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Abstract

Following applications of Catalan functions to resolve conjectures about k-Schur functions,

which are Schubert homology representatives of the affine Grassmannian, the K-theoretic Catalan

functions (or Katalan functions) have offered a rich combinatorial structure with connections to

the K-homology K∗(Gr), Hopf isomorphic to Λ(k). We prove a multiplication rule for the closed

k-Schur Katalan functions conjectured to be equivalent to a cancellation-free product that matches

Lenart and Maeno’s Monk rule for quantum Grothendieck polynomials under a K-theoretic ana-

logue of the Peterson isomorphism. Our methods include root expansions of the k-Schur root ideal,

the combinatorics of covers, and the relationship between the two. We conclude with an involution

that proves the equivalence of certain Katalan functions; we offer progress alongside this result

which could establish the cancellation-free conjecture.
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CHAPTER 1

Introduction

During the late 19th century, Hermann Schubert began the study of enumerative geometry to

count the solutions of generic line intersections. For example, we may ask how many lines in the

projective space P3 over the complex numbers intersect four given lines. Schubert used enumera-

tive methods to answer questions like this, invoking what he called the “Principle of Conservation

of Number,” but unfortunately the methods initially led to computational errors for harder enumer-

ative geometry questions due to degenerate cases involving counting with multiplicity. Hilbert’s

15th problem asks to put Schubert’s enumerative methods on a rigorous foundation, leading to the

modern-day theory of Schubert calculus.

Schubert’s questions have since been reformulated in terms of structure constants in the cup

product of certain classes in the cohomology ring of the Grassmannian. Combinatorially, the study

of symmetric functions has proven to be a useful tool; a surjective ring homomorphism from the

the ring of symmetric functions to the cohomology of the Grassmanian that maps Schur functions

to Schubert classes ensures that every relation among symmetric functions manifests as a relation

on H∗(Grn(Cm)). Schubert calculus has since broadened in scope and now encompasses the study

of generalized cohomology theories. Ongoing in these efforts is the search for symmetric function

representatives whose structure constants match those of the cohomology theory. We continue

that practice in this work with a focus on the interplay between symmetric functions and quantum

K-theory, focusing on combinatorial rules for the K-theoretic Catalan functions introduced as a

K-theoretic counterpart to the study of the affine Grassmanian.

1.1. Symmetric function theory

Viewing the ring of symmetric functions, Λ, as a Z-algebra, its homogeneous components Λn

have bases parameterized by partitions of n. Therefore, all bases of Λ can be indexed by the set of
11



12 1. INTRODUCTION

all partitions. A central question given such a basis for Λ is how to express basis elements in terms

of other known bases. We may also ask how to explicitly describe the multiplication structure

constants of basis elements.

Though many unique bases exist for symmetric functions, we often focus our study on families

that capture an underlying geometric picture. One of the most omnipresent bases that does just

this is the basis of Schur functions, sλ. The Schur functions have been studied widely, and there

are numerous expansions of these functions that translate back and forth between other known

bases. Moreover, the celebrated Littlewood-Richardson tells us precisely what the multiplication

structure constants are for any two Schur functions.

The k-Schur symmetric functions, s(k)
λ , are a basis for Λ(k) = Z[s1, s2, . . . , sk] that were moti-

vated by the study of the Macdonald positivity conjecture [LLM]. While constructed in [LLM]

from sums of tableaux using the charge statistic, another formulation of s(k)
λ was conjectured

by [LM03], and a specialization of this formulation was shown in [Lam08] to have geomet-

ric significance for the affine Grassmannian. A central question in the study of the k-Schur

symmetric functions is determining the structure coefficients of s(k)
λ s(k)
µ =

∑
ν cνλµs

(k)
ν . After sev-

eral years of stilted progress, [BMPS19] made strides by reconciling the many definitions for

the k-Schur functions. Central to this work was identifying the k-Schur functions with a subset

of the Catalan functions, which generalize the Hall-Littlewood polynomials. Catalan functions

were initially introduced in the study of Euler characteristics of vector bundles on the flag vari-

ety [Bro9420, SW, Che10, Pan10]. These functions are a large family of symmetric functions

indexed by both a weight and a root ideal; root ideals are upper order ideals of the poset ∆+, the

set of labels for the positive roots of the root system of type Aℓ−1. [BMPS19] advanced the study

of Catalan functions in light of the k-Schur functions by giving the expansion of k-Schur functions

(and all Catalan functions with partition weight) into Schur functions and proving that s(k)
λ are a

Schur positive basis of Λ(k), satisfy a dual Pieri rule, and have a special “shift invariance” property.
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Geometrically, the k-Schur functions are Schubert representatives for the homology of the

affine Grassmannian Gr = G(C((t)))/G(C[[t]]) of G = SLk+1 [Lam08]. A K-theoretic coun-

terpart to this study has emerged. The K-homology of Gr can be viewed as a subalgebra of

the affine K-NilHecke algebra of Kostant and Kumar [KK] and there is a Hopf isomorphism

K∗(Gr) � Λ(k) [LSS]. Schubert representatives are given by a basis of inhomogeneous symmetric

functions called K − k-Schur functions, g(k)
λ ∈ Λ(k). To prove positivity results and a branching

property for these functions, [BMS] extended the Catalan functions to an inhomogenous family of

symmetric functions called the Katalan functions and reformulated g(k)
λ using this definition. The

Katalan functions are indexed by a root ideal, weight, and multiset, and they contain numerous

specializations to well known symmetric functions such as Catalan functions, Schur functions,

dual Grothendieck functions, and k-Schur functions. Moreover, the Katalan functions were used to

define the closed k-Schur Katalan functions, g̃(k)
λ , a basis for Λ(k) which were introduced as conjec-

turally the images of the Lenart-Maeno quantum Grothendieck polynomials under a K-theoretic

analog of the Peterson isomorphism. Closed k-Schur Katalan functions are indexed by partitions;

their definition invokes the k-Schur root ideal, which is a distinguished root ideal constructed from

a partition weight. [BMS] showed that the closed k-Schur Katalan functions are unitriangularly

related to K-k-Schur functions and satisfy shift invariance, and they conjectured a k-rectangle

property equivalent to Takigiku’s k-rectangle property. This k-rectangle property was established

in [See21], but more sophisticated multiplication results relevant to Lenart and Maeno’s rule were

initially intractable due to the complexity of the ensuing combinatorics.

1.2. Survey of Results

Givental and Lee [GL] studied the quantum K-theory ring QK(Flk+1), which is a ring de-

fined as a deformation of K(Flk+1), the Grothendieck ring of coherent sheaves on Flk+1, the variety

of complete flags in Ck+1. In [KM], Kirillov and Maeno provided a conjectural presentation of

QK(Flk+1). Ikeda-Iwao-Maeno [IIM] defined an explicit ring isomorphism Φ between localiza-

tions of K∗(GrS Lk+1) and QK(Flk+1) and studied the images of quantum Grothendieck polynomials
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{G
Q
w}w∈S k+1 [LM], recently proven to represent quantum Schubert classes in QK(Flk+1) [Kat18,

ACT, LNS].

We focus here on a multiplication rule whose image under the Peterson isomorphism is con-

jectured to be the Monk rule for quantum Grothendieck polynomials, introduced by Lenart and

Maeno in [LM]. Monk rules are explicit formulas giving structure constants of a product of a

special class and a generic one, and such a rule is enough to determine the underlying ring struc-

ture. [IIN] proved [BMS]’s conjecture that the closed k-Schur Katalan functions are identified

with the Schubert structure sheaves in the K-homology of the affine Grassmannian, also study-

ing a K-theoretic Peterson isomorphism that Ikeda, Iwao, and Maeno [IIM] constructed based the

unipotent solution of the relativistic Toda lattice of Ruijsenaars. In the case of the image we focus

on, the product of closed k-Schur Katalan functions has one function indexed by a generic partition

and another weighted by a k-rectangle minus a box (Definition 3.2.2). This work is a combinato-

rial investigation of properties of root ideals. We leverage bounce paths, or certain series of roots

which can be removed from a root ideal while maintaining the root ideal’s defining properties, to

prove the equivalence of various sums of Katalan functions using properties of root ideals called

mirrors, ceilings, and walls. We construct the set Id,k
µ , a set of integers defined via bounce paths

in the k-Schur root ideal, which gives a combinatorial structure for the product of a generic ana-

logue to a closed k-Schur Katalan function and a closed k-Schur Katalan function weighted by a

rectangle minus a box partition.

Theorem 3.3.16. For µ ∈ Parℓk reduced and R∗d a k-rectangle minus a box (Definition 3.2.2),

g̃
(k)
µ g̃

(k)
R∗d
=

∑
D⊂Id,k

µ D,∅

(−1)|D|+1
g̃

(k)
λ−ϵD
,

where, if r is the smallest index of λ := µ∪Rd such that λr > λd, Id,k
µ = ∪i∈[r+d,r+2d−1]downpath∆k(λ)(i)

(Definition 3.3.12).

A major challenge in making Theorem 3.3.16 cancellation-free is that while the combinatorics

of the Monk-type multiplication formula for quantum Grothendieck polynomials in [LM] involves
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nonempty paths in a subgraph of the quantum Bruhat graph, a weighted directed graph defined

on S n, the combinatorics for the closed k-Schur Katalan rules involves the affine symmetric group

Ŝn. Ŝn underscores the combinatorics of both the k-Schur functions and the k-Schur Katalan

functions. From [LM], it is known that k-bounded partitions, the affine Grassmannian words of

Ŝk+1, and (k+1)-cores are in bijection, where an n-core is a partition such that none of the cells have

hook length n. To prove k-Schur straightening in [BMPS19], the authors established a dictionary

between constructions on cores to constructions on bounce paths. To make progress here, we

leverage bounce path properties to prove that certain Katalan functions are equivalent, invoking

the properties of covers (Definition 4.1.2).

Theorem 5.0.11. For µ ∈ Parℓk reduced and R∗d a k-rectangle minus a box (Definition 3.2.2),

g̃
(k)
µ g̃

(k)
R∗d
=

∑
D⊂Id,k

µ ,D<D1,D,∅

(−1)|D|+1
g̃

(k)
λ−ϵD
,

whereD1 is the set of all D ⊂ Id,k
µ such that there exists some ax ∈ D satisfying three conditions:

λax+hD
x
= λax+hD

x +1, (1.2.1)

[ax, ax + hD
x + 1] ⊂ Id,k

µ , (1.2.2)

ax + hD
x + 1 ∈ D⇒ |uppathΨD,x(ax + hD

x + 1)| < |uppathΨD,x(ax + hD
x )| (De f inition 3.3.12).

(1.2.3)

Based on this result, we propose a cancellation-free conjecture,

Conjecture 5.0.3. For µ ∈ Parℓk reduced and R∗d a k-rectangle minus a box (Definition 3.2.2),

g̃
(k)
µ g̃

(k)
R∗d
=

∑
D∈D

(−1)|D|+1
g̃

(k)
λ−ϵD
,

where

D = {D ⊂ Id,k
µ |[ax, ax + hD

x ] ⊂ Id,k
µ for every ax ∈ D, and if λax+hD

x
= λax+hD

x +1,
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then ax + hD
x + 1 ∈ D and |uppathΨD,x(ax + hD

x + 1)| ≥ |uppathΨD,x(ax)|} (De f inition 3.3.12).

We conclude with progress towards resolving this conjecture and integrating the theory of

covers into the result.

Proposition 6.2.2. For all D = {a1, . . . , at} ∈ D,

g̃
(k)
λ−ϵD
= g̃

(k)
coverat (...(covera1 (λ))... ) (De f inition 4.1.2).

In Chapter 2, we reference the necessary groundwork from the theory of symmetric functions,

especially that of Catalan and K-theoretic Catalan functions. We build on this theory in Chapter 3,

proving a litany of combinatorial tools for manipulating K-theoretic Catalan functions and their

products. Chapter 3 illustrates an expansion for g̃(k)
R∗d

g̃(k)
λ in terms of closed k-Schur Katalan func-

tions. In Chapter 4, we offer results that address combinatorial questions motivated by the rule

offered in Chapter 3, leveraging covers to re-express certain families of Katalan functions. Chap-

ter 5 offers a refinement of the formula offered in Chapter 3 using an involution to establish partial

cancellation. We conclude in Chapter 6 with a description of future work and progress towards the

cancellation-free conjecture.



CHAPTER 2

Background

2.1. Symmetric functions

The ring of symmetric functions provides a beautiful illustration of the interplay between com-

binatorial and algebraic structures. We will make liberal use of this structure to establish our

results. The following subsection summarizes fundamental results in the theory, see [Sta99] for

proofs.

2.1.1. Symmetric polynomial basics. For m ∈ Z>0, we say f ∈ Z[x1, x2, . . . xm] has homogeneous

degree d if f =
∑
|α|=d cαxα, where xα = xα1

1 xα2
2 . . . x

αm
m for any α = (α1, . . . , αm). There is a degree-

preserving S m-action on Z[x1, x2, . . . xm] given by σ. f (x1, . . . , xm) = f (xσ(1), . . . , xσ(m)) for σ ∈ S m.

The ring of symmetric polynomials on m indeterminates is

Λm := { f ∈ Z[x1, x2, . . . xm]|σ. f = f ∀σ ∈ S n}.

We note that Λm is a subring of Z[x1, x2, . . . xm] and a graded Z-algebra. We index bases of sym-

metric polynomials by partitions.

Definition 2.1.1. For any ℓ ∈ Z>0, we say λ = (λ1, λ2, . . . , λℓ ∈ Z
ℓ
≥0 is a partition if λ1 ≥ λ2 ≥

· · · ≥ λℓ ≥ 0.We denote set of all such partitions as Parℓ and say the length of λ, denoted ℓ(λ), is

its number of non-zero parts. More generally, we let Par denote the set of all partitions. For any

µ ∈ Par, we call the size of µ the sum of its parts, denoting |µ| = µ1 + · · · + µℓ(µ).

We often identify partitions with Young diagrams.

Definition 2.1.2. A Young diagram is a finite collection of left-justified boxes with rows of

non-increasing length when viewed from north to south (top to bottom).
17



18 2. BACKGROUND

Example 2.1.3. We identify the partition (6, 4, 4, 3, 1) with a Young diagram:

(6, 4, 4, 3, 1)↔

For any partition λ, we define the monomial symmetric polynomials as

mλ(x1, . . . , xm) :=
∑
α

xα,

where α ranges over all distinct permutations of λ. By construction, {mλ}λ∈Parm is a natural can-

didate for a Z-basis of Λm. For r ∈ Z>0, we also define the complete symmetric polynomial,

hr(x1, . . . , xm) :=
∑

1≤i1≤i2≤≤̇ir≤m xi1 . . . xir , and for α = Zℓ, the homogeneous symmetric polynomials

are hα := hα1 . . . hαℓ , where hr = 0 for r < 0 and h0 = 1.

Proposition 2.1.4. For m ∈ Z>0, Λm = Z[h1, h2, . . . hm]. Moreover, {hλ}λ∈Parm forms a basis for

Λm.

Equipped with the definition of the homogeneous symmetric polynomials, we can define the

Schur polynomials using the Jacobi-Trudi identity.

Definition 2.1.5. For α ∈ Zℓ, we define the Schur polynomial

sα = det(hαi+ j−i).

As the most omnipresent family of symmetric polynomials, the Schur polynomials have been

defined with many other equivalent formulations, such as via Young tableaux and raising operators,

and each definition offers different benefits. For example, Proposition 2.2.1 offers a formulation in

terms of raising operators.

Proposition 2.1.6. We have the following facts about Schur polynomials.

(1) For all r ∈ Z, sr = hr.
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(2) {sλ}λ∈Parm forms a basis for Λm.

2.1.2. Symmetric functions.

Definition 2.1.7. A symmetric function is a symmetric infinite series with bounded degree,

where we say f ∈ Z[[x1, x2, . . . ]] is a symmetric infinite series if the coefficient of xα is equal to the

coefficient of xβ whenever the underlying multisets of entries of α and β are equal (not counting 0).

We denote the ring of symmetric functions by Λ. For X = x1, x2, . . . an infinite alphabet of

variables and α ∈ Zℓ, we define the the complete homogeneous symmetric functions hα(X) =

hα1(X) . . . hαℓ(X) and the Schur functions sα(X).

Proposition 2.1.8. (Pieri rule). For λ any partition and r ∈ Z≥0,

hr sλ =
∑

µ∈Par,|µ|=|λ|+r
µ1≥λ1≥µ2≥λ2≥...λℓ≥µℓ+1

sµ

Example 2.1.9. Setting r = 3 and λ = (4, 3) in the Pieri rule yields

h s

= s
• • •

+ s
• •

•

+ s
• •

•

+ s
•

•

•

+s
•

• •

+ s
•

• •

+ s

• • •

.

2.2. Catalan functions

In this section, we introduce the Catalan functions, a family of symmetric functions which

vastly generalizes the Schur functions. The Catalan symmetric functions were motivated by a

conjecture of Chen and Haiman [Che10] that the k-Schur functions (Section 1.1) are a subclass

of a family of symmetric functions indexed by pairs (Ψ, γ) consisting of an upper order ideal Ψ
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of positive roots (of which there are Catalan many) and a weight γ ∈ Zℓ. In [Che10], Chen-

Haiman investigated their Schur expansions and conjectured a positive combinatorial formula

when γ1 ≥ γ2 ≥ . . . , and Panyushev [Pan10] proved a cohomological vanishing theorem to es-

tablish Schur positivity of a large subclass of Catalan functions. Interpolating between symmetric

functions bases is of central interest to algebraic combinatorialists, and in this sense, the study

of the Catalan functions in [BMPS19, BMPS20] is particularly notable: these functions allow

a method to interpolate between the complete homogeneous symmetric functions and the Schur

functions.

2.2.1. Raising operators. Raising operators were introduced by Young [You32] and formal-

ized rigorously by Garsia-Remmel [GR79, GR81]. Given i < j, the raising operator Ri j acts on

any integer sequence α ∈ Zℓ via Ri jα = α+ϵi−ϵ j, where for any integer m, ϵm is the vector of zeroes

in all coordinates besides the mth, which is a 1. We define raising operators on symmetric functions

by defining their action on the basis of homogeneous symmetric functions: Ri jhα := hα+ϵi−ϵ j . We

also use the notation ϵS :=
∑

s∈S ϵs and ε(a,b) := ϵa − ϵb.

Proposition 2.2.1. For γ ∈ Zℓ,

sγ =
∏

1≤i< j≤ℓ

(1 − Ri j)hγ

2.2.2. Root ideals and generalizations. In what follows, we summarize some relevant com-

binatorial tools for defining the Catalan functions and their K-theoretic analog; see [BMPS19,

BMPS20, BMS] for further reference. We fix a positive integer ℓ and use the notation ∆+ℓ = ∆
+ :=

{(i, j)|1 ≤ i < j ≤ ℓ}. We use the notation [a, b] for {i ∈ Z|a ≤ i ≤ b} and [n] = [1, n]. For a set

S ⊂ [ℓ], denote ϵS =
∑

i∈S ϵi, and for α = (i, j) ∈ ∆+ℓ , denote by εα = ϵi − ϵ j the corresponding

positive root (not to be confused with ϵ{i, j} = ϵi + ϵ j).

Definition 2.2.2. A root ideal Ψ is an upper order ideal of the poset ∆+ℓ with partial order given

by (a, b) ≤ (c, d) when a ≥ c + ℓ and b ≤ d.
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We will represent root ideals via grids, and we will often also invoke the lower order ideal

∆+ \ Ψ.

Example 2.2.3. Let Ψ = {(1, 3), (1, 4), (1, 5), (2, 4), (2, 5)} ⊆ ∆+5 . The root ideal Ψ and ∆+ \Ψ =

{(1, 2), (2, 3), (3, 4), (3, 5), (4, 5)} are depicted by

Ψ =
1, 31, 41, 5

2, 42, 5
, ∆+ \ Ψ = 1, 2

2, 3

3, 43, 5

4, 5

2.2.3. Catalan functions. In 2010, Chen [Che10] and Panyushev [Pan10] introduced a fam-

ily of symmetric functions known as Catalan functions that were further studied in [BMPS19],

[BMPS20]. In full generality, Catalan functions involve a parameter t, but we will only work with

t = 1, as this specialization is necessary for applications to Schubert calculus.

Definition 2.2.4. A Catalan function, indexed by a pair (Ψ, γ) consisting of a root ideal Ψ and

a weight γ ∈ Zℓ, is defined by

H(Ψ; γ) =
∏

(i, j)∈∆+\Ψ

(1 − Ri j)hγ.

Example 2.2.5. One convenient way to represent a Catalan function is via a grid representation.

With γ = (4, 3, 1) and Ψ = {(1, 3)},

H(Ψ; γ) = 4

3

1

.

In this case,

H(Ψ; γ) = (1 − R1,2)(1 − R2,3)h(4,3,1) = h(4,3,1) − h(4,4,0) − h(5,2,1) + h(5,3,0)
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The Catalan functions specialize to several well-known families of symmetric functions. For

example, it is immediate that H(∆+; γ) = hγ. We also have H(∅; γ) = sγ when using the raising

operator definition of the Schur functions presented in 2.2.1.

2.2.4. k-Schur Functions. The Macdonald polynomials form a basis for the ring of symmetric

functions over the field Q(q, t), and an impressive body of research has focused on the Macdon-

ald positivity conjecture: the Schur expansion coefficients of the (Garsia) modified Macdonald

polynomials Hµ(x; q, t) lie in N[q, t]. Lapointe, Lascoux, and Morse [LLM] considerably strength-

ened this conjecture, constructing a family of functions and conjecturing (i) they form a basis for

the space Λk = spanQ(q,t){Hµ(x; q, t)}µ1≤k, (ii) they are Schur positive, and (iii) the expansion of

Hµ(x; q, t) ∈ Λk in this basis has coefficients in N[q, t]. Due to challenges in further progress using

these intricately constructed functions, many conjecturally equivalent candidates were proposed.

Informally, all these candidates are now called k-Schur functions. Here we invoke the Catalan-

theoretic definition with t = 1. This definition invokes a generalization of weights; let

P̃ar
k
ℓ = {µ ∈ Z≤k|µ1 + ℓ − 1 ≥ µ2 + ℓ − 2 ≥ · · · ≥ µℓ}.

Note that Park
ℓ ⊆ P̃ar

k
ℓ, but P̃ar

k
ℓ in general contains non-partitions.

Definition 2.2.6. For λ ∈ P̃ar
k
ℓ, the associated k-Schur function is s(k)

λ := H(∆k(λ); λ).

It was proven in [LM08] that the k-Schur functions {s(k)
µ (x)}µ∈Park

ℓ
form a basis forΛk. In [BMPS19],

it was shown that the k-Schur functions satisfy a straightening rule quite similar to that of ordinary

Schur functions. This rule shows that analogs of the k-Schur functions weighted by nonpartitions

are either equal to 0 or equal to a power of t multiplied by a k-Schur function with partition weight.

The combinatorics of this rule led to the necessity of covers, which play an important role in this

work, and are defined in Chapter 4.
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2.3. K-theoretic Catalan functions

We now extend the Catalan functions to an inhomogenous family of symmetric functions using

additional information from a multiset M supported on {1, . . . , ℓ} = [ℓ]. We use the notation that

for such a multiset M on [ℓ], its multiplicity function is denoted mM : [ℓ]→ Z≥0.

These K-theoretic Catalan functions, or Katalan functions were introduced in [BMS] in order

to reformulate the K-k-Schur functions, g(k)
λ ∈ Λ(k), which are a basis of inhomogeneous symmetric

functions that give Schubert representatives for then K-homology K∗(Gr), Hopf isomorphic to

Λ(k) [LSS].

2.3.1. Katalan functions. We require the following inhomogeneous versions of the complete

symmetric polynomials. For m, r ∈ Z, define

k(r)
m =

m∑
i=0

(
r + i − 1

i

)
hm−i.

Then for γ ∈ Zℓ, let gγ = det(k(i−1)
γi+ j−i)1≤i, j≤ℓ. When γ is a partition, these are the dual sta-

ble Grothendieck polynomials, first studied implicitly in [Len00] and determinantally formulated

in [LN]. We use an alternative characterization as in [BMS]:

gγ =
∏

1≤i< j≤ℓ

(1 − Ri j)kγ , where kγ := k(0)
γ1

k(1)
γ2
· · · k(ℓ−1)

γℓ
. (2.3.1)

Definition 2.3.1. For a root ideal Ψ ⊂ ∆+ℓ , a multiset M with supp(M) ⊂ {1, . . . , ℓ}, and γ ∈ Zℓ,

we define the Katalan function

K(Ψ; M; γ) :=
∏
j∈M

(1 − L j)
∏

(i, j)∈Ψ

(1 − Ri j)−1gγ , (2.3.2)

where the lowering operator L j acts on the subscripts of gγ ∈ Λ by L jgγ = gγ−ϵ j .

We will often appeal to the following alternative formulation of the Katalan functions.
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Proposition 2.3.2. [BMS] For a root ideal Ψ ⊂ ∆+ℓ , a multiset M with supp(M) ⊂ {1, . . . , ℓ},

and γ ∈ Zℓ,

K(Ψ; M; γ) =
∏
j∈M

(1 − L j)
∏

(i, j)∈∆+\Ψ

(1 − Ri j) kγ .

Although Katalan functions are defined for arbitrary multisets, we mainly work with those

where the associated multiset comes from a root ideal L ⊂ ∆+ℓ via the function

L(L) =
⊔

(i, j)∈L

{ j} . (2.3.3)

In this scenario, we will often abuse notation to write K(Ψ;L; γ) = K(Ψ; L(L); γ).

Given a root ideal Ψ ⊂ ∆+ℓ , a multiset M on [ℓ], and γ ∈ Zℓ, we represent the Katalan function

K(Ψ; M; γ) by the ℓ × ℓ grid of boxes (labelled by matrix-style coordinates) with the boxes of

Ψ shaded, mM(a) •’s in column a (assuming mM(a) < a), and the entries of γ written along the

diagonal.

Example 2.3.3. LetΨ = {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 5)} ⊂ ∆+5 , M = {2, 3, 4, 4, 5, 5},

and γ = (3, 4, 4, 2, 1). K(Ψ,M, γ) is depicted by:

K(Ψ; M; γ) =

3 • • • •

4 • •

4
2

1

.

The family of Katalan functions contains several well-studied symmetric function bases.

Proposition 2.3.4. [BMS] Let γ ∈ Zℓ.

(1) The Katalan functions contain the family of Catalan functions: K(Ψ;∆+ℓ ; γ) = H(Ψ; γ)

for any root ideal Ψ ⊂ ∆+ℓ . In particular, K(∅;∆+ℓ ; γ) = sγ and K(∆+ℓ ;∆
+
ℓ ; γ) = hγ.

(2) K(∅; ∅; γ) = gγ.

(3) K(∆+ℓ ; ∅; γ) = kγ

(4) K(∆k(µ);∆+ℓ ; µ) = s(k)
µ ,
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where ∆k(µ) is the k-Schur root ideal.

An important class of Katalan functions are defined using the k-Schur root ideal, defined as

follows.

Definition 2.3.5. For fixed k ∈ Z>0, let Park
ℓ = {(λ1, . . . , λℓ ∈ Z

ℓ : k ≥ λ1 ≥ . . . λℓ ≥ 0}. Then

for λ ∈ Park
ℓ, we define the k-Schur root ideal ∆k(λ) = {(i, j) ∈ ∆+ℓ |k − λi + i < j}.

Example 2.3.6. Let λ = (6, 5, 5, 4, 4, 3, 3, 1, 1, 1, 1) ∈ Par9
11. Then K(∆9(λ),∆9(λ), λ) is depicted

by:
6 • • • • • • •

5 • • • • •

5 • • • •

4 • •

4 •

3
3

1
1

1
1

Remark 2.3.7. [BMS] Let λ ∈ Park
ℓ, Ψ = ∆

k(λ), andL = ∆k+1(λ). Let z be the lowest nonempty

row of Ψ. For x ∈ [z], Ψ does not have a wall in rows x, x + 1. Hence, for all x ∈ [ℓ − 1], either Ψ

has a ceiling in columns x, x + 1 or has removable roots (y, x) and (y + 1, x + 1). In the latter case,

if y , x − 1, then Ψ has a mirror in rows y, y + 1.

Definition 2.3.8. For λ ∈ Park
ℓ, define the k-Schur Katalan function by

g
(k)
λ = K(∆k(λ);∆k+1(λ); λ) .
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Example 2.3.9. For λ = (6, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 1, 1, 1, 1) ∈ Par9
17, we have

g
(9)
λ =

6 • • • • • • • • • • • •

5 • • • • • • • • • •

5 • • • • • • • • •

4 • • • • • • •

4 • • • • • •

4 • • • • •

4 • • • •

4 • • •

4 • •

4 •

4
3

3
1

1
1

1

The k-Schur Katalan functions have been proven to coincide exactly with the K-k-Schur func-

tions g(k)
λ ( [BMS]). This Katalan function formula is considerably more direct and explicit than any

previously known description of the K-k-Schur functions and readily resolves several outstanding

conjectures, including positive branching:

Proposition 2.3.10. [BMS] For any λ ∈ Park,

g(k)
λ =

∑
µ∈Park+1

aλµg(k+1)
µ ,

where (−1)|λ|−|µ|aλµ ∈ Z≥0.

2.3.2. Closed k-Schur Katalan functions. As mentioned in Chapter 1, the Katalan functions

have a relationship with quantum Schubert polynomials. The quantum K-theory ring QK(Flk+1)

can be identified with a quotient of C[z1, . . . , zk+1,Q1, . . . ,Qk] [KM, ACT17].

Definition 2.3.11. A k-rectangle is a partition of the form Ri := (k + 1 − i)i for i ∈ [k]. We call

a partition reduced if it contains no k-rectangles.
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Example 2.3.12. If k = 5, R2 = (4, 4) and R4 = (2, 2, 2, 2) are both examples of k-rectangles.

We define σi =
∑
µ⊆Ri

gµ for i ∈ [k], and we set σ0 = σk+1 = gR0 = gRk+1 = 1. In [IIM],

Ikeda, Iwao, and Maeno gave the following description of a K-theoretic version of the Peterson

isomorphism:

Φ : QK(Flk+1)[Q−1
1 , . . . ,Q

−1
k ]

∼
−→ Λ(k)[g−1

R1
, . . . , g−1

Rk
, σ−1

1 , . . . , σ
−1
k ]

zi 7→
gRiσi−1

gRi−1σi
,Qi 7→

gRi−1gRi+1

gR2
i

.

[LM] defined the quantum Grothendieck polynomials {GQ
w}w∈S k+1 ⊆ QK(Flk+1) as the image of

the ordinary Grothendieck polynomials {Gw}w∈S k+1 under a quantization map Q̂ : K(Flk+1) →

QK(Flk+1). In [IIM], the authors described the image the quantum Grothendieck polynomials

G
Q
wλ,d under the Peterson isomorphism, where λ∪ Rd and wλ,d is the corresponding d-Grassmanian

permutation, defined in [IIM] Remark 6.7. For a general permutation w ∈ S n, [IIM] conjectured

the existence of some polynomial g̃w ∈ Λ(n) such that

Φ(GQ
w) =

g̃w∏
d∈D(w) gRd

,

where the descent set of w is D(w) := {i : wi > wi+1}. In [BMS], the authors conjectured that

Ikeda’s functions have the following description in terms of Katalan functions.

Definition 2.3.13. For λ ∈ Park
ℓ, the closed k-Schur Katalan function is

g̃
(k)
λ = K(∆k(λ);∆k(λ); λ) .

The conjecture in [BMS] is defined via a map θ : S k+1 → Park which we now construct. For

w = w1 . . .wk+1 ∈ S k+1 in one-line notation, the inversion sequence of w is Inv(w) ∈ Zk
≥0 given by

Invi(w) = |{ j > i : wi > w j}|. Define an injection ζ : S k+1 → Park by letting column i of ζ(w) be(
k + 1 − i

2

)
+ Invi(w0w),
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for all i ∈ [k], where w0 is the longest element of S k+1. We call an element of Park irreducible if

it has at most k − i parts of size i, or equivalently, it contains no k-rectangle as a subsequence. For

any µ ∈ Park, define the unique irreducible partition µ↓ by deleting from µ all of the k-rectangles

it contains as a subsequence. Set θ(w) = ζ(w)↓. It is shown in [BMPS20] that θ is the same as the

map λ from [LS12, IIM].

Theorem 2.3.14. [IIN] For any w ∈ S k+1,

Φ(GQ
w) =

g̃
(k)
λ∏

d∈D(w) gRd

,

where λ = θ(w)ωk and ωk denotes the k-conjugate, an involution on Park introduced in [LM05].

Proposition 2.3.15. [BMS, Proposition 2.15] The closed k-Schur Katalan functions {g̃(k)
λ }λ∈Park

form a basis for Λ(k).



CHAPTER 3

Manipulating Katalan functions

In this chapter, we develop a combinatorial framework that leads us to a novel multiplication

rule satisfied by the closed k-Schur Katalan functions.

3.1. Katalan basics

We establish some notation convenient to the combinatorics of positive roots, and as a conse-

quence, to root ideals. For the most part, these definitions coincide with those of [See21].

Definition 3.1.1. For a subset of positive roots S ⊆ ∆+ℓ , we say there is

a wall in rows r, r + 1, . . . , r + d if every root in row r + d of S (r + d, y) ∈ S implies (x, y) ∈ S

for all x ∈ [r, r + d] and (r + d, z) ∈ S for all z ≥ y

a ceiling in columns c, c+ 1, . . . , c+ d if every root in column s of S satisfies (x, c) ∈ S implies

(x, y) ∈ S for all y ∈ [c, c + d] and (z, c) ∈ S for all z ≤ x.

Definition 3.1.2. For x ∈ [ℓ] and a subset of positive roots S ⊆ ∆+ℓ ,

• Let j = min{c|(x, c) ∈ S }. If j is defined and (r, j) < S for all r > x, we say downS (x) = j;

otherwise downS (x) is undefined.

• Let i = max{r|(r, x) ∈ S }. If i is defined and (i, c) < S for all c < x, we say upS (x) = i;

otherwise upS (x) is undefined.

We call a root (x, y) ∈ S removable if S \ (x, y) has a ceiling in columns y − 1, y or a wall in

column x − 1, x. The bounce graph of S is the graph on the vertex set [ℓ] with edges (r, downS (r))

for each r ∈ [ℓ] such that downS (r) is defined. The bounce graph of S is a disjoint union of paths

called bounce paths of S .
29
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Example 3.1.3. For λ = (6, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 1, 1, 1, 1) ∈ Par9
17, we have

g̃
(9)
λ =

6 • • • • • • • • • • • • •

5 • • • • • • • • • • •

5 • • • • • • • • • •

4 • • • • • • • •

4 • • • • • • •

4 • • • • • •

4 • • • • •

4 • • • •

4 • • •

4 • •

4 •

3
3

1
1

1
1

As evidenced by this, the root ideal ∆9(λ) has a wall in rows [12, 17], a ceiling in columns [1, 4], a

ceiling in columns [5, 6], and a ceiling in columns [8, 9]. An example of a bounce path in ∆9(λ) is

{1, 5, 11, 17}.

Definition 3.1.4. Given root idealsΨ ⊂ ∆+ℓ andΨ′ ⊂ ∆+ℓ′ , we define the root idealΨ⊎Ψ′ ⊂ ∆+ℓ+ℓ′

to be the result of placing Ψ and Ψ′ catty-corner and including the full ℓ × ℓ′ rectangle of roots in

between. Equivalently, Ψ ⊎ Ψ′ is determined by

∆+ℓ+ℓ′ \ (Ψ ⊎ Ψ′) = (∆+ℓ \ Ψ) ⊔ {(i + ℓ, j + ℓ)|(i, j) ∈ ∆+ℓ′ \ Ψ
′} .

For example, using lighter shading to emphasize the ℓ × ℓ′ rectangle,

⊎ =

Lemma 3.1.5. [BMS] Given λ ∈ Zℓ, µ ∈ Zℓ
′

, root ideals Ψ,L ⊂ ∆+ℓ , and root ideals Ψ′,L′ ⊂

∆+ℓ′ , we have

K(Ψ;L; λ)K(Ψ′;L′; µ) = K(Ψ ⊎ Ψ′;L ⊎ L′; (λ, µ)) ,
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where (λ, µ) := (λ1, . . . , λℓ, µ1, . . . , µℓ′).

Note that as alternative notation, we may write λµ := (λ, µ) when λ and µ are both lists of

integers (not necessarily partitions, nor is λµ itself necessarily a partition).

3.1.1. Root expansions.

Proposition 3.1.6. [See21, Lemma 4.5.3] Let S ⊆ ∆+, M on [ℓ] be a multiset, and µ ∈ Zℓ.

Then,

(1) for any root β < S ,

K(S ; M; µ) = K(S ∪ β; M; µ) − K(S ∪ β; M; µ + εβ) ;

(2) for any root α ∈ S ,

K(S ; M; µ) = K(S \ α; M; µ) + K(S ; M; µ + εα) ;

(3) for any y ∈ M,

K(S ; M; µ) = K(S ; M \ y; µ) − K(S ; M \ y; µ − ϵy) ;

(4) for any y ∈ [ℓ],

K(S ; M; µ) = K(S ; M ⊔ y; µ) + K(S ; M; µ − ϵy) .

Lemma 3.1.7. [BMS] Let Ψ ⊂ ∆+ℓ , M be a multiset on [ℓ], and µ ∈ Zℓ with µℓ = 1. If ℓ ∈ M

and Ψ has a removable root α = (x, ℓ) for some x, then

K(Ψ; M; µ) = K(Ψ \ α; M \ ℓ; µ) + K(Ψ̂; M̂ ⊔ x; (µ1, . . . , µℓ−1) + ϵx) ,

where Ψ̂ = {(i, j) ∈ Ψ| j < ℓ} and M̂ = { j ∈ M| j < ℓ}.
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Example 3.1.8. We apply Lemma 3.1.7 to the following scenario, with ℓ = 7 and root α =

(4, 7):
4 • • • • •

3 • • •

1 • •

1 •

1
1

1

=

4 • • • • •

3 • • •

1 • •

1
1

1
1

+

4 • • • •

3 • • •

1 •

2
1

1

By applying root expansions, we obtain useful mirror lemmas that will be relevant to manipu-

lating Katalan functions.

Lemma 3.1.9. [See21] Suppose an arbitrary subset Ψ ⊂ ∆+ℓ , a multiset M on [ℓ], µ ∈ Zℓ, and

z ∈ [ℓ − 1] satisfy

(1) Ψ has a ceiling in columns z, z + 1;

(2) Ψ has a wall in rows z, z + 1;

(3) µz = µz+1 − 1.

If mM(z + 1) = mM(z) + 1, then K(Ψ; M; µ) = 0. If mM(z) = mM(z + 1), then K(Ψ; M; µ) =

K(Ψ; M; µ − ϵz+1),

Example 3.1.10. For z = 2, Lemma 3.1.9 applies in the following two situations:

3 • • • •

2 • •

3 •

2 •

1
1

= 0

3 • • • • •
2 • •

3 •

2 •

1
1

=

3 • • • • •
2 • •

2 •

2 •

1
1

Corollary 3.1.11. Suppose a subset Ψ ⊂ ∆+ℓ , a multiset M on [ℓ], µ ∈ Zℓ, and z ∈ [ℓ − 1]

satisfy

(1) Ψ has a removable root in column z + 1;

(2) Ψ has a wall in rows z, z + 1;

(3) µz = µz+1 − 1.

If mM(z + 1) = mM(z) + 1, then K(Ψ; M; µ) = K(Ψ; M; µ + ε(upΨ(z+1),z+1)).
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Lemma 3.1.12. [See21, Lemma 4.5.3] Suppose S ⊆ ∆+ℓ , multiset M on [ℓ], γ ∈ Zℓ, and j ∈ [ℓ]

satisfy

(1) S has a removable root (i, j) in column j;

(2) S has a ceiling in columns j, j + 1 and a wall in rows j, j + 1;

(3) mM( j + 1) = mM( j) + 1;

(4) γ j = γ j+1.

Then, K(S ; M; γ) = K(S ; M \ j; γ) = K(S \ (i, j); M; γ) .

Lemma 3.1.13. [See21, Lemma 4.5.3] Suppose S ⊆ ∆+ℓ , multiset M on [ℓ], γ ∈ Zℓ, and j ∈ [ℓ]

satisfy

(1) j ∈ M;

(2) S has a ceiling in columns j, j + 1 and a wall in rows j, j + 1;

(3) mM( j + 1) = mM( j);

(4) γ j = γ j+1.

Then, K(S ; M; γ) = K(S ; M \ j; γ) . If, in addition, S has a removable root (i, j) in column j, then

K(S ; M; γ) = K(S \ (i, j); M \ j; γ) .

Example 3.1.14. By Lemma 3.1.13,

4 • •

3 • •
2

2
=

4 • •

3 •

2
2
=

4 • •

3 •

2
2

3.2. k-Rectangle and minus box machinery

The closed k-Schur Katalan functions satisfy a beautiful multiplication rule that Seelinger

proved in his thesis.

Proposition 3.2.1. [See21, Theorem 4.4.5] For d ∈ [k] and µ ∈ Park
ℓ, gRd g̃

(k)
µ = g̃

(k)
µ∪Rd
, where

µ ∪ Rd is the partition made by combining the parts of µ and those of Rd and then sorting.

We may also consider products of closed k-Schur Katalan functions wherein we index with a

k-rectangle-minus a box.
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g̃
(9)
µ∪R6
=

6 • • • • • • • • • • • • •
5 • • • • • • • • • • •

5 • • • • • • • • • •
4 • • • • • • • •

4 • • • • • • •
4 • • • • • •

4 • • • • •
4 • • • •

4 • • •
4 • •

4 •
3

3
1

1
1

1

Figure 1. The k-rectangle property with µ = 6544331111
.

Definition 3.2.2. A k-rectangle minus a box is a partition of length i of the form R∗i := (k + 1−

i, k + 1 − i, . . . , k + 1 − i, k + 1 − i − 1) for i ∈ [k].

The rule’s complexity grows substantially upon considering such products. Via computer ex-

perimentation, one can verify that the product need not produce a single closed k-Schur Katalan

function in general.

Example 3.2.3. Let k = 5 and consider µ = (5, 4, 3, 3, 1) and R∗3 = (3, 3, 2). Then we have the

cancellation-free expression:

g̃
(k)
µ g̃

(k)
R∗3
=

g̃
(5)
(5,4,4,4,2,2,2,1) + g̃

(5)
(5,4,3,3,3,3,3) − g̃

(5)
(5,4,4,4,2,2,2) + g̃

(5)
(5,5,3,3,3,2,2,1) − g̃

(5)
(5,4,3,3,3,2,2,1)

+g̃
(5)
(5,4,3,3,3,2,2) − g̃

(5)
(5,4,3,3,2,2,2) + g̃

(5)
(5,4,3,3,2,2,2,1) − g̃

(5)
(5,5,3,3,2,2,2,1) − g̃

(5)
(5,5,3,3,3,2,2)

+g̃
(5)
(5,5,3,3,2,2,2) + g̃

(5)
(5,4,3,3,3,3,2,1) − g̃

(5)
(5,4,4,3,2,2,2,1) − g̃

(5)
(5,4,3,3,3,3,2) + g̃

(5)
(5,4,4,3,2,2,2).

Example 3.2.4. Let k = 5 and consider µ = (4, 4, 2, 2) and (3, 3, 2) = R∗3. We have:

g̃
(k)
µ g̃

(k)
R∗3
=

g̃
(5)
(4,4,3,3,3,1,1) + g̃

(5)
(4,4,3,3,3,2,1) + g̃

(5)
(4,4,3,3,2,2,2) − g̃

(5)
(4,4,3,3,2,2,1) − g̃

(5)
(4,4,3,3,3,1,1) − g̃

(5)
(4,4,3,3,2,1,1) + g̃

(5)
(4,4,3,3,2,1,1)
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= g̃
(5)
(4,4,3,3,2,2,2).

In [See21], a host of root ideal machinery is introduced to facilitate the proof of the k-rectangle

property for the closed k-Schur functions. Much of this machinery is indeed applicable to the

manipulation of these functions upon replacing the indexing k-rectangle with a k-rectangle minus

a box. The following section summarizes the appropriate tools that carry over. We note several

consequences of these tools to the rectangle minus a box product.

3.2.1. Root subsets. While rules like Lemma 3.1.5 make writing products of Katalan func-

tions as one Katalan function straightforward, the result of this technique is insufficient to make

progress on the k-rectangle minus a box rule. To that end, our first goal is to write the product as

one advantageously designed Katalan function, which we accomplish in Lemma 3.2.14 using root

subsets (as opposed to ideals).

Definition 3.2.5. (1) Given a subset S ⊂ Z>0 × Z>0 and a ≤ b, let S |[a,b] ⊂ ∆
+
b−a+1 be the

root ideal given by the roots of S in [a, b] × [a, b]. More precisely,

S |[a,b] = {(i − a + 1, j − a + 1) ∈ ∆+b−a+1 | (i, j) ∈ S ∩ ([a, b] × [a, b])} .

(2) Consider two subsets of roots S ⊂ ∆+ℓ and T ⊂ ∆+m. For any r ∈ [ℓ], we define S ∧r T ⊂

∆+ℓ+m to be a generalization of ⊎ where we slice S into 3 regions and position them around

T to form a new root subset. Precisely,

S ∧r T = (S |[1,r] ⊎ T ⊎ S |[r+1,ℓ]) \ {(i,m + j) ∈ ∆+ℓ+m | (i, j) ∈ ∆+ℓ \ S , i ≤ r, and j > r} .

The schematic below gives a visual guide for the operation ∧r.

r

ℓ − r
∧r =
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Example 3.2.6. Consider the following example with ℓ = 11 and r = 6.

6 • • • • • • •
5 • • • • •

5 • • • •
4 • •

4 •
3

3
1

1
1

1

∧6

4
4

4
4

4
3

=

6 • • • • • • • • • • • • •
5 • • • • • • • • • • •

5 • • • • • • • • • •
4 • • • • • • • •

4 • • • • • • • •
4 • • • • • • • •

4 • • • • • • • •
4 • • • • • • • •

3 • • • • • • • •
4 • •

4 •
3

3
1

1
1

1

Lemma 3.2.7. [See21, Lemma 4.5.6] Consider root subsets (not necessarily ideals)Ψ,L ⊂ ∆+ℓ ,

Ψ′,L′ ⊂ ∆+ℓ′ , as well as λ ∈ Zℓ and µ ∈ Zℓ
′

. Then, for any r ∈ [ℓ], we have

K(Ψ;L; λ)K(Ψ′;L′; µ) = K(Ψ ∧r Ψ
′;L ∧r L

′; (λ1, . . . , λr, µ1, . . . , µℓ′ , λr+1, . . . , λℓ)).

Corollary 3.2.8. Let k, ℓ ≥ 1, µ ∈ Park
ℓ and d ∈ [k]. Furthermore, let r be the number such

that µr > k + 1 − d but µr+1 ≤ k + 1 − d, taking µ0 = ∞ and µℓ+1 = 0. Then,

g̃
(k)
µ g̃

(k)
R∗d
= K(∆k(µ) ∧r ∅d;∆k(µ) ∧r ∅d; (µ1, . . . , µr, k + 1 − d, . . . , k + 1 − d, k − d, µr+1, . . . , µℓ))

Proof. This result follows from Lemma 3.2.7 by taking Ψ = L = ∆k(µ) and Ψ′ = L′ = ∆k(R∗d),

noting that ∆k(R∗d) = ∅d by construction. □
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Example 3.2.9. For k = 9, µ = 65544331111, and d = 6, we get r = 3 and Corollary 3.2.8

gives the following.

g̃
(9)
65544331111g̃

(9)
R∗6
=

6 • • • • • • • • • • • • •
5 • • • • • • • • • • •

5 • • • • • • • • • •
4 • • • • • • • •

4 • • • • • • • •
4 • • • • • • • •

4 • • • • • • • •
4 • • • • • • • •

3 • • • • • • • •
4 • •

4 •
3

3
1

1
1

1

g̃
(9)
µ g̃

(9)
R∗6
=

6 • • • • • • • • • • • • •
5 • • • • • • • • • • •

5 • • • • • • • • • •
4 • • • • • • • •

4 • • • • • • •
4 • • • • • • • •

4 • • • • •
4 • • • •

3 • • • • • • • •
4 • •

4 •
3

3
1

1
1

1

Figure 2. An example of Lemma 3.2.14 with µ = 6544331111.

Lemma 3.2.10. [See21, Lemma 4.5.9] For µ ∈ Park
ℓ, d ∈ [k], and r such that µr > k + 1 − d but

µr+1 ≤ k + 1 − d, taking µ0 = ∞ and µℓ+1 = 0, let ν = (µ1, . . . , µr) and η = (µr+1, . . . , µℓ). Then,

g̃
(k)
Rd
g̃

(k)
µ = K(Ψ;Ψ; νRdη) ,

where Ψ = (∆k(νRd) ⊎ ∆k(η)) \ Θ for Θ = {(i, d + j) | (i, j) ∈ ∆+ℓ \ ∆
k(µ), i ≤ r, and j > r}.

Combining the proof of 3.2.10 in [See21] with the k-rectangle property provides a stronger

result which will be useful in the following section.
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Corollary 3.2.11. With the same notation as 3.2.10, let D be a set such that x ∈ D implies

x ∈ [r + 1, ℓ]. Then

g̃
(k)
Rd

K(∆k(µ − ϵD);∆k(µ − ϵD); µ − ϵD) = K(∆k(µ ∪ Rd − ϵD);∆k(µ ∪ Rd − ϵD); µ ∪ Rd − ϵD)

= K(Ψ;Ψ; µ ∪ Rd − ϵD) .

Definition 3.2.12. We call a list of roots Bc
(m,n) := {(c, i) : i ∈ [m, n]} a root-bar.

Example 3.2.13. Let µ = (5, 5, 4, 2, 2, 1), k = 6, and Rd = (4, 4, 4, 4). We have

K(∆k(µ ∪ Rd) ∪ B6
(7,9);∆

k(µ ∪ Rd) ∪ B6
(7,9); µ ∪ Rd) =

5 • • • • • • •
5 • • • • • •

4 • • • •
4 • • •

4 • •
4 • • • •

4
2

2
1

.

Lemma 3.2.14. For µ ∈ Park
ℓ, d ∈ [k], and r such that µr > k + 1− d but µr+1 ≤ k + 1− d, taking

µ0 = ∞ and µℓ+1 = 0, let ν = (µ1, . . . , µr) and η = (µr+1, . . . , µℓ). Then,

g̃
(k)
R∗d
g̃

(k)
µ = K(Ψ;Ψ; νR∗dη) ,

where Ψ = (∆k(νR∗d) ⊎ ∆k(η)) \ Θ for Θ = {(i, d + j) | (i, j) ∈ ∆+ℓ \ ∆
k(µ), i ≤ r, and j > r}.

Proof. We start with g̃(k)
R∗d
g̃

(k)
µ = K(Ψ′;Ψ′; νR∗dη) for Ψ′ = ∆k(µ) ∧r ∅d as in Corollary 3.2.8. We

then iteratively remove roots in columns r+1, . . . , r+(k−νx) for x = r, r−1, . . . , 1 ofΨ by repeated

applications of Lemma 3.1.13. We start by removing k − νr roots from row r in order from left

to right, removing all of Br
(r+1,r+(k−νr)). Each time, the conditions of Lemma 3.1.13 are met. Note

r + k − νr = r + k − k − 1 + d = r + d − 1; by our choice of r, it must be that (r, r + d − 1) ∈ Ψ and

(r, r+d) ∈ Ψ, so that we need not apply Lemma 3.1.13 to the root (r, r+d−1) (the conditions would

fail). We then continue the process by removing k − νr−1 roots from row r − 1, Br−1
(r+1,r+(k−νr−1)) , in
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order from left to right; by the same logic as Remark 2.3.7, ∆k(ν⊎R∗d) \Br
(r+1,r+(k−νr)) \Br−1

(r+1,r+(k−νr−1))

is “wall-free;” therefore, at each root removal, the conditions of Lemma 3.1.13 are met again.

The process continues in this manner, moving on to row r − 2, then r − 3, and so on; the method

continues to apply for higher rows by similar reasoning until we arrive at Ψ. □

Example 3.2.15. If µ = (6, 5, 5, 4, 4, 2, 2, 2, 1, 1, 1), k = 9, and Rd = (4, 4, 4, 4, 4, 4), Lemma 3.2.14

implies

g̃
(k)
R∗d
g̃

(k)
µ =

6 • • • • • • • • • • • •
5 • • • • • • • •

5 • • • • • •
4 • • • • • • • •

4 • • • • • • • •
4 • • • • • • • •

4 • • • • • • • •
4 • • • • • • • •

3 • • • • • • • •
4 • •

4 •
2

2
2

1
1

1

3.2.2. Root removals. Before proceeding to next steps that expand the k-rectangle minus a

box product, we reference several properties of root ideals which will serve us later. These laws

will guide us into removing roots east of R∗d from the result of Lemma 3.2.14.

Lemma 3.2.16. [See21, Lemma 4.5.14] Suppose a subset of roots S ⊂ ∆+ℓ , a multiset M on [ℓ],

γ ∈ Zℓ, and y ∈ [ℓ] satisfy

(1) S has a root in row y and z = downS (y) is defined;

(2) z ∈ M;

(3) S has a ceiling in columns y − 1, y and a wall in rows y − 1, y;

(4) mM(y − 1) = mM(y);

(5) γy = γy−1.

Then, we have

K(S ; M; γ) = K(S \ (y, z); M \ {z}; γ) .
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Example 3.2.17. Lemma 3.2.16 gives the following equality.

5 • • • • • •
5 • • • •

3 • •
3 • •

3 • •
2 • •

3
1

=

5 • • • • • •
5 • • • •

3 • •
3 • •

3 •
2 • •

3
1

Lemma 3.2.18. [See21, Lemma 4.5.16] Suppose a subset of roots S ⊂ ∆+ℓ , a multiset M on [ℓ],

γ ∈ Zℓ, and 1 ≤ x < y < z ≤ ℓ satisfy

(1) y = downS (x);

(2) (y, z) ∈ S but (y,m) < S if m < z;

(3) (x, z) < S ;

(4) (x, y − 1) < S and S ∪ (x, y − 1) has a ceiling in columns y − 1, y;

(5) S has a wall in rows y − 1, y;

(6) mM(y − 1) = mM(y) − 1;

(7) γy−1 = γy.

Then,

K(S ; M; γ) = K((S ∪ (x, z)) \ (y, z); M; γ) .

Note that in [See21], Lemma 3.2.18 states instead that z = downS (y) as opposed to the condi-

tion that (y, z) ∈ S but (y,m) < S if m < z, but in practice, the result applies to this more general

wording.

Example 3.2.19. Lemma 3.2.18 gives the following equality with y = 5, x = 2, and z = 7.

5 • • • • • •
4 • • • •

3 • •
3 • •

3 •
3 •

2
1

=

5 • • • • • •
4 • • • •

3 • •
3 • •

3 •
3 •

2
1
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3.3. The root bar approach

We now leverage root removals to make the next meaningful step in rewriting the k-rectangle

minus a box product. Our approach is more generic than a direct rewriting of Lemma 3.2.14; we

begin by developing some useful root subset machinery.

Definition 3.3.1. Fix integers d, r and ℓ ≥ 2d + r and consider b ∈ [r + 1, r + d]. A set Ψ ⊂ ∆+ℓ

which is a wall-free root ideal in rows ≤ r+d and consists of {(i, j) : j ≥ d+ i} in rows i ∈ [r+1, b]

is called a (d, r, b)-staircase. When Ψ is a (d, r, b)-staircase, Θ = {(i, j+ d) : (i, j) ∈ ∆+ℓ \Ψ, i ≤ r, j ∈

[a, b]} ⊂ Ψ for any a ∈ [r + 1, r + d], and we can define the set

Ψ(d, r, a, b) = Ψ ∪ {(i, j + d) : i ∈ [a + 1, b], j ∈ [a, i − 1]}\Θ .

Example 3.3.2. The setΨ = ∆k(µ∪R∗d)∪Br+d
[r+d+1,r+2d] is a (d, r, r+d−1)-staircase andΨ(d, r, r+

1, r + d − 1) = (∆k(νR∗d) ⊎ ∆k(η)) \ Θ where Θ = {(i, d + j) | (i, j) ∈ ∆+ℓ \ ∆
k(µ), i ≤ r < j} .

Ψ =

6 • • • • • • • • • • • • •
5 • • • • • • • • • • •

5 • • • • • • • • • •
4 • • • • • • • •

4 • • • • • • •
4 • • • • • •

4 • • • • •
4 • • • •

3 • • • • • • • •
4 • •

4 •
2

3
1

1
1

1

Ψ(6, 3, 4, 8) =

6 • • • • • • • • • • • • •
5 • • • • • • • • • • •

5 • • • • • • • • • •
4 • • • • • • • •

4 • • • • • • •
4 • • • • • • • •

4 • • • • •
4 • • • •

3 • • • • • • • •
4 • •

4 •
2

3
1

1
1

1
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Ψ =

6 • • • • • • • • • • • • •
5 • • • • • • • • • • •

5 • • • • • • • • • •
4 • • • • • • • •

4 • • • • • • •
4 • • • • • •

4 • • • • •
4 • • • •

3 • • • • • • • •
4 • •

4 •
2

3
1

1
1

1

Ψ(6, 3, 6, 8) =

6 • • • • • • • • • • • • •
5 • • • • • • • • • •

5 • • • • • • • •
4 • • • • • • • •

4 • • • • • • •
4 • • • • • •

4 • • • • • •
4 • • • • • •

3 • • • • • • • •
4 • •

4 •
2

3
1

1
1

1

Remark 3.3.3. For any (d, r, b)-staircase Ψ, if (i, j) where i ≤ r and downΨ(r) ≤ j ≤ r + d, then

(i, j) < ∆+\Ψ. Hence, Ψ(d, r, a, b) = Ψ when a ≥ downΨ(r).

Lemma 3.3.4. Fix integers d, r and ℓ ≥ 2d + r. Let Ψ ⊂ ∆+ℓ be a (d, r, b)-staircase for some

downΨ(r) ≤ b ≤ r + d. If γ ∈ Zℓ satisfies γa′ = · · · = γb for some r < a′ ≤ r + d, then for all

a′ ≤ a ≤ r + d, K(S , S ; γ) = K(S̃ , S̃ ; γ) where S = Ψ(d, r, a, b) and S̃ = Ψ(d, r, a′, b).

Proof. For all a ≥ downΨ(r),Ψ = Ψ(d, r, a, b) by Remark 3.3.3. Hence we consider a′ < a ≤ b,

and it suffices to prove the result for a′ = a − 1; here S and S̃ differ only in column d + a′. We do

this by iteration with an identity on Katalan functions indexed by sets of roots which differ by at

most two roots in column d + a′. Let S 0 = S̃ and for t = 1, 2, . . . , b − a′, iteratively define

S t =


S t−1\{(y, d + a′)} ∪ {(upS t−1(y), d + a′) if upS t−1(y) exists

S t−1\{(y, d + a′)} otherwise,
(3.3.1)

where y = b + 1 − t. By construction, S t−1 matches Ψ in columns ≤ d + r and has a wall in

rows y − 1, y. Hence, if x = upS t−1(y) exists, the conditions of Lemma 3.2.18 hold for M = S t−1,

implying that K(S t−1, S t−1; γ) = K(S t, S t; γ). If upS t−1(y) does not exist, y, y − 1 has a ceiling since

y ≤ b ≤ downS t−1(r) and S t−1 is wall-free in rows ≤ r. The conditions of Lemma 3.2.16 are met

and again K(S t−1, S t−1; γ) = K(S t, S t; γ). Therefore, K(S 0, S 0; γ) = K(S b−a′ , S b−a′; γ).

It remains to check that S b−a′ = S . For this, we need ∪t{(upS t−1(y = b + 1 − t), d + a′) :

upS t−1(y) exist } to be {(i, d + a′) : (i, a′) ∈ ∆+ℓ \Ψ, i ≤ r}; indeed, the number of roots in column a′
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of ∆+ℓ \Ψ is the number of removable corners between a′ and downΨ(r) ≤ b in Ψ. Since Ψ and S t−1

match in these columns, these corners are in the columns where upS t−1(y) exists. □

Ψ(6, 3, 5, 9) =

6 • • • • • • • • • • • • •
5 • • • • • • • • •

5 • • • • • • •
4 • • • • • • • •

4 • • • • • • •
4 • • • • • • •

4 • • • • • • •
4 • • • • • • •

3 • • • • • • • •
4 • •

4 •
2

3
1

1
1

1

=

6 • • • • • • • • • • • • •
5 • • • • • • • • •

5 • • • • • • • •
4 • • • • • • • •

4 • • • • • • •
4 • • • • • • •

4 • • • • • • •
4 • • • • • •

3 • • • • • • • •
4 • •

4 •
2

3
1

1
1

1

=

6 • • • • • • • • • • • • •
5 • • • • • • • • • •

5 • • • • • • • •
4 • • • • • • • •

4 • • • • • • •
4 • • • • • • •

4 • • • • • •
4 • • • • • •

3 • • • • • • • •
4 • •

4 •
2

3
1

1
1

1

=

6 • • • • • • • • • • • • •
5 • • • • • • • • • •

5 • • • • • • • •
4 • • • • • • • •

4 • • • • • • •
4 • • • • • •

4 • • • • • •
4 • • • • • •

3 • • • • • • • •
4 • •

4 •
2

3
1

1
1

1

= Ψ(6, 3, 6, 9)

Figure 3. The algorithmic proof of Lemma 3.3.4 applied to an example.

Applications of this lemma are important to our study of g̃(k)
R∗d
g̃

(k)
µ . For the remainder of the

section, fix µ ∈ Park
ℓ, d ∈ [k], and r such that µr > k + 1− d but µr+1 ≤ k + 1− d, taking µ0 = ∞ and

µℓ+1 = 0. Let ν = (µ1, . . . , µr) and η = (µr+1, . . . , µℓ).

Lemma 3.3.5. Let Ψx = ∆k(µ ∪ R∗d) ∪ Br+d
[x,r+2d] for x ∈ [r + d + 1, r + 2d]. For any γ ∈ Zn such

that γr+1 = · · · = γr+d−1,

K(Ψr+d+1;Ψr+d+1; γ) = K(S̃ ; S̃ ; γ) , (3.3.2)



44 3. MANIPULATING KATALAN FUNCTIONS

for S̃ = (∆k(νR∗d) ⊎ ∆k(η)) \Θ where Θ = {(i, d + j) | (i, j) ∈ ∆+ℓ \ ∆
k(µ), i ≤ r < j} . If γr+d−1 = γr+d

holds as well,

K(Ψx;Ψx; γ) = K(∆k(µ ∪ Rd);∆k(µ ∪ Rd); γ) . (3.3.3)

Proof. Set b = r + d and fix x ∈ [b + 1, b + d]. Consider the (d, r, b − 1)-staircase Ψx. Since r

was chosen so that νr > k + 1 − d, we have downΨx(r) < r + d and hence downΨx(r) ≤ b − 1. We

note that Ψx(d, r, b, b − 1) = Ψx and so, because x − d ∈ [r + 1, b], Lemma 3.3.4 gives

K(Ψx(d, r, x − d, b − 1);Ψx(d, r, x − d, b − 1); β) = K(Ψx;Ψx; β) (3.3.4)

for any β ∈ Zℓ where βr+1 = · · · = βb−1. In the case when x = b+ 1, this proves (3.3.2) since its left

hand side is S̃ (see Example 3.3.2).

Let γ ∈ Zℓ where γr+1 = · · · = γb, so for β = γ, (3.3.4) holds. Now consider the (d, r, b)-

staircase Ψ̂ = ∆k(µ ∪ Rd). Since b ≥ downΨ̂(r), Ψ̂(d, r, b, b) = Ψ̂ by Remark 3.3.3 and thus

K(Ψ̂(d, r, a′, b); Ψ̂(d, r, a′, b); γ) = K(Ψ̂; Ψ̂, γ) (3.3.5)

for any a′ ∈ [r+1, b] by Lemma 3.3.4. Identity (3.3.3) follows from the observation that Ψ̂(d, r, x−

d, b) = Ψx(d, r, x − d, b − 1) and equating (3.3.5) and (3.3.4). □

Example 3.3.6. If µ = (6, 5, 5, 4, 4, 2, 2, 2, 1, 1, 1), k = 9, and Rd = (4, 4, 4, 4, 4, 4), Lemma 3.3.5

with x = r + d − 1 applied to the result of Lemma 3.2.14 implies

g̃
(k)
R∗d
g̃

(k)
µ =

6 • • • • • • • • • • • •
5 • • • • • • • •

5 • • • • • •
4 • • • • • • • •

4 • • • • • • • •
4 • • • • • • • •

4 • • • • • • • •
4 • • • • • • • •

3 • • • • • • • •
4 • •

4 •
2

2
2

1
1

1

=

6 • • • • • • • • • • • • •
5 • • • • • • • • • • •

5 • • • • • • • • • •
4 • • • • • • • •

4 • • • • • • •
4 • • • • • •

4 • • • • •
4 • • • •

3 • • • • • • • •
4 • •

4 •
2

2
2

1
1

1

.
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3.3.1. Root bar expansions. To rewrite the result of Lemma 3.3.5 as a sum of closed k-Schur

Katalan functions, we appeal to root expansions on the root bar. This process will advance in

stages, each a refinement of the previous. Our first observation is a corollary to Lemma 3.3.5.

Corollary 3.3.7. Fix x ∈ [r + d + 1, r + 2d] and let Ψx = ∆k(µ∪ R∗d)∪ Br+d
[x,r+2d]. For any γ ∈ Zℓ

where γr+1 = · · · = γr+d−1 and γr+d = γr+d−1 − 1,

K(Ψx;Ψx; γ) = K(Ψx+1;Ψx+1; γ)− K(Ψx+1;Ψx+1; γ − ϵx)+ K(∆k(µ∪ Rd);∆k(µ∪ Rd); γ + ϵr+d − ϵx) .

Proof. Expand on the root (r + d, x) ∈ Ψx with Lemma 3.1.6 to obtain

K(Ψx;Ψx; γ) = K(Ψx+1;Ψx; γ) + K(Ψx;Ψx; γ + ϵr+d − ϵx) . (3.3.6)

Replace the first term by K(Ψx+1;Ψx+1; γ) − K(Ψx+1;Ψx+1; γ − ϵx) using Lemma 3.1.6 to delete the

lowering operator x and apply (3.3.3) of Lemma 3.3.5 to the rightmost term. □

Lemma 3.3.8. For µ ∈ Park
ℓ, d ∈ [k], and r such that µr > k + 1 − d but µr+1 ≤ k + 1 − d, take

µ0 = ∞ and µℓ+1 = 0. Then,

g̃
(k)
R∗d
g̃

(k)
µ =

∑
D⊆[r+d,r+2d−1]

(−1)|D|+1K(∆k(µ ∪ Rd);∆k(µ ∪ Rd); µ ∪ Rd − ϵD).

Proof. Let γ = νR∗dη. Lemma 3.2.14 gives that g̃(k)
R∗d
g̃

(k)
µ = K(S̃ ; S̃ ; γ) for S̃ = (∆k(νR∗d)⊎∆k(η))\Θ

where Θ = {(i, d + j) | (i, j) ∈ ∆+ℓ \ ∆
k(µ), i ≤ r < j}. We then apply (3.3.2) in Lemma 3.3.5 to

obtain

g̃
(k)
R∗d
g̃

(k)
µ = K(Ψr+d+1;Ψr+d+1; γ) ,

where Ψx = ∆k(µ ∪ R∗d) ∪ Br+d
[x,r+2d] is defined for any x ∈ [r + d + 1, r + 2d]. Let s = r + d + 1 and

apply the three term recurrence from Corollary 3.3.7 to the right hand side:

g̃
(k)
R∗d
g̃

(k)
µ = K(Ψs+1;Ψs+1; γ) − K(Ψs+1;Ψs+1; γ − ϵs) + K(∆k(µ ∪ Rd);∆k(µ ∪ Rd); µ ∪ Rd − ϵs) .
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The three term recurrence can again be applied, now to the first two terms. By iteration,

g̃
(k)
R∗d
g̃

(k)
µ =

∑
|D|≥0

D⊂[s,r+2d−1]

(−1)|D|K(Ψr+2d−1;Ψr+2d−1; γ−ϵD)+
∑
|D|>0

D⊂[s,r+2d−1]

(−1)|D|−1K(∆k(µ∪Rd);∆k(µ∪Rd); µ∪Rd−ϵD) .

The sums can be combined by noting that Ψr+2d−1 = ∆k(µ ∪ Rd) and, for each D ⊂ [s, r + 2d − 1],

γ − ϵD = µ ∪ Rd − ϵD′ for the set D′ = D ∪ {r + d}. □

Example 3.3.9. Let k = 4, R∗2 = (3, 2), µ = (3, 2, 1, 1). Lemma 3.3.8 implies

g̃
(4)
R∗2
g̃

(4)
(3,2,1,1)

=

3 • • • •
2 • • •

3 • •
2

1
1

+

3 • • • •
3 • • •

2 • •
2

1
1

−

3 • • • •
2 • • •

2 • •
2

1
1

.

3.3.2. Downpath expansions. To further refine the result of Lemma 3.3.8, we extend our root

expansions further within the resulting root ideals. While the results of this lemma no longer

feature root bars, the resulting root ideals may not coincide with the k-Schur root ideal for their

indexing weight. We will address these issues by leveraging downpaths (Definition 3.3.12), which

are at the heart of Catalan function combinatorics. Not only do the combinatorics of downpaths

play a role in rewriting Lemma 3.3.8, but they are also essential to re-indexing generically weighted

(non-partition) Katalan functions in all following chapters.

Example 3.3.10. Given k = 7, µ = (6, 5, 2, 2, 2), and d = 3, Lemma 3.2.14 and Lemma 3.3.5

combine to imply that

g̃
(k)
R∗d
g̃

(k)
µ =

6 • • • • • •
5 • • • •

5 • • •
5 • • • •

5 •
2

2
2

.
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Further, Lemma 3.3.8 implies

g̃
(k)
R∗d
g̃

(k)
µ =

∑
D⊆[4,6]

(−1)|D|+1K(∆k(µ ∪ Rd);∆k(µ ∪ Rd); µ ∪ Rd − ϵD

=

6 • • • • • •
5 • • • •

5 • • •
4 • •

5 •
2

2
2

+

6 • • • • • •
5 • • • •

5 • • •
5 • •

4 •
2

2
2

+

6 • • • • • •
5 • • • •

5 • • •
5 • •

5 •
1

2
2

−

6 • • • • • •
5 • • • •

5 • • •
4 • •

4 •
2

2
2

−

6 • • • • • •
5 • • • •

5 • • •
4 • •

5 •
1

2
2

−

6 • • • • • •
5 • • • •

5 • • •
5 • •

4 •
1

2
2

+

6 • • • • • •
5 • • • •

5 • • •
4 • •

4 •
1

2
2

.

While many of these resulting functions are not indexed by partition weights, we note that even

those which are as such are not closed k-Schur Katalan functions; consider the root ideal of each

Katalan function written in this result,

• • • • • •
• • • •
• • •
• •
• ,

• • • • • •
• • • •
• • •
• ,

• • • • • •
• • • •
• • •
• •

These latter root ideals correspond to the ∆k(6, 5, 5, 4, 4, 2, 2, 2) = ∆k(6, 5, 5, 4, 4, 1, 2, 2) and

∆k(6, 5, 5, 5, 4, 2, 2, 2) = ∆k(6, 5, 5, 5, 4, 1, 2, 2), respectively.

Proposition 3.3.11. [BMPS19] For µ ∈ P̃ar
k
ℓ , the western border of the root ideal ∆k(µ)

consists of the roots (i, k + 1 − µi + i) for i such that k + 1 − µi + i ≤ ℓ. Moreover, (i, k + 1 − µi + i)

is a removable root of ∆k(µ) if and only if µi ≥ µi+1 and k + 1 − µi + i ≤ ℓ.
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Definition 3.3.12. Let Ψ ⊆ ∆+ℓ be an arbitrary subset of positive roots. For each vertex r ∈ [ℓ],

distinguish topΨ(r) to be the minimum element of the bounce path of Ψ containing r. For a, b ∈ [ℓ]

in the same bounce path of Ψ with a ≤ b, we define

downpathΨ(a, b) = {a, downΨ(a), down2
Ψ(a), . . . , b},

i.e., the set of indices in this path lying between a and b. We also set uppathΨ(r) to be downpathΨ(topΨ(r), r)

for any r ∈ [ℓ].

Example 3.3.13. A downpath and uppath for the root ideal Ψ are given below:

downpathΨ(3, 8) = {3, 5, 8} uppathΨ(10) = {10, 8, 5, 3, 1}

Remark 3.3.14. For µ ∈ P̃ar
k
ℓ and fixed Rd, let r be such that µr > k+1−d and µr+1 ≤ k+1−d.

Then for D ⊆ [r+d, r+2d−1], x, y ∈ D implies that x and y have disjoint downpaths in ∆k(µ∪Rd).

To see why, first assume without loss of generality that x < y.

But then if downc
∆k(µ∪Rd)(y) ∈ downpath∆k(µ∪Rd)(x), for some c, we would have that y ∈ downpath∆k(µ∪Rd)(x)

or x ∈ downpath∆k(µ∪Rd)(y), as down∆k(µ∪Rd)(i) is uniquely defined for any i ∈ ℓ + k + 1 − d. In

particular, downpath∆k(µ∪Rd)(x) and downpath∆k(µ∪Rd)(y) are the same as the corresponding down-

paths for x and y had µ been a partition. Given that µ ∈ P̃ar
k
ℓ, we only possibly have that

downpath∆k(µ∪Rd)(x) and downpath∆k(µ∪Rd)(y) are shorter downpaths than those of ∆k(ν ∪ Rd) for

ν ∈ Par, but have no further differences (Proposition 3.3.11). Both with this in mind, we note that

both y ∈ downpath∆k(µ∪Rd)(x) and x ∈ downpath∆k(µ∪Rd)(y) are impossible: the former is because

down∆k(µ∪Rd)(x) > y as k − (µ ∪ Rd)x + x + 1 ≥ r + 2d and the latter is because x < y.
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r

d − 1

r + d

Figure 4. The sections outlined in red and starred are roots which correspond to
the sections with just red outlining. Together with the section of roots containing
north east lines, these roots demonstrate the difference between ∆k(λ≤rRd)⊎∆k(λ>r)
and ∆k(µ ∪ R∗d) ∪ Br+d

(r+d+1,r+d+1+d). In the proof of Lemma 3.3.8, we obtain this Kata-
lan function after applying Lemma 3.2.14, and applying Lemma 3.3.5 removes the
red/starred and north-east lined sections.

Remark 3.3.15. downpath∆k(µ)(x) = downpath∆k(µ−ϵQ)(x) where Q ∩ downpath∆k(µ)(x) = ∅. The

roots of ∆k(µ) and ∆k(µ − ϵQ) are the same in all rows j < Q. On the other hand, if j ∈ Q, the

roots only differ by deletion of a single root in ∆k(µ − ϵQ). Therefore, for all y < Q, we have

down∆k(µ)(y) = down∆k(µ−ϵQ)(y).

Theorem 3.3.16. Let λ = µ ∪ Rd and define Id,k
µ := ∪i∈[r+d,2d+r−1]downpath∆k(µ∪Rd)(i). Then

g̃
(k)
R∗d
g̃

(k)
µ =

∑
D⊂Id,k

µ ,D,∅

(−1)|D|+1K(∆k(µ ∪ Rd − ϵD);∆k(µ ∪ Rd − ϵD); µ ∪ Rd − ϵD)

=
∑

D⊂Id,k
µ ,D,∅

(−1)|D|+1
g̃

(k)
λ−ϵD
. (3.3.7)

Proof. Apply Lemma 3.3.8. Suppose D = {a1, a2, . . . , am} with a1 < a2 < · · · < am where each

ai ∈ [r + d, r + 2d − 1]. If down∆k(µ∪Rd)(a1) exists, then by applying Proposition 3.1.6,

K(∆k(µ ∪ Rd);∆k(µ ∪ Rd); µ ∪ Rd − ϵD) =
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K(∆k(µ ∪ Rd − ϵa1);∆
k(µ ∪ Rd − ϵa1); µ ∪ Rd − ϵD)

−K(∆k(µ ∪ Rd − ϵa1);∆
k(µ ∪ Rd − ϵa1); µ ∪ Rd − ϵD∪down

∆k (µ∪Rd )(a1))

+K(∆k(µ ∪ Rd);∆k(µ ∪ Rd); µ ∪ Rd − ϵD\a1∪down
∆k (µ∪Rd )(a1)).

Note that on the other hand, if down∆k(µ∪Rd)(a1) does not exist, we must have that ∆k(µ∪Rd) contains

no root of the form (a1, j) for any j, so ∆k(µ ∪ Rd) = ∆k(µ ∪ Rd − ϵa1). Therefore, in this case,

K(∆k(µ ∪ Rd);∆k(µ ∪ Rd); µ ∪ Rd − ϵD) = K(∆k(µ ∪ Rd − ϵa1);∆
k(µ ∪ Rd − ϵa1); µ ∪ Rd − ϵD).

In either case, expanding K(∆k(µ ∪ Rd − ϵa1);∆
k(µ ∪ Rd − ϵa1); µ ∪ Rd − ϵD) on a2 through

Proposition 3.1.6 implies

K(∆k(µ ∪ Rd);∆k(µ ∪ Rd); µ ∪ Rd − ϵD) =

= K(∆k(µ ∪ Rd − ϵ{a1,a2});∆
k(µ ∪ Rd − ϵ{a1,a2}); µ ∪ Rd − ϵD)

−K(∆k(µ ∪ Rd − ϵ{a1,a2});∆
k(µ ∪ Rd − ϵ{a1,a2}); µ ∪ Rd − ϵD∪down

∆k (µ∪Rd )(a2))

+K(∆k(µ ∪ Rd − ϵa1);∆
k(µ ∪ Rd − ϵa1); µ ∪ Rd − ϵD\a2∪down

∆k (µ∪Rd )(a2))

−K(∆k(µ ∪ Rd − ϵa1);∆
k(µ ∪ Rd − ϵa1); µ ∪ Rd − ϵD∪down

∆k (µ∪Rd )(a1))

+K(∆k(µ ∪ Rd);∆k(µ ∪ Rd); µ ∪ Rd − ϵD\a1∪down
∆k (µ∪Rd )(a1))

if down∆k(µ∪Rd)(a1) exists. Note that here, we make use of the fact that down∆k(µ∪Rd)(a2) = down∆k(µ∪Rd−ϵa1 )(a2).

Moreover, by applying Remark 3.3.15 followed by Remark 3.3.14, we see that any ai, a j ∈ D have

disjoint downpaths in ∆k(µ∪Rd); therefore, no Katalan function in the expansion above is indexed

by weight decremented by 2 in any coordinate. As before, if down∆k(µ∪Rd)(a2) does not exist, we

must have that ∆k(µ ∪ Rd) contains no root of the form (a2, j) for any j, so ∆k(µ ∪ Rd − ϵa1) =

∆k(µ ∪ Rd − ϵ{a1,a2}). Therefore, in this case,

K(∆k(µ∪Rd−ϵa1);∆
k(µ∪Rd−ϵa1); µ∪Rd−ϵD) = K(∆k(µ∪Rd−ϵ{a1,a2});∆

k(µ∪Rd−ϵ{a1,a2}); µ∪Rd−ϵD).
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We continue with a3, a4, and so on until we obtain the top-level term K(∆k(µ∪Rd − ϵD);∆k(µ∪

Rd − ϵD); µ ∪ Rd − ϵD). In particular, we obtain the expansion:

K(∆k(µ ∪ Rd);∆k(µ ∪ Rd); µ ∪ Rd − ϵD)

= K(∆k(µ ∪ Rd − ϵD);∆k(µ ∪ Rd − ϵD); µ ∪ Rd − ϵD)

−

B∑
i=1

K(∆k(µ ∪ Rd − ϵ{a1,...,ai});∆
k(µ ∪ Rd − ϵ{a1,...,ai}); µ ∪ Rd − ϵD∪down

∆k (µ∪Rd )(ai))

+

B∑
i=1

K(∆k(µ ∪ Rd − ϵ{a1,...,ai−1});∆
k(µ ∪ Rd − ϵ{a1,...,ai−1}); µ ∪ Rd − ϵD\ai∪down

∆k (µ∪Rd )(ai)),

where B is defined as the maximal index of the ai such that down∆k(µ∪Rd)(ai) exists. Then for i ∈ [B],

we rewrite the terms in the resulting summations by expanding on ai+1, ai+2, and so on, noting that

the downpath of down∆k(µ∪Rd)(ai) is disjoint from the downpaths of each of ai+1, ai+2, . . . , am. In

particular, replacing D with {ai+1, ai+2, . . . , am}∪down∆k(µ∪Rd)(ai) and µ∪Rd with µ∪Rd−ϵ{a1,...,ai}, we

may iterate the initial method of expansion for −K(∆k(µ∪Rd−ϵ{a1,...,ai});∆
k(µ∪Rd−ϵ{a1,...,ai}); µ∪Rd−

ϵD∪down
∆k (µ∪Rd )(ai)) if down2

∆k(µ∪Rd)(ai) exists. Here, we make use of the fact that down∆k(µ∪Rd)(ai) > am

(Remark 3.3.14) to be sure that we do not decrement by two.

Similarly, replacing D with {ai+1, ai+2, . . . , am}∪down∆k(µ∪Rd (ai) and µ∪Rd with µ∪Rd−ϵ{a1,...,ai−1},

we can use the expansion method for K(∆k(µ ∪ Rd − ϵ{a1,...,ai−1});∆
k(µ ∪ Rd − ϵ{a1,...,ai−1}); µ ∪ Rd −

ϵD\ai∪down
∆k (µ∪Rd )(ai)). As before, we use Remark 3.3.14 to be sure that we do not decrement by two.

We obtain

K(∆k(µ ∪ Rd);∆k(µ ∪ Rd); µ ∪ Rd − ϵD)

=
∑

(−1)|J|+1K(∆k(µ ∪ Rd − ϵJ);∆k(µ ∪ Rd − ϵJ); µ ∪ Rd − ϵJ)

where the sum ranges over all nonempty sets J such that j ∈ J implies j ∈ downpath∆k(µ∪Rd)(ai) for

some ai ∈ D and j ≥ r + d.

□

Remark 3.3.17. The summand of Proposition 3.3.16 ranges over all nonempty sets consisting

of x such that x ≥ r + d and x ∈ downpath∆k(µ∪Rd)(z) for some z ∈ [r + 1, r + d] (note this implies
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(µ∪Rd)z = k+1−d). This is because for i ∈ [d], we have down∆k(µ∪Rd)(r+ i) = k−(k+1−d)+r+ i =

r + i + d.

Example 3.3.18. Theorem 3.3.16 applied to k = 5, µ = (4, 3, 1, 1), R3 = (3, 3, 3), and

λ = (4, 3, 3, 3, 3, 1, 1) implies

g̃
(5)
R∗3
g̃

(5)
(4,3,1,1) =

4 • • • • •

3 • • •

3 • •

2 • • •
3

1
1

=

4 • • • • •

3 • • •

3 • •

3 •

2
1

1

+

4 • • • • •

3 • • •

3 • •

3 •

3
0

1

+

4 • • • • •

3 • • •

3 • •

2
3

1
1

+

4 • • • • •

3 • • •

3 • •

3 •

3
1

0

−

4 • • • • •

3 • • •

3 • •

2
3

1
0

+

4 • • • • •

3 • • •

3 • •

2
2

0
1

+

4 • • • • •

3 • • •

3 • •

3 •

2
0

0

−

4 • • • • •

3 • • •

3 • •

2
2

0
0

−

4 • • • • •

3 • • •

3 • •

2
3

0
1

−

4 • • • • •

3 • • •

3 • •

3 •

3
0

0

+

4 • • • • •

3 • • •

3 • •

2
3

0
0

−

4 • • • • •

3 • • •

3 • •

3 •

2
0

1

−

4 • • • • •

3 • • •

3 • •

2
2

1
1

−

4 • • • • •

3 • • •

3 • •

3 •

2
1

0

+

4 • • • • •

3 • • •

3 • •

2
2

1
0

.

Note that on the other hand, Lemma 3.3.8 provides a coarser sum of Katalan functions:

g̃
(5)
R∗3
g̃

(5)
(4,3,1,1) =

4 • • • • •

3 • • •

3 • •

3 •

2
1

1

+

4 • • • • •

3 • • •

3 • •

3 •

3
0

1

+

4 • • • • •

3 • • •

3 • •

2 •

3
1

1

+

4 • • • • •

3 • • •

3 • •

2 •

2
0

1
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−

4 • • • • •

3 • • •

3 • •

2 •

3
0

1

−

4 • • • • •

3 • • •

3 • •

3 •

2
0

1

−

4 • • • • •

3 • • •

3 • •

2 •

2
1

1

.





CHAPTER 4

Covers and equivalent functions

In their generic definition, Katalan functions are not unique. Because we know from Propo-

sition 2.3.15 that closed k-Schur Katalan functions {g̃(k)
λ }λ∈Park form a basis for Λ(k), there must

exist a cancellation-free sum of closed k-Schur Katalan functions equivalent to 3.3.7 weighted by

partitions. There are two central questions that remain despite the result of Theorem 3.3.16:

• Which functions in 3.3.7 are equivalent to one another? In other words, which cancella-

tions can we realize within this sum?

• How can we index the functions in 3.3.7 by partitions, as opposed to simply by weights?

Example 4.0.1. The product g̃(5)
R∗3
g̃

(5)
(4,3,1,1) is written in Example 3.3.18 as a sum closed k-Schur

Katalan functions; the terms the terms appearing in the sum include closed k-Schur Katalan func-

tions indexed by (but not limited to) the weights {4, 3, 3, 3, 3, 0, 1}, {4, 3, 3, 2, 2, 0, 1}, {4, 3, 3, 3, 2, 0, 0},

{4, 3, 3, 2, 2, 0, 0}, {4, 3, 3, 2, 3, 0, 1}, {4, 3, 3, 3, 3, 0, 0}, {4, 3, 3, 2, 3, 0, 0}, and {4, 3, 3, 3, 2, 0, 1}.

However, we have that

g̃
(5)
{4,3,3,3,3,0,1} + g̃

(5)
{4,3,3,3,2,0,0} − g̃

(5)
{4,3,3,2,3,0,1} − g̃

(5)
{4,3,3,3,3,0,0} + g̃

(5)
{4,3,3,2,3,0,0} − g̃

(5)
{4,3,3,3,2,0,1} = 0,

where the coefficients (signs) for each function match the result of Example 3.3.18. Moreover, the

remaining functions produced in Example 3.3.18 can all be rewritten with partition weights:

g̃
(5)
{4,3,3,3,2,1,1} + g̃

(5)
{4,3,3,2,2,0,1} + g̃

(5)
{4,3,3,2,3,1,1} + g̃

(5)
{4,3,3,3,3,1,0}

−g̃
(5)
{4,3,3,2,3,1,0} − g̃

(5)
{4,3,3,2,2,1,1} − g̃

(5)
{4,3,3,3,2,1,0} + g̃

(5)
{4,3,3,2,2,1,0} − g̃

(5)
{4,3,3,2,2,0,0}

55
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= g̃
(5)
{4,3,3,3,2,1,1} + g̃

(5)
{4,3,3,3,2} + g̃

(5)
{4,4,3,2,2,1,1} + g̃

(5)
{4,3,3,3,3,1}

−g̃
(5)
{4,4,3,2,2,1} − g̃

(5)
{4,3,3,2,2,1,1} − g̃

(5)
{4,3,3,3,2,1} + g̃

(5)
{4,3,3,2,2,1} − g̃

(5)
{4,3,3,2,2}

= g̃
(5)
R∗3
g̃

(5)
(4,3,1,1).

4.1. Covers and k-Schur straightening

Our primary goal is to rewrite each closed k-Schur Katalan function in the sum produced by

Theorem 3.3.16 either with a partition weight or as 0. Rules of this form that apply for any γ ∈ Zℓ

are called straightening laws.

Proposition 4.1.1. (Schur function straightening). [BMPS19, Proposition 4.1] For any γ ∈ Zℓ,

sγ(x) =


sgn(γ + ρ)ssort(γ+ρ)−ρ(x) if γ + ρ has distinct nonnegative parts,

0 otherwise,
(4.1.1)

where ρ = (ℓ− 1, ℓ− 2, . . . , 0), sort(β) denotes the weakly decreasing sequence obtained by sorting

β, and sgn(β) denotes sign of the shortest permutation taking β to sort(β).

In a similar vein, any k-Schur Catalan can be written as a single k-Schur Catalan function with

partition weight or zero [BMPS19]. This k-Schur Catalan straightening rule from [BMPS19] relies

on covers, which are combinatorial tools that we will define and generalize in this section to apply

to closed k-Schur Katalan functions.

Definition 4.1.2. Let λ ∈ P̃ar
k
ℓ and z ∈ [ℓ]. Set µ = λ− ϵz and Ψ = ∆k(µ). Let c = |uppathΨ(z)|.

If z = ℓ or λz > λz+1 or upc
Ψ

(z + 1) is undefined, then set h = 0; otherwise, set y + 1 = upc
Ψ

(z + 1)

and let h ∈ [ℓ − z] be as large as possible such that µ is constant on each of the intervals [z + 1, z +

h], [upΨ(z), upΨ(z) + h], [up2
Ψ

(z), up2
Ψ

(z) + h], . . . , [topΨ(z), topΨ(z) + h], and [y + 1, y + h].

Define coverz(λ) = λ + ϵ[y+1,y+h] − ϵ[z,z+h]. If y is undefined or, equivalently, h = 0, then

coverz(λ) = µ.
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Example 4.1.3. If λ = (6, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 1, 1, 1) and k = 9, we have cover15(λ) =

(6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 2, 2, 2). In this case, h = 2 and y + 1 = 4. This computation is evident

when viewing the k-Schur root ideal with the relevant uppaths colored:

6 • • • • • • • • • • • • •

5 • • • • • • • • • • •

5 • • • • • • • • • •

4 • • • • • • • •

4 • • • • • • •

4 • • • • • •

4 • • • • •

4 • • • •

4 • • •

4 • •

4 •

2
2

2
1

1
1

uppath(15)∆k(λ) = {15, 9}

uppath(16)∆k(λ) = {16, 10, 4}

uppath(17)∆k(λ) = {17, 11, 5, 1}

While the uppath of 17 is longer than that of both 15 and 16, we only consider up to and

including up2+1(17), as |uppath(15)∆k(λ)| = 2.

Lemma 4.1.4. [BMPS19] For λ ∈ Par, the intervals [z + 1, z + h], . . . , [topΨ(z), topΨ(z) + h],

and [y + 1, y + h] in Definition 4.1.2 are pairwise disjoint.

Remark 4.1.5. Suppose λ ∈ Park
ℓ and z ∈ [ℓ]. Let D = {a1, . . . , am} ⊆ [ℓ] be such that ai <

uppath∆k(λ)(z + i) for all i ∈ [h], where h is as in the definition of cover for coverz(λ). Then

λ− ϵD ∈ P̃ar
k
ℓ and coverz(λ)− ϵD = coverz(λ− ϵD). In particular, the calculation of y and h for both

coverz(λ) and coverz(λ − ϵD) will be the same, as Ψ will be unchanged on the intervals listed in the

definition of cover.
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Example 4.1.6. While some covers are partitions, they need not be. Let k = 11, and consider

the k-Schur root ideal corresponding to λ = (8, 8, 5, 5, 5, 5, 4, 2, 2, 2, 2, 2, 2, 2, 2) ∪ R4,

8 • • • • • • • • • • • • • • • • • • •

8 • • • • • • • • • • • • • • • • • •

5 • • • • • • • • • • • • • •

5 • • • • • • • • • • • • •

5 • • • • • • • • • • • •

5 • • • • • • • • • • •

4 • • • • • • • • •

4 • • • • • • • •

4 • • • • • • •

4 • • • • • •

4 • • • • •

4 • • • •

4 • • •

4 • •

4 •

2
2

2
2

2
2

2
2

We have then that cover22(λ) = λ + ϵ7 − ϵ[22,23] ∈ Par and cover17(λ) = λ + ϵ[3,6] − ϵ[17,21] < Par,

as |uppath∆k(λ)(22)| = 2, while |uppath∆k(λ)(x)| ≥ 3 for all x ∈ [18, 21].

Example 4.1.7. Cover computations need not commute. For example, with k = 16, we have

that

cover13(cover6(11, 11, 11, 11, 11, 10, 10, 10, 10, 8, 8, 6, 5, 5, 5, 5))

= (12, 12, 12, 11, 11, 10, 10, 10, 9, 8, 8, 6, 4, 4, 4, 4),

, cover6(cover13(11, 11, 11, 11, 11, 10, 10, 10, 10, 8, 8, 6, 5, 5, 5, 5))

= (12, 12, 12, 11, 11, 9, 10, 10, 10, 8, 8, 6, 4, 4, 4, 4).
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Theorem 4.1.8. [BMPS19](k-Schur function straightening) Maintaining the notation of Defi-

nition 4.1.2 for cover, h, and c, we have

s(k)
µ = th∗cs(k)

coverz(λ)

and this is equal to 0 if coverz(λ) < Park
ℓ.

4.2. Covers and Katalan functions

We now leverage the properties of root ideals and covers to straighten certain families of Kata-

lan functions. While these results are in a more limited scope than the Schur and k-Schur straight-

ening laws, their implications for the closed k-Schur Katalan functions assist us in answering both

questions raised at the beginning of this chapter.

Lemma 4.2.1. For λ ∈ P̃ar
k
ℓ and coverz(λ) = λ + ϵ[y+1,y+h] − ϵ[z,z+h] (or coverz(λ) = λ − ϵz with

h = 0), let S = {s1, . . . , sm} ⊆ [ℓ] be such that for all i ∈ [m], either si > z + h or si < z but

si < {up∆k(λ)(z+ j), up2
∆k(λ)(z+ j), . . . , upc

∆k(λ)(z+ j)} for all j ∈ [h], where c = |uppath∆k(λ)(z+1)|. Let

Ψ1,Ψ2 ⊆ ∆
+ be such that for all (a, b) ∈ Ψ1 or (a, b) ∈ Ψ2, we have a > z+h and b > k−λz+z+h+1.

Then

K(∆k(λ − ϵz − ϵS ) ∪ Ψ1;∆k(λ − ϵz − ϵS ) ∪ Ψ2; λ − ϵz − ϵS )

= K(∆k(coverz(λ) − ϵS ) ∪ Ψ1;∆k(coverz(λ) − ϵS ) ∪ Ψ2; coverz(λ) − ϵS ).

Proof. If h = 0, then λ− ϵz − ϵS = coverz(λ)− ϵS immediately. Otherwise, there is a removable

root (up∆k(λ)(z + 1), z + 1) in ∆k(λ − ϵz − ϵS ). We apply Corollary 3.1.11 to this removable root:

K(∆k(λ − ϵz − ϵS ) ∪ Ψ1;∆k(λ − ϵz − ϵS ) ∪ Ψ2; λ − ϵz − ϵS )

= K(∆k(λ − ϵz − ϵS ) ∪ Ψ1;∆k(λ − ϵz − ϵS ) ∪ Ψ2; λ − ϵ{z,z+1} + ϵup
∆k (λ)(z+1) − ϵS ).

Noting then that by definition of cover, ∆k(coverz(λ)) has a mirror in columns {z, z + 1} (in

fact, more generally, in rows {up∆k(λ)(z + 1), up∆k(λ)(z + 2), . . . , up∆k(λ)(z + h)} as well), we may then
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employ Lemma 3.1.13 followed by Lemma 3.2.16:

K(∆k(λ − ϵz − ϵS ) ∪ Ψ1;∆k(λ − ϵz − ϵS ) ∪ Ψ2; λ − ϵ{z,z+1} + ϵup
∆k (λ)(z+1) − ϵS )

= K(∆k(λ− ϵz + ϵup
∆k (λ)(z+1) − ϵS )∪Ψ1;∆k(λ− ϵz + ϵup

∆k (λ)(z+1) − ϵS )∪Ψ2; λ− ϵ{z,z+1} + ϵup
∆k (λ)(z+1) − ϵS )

= K(∆k(λ−ϵ{z,z+1}+ϵup
∆k (λ)(z+1)−ϵS )∪Ψ1;∆k(λ−ϵ{z,z+1}+ϵup

∆k (λ)(z+1)−ϵS )∪Ψ2; λ−ϵ{z,z+1}+ϵup
∆k (λ)(z+1)−ϵS ).

By making use of the observation about mirrors in additional rows, and the fact that ∆k(coverz(λ))

also has a mirror in rows {z, z+1, . . . , z+h}, we can iterate this process with z+2 and up∆k(λ)(z+2),

then z + 3 and up∆k(λ)(z + 3), and so on until z + h and up∆k(λ)(z + h):

K(∆k(λ − ϵz) ∪ Ψ1;∆k(λ − ϵz) ∪ Ψ2; λ − ϵz − ϵS )

= K(∆k(λ − ϵ[z,z+h] + ϵ[up
∆k (λ)(z+1),up

∆k (λ)(z+h)]) ∪ Ψ1;∆k(λ − ϵ[z,z+h] + ϵ[up
∆k (λ)(z+1),up

∆k (λ)(z+h)]) ∪ Ψ2;

λ − ϵ[z,z+h] + ϵ[up
∆k (λ)(z+1),up

∆k (λ)(z+h)] − ϵS ).

If up∆k(λ)(z + h) = y + h, then the proof is complete. Otherwise, we iterate the procedure,

starting with up∆k(λ)(z + 1) and up2
∆k(λ)(z + 1), and continuing until up∆k(λ)(z + h) and up2

∆k(λ)(z + h).

By definition of h in covers (which implies stability of λ on not just one interval but a series of

intervals), we guarantee the necessary mirrors that make the procedure possible at each iteration.

We continue in this fashion until establishing the result. □

Example 4.2.2. Because downpath∆4(3,3,3,2,2,1)(2) = {2, 4}, we may apply Lemma 4.2.1 with

z = 2 to obtain

K(∆4((3, 3, 3, 2, 2, 1) − ϵ{2,4});∆4((3, 3, 3, 2, 2, 1) − ϵ{2,4}); (3, 3, 3, 2, 2, 1) − ϵ{2,4})

= K(∆4(cover2((3, 3, 3, 2, 2, 1))−ϵ{4});∆4(cover2((3, 3, 3, 2, 2, 1))−ϵ{4}); cover2((3, 3, 3, 2, 2, 1))−ϵ{4})

= K(∆4((4, 2, 2, 2, 2, 1) − ϵ{4});∆4((4, 2, 2, 2, 2, 1) − ϵ{4}); (4, 2, 2, 2, 2, 1) − ϵ{4}).

Note that, in this case, we could not have applied the lemma with z = 4.



4.3. EQUIVALENT FUNCTIONS 61

4.3. Equivalent functions

We now leverage the combinatorics of root ideals and covers to show that certain closed k-

Schur Katalan functions indexed by different weights in fact are equivalent.

Lemma 4.3.1 (Mirror Lemma). [BMS] Let Ψ ⊂ ∆+ℓ be a root ideal, M a multiset on [ℓ], µ ∈ Zℓ,

and 1 ≤ y ≤ z < ℓ be indices in the same bounce path of Ψ satisfying

(1) Ψ has a ceiling in columns y, y + 1;

(2) Ψ has a mirror in rows x, x + 1 for all x ∈ downpathΨ(y, upΨ(z));

(3) Ψ has a wall in rows z, z + 1;

(4) mM(x + 1) = mM(x) + 1 for all x ∈ downpathΨ(downΨ(y), z);

(5) µx = µx+1 for all x ∈ downpathΨ(y, upΨ(z));

(6) µz = µz+1 − 1.

If mM(y + 1) = mM(y) + 1, then K(Ψ; M; µ) = 0. If mM(y + 1) = mM(y), then K(Ψ; M; µ) =

K(Ψ; M; µ − ϵz+1).

Example 4.3.2. We can apply twice Lemma 3.2.16 to the Katalan function below (first with

(y, z) = (2, 3), then (y, z) = (4, 6)); from there, we apply the Mirror Lemma 4.3.1 with y = z = 6 to

see that the function vanishes:

•

4 • • • • •

4 • • • •

3 • •

3 •

3
1

2

=

•

4 • • • • •

4 • • • • •
3 • •

3 •

3
1

2

=

•

4 • • • • •

4 • • • • •
3 • •

3 • •

3
1

2

= 0
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On the other hand, the Mirror Lemma 4.3.1 implies that

4 • • • • •

4 • • • •

3 • •

3 •

3
1

2

=

4 • • • • •

4 • • • •

3 • •

3 •

3
1

1

.

Lemma 4.3.3. Suppose a subset of roots Ψ ⊂ ∆+ℓ , a multiset M on [ℓ], γ ∈ Zℓ, and 1 ≤ y < z < ℓ

indices in the same bounce path of Ψ satisfy

• Ψ has a ceiling in columns y, y + 1;

• Ψ has a mirror in rows x, x + 1 for all x ∈ downpathΨ(y, upΨ(z));

• Ψ has a wall in rows z, z + 1;

• z′ = downΨ(z + 1) exists and z′ ∈ M;

• mM(y + 1) = mM(y) and mM(x + 1) = mM(x) + 1 for all x ∈ downpathΨ(downΨ(y), z);

• γx = γx+1 for all x ∈ downpathΨ(y, upΨ(z));

• γz = γz+1.

Then K(Ψ; M; γ) = K(Ψ \ (z + 1, z′); M \ {z′}; γ).

Proof. Let P = |downpathΨ(y, upΨ(z))|. First we expand on z′ ∈ M to get

K(Ψ; M; γ) = K(Ψ; M \ {z′}; γ) − K(Ψ; M \ {z′}; γ − ϵz′). (4.3.1)

We expand on (z + 1, z′) ∈ Ψ in the first term of the resulting difference to get

K(Ψ; M \ {z′}; γ) = K(Ψ \ (z + 1, z′); M \ {z′}; γ) + K(Ψ; M \ {z′}; γ + ϵz+1 − ϵz′).

However, by expanding on (upΨ(z+1), z+1) and subsequently applying Lemma 3.1.9, we have

that K(Ψ; M \ {z′}; γ + ϵz+1 − ϵz′) = K(Ψ; M \ {z′}; γ + ϵupΨ(z+1) − ϵz′). Note that by Lemma 3.1.13,

K(Ψ; M \ {z′}; γ + ϵupΨ(z+1) − ϵz′) = K(Ψ ∪ (upΨ(z + 1), z + 1); M \ {z′} ∪ {z + 1}; γ + ϵupΨ(z+1) − ϵz′).

In fact, we may repeat a variation of this process: expand on (up2
Ψ

(z + 1), upΨ(z + 1)), then apply

Lemma 3.1.9 to one of the resulting terms, then apply Lemma 3.1.13 with j = upΨ(z + 1). If we
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further apply Lemma 3.2.16 with y = upΨ(z + 1), we obtain

K(Ψ; M \{z′}; γ+ϵz+1−ϵz′) = K(Ψ∪ (up2
Ψ(z+1), upΨ(z+1)); M \{z′}∪{upΨ(z+1)}; γ+ϵup2

Ψ
(z+1)−ϵz′).

In total we may apply these steps P times, expanding on (upi
Ψ

(z+1), upi−1
Ψ

(z+1)), then applying

Lemma 3.1.9, then applying Lemma 3.1.13 with j = upi−1
Ψ

(z + 1)), and finally Lemma 3.2.16 with

y = upi−1
Ψ

(z + 1), i = [1, P] to show that

K(Ψ; M \ {z′}; γ + ϵz+1 − ϵz′) = K(Ψ; M \ {z′}; γ + ϵy+1 − ϵz′).

But K(Ψ; M \ {z′}; γ + ϵy+1 − ϵz′) = K(Ψ; M \ {z′}; γ − ϵz′) due to Lemma 3.1.9. Substituting this

into 4.3.1 establishes the result.

□

Example 4.3.4. Lemma 4.3.3 with y = 3 and z = 13 gives

19 • • • • • • • • • • • • • • • •
19 • • • • • • • • • • • • • • •

18 • • • • • • • • • • • •

18 • • • • • • • • • • •

18 • • • • • • • • • •

18 • • • • • • • • •

18 • • • • • • • •

17 • • • • • •

17 • • • • •

17 • • • •

12 •

8 •

7 •

7 •

4
1

1

=

19 • • • • • • • • • • • • • • • •
19 • • • • • • • • • • • • • • •

18 • • • • • • • • • • • •

18 • • • • • • • • • • •

18 • • • • • • • • • •

18 • • • • • • • • •

18 • • • • • • • •

17 • • • • • •

17 • • • • •

17 • • • •

12 •

8 •

7 •

7
4

1
1

.

Lemma 4.3.5. For λ ∈ P̃ar
k
ℓ and b ∈ [ℓ − 1] such that λb+h = λb+h+1,

g̃
(k)
coverb(λ)−ϵb+h+1

= g̃
(k)
λ−ϵb
,

where h is computed as in Definition 4.1.2.
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Proof. For Ψ = ∆k(λ − ϵb), let a j = up j
Ψ

(b) for all j ≤ c = |uppathΨ(b)|. Let d be maximal such

that λa j+h = λa j+h+1 for all j ≤ d. Note that 0 ≤ d ≤ c by definition of h in Definition 4.1.2 and

the fact that λb+h = λb+h+1. We apply Lemma 4.2.1 and satisfy the conditions of Lemma 4.3.1 with

z = b + h, which implies that

g̃
(k)
λ−ϵb
= g̃

(k)
coverb(λ) = K(∆k(coverb(λ));∆k(coverb(λ)); coverb(λ) − ϵb+h+1).

We have the conditions of Lemma 4.3.3 with γ = coverb(λ) − ϵb+h+1 and z = b + h, implying that

the righthand side is g̃(k)
coverb(λ)−ϵb+h+1

. □

Example 4.3.6. Recall the k-Schur root ideal root ideal corresponding to λ = (4, 3, 3, 3, 3, 1, 1) =

(4, 3, 1, 1) ∪ R3, k = 5, introduced in Example 3.3.18,

4 • • • • •

3 • • •

3 • •

3 •

3
1

1

With this root ideal and the descent sets produced in Example 3.3.18 in mind, we note that

g̃
(k)
{4,3,3,3,3,0,1} = g̃

(k)
cover6(λ)

as the corresponding h = 0 for this cover. Therefore, due to Lemma 4.3.5, we have

g̃
(k)
{4,3,3,3,3,0,1} = g̃

(k)
{4,3,3,3,3,0,0},

which was another term produced by Example 3.3.18. Moreover,

g̃
(k)
{4,3,3,3,2,0,1} = g̃

(k)
cover5(λ−ϵ6) = g̃

(k)
cover6(cover5(λ))

wherein both covers have h = 0. Therefore, due to Lemma 4.3.5, we have

g̃
(k)
{4,3,3,3,2,0,1} = g̃

(k)
{4,3,3,3,2,0,0},
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which was another term produced by Example 3.3.18.

Finally, we have

g̃
(k)
{4,3,3,2,3,0,1} = g̃

(k)
cover4(λ−ϵ6) = g̃

(k)
{4,4,3,2,2,0,1} = g̃

(k)
cover6(cover4(λ)),

where the first equality is due to Lemma 4.2.1, and the final equality holds as h = 0 for the second

cover. Noting further that Lemma 4.2.1 also implies g̃(k)
{4,3,3,2,3,0,0} = g̃

(k)
cover4(λ), we have that due to

Lemma 4.3.5,

g̃
(k)
{4,3,3,2,3,0,1} = g̃

(k)
{4,3,3,2,3,0,0},

justifying the observation made in Example 4.0.1 that a certain set of functions indexed by weights

from Example 3.3.18 combines to vanish.

Lemma 4.3.7. For λ ∈ Park
ℓ and b ∈ [ℓ − 1] such that coverb(λ) < Par, let Ψ = ∆k(λ − ϵb). For

all j ≤ c = |uppathΨ(b)|, denote a j = up j
Ψ

(b). Suppose there is some j < c such that λa j+h > λa j+h+1

where h corresponds to coverb(λ); let a = aJ where this holds and J is minimal. Then

g̃
(k)
λ−ϵb
= g̃

(k)
λ−ϵ{a,b}

.

Proof. First, we claim that g̃(k)
λ−ϵ{a,b}

= g̃
(k)
coverb(λ)−ϵb+h+1

. An application of Lemma 4.2.1 with z = a

implies g̃(k)
λ−ϵ{a,b}

= g̃
(k)
covera(λ)−ϵb

. For each j ∈ [1, h + 1], up∆k(covera(λ))(b + j) exists. Therefore, applying

Lemma 4.2.1 to z = b at this juncture yields g̃(k)
covera(λ)−ϵb

= g̃
(k)
coverb(λ)−ϵb+h+1

.

We next claim that g̃(k)
coverb(λ)−ϵb+h+1

− g̃
(k)
λ−ϵb
= 0. We apply Lemma 4.2.1 to g̃(k)

λ−ϵb
:

g̃
(k)
λ−ϵ{a,b}

− g̃
(k)
λ−ϵb
= g̃

(k)
coverb(λ)−ϵb+h+1

− g̃
(k)
coverb(λ).

We note that if Ψ has no roots in the row b + h + 1, then at this juncture, we can apply Proposi-

tion 3.1.6 to rewrite this difference as

K(∆k(coverb(λ));∆k(coverb(λ)) ⊔ b + h + 1; coverb(λ)),

to which we apply Lemma 3.1.13, then Lemma 3.1.9 to complete the claim.
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Suppose on the other hand that Ψ did have roots in the row b + h + 1. There must be a ceiling

in columns downΨ(a + h), downΨ(a + h) + 1. Moreover, because J was minimal, λ is constant on

the interval [aJ−1, aJ−1 + h + 1]. With this in mind, we can repeatedly apply Lemma 3.2.16 to add

roots until arriving at row b + h + 1, after which point we apply the lemma in reverse:

g̃
(k)
coverb(λ)−ϵb+h+1

= K(∆k(coverb(λ) − ϵb+h+1) ⊔ (aJ−1 + h);∆k(coverb(λ) − ϵb+h+1) ⊔ (aJ−1 + h); coverb(λ) − ϵb+h+1)

= . . .

= K(∆k(coverb(λ) − ϵb+h+1) ⊔ (aJ−1 + h) ⊔ · · · ⊔ (a1 + h);

∆k(coverb(λ) − ϵb+h+1) ⊔ (aJ−1 + h) ⊔ · · · ⊔ (a1 + h); coverb(λ) − ϵb+h+1)

= K(∆k(coverb(λ) − ϵb+h+1) ⊔ (aJ−1 + h) ⊔ · · · ⊔ (a1 + h);

∆k(coverb(λ) − ϵb+h+1) ⊔ (aJ−1 + h) ⊔ · · · ⊔ (a1 + h); coverb(λ) − ϵb+h+1)

= K(∆k(coverb(λ)) ⊔ (aJ−1 + h) ⊔ · · · ⊔ (a1 + h);

∆k(coverb(λ)) ⊔ (aJ−1 + h) ⊔ · · · ⊔ (a1 + h); coverb(λ) − ϵb+h+1)

= K(∆k(coverb(λ)) ⊔ (aJ−1 + h) ⊔ · · · ⊔ (a2 + h);

∆k(coverb(λ)) ⊔ (aJ−1 + h) ⊔ · · · ⊔ (a2 + h); coverb(λ) − ϵb+h+1)

= . . .

= K(∆k(coverb(λ));∆k(coverb(λ)); coverb(λ) − ϵb+h+1).

From this stage, the previous argument applies to prove the result.

□

Example 4.3.8. Consider k = 4, µ = (1, 1, 1, 1), and the k-rectangle (2, 2, 2); let λ = µ∪(2, 2, 2),
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2 • • • •

2 • • •

2 • •

1
1

1
1

By inspecting the k-Schur root ideal, it is evident that {6} ⊂ Id,k
µ . We note that cover6(λ) =

(2, 2, 2, 1, 1, 0, 1), so the corresponding h-value is 0 and up∆k(λ)(6) = 3. Therefore, Lemma 4.3.7

implies that

g̃
(k)
λ−ϵ{6}
= g̃

(k)
λ−ϵ{3,6}

.

Note that in this case, {3, 6} ⊂ Id,k
µ . On the other hand, while h = 0 corresponds to cover6(λ), so

7 = 6 + h + 1, we have that {7} 1 Id,k
µ (and hence {6, 7} 1 Id,k

µ ).





CHAPTER 5

Cancellation

The straightening and cancellation laws introduced in Chapter 4 apply to individual closed

k-Schur Katalan functions, so to answer the central questions raised at the start of the preceding

chapter, we need a framework for grouping together the functions indexed by the set

Id,k
µ = ∪i∈[r+d,r+2d−1]downpath∆k(λ)(i),

which weights the functions of the sum 3.3.7. In this chapter, we offer a result, Theorem 5.0.11,

that leverages the structure of Id,k
µ as well as our cancellation laws to prove that an important family

of closed k-Schur Katalan functions in the sum 3.3.7 adds to 0.

Throughout this section, we use the notation that for D ⊂ Id,k
µ with elements a1 < · · · < at, we

let λD,0 = λ − ϵD; for i > 0, we have λD,i = coverai−1(λ
D,i−1) + ϵai , Ψ

D,i = ∆k(λD,i − ϵai), and hD
i is the

h-value of coverai(λ
D,i). We will also often use the notation that λ = µ∪Rd when a certain µ ∈ Parℓk

and Rd a k-rectangle are specified.

Remark 5.0.1. If D = {a1, . . . , at}, then by definition, λD,1
x = λx for x < a2 and λD,1

a2 = λa2 − 1.

Hence λD,1
a2−1 > λ

D,1
a2 , so a1 + hD

1 < a2. Therefore, λD,2
x = λx for a2 ≤ x < a3 and λD,2

a3 = λa3 − 1.

Hence λD,2
a3−1 > λ

D,2
a3 . By iteration, we have that ax + hD

x < ax+1 for all 1 ≤ x ≤ t − 1 and

λD,x
v =


λv for v = ax or for v > ax where v < D

λv − 1 for all v ∈ D where v > ax

(5.0.1)

5.0.1. Rewriting Id,k
µ .

Definition 5.0.2.

D = {D ⊂ Id,k
µ |[ax, ax + hD

x ] ⊂ Id,k
µ for every ax ∈ D, and if λax+hD

x
= λax+hD

x +1,

69
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then ax + hD
x + 1 ∈ D and |uppathΨD,x(ax + hD

x + 1)| ≥ |uppathΨD,x(ax)|}.

Conjecture 5.0.3. If λ = µ ∪ Rd, then

g̃
(k)
R∗d
g̃

(k)
µ =

∑
D∈D,D,∅

(−1)|D|+1
g̃

(k)
λ−ϵD

=
∑

D∈D,D,∅

(−1)|D|+1
g̃

(k)
λD ,

where λD = coverct(. . . (coverc1(λ) . . . ) is the chain of covers indexed by D = {c1, . . . , ct} ordered

so that for all 1 ≤ i ≤ t, we have λci > λci+1 , or, if λci = λci+1 then ci > ci+1.

Example 5.0.4. Consider k = 4, µ = (3, 3, 1), and R3 = (3, 3),

g̃
(4)
µ∪R3
=

3 • • •

3 • •

3 •

3
1

In this case, Id,k
µ = {2, 3, 4, 5} andD consists of the sets {4}, {5}, and {4, 5}:

• cover4(µ ∪ R3) = (3, 3, 3, 2, 1)

• cover5(µ ∪ R3) = (3, 3, 3, 3)

• cover5(cover4(µ ∪ R3)) = (3, 3, 3, 2)

g̃
(4)
(3,3,1)g̃

(5)
(3,2) =

g̃
(4)
cover4(µ∪R3) + g̃

(4)
cover5(µ∪R3)

−g̃
(4)
cover4(cover5(µ∪R3)).

Note that in this case, g̃(4)
cover5(cover4(µ∪R3)) = g̃

(4)
cover4(cover5(µ∪R3)).

We make progress towards Conjecture 5.0.3 by breaking the complement ofD in Id,k
µ into two

disjoint sets; an involution on one of these sets is a promising approach to a proof of the conjecture.
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Definition 5.0.5. We define D1 as the set of all D ⊂ Id,k
µ such that there exists some ax ∈ D

satisfying three conditions:

λax+hD
x
= λax+hD

x +1, (5.0.2)

[ax, ax + hD
x + 1] ⊂ Id,k

µ , (5.0.3)

ax + hD
x + 1 ∈ D⇒ |uppathΨD,x(ax + hD

x + 1)| < |uppathΨD,x(ax + hD
x )|. (5.0.4)

When it is understood that D ∈ D1, we let j(D) denote the minimum of all x ∈ [t] such that

ax ∈ D satisfies 5.0.2, 5.0.3, and 5.0.4.

Our goal in this chapter is to show that closed k-Schur Katalan functions with weights indexed

by members ofD1 vanish from the result of Theoream 3.3.16.

5.0.2. An involution onD1. To rewrite Theorem 3.3.16 usingD1, we first establish the exis-

tence of a useful involution on elements ofD1.

Lemma 5.0.6. An involution on D1 is given by the map defined by taking the image of D ∈ D1

with elements a1 < · · · < at and j = j(D) to be ϕ(D) = D ∪ {a j + hD
j + 1} if a j + hD

j + 1 < D and

ϕ(D) = D \ {a j + hD
j + 1} otherwise.

Proof. Assume a j + hD
j + 1 < D. Since a j + hD

j < a j+1 by Remark 5.0.1, D′ := {a, . . . , a j, a j +

hD
j + 1, a j+1, . . . , at} is in ascending order. In particular, λD, j − ϵa j+hD

j +1 = λ
D′, j. Therefore, hD

j = hD′
j

and j(D′) = j. Because λD, j
a j+hD

j
= λD

a j+hD
j +1

by Definition 5.0.5 and ( 5.0.1), the maximality of hD
j

for covera j(λ
D, j) implies that |uppathΨD, j(a j)| > |uppathΨD, j(a j + hD

j + 1)|. Because these uppaths are

the same taken with respect to ΨD′, j, we have the necessary conditions to ensure D′ ∈ D1. Since

j(D′) = j, we also have that ϕ(D′) = D.

If a j + hD
j + 1 ∈ D, then a j+1 = a j + hD

j + 1 by Remark 5.0.1; let D′ = {a1, . . . , a j, a j+2, . . . , at}.

Hence, λD′, j
a j+hD

j
= λa j+hD

j
= λa j+hD

j +1 = λ
D′, j
a j+hD

j +1
by ( 5.0.1). Since λ − ϵD − ϵa j+hD

j +1 = λ − ϵD′



72 5. CANCELLATION

implies λD, j + ϵa j+hD
j +1 = λ

D′, j, we have that uppathΨD, j(a j + x) = uppathΨD′ , j(a j + x) for 0 ≤ x ≤

a j + hD
j + 1. Therefore, |uppathΨD, j(a j + hD

j + 1)| < |uppathΨD, j(a j)| implies |uppathΨD′ , j(a j + hD
j +

1)| < |uppathΨD′ , j(a j)|, ensuring that hD
j = hD′

j . We have then that D′ ∈ D1, j(D′) = j(D), and

ϕ(D′) = D. □

Example 5.0.7. Example 3.3.18 expresses the product g̃(5)
R∗3
g̃

(5)
(4,3,1,1) (λ = (4, 3, 3, 3, 3, 1, 1)) as a

sum of closed k-Schur Katalan functions indexed by the following weights:

• {4, 3, 3, 3, 2, 1, 1}, {4, 3, 3, 2, 3, 1, 1}, {4, 3, 3, 3, 3, 1, 0}, {4, 3, 3, 2, 3, 1, 0}, {4, 3, 3, 2, 2, 1, 1},

{4, 3, 3, 3, 2, 1, 0}, {4, 3, 3, 2, 2, 1, 0}, {4, 3, 3, 2, 2, 0, 1}, {4, 3, 3, 2, 2, 0, 0}, which each corre-

spond to a set D < D1 and,

• {4, 3, 3, 3, 3, 0, 1}, {4, 3, 3, 3, 2, 0, 0}, {4, 3, 3, 2, 3, 0, 1}, {4, 3, 3, 3, 3, 0, 0}, {4, 3, 3, 2, 3, 0, 0},

{4, 3, 3, 3, 2, 0, 1}, which each correspond to a set D ∈ D1.

We may inspect the relationship of each D ∈ D1 to Lemma 5.0.6:

• {4, 3, 3, 3, 3, 0, 1} corresponds to D = {6}, ϕ(D) = {6, 7}, and we have λ−ϵ{6,7} = {4, 3, 3, 3, 3, 0, 0} ∈

D1;

• {4, 3, 3, 3, 2, 0, 0} corresponds to D = {5, 6, 7}, ϕ(D) = {5, 6}, and we have λ − ϵ{5,6} =

{4, 3, 3, 3, 2, 0, 1} ∈ D1;

• {4, 3, 3, 2, 3, 0, 1} corresponds to D = {4, 6}, ϕ(D) = {4, 6, 7}, and we have λ − ϵ{4,6,7} =

{4, 3, 3, 2, 3, 0, 0} ∈ D1.

We note that these pairings were leveraged in Example 4.3.6.

While in light of Lemma 4.3.5, Lemma 5.0.6 is a compelling way to cancel elements of D1

from the sum produced in Theorem 3.3.16, it is important to recognize that D ∈ D1 may be such

that |D| > 1. With this in mind, we note a corollary to Lemma 4.2.1 which suggests we can

compute covers in ascending order:

Corollary 5.0.8. For λ = µ ∪ Rd, let D = {a1, . . . , at} ⊂ Id,k
µ where a1 < · · · < at. For any fixed

i ∈ [t], let Ψ1,Ψ2 ⊆ ∆
+ be such that for all (a, b) ∈ Ψ1 or (a, b) ∈ Ψ2, we have a > ai + hD

i and
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b > k − λai + ai + hD
i + 1. Then

K(∆k(λ − ϵD) ∪ Ψ1;∆k(λ − ϵD) ∪ Ψ2; λ − ϵD)

= K(∆k(λD,i − ϵai) ∪ Ψ1;∆k(λD,i − ϵai) ∪ Ψ2; λD,i − ϵai).

= K(∆k(coverat(λ
D,t)) ∪ Ψ1;∆k(coverat(λ

D,t)) ∪ Ψ2; coverat(λ
D,t)).

Lemma 5.0.9. Suppose that D = {a1, . . . , at} ∈ D1 (ascending order). Then

(−1)|D|+1K(∆k(µ ∪ Rd − ϵD);∆k(µ ∪ Rd − ϵD); µ ∪ Rd − ϵD)

+(−1)|ϕ(D)|+1K(∆k(µ ∪ Rd − ϵϕ(D));∆k(µ ∪ Rd − ϵϕ(D)); µ ∪ Rd − ϵϕ(D)) = 0.

Proof. Suppose without loss of generality that |ϕ(D)| = |D| + 1. By applying Corollary 5.0.8,

we have

(−1)|D|+1K(∆k(µ ∪ Rd − ϵD);∆k(µ ∪ Rd − ϵD); µ ∪ Rd − ϵD)

= (−1)|D|+1K(∆k(λD, j+1 − ϵa j+1);∆
k(λD, j+1 − ϵa j+1); λ

D, j+1 − ϵa j+1),

where j(D) = j. Similarly,

(−1)|ϕ(D)|+1K(∆k(µ ∪ Rd − ϵϕ(D));∆k(µ ∪ Rd − ϵϕ(D)); µ ∪ Rd − ϵϕ(D))

= (−1)|ϕ(D)|+1K(∆k(λD, j+1 − ϵa j+1 − ϵa j+hD
j +1);∆k(λD, j+1 − ϵa j+1 − ϵa j+hD

j +1); λD, j+1 − ϵa j+1 − ϵa j+hD
j +1),

as covera j(λ
ϕ(D), j) = covera j(λ

D, j) − ϵa j+hD
j +1 due to our assumption that D ∈ D1 with j(D) = j.

Lemma 4.3.5 completes the claim.

□

Example 5.0.10. Consider k = 11, µ = (9, 9, 8, 8, 5, 5, 5, 5, 5, 5, 3, 3, 3, 2, 1, 1), R8 = (8, 8, 8, 8),

and the k-Schur root ideal for λ = µ ∪ R8:
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9 • • • • • • • • • • • • • • • • •

9 • • • • • • • • • • • • • • • •

8 • • • • • • • • • • • • • •

8 • • • • • • • • • • • • •

8 • • • • • • • • • • • •

8 • • • • • • • • • • •

8 • • • • • • • • • •

8 • • • • • • • • •

5 • • • • •

5 • • • •

5 • • •

5 • •

5 •

5
3

3
3

2
1

1

If D = {6, 9} ⊂ Id,k
µ , we have that as evidenced by the root ideal,

λD,1 = λ − ϵ9

λD,2 = (9, 9, 9, 9, 8, 7, 7, 7, 5, 5, 5, 5, 5, 5, 3, 3, 3, 2, 1, 1) − ϵ9

λD,3 = (9, 9, 9, 9, 8, 7, 7, 7, 4, 5, 5, 5, 5, 5, 3, 3, 3, 2, 1, 1)

Because {10} ⊂ Id,k
µ , we have D ∈ D1 and ϕ(D) = {6, 9, 10}, so by Lemma 5.0.9,

−g̃
(k)
λ−{6,9} + g̃

(k)
λ−{6,9,10} = 0.

Theorem 5.0.11. For µ ∈ Parℓk reduced and R∗d a k-rectangle,

g̃
(k)
µ g̃

(k)
R∗d
=

∑
D⊂Id,k

µ ,D<D1,D,∅

(−1)|D|+1
g̃

(k)
λ−ϵD
.
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Proof. Lemma 5.0.6 implies that D1 = S 1 ⊔ S 2, where S 1 = {D ∈ D1 : a j + hD
j + 1 ∈ D} and

S 2 = {ϕ(D) : D ∈ S 1}. We have

∑
D∈D1,D,∅

(−1)|D|+1
g̃

(k)
λ−ϵD
=

∑
D∈S 1

(
(−1)|D|+1

g̃
(k)
λ−ϵD
+ (−1)|ϕ(D)+1|

g̃
(k)
λ−ϵϕ(D)

)
= 0,

where the final equality is due to Lemma 5.0.9. Therefore, Theorem 3.3.16 implies that

g̃
(k)
µ g̃

(k)
R∗d
=

∑
D⊂Id,k

µ ,D,∅

(−1)|D|+1
g̃

(k)
λ−ϵD
=

∑
D⊂Id,k

µ ,D<D1,D,∅

(−1)|D|+1
g̃

(k)
λ−ϵD
.

□





CHAPTER 6

Future work

In the preceding chapters, we proved a multiplication rule for the product of closed k-Schur

Katalan functions, one of which is weighted generically and another of which is indexed by the

rectangle-minus-a-box partition R∗d, by showing that several families of Katalan functions are in

fact equivalent. The approach in Chapter 3 took several stages, leveraging the combinatorics of

root ideals and root expansions, and it culminated in the construction of the set Id,k
µ . Id,k

µ indexes the

weights in the sum 3.3.7 using downpaths, and Chapters 4 and 5 laid out necessary groundwork to

show that one subset of it,D1, in fact indexes a sum of closed k-Schur Katalan functions equivalent

to 0. Equipped with these results, we conclude our work by exploring progress regarding D∨1 =

{D : D ⊂ Id,k
µ } \ D1. We offer future work building on 5.0.11 and conjecture that another subset of

Id,k
µ , D2, has an analogous result to that of Theorem 5.0.11. We conjecture further that this would

lead to a cancellation-free version of Theorem 5.0.11.

Definition 6.0.1.

D2 = {D ∈ D∨1 | there exists ax ∈ D where ax + i < Id,k
µ for some i ≤ hD

x + 1 if λax+hD
x
= λax+hD

x +1

and i ≤ hD
x if λax+hD

x
> λax+hD

x +1}.

When it is understood that D ∈ D2, we let j(D) denote the minimum of all x ∈ [t] such that

ax ∈ D satisfies the criterion characterizing D2. Further, we let i(D) = min{i : a j(D) + i < Id,k
µ } and

u = up f
Ψ

(a j(D)) where Ψ = ∆k(λ) and f = |uppathΨ(a j(D) + i(D))|.

Remark 6.0.2. By definition,D1 andD2 are disjoint sets, andD = Id,k
µ \ (D1 ∪D2).

77
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Conjecture 6.0.3.

∑
D∈D2

(−1)|D|+1K(∆k(µ ∪ Rd − ϵD);∆k(µ ∪ Rd − ϵD); µ ∪ Rd − ϵD) = 0.

Example 6.0.4. Consider k = 4, µ = (1, 1, 1, 1), and the k-rectangle (2, 2, 2); let λ = µ∪(2, 2, 2).

In this case, we may inspect members of Id,k
µ to determine whether or not they are elements of

D1 orD2 (the following is not an exhaustive list of elements of Id,k
µ ):

• cover3(λ) = (2, 2, 1, 1, 1, 1, 1), so {3} ∈ D

• cover4(λ) = (2, 2, 2, 0, 1, 1, 1), so {4} ∈ D1

• cover5(λ) = (2, 2, 2, 1, 0, 1, 1), so {5} ∈ D1

• cover6(λ) = (2, 2, 2, 1, 1, 0, 1), so {6} ∈ D2

• cover6(cover3(λ)) = (2, 2, 2, 1, 1), so {3, 6} ∈ D2.

As this example demonstrates, the chain of covers indexed by elements of D2 need not produce a

partition (though they may).

Note that in this case, we have

g̃
(4)
(2,1,1,1)g̃

(4)
(2,2,1) = g̃

(4)
cover3((2,2,2)∪(2,1,1,1)).

It can be verified that here, every subset of {3, 4, 5, 6} besides {3} is an element of eitherD1 orD2.

In particular, in addition to the listed sets thusfar, we have:

• ϕ({4}) = {4, 5} ∈ D1,

• ϕ({5}) = {5, 6} ∈ D1,

• {3, 4} ∈ D1,

• ϕ({3, 4}) = {3, 4, 5} ∈ D1,

• {3, 5} ∈ D1,

• ϕ({3, 5}) = {3, 5, 6} ∈ D1,

• {4, 6} ∈ D1,

• ϕ({4, 6}) = {4, 5, 6} ∈ D1,

• {3, 4, 6} ∈ D1,
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• ϕ({3, 4, 6}) = {3, 4, 5, 6} ∈ D1.

6.1. Progress onD2

Because our conjecture is that the closed k-Schur Katalan functions with weights indexed by

D2 in the sum from Theorem 5.0.11 vanish, a natural suggestion is to consider an involution on

elements of D2 in the spirit of Lemma 5.0.6. However, attempts thus far to define a similar map

on elements of D2 have failed. Of particular challenge is determining the appropriate function in

the sum of Theorem 5.0.11 to “pair” with a given g̃(k)
λ , λ ∈ D2, to establish an involution (and

ultimately, an analog to Lemma 5.0.9).

Example 6.1.1. The sum produced by Theorem 3.3.16 applied to g̃(5)
(4,2,2,1,1)g̃

(5)
R∗3

includes a closed

k-Schur Katalan function with weight (4, 3, 3, 3, 2, 2, 0, 1) = λ − ϵD, where λ = (4, 2, 2, 1, 1) ∪

(3, 3, 3) and D = {7}. Here, D ∈ D2: we have λD,2 = (4, 3, 3, 3, 2, 2, 0, 1), hD
1 = 0, and a1 + 1 < I3,5

λ .

Theorem 3.3.16 also produces a closed k-Schur Katalan function indexed by (4, 3, 3, 2, 2, 2, 0, 1) =

λ− ϵD∪{4}, and D∪ {4} ∈ D2 as well: we have λD,3 = (4, 3, 3, 2, 2, 2), hD
2 = 1, and a2 + 1 < I3,5

λ . Note

that

g̃
(5)
λ−ϵD
− g̃

(5)
λ−ϵD∪{4}

=

4 • • • • • •

3 • • • •

3 • • •

3 • •

2
2

0
1

−

4 • • • • • •

3 • • • •

3 • • •

2 •

2
2

0
1

=

4 • • • • • •

3 • • • •

3 • • •

3 • •

2
2

0
1

−

4 • • • • • •

3 • • • •

3 • • •

3 • •

2
2

0
0

=

•

4 • • • • • •

3 • • • •

3 • • •

3 • •

2
2

0
1

,

where the final equality is due to Proposition 3.1.6. However, due to Lemma 4.3.1, this final

function vanishes.

Promising examples like this suggest a misleading candidate for an involution on D2. This

failed candidate for the involution is taking the image of D ∈ D2 with elements a1 < · · · < at and

j = j(D), i = i(D) to be ϕ̃(D) = D∪{u} if u < D and ϕ(D) = D\{u} otherwise, where u = up f
ΨD, j(a j),
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f = |uppath∆k(λ)(a j+ i)| (notation from Definition 6.0.1). Our next example illustrates evidence that

such a definition fails.

Example 6.1.2. Let k = 4, µ = (4, 3, 1, 1, 1), and consider R3 = (3, 3).

g̃
(4)
µ∪R3
=

4 • • • • • •
3 • • • •

3 • • •

3 • •

1
1

1

.

In this case, Id,k
µ = {3, 4, 5, 6}, andD consists of the sets {3}, {4}, and {3, 4}, and we have that:

g̃
(4)
µ ∗ g̃

(4)
R∗3
= g̃

(4)
cover3(µ∪R3) + g̃

(4)
cover4(µ∪R3) − g̃

(4)
cover3(cover4(µ∪R3)).

We have {6}, {4, 6}, {3, 6}, {3, 4, 6}, {5, 6}, {3, 5, 6}, {3, 4, 5, 6}, {5}, {3, 5}, {3, 4, 5} ∈ D2, and {4, 5},

{4, 5, 6} ∈ D1. In light of Theorem 3.3.16, Theorem 5.0.11 implies that

g̃
(4)
µ∪R3−ϵ{4,5}

− g̃
(4)
µ∪R3−ϵ{4,5,6}

= 0.

One example of evidence that the proposed definition of ϕ̃ fails in general is to consider k = 4,

µ = (4, 3, 1, 1, 1), and R3 = (3, 3) as in Example 6.1.2. We have {5, 6} ∈ D2, as h{5,6}2 = 0

and 6 + 1 = 7 < Id,k
µ ; we also have {4, 5} ∈ D1, as h{4,5}2 = 0, so we meet the conditions of

Definition 5.0.5 with ax = 5, so x = 2 (as 6 = ax + 1 ∈ Id,k
µ ). In this example, the involution

ϕ on D1 defined in Lemma 5.0.6 is such that ϕ({4, 5}) = {4, 5, 6}, as while 6 ∈ {4, 5, 6}, we have

|uppathΨ{4,5},x(6)| < |uppathΨ{4,5},x(ax+h{4,5}x )|. However, we have 4 = u = upΨ{5,6},2(6), and as discussed,

{4, 5, 6} < D2. Through such exploration, it has become evident that exploring both D2 in general

and the uppaths of elements in a given D ∈ D2 are essential to making progress. One possibility is

that is that an involution can be defined by revising ϕ̃ to map only certain D ∈ D2 such that u < D

to D ∪ {u}. To that end, we offer a series of lemmas which could assist in finding a successful

involution onD2.
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Lemma 6.1.3. If D ∈ D2 with u < D (notation from Definition 6.0.1), then

g̃
(k)
λ−ϵD
= g̃

(k)
λ−ϵD∪{u}

.

Proof. Throughout this proof, let D′ = D∪ {u} = {a1, . . . , am, u, am+1, . . . , at} (ascending order)

and j = j(D). We also use the notation that for any set S = {z1, . . . , zq}, yS
x is the y-value corre-

sponding to coverzx(λ
S ,x). We claim that λD′, j+2 = λD, j+1 − ϵa j+hD

j +1. To that end, we split into two

cases depending on hD
m. First assume am + hD

m < u. In this case, λD,m+1 − ϵu = λ
D′,m+1. Note also

that in this case, λam+hD
m
> λu, as D < D1 and j(D) = j > m. We claim now that hD

j = hD′
m+1: due

to Lemma 6.1.6, uppathΨD, j(a j + v) and uppathΨD′ ,m+1(u + v) agree on all elements less or equal to

u+ v, 0 ≤ v ≤ hD
j + 1, and (λD′,m)u+i = (λD, j)u+i > (λD′,m)u+i+1 = (λD, j)u+i+1 by construction. We also

note Lemma 6.1.6 implies that for all m+ 1 ≤ v < j, yD
v = yD′

v+1 and hD
v = hD′

v+1. Finally, we consider

λD′, j+2 and λD, j+1: we have topΨD′ , j+1(a j) = downΨD, j(u), so yD′
j+2 + 1 = u ∈ uppathΨD′ , j+1(a j + 1) and

hD′
j+1 = hD

j + 1.

Suppose now that am + hD
m ≥ u. We first observe that this implies am + hD

m = u + i, as D < D1

and j(D) > m (so each u + v ∈ Id,k
µ for 0 ≤ v ≤ i). Note further that in this case, u − 1 = am + hD′

m ∈

uppathΨD, j(a j), u ∈ uppathΨD, j(a j+1). We have yD
j +1 = upq

ΨD, j(u), where q = |uppathΨD, j(u−1)|. On

the other hand, [yD′
m + 1, yD′

m + hD′
m ] = [upc

ΨD,m(am + 1), upc
ΨD,m(u− 1)], where c = |uppathΨD,m(am)|. We

have λam+hD′
m
= λam+hD′

m +1, but because D ∈ D2, we have |uppathΨD′ ,m(am+hD′
m +1)| ≥ |uppathΨD′ ,m(am+

hD′
m )|, as u− 1 = am + hD′

m ∈ uppathΨD, j(a j), u ∈ uppathΨD, j(a j + 1). We also note that because u− 1 ∈

uppathΨD, j(a j), uppathΨD, j(a j) contains some x ∈ uppathΨD′ ,m+1(u) where x ∈ [yD
m + 1, yD

m + hD
m]. Simi-

larly,

(u + v) ∈ uppathΨD, j(a j + v + 1) for each v ∈ [hD
j − 1]; these observations imply that topΨD′ ,m+1(u) =

topΨD, j(a j), hD′
m+1 = hD

j , and yD′
m+1 = yD

j . Finally, we claim that hD′
j+1 = hD

j + 1 and yD′
j+1 + 1= upc

ΨD,m(u).

This is because there is a ceiling in columns downΨD′ , j+1(upc
ΨD′ ,m(u − 1)),

downΨD′ , j+1(upc
ΨD′ ,m(u−1))+1 ofΨD′, j+1, while for 1 ≤ v ≤ hD

j , we have u+v−1 ∈ uppathΨD′ , j+1(a j+v)

and up
|uppath

ΨD′ , j+1 (a j)|

ΨD′ , j+1 (a j + v) = upc
ΨD,m(u+ v− 1). Granted then that λD′, j+2 = λD, j+1 − ϵa j+hD

j +1, we can

apply Lemma 4.3.5. □
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Lemma 6.1.4. Suppose D = {a1, . . . , at} ∈ D2, and let u, Ψ, and j(D) = j be as the notation

in Definition 6.0.1. If u < D, then for all s ∈ uppathΨ(a j) with u ≤ s and 0 ≤ p ≤ hD
j , we have

s + p < D.

Proof. We first show that for all s ∈ uppathΨ(a j) with u < s, we have s < D. Suppose for

the sake of contradiction that there exists an element in D meeting this condition; fix aw as the

largest such element in D. We claim this assumption implies there exists az ∈ D such that for some

0 ≤ v ≤ hD
z :

• az + v ∈ uppathΨ(a j)

• az + v ∈ uppathΨD, j(a j + 1)

• az > u.

To justify this claim, it suffices to consider the case wherein aw < uppathΨD, j(a j + 1). Then we

have one of three possibilities: hD
w = 0, λaw = λaw+1, and aw + 1 < D (so there is a wall in rows

aw, aw + 1 of ΨD, j); hD
j = 0 and there is a ceiling that blocks uppathΨD, j(a j + 1) from going up to

aw; or aw ∈ [y + 1, y + hD
q ] for at least one aq ∈ D. In fact, the first situation is impossible: if this

held and aw + 1 < I, then we would meet the conditions of Definition 6.0.1 with x = w (which

is a contradiction as j is minimal but w < j), but on the other hand, if aw + 1 ∈ I, we meet the

conditions of Definition 5.0.5, which contradicts the fact that because D ∈ D2, we have D < D1.

The next possibility, that hD
j = 0 and there is a ceiling that blocks uppathΨD, j(a j + 1) from going up

to aw, can also be eliminated: this assumption would imply i(D) = 1 and u ≥ aw (a contradiction

even if u = aw because we have assumed u < D).

Assume instead then that aw ∈ [y + 1, y + hD
q ] for at least one aq ∈ D; fix q minimal such that

this is so. Then we claim this implies coveraq(λ
D,q) necessarily decrements coveraq−1(λ

D,q−1) in a

row aq + c ∈ uppathΨ(a j), 0 ≤ c ≤ hD
q : even if c = 0 and y + 1 = aw, the cover decrements in this

row. From here, we may iterate our argument by replacing aw with aq + c, beginning by noting that

it suffices to consider the case that aq+ c < uppathΨD, j(a j+1). We continue until we have some pair

z, v, which meets the conditions of the claim; the process necessarily terminates when we obtain

maximal az + v, az ∈ D and 0 ≤ v ≤ hD
z , with az + v ∈ uppathΨ(a j).
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We now note that with i = i(D) as in Definition 6.0.1, we have az + v + i < Id,k
µ , so because j is

minimal and j > z, we must have one of two possible cases: if λaz+hD
z
= λaz+hD

z +1, then we must have

v+i > hD
z +1, and if λaz+hD

z
> λaw+hD

z +1, then we must have v+i > hD
z . If we suppose λaz+hD

z
= λaz+hD

z +1,

then we either have a wall in rows az + hD
z , az + hD

z + 1 of ΨD, j (so az + hD
z + 1 < D) or we have

az + hD
z + 1 ∈ D. But a wall in rows az + hD

z , az + hD
z + 1 of ΨD, j would reach a contradiction: were

[az, az + hD
z + 1] 1 Id,k

µ , we meet Definition 6.0.1 with x = z < j, and [az, az + hD
z + 1] ⊆ Id,k

µ would

mean D ∈ D1. On the other hand, if az + hD
z + 1 ∈ D, we may relabel az + hD

z + 1 = az+1. We may

then iterate this argument for az+1, and again as needed, getting some maximal m ≥ 1 such that λ is

constant on [az, az+m]. We focus then on this az+m ∈ D, which is such that az+m ∈ uppathΨ(a j + s),

az+m ∈ uppathΨD, j(a j+ s+1) for some s ≤ hD
j . Supposing then that λaz+m+hD

z+m
= λaz+m+hD

z+m+1, we reach

a contradiction analogous to our initial observations prohibiting a wall in rows az + hD
z , az + hD

z + 1

in ΨD, j, and because m is maximal, this was the only possibility to eliminate when λaz+m+hD
z+m
=

λaz+m+hD
z+m+1. Otherwise, if λaz+m+hD

z+m
> λaz+m+hD

z+m+1, we reach a contradiction as well: by construction

of i, we must have that λ is constant on [az+v, az+v+i], but j > z+m implies az+v+i > az+m+hD
z+m.

If we had instead began by assuming that λaz+hD
z
> λaz+hD

z +1 (so v + i > hD
z ), we reach a similar

contradiction: this assumption would imply a j + hD
z + 1 < Id,k

µ , so we would need i = hD
z + 1, but by

construction of u this would mean u = az.

To see the generalization, we note that our preceding argument gives that upe
Ψ

(a j) = upe
ΨD, j(a j)

for all upe
Ψ

(a j) > u, so if s + p ∈ D for some s = upe
Ψ

(a j) > u, we may fix s minimal, then p

minimal such that this is so. Then we may conclude that either p > hD
j or s + p = y + 1 for y + 1

corresponding to some aq ∈ D. However, if s + p = y + 1, then s + p = upm
Ψ

(aq), i.e., aq = s′ + p

for s′ ∈ uppathΨ(a j). If we repeat this argument for s′ + p, then iterate it again as needed, we find

some maximal s̃ + p ∈ D such that s̃ ∈ uppathΨ(a j) and can conclude that p > hD
j . □

The argument housed within Lemma 6.1.4 proves the following corollary.

Corollary 6.1.5. If D ∈ D2 with u < D (notation from Definition 6.0.1), suppose D ∪ {u} =

{a1, . . . , am, u, . . . , at} in ascending order. Then there exists no pair m + 1 ≤ z ≤ t, 0 ≤ v ≤ hD
z such

that:
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• az + v ∈ uppathΨ(a j)

• az + v ∈ uppathΨD, j(a j + 1).

Lemma 6.1.6. If D ∈ D2 with u < D (notation from Definition 6.0.1), suppose D ∪ {u} =

{a1, . . . , am, u, . . . , at} in ascending order. Then for all m < e < j = j(D) and all 0 < p ≤ hD
e , we

have
{upΨD,e(ae + p), up2

ΨD,e(ae + p), . . . , upM
ΨD,e(ae + p)}

= {upΨD∪{u},e+1(ae + p), up2
ΨD∪{u},e+1(ae + p), . . . , upM

ΨD∪{u},e+1(ae + p)},
(6.1.1)

where M = |uppathΨD,e(ae)|.

Proof. Suppose for the sake of contradiction that there exist e and p such that 6.1.1 does not

hold. Then we may fix m < e < j minimal such that this is so, then fix corresponding p minimal.

With these set, let 1 ≤ c′ ≤ M be minimal such that upc′
ΨD,e(ae + p) , upc′

ΨD∪{u},e+1(ae + p). We have

u ∈ uppathΨD,e(ae + p), as we have assumed e and p are minimal such that 6.1.1 does not hold.

This implies one of two possibilities: either there exists some ṽ, c̃ such that aṽ + c̃ ∈ downpathΨ(u),

where ṽ ≤ e and c̃ ≤ hD
ṽ , or there exists w ∈ downpathΨ(u) such that w ∈ [y + 1, y + hD

q ] for some

q < e. We claim that either case implies there exists a pair z, v prohibited by Corollary 6.1.5.

To justify the existence of z and v, first assume the existence of aṽ + c̃ as described; set aṽ + c̃

maximal such that the condition is met. It suffices to assume then that aṽ + c̃ < uppathΨD, j(a j + 1)

(note: we may have that no aṽ + c̃ existed at all, i.e. there exists w ∈ downpathΨ(u) such that

w ∈ [y + 1, y + hD
q ] for some q < v, and we consider this separately). Then we have one of three

possibilities: hD
ṽ = c̃, λaṽ+c̃ = λaṽ+c̃+1, and aṽ + c̃+ 1 < D (so there is a wall in rows aṽ + c̃, aṽ + c̃+ 1

of ΨD, j); hD
j = 0 and there is a ceiling that blocks uppathΨD, j(a j + 1) from going up to aṽ + c̃; or

aṽ + c̃ ∈ [y + 1, y + hD
q ] for at least one aq ∈ D. However, the first listed situation is impossible: if

this held and aṽ + c̃ + 1 < Id,k
µ , then we would meet the conditions of Definition 6.0.1 with x = ṽ

(which is a contradiction as j is minimal but ṽ < j), but on the other hand, if aṽ + c̃ + 1 ∈ Id,k
µ , we

meet the conditions of Definition 5.0.5, which contradicts the fact that because D ∈ D2, we have

D < D1. The next possibility, that hD
j = 0 and there is a ceiling that blocks uppathΨD, j(a j + 1) from
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going up to aṽ + c̃, can also be eliminated: this assumption would imply i(D) = 1 and u ≥ aṽ + c̃ (a

contradiction even if u = aṽ + c̃ because we have assumed u < D).

Assume instead then that aṽ + c̃ ∈ [y + 1, y + hD
q ] for at least one aq ∈ D; fix q minimal such

that this is so. Then we claim this implies coveraq(λ
D,q) necessarily decrements coveraq−1(λ

D,q−1) in

a row aq + e′ ∈ uppathΨ(a j), 0 ≤ e′ ≤ hD
q : even if e′ = 0 and y + 1 = aṽ + c̃, the cover decrements

in this row. From here, we may iterate our argument by replacing aṽ + c̃ with aq + e′, beginning

by noting that it suffices to consider the case that aq + e′ < uppathΨD, j(a j + 1). We continue until

we have some pair z, v, which meets the conditions of Corollary 6.1.5; the process necessarily

terminates when we obtain maximal az + v, az ∈ D and 0 ≤ v ≤ hD
z , with az + v ∈ uppathΨ(a j).

This final argument may be reproduced for the assumption that w ∈ [y + 1, y + hD
q ] (this implies a

decrement in a row aq + e′ as before), completing our proof that there exists the element to which

Corollary 6.1.5 shows is a contradiction.

□

Lemma 6.1.7. If D ∈ D2 with u < D (notation from Definition 6.0.1), suppose D ∪ {u} =

{a1, . . . , am, u, . . . , at} in ascending order. Then for all m < e < j = j(D), we have that y + 1

corresponding to λD,e is the same as that of λD∪{u},e+1.

Proof. Due to Lemma 6.1.6, uppathΨD,e(ae) necessarily coincides with uppathΨD∪{u},e+1(ae) in all

possible cases excepting that u+c′ ∈ uppathΨD,e(ae) for some c′ ≤ hD∪{u}
m+1 . We can conclude that c′ ,

0 because of Lemma 6.1.4. But if u+c′ ∈ uppathΨD,e(ae) and c′ > 0, then y′+c′ ∈ uppathΨD∪{u},e+1(ae),

where y′ is the y-value corresponding to λD∪{u},m+1. Because y′ + c′ ∈ uppathΨD,e(ae), we verify the

claim in this case.

□

6.2. Progress onD

We conclude with results about the subset of Id,k
µ which conjecturally indexes a cancellation-

free revision of Theorem 5.0.11.
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Conjecture 6.2.1. If λ = µ ∪ Rd, then

g̃
(k)
R∗d
g̃

(k)
µ =

∑
D∈D,D,∅

(−1)|D|+1
g̃

(k)
λ−ϵD
.

An analog to Lemma 5.0.6 forD2 would establish this conjecture.

Proposition 6.2.2. For D = {a1, . . . , at} ∈ D, define cover ordering as

(av, λav) < (aw, λaw)

if λav > λaw or λav = λaw and av > aw. Then

g̃
(k)
λ−ϵD
= g̃

(k)
coverbt (...(coverb1 (λ)... ),

where {b1, . . . , bt} = D is the rearrangement of {a1, . . . , at} dictated by cover ordering, i.e. (bx, λbx) <

(bx+1, λbx+1) for all x ∈ [t − 1]. Cover ordering forD can equivalently be defined as

(av, λav) < (aw, λaw)

if λav > λaw or λav = λaw and λtop
ΨD,v (av) > λtop

ΨD,v (aw).

Proof. First, we note Corollary 5.0.8 implies for any fixed v ∈ [t],

g̃
(k)
λ−ϵD
= g̃

(k)
λD,v−ϵav

.

We next observe a consequence of the definition of D: if D ∈ D contains a “run,” i.e. a series of

elements {ax, ax+1, . . . , ax+x′} such that λax = · · · = λax+x′ , we claim we must have that

• av + hD
v + 1 = av+1 for each v ∈ [x, x + x′ − 1], and

• |uppathΨD,v(av+1)| > |uppathΨD,v(av)|.

The first claim is due to the fact that av+hD
v +1 < av+1 would imply that D ∈ D1 if [av, av+hD

v +1] ⊂

Id,k
µ , and if [av, av + hD

v + 1] 1 Id,k
µ , that D ∈ D2, which both contradict that D ∈ D. Given

then that av + hD
v + 1 = av+1, the second claim holds to ensure that D < D1. Noting then that
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uppathΨD,v(av + c) = uppath∆k(coverav+1 (λD,v+ϵav+1 ))(av + c) for all c ≤ hD
v and uppathΨD,v(av+1 + c′) =

uppathΨD,v+1(av+1 + c′) for all c′ ≤ hD
v+1, we have λD,x+2 = coverax(coverax+1(λ

D,x + ϵax+1)). Iterating

this process, we have λD
x+x′ = coverax(coverax+1(. . . (coverax+x′ (λ

D
x )) . . . )).

Applying this logic to each series of runs as needed satisfies cover ordering as needed, and the

fact that |uppathΨD,v(av+1)| > |uppathΨD,v(av)| gives us the second formulation of cover.

□

Remark 6.2.3. If weakened to remove the second formulation of cover ordering wherein λtop
ΨD,v (aw) >

λtop
ΨD,v (aw), Proposition 6.2.2 holds for D < D.

6.2.1. Chains inD. We seek a characterization using successively computed covers, or chains,

for the surviving sets D ⊂ Id,k
µ within the conjecturally cancellation-free formula proposed by Con-

jecture 5.0.3. Because this conjecture relies onD, we conclude by observing a series of facts which

assist us in computing covers indexed by a given D ∈ D.

Remark 6.2.4. If within D = {z1, . . . , zt}, there exists x ∈ [t] such that

uppath∆k(λD,x+1)(zx+1 + v) is disjoint from uppath∆k(λD,x)(zx + v′) for all v ∈ [hD
x+1] and v′ ∈ [hD

x ],

then

coverzx(coverzx+1(λ
D,x + ϵzx+1)) = coverzx+1(coverzx(λ

D,x) + ϵzx+1) = λ
D,x+2 − ϵx+2.

Lemma 6.2.5. Suppose that for D = {z1, . . . , zt} ∈ D, there exists x ∈ [t] such that zx + c ∈

uppathλD,x(zx+1) for some 0 < c ≤ hD
x . Then upq

λD,x(zx+1+v) = upq
λD,x+1(zx+1+v) for all upq

λD,x(zx+1+v) ≤

yx + c + v, where yx is the y-value corresponding to coverzx(λ
D,x + ϵzx) and v ≤ min(hD

x − c, hD
x+1).

Proof. Given that zx + c ∈ uppathλD,x(zx+1), we have yx + c + v ∈ uppathλD,x(zx+1 + v) for all

v ≤ min(hD
x − c, hD

x+1) by definition of covers. However, while zx + c+ v− 1 ∈ uppathλD,x+1(zx+1 + v),

we have yx + c + v ∈ uppathλD,x+1(zx+1 + v) for two reasons: coverx(λD,x + ϵzx) differs from λD,x + ϵzx

precisely in the intervals [zx, zx+hD
c ] (a decrement) and [y+1, y+hD

c ] (an increment), and moreover,

the definition of covers implies that upw
λD,x(zx+c+v) = upw

λD,x(zx+c+v−1)+1 for all upw
λD,x(zx+c+v) ≤

yx + c+ v. Therefore, the uppath of zx+1 + v is the same in λD,x and λD,x+1 (weakly) above yx + c+ v.

□
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Remark 6.2.6. The assumption of Lemma 6.2.5 that zx + c ∈ uppathλD,x(zx+1) is equivalent to

assuming that yx + c ∈ uppathλD,x(zx+1); the lemma could be restated to begin with this assumption.

Lemma 6.2.7. If D = {z1, . . . , zt} ∈ D, then for any x ∈ [t], λD,x may only possibly contain a

wall in rows zx−1 + hD
x−1, zx or zw, zw + 1, where w ≥ x.

Proof. Suppose for the sake of contradiction that λD,x contains a wall in rows

zv + hD
v , zv + hD

v + 1, v < x − 1. If zv + hD
v + 1 ∈ Id,k

µ , then D ∈ D1, a contradiction, but if

zv + hD
v + 1 < Id,k

µ , then D ∈ D2, a contradiction as well. □

Lemma 6.2.8. If D = {z1, . . . , zt} ∈ D and for some i1, i2 ∈ [t], zi2 ∈ downpathλD,i1 (zi1), then

λtop
λD,i1

(zi1 ) > λtop
λD,i2

(zi2 ).

Proof. We proceed by induction on m where zi2 = downm
λD,i1 (zi1). As a base case, assume m = 1:

λD,i2 has a ceiling in columns downλD,i1 (zi1) − 1, downλD,i1 (zi1), so topλD,i2 (zi2) = zi2 .

Assume then that the inductive hypothesis holds for all positive integers until some fixed m, and

suppose that zi2 = downm+1
λD,i1 (zi1). If upx

λD,i2
(zi2) = upx

λD,i1
(zi2) for all upx

λD,i2
(zi2) < zi1 , then topλD,i2 (zi2) =

downλD,i1 (zi1) < topλD,i1 (zi1). If instead there exists x such that upx
λD,i2

(zi2) , upx
λD,i1

(zi2), then we may

produce an exhaustive list zv1 + c1 > zv2 + c2 > · · · > zvq + cq such that each zve + ce ∈ uppathλD,i1 (zi2)

and ce ∈ [hD
ve

], and zi1 < zvq+cq. We now use as notation yD
p to indicate the y-value corresponding to

a given coverp(λD,p+ ϵzp). We claim then that yD
i1 < yD

vq
. If we suppose first that zi1−1+hD

i1−1+1 , zi1 ,

then the claim holds due to the ceiling in columns downΨD,i1 (zi1) − 1, downΨD,i1 (zi1) of ΨD,vq . If

instead zi1−1+hD
i1−1+1 = zi1 , then because D ∈ D, yD

i1 < yD
i1−1. We have zi1 −1 ∈ uppathλD,vq (zvq +cq),

and there is a ceiling in columns downλD,vq (yD
i1−1 + hD

i1−1), downλD,vq (yD
i1−1 + hD

i1−1) + 1 of λD,vq , so that

topλD,vq (zi1 − 1) > yD
i1−1 + hD

i1−1. By a similar token, we leverage Lemma 6.2.5 to claim that for

all e = q − 1, q − 2, . . . , 1, we also have yD
i1 < yD

ve
. Therefore, if N = min{yD

vq
, . . . , yD

v1
}, we have

that the uppath of zi2 in ΨD,i2 weakly above N coincides with that of zi2 in ΨD,i1+1. In other words,

for all upx
ΨD,i2

(zi2) ≤ N, we have that upx
ΨD,i2

(zi2) = upx
ΨD,i1+1(zi2). Therefore, the argument wherein

upx
λD,i2

(zi2) = upx
λD,i1

(zi2) for all upx
λD,i2

(zi2) < zi1 applies again.

□
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Example 6.2.9. Let k = 4, µ = (3, 2, 2, 1), and R3 = (3, 3).

3 • • • •

3 • • •

3 • •

2
2

1

As evidenced by the k-Schur root ideal, we have that 4 = down∆k(µ∪R3)(2), cover2(µ ∪ R3) =

(4, 2, 2, 2, 2, 1), and cover4(cover2(µ ∪ R3)) = (4, 3, 2, 1, 1, 1).

Lemma 6.2.8 guarantees that 3 > 2, and if λ = µ ∪ R3, we have

4 • • • • •
3 • •

2 •

1
1

1

= g̃
(4)
cover4(cover2(λ)) = g̃

(4)
λ−ϵ{2,4}

.

Lemma 6.2.10. If D = {z1, . . . , zt} ∈ D and for some x ∈ [t], λtop
ΨD,x (zx) = λtop

ΨD,x (zx+1) and

zx+1 , downΨ(zx), then

coverzx(coverzx+1(λ
D,x + ϵzx+1)) = coverzx+1(coverzx(λ

D,x) + ϵzx+1).

Proof. The statement is clear so long as we have that uppathΨD,x(zx+1) excludes every

zx + c, c ∈ [hD
x ] (equivalently, yx+1 < uppathΨD,x(zx + c), where yx+1 is the y-value corresponding

to coverzx+1(λ
D,x + ϵzx+1)), and yx+1 + v < uppathΨD,x(zx) for any v bounded by the h-value corre-

sponding to coverzx+1(λ
D,x + ϵzx+1). If indeed there exists zx + c ∈ uppathΨD,x(zx+1), c ∈ [hD

x ], then by

Lemma 6.2.5, the uppath of each zx+1 + w, w ∈ [hD
x+1], is the same within ΨD,x and ΨD,x+1 weakly

above yx + hD
x , where yx is the y-value corresponding to coverzx(λ

D,x). Moreover, this would imply

that the y-value corresponding to coverzx+1(λ
D,x) is strictly less than yx, as the uppath of any zx + c

in ΨD,x must be strictly longer than that of zx by definition of cover. Therefore, we have that the y-

value for coverzx(λ
D,x) and coverzx(λ

D,x+1) also remains the same. On the other hand, we eliminate

the possibility that yx+1 + v < uppathΨD,x(zx): this would imply that zx ∈ uppathΨD,x(zx+1 + v) , which
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is impossible because there is a wall in rows zx, zx + 1 of ΨD,x so long as hD
x > 0, and if hD

x = 0, the

claim is immediately true.

□



Bibliography

[ACT] D. Anderson, L. Chen, and H.-H. Tseng,. On the Finiteness of Quantum K-Theory of a Homogeneous Space.

Int. Math. Res. Not., IMRN. 2 (2020) pp. 1313–1349.

[ACT17] D. Anderson, L. Chen, and H.-H. Tseng,. On the quantum K-ring of the flag manifold. arXiv e-prints (2017)

arXiv:1711.08414.

[BMPS19] J. Blasiak, J. Morse, A. Pun, and D. Summers,. Catalan Functions and k-Schur Positivity. J. Amer. Math.

Soc. 32 (2019) no. 4, pp. 921—963.

[BMPS20] J. Blasiak, J. Morse, A. Pun, and D. Summers,. k-Schur expansions of Catalan functions. Adv Math. 371

(2020)

[BMS] J. Blasiak, J. Morse, and G. Seelinger,. K-Theoretic Catalan Functions. arXiv e-prints (2020)

arXiv:2010.01759

[Bri04] M. Brion. Lectures on the geometry of flag varieties. arXiv e-prints (2004) arXiv:0410240

[Bro9420] B. Broer,. Normality of some nilpotent varieties and cohomology of line bundles on the cotangent bundle

of the flag variety. Lie theory and geometry (1994) pp. 1–19.

[Che10] L.-C. Chen. Skew-linked partitions and a representation theoretic model for k-Schur functions. Ph.D. thesis,

2010.

[Ehr34] C. Ehresmann. On the topology of certain homogeneous spaces. Ph.D. thesis, 1934.

[GL] A. Givental and Y. P. Lee. Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum

groups. Invent. Math. 151 (2003) no. 1, pp. 193–219.

[GR79] A. M. Garsia and J. Remmel. On the raising operators of Alfred Young, Proc. Sympos. Pure Math. 34 (1979)

pp. 181–198.

[GR81] A. M. Garsia and J. Remmel. Symmetric functions and raising operators. Linear and Multilinear Algebra 10

(1981) no. 1, pp. 15–23.

[IIM] T. Ikeda, S. Iwao, and T. Maeno. Peterson isomorphism in K-theory and relativistic Toda lattice. Int. Math.

Res. Not. IMRN. 19 (2020) pp. 6421–6462.

[IIN] T. Ikeda, S. Iwao, and S. Naito. Closed k-Schur Katalan functions as K-homology Schubert representatives of

the affine Grassmannian. arXiv e-prints (2022), arXiv:2203.14483.

91



92 BIBLIOGRAPHY

[Kat18] S. Kato. Loop structure on equivariant K-theory of semi-infinite flag manifolds. arXiv e-prints (2018),

arXiv:1805.01718.

[KK] B. Kostant and S. Kumar. T-Equivariant K-Theory of Generalized Flag Varieties. J. Differential Geometry.

32 (1990) pp. 549–603.

[KM] A. N. Kirillov and T. Maeno. A note on quantum K-theory of flag varieties and some quadric algebras. In

preparation.

[Lam08] T. Lam. Schubert polynomials for the affine Grassmannian. J. Amer. Math. Soc. 21 (2008) no. 1, pp. 259–

281.

[Len00] C. Lenart. Combinatorial Aspects of the K-Theory of Grassmannians. Annals of Combinatorics. 4 (2000)

no. 1, pp. 67–82.

[Len03] C. Lenart. A K-theory version of Monk’s formula and some related multiplication formulas. J. Pure Appl.

Algebra 179 (2003) no. 1-2, pp. 137–158.

[LLM] L. Lapointe, L. Lascoux, and J. Morse. Tableau atoms and a new Macdonald positivity conjecture. Duke

Math. J. 116 (2003) no. 1, pp. 103–146.

[LLMS] T. Lam, L. Lascoux, J. Morse, and M. Shimozono. Affine insertion and Pieri rules for the affine Grassman-

nian. Mem. Amer. Math. Soc. 208 (2010) no. 977, pp. vii–82.

[LLMSSZ] T. Lam, L. Lapointe, J. Morse, A. Schilling, M. Shimozono. k-Schur functions and affine Schubert calcu-

lus. Fields Institute Monographs, Springer, New York; Fields Institute for Research in Mathematical Sciences,

Toronto, ON 33 (2014) pp. viii–219.

[LM] C. Lenart and T. Maeno. Quantum Grothendieck Polynomials. arXiv Mathematics e-prints (2006),

math/0608232.

[LM03] L. Lapointe and J. Morse. Schur function analogs for a filtration of the symmetric function space. J. Combin.

Theory Ser. A 101 (2003) no. 2, pp.191–224.

[LM05] L. Lapointe and J. Morse. Tableaux on k + 1 cores, reduced words for affine permutations, and k-Schur

function expansions. J. Combin. Theory Ser. A 112 (2005) no. 1, pp.44–81.

[LM08] L. Lapointe and J. Morse. Quantum cohomology and the k-Schur basis.. Trans. Amer. Math. Soc. 360 (2008)

no. 4, pp.2021–2040.

[LN] A. Lascoux and H. Naruse. Finite sum Cauchy identity for dual Grothendieck polynomials. Proc. Japan Acad.

Ser. A Math. Sci. 90 (2014) no. 7, pp.87–91.

[LNS] C. Lenart, S. Naito, andD. Sagaki,. A general Chevalley formula for semi-infinite flag manifolds and quantum

K-theory. arXiv Mathematics e-prints (2020), arXiv:2010.06143.



BIBLIOGRAPHY 93

[LS] C. Lenart and F. Sottile. A Pieri-type formula for the K-theory of a flag manifold. Trans. Amer. Math. Soc.

359 (2007) no. 5, pp. 2317–2342.

[LS10] T. Lam and M. Shimozono. Quantum cohomology of G/P and homology of affine Grassmannian. Acta Math.

204 (2010) no. 1, pp. 49–90.

[LS12] T. Lam and M. Shimozono. From quantum Schubert polynomials to k-Schur functions via the Toda lattice.

Math. Res. Lett. 19 (2012) no. 1, pp. 81–93.

[LSS] T. Lam, A. Schilling, andM. Shimozono. K-theory Schubert calculus of the affine Grassmannian. Compositio

Math. 146 (2010) pp. 811–852.

[Pan10] D. I. Panyushev. Generalised Kostka-Foulkes polynomials and cohomology of line bundles on homogeneous

vector bundles. Selecta Math. (N.S.) 16 (2010) no. 2, pp. 315–342.

[See21] G. Seelinger. K-Theoretic Catalan Functions. Ph.D. thesis, 2021.

[Shi86] J. Shi. The Kazhdan-Lusztig cells in certain affine Weyl groups. Lecture Notes in Math. Vol 179 (1986)

Springer, Berlin.

[Sta99] R. Stanley and R. Fomin. Enumerative Combinatorics. (Cambridge Studies in Advanced Mathematics). Cam-

bridge: Cambridge University Press. With appendix by R. Fomin. (1999) doi:10.1017/CBO9780511609589

[SW] M. Shimozono and J. Weyman. Graded characters of modules supported in the closure of a nilpotent conjugacy

class. European J. Combin. 21 (2000) no. 2, pp. 257–288.

[Tak19] M. Takigiku. A Pieri formula and a factorization formula for sums of K-theoretic k-Schur functions. Algebr.

Comb. 2 (2019) no. 4, pp. 447–480.

[You32] A. Young. On Quantitative Substitutional Analysis. Proc. London Math. Soc. (2) 34 (1932) no. 3, pp. 196–

230. (Sixth paper).


	Abstract
	Acknowledgements
	List of Figures
	Chapter 1. Introduction
	1.1. Symmetric function theory
	1.2. Survey of Results

	Chapter 2. Background
	2.1. Symmetric functions
	2.2. Catalan functions
	2.3. K-theoretic Catalan functions

	Chapter 3. Manipulating Katalan functions
	3.1. Katalan basics
	3.2. k-Rectangle and minus box machinery
	3.3. The root bar approach

	Chapter 4. Covers and equivalent functions
	4.1. Covers and k-Schur straightening
	4.2. Covers and Katalan functions
	4.3. Equivalent functions

	Chapter 5. Cancellation
	Chapter 6. Future work
	6.1. Progress on D2
	6.2. Progress on D

	Bibliography

