on sentence pair modeling and proposed an e↵ective method, GMASK, learning group

masks for correlated words and calculating weighted word attributions. We testedGMASK with two

di↵erent neural network models on four datasets, and assessed its e↵ectiveness via both quantitative

and qualitative evaluations.
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4.3 Explaining Predictive Uncertainty by Looking Back at

Model Explanations

Pre-trained language models [e.g., BERT; 13] have been indispensable to natural language processing

(NLP) due to their remarkable performance [105, 180, 107, 15]. Predictive uncertainty estimation of

pre-trained language models is an important measure of how likely people can trust their predictions

[70, 71].

A typical way of measuring predictive uncertainty is to calibrate model outputs with the true

correctness likelihood [181, 182, 113], so that the output probabilities well represent the confidence

of model predictions. In this case, higher prediction confidence indicates lower uncertainty [71, 183].

Figure 4.10: An illustration of model explanation for sentiment classification, where the model
makes the correct prediction (positive) with a relatively low confidence 69%. The top and bottom
salient words with respect to the predicted label are highlighted in blue and red colors respectively,
indicating di↵erent sentiment polarities. Darker color implies larger attribution. Removing the two
bottom salient words in dashed boxes can improve the model prediction confidence to 93%.

However, little is known about what makes a model prediction uncertain. Explaining predictive

uncertainty is important to understanding model prediction behavior and complementary to explain-

ing prediction labels for gaining users’ trust, while has been largely ignored [184]. Most works on

model explanations focus on explaining a model from the post-hoc manner by identifying important

features in inputs that contribute to model predicted labels [1, 24, 25, 185, 186]. Figure 4.10 shows

an example of model explanation for sentiment classification, where the model makes the correct

prediction (positive) with a relatively low confidence 69%. The top two salient words highlighted

in blue color explain the predicted label. However, users may still wonder what compromises the

prediction confidence?

This work is the first to explain model predictive uncertainty in NLP. Specifically, this work

is based on a simple observation that bottom salient words in model explanations (e.g., dreadful

and hard in Figure 4.10) identified as making negative contributions to predicted labels actually

explain model predictive uncertainty. The two bottom salient words in Figure 4.10 indicate the

opposite sentiment (negative) to the model predicted label. Removing them can improve the
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model prediction confidence from 69% to 93%. We argue that both top and bottom salient words

are indispensable to explaining model predictions. We name top salient words as important words,

explaining model predicted labels; and bottom salient words as uncertain words, explaining model

predictive uncertainty. In other words, a comprehensive prediction explanation should consist of

label explanation with important words and uncertainty explanation with uncertain words.

The goal of this work is to demonstrate the benefits of comprehensive explanations and

the necessity of including uncertainty explanations. In the empirical study, we adopt two

explanation methods, Leave-one-out [48] and Sampling Shapley [187], to explain two pre-trained

language models, BERT [13] and RoBERTa [105] on three tasks. Experiments show the e↵ective-

ness of the two methods in identifying uncertain words for explaining model predictive uncertainty.

Besides, human evaluations illustrate the indispensability of uncertainty explanations in helping

humans understand model prediction behavior.

4.3.1 Explaining Predictive Uncertainty

In this work, we consider models that are calibrated, such that their prediction confidence is aligned

with their prediction probability. Let f(·) denote a model. Given an input x = [x1, . . . , xN ] consist-

ing of N words, the model prediction probabilities on x over classes are [f1(x), . . . , fC(x)], where

fc(x) = P (y = c | x) and C is the total number of classes. As model f is calibrated, the probability

on the predicted class ŷ, i.e. fŷ(x), represents the model prediction confidence on this label. As

prediction confidence and predictive uncertainty are negative correlated (higher confidence implies

lower uncertainty), we explain model predictive uncertainty by answering the question: What drags

model prediction confidence down? We answer the question based on a simple observation on model

prediction explanations [1, 48, 24].

When a feature is identified with negative contribution, removing it can improve model predic-

tion confidence, as shown in Figure 4.10. Similar to the definition of prediction explanation, we

consider this feature explains predictive uncertainty. Furthermore, given a ranking of input word

contributions produced by an explanation method, we name top-ranked words as important words,

explaining model predicted labels; and bottom words (with negative contributions) as uncertain

words, explaining model predictive uncertainty. In other words, a comprehensive prediction expla-

nation should consist of label explanation with important words and uncertainty explanation with

uncertain words. As mentioned before, the goal of this study is to demonstrate the benefits of

comprehensive explanations and the necessity of including uncertainty explanations. In this work,
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we focus on extracting uncertain words from existing explanation methods, with the expectation of

stimulating further research on explaining predictive uncertainty in NLP.

4.3.2 Explanation Methods

With the previous discussion, we adopt two perturbation-based explanation methods, Leave-one-out

[48] and Sampling Shapley [187], for uncertainty explanations. Other explanation methods can be

easily adapted to explaining predictive uncertainty.

Leave-one-out (LOO). This method evaluates the e↵ect of each word on model prediction by

leaving it out and observing the output probability change on the predicted class. We define a

contribution score for each word as

Si = fŷ(x)� fŷ(x\i), (4.20)

where x\i denotes the input with the word xi removed. The contribution score Si quantifies how

much the model prediction confidence decreases when xi is left out.

Sampling Shapley (SS). Leave-one-out is simple but ignores coalitions between words when

quantifying their contributions. The Shapley value [50] stems from coalitional game theory provides

an axiomatic solution to attribute the contribution of each word in a fair way. However, the ex-

ponential complexity (O(2N )) of computing Shapley value is intractable. Sampling Shapley [187]

provides a solvable approximation to Shapley value via sampling. This method computes feature

contributions in a more sophisticated way by considering coalitions between words. Specifically, for

a word xi, its contribution score is computed as

Si =
1

M

MX

m=1

fŷ(x
(m)
\i [ {xi})� fŷ(x

(m)
\i ), (4.21)

where M is the number of samples, and x(m)
\i ✓ x\i contains a subset of words in x\i. The contribu-

tion score quantifies the overall contribution of the word xi to the predicted label over M ensembles.

In experiments, we set M = 200.

For each prediction, both methods produce an explanation with input word contributions, from

which we extract important and uncertain words as label and uncertainty explanations respectively.
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Datasets L #train #dev #test Label distribution

IMDB 231 20K 5K 25K Positive: train(10036), dev(2414), test(12535)
Negative: train(9956), dev(2583), test(12451)

Toxics 68 96K 32K 32K Toxic: train(9245), dev(3069), test(3048)
Nontoxic: train(86447), dev(29059), test(28818)

Politics 34 70K 7.8K 19K Democratic: train(36222), dev(3982), test(10240)
Republican: train(33796), dev(3789), test(9189)

Table 4.11: Summary statistics of the datasets, where L is average sentence length, and # counts
the number of examples in the train/dev/test sets. For label distribution, the number of examples
with a specific label in train/dev/test is noted in bracket.

Models IMDB Toxics Politics

BERT 91.29 96.96 91.20
RoBERTa 93.36 96.75 91.32

Table 4.12: Prediction accuracy (%) of di↵erent models on the test sets.

4.3.3 Setup

Models and datasets. We evaluate two pre-trained language models, BERT [13] and RoBERTa

[105], on three tasks, including sentiment analysis, toxic comments detection and political bias

classification. For sentiment analysis, we utilize the IMDB [138] dataset which contains positive and

negative movie reviews. For toxic comments detection, we test on the Wikipedia Toxicity Corpus

(Toxics) [188]. The task is to detect whether a comment is toxic or nontoxic. For political bias

classification, we adopt the Senator Tweets dataset (Politics) 5, which collects all tweets made by

US senators during 2021-2022. The task is to recognize the political bias of each tweet as Democratic

or Republican. Table 4.11 shows the statistics of the datasets. We fine-tune the models on the three

datasets and report their prediction performance in Table 4.12.

Posterior calibration. A common way of measuring predictive uncertainty is by calibrating

model outputs with the true correctness likelihood, so that the predictive probabilities well repre-

sent the confidence of model predictions being correct [181, 182, 70, 113]. Lower prediction confidence

indicates higher uncertainty [71, 183]. We follow the post-calibration methods and adopt the tem-

perature scaling [181, 113] to calibrate the pre-trained language models (BERT and RoBERTa) in

our experiments.

Specifically, we use the development set to learn a temperature T which corrects model output

probabilities by dividing non-normalized logits before the softmax function. Then the learned T is

5https://huggingface.co/datasets/m-newhauser/senator-tweets
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Models IMDB Toxics Politics

BERT:
T 4.59 1.95 4.2

pre-ECE 8.45 2.36 8.56
post-ECE 2.85 0.89 3.83

RoBERTa:
T 2.76 2.16 3.98

pre-ECE 6.36 2.90 8.45
post-ECE 2.50 1.13 4.29

Table 4.13: Posterior calibration results. T is the learned temperature. pre-ECE and post-ECE
represent the ECEs on test sets before and after calibration respectively.

applied to modify model outputs on the test set. In experiments, we linearly search for an optimal

temperature T between [0, 10] with a granularity of 0.01, which empirically performs well. We

evaluate model calibration with Expected Calibration Error (ECE) [181]. The ECE measures the

di↵erence between prediction confidence and accuracy, i.e.

ECE =
KX

k=1

|Bk|
n

|acc(Bk)� conf(Bk)|, (4.22)

where the total n predictions are partitioned into K equally-spaced bins, Bk represents the pre-

dictions fall into the kth bin, acc(·) and conf(·) compute the average accuracy and confidence in

each bin respectively. For a perfect calibration, acc(Bk) = conf(Bk), k 2 {1, . . . ,K}. In this work,

we set K = 10. We report the learned temperature scalars and ECEs before and after calibra-

tion in Table 4.13. Temperature scaling performs e↵ectively in decreasing model calibration errors.

This enables us to further explain prediction uncertainty based on calibrated confidence. We apply

temperature scaling to correct model outputs in experiments.

4.3.4 Experiments

In our experiments, we focus on the three research questions: (1) How e↵ectively existing model

explanation methods can identify uncertain words? (2) What insights we can obtain from uncer-

tainty explanations in addition to label explanations? (3) Whether users appreciate uncertainty

explanations in understanding model prediction behavior?
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(a) BERT, IMDB (b) RoBERTa, IMDB (c) BERT, Toxics

(d) RoBERTa, Toxics (e) BERT, Politics (f) RoBERTa, Politics

Figure 4.11: Average confidence (%) changes with uncertain words removed. X-axis shows di↵erent
bins of original confidence. Ori: original confidence; LOO: Leave-one-out; SS: Sampling Shapley.

Quantitative Evaluation

For each dataset, we randomly select 1000 test examples and generate explanations for model pre-

dictions on them (see visualizations in Table 4.16). The following two results answer the research

question (1) and (2) respectively.

Existing model explanation methods e↵ectively identify uncertain words that limit

model prediction confidence. We extract top k uncertain words identified by model explana-

tions and remove them from inputs and then compute the average prediction confidence change in

each bin of original confidence. We empirically set k = 10 for IMDB and k = 5 for Toxics and

Politics based on their average sentence lengths in Table 4.11. Figure 4.11 shows that both LOO

and SS capture uncertain words that limit prediction confidence. Overall, SS performs better than

LOO in identifying uncertain words.

Important words and negations can result in uncertain predictions. We analyze feature

statistics of model explanations via local mutual information (LMI) [189, 190]. LMI quantifies

the association between a feature (an important/uncertain word) and a prediction label in model

explanations.

To understand which features contribute to model predictions and which features cause prediction

uncertainty, we follow [189, 190] and analyze feature statistics of model explanations via local mutual
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Figure 4.12: LMI distributions based on important words (a) and uncertain words (b). The x-axis
represents word frequency in the vocabulary built on the IMDB dataset. We use blue and red colors
to distinguish features associated with the positive and negative labels respectively. Top 5 tokens
in each distribution are pointed out.

information (LMI). LMI quantifies the association between a feature and a prediction label in model

explanations. We compute LMI based on top 5 important and uncertain words in prediction and

uncertainty explanations respectively. Specifically, for each group of features, we can get a set of

unique features, E = {e}. The LMI between a feature e and a prediction label y is

LMI(e, y) = p(e, y) · log
✓
p(y | e)
p(y)

◆
, (4.23)

where p(y | e) = count(e,y)
count(e) , p(y) = count(y)

|E| , p(e, y) = count(e,y)
|E| , and |E| is the number of occurrences

of all features in E. Then we can get a distribution of LMI over all tokens in the vocabulary ({w})

built on the dataset, i.e.

PLMI(w, y) =

8
>><

>>:

LMI(w, y) if token w 2 E

0 else

(4.24)

We normalize the LMI distribution by dividing each value with the sum of all values. Table 6.12

records top 10 tokens in di↵erent LMI distributions of model explanations. Leave-one-out captures

more noisy tokens (e.g., special tokens, punctuations) than Sampling Shapley. Both BERT and

RoBERTa focus on some task-irrelevant features (e.g., stop words) to make predictions, which reveals

the problem of model prediction behavior. We leave this problem to our future work.

We analyze explanations generated by SS for RoBERTa on the IMDB dataset. Figure 4.12

shows LMI distributions based on important and uncertain words in explanations respectively. Some

important words for model predictions on a specific label (e.g., great for positive, bad for negative

in (a)) become uncertain words for the other label in (b). This indicates models may get confused by
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Model Dataset
LOO SS

Label Unc Label Unc

BERT
IMDB 63.33 86.67 67.50 87.50

Toxics 60.00 86.67 86.67 90.00

Politics 66.67 83.33 82.50 75.00

RoBERTa
IMDB 66.67 83.33 80.00 86.67

Toxics 80.00 83.33 80.00 86.67

Politics 63.33 60.00 75.00 65.00

Table 4.14: Human prediction performance (%) on label explanations (Label) and uncertainty ex-
planations (Unc).

important words corresponding to di↵erent labels in inputs. Besides, negation words (e.g., not, no)

pointed out in (b) are not shown in (a), which means they may not be used by models for making

predictions but can highly cause model predictive uncertainty. We observe similar results on other

datasets in Table 4.15.

Human Evaluation

To answer the research question (3), we conduct human evaluation on both important and uncertain

words in model explanations through the Amazon Mechanical Turk (AMT).

We conduct human evaluation on both important and uncertain words in model explanations

through the Amazon Mechanical Turk (AMT). For each dataset, we randomly select 30 test examples

to generate explanations for each pre-trained language model. Each explanation (with 2-3 important

and uncertain words extracted respectively) is assessed by 5 workers. We pay the workers $0.3 for

assessing each explanation. We have collected 900 annotations in total.

For each explanation, we ask the worker to answer the following 5 questions:

1. Prediction on label explanations (multiple choices): Given the model input text, can

you guess the model prediction label based on the highlighted tokens?

2. Rating on label explanations (1-5 Liker scale): Given the model input text and model

prediction label, how much do you think the highlighted tokens make sense to you?

3. Prediction on uncertainty explanations (multiple choices): Given the model input text

and model prediction probability, do you think removing the highlighted tokens can further

increase the model prediction probability or not?

4. Rating on uncertainty explanations (1-3 Liker scale): How much do you think the

current model prediction probability could be changed by removing the highlighted tokens?
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5. Comparison on label explanations and uncertainty explanations (multiple choices):

Which type of model explanations can help you better understand the model prediction?

Figure 4.13 and Figure 4.14 show the interfaces of human evaluation on Q1 and Q3 respectively.

Figure 4.13: Interface of human evaluation on important words highlighted in blue color.

Figure 4.14: Interface of human evaluation on uncertain words highlighted in green color.

The following two observations illustrate the e↵ectiveness and indispensability of uncertainty

explanations.

Humans perform better on understanding uncertainty explanations than label expla-

nations. First, we provide inputs with important words highlighted and ask evaluators to guess

model prediction labels. Then we show model predictions with confidence and ask evaluators whether

removing uncertain words can improve prediction confidence or not. Table 4.14 shows the results of

human performance on predicting model prediction labels and confidence change. Overall, humans
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have better performance on understanding model predictive uncertainty based on uncertain words.

This indicates the e↵ectiveness of uncertainty explanations in helping users understand model pre-

dictions. Besides, SS produces more understandable explanations to humans than LOO. This is also

reflected by the evaluation results where evaluators score (from 1-5) the quality of explanations with

the average values 3.7 and 4.0 for LOO and SS respectively.

Humans prefer to see uncertainty explanations in addition to label explanations. We

ask evaluators to vote whether they want to include uncertainty explanations in addition to la-

bel explanations for understanding model decision making. Most (71%) evaluators prefer to see

uncertainty explanations. Besides, evaluators mark 72.6% of uncertainty explanations identify the

words that largely limit model prediction confidence. This implies that uncertainty explanations are

indispensable to explaining model prediction behavior.

Table 4.16 shows visualizations of di↵erent model explanations with both important and uncer-

tain words highlighted.

4.3.5 Related Work

The problem of predictive uncertainty estimation has been well studied [191, 192, 193, 194, 195, 182,

183]. However, little is known about what causes predictive uncertainty. Extensive literatures on

model explanations focus on explaining model predicted labels, while ignoring predictive uncertainty

[1, 24, 25, 185, 186]. However, explaining predictive uncertainty is an important complement to

explaining predicted labels for improving model trustworthiness [184, 196].

There is limited work on studying the source of predictive uncertainty in NLP. For example,

previous works on explaining uncertainty estimates mainly focus on tabular and image data [184,

197, 196]. Feng et al. [198] observed that prediction confidence increases with input reduction, while

focusing on model pathologies as reduced inputs lack predictive information. Di↵erently, we focus

on identifying uncertain words in inputs for explaining model predictive uncertainty. To the best

of our knowledge, this is the first work on explaining predictive uncertainty of pre-trained language

models in NLP.

4.3.6 Conclusion

In this paper, we propose to explain model prediction uncertainty by extracting uncertain words from

existing model explanations. We adopt two explanation methods to explain BERT and RoBERTa on

three tasks, including sentiment analysis, toxic comments detection, and political bias classification.
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Experiments show the e↵ectiveness of uncertainty explanations in explaining models and helping

humans understand model predictions.
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Model Dataset Label
Leave-one-out Sampling Shapley

Important Uncertain Important Uncertain

BERT

IMDB
Pos this great best

film a good
excellent and it

wonderful

i movie this was
to just the would

but not

great best and
excellent love
wonderful good
this very enjoyed

movie just would
bad but nothing
not could o↵ plot

Neg this worst movie
bad not but no
terrible just
nothing

but is and not the
it a this ’t great

bad worst this
movie just boring
terrible awful not

nothing

and great very it
is good in not his

seen

Toxics
Tox you fuck hell

fucking bullshit
idiot dick suck
stupid gay

the are so fuck of
good have wow

love for

you fuck hell gay
fucking bullshit
idiot dick suck

stupid

the can in please
if so certainly
because know

help

NTox please to i if not
the of wikipedia
can is thank

you your i the and
a to please me is

please the can to
if for in of thank

use

you a i your me
the my it van and

Politics
Dec and to climate

must this child
our so the in

the and to of we
in american is
americans i

this must climate
that health now
today more every

to

the a is for
american back
ensure work and

not

Rep democrats the is
border bid great
and communist
inflation fox

to and the i this
our my with in for

the a is bid and
border for

communist his fox

that this to more
must you today
every now your

RoBERTa

IMDB
Pos this best and

great not but
good I film is

the not I is a for
this and no was

great and love
excellent

wonderful best
very amazing

brilliant perfect

any plot ’t bad no
nothing movie
much never this

Neg this not bad worst
boring just the
even and no

bad ’t not and
plot butwas a to

me

bad worst plot
boring terrible
nothing stupid
much no waste

and great first not
more special very
love life moments

Toxics
Tox you fuck stupid

HELL suck Fuck
YOU You fucking

shit

to but if or Go an
reported thanks
ipedia should

you fuck You
stupid HELL suck

Fuck YOU
fucking shit

to for reported
OF but the about

in help need

NTox to the Please
article of please
for Thank and in

you your is I a
Your vandal not

my me

to the for article
use in please
Please of If

you your a me is
my You vandal I

are

Politics
Dec and the to this in

our a must for
will

the americ an in
to for is act this a

this and climate
care child today
that workers how

families

americ is the will
of back family
they not would

Rep bid en is democr
the border americ

us great to

to the and our my
i of in this a

americ border
democr bid is
spending great
not inflation

would

and this that to
our it more my
you families

Table 4.15: Top 10 tokens in di↵erent LMI distributions of model explanations. Important: statistics
of top salient words in explanations; Uncertain: statistics of bottom salient words in explanations;
Pos: postive; Neg: negative; Tox: toxic; NTox: nontoxic; Dec: democratic; Rep: republican.
Warning: this table contains toxic tokens.
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Model/Dataset Method Prediction Explanation

BERT/IMDB LOO Negative (0.69 ! 0.80) i found it to be a complete disappointment .
if i had of known this movie was going to be
as stupid as it was , i would have stayed

home and done something more entertaining
... the plot was a great idea , just could have

been done in a much better way .

RoBERTa/IMDB
SS Positive (0.51 ! 0.86) Not the best of the Lone Star series, but it

moves along quickly with good performances.
Introduced as ”Singin’ Sandy” in the main
title, John Wayne as a ’singing cowboy’ isn’t

successful...

BERT/Toxics LOO Nontoxic (0.83 ! 0.97) oh , and i have a question . why was the
article on brad christian , a famous magician
, deleted because of vandalism instead of

simply restored ? i believe that many users
on this site are biased towards magicians . i
have come to the conclusion that wiki is a

useless site that does nothing to help anyone
. you are welcome to ban me longer , and i
understand completely if you do , but this
site is the worst piece of garbage i have ever

found !

RoBERTa/Toxics
SS Nontoxic (0.71 ! 0.94) You are so full of shit. First of all, you aren’t

an admin, and for the sake of this site I hope
you never will be. I know I will personally

work against you if you ever decide to try for
one. But I digress as you are not an

administrator, and especially since you have
no access to checkuser, you cannot determine
who is or is not a sockpuppet nor do you
have the authorization to place a tag on a

user page .

BERT/Politics SS Democratic (0.64 !
0.95)

fantastic news . star plastics was founded in
ravenswood and is continuing to invest in
west virginia . this expansion will lead to

economic development and growth in jackson
county , and shows that wv is the perfect

place for companies large and small .

RoBERTa/Politics
LOO Republican (0.85 !

0.94)
happy national day , taiwan. your

commitment to democracy and market
economics is an effective model that can be
relied upon to solve our collective problem .

Table 4.16: Visualizations of prediction explanations for di↵erent models on di↵erent datasets,
where top two important and uncertain words are highlighted in blue and red colors respectively.
The prediction confidence changes are shown in brackets when the highlighted uncertain words are
removed. LOO: Leave-one-out; SS: Sampling Shapley. Warning: some examples may be o↵ensive
or upsetting.
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Chapter 5

Evaluating Model Explanations

Free-text rationale (or natural language explanation) is a promising step towards explainable NLP,

yet their evaluation remains an open research problem. Existing metrics have mostly focused on

measuring the association between the rationale and a given label. I argue that an ideal metric should

focus on the new information uniquely provided in the rationale that is otherwise not provided in

the input or the label. In this chapter, I investigate this research problem from an information-

theoretic perspective using conditional V-information [4]. I propose a metric called REV (Rationale

Evaluation with conditional V-information), that can quantify the new information in a rationale

supporting a given label beyond the information already available in the input or the label.

5.1 REV: Information-Theoretic Evaluation of Free-Text Ra-

tionales

Model explanations have been indispensable for trust and interpretability in natural language pro-

cessing (NLP) [1, 199, 17, 185, 186]. Free-text rationales, which explain a model prediction in natural

language, have been especially appealing due to their flexibility in eliciting the reasoning process

behind the model’s decision making [42, 87, 88, 46, 89], making them closer to human explanations.

However, current automatic evaluation of free-text rationales remains narrowly focused. Existing

metrics primarily measure the extent to which a rationale can help a (proxy) model predict the label

it explains (i.e., accuracy based) [90, 91]. Yet, these metrics o↵er little understanding of the new

information contained in the rationale, as added to the original input, that could explain why the

label is selected—the very purpose a rationale is designed to serve. For instance, the two rationales
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r⇤1 and r̂1,a in Fig. 5.1 would be considered equally valuable under existing metrics, even though

they supply di↵erent amount of novel and relevant information.

Figure 5.1: Our evaluation framework for di↵erent free-text rationales (r). r⇤1 is a human-written
rationale, r̂1,a and r̂1,b are two generated rationales for the true label y1. Our metric, REV, based
on CVI [4] is able to distinguish all three rationales by measuring how much new and relevant infor-
mation each adds over a vacuous rationale, b; performance-based evaluations can only distinguish
between r̂1,a and r̂1,b. For an (arguably) incorrect label, y2, REV still gives a positive score high-
lighting that r̂2 is able to provide new information for why it supports y2. Prediction accuracy can
be augmented with REV to provide a fuller interpretability of model decisions.

In this paper, we overcome this shortcoming by introducing an automatic evaluation for free-

text rationales along two dimensions: (1) whether the rationale supports (i.e., is predictive of) the

intended label, and (2) how much new information does it provide to justify the label, beyond

what is contained in the input. For example, rationale r̂1,b in Fig. 5.1 violates (1) because it is not

predictive of the label, “enjoy nature”. Rationale r̂1,a does support the label but contains no new

information that justifies it, beyond what is stated in the input x; thus, it violates (2). Rationale r⇤1

is satisfied along both dimensions: it supports the label and does so by providing new and relevant

information, beyond what is in the input. Our proposed evaluation is designed to penalize both r̂1,a

and r̂1,b, while rewarding rationales like r⇤1 .

We introduce REV
1, which adapts an information-theoretic framework from Xu et al. [200] for

evaluating free-text rationales along the two dimensions mentioned above. Specifically, REV is

based on conditional V-information [4], which quantifies the degree of information contained in a

representation, beyond another (baseline) representation, accessible to a model family, V. As our

baseline representation, we consider any vacuous rationale which simply combines an input with a

given label, without providing any new information relevant to answering why the label was chosen.

REV adapts conditional V-information to evaluate rationales, where the representation is obtained

via an evaluation model trained to produce a label given the rationale. Other metrics do not

1For Rationale Evaluation with conditional V-information.
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take into consideration vacuous rationales, and are hence unable to measure new and label-relevant

information in rationales.

Our experiments present evaluations with REV for rationales under two reasoning tasks, com-

monsense question-answering (CQA) [40] and natural language inference (NLI) [41], across four

benchmarks. Several quantitative evaluations demonstrate the capabilities of REV in providing

evaluations along new dimensions for free-text rationales, while being more consistent with human

judgements compared to existing metrics. We also provide comparisons to demonstrate the sensitiv-

ity of REV to various degrees of input perturbations. Additionally, our evaluation with REV o↵ers

insights into why rationales obtained through chain-of-thought prompting [201] do not necessarily

improve prediction performance.

5.1.1 REV: Information-Theoretic Evaluation of Rationales

We introduce a new metric, REV, Rationale Evaluation with conditional V-information, for evalua-

tion of free-text rationales on the proposed dimensions (§5.1.3), based on the information-theoretic

framework of conditional V-information (§5.1.2).

We consider the setting where we have input X 2 X , label Y 2 Y, and free-text rationale R 2 R

generated for label Y . A common strategy to evaluate rationales R is through an evaluator f 2 V

based on how much R helps f predict Y given X. The evaluator f : Z ! Y maps a variable

Z to a label distribution. The definition of Z depends on the evaluation framework; e.g., Z can

be a concatenation of X and R. The evaluator f is trained on a set of input, label and rationale

triples Dtrain = {(xj , yj , rj)}, and applied to Dtest = {(xi, yi, ri)} for evaluation. The utility of R is

formulated as the di↵erence between the performance of the evaluator on predicting Y with R, and

without it, i.e.

Perf[f(Y |X,R)]� Perf[f(Y |X)]. (5.1)

A larger performance gap indicates a better rationale. Existing metrics [90, 91] compute the perfor-

mance gap based on prediction accuracies, measuring how much R can help the evaluator correctly

predict Y given X.

However, accuracy-based evaluation can only indicate whether or not a rationale is predictive of

a label, but cannot quantify how much new information the rationale provides to justify the label.

Fig. 5.1 illustrates this issue via an example. Accuracy-based evaluation can distinguish between

r̂1,a and r̂1,b since r̂1,a supports y1 and r̂1,b does not. However, it is unable to distinguish between

r⇤1 and r̂1,a (since both are predictive of y1), despite the fact that r̂1,a does not provide any unique
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and relevant information to answer why the label should be y1. In practice, vacuous rationales such

as r̂1,a are commonly seen in model generations [93, 202]. This calls for an evaluation metric which

is able to identify and penalize such vacuous rationales.

5.1.2 An Information-Theoretic Perspective on Rationale Evaluation

The key quantity of interest for our evaluation of rationale R is the amount of new information

expressed in R (e.g., background knowledge, reasoning process) that can justify a label Y . The

mutual information between R and Y , I(Y ;R), can be helpful for evaluating this quantity. However,

we are not interested in the information that is already captured in the input X. A vacuous

rationale, such as r̂1,a in Fig. 5.1, which simply combines the input X and the label, Y , captures

all the information in X and Y without specifying any new information to help understand why

Y has been chosen for X; let us denote such rationales as B 2 B. Thus, we argue that a good

evaluation metric must be able to measure the amount of relevant, new information contained in a

rationale beyond what is contained in any vacuous rationale, B, that leads to the prediction of Y .

Then the new information in R beyond what is available in B can be grounded with conditional

mutual information [203] as follows,

I(Y ;R | B) = I(Y ;R,B)� I(Y ;B), (5.2)

where the di↵erence of two information quantities demonstrates the performance gap in Equation 5.1.

Directly computing mutual information, however, is challenging because true distributions of random

variables are usually unknown, and we do not have unbounded computation. A recently introduced

information-theoretic framework called V-information circumvents this by restricting the computa-

tion to certain predictive model families, V [200]. Our approach to evaluate rationales extends this

framework, following [4], as described below.

Conditional V-information. Given a model family V that maps two random variables R and

Y , V-information defines the usable information that can be extracted from R by models in V to

predict Y , i.e. IV(R! Y ). If V generalizes to the set of all possible functions, then V-information is

mutual information [203]. In practice, it is feasible to estimate the usable information from R about

Y by selecting any neural model without frozen parameters as V.2

2Please see [200] for a detailed discussion of properties such as optional ignorance that a predictive family V must
follow.
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Following conditional mutual information in information theory [204], V-information has been

extended to conditional V-information (CVI) [4]. CVI quantifies the V-usable information in R

about Y conditioned on a variable B, i.e.

IV(R! Y | B) = HV(Y | B)�HV(Y | R,B). (5.3)

Here B is any vacuous rationale that leads to the prediction of Y . In this work, we consider B simply

as the combination of X and Y . We leave analyzing how di↵erent baseline construction impacts our

metric to future work. HV(· | ·) is the conditional V-entropy [200, 4, 205], defined as

HV(Y | B) = inf
f2V

E[� log f [b](y)]

HV(Y | R,B) = inf
f2V

E[� log f [r, b](y)], (5.4)

where f [b] and f [r, b] produce a probability distribution over the labels given b and [r, b] as inputs

respectively. Further, we consider pointwise CVI for evaluating individual samples, (r, y, b) as

PIV(r ! y | b) = log g[r, b](y)� log g0[b](y), (5.5)

where g 2 V s.t. E[� log g[r, b](y)] = HV(Y | R,B) and g0 2 V s.t. E[� log g0[b](y)] = HV(Y | B).

Properties of conditional V-information. As proved by Hewitt et al. [4], CVI has several

useful properties:

1. Non-Negativity : IV(R! Y | B) � 0.

2. Independence: If Y and B are jointly independent of R, then IV(R! Y | B) = 0.

3. Monotonicity : If U ✓ V, then HV(Y | B)  HU (Y | B).

An implication from Monotonicity is complex models (e.g., pre-trained language models) can do

better than simpler ones (e.g., linear models) in estimating V-usable information. Experiments in

Section 5.3 show the amount CVI varies across di↵erent model architectures, while strong models

usually capture more usable information. Since CVI measures the additional V-usable information

in R about Y beyond what’s already extracted from B by models in V, it grounds the goal of the

proposed metric REV.
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5.1.3 Computing REV for Rationale Evaluation

Building on the framework of CVI, we propose a new metric REV, for Rationale Evaluation with

conditional V-information. We compute REV over a given test set, Dtest = {(xi, yi, ri)}, by esti-

mating CVI over the set with evaluators. For a test example (x, y, r), the REV score denoted as

REV(x, y, r) is computed based on Equation 5.5, where b is constructed by combining x and y.

REV(x, y, r) = PIV(r ! y | b) (5.6)

The REV score for the test corpus Dtest, is given by the average pointwise REV score:

REV =
1

|Dtest|
X

i

REV(xi, yi, ri). (5.7)

Algorithm 2 shows the process of computing both pointwise and aggregate REV scores. The higher

the REV score, the more additional (new and relevant) information the rationale r contains to

explain the label beyond the baseline rationale b. REV(x, y, r) can take positive, negative, or zero

values. When REV(xi, yi, ri) > 0, the rationale supplies additional information for supporting the

label (e.g., r⇤1 in Fig. 5.1); when REV(xi, yi, ri) = 0, the rationale provides no additional information

beyond the baseline (e.g., r̂1,a in Fig. 5.1); and when REV(xi, yi, ri) < 0, the rationale does not

support the label (e.g., r̂1,b in Fig. 5.1).

Algorithm 2 Computing REV Scores

1: Input: evaluation models g and g0, test set Dtest =

{(xi, yi, ri)}

2: Initialize an empty list S

3: for (xi, yi, ri) 2 Dtest do

4: Construct the baseline rationale bi

5: REV(xi, yi, ri)

= log g[ri, bi](yi)� log g0[bi](yi)

6: S.add(REV(xi, yi, ri))

7: end for

8: REV = sum(S)/|S|

9: Output: S, REV
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Task Input Label Baseline Rationale

CQA Where can personal mushrooms be
kept fresh?

refrigerator Personal mushrooms can be kept
fresh in the refrigerator.

NLI Premise: A dog running in the
surf. Hypothesise: A dog is at the

beach.

entailment A dog running in the surf indicates
a dog is at the beach.

Table 5.1: Examples of constructed baseline rationales for CQA and NLI tasks.

Note that REV can assign a positive score to a rationale for an incorrect prediction as long as

the rationale supports it and provides additional information beyond a vacuous baseline rationale

(e.g., r̂2 in Fig. 5.1). Thus, REV cannot be seen as a replacement for prediction accuracy, but

rather as an orthogonal metric to interpret the usefulness of a generated rationale for the model

decision.

Constructing a Baseline with Vacuous Rationales Given an input x and a label y, we

construct a baseline rationale b by converting x and y into a declarative sentence. For the CQA task,

we adopt a pre-trained T5-3B model fine-tuned on a set of (question, answer, declarative sentence)

tuples [206] 3 annotated by Demszky et al. [207]. For the NLI task, we first use a template to

convert (premise, hypothesis, label) tuple into a baseline rationale: “premise implies / contradicts

/ is not related to hypothesis”. Then we apply a pre-trained model 4 to paraphrase the baseline

rationale. This can avoid evaluators to capture the template pattern. Table 5.1 shows some examples

of constructed vacuous rationales.

Training evaluation models, g and g0 We train two models, g and g0, which take [r, b] and b as

inputs respectively. 5 In particular, we use pre-trained language models [e.g., T5; 208] and fine-tune

them on the training set Dtrain = {(x, y⇤, r⇤)}, where {y⇤} and {r⇤} are gold labels and human-

annotated rationales, respectively. We construct baseline rationales {b⇤} based on {(x, y⇤)}. The

objective is to maximize the log-likelihood of y⇤ given [r⇤, b⇤] or b⇤. After training, the evaluation

models are applied to evaluate a rationale-label pair (y, r) w.r.t. an input x. The rationale-label

pair (y, r) can be model-generated and the label may not be ground-truth (e.g., y2 in Fig. 5.1),

while REV is still able to provide an assessment on the rationale along the two dimensions.

3https://github.com/jifan-chen/QA-Verification-Via-NLI
4https://huggingface.co/humarin/chatgpt_paraphraser_on_T5_base
5[r, b] is the concatenation of r and b.
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5.2 Experimental Setup

We outline our experimental setup by describing the reasoning tasks and datasets (§5.2.1), followed

by the task and evaluation models (§5.2.2), and the baseline metrics for comparison (§5.2.3).

5.2.1 Datasets

We explore two reasoning tasks, namely CommonsenseQA (CQA) and Natural Language Inference

(NLI) across four datasets, all containing human-annotated free-text rationales. For CQA task, we

use ECQA [209], CoS-E (v1.11) 6 [88] and QuaRTz [210]. Both ECQA and CoS-E originate from

the CommonsenseQA dataset [40], where each commonsense question is paired with 5 candidate

choices and the task is to select an answer from the candidates. ECQA contains higher quality free-

text rationales compared to CoS-E, in terms of comprehensiveness, coherence, non-redundancy, etc.

[209, 93]. QuaRTz is an open-domain reasoning task about textual qualitative relationships. Each

instance contains a situated qualitative question, two answer options and a knowledge statement.

The task is to select an answer from the two options to the question based on the textual qualitative

knowledge. We use the knowledge statement as a free-text rationale since it explains why the

answer is to the question. For NLI task, we use e-SNLI [42] which is an extension of SNLI [41] with

augmented free-text human-written rationales. The task is to predict the entailment relationship

between a premise and a hypothesis as entailment, contradiction, or neutral. Table 5.2 shows the

summary statistics of the four datasets.7

Datasets #train #dev #test

ECQA 7598 1090 2194
CoS-E 8766 975 1221
QuaRTz 2696 384 784
e-SNLI 54933 9842 9824

Table 5.2: Summary statistics of the datasets, where # counts the number of examples in the
train/dev/test sets.

5.2.2 Task and Evaluation Models

Task models We choose T5 Large [208] as the task model (finetuned on ground truth labels and

rationales) to produce generated rationale-label pairs under three settings:

6We use the version v1.11 where each question is paired with 5 answer choices, for comparison with ECQA.
7Since CoS-E does not provide rationales for instances in the test set, we use the original development set as the

test set and hold out 10% of training data as the new development set. We follow Hase et al. [90] and randomly
sample 10% of training data to form the training set for finetuning our models.
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• XY
⇤→R: Given an input text and the gold label, generate a rationale.

• X→YR: Given an input text, generate a label followed by a rationale. Since T5 decodes tokens

sequentially, each R is generated conditioned on the predicted Y.

• X→RY: Given an input text, generate a rationale followed by a label. Here, we compute a

likelihood for each candidate Y conditioned on R, and then select the most probable candidate.

This operation can improve the model prediction accuracy, while weakening the consistency

and relevance between the generated rationales and predicted labels.

After training, we collect three types of rationale-label pairs by applying the three task models on

the test set of each dataset. In addition to these three settings, we also evaluate ground-truth labels

paired with crowd-sourced rationales (Y⇤
;R

⇤).

Evaluation models Our evaluation models, g and g0 (see Equation 5.6 in §5.1.2), are based on

T5 Large trained on gold rationale-label pairs of the respective dataset.

We use Huggingface Transformers [211] to access all task models and evaluators. We train each

model for up to 30 epochs with a learning rate 5e � 6 and a batch size 8. All experiments were

performed on a single NVIDIA RTX 8000 GPU. Table 5.3 shows input-output formattings of di↵erent

task models for di↵erent tasks.

Type Input Output

XY
⇤→R

CQA: [question] question [choice] choice-1 ... [choice]
choice-n [answer] gold label [rationale]

rationale <eos>

NLI: [premise] premise [hypothesis] hypothesis [answer]
gold label [rationale]

X→YR
CQA: [question] question [choice] choice-1 ... [choice]

choice-n [answer]
label [rationale] rationale <eos>

NLI: [premise] premise [hypothesis] hypothesis [answer]

X→RY
CQA: [question] question [choice] choice-1 ... [choice]

choice-n [rationale]
rationale [answer] label <eos>

NLI: [premise] premise [hypothesis] hypothesis
[rationale]

Table 5.3: The input-output formatting of di↵erent task models.

We apply REV to evaluate di↵erent types of free-text rationales w.r.t. labels on the ECQA

dataset. Figure 5.2 shows REV scores of the four types of rationale-label pairs evaluated by the

four evaluators. The ranking of the four groups of rationale-label pairs is consistent across the four

evaluators, i.e. Y⇤
;R

⇤ > XY
⇤→R > X→YR > X→RY. This ranking is also consistent with human

evaluation in §4.3.4. Since ECQA contains high-quality crowdsourced rationales [209], it is expected
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Figure 5.2: REV for evaluating rationale-label pairs on the ECQA dataset with di↵erent evaluator
architectures.

that the REV of gold rationale-label pairs (Y⇤
;R

⇤) is the highest. The REV of XY
⇤→R is close

to that of Y⇤
;R

⇤, indicating the task model (T5 Large) can produce good quality rationales when

it is prompted with ground-truth labels. All four evaluators agree that the generated rationales of

X→YR contain more additional background information for explaining the predicted labels than

those of X→RY. This is consistent with our design of the X→RY in §5.2.3, where the generated

rationales and labels have weakened relevance. For each type of rationale-label pairs, the four evalua-

tors capture di↵erent amount of conditional V-information, while T5 Large consistently outperforms

other three models. In the reported experiments §5.3, we use T5 Large as the evaluator.

5.2.3 Other Metrics for Rationale Evaluation

We compare with two existing automatic metrics for free-text rationale evaluation: LAS [90] and

RQ [91]. Analogous to our evaluation models, both approaches use proxy models; we use the same

architecture (T5 Large) across metrics in our reported results.

Leakage-Adjusted Simulatability (LAS) Hase et al. [90] evaluate the quality of free-text ra-

tionales via a proxy model, trained with the task model outputs as labels and original input texts

combined with rationales as input sequences. The metric computes the di↵erence between its pre-

diction accuracy on the predicted label when the rationale is included into the input vs. when it is

not, [ŷ | x, r̂]� [ŷ | x], averaged over examples grouped based on whether they leak labels or not.

The final LAS score is given by the macro average across groups.
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Figure 5.3: Left: automatic evaluation results of LAS, RQ and REV for rationale-label pairs on
the ECQA test set. Right: human evaluation for rationale-label pairs on 230 randomly selected
examples from the ECQA test set.

Rationale Quality (RQ) Wiegre↵e et al. [91] propose a variant of the simulatability in Hase

et al. [90]. The main di↵erence is that gold labels are used to train the model proxy and evaluate

rationale quality. Specifically, the quality of a rationale r̂ is measured as [y⇤ | x, r̂] � [y⇤ | x],

where y⇤ is the gold label. Similarly, RQ is the average score over all test examples.

5.3 Experiments

We first compare REV with existing metrics (§5.3.1) and human judgments (§5.3.3) on the ECQA

dataset, as well as show REV on other CQA and NLI benchmarks. We then test the sensitivity of

di↵erent metrics to input perturbations (§5.3.4). Next, we apply REV to generations via few-shot

prompting (5.3.5).

5.3.1 Comparison Between Evaluation Metrics

We compare REV to LAS and RQ, in evaluating di↵erent rationale-label pairs on the ECQA dataset.

In addition to XY
⇤→R, X→YR, X→RY, and (Y⇤

;R
⇤), we also explore the evaluation on vacuous

baseline rationales (Y⇤
;B), which simply combine inputs and labels with no additional information.

Note that the scores obtained from di↵erent metrics are not directly comparable due to di↵erent

comparison scales and criteria (e.g., log-probability vs. accuracy). We mainly focus on the ranking

over di↵erent types of rationale-label pairs. The results averaged over 4 random seeds are shown in

the left part of Fig. 5.3.

All three metrics agree that the crowdsourced rationales (Y⇤
;R

⇤) in the ECQA have the highest

quality. While by definition, REV for vacuous rationales (Y⇤
;B) is low, both LAS and RQ scores for

these rationales are quite high, showing that these metrics are incapable of measuring the amount

of additional information in rationales. Intuitively, we expect weaker rationale-label consistency in
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X→RY setting compared to X→YR, as the labels are forcefully selected among the candidates as

opposed to being freely generated by the task model (§5.2.2). While REV is able to capture this

intuition and ranks X→YR higher than X→RY, LAS and RQ have a di↵erent ranking.

Qualitative Analysis of Di↵erent Metrics Table 5.4 shows the qualitative analysis of di↵erent

metrics on the four types of rationale-label pairs (Y⇤
;R

⇤, XY
⇤→R, X→YR, X→RY) on the ECQA

dataset. REV provides more accurate evaluations on those examples than LAS and RQ.

Additional Analysis on Label-Related Sentences In some cases, a rationale contains the

given label and provides new information related to the label, but does not necessarily explain why

the label is selected for the input. To evaluate such rationales, we randomly select 250 gold labels

in ECQA and extract their related sentences from a large-scale knowledge base—GenericsKB [212].

Those sentences contain the labels, while providing little or irrelevant new information to explain

the labels w.r.t. the inputs. We use them as trivial rationales for evaluation. The average REV

scores for those trivial rationales and their crowdsourced counterparts are 0.26 and 1.14 respectively,

indicating the e↵ectiveness of REV in identifying the new and relevant information in rationales.

Table 5.5 shows the REV scores of some examples and the corresponding crowdsourced rationales.

The results show that REV can distinguish the new information in di↵erent rationales and penalize

meaningless rationales. Overall, REV gives higher scores to crowdsourced rationales than trivial

sentences from GenericsKB.

5.3.2 Evaluation on Di↵erent Datasets

Next, we apply REV to evaluate crowdsourced and model generated rationale-label pairs (Y⇤
;R

⇤,

XY
⇤→R, X→YR, X→RY) across di↵erent datasets. For each dataset, the evaluation models are

trained on the training set with gold labels and crowdsourced rationales. The results are shown

in Table 5.6. We observe that the gold rationales in the ECQA dataset achieve higher REV score

than those in CoS-E. This observation is in line with the known quality issues of crowdsourced

rationales in CoS-E [209, 93]. Moreover, training the evaluation models with CoS-E results in lower

REV for all models, compared to training with ECQA. Interestingly, model-generated rationales

(XY
⇤→R) have higher REV scores than crowdsourced rationales for CoS-E (see examples in Table

5.7). QuaRTz has better quality of rationales compared to ECQA, CoS-E, and e-SNLI. In the case

of e-SNLI, the problem is severe as most of the crowdsourced or generated rationales do not provide

reasoning but rather follow a label-specific template e.g., A implies (that) B [46, 89].
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Qualitative Analysis of CoS-E Rationales Table 5.7 shows the exemplar of REV scores for

crowdsourced and model-generated (XY
⇤→R) rationales for CoS-E. The main observation is model-

generated rationales (XY
⇤→R) generally support labels, though provide limited new information,

while many crowdsourced rationales in CoS-E are noisy or uninformative. Specifically, compared to

the crowdsourced rationales in CoS-E, we observe that XY
⇤→R can produce better rationales that

support the labels, which also corresponds to higher REV scores. However, the new information

contained in those rationales is still limited (please see examples). A possible reason is the task

model (XY
⇤→R) hardly learns to produce more informative rationales when trained using lower

quality rationales from CoS-E, known quality issue as reported in prior work [209, 93].

Qualitative Analysis of Negative REV Scores Table 5.8 shows some examples of X→RY

with negative REV scores on the ECQA dataset. When REV < 0, we observe in most cases the

rationale does not support the given label, while indicating other labels, or something even beyond

the label candidates (e.g., “helicopter” in the second example). Or they could repeat the input (e.g.,

the first example). The same observation holds for other types of rationale-label pairs.

5.3.3 Human Evaluation

To understand how REV correlates with human judgments of rationales, we conduct a crowdsourcing

experiment via Amazon Mechanical Turk. We randomly sample 230 examples from the ECQA test

set and ask workers to evaluate the four types of rationale-label pairs (Y⇤
;R

⇤, XY
⇤→R, X→YR,

X→RY) for each example. We do not consider (Y⇤
;B) because we have trained workers to recognize

baseline rationales as vacuous. We selected workers located in Australia, Canada, the UK, or the

US, with a past HIT approval rate of > 98% and > 5000 HITs approved. Each instance is assessed

by 3 workers. We pay the workers $0.08 for assessing each instance.

We present workers with a question (input text), an answer (label) and an explanation (rationale),

and ask them whether the explanation justifies the answer (yes/no). If they answer yes, we further

ask them to evaluate the amount of additional information supplied by the explanation that explains

why the answer might have been chosen for the question. The workers choose from none / little /

some / enough, corresponding to a 4-point Likert-scale. 8. We collect 3 annotations per instance and

use majority vote to decide whether the rationale can justify the label. If yes, we take the average

over the 3 human-annotated scores as the amount of information. Otherwise, we give a score of -1.

8The four options correspond to 0/1/2/3 respectively.

95



Figure 5.7 shows the instructions we provide to workers. In Figure 5.8, we show three examples,

illustrating when the explanation (rationale) does not justify the answer (label), when the expla-

nation supports the answer while not supplying additional information, and when the explanation

supports the answer and provides additional information. Figure 5.9 shows the interface of the

actual hit for human evaluation.

For each instance, we provide a question (input), an answer (label), and an explanation (ratio-

nale), and ask the workers to answer the following two questions:

1. Does the Explanation justify the given Answer? (yes or no) The question is to ask workers to

judge whether the rationale supports the label or not.

2. If yes, how much additional information does the Explanation have to justify the Answer beyond

just reiterating what is stated in Question and Answer? (No additional info, Little additional

info, Some additional info, Enough additional info) We only ask this question if the workers

choose “yes” for the first question. We design this question to ask workers to evaluate the

extent to which the rationale provides additional information for justifying the label beyond

repeating it w.r.t. the input.

The results are shown in the right part of Fig. 5.3, where the ranking of the four types of

rationale-label pairs is Y⇤
;R

⇤ > XY
⇤→R > X→YR > X→RY. While LAS and RQ rank X→RY

better than X→YR (see the left part of Fig. 5.3), the ranking from REV is more consistent with

human judgments, suggesting its e↵ectiveness in evaluating rationale quality.

5.3.4 Is REV Sensitive to Input Perturbations?

We test the sensitivity of all automatic metrics to input (X) perturbations in the task model, under

two settings: X→YR and X→RY. Following Wiegre↵e et al. [91], we add zero-mean Gaussian noise

N (0,�2) to input word embeddings during inference, inducing task models to produce progressively

degenerate rationales and labels. A good metric should be sensitive to the change of rationales and

labels and reflect their relationships under input perturbations. REV and RQ show similar trends

as for X→RY in Fig. 5.4 (b) and (c). However, LAS is less sensitive to noise for both joint models,

X→RY and X→YR, in Fig. 5.4 (a) and (d). Since the proxy model for LAS is trained on the task

models’ predicted labels and generated rationales, it can overfit to the degenerate rationale-label

pairs under input perturbations, hence being less sensitive to input noise during inference.

The largest di↵erences between REV and RQ are for X→YR. We observe the task model can

predict incorrect labels and then make up reasonable-sounding rationales for its wrong predictions
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(a) X→RY, LAS (b) X→RY, RQ (c) X→RY, REV

(d) X→YR, LAS (e) X→YR, RQ (f) X→YR, REV

Figure 5.4: Sensitivity test results of REV, LAS and RQ for X→RY and X→YR on the ECQA
dataset. The X-axis shows di↵erent levels of noise (�2). We plot the curve of Accuracy (model
prediction accuracy) vs. Noise in gray dashed line. We also separate the evaluation results on
populations on which the model predictions are correct (“Correct”) or incorrect (“Incorrect”) in
addition to the overall evaluation on all test examples (“Overall”).

under certain input perturbations; prior work also reports this finding [87, 91]. REV does not drop

under a certain amount of input perturbations (e.g., �2  20) in Fig. 5.4 (f), likely because the

generated rationales still provide new information for describing both correct and incorrect labels

(also see the example in Table 5.9). However, as the noise exceeds the certain level, REV decreases

indicating that the task model is no longer able to make up rationales for very noisy inputs. On the

other hand, the behaviors of RQ and REV are quite di↵erent in Fig. 5.4 (e) and (f). Since RQ is

computed based on gold labels (§5.2.3), it has reduced sensitivity to input perturbations. When the

prediction accuracy decreases, the overall evaluation of RQ is dominated by the results on incorrect

predictions, as shown in Fig. 5.4 (e). Table 5.9 shows some examples from the sensitivity test.

5.3.5 Evaluating Rationales in Few-shot Prompting

We test the ability of REV in evaluating rationales generated by few-shot prompting, and get

insights on the reasoning and prediction processes of large language models (e.g., GPT-3).

GPT-3 Rationales for Gold Labels. Wiegre↵e et al. [213] collected 250 high quality free-text

rationales generated by few-shot prompting with GPT-3 [15] for CQA (given gold labels). Each

example was assessed by 3 crowdworkers. We focus on two aspects of their annotations: “supports

the gold label” and “amount of information”. Crowdworkers provide a yes / no answer to justify

whether a rationale supports the corresponding gold label. Only when the answer is yes, they are

further asked to evaluate the amount of information contained in the rationale for justifying the
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Figure 5.5: Histograms of human-annotated amount of information and pointwise REV, LAS and
RQ scores on GPT-3 few-shot prompted rationales for gold labels.

label. The amount of information is roughly categorized into 3 levels: “Not Enough”, “Enough”,

“Too Much”, each annotated with a Likert-scale score.9 In Fig. 5.5, we compare human annotation

scores for amount of information10 with the pointwise scores obtained by three automatic metrics,

LAS, RQ, and REV. For automatic metrics, the evaluation models of REV and the proxy models of

LAS and RQ are trained on the ECQA training set with gold labels and human-annotated rationales

(§5.2.2). We observe that REV provides finer-grained assessment of the information contained in

rationales compared to LAS and RQ which only take {-1, 0, 1} values. When LAS and RQ are zero,

it is unclear whether the rationale supports the label or not because the model proxy may predict

the label based on the input only. The judgments of REV on whether rationales support labels

(REV > 0 ) are close to human judgments (i.e., 80% agreement). The support rates of LAS and RQ

are relatively low, i.e. 35% and 23%, while a large portion (56% and 60% respectively) corresponds

to a zero LAS / RQ score.

Chain of Thought Rationales. Wei et al. [201] propose chain of thought prompting to teach

large language models to produce intermediate reasoning steps (rationales) before prediction, which

improves their prediction performance on a range of reasoning tasks (e.g., arithmetic and symbolic

reasoning). However, the reported improvement is trivial for CQA [201], which motivates us to eval-

uate the intermediate rationales w.r.t. model predictions. We apply REV to analyze the generated

rationales during intermediate reasoning steps and final predicted labels from GPT-3 text-davinci-

002 [15] and LaMDA 137B [214].11

9The original human-annotated scores w.r.t. the three levels are: -1, 0, 1. Since Wiegre↵e et al. [213] suggest “a
value of 0 is preferred to a value of 1”, we map the scores {-1, 0, 1} to {0, 1, 2} accordingly. The value “-1” is then
given to examples annotated as “not supporting gold labels”.

10We take majority vote to decide “supports the gold label”, and average “amount of information” over 3 workers.
11Available at https://github.com/jasonwei20/chain-of-thought-prompting
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Figure 5.6: Distributions of REV for rationales w.r.t. correct and incorrect predictions produced
by GPT-3 and LaMDA respectively. The average REV scores over all instances, correctly predicted
instances and incorrectly predicted instances are marked by gray, blue and red dashed lines respec-
tively.

Figure 5.6 shows the distributions of REV for correctly and incorrectly predicted instances

from GPT-3 and LaMDA, respectively. For both GPT-3 and LaMDA, the REV distributions of

correct and incorrect predictions are similar and most instances have positive REV scores. The

results demonstrate the causality between the models’ intermediate reasoning process and their final

predictions, no matter whether the predicted labels are correct or incorrect. The average REV scores

(blue/red dashed lines) over correct and incorrect predictions are close, especially for GPT-3. This

is consistent with our observation that most generated rationales from the two models are describing

their predicted labels. The prediction accuracy of GPT-3 is much higher than that of LaMDA (77%

vs. 59%), while the average REV scores (gray dashed lines) over all instances are close (0.92 vs.

0.99). An insight we obtain is that the generated intermediate reasoning steps (rationales) support

models’ predictions (consistent REV scores), but cannot guarantee their correctness (discrepant

accuracies between GPT-3 and LaMDA). This partially explains the minor improvement of chain of

thought prompting on CQA.

5.4 Related Work

Self-rationalized models serve interpretability by providing rationales for their predictions. Model

rationales broadly fall into two categories: extractive rationales and free-text rationales. Extractive

rationales contain some important features extracted from input texts that make models produce

final predictions [128, 72, 215, 216]. Free-text rationales are produced by generative models in

the form of natural language. Compared to extractive rationales, free-text rationales explain model

predictions in a more human-like way and fill the gap in explaining reasoning tasks [42, 87, 88, 46, 89].
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Evaluations on extractive rationales have been well studied, generally from two perspectives —

faithfulness and plausibility [72, 85, 217]. Faithfulness measures to which extent rationales reflect

the true reasoning process of models, while plausibility evaluates how convincing rationales are

to humans [34]. Other perspectives include the ability of rationales in helping a student model

simulate a teacher model [85] or bridging the communication between a classifier and a layperson

[86]. However, most evaluation metrics (e.g., su�ciency, comprehensiveness) proposed for extractive

rationales are not applicable to free-text rationales because they are not a part of inputs. Existing

automatic metrics for free-text rationales focus on rationale-label association, and measure the utility

of a rationale based on how much it helps a model proxy predict the given label (inspired by human

simulatability [16]) [90] or the gold label [91] given the input. Chan et al. [92] further propose

a framework to evaluate the automatic metrics. However, none of them consider measuring the

amount of additional information in free-text rationales. Sun et al. [93] conduct a human study on

the additional knowledge provided by free-text rationales. This work is the first that proposes an

automatic metric to quantify the new information in free-text rationales.

5.5 Conclusion

In this paper, we propose an information-theoretic metric, REV, to evaluate free-text rationale.

REV measures if a rationale contains new information that is relevant for the label of interest,

beyond the information contained in the input. We show the advantage of REV in evaluating

di↵erent types of rationale-label pairs compared to existing metrics. We demonstrate that the

evaluation of free-text rationales with REV is consistent with human judgments. REV also o↵ers

insights on evaluating rationales generated via few-shot prompting.
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Figure 5.7: The instructions of human evaluation in the user interface on AMT.
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Type Question Label Rationale
Metric

REV LAS RQ

Y
⇤
;R

⇤
If you have a ticket and you

are planning to eat hot
dogs, where would you go?

baseball
stadium

Hot dogs can be eaten at
baseball stadium. When
you go to a baseball

stadium, you have a ticket
and you may plan to eat

hot dogs.

0.32 0 0

How does a person go to
space?

space
shuttle

People go to space by a
vehicle specially designed to

travel to space. That
vehicle is called a space

shuttle.

0.32 0 0

What is a dangerous
outdoor activity for

children?

sun them-
selves

Sunning themselves is a
dangerous activity Children
should not sun themselves

0.28 1 1

XY
⇤→R

Where are old pictures
kept?

attic Attic is a place where old
pictures are kept.

0.34 1 0

What would you be if you
comfort friend?

friendly Comforting friend is a good
thing.

0.43 0 1

What do customers do to a
waiter after the waiter

serves customers?

pay to Paying to a waiter is the
action of paying. Waiters

get paid to serve customers.

0.10 -1 0

X→YR

Where is there likely to be
more than one desk drawer?

desk Desk drawer is a drawer
used for storing o�ce

supplies. There is likely to
be more than one desk

drawer in o�ce.

-4.75 -1 1

What leads to someone’s
death when they are very

depressed?

suicide Suicide is the act of
committing suicide. When
someone is very depressed,
suicide leads to their death.

0.57 0 0

Where are you normally
when you take a bath?

hotel
room

Hotel room is a place where
people stay. Bathing is
normally done in hotel

rooms.

0.32 0 -1

X→RY

What is likely heard by
those going to a party?

laughter People go to a party to
meet new people. People
are likely to hear laughter

at the party.

-0.10 1 0

What would you do if you
have excitement and do not
want to stay in your house?

go to gym Go to gym is to go to a
place where you can express
information. If you have

excitement and do not want
to stay in your house, then
you would go somewhere.

0.53 1 0

If you’re caught committing
murder, an injection can
lead to your own what?

die An injection can lead to
one’s own death. If you’re
caught committing murder,
you can be injected into
your own body and die.

1.46 0 0

Table 5.4: Pointwise evaluation of REV, LAS and RQ on di↵erent types of rationale-label pairs.
Incorrect labels are colored red.
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Source Input Label Rationale REV

Crowdsourced

What form of government is
most associated with

kingdoms?

monarchy Monarchy is a form of
government with the monarch
at the head. Monarchy is a
form of government mostly
associated with kingdoms.

0.65

Bailey liked playing games
against other people. He

found it exhilarating. What
might Bailey like about

games?

competitiveness When a game is played
against someone, it is a

competition and it promotes
competitiveness. Games are
competitive in nature when it
involves people against each

other.

0.37

How is a dog likely to
communicate with another

dog?

bark Bark is the sharp explosive
cry of a dog, fox, or seal. The
dog is likely to communicate
with another dog with a bark.

2.11

Where would you put a car
near your house?

driveway Driveway is a place near the
house. A car can be put in the

driveway.

0.48

GenericsKB

What form of government is
most associated with

kingdoms?

monarchy Monarchies are countries. -0.94

Bailey liked playing games
against other people. He

found it exhilarating. What
might Bailey like about

games?

competitiveness Competitiveness also means
education, research and

innovation including in the
area of environment.

-0.14

How is a dog likely to
communicate with another

dog?

bark Bark is covering. -4.37

Where would you put a car
near your house?

driveway Driveways are located in cars. 0.43

Table 5.5: Exemplar of REV scores for crowdsourced rationales and label-related sentences from
GenericsKB for ECQA.

Datasets
Rationale-label pairs

Y
⇤
;R

⇤
XY

⇤→R X→YR X→RY

ECQA 0.7943 0.7806 0.5840 0.5599
CoS-E 0.2415 0.4050 0.2308 0.1198
QuaRTz 1.3919 1.3696 1.3449 1.0170

e-SNLI 0.0752 0.0079 0.0055 0.0047

Table 5.6: REV scores of di↵erent types of rationale-label pairs on the four datasets.
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Type Input Label Rationale REV

Crowdsourced
The goal was to hit the

target, but a projectile ball
can’t hit anything if it isn’t

in what?

motion if you stand still you get
hit

-0.14

When you get together with
friends to watch film, you
might do plenty of this?

have fun when the working day is
done

-0.27

They dealt with
combustible mixtures in
their experiments, this is

why they kept a fire
extinguisher where?

chemistry lab mixtures mixing fruitsa -0.17

XY ⇤ ! R
The goal was to hit the

target, but a projectile ball
can’t hit anything if it isn’t

in what?

motion a projectile ball can’t
hit anything if it’s not

in motion

0.09

When you get together with
friends to watch film, you
might do plenty of this?

have fun when you get together
with friends to watch
film, you might do

plenty of fun

1.47

They dealt with
combustible mixtures in
their experiments, this is

why they kept a fire
extinguisher where?

chemistry lab chemistry labs deal with
combustible mixtures in

their experiments.

0.74

Table 5.7: Exemplar of REV scores for crowdsourced and model-generated (XY
⇤→R) rationales for

CoS-E.

Input Label Rationale REV

What do people call it when
they are going for run?

falling down People call it run when
they are going for run.

-1.06

What enables most people
to transport themselves?

own cars People who believe in god
are able to transport
themselves through

helicopter.

-0.19

Where would you expect to
find popcorn in a public

place?

movie theater Popcorn can be found in a
public place.

-1.27

What are you usually at
when you sit on a bench on

a curb?

city Ohio is a state in the
United States. You are
usually at street corner

when you sit on bench on
curb.

-0.27

Table 5.8: Exemplar of negative REV scores for rationale-label pairs from X→RY on the ECQA
dataset.
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X→YR
Question: What is likely to happen if you’re doing housework all day?
Choices: boredom, tiredness, get tired, backache, get a clean house
Gold label : get tired
Gold rationale: Get tired means no longer wanting someone or wanting to do something because
you are bored with it or annoyed by it. Get tired is likely to happen if you’re doing housework all
day.

�2 = 0,REV = 1.36
Output : get tired [rationale] If you’re doing housework all day, it’s likely to happen if you are getting
tired.

�2 = 5,REV = 1.36
Output : get tired [rationale] If you’re doing housework all day, it’s likely to happen if you are getting
tired.

�2 = 10,REV = 1.36
Output : get tired [rationale] If you’re doing housework all day, it is likely to happen if you are getting
tired.

�2 = 15,REV = 1.29
Output : backache [rationale] Backache is a condition of being tired. You are likely to get tired if
you’re doing housework all day.

�2 = 20,REV = 0.72
Output : boredom [rationale] Boredom is a state of being or being unable to do something. People
tend to get bored easily when they are bored.

�2 = 25,REV = 1.33
Output : backache [rationale] Backache is the state of being unable to move backwards or forwards
in a straight line. One cannot move forward if they are not able to do so.

�2 = 30,REV = 0
Output : banishing oneself from one’s own body by removing it from the body of another person.
This is a way of preventing one from being harmed by other people. It is possible to get rid of people
from their own bodies if they are living in the same house. That is why they have to live together.

X→RY
Question: What happens when not paying attention when bathing?
Choices: dry skin, using soap, reading newspaper, shampoo, slip and fall
Gold label : slip and fall
Gold rationale: Bathing is generally done in a bathroom. Bathrooms could be slippery due to water.
If not careful slipperiness can cause one to slip and fall.

�2 = 0,REV = 1.28
Output : Bathing can cause slip and fall when one is not paying attention. Slip and Fall is a common
occurrence when people do not pay attention when bathing. [answer] slip and fall

�2 = 5,REV = 1.28
Output : Bathing can cause slip and fall when one is not paying attention. Slip and Fall is a common
occurrence when people do not pay attention when bathing. [answer] slip and fall

�2 = 10,REV = 1.24
Output : Bathing can cause slip and fall when not paying attention. Slipping and falling is a result
of not being attentive when bathing. [answer] slip and fall

�2 = 15,REV = 1.20
Output : Bathing is a process of washing the body. Not paying attention means not paying enough
attention to the bathing process. [answer] slip and fall

�2 = 20,REV = �0.15
Output : Bathing is a process of washing and rinsing. Paying attention means paying attention to
something. [answer] reading newspaper

�2 = 25,REV = �0.17
Output : Paying attention to what you are doing is a sign of being aware of what is going on around
you. Knowing what to do is to pay attention. [answer] dry skin

�2 = 30,REV = �0.85
Output : Paying attention to one’s own needs is a basic human need. One needs to be aware of
the needs of others in order to meet them...engavengendersengendoenv -end-engagingendentenant
[answer] slip and fall

Table 5.9: Examples of the two task models’ outputs under di↵erent levels of noise in sensitivity
test.
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Figure 5.8: Exemplars provided to worker in the user interface on AMT.
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Figure 5.9: The actual hit of human evaluation in the user interface on AMT.
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Chapter 6

Diagnosing and Debugging Models

The ultimate goal of explaining neural networks or improving their interpretability is to better

understand, diagnose, debug, and improve them. In this chapter, I introduce a novel feature-level

adversarial training method (FLAT) to improve model robustness via explanations in Section 6.1

and report my discoveries of model pathologies in few-shot fine-tuning in Section 6.2.

6.1 Improving Model Robustness via Interpretations

Neural language models are vulnerable to adversarial examples generated by adding small per-

turbations to input texts [218, 219, 102]. Adversarial examples can be crafted in several ways,

such as character typos [220, 221], word substitutions [102, 222, 103, 223], sentence paraphrasing

[224, 225], and malicious triggers [226]. In this work, we focus on word substitution-based attacks,

as the generated adversarial examples largely maintain the original semantic meaning and lexical

and grammatical correctness compared to other attacks [227].

Previous methods on defending this kind of attacks via adversary detection and prevention

[228, 229] or certifiably robust training [230, 231] either circumvent improving model predictions on

adversarial examples or scale poorly to complex neural networks [232]. Alternatively, adversarial

training [103, 104] improves model robustness via two steps—collecting adversarial examples by

attacking a target model, and fine-tuning the model on the augmented dataset with these adversarial

examples. However, existing adversarial training only focuses on making a model produce the same

correct predictions on an original/adversarial example pair, while ignores the consistency between

model decision-makings on the two similar texts.
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Figure 6.1: Illustration of di↵erent model robustness with respect to predictions and interpretations
on (1) a positive movie review and (2) a negative movie review (Ori.), and their adversarial
counterparts (Adv.). Model B makes the same correct predictions on Ori. and Adv. in (1), while the
discrepant interpretations reveal its vulnerability which is attacked by another adversarial example
in (2). Only model C is robust with the same predictions and consistent interpretations on both
original/adversarial example pairs.

To illustrate the necessity of maintaining consistent model decision-makings (reflected by inter-

pretations) during adversarial training, Figure 6.1 shows both the predictions and their correspond-

ing interpretations of di↵erent models on original/adversarial example pairs. The interpretations

were generated by IG [25], which visualizes the attribution of each input feature (word/token) to

the model prediction. Figure 6.1 (1) shows the predictions and interpretations of model A, B, and C

on a positive movie review and its adversarial counterpart. Model A is not robust as its prediction

on the adversarial example is flipped and the interpretation is totally changed. Although model B

makes the same predictions on the original and adversarial examples, its interpretations reveal that

these predictions are based on di↵erent key features: for the original example, it is a sentiment word

clever; for the adversarial example, it is a neutral word cinema. The interpretation discrepancy

reveals the vulnerability of model B, as shown in Figure 6.1 (2), where we craft another adversarial

attack. Model B fails to recognize dull and pesky as the same important, and makes a wrong

prediction on the negative adversarial example based on cinema. Only model C is robust as it

behaves consistently on predicting both original/adversarial example pairs. Note that we look at

model robustness through the lens of interpretations, while leaving the problem of trustworthiness

or robustness of an interpretation method itself out as that is beyond the scope of this work.

Based on the previous discussion, we argue that a robust model should have consistent prediction

behaviors on original/adversarial example pairs, that is making the same predictions (what) based
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on the same reasons (how) which are reflected by consistent interpretations, as the word saliency

maps of model C in Figure 6.1. However, traditional adversarial training does not regularize model

prediction behavior for improving model robustness. To train a robust model, we propose a fine-

grained feature-level adversarial training named FLAT. FLAT learns global word importance via

variational word masks [176] and regularizes the importance scores of the replaced words and their

substitutions in original/adversarial example pairs during training. FLAT teaches the model to

behave consistently on predicting original/adversarial example pairs by focusing on the correspond-

ing important words based on their importance scores, hence improving the model robustness to

adversarial examples.

The contribution of this work is three-fold: (1) we argue that adversarial training should im-

prove model robustness by making the model produce the same predictions on original/adversarial

example pairs with consistent interpretations; (2) we propose a new training strategy, feature-level

adversarial training (FLAT), to achieve this goal by regularizing model prediction behaviors on

original/adversarial example pairs to be consistent; and (3) we evaluate the e↵ectiveness of FLAT

in improving the robustness of four neural network models, LSTM [9], CNN [11], BERT [13], and

DeBERTa [233], to two adversarial attacks on four text classification tasks. The models trained via

FLAT also show better robustness than baseline models on unforeseen adversarial examples across

six di↵erent attacks.

6.1.1 Method

This section introduces the proposed FLAT method. FLAT aims at improving model robustness by

making a model behave consistently on predicting original/adversarial example pairs. To achieve this

goal, FLAT leverages variational word masks to select the corresponding words (e.g. fantastic

and marvelous in Figure 6.2) from an original/adversarial example pair for the model to make

predictions. To ensure the correctness of model predictions, variational word masks learn global

word importance during training and play as a bottleneck teaching the model to make predictions

based on important words. Besides, FLAT regularizes the global importance of the replaced words

in an original example and their substitutions in the adversarial counterpart so that the model would

recognize the corresponding words as the same important (or unimportant), as Figure 6.2 shows.

Preliminaries. Given an input x = [x1, . . . ,xn], where xi 2 Rd (i 2 {1, . . . , n}) denotes the

word embedding, the model f✓(·) with parameter ✓ outputs a prediction label y = f✓(x) for text

classification tasks. An adversarial example x0 is crafted from x under some constraints, such as
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Figure 6.2: (a) The model with variational word masks trained on the standard training set. As
marvelous is not recognized as the same important as its synonym fantastic and masked out,
the model makes a wrong prediction based on a neutral word movie. (b) FLAT increases the
global importance of marvelous and teaches the model to make the same correct predictions on the
original/adversarial example pair by focusing on fantastic and marvelous respectively.

maintaining the original semantic meaning. For word substitution-based adversarial attacks, an

adversarial example replaces some words {xi} in the original example x with their synonyms {x0
i}.

The adversarial example fools the model to output a di↵erent label, i.e. y0 = f✓(x0) 6= y.

We obtain a set of adversarial examples D0 = {(x0(m), y(m))} by attacking the model on the

original dataset D = {(x(m), y(m))}. During adversarial training, the model is trained on both

original and adversarial examples (D [D0). In addition to improving model prediction accuracy on

adversarial examples, adversarial training should also make the model produce the same predictions

on the similar texts with consistent decision-makings. Failing to do this would make the model

vulnerable to unforeseen adversarial examples crafted with the substitution words in some other

contexts. To achieve this goal, we propose the feature-level adversarial training (FLAT) method.

Feature-level Adversarial Training

Recall the goal of FLAT is to train a robust model with consistent prediction behaviors on origi-

nal/adversarial example pairs. There are two desiderata for FLAT:

1. Global feature importance scores �. To teach the model to recognize the replaced words in an

original example and their substitutions in the adversarial counterpart as the same important
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(or unimportant) for predictions, FLAT needs to learn the global importance score �xi of a

word xi. Note that the “global” means the importance score is solely dependent on the word

(embedding).

2. Feature selection function g�(·). To guide the model to make predictions based on the corre-

sponding important words in the original and adversarial example respectively, FLAT needs

a feature selection function g�(·). g�(x) selects important words from x based on their global

importance scores in �. The selected words are then forwarded to the model to output a

prediction, i.e. y = f✓(g�(x)).

FLAT leverages variational word masks [176] to learn global feature importance scores and select

important features for model predictions, which will be introduced subsequently.

With the two desiderata, the objective of FLAT is formulated as

min
✓,�

Lpred + �Limp (6.1)

Lpred = E(x,y)⇠D[L(f✓(g�(x)), y)] (6.2)

+E(x0,y)⇠D0 [L(f✓(g�(x0)), y)]

Limp = E(x,x0)⇠D[D0 [
P

i,xi 6=x0
i
|�xi � �x0

i
|] (6.3)

where L(·, ·) denotes cross entropy loss. � is a learnable vector with the same dimension as the

predefined vocabulary, where �xi 2 (0, 1) represents the global importance of the word xi. � 2 R+

is a coe�cient. Limp regularizes the global importance scores of the replaced words {xi} and

their substitutes {x0
i} in an original/adversarial example pair (x,x0) by pushing �xi and �x0

i
close.

With similar importance scores, the associated word pair (xi,x0
i) would be selected by g�(·) or not

simultaneously. Lpred encourages the model to make the same and correct predictions on the original

and adversarial example based on the selected important words g�(x) and g�(x0) respectively. By

optimizing the objective, the model learns to behave consistently on predicting similar texts, hence

having better robustness to adversarial attacks.

Learning with Variational Word Masks

FLAT fulfills the two desiderata by training the model (f✓(·)) with variational word masks [176].

Specifically, variational word masks learn global word importance � during training and select

important words for the model to make predictions by masking out irrelevant or unimportant words.

For an input x = [x1, . . . ,xn], a set of masks W = [Wx1 , . . . ,Wxn ] are generated based on �, where
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Wxi 2 {0, 1} is a binary random variable with 0 and 1 indicating to mask out or select the word xi

respectively. The word importance score �xi is the expectation of Wxi , that is the probability of

the word xi being selected. The feature selection function g�(·) is defined as

g�(x) = W � x, (6.4)

where � denotes element-wise multiplication.

To ensure the model concentrating on a few important words to make predictions, we regularize

W by maximizing its entropy conditioned on x. The intuition is that most words in the vocabulary

are irrelevant or noisy features (e.g. stop words) to text classification tasks [176]. The regularization

on W will push the importance scores of most irrelevant words close to 0.5, while making a few

important words have relatively high importance scores (close to 1), and the rest unimportant

words have low scores (close to 0). Under this constraint, we rewrite the prediction loss Lpred in the

objective (6.1) as

Lpred = E
(x,y)⇠D

[Eq[L(f✓(W � x), y)]� �Hq(W | x)]

+ E
(x0,y)⇠D0

[Eq0 [L(f✓(W 0 � x0), y)]� �Hq0(W
0 | x0)],

where q = q�(W | x) and q0 = q�(W 0 | x0) denote the distributions of word masks on the original

example x and adversarial example x0 respectively, Hq(· | ·) is the conditional entropy, and � 2 R+

is a coe�cient.

Connection

FLAT degrades to traditional adversarial training when all words are regarded as equal important

(all mask values are 1), and no constraint is added to regularize the importance scores of associated

words in original/adversarial example pairs. Traditional adversarial training simply updates the

model on the augmented dataset D [D0 by optimizing

min
✓

E
(x,y)⇠D

[L(f✓(x), y)] + E
(x0,y)⇠D0

[L(f✓(x0)), y)]. (6.5)

With no constraint on model prediction behavior on predicting similar texts, the model robustness

is not guaranteed, especially to unforeseen adversarial attacks, as the results shown in experiments.
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Datasets C L #train #dev #test

SST2 2 19 6920 872 1821
IMDB 2 268 20K 5K 25K
AG 4 32 114K 6K 7.6K

TREC 6 10 5000 452 500

Table 6.1: Summary statistics of the datasets, where C is the number of classes, L is the average
sentence length, # counts the number of examples in the train/dev/test sets.

Implementation Specification

We utilize the amortized variational inference [156] to approximate word mask distributions, and

learn the parameter � (global word importance) via an inference network which is a single-layer

feedforward neural network. For simplicity, we assume the word masks are mutually independent

and each mask is dependent on the word embedding, that is q�(W | x) =
Qn

i=1 q�(Wxi | xi). We

optimize the inference network with the model jointly via stochastic gradient descent, and apply the

Gumbel-softmax trick [157, 158] to address the discreteness of sampling binary masks from Bernoulli

distributions in backpropagation [176]. In the inference stage, we multiply each word embedding

and its global importance score for the model to make predictions.

We first train a base model on the original dataset, and attack the model by manipulating the

original training data and collect adversarial examples. Then we train the model on both original and

adversarial examples via FLAT. We repeat the attacking and training processes 3-5 times (depending

on the model and dataset) until convergence. Note that in each iteration, we augment the original

training data with new adversarial examples generated by attacking the latest checkpoint.

6.1.2 Experimental Setup

The proposed method is evaluated with four neural network models in defending two adversarial

attacks on four text classification tasks.

Datasets. The four text classification datasets are: Stanford Sentiment Treebank with binary

labels SST2 [136], movie reviews IMDB [138], AG’s News (AG) [12], and 6-class question classifi-

cation TREC [159]. For the datasets (e.g. IMDB) without standard train/dev/test split, we hold

out a proportion of training examples as the development set. Table 6.1 shows the statistics of the

datasets.
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Models SST2 IMDB AG TREC

LSTM-base 84.40 88.03 91.08 90.80
LSTM-adv(Textfooler) 82.32 88.79 90.29 87.60
LSTM-adv(PWWS) 82.59 88.37 91.16 89.60

LSTM-FLAT (Textfooler) 84.79 89.17 91.00 91.00
LSTM-FLAT (PWWS) 83.69 88.52 91.37 91.20

CNN-base 84.18 88.63 91.32 91.20
CNN-adv(Textfooler) 82.15 88.81 90.99 89.20
CNN-adv(PWWS) 83.42 88.89 91.30 90.00

CNN-FLAT (Textfooler) 83.09 88.89 91.64 89.20
CNN-FLAT (PWWS) 83.31 88.99 91.03 89.20

BERT-base 91.32 91.71 93.59 97.40
BERT-adv(Textfooler) 91.38 92.50 90.30 96.00
BERT-adv(PWWS) 90.88 93.14 93.38 95.20

BERT-FLAT (Textfooler) 91.54 92.78 94.07 96.20
BERT-FLAT (PWWS) 91.05 93.11 93.09 96.60

DeBERTa-base 94.18 93.80 93.62 96.40
DeBERTa-adv(Textfooler) 94.40 92.86 92.84 95.60
DeBERTa-adv(PWWS) 94.78 94.17 92.96 96.40

DeBERTa-FLAT (Textfooler) 94.29 94.29 94.29 96.40
DeBERTa-FLAT (PWWS) 94.12 94.26 93.82 96.40

Table 6.2: Prediction accuracy (%) of di↵erent models on standard test sets.

Models. We evaluate the proposed method with a recurrent neural network [9, LSTM], a convo-

lutional neural network [11, CNN], and two state-of-the-art transformer-based models—BERT [13]

and DeBERTa [233]. The LSTM and CNN are initialized with 300-dimensional pretrained word

embeddings [139]. We adopt the base versions of both BERT and DeBERTa.

Attack methods. We adopt two adversarial attacks, Textfooler [103] and PWWS [222]. Both

methods check the lexical correctness and semantic similarity of adversarial examples with their

original counterparts. The adversarial attacks are conducted on the TextAttack benchmark [234]

with default settings. During adversarial training, we attack all training data for the SST2 and

TREC datasets to collect adversarial examples, while randomly attacking 10K training examples for

the IMDB and AG datasets due to computational costs.

6.1.3 Results

We train the four models on the four datasets with di↵erent training strategies. The base model

trained on the clean data is named with su�x “-base”. The model trained via traditional adversarial

training is named with su�x “-adv”. The model trained via the proposed method is named with

su�x “-FLAT”. For fairness, traditional adversarial training repeats the attacking and training
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processes the same times as FLAT. Table 6.2 shows the prediction accuracy of di↵erent models on

standard test sets. The attack method used for generating adversarial examples during training

is noted in brackets. For example, “CNN-FLAT (Textfooler)” means the CNN model trained via

FLAT with adversarial examples generated by Textfooler attack. Di↵erent from previous defence

methods [235, 236] that hurt model performance on clean data, adversarial training (“adv” and

“FLAT”) does not cause significant model performance drop, and even improves prediction accuracy

in some cases. Besides, we believe that producing high-quality adversarial examples for model

training would further improve model prediction performance, and leave this to our future work. The

rest of this section will focus on evaluating model robustness from both prediction and interpretation

perspectives. The evaluation results are recorded in Table 6.3.

SST2 IMDB AG TREC

Attacks Models AA KT TI AA KT TI AA KT TI AA KT TI

Textfooler

LSTM-base 5.05 0.46 0.68 0.16 0.53 0.46 45.00 0.76 0.81 44.40 0.62 0.89
LSTM-adv 12.36 0.49 0.68 29.18 0.60 0.58 48.39 0.76 0.82 51.20 0.51 0.87

LSTM-FLAT 17.76 0.58 0.75 31.38 0.66 0.65 54.16 0.82 0.86 55.20 0.68 0.90

CNN-base 1.98 0.46 0.69 3.72 0.64 0.56 8.74 0.55 0.62 45.20 0.68 0.91
CNN-adv 2.53 0.52 0.72 16.04 0.71 0.65 15.84 0.55 0.62 52.60 0.71 0.92

CNN-FLAT 37.07 0.70 0.82 32.62 0.76 0.75 25.18 0.61 0.67 62.20 0.87 0.96

BERT-base 4.72 0.35 0.56 3.84 0.38 0.33 11.84 0.39 0.48 37.60 0.44 0.87
BERT-adv 5.60 0.33 0.56 23.28 0.34 0.25 30.67 0.25 0.40 40.00 0.52 0.89

BERT-FLAT 12.41 0.44 0.64 28.35 0.46 0.38 32.29 0.45 0.53 55.00 0.58 0.90

DeBERTa-base 5.22 0.64 0.76 2.82 0.71 0.72 12.12 0.60 0.63 39.00 0.69 0.92
DeBERTa-adv 7.96 0.60 0.73 8.38 0.81 0.77 25.70 0.61 0.62 42.80 0.69 0.93

DeBERTa-FLAT 11.59 0.70 0.79 24.62 0.83 0.78 31.62 0.62 0.65 49.60 0.73 0.94

PWWS

LSTM-base 11.64 0.51 0.71 0.29 0.55 0.48 54.53 0.82 0.86 54.40 0.66 0.90
LSTM-adv 18.73 0.57 0.74 23.68 0.63 0.61 61.17 0.84 0.88 64.20 0.61 0.88

LSTM-FLAT 19.66 0.60 0.75 25.00 0.69 0.67 62.41 0.85 0.89 67.80 0.79 0.94

CNN-base 8.29 0.53 0.72 4.36 0.72 0.59 18.86 0.57 0.64 54.20 0.71 0.91
CNN-adv 12.63 0.57 0.73 20.64 0.72 0.68 33.21 0.56 0.63 63.00 0.76 0.92

CNN-FLAT 14.83 0.58 0.74 20.70 0.73 0.69 71.37 0.91 0.93 65.60 0.77 0.93

BERT-base 11.70 0.37 0.57 7.08 0.36 0.32 32.34 0.28 0.40 51.60 0.52 0.87
BERT-adv 14.44 0.37 0.58 18.32 0.33 0.29 33.38 0.29 0.40 65.20 0.45 0.86

BERT-FLAT 14.61 0.44 0.64 25.08 0.41 0.36 49.16 0.30 0.42 68.20 0.64 0.90

DeBERTa-base 14.17 0.72 0.81 7.04 0.82 0.80 31.30 0.65 0.71 52.80 0.73 0.94
DeBERTa-adv 15.16 0.65 0.76 18.66 0.81 0.78 53.02 0.65 0.70 63.60 0.64 0.91

DeBERTa-FLAT 23.23 0.75 0.83 26.58 0.84 0.81 55.14 0.67 0.72 66.40 0.80 0.95

Table 6.3: Model robustness to adversarial attacks in terms of predictions and interpretations. AA:
after-attack accuracy (%); KT: Kendall’s Tau order rank correlation; TI: top-k intersection (k = 5).

Prediction Robustness

We evaluate the prediction robustness of well-trained models by attacking them with adversarial ex-

amples crafted from original test examples. The model prediction accuracy on adversarial examples

is denoted as after-attack accuracy [103]. In Table 6.3, we omit the attack name in naming a model

116



(“-adv” or “-FLAT”) as it is trained with adversarial examples generated by the corresponding

attack method (Textfooler or PWWS).

Table 6.3 shows that base models are easily fooled by adversarial examples, achieving much lower

after-attack accuracy than other models (“-FLAT” and “-adv”) trained with adversarial examples.

FLAT consistently outperforms traditional adversarial training, indicating the e↵ectiveness of reg-

ularizing model prediction behavior during adversarial training in improving prediction robustness.

All the models show better prediction robustness on multiclass topic classification tasks (AG and

TREC) than on binary sentiment classification tasks (SST2 and IMDB). Besides, the after-attack

accuracy on the IMDB dataset is the lowest for most of the base models (especially LSTM-base). We

suspect that IMDB has longer average text length than other datasets, which is easier to find suc-

cessful adversarial examples. FLAT improves the after-attack accuracy of base models 15%� 30%

on the IMDB dataset.

Interpretation Consistency

Beyond prediction robustness, model robustness can also be evaluated by comparing its decision-

makings on predicting original/adversarial example pairs, i.e. interpretation consistency. Note

that we obtain interpretations via local post-hoc interpretation methods that identify feature

(word/token) attributions to the model prediction per example. We adopt two interpretation meth-

ods, IG [25] and LIME [1], which are the representatives from two typical categories, white-box

interpretations and black-box interpretations, respectively. IG computes feature attributions by

integrating gradients of points along a path from a baseline to the input. LIME explains neural

network predictions by fitting a local linear model with input perturbations and producing word

attributions. For IG, we evaluate all test examples and their adversarial counterparts. For LIME,

we randomly pick up 1000 example pairs for evaluation due to computational costs. We evaluate

interpretation consistency under two metrics, Kendall’s Tau order rank correlation [101, 95] and

Top-k intersection [101, 78]. For both metrics, we compute the interpretation consistency on cor-

responding labels and take the average over all classes as the overall consistency. Table 6.3 reports

the results of IG interpretations. The results of LIME interpretations have similar tendency.

Kendall’s Tau order rank correlation. We adopt this metric to compare the overall rankings

of word attributions between di↵erent interpretations. Higher Kendall’s Tau order rank correlation

indicates better interpretation consistency. The models (“-FLAT”) outperform other baseline mod-

els (“-adv” and “-base”) with higher Kendall’s Tau order rank correlations, showing that FLAT
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teaches models to behave consistently on predicting similar texts. However, traditional adversarial

training cannot guarantee the model robustness being improved as the interpretation discrepancy

is even worse than that of base models in some cases, such as LSTM-adv and LSTM-base on the

TREC dataset under the Textfooler attack. As FLAT consistently improves model interpretation

consistency, no matter which interpretation method (IG or LIME) is used for evaluation, we believe

the model robustness has been improved.

Top-k intersection. We adopt this metric to compute the proportion of intersection of top k

important features identified by the interpretations of original/adversarial example pairs. Note that

we treat synonyms as the ”same” words. Higher top-k intersection indicates better interpretation

consistency. Table 6.3 records the results of IG interpretations when k = 5. The full results of top-k

intersection with k increasing from 1 to 10 are in Figure 6.3. Similar to the results of Kendall’s

Tau order rank correlation, the models (“-FLAT”) outperform other baseline models (“-adv” and

“-base”) with higher top-k intersection rates, showing that they tend to focus on the same words

(or their synonyms) in original/adversarial example pairs to make predictions.

6.1.4 Discussion

Visualization of interpretations. Interpretations show the robustness of models (“-FLAT”)

in producing the same predictions on original/adversarial example pairs with consistent decision-

makings. Figure 6.4 visualizes the IG interpretations of LSTM- and CNN-based models on a pos-

itive and negative SST2 movie review respectively. The adversarial examples of the two movie

reviews were generated by Textfooler. The base models (“-base”) were fooled by adversarial ex-

amples. Although LSTM-adv correctly predicted the positive original/adversarial example pair,

its interpretations are discrepant with treat and is identified as the top important word respec-

tively. For the negative adversarial example, CNN-adv failed to recognize bad and wicked as

synonyms and labeled them with opposite sentiment polarities, which explains its wrong prediction.

Both LSTM-FLAT and CNN-FLAT correctly predicted the original/adversarial example pairs with

consistent interpretations.

Transferability of model robustness. The models trained via FLAT show better robustness

than baseline models across di↵erent attacks. We test the robustness transferability of di↵erent

models, where “-adv” and “FLAT” were trained with adversarial examples generated by Textfooler,

to six unforeseen adversarial attacks: PWWS [222], Gene [102], IGA [237], PSO [238], Clare [104],
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(a) LSTM, SST2 (b) LSTM, IMDB (c) LSTM, AG (d) LSTM, TREC

(e) CNN, SST2 (f) CNN, IMDB (g) CNN, AG (h) CNN, TREC

(i) BERT, SST2 (j) BERT, IMDB (k) BERT, AG (l) BERT, TREC

(m) DeBERTa, SST2 (n) DeBERTa, IMDB (o) DeBERTa, AG (p) DeBERTa, TREC

Figure 6.3: Top-k intersection of IG interpretations for di↵erent models on the four datasets under
the Textfooler attack with k increasing from 1 to 10.

and BAE [223], which generate adversarial examples in di↵erent ways (e.g. WordNet swap [239],

BERT masked token prediction). Table 6.4 shows the after-attack accuracy of di↵erent models on

the SST2 test set. The models trained via FLAT achieve higher after-attack accuracy than baseline

models, showing better robustness to unforeseen adversarial examples.

Ablation study. The regularizations on word masks and global word importance scores in the

objective (6.1) are important for improving model performance. We take the LSTM-FLAT model

trained with Textfooler adversarial examples on the SST2 dataset for evaluation. The optimal hy-
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Figure 6.4: Visualization of IG interpretations. The model predictions are in “[ ]”. The color of
each block represents the word attribution to the model prediction.

Models PWWS Gene IGA PSO Clare BAE

LSTM-base 11.64 20.26 9.83 5.88 3.02 36.52
LSTM-adv 15.38 25.65 17.02 5.60 3.90 36.35

LSTM-FLAT 20.48 33.44 24.22 6.53 5.55 39.87

CNN-base 8.29 20.32 7.85 5.60 1.48 37.12
CNN-adv 8.68 16.42 6.26 5.60 1.04 35.48

CNN-FLAT 42.56 55.02 46.35 10.38 17.57 48.38

BERT-base 11.70 32.24 9.72 6.26 0.86 35.31
BERT-adv 13.01 34.49 10.87 6.64 1.04 36.74

BERT-FLAT 15.93 35.31 15.93 9.50 5.29 37.56

DeBERTa-base 14.17 37.12 12.19 6.75 0.55 38.61
DeBERTa-adv 17.52 37.18 12.85 7.96 1.07 40.14

DeBERTa-FLAT 21.80 48.16 28.17 13.01 1.37 44.54

Table 6.4: After-attack accuracy (%) of di↵erent models to di↵erent attacks on the SST2 test set.

perparameters are � = 0.1, � = 0.001. We study the e↵ects by setting �, �, or both as zero. Table

6.5 shows the results. Only with both regularizations, the model can achieve good prediction perfor-

mance on the clean test data (standard accuracy) and adversarial examples (after-attack accuracy).

We observed that when � = 0, all masks are close to 1, failing to learn feature importance. When

� = 0, the model cannot recognize some words and their substitutions as the same important, which

is reflected by the larger variance of L1 norm on the di↵erence between the global importance of

1000 randomly sampled words and 10 of their synonyms, as Figure 6.5 shows.

Correlations. The learned global word importance, word frequency, and word substitution fre-

quency in adversarial examples do not show strong correlations with each other. We take the LSTM-

FLAT trained with Textfooler on the SST2 dataset for analysis. As the scatter plots in Figure 6.6

show, any two of the three do not have strong correlations. Figure 6.6 (a) shows that the replaced

words are not based on their frequency. Figure 6.6 (b) and (c) show that global word importance

scores were learned during training, not trivially based on word frequency or substitution frequency.
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Hyperparameters SA AA

� = 0.1, � = 0.001 84.79 17.76
� = 0.1, � = 0 83.96 9.99
� = 0, � = 0.001 84.34 8.18
� = 0, � = 0 84.40 8.35

Table 6.5: The e↵ects of FLAT regularizations on model performance. SA: standard accuracy (%);
AA: after-attack accuracy (%)

Figure 6.5: Box plot of the L1 norm on the di↵erence between the global importance scores of 1000
randomly sampled words and 10 of their synonyms. 1: � = 0.1, � = 0.001; 2: � = 0.1, � = 0.

It is expected the words that have high substitution frequency in adversarial examples have high

importance scores. In addition, FLAT also identifies some important words that are low-frequency

or even not replaced by adversarial examples.

6.1.5 Conclusion

In this work, we looked into the robustness of neural network models from both prediction and

interpretation perspectives. We proposed a new training strategy, FLAT, to regularize a model

prediction behavior so that it produces the same predictions on original/adversarial example pairs

Figure 6.6: Scatter plots: (a) substitution frequency vs. word frequency; (b) global importance vs.
word frequency; (c) global importance vs. substitution frequency.
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with consistent interpretations. Experiments show the e↵ectiveness of FLAT in improving model

robustness to two adversarial attacks on four text classification tasks.
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6.2 Pathologies of Pre-trained Language Models in Few-shot

Fine-tuning

Pre-trained language models [106, 105, 13] have shown impressive adaptation ability to dowstream

tasks, achieving considerable performance even with scarce task-specific training data, i.e., few-

shot adaptation [14, 108, 109]. Existing few-shot adaptation techniques broadly fall in fine-tuning

and few-shot learning [240, 241, 110]. Specifically, fine-tuning includes directly tuning pre-trained

language models with few task-specific examples or utilizing a natural-language prompt to transform

downstream tasks to masked language modeling task for better mining knowledge from pre-trained

models [242, 243, 244]. Few-shot learning leverages unlabeled data or auxiliary tasks to provide

additional information for facilitating model training [245, 246, 247].

Although much success has been made in adapting pre-trained language models to dowstream

tasks with few-shot examples, some issues have been reported. Utama et al. [111] found that models

obtained from few-shot prompt-based fine-tuning utilize inference heuristics to make predictions on

sentence pair classification tasks. Zhao et al. [113] discovered the instability of model performance

towards di↵erent prompts in few-shot learning. These works mainly look at prompt-based fine-tuning

and discover some problems.

This work looks into direct fine-tuning and provides a di↵erent perspective on understanding

model adaptation behavior via post-hoc explanations [187, 25]. Specifically, post-hoc explanations

identify the important features (tokens) contribute to the model prediction per example. We model

the statistics of important features over prediction labels via local mutual information (LMI) [189,

190]. We track the change of feature statistics with the model adapting from pre-trained to fine-

tuned and compare it with the statistics of few-shot training examples. This provides insights on

understanding model adaptation behavior and the e↵ect of training data in few-shot settings.

We evaluate two pre-trained language models, BERT [13] and RoBERTa [105], on three tasks,

including sentiment classification, natural language inference, and paraphrase identification. For

each task, we test on both in-domain and out-of-domain datasets to evaluate the generalization of

model adaptation performance. We discover some interesting observations, some of which may have

been overlooked in prior work: (1) without fine-tuning, pre-trained models show strong prediction

bias across labels; (2) fine-tuning with a few examples can mitigate the prediction bias, but the

model prediction behavior may be pathological by focusing on non-task-related features (e.g. stop

words); (3) models adjust their prediction behaviors on di↵erent labels asynchronously; (4) models

can capture the shallow patterns of training data to make predictions. The insight drawn from the

123



Datasets C L #train #dev #test Label distribution

IMDB 2 268 19992 4997 24986 Positive: train(10036), dev(2414), test(12535)
Negative: train(9956), dev(2583), test(12451)

Yelp 2 138 500000 60000 38000 Positive: train(250169), dev(29831), test(19000)
Negative: train(249831), dev(30169), test(19000)

SNLI 3 14 549367 4921 4921 Entailment: train(183416), dev(1680), test(1649)
Contradiction: train(183187), dev(1627), test(1651)

Neutral: train(182764), dev(1614), test(1651)

MNLI 3 22 391176 4772 4907 Entailment: train(130416), dev(1736), test(1695)
Contradiction: train(130381), dev(1535), test(1631)

Neutral: train(130379), dev(1501), test(1581)

QQP 2 11 363178 20207 20215 Paraphrases: train(134141), dev(7435), test(7447)
Nonparaphrases: train(229037), dev(12772), test(12768)

TPPDB 2 15 42200 4685 4649 Paraphrases: train(11167), dev(941), test(880)
Nonparaphrases: train(31033), dev(3744), test(3769)

Table 6.6: Summary statistics of the datasets, where C is the number of classes, L is average sentence
length, and # counts the number of examples in the train/dev/test sets. For label distribution, the
number of examples with the same label in train/dev/test is noted in bracket.

above observations is that pursuing model performance with fewer examples is dangerous and may

cause pathologies in model prediction behavior. We argue that future research on few-shot fine-

tuning or learning should do sanity check on model prediction behavior and ensure the performance

gain is based on right reasons.

6.2.1 Setup

Tasks. We consider three tasks: sentiment classification, natural language inference, and para-

phrase identification. For sentiment classification, we utilize movie reviews IMDB [138] as the

in-domain dataset and Yelp reviews [12] as the out-of-domain dataset. For natural language in-

ference, the task is to predict the semantic relationship between a premise and a hypothesis as

entailment, contradiction, or neutral. The Stanford Natural Language Inference (SNLI) corpus [41]

and Multi-Genre Natural Language Inference (MNLI) [248] are used as the in-domain and out-of-

domain datasets respectively. The task of paraphrase identification is to judge whether two input

texts are semantically equivalent or not. We adopt the Quora Question Pairs (QQP) [249] as the

in-domain dataset, while using the TwitterPPDB (TPPDB) [250] as the out-of-domain dataset.

Table 6.6 shows the statistics of the datasets.
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In-domain Out-of-domain

Model r IMDB SNLI QQP Yelp MNLI TPPDB

BERT

SS 0.41 0.82 0.61 0.53 0.77 0.40
IG 0.08 0.34 0.19 0.12 0.31 0.10
Attn 0.07 0.35 0.28 0.12 0.26 0.14

IMASK 0.09 0.28 0.25 0.09 0.25 0.08

RoBERTa

SS 0.25 0.86 0.53 0.28 0.84 0.28
IG 0.02 0.36 0.21 0.04 0.38 0.09
Attn 0.02 0.33 0.26 0.03 0.23 0.09

IMASK 0.02 0.18 0.18 0.03 0.17 0.05

Table 6.7: AOPC scores of di↵erent explanation methods in explaining di↵erent models.

Models. We evaluate two pre-trained language models, BERT [13] and RoBERTa [105]. For each

task, we train the models on the in-domain training set with di↵erent ratio (r%, r 2 [0, 1]) of clean

examples and then test them on in-domain and out-of-domain test sets.

Explanations. We explain model prediction behavior via post-hoc explanations which identify

important features (tokens) in input texts that contribute to model predictions. We test four expla-

nation methods: sampling Shapley (SS) [187], integrated gradients (IG) [25], attentions (Attn) [251],

and individual word masks (IMASK) in Section 4.2.2. For each dataset, we randomly select 1000

test examples to generate explanations due to computational costs. We evaluate the faithfulness

of these explanation methods via the AOPC metric [129, 73]. Higher AOPC score indicates better

explanations. We report the results of AOPC scores when U = 10 in Table 6.7. Sampling Shapley

consistently outperforms other three explanation methods in explaining di↵erent models on both

in-domain and out-of-domain datasets. In the following experiments, we adopt it to explain model

predictions.

6.2.2 Experiments

We report the prediction results (averaged across 5 runs) of BERT and RoBERTa trained with

di↵erent ratio (r% : 0 ⇠ 1%) of in-domain training examples on both in-domain and out-of-domain

test sets in Table 6.9. Overall, training with more examples, BERT and RoBERTa achieve better

prediction accuracy on both in-domain and out-of-domain test sets.

We look into the predictions of models from pre-trained to fine-tuned and analyze model pre-

diction behavior change during adaptation via post-hoc explanations. We observe that pre-trained

models without fine-tuning show strong prediction bias across labels. The models fine-tuned with a

few examples can quickly mitigate the prediction bias by capturing non-task-related features, leading
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Models IMDB SNLI QQP Yelp MNLI TPPDB

BERT Pos Neu Pa Pos Neu Pa

RoBERTa Pos Con Pa Pos Con Pa

Table 6.8: The majority labels of original pre-trained models on di↵erent datasets. Pos: postive,
Con: contradiction, Neu: neutral, Pa: paraphrases.

In-domain Out-of-domain

Model r IMDB SNLI QQP Yelp MNLI TPPDB

Acc PB Acc PB Acc PB Acc PB Acc PB Acc PB

BERT

0 49.73 0.97 35.30 0.65 45.10 0.46 49.86 0.98 32.95 0.95 44.44 0.85
0.01 - - 48.45 0.20 65.33 0.45 - - 34.77 0.92 80.25 0.35
0.05 60.31 0.41 63.20 0.08 69.82 0.16 61.61 0.09 37.58 0.95 86.26 0.14
0.1 70.76 0.13 69.13 0.12 73.65 0.04 67.11 0.41 38.27 0.93 86.69 0.07
0.5 84.71 0.05 77.63 0.06 79.06 0.02 88.19 0.08 55.37 0.45 87.27 0.03
1 85.46 0.05 80.33 0.06 80.16 0.05 89.09 0.03 58.81 0.34 85.22 0.07

RoBERTa

0 50.17 1.00 33.55 1.00 36.84 1.26 50.00 1.00 33.24 1.02 18.93 1.62
0.01 - - 36.27 0.61 66.26 0.54 - - 32.48 1.00 81.07 0.38
0.05 58.11 0.61 68.03 0.13 71.64 0.09 58.47 0.71 42.41 0.88 82.30 0.21
0.1 78.58 0.10 77.04 0.07 76.82 0.04 76.59 0.37 54.72 0.75 83.54 0.21
0.5 89.56 0.01 83.84 0.04 81.91 0.05 92.54 0.08 66.90 0.37 85.67 0.06
1 90.34 0.01 85.43 0.03 83.19 0.05 93.76 0.01 70.47 0.20 85.78 0.08

Table 6.9: Prediction accuracy and bias of BERT and RoBERTa trained with di↵erent ratio (r%)
of in-domain training examples on both in-domain and out-of-domain test sets. Acc: accuracy (%),
PB: prediction bias. For PB, darker pink color implies larger prediction bias. Note that we do not
consider r = 0.01 for IMDB and Yelp datasets because the number of training examples is too small.

to a plausible performance gain. We further quantify the prediction behavior change by comparing

the feature statistics of model explanations and training data. We discover that the models adjust

their prediction behavior on minority labels first rather than learning information from all classes

synchronously and can capture the shallow patterns of training data, which may result in pathologies

in predictions.

Prediction bias in pre-trained models

In our pilot experiments, we find the predictions of pre-trained models without fine-tuning are biased

across labels (see an example of confusion matrix in Figure 6.7). Original pre-trained models tend

to predict all examples with a specific label on each dataset. We denote the specific label as the

majority label and the rest labels as minority labels. The results of majority labels are in Table 6.8.
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Figure 6.7: Confusion matrix of BERT (with di↵erent r) on the IMDB dataset. “Neg” and “Pos”
represent negative and positive labels respectively. Vertical and horizontal dimensions show ground-
truth and predicted labels respectively. Green and pink colors represent true or false predictions
respectively. Darker color indicates larger number.

We propose a metric, prediction bias (PB), to quantify the bias of model predictions across

labels,

PB =

����
Ti1 � Ti2

Ti1 + Ti2

� Di1 �Di2

Di1 +Di2

���� , (6.6)

i1 = argmax
i2{1,...,C}

(Ti), i2 = argmin
i2{1,...,C}

(Ti)

where i1 and i2 are the majority and most minority labels respectively. Ti and Di denote the

numbers of model predictions and test examples on label i respectively, and C is number of classes.

The range of PB is [0, 2]. PB takes 0 if the label distribution of model predictions is consistent with

that of data. For balanced dataset, the upper bound of PB is 1, that is all examples are predicted as

one label. For imbalanced dataset, PB takes 2 in an extreme case, where the dataset only contains

one label of examples, while the model wrongly predicts them as another label. We consider data

bias because some datasets (e.g. QQP and TPPDB) have imbalanced label distributions.

The results in Table 6.9 show that both pre-trained BERT and RoBERTa have strong prediction

bias on all of the datasets. The prediction bias decreases with models fine-tuned with more examples.

Models make biased predictions by focusing on non-task-related features. To understand

which features are associated with model prediction labels, we follow Schuster et al. [189], Du

et al. [190] and analyze the statistics of model explanations via local mutual information (LMI).

Specifically, we select top k important features in each explanation and get a set of important

features (E = {e}) over all explanations. We empirically take k = 10 for the IMDB and Yelp

datasets and k = 6 for other datasets based on their average sentence lengths. The LMI between a
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Figure 6.8: LMI distributions based on explanation statistics of BERT on the IMDB dataset with
di↵erent r. The horizontal axis represents tokens in vocabulary in the ascending order of frequency.
The upper and lower plots are on the negative and positive labels respectively. Top 5 tokens are
pointed in each plot.

Model r
IMDB SNLI QQP

Ori Data Ori Data Ori Data

Neg Pos Neg Pos En Con Neu En Con Neu NPa Pa NPa Pa

BERT

0.01 - - - - 0.71 0.43 0.33 0.70 0.42 0.51 0.67 0.32 0.93 0.45
0.05 2.26 0.45 0.90 0.63 0.58 0.60 0.47 0.31 0.17 0.16 0.49 0.14 0.23 0.22
0.1 2.00 0.76 0.80 0.54 0.56 0.82 0.45 0.30 0.42 0.46 0.46 0.53 0.19 0.37
0.5 1.39 0.80 1.16 0.52 0.70 1.51 0.94 0.14 0.54 0.46 0.31 0.67 0.08 0.21
1 1.21 1.60 0.68 0.86 0.80 1.02 0.65 0.14 0.48 0.52 0.21 1.01 0.00 0.42

RoBERTa

0.01 - - - - - 0.96 - 0.76 0.52 0.56 - 0.08 0.54 0.36
0.05 - 0.66 0.17 0.72 - 0.62 - 0.50 0.32 0.67 - 0.43 0.22 0.35
0.1 - 1.03 0.69 0.71 - 1.05 - 0.22 0.57 0.45 - 1.27 0.17 0.59
0.5 - 1.33 0.81 0.42 - 2.07 - 0.21 0.60 0.55 - 1.01 0.15 0.69
1 - 1.41 0.86 0.62 - 0.30 - 0.17 0.32 0.23 - 0.42 0.27 0.23

Table 6.10: The KL divergence between LMI distributions on in-domain datasets. The columns
of “Ori” and “Data” show the results with original pre-trained models’ explanations or few-shot
training data as the reference respectively. Neg: negative, Pos: postive, En: entailment, Con:
contradiction, Neu: neutral, NPa: nonparaphrases, Pa: paraphrases. Darker color indicates larger
KL divergence.

feature e and a particular label y is

LMI(e, y) = p(e, y) · log
✓
p(y | e)
p(y)

◆
, (6.7)

where p(y | e) = count(e,y)
count(e) , p(y) = count(y)

|E| , p(e, y) = count(e,y)
|E| , and |E| is the number of occurrences

of all features in E. Then we can get a distribution of LMI over all tokens in the vocabulary ({w})
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Model r
Yelp MNLI TPPDB

Ori Data Ori Data Ori Data

Neg Pos Neg Pos En Con Neu En Con Neu NPa Pa NPa Pa

BERT

0.01 - - - - 0.35 0.09 0.29 0.40 0.33 0.76 0.74 0.16 1.55 0.18
0.05 2.20 0.69 0.66 0.43 0.43 0.45 0.41 0.76 0.27 0.63 0.87 0.02 0.58 0.03
0.1 2.06 0.79 0.37 0.45 0.46 0.49 0.41 0.61 0.40 1.25 0.67 0.21 0.53 0.00
0.5 1.61 0.93 0.73 0.52 0.92 1.70 0.78 0.82 0.91 1.02 0.93 0.09 0.37 0.04
1 0.73 1.94 0.46 0.83 0.73 1.31 0.55 0.76 0.69 1.14 0.46 0.54 0.33 0.11

RoBERTa

0.01 - - - - - 0.95 - 0.33 0.84 0.95 - 0.00 1.55 0.00
0.05 - 0.38 0.14 0.62 - 0.26 - 0.89 0.22 1.07 - 0.26 1.43 0.39
0.1 - 0.96 0.30 0.47 - 0.18 - 1.05 0.10 0.62 - 0.39 0.72 0.36
0.5 - 1.70 0.66 0.43 - 0.70 - 0.87 0.70 0.79 - 0.59 0.79 0.48
1 - 1.91 0.65 0.78 - 0.18 - 0.72 0.66 0.51 - 0.64 0.95 0.47

Table 6.11: The KL divergence between LMI distributions on out-of-domain datasets. The columns
of “Ori” and “Data” show the results with original pre-trained models’ explanations or few-shot
training data as the reference respectively. Neg: negative, Pos: postive, En: entailment, Con:
contradiction, Neu: neutral, NPa: nonparaphrases, Pa: paraphrases. Darker color indicates larger
KL divergence.

built upon the dataset, i.e.

PLMI(w, y) =

8
>><

>>:

LMI(w, y) if token w 2 E

0 else

(6.8)

We normalize the LMI distribution by dividing each value with the sum of all values.

Figure 6.8 shows LMI distributions of BERT on the IMDB dataset with di↵erent r, where top

5 tokens are pointed in each plot (see Table 6.12 for more results on other datasets). When r = 0,

we can see that BERT makes biased predictions on the positive label (in Table 6.8) by focusing on

some non-task-related high-frequency tokens. The top features associated with the negative label

include some relatively low-frequency tokens (e.g. ##men, ##zog) which may have been seen by

the model during pre-training.

Models adjust prediction bias by capturing non-task-related features on minority labels.

Fine-tuning BERT with a few examples (r = 0.05, exactly 9 examples) from IMDB can quickly

mitigate the prediction bias along with a plausible improvement on prediction accuracy (in Table 6.9).

However, Figure 6.8 (the middle upper plot) shows that the model captures non-task-related high-

frequency tokens to make predictions on the minority label (negative), implying the performance

gain is not reasonable. Only when the model is fine-tuned with more examples (r = 0.5), it starts

capturing task-specific informative tokens, such as “bad”, “good”.
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Datasets r Labels Top Features

IMDB
0

Neg we ##zog ” ##men ( ’ [SEP] capitalism lynch hell

Pos . [CLS] [SEP] s , t movie film plot )

0.5
Neg bad not no worst t o↵ terrible nothing stupid boring

Pos [SEP] and great . good [CLS] love , film characters

Yelp
0

Neg . they majestic adds state owners loud dirty priced thai

Pos . [CLS] [SEP] , s t for i you m

0.5
Neg not no bad t worst never o↵ rude over nothing

Pos [SEP] great and good . [CLS] amazing love friendly
experience

SNLI

0
En a [SEP] man the woman dog sitting sits his fire

Con [SEP] [CLS] is the a , are in of there

Neu . people woman girl are playing looking [CLS] group boy

0.5
En [SEP] . [CLS] and is a man there woman people

Con the a in [SEP] at sitting with man on playing

Neu [SEP] are for . man [CLS] is the a girl

MNLI

0
En the [SEP] ##ists israel ’ recession ata consultants

discusses attacked

Con [SEP] [CLS] , s to of in . the not

Neu . [CLS] they we you people about it really i

0.5
En . [CLS] and is [SEP] there are , was of

Con the ’ . not no t [CLS] don to didn

Neu [SEP] [CLS] the for to all when . you it

QQP
0

NPa ? is the a ’ what india does quo why

Pa [SEP] [CLS] ? in i , of . best s

0.5
NPa ? what [CLS] is how , why a the .

Pa [SEP] quo [CLS] best trump ##ra india life your sex

TPPDB
0

NPa trump ’ the obama ” we is russia a says

Pa [SEP] . [CLS] , s of in to ##t t

0.5
NPa . , [CLS] ? ’ a○ ; - a is

Pa [SEP] trump [CLS] inauguration obama russia repeal
##care cia senate

Table 6.12: Top 10 important tokens for BERT predictions on di↵erent labels. Neg: negative, Pos:
postive, En: entailment, Con: contradiction, Neu: neutral, NPa: nonparaphrases, Pa: paraphrases.
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Quantifying model adaptation behavior

To quantify the model prediction behavior change (in Figure 6.8) during adaptation, we compute

the Kullback–Leibler divergence (KLD) between the LMI distributions of the model without/with

fine-tuning, i.e. KLy(P 0
LMI(w, y), P

r
LMI(w, y)). The superscripts (“0” or “r”) indicate the ratio

of training examples used in fine-tuning. Besides, we also evaluate how much the model prediction

behavior is learned from the patterns of training data. Specifically, we compute the LMI distribution

of few-shot training examples via Equation 6.7 and Equation 6.8, except that E represents the set

of features appearing in those examples. Then we use the LMI distribution of data as the reference

and compute the KLD between it and the LMI distribution of model explanations.

Table 6.10 and Table 6.11 records the results of KLD with the LMI distribution of original

pre-trained model explanations as the reference (columns of “Ori”) or that of training data as the

reference (columns of “Data”). Note that we do not have the results of RoBERTa on some labels

(e.g. “Neg”) in “Ori” columns because the pre-trained RoBERTa does not make any predictions on

those labels and we do not have the reference LMI distributions.

Models adjust their prediction behaviors on di↵erent labels asynchronously. In “Ori”

columns, the KLDs on minority labels are larger than those on majority labels when r is small (e.g.

0.05). The changes of KLDs are discrepant across labels with r increasing. The results show that

the models focus on adjusting their prediction behavior on minority labels first rather than learning

from all classes synchronously in few-shot settings.

Models can capture the shallow patterns of training data. In “Data” columns, the KLDs

on SNLI and QQP are overall smaller than those on IMDB, illustrating that it is easier for models to

learn the patterns of datasets on sentence-pair classification tasks. With r increasing, the KLDs on

the entailment label of SNLI are smaller than those on other labels, which validates the observations

in previous work [111, 252] that models can capture lexical overlaps to predict the entailment label.

Another interesting observation is the KLDs on Yelp in “Data” columns are mostly smaller than

those on IMDB. This indicates that models may rely on the shallow patterns of in-domain datasets

to make predictions on out-of-domain datasets.

6.2.3 Conclusion

In this work, we take a closer look into the adaptation behavior of pre-trained language models in

few-shot fine-tuning via post-hoc explanations. We discover many pathologies in model prediction
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behavior. The insight drawn from our observations is that promising model performance gain in

few-shot learning could be misleading. Future research on few-shot fine-tuning or learning requires

sanity check on model prediction behavior and some careful design in model evaluation and analysis.
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Chapter 7

Conclusion

My research is centered around the interpretability of neural networks with an ultimate goal of devel-

oping trustworthy NLP systems. My work approaches this goal along three directions: (1) building

interpretable neural language models by transparentizing their decision-making; (2) explaining neu-

ral language models and evaluating their explanations for model understanding; (3) diagnosing and

debugging models via explanations for trustworthy NLP.

Building interpretable neural language models by transparentizing their decision-

making. Designing inherently interpretable neural networks is challenging for NLP, requiring

much engineering e↵ort. I propose to improve the interpretability of existing neural language mod-

els via data augmentations in Section 3.1 and variational word masks (VMASK) in Section 3.2. The

basic idea is to teach models to make predictions based on important features, hence improving

their interpretability. The proposed methods are model-agnostic and can be applied to any neural

text classifiers.

Explaining neural language models and evaluating their explanations for model under-

standing. The main challenge of explaining blackbox models is to produce explanations that are

faithful to model predictions and comprehensible to humans. I propose a hierarchical explanation

method based on feature interaction detection in Section 4.1. The hierarchical explanation visualizes

how words and phrases are interacted and combined at di↵erent levels of the hierarchy, providing

a comprehensive picture of the model decision-making to users. To e�ciently explain sentence-pair

modeling tasks, I propose the Group Masks method, which implicitly detects word correlations by

grouping correlated words from input texts together and measures their contributions to model pre-
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dictions in Section 4.2. This method is computationally e�cient and provides faithful explanations

for sentence-pair modeling tasks (e.g., NLI, paraphrase identification). In addition to explaining

prediction labels, I also propose to explain predictive uncertainty to understand model prediction

behavior in Section 4.3. In terms of explanation evaluation, I focus on the open research question—to

what extent an explanation explains a label, or how much new information (e.g., background knowl-

edge, reasoning) an explanation supplies to explain a label beyond the original input. To quantify the

new information in explanations, I propose an information-theoretic metric called REV in Section

5.1. REV demonstrates consistent evaluations with human judgements and o↵ers deeper insights

into a model’s reasoning and prediction processes.

Diagnosing and debugging models via explanations for trustworthy NLP. I propose to

improve model robustness through the lens of explanations in Section 6.1. The idea is to make models

behave consistently on original/adversarial examples, hence producing the same predictions (what)

based on the same reasons (how). Experiments show the e↵ectiveness of the proposed method in

improving the robustness with respect to both predictions and explanations of four neural network

models (LSTM, CNN, BERT, and DeBERTa) to two adversarial attacks on four text classification

tasks. I also utilize explanations to find the pathologies of pre-trained language models in few-

shot fine-tuning Section 6.2. The observations provide insights for future research on building more

reliable and trustworthy models with limited data.

This dissertation is expected to benefit NLP and AI developers, providing them with a better

understanding of neural network models and helping them build trustworthy and reliable intelligent

systems.

Outlook

Looking forward, my future research is committed to formalizing a holistic trustworthy AI framework

that bridges intelligent machines, system developers, and end users.

• Developing the next generation of explanations. In the short term, I plan to extend

my expertise on explanation generation and evaluation and move towards breaking down the

barriers in explaining and understanding neural network models. To achieve trustworthy AI,

there are additional requirements of model explanations beyond current considerations (e.g.,

faithfulness, robustness), which I have investigated in this dissertation. For example, model

explanations are expected to be informative (to model reasoning), diverse (to model behav-

ior), comprehensive (to data distribution), and controlled (to task). Existing explanations
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(e.g., saliency maps) barely show the reasoning process of a model. This poses a challenge

for humans to visualize the model’s reasoning process, which may cause potential issues due

to the gap between model reasoning and human understanding. Emerging natural language

explanations are promising in explaining models’ reasoning. However, my work in Section 5.1

shows that they can be uninformative, providing no new information to fill the reasoning gap.

I plan to incorporate additional knowledge (e.g., common sense, knowledge base) into models’

reasoning and prediction processes, as well as explanation generation, hence producing more

reasonable predictions and informative explanations. Moreover, I am excited about developing

diverse explanations that explain model behavior from a variety of perspectives. My prelim-

inary work in Section 4.3 has pushed this direction along the dimension of explaining model

predictive uncertainty. My future work will further investigate this dimension and explore

other dimensions, such as explaining model predictive dynamics. Additionally, I will extend

my research from sample-wise explanations to corpus-wise, in order to gain a comprehensive

understanding on model prediction behavior over the whole data distribution. In addition, I

would like to explore the direction of controlled explanation generation, which is vital while less

explored. For example, an explanation may explain a model prediction from unwanted per-

spectives which cannot be accepted by end users. Even worse, a generated explanation could

be harmful, containing bias (e.g., racism, sexism) or misinformation, hence leading to ethical

and social risks. I also want to collaborate with people from social science, cognitive science,

and the humanities, to formalize a holistic methodology for model explanation generation and

evaluation.

• Unifying machines, developers, and users for trustworthy AI. In the long term, I

believe fostering model interpretability is indispensable to trustworthy AI. It builds connections

between intelligent machines, system developers, and end users. My future research will focus

on machine-developer and machine-user communication and interaction.

Interpretability for system development. Interpretations provide system developers the

access to understand neural network models, which in turn allows them to develop better

models. My prior work in Chapter 6 has taken steps towards diagnosing and debugging

models via explanations. Looking forward, I would like to contribute to developing trustworthy

systems by incorporating model interpretability with other properties, including robustness,

fairness, and privacy. In practice, coordinating those properties could be challenging and

there may be some trade-o↵s between them. For example, interpretability encourages models
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to be transparent, which may lead to leaking sensitive information the model learns from

data, causing privacy issues. I look forward to expanding my collaborations on robustness and

fairness, security and privacy, as well as cyber-physical systems, to gain a better understanding

on the necessities of di↵erent system developers, and develop solutions for specific deployments.

Interpretability for human-centric AI. The overarching goal of AI development is to serve

humanity, improving our daily lives (e.g., autonomous driving). Thus, my future research on

model interpretability will surround human-centric AI. As we are stepping into an era where

intelligent systems have reasoning abilities, interpretability is facing the challenge of neural

models growing ever more sophisticated and even going beyond human understanding. I

plan to look deeper into the interplay between model reasoning and human understanding,

and collaborate with people from AI ethics, cognitive science, and psychology, developing a

formalism to understand and regularize model behaviors. In addition, I am eager to explore

human–computer interaction (HCI) and believe interpretability is an important step towards

this direction, bridging the gap between machines and end users. I would like to develop

a responsive and interactive AI framework, where human feedback can guide and improve

intelligent machines, and machine predictions can assist human decision-makers.

These directions are challenging and fascinating. I believe their significance to the evolution of

AI and broader impacts on the society. In the future, I plan to dive into these directions and look for

interdisciplinary collaborations to conduct research that will generate far-reaching positive e↵ects.
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[242] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang
Wu, and Alexander Miller. Language models as knowledge bases? In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2463–2473, Hong
Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/
D19-1250. URL https://aclanthology.org/D19-1250.

[243] Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. How can we know what
language models know? Transactions of the Association for Computational Linguistics, 8:423–
438, 2020. doi: 10.1162/tacl a 00324. URL https://aclanthology.org/2020.tacl-1.28.

[244] Chengyu Wang, Jianing Wang, Minghui Qiu, Jun Huang, and Ming Gao. TransPrompt:
Towards an automatic transferable prompting framework for few-shot text classification.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 2792–2802, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.221. URL
https://aclanthology.org/2021.emnlp-main.221.

[245] Guoqing Zheng, Ahmed Hassan Awadallah, and Susan Dumais. Meta label correction for
noisy label learning. In Proceedings of the 35th AAAI Conference on Artificial Intelligence,
2021.

[246] Yaqing Wang, Subhabrata Mukherjee, Haoda Chu, Yuancheng Tu, Ming Wu, Jing Gao, and
Ahmed Hassan Awadallah. Meta self-training for few-shot neural sequence labeling. In Pro-
ceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages
1737–1747, 2021.

[247] Jingfei Du, Edouard Grave, Beliz Gunel, Vishrav Chaudhary, Onur Celebi, Michael Auli,
Veselin Stoyanov, and Alexis Conneau. Self-training improves pre-training for natural language
understanding. In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages 5408–
5418, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.426. URL https://aclanthology.org/2021.naacl-main.426.

[248] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages 1112–1122, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1101. URL
https://aclanthology.org/N18-1101.

153

https://aclanthology.org/2020.emnlp-main.346
https://aclanthology.org/2020.emnlp-main.346
https://aclanthology.org/2021.naacl-main.185
https://aclanthology.org/D19-1250
https://aclanthology.org/2020.tacl-1.28
https://aclanthology.org/2021.emnlp-main.221
https://aclanthology.org/2021.naacl-main.426
https://aclanthology.org/N18-1101


[249] Shankar Iyer, Nikhil Dandekar, and Kornél Csernai. Quora question pairs. 2017.

[250] Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. A continuously growing dataset of sentential para-
phrases. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1224–1234, Copenhagen, Denmark, September 2017. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D17-1126. URL https://aclanthology.org/D17-1126.

[251] James Mullenbach, Sarah Wiegre↵e, Jon Duke, Jimeng Sun, and Jacob Eisenstein. Explain-
able prediction of medical codes from clinical text. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pages 1101–1111, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1100. URL
https://aclanthology.org/N18-1100.

[252] Yixin Nie, Yicheng Wang, and Mohit Bansal. Analyzing compositionality-sensitivity of nli
models. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):6867–6874, Jul.
2019. doi: 10.1609/aaai.v33i01.33016867. URL https://ojs.aaai.org/index.php/AAAI/
article/view/4663.

154

https://aclanthology.org/D17-1126
https://aclanthology.org/N18-1100
https://ojs.aaai.org/index.php/AAAI/article/view/4663
https://ojs.aaai.org/index.php/AAAI/article/view/4663

	Abstract
	Dedication
	Acknowledgements
	Table of Contents

	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Dissertation Statement
	1.3 Contributions
	1.4 Dissertation Outline

	2 Background
	2.1 Interpretable Model Design and Development
	2.2 Post-hoc Explanations
	2.3 Explanation Evaluations
	2.4 Interpretability for Model Diagnosis and Debugging

	3 Improving Model Interpretability
	3.1 Improving the Interpretability of Neural Sentiment Classifiers via Data Augmentation
	3.1.1 Data Augmentation Methods
	3.1.2 Learning with Augmented Examples
	3.1.3 Experimental Setup
	3.1.4 Experiments
	3.1.5 Conclusion

	3.2 Learning Variational Word Masks to Improve the Interpretability of Neural Text Classifiers
	3.2.1 Interpretable Text Classifier with Word Masks
	3.2.2 Variational Word Masks
	3.2.3 Model Specification and Training
	3.2.4 Experiment Setup
	3.2.5 Results and Discussion
	3.2.6 Conclusion


	4 Explaining Neural Language Models
	4.1 Generating Hierarchical Explanations on Text Classification via Feature Interaction Detection
	4.1.1 Generating Hierarchical Explanations
	4.1.2 Detecting Feature Interaction
	4.1.3 Quantifying Feature Importance
	4.1.4 Experiments
	4.1.5 Conclusion

	4.2 Explaining Neural Network Predictions on Sentence Pairs via Learning Word-Group Masks
	4.2.1 GMASK
	4.2.2 Experimental Setup
	4.2.3 Results and Discussion
	4.2.4 Conclusion

	4.3 Explaining Predictive Uncertainty by Looking Back at Model Explanations
	4.3.1 Explaining Predictive Uncertainty
	4.3.2 Explanation Methods
	4.3.3 Setup
	4.3.4 Experiments
	4.3.5 Related Work
	4.3.6 Conclusion


	5 Evaluating Model Explanations
	5.1 REV: Information-Theoretic Evaluation of Free-Text Rationales
	5.1.1 REV: Information-Theoretic Evaluation of Rationales
	5.1.2 An Information-Theoretic Perspective on Rationale Evaluation
	5.1.3 Computing REV for Rationale Evaluation

	5.2 Experimental Setup
	5.2.1 Datasets
	5.2.2 Task and Evaluation Models
	5.2.3 Other Metrics for Rationale Evaluation

	5.3 Experiments
	5.3.1 Comparison Between Evaluation Metrics
	5.3.2 Evaluation on Different Datasets
	5.3.3 Human Evaluation
	5.3.4 Is REV Sensitive to Input Perturbations?
	5.3.5 Evaluating Rationales in Few-shot Prompting

	5.4 Related Work
	5.5 Conclusion

	6 Diagnosing and Debugging Models
	6.1 Improving Model Robustness via Interpretations
	6.1.1 Method
	6.1.2 Experimental Setup
	6.1.3 Results
	6.1.4 Discussion
	6.1.5 Conclusion

	6.2 Pathologies of Pre-trained Language Models in Few-shot Fine-tuning
	6.2.1 Setup
	6.2.2 Experiments
	6.2.3 Conclusion


	7 Conclusion
	References

