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Abstract

In this dissertation I develop a Monte-Carlo sampling approach to redress the enormous

computational time required to calculate two-photon visibility for multiple-entanglement-

swapping-based long-distance quantum communication. I employ our theory to study

both the realistic setting involving dark counts, multi-photon events and loss, and I

also study the semi-idealistic case of perfect synchronized single-photon sources; this

semi-idealistic case is used to verify my sampling method. My new sampling method

enables successful, reliable calculation of visibility for up to six consecutive entanglement-

swapping stations. Although six entanglement-swapping stations lead to extremely low

rates in the real-world setting, my sampling method for solving long-distance quantum

communication rates and visibility serves as a valuable tool for modeling future viable

quantum communication strategies incorporating promising technology such as optical

quantum memory.
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Chapter 1

Introduction

Quantum communication, which is especially important for quantum-enhanced security

such as quantum key distribution, suffers from a distance limit. Practical issues such

as transmission loss results in exponential losses with respect to transmission distance,

and secure quantum communication has an absolute distance limit when dark counts

are factored in. Countervailing strategies can mitigate these problems. A quantum

relay built as a concatenated sequence of entanglement swapping stations can extend

the effective transmission distance [1–5], and quantum repeaters could overcome the

exponential loss rate [6, 7] but relies on a much-vaunted optical quantum memory [8],

which is beyond current technological reach. Thus, the quantum relay is currently the

best approach to extending the reach of secure quantum communication until superior

technology is viable.

The quantum relay concept is to create entangled photons shared between distant parties

Alice and Bob via concatenated entanglement swapping, and we use the term quantum

relay to refer to each entanglement swapping station. Our aim is to develop a tractable

algorithm for simulating quantum-relay-based quantum communication for three rea-

sons. The output of the algorithm is an approximation of the expected two-photon

visibility observed by two distantly separate parties Alice and Bob; this two-photon vis-

ibility is the appropriate figure of merit to assess the expected bit rate and quantum

bit error rate. The first reason is that we regard an accurate algorithm as a testable

tool to that theoretical models for long-distance quantum communication are reliable

and tested empirically. Our second reason is that the algorithmic tool will be needed

as a component of fugue models that accommodate future technologies such as quan-

tum repeaters. The third reason is more academic: an accurate, tractable algorithm for

solving quantum communication employing several sequential quantum relay stations is

a theoretical and computational challenge that warrants new thinking.

1



Chapter 1. Introduction 2

Here we report a numerical solution for six quantum relays in the realistic setting of

PDC sources. We emphasize that our algorithm is only tractable for several sequential

entanglement swapping stations and is not designed nor guaranteed to be scalable with

respect to increasing the number N of quantum relay station. Our algorithm is based

on an established theory of practical quantum communication based on a sequence of N

quantum relays for N any natural number [9–11]. By reaching N = 6 quantum relays,

our sampling simulation far exceeds the current best of N = 3 quantum relays [11]

obtained by numerically solving exact equations for a truncated Hilbert space. We refer

to our approach here as the sampling method and to numerically solving exact equations

for a truncated Hilbert space as direct computation. The reason for the N = 3 limit in

previous work is that the algorithm has a computation-time overhead of O(48N+4).

We add another caution regarding the theory-experiment divide for quantum-relay quan-

tum communication. Current experimental entanglement-swapping-based long-distance

quantum communication has only been achieved for a single (N = 1) quantum relay [12–

14]. Meanwhile, the theoretical prediction of visibility is limited up to N = 3 swaps due

to excessive computational time of simulations of higher numbers of swaps.

Our approach to solving the transmission rate is markedly different than prior work,

which employed a combination of mathematical physics special functions and high-

performance computing to obtain exact answers [9–11]. In this work, our strategy is to

get approximate answers to transmission rate via sampling the outcome using a Monte

Carlo approach equipped with pseudo-random number sampling based on the binary-

search method. as working even in a truncated Fock space for each mode is infeasible for

simulation past three sequential quantum relays. As expected the transmission success

rate is dismal, but the good news that our Monte Carlo algorithm is successful in that it

agrees with known results for up to three quantum relay stations and furthermore yields

correct results for the semi-idealistic case of perfect synchronized single photon sources.

As we developed our algorithm and tested for accuracy, we encountered a problem in ear-

lier work that we correct here. Specifically a previous test of theoretical vs experimental

two-photon visibility [9] for a single-swap experiment [12] revealed that the simulated

visibility is within one standard deviation of the experimental visibility. We find that

the simulation parameters [9] are incorrect, and we show the corrected result here. Our

new result shows that the simulated two-photon visibility in fact lies within two stan-

dard deviations of the experimental two-photon visibility, not one standard deviation as

thought before.

We organize our paper as follows. Requisite background is provided In Chapter. 2. In

Chapter. 3 we correct the earlier simulation [9] by inserting correct parameters for the

single-swap experiment [12]. Our sampling approach to calculating two-photon visibility
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for N swaps in a quantum relay network is described in detail in Chapter. 4. In Chap-

ter. 5 we show how to establish the prior distribution for N quantum relays based on

successful sampling for the N − 1 case. Our results of verification of sampling method

are shown in Chapter. 6. Our results of simulated visibilities are provided in Chapter. 7

for N ≤ 6, and we verify these results against other simulations for PDCn sources and

for the semi-idealistic single-photon sources. We conclude in Chapter. 8 and provide

detailed derivations in the appendices.



Chapter 2

Background

In this chapter we provide the requisite background that is needed for this dissertation.

In Chapter. 2.1 we give the theoretical background of LDQC through any number of

entanglement-swapping operations in a quantum-relay configuration. In Chapter. 2.2 we

give the parameters based on current technologies that are entered for the simulations

in this dissertation . In Chapter. 2.3 we show the intractability of direct computation

of visibilities for simulations of N ≥ 4 swaps using a single node on a desktop computer

and truncations that are applied to reduce the computational time. In Chapter. 2.4 we

review the salient background of Monte Carlo simulation. In Chapter. 2.5 we summarize

the general background of pseudo-random number sampling based on the binary search

method.

2.1 Theory of LDQC through any number of entanglement-

swapping operations in a quantum-relay configuration

The theory of LDQC through any number-N of entanglement-swapping operations in

a quantum-relay configuration [9–11] is achieved by connecting N single-swap elements

through intermediate postselection-operation (PSO) stations, where each single-swap

element is constructed with two PDC sources, one 50:50 beamsplitter, two polarizing

beamsplitters and a set of four single-photon detectors, as shown in Fig. 2.1(a). The

outermost two photons have to pass through the polarization rotators and polarizing

beamsplitters before reaching Alice’s and Bob’s detectors. We provide N = 2 swaps as

an example in Fig. 2.1(b). The two-photon visibility of any N swaps can be predicted

theoretically based on the theory.

4



Chapter 2. Background 5

2.1.1 Two-photon visibility

By setting both polarization angles to be π/4, we are able to simulate the two-photon

visibility via the equation [11]

V =
Q1010

1010 +Q1010
0101 −Q1010

1001 −Q1010
0110

Q1010
1010 +Q1010

0101 +Q1010
1001 +Q1010

0110

, (2.1)

where Qqrst
q′r′s′t′ is the conditional probability for Alice to observe the two-tuple click

event (t′s′) and Bob to observe (r′q′), given that the four-tuple click events (qrst) have

been yielded from all the intermediate detectors. Here (qrst) is the abbreviated form

of (q1r1s1t1), (q2r2s2t2)...(q2N−1r2N−1s2N−1t2N−1). As we assume all the detectors are

single-photon detectors, (qrst) and (q′r′s′t′) can only take values from {0, 1}, where 1

means “click” and 0 means “not click”. The four-tuple click events (qrst) = (1010) and

(0101) on the intermediate detectors correspond to anticorrelated polarizations, thus

giving maximum coincidences for anticorrelated four-tuple click event (q′r′s′t′) = (1010)

or (0101) and minimum for correlated four-tuple click event (0110) or (1001) at Alice’s

and Bob’s detectors. We now show how to calculate the conditional probabilities Qqrst
q′r′s′t′

based on the theory [9].

2.1.2 Conditional probability

The conditional probability Qqrst
q′r′s′t′ can be calculated through the equation [9]

Qqrst
q′r′s′t′ =

∞∑
i′j′k′l′=0

∞∑
ijkl=0

p
(
q′r′s′t′|i′j′k′l′

)
P qrst
ijkl W

ijkl
i′j′k′l′ , (2.2)

where p (q′r′s′t′|i′j′k′l′) is the conditional probability for Alice to observe two-tuple click

event (t′s′) and Bob to observe (r′q′) by using imperfect single-photon detectors in-

cluding losses, given the hypothesis that ideal photon-number discriminating detectors

without any loss would have yielded two-tuple counting events (l′k′) for Alice and (j′i′)

for Bob. P qrst
ijkl is the conditional probability for ideal photon-number discriminating

detectors without any loss to yield four-tuple counting events (ijkl), given that the

single-photon detectors including losses have yielded four-tuple click events (qrst), for

all the intermediate PSO stations. W ijkl
i′j′k′l′ is the conditional probability for Alice to

observe the two-tuple counting event (l′k′) and Bob to observe (j′i′), given that the

intermediate PSO stations have yielded the four-tuple counting events (ijkl), in an

ideal-world scenario, i.e., using ideal photon-number discriminating detectors and no loss

during transmission. Notice that each index of the four-tuple counting events (ijkl) and
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(b)

Figure 2.1: N = 2 swaps (b) achieved by combining two single-swap elements (a)
with an intermediate PSO station. In each single-swap element, the two PDC sources
will emit photons into four spatial modes, i.e., a, b, c and d. The modes coming out of
the beamsplitter are denoted as c′ and b′ and those coming out of the PBSs are denoted
as c′H, c′V, b′V and b′H. The four-tuple click events of detectors at the 1st, 2nd and 3rd
PSO stations are denoted as (q1r1s1t1), (q2r2s2t2) and (q3r3s3t3), respectively. The

four-tuple click events of Alice’s and Bob’s detectors are denoted as (q′r′s′t′).
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(i′j′k′l′) of ideal photon-number discriminating detectors can take integer values from

[0,∞). All the details of the formulas can be found in Appendix A.

2.2 Parameters based on current technologies

The conditional probability Qqrst
q′r′s′t′ depends on the nonlinearities of PDC sources (χ),

the efficiencies (η) and dark count probabilities (%) of detectors, the transmission ef-

ficiency (ηt) and the coupling efficiency (ηc). The theory [9] includes the factors of

transmission loss and coupling loss into the “effective efficiency” of the detector, which

can be calculated through the equation

ηe = ηηc10−αd/10, (2.3)

where η is the efficiency of the detector, 1 − ηc is the fraction of coupling loss and the

transmission efficiency ηt = 10−αd/10 [9], where α is the loss coefficient of the transmis-

sion medium in dB/km; d is the distance traveled in km. As a result, the parameters

we need to enter for the simulation are the nonlinearities of all PDC sources {χ} and

the “effective efficiencies” {ηe} and the dark count probabilities {%} of all detectors.

The most efficient single-photon detector available is the superconducting nanowire

single-photon detector (SNSPD) reported in 2013 [15], with a system detection efficiency

of 90% including coupling loss. The requisite temperature is 2 K. The lowest transmis-

sion loss reported in 2002 is 0.2 db/km [1] for photons with wavelength at 1550 nm. The

dark count rate of SNSPD is around 1 c.p.s with timing jitter of ∼150 ps [15], which

corresponds to dark count probability % ≈ 1.5 × 10−10. The brightness of the PDC

source, which is proportional to χ2, can be adjusted. Therefore, we treat χ as a variable

instead of parameter.

Then if we simulate the length of each outer arm (a, d) of each single-swap element

to be 100 km and that of each inner arm (b, c) to be negligible in km, the “effective

efficiency” of the detectors at outer arms are all equal to 90% × 10−0.2×100/10 ≈ 0.9%

and those at inner arms are all equal to 90% as transmission loss is negligible in the

inner arms. Those are the parameters based on current technologies that we use for

simulating long-range two-photon visibilities for various numbers of swaps in this paper.
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2.3 Truncations and intractability of direct computation

As the simulation of Qqrst
q′r′s′t′ requires taking all possible values of four-tuple indices

(ijkl) and (i′j′k′l′) with each index ranging from 0 to infinity, which is infeasible, the

upper bound of each index is set to be nmax. For nmax = 3, which is found to be a

reliable truncation [11], the visibilities have been successfully computed for the cases of

N = 1 swap and N = 2 swaps, but not for N ≥ 3 swaps [11]. In order to break this

limitation, truncations are put on the possible values of four-tuple indices (ijkl) and

(i′j′k′l′), i.e., each four-tuple indices (ijkl) and (i′j′k′l′) only take values that satisfy the

condition

2 ≤ i+ j + k + l ≤ 4,

2 ≤ i′ + j′ + k′ + l′ ≤ 4.
(2.4)

The truncations are reasonable as a 4N -photon coincidence is not observed unless each

i+ j + k + l ≥ 2 and i′ + j′ + k′ + l′ ≥ 2. At the same time, the probability to observe

i + j + k + l > 4 or i′ + j′ + k′ + l′ > 4 is small as it is a rare event for PDC source

to generate high-number pairs of photon-pair. Therefore, the simulated visibilities with

truncations on (ijkl) and (i′j′k′l′) are approximations of those without truncations [11].

The computational time of simulation with truncations on (ijkl) and (i′j′k′l′) is much

less than that without them. The order of computational time with truncation is

O(612N+1) whereas that without truncation is O(2562N+1). For N = 2 simulation, the

wall-clock time with truncations on (ijkl) and (i′j′k′l′) is around 20 seconds whereas

that without truncations is around 4 hours using a single node on an ASUS i7-4770

desktop computer with CPU @ 3.40 GHz and 16 GB RAM.

By truncating, visibilities are successfully computed up to N = 3 swaps but not for N ≥
4 swaps using a single node on the same desktop computer. Therefore, the intractability

of N ≥ 4 simulations needs to be solved.

2.4 Monte Carlo simulation

Monte Carlo simulation is a broad class of simulations that approach solutions of quanti-

tative problems by repeated random sampling from a known probability distribution P .

For each trial of the simulation, an input X is generated by some pseudo-random num-

ber generator according to P . The deterministic algorithm then takes X and generates

an output. The solution of the quantitative problem is then obtained by aggregating all

the outputs generated through large number of trials.
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The probability distribution P as a prior tells the probabilities of occurance of all possible

values ofX over its domainD, which is usually generated from historical observations. In

this paper, cumulative distribution function (CDF) is used to describe the probability

distribution of X, which tells the probability of occurance of X that is less than or

equal to x, where x is some particular value over D. The CDF is generated from the

probability density function (PDF) of X. The details of transforming from PDF to CDP

is shown in Chapter. 2.5.

According to the law of large numbers, as the number of trials increases, the simulated

result will approach the expected result of the quantitative problem. By central limit theorem,

we know that the deviation between the simulated value and the true expected value

will approach zero as the number of trials approaches infinity. For the simulations in

this paper, the maximum number of trials is limited to some finite number n. As a

result, as the number of trials approaches n, the deviation approaches zero. Therefore,

the number of trials for each simulation is determined by how small the deviation we

want to achieve.

2.5 Pseudo-random number sampling based on binary-search

method

Pseudo-random number sampling is a numerical practice of generating random variable

X from a probability distribution P . We define f to be the discrete PDF of X where fx

corresponds to the probability of occurance of X = x. The basic algorithm of pseudo-

random number sampling from f is as following. Notice that step (1) shows the details

of transforming discrete PDF to discrete CDP.

(1) Define a discrete CDF F of X based on f as

Fi =

i∑
j=1

fj ;F0 := 0. (2.5)

(2) Divide the interval [0, 1] into n individual intervals: [F0, F1), [F1, F2), [F2, F3)...

[Fn−1, Fn].

(3) Generate a random number R uniformly from the interval [0, 1).

(4) Apply any type of search method to find the index i such that

Fi−1 ≤ R < Fi. (2.6)
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(5) Use the index i found in (4) for particular use of computation.

Note that in step (4) we use the binary-search method for searching technique, whose

computational time is O (log(l)) where l is the length of the searching list. The detailed

algorithm can be found in Appendix B.

Up to now, we have introduced all the background that are needed for this dissertation

.



Chapter 3

Corrected parameters for

single-swap-experiment
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Figure 3.1: Simulated configuration for single-swap experiment. Two of the four
intermediate PSO detectors are liquid-nitrogen-cooled GeAPD single-photon detectors
and another two are InxGa1-xAs APDs single-photon detectors. Alice’s and Bob’s
detectors are InxGa1-xAs APDs single-photon detectors. Each outer arm (a, d) has

length equal to 1.1 km and each inner arm (b, c) has negligible length in km.

In this section we correct the parameters entered for the simulation of a single-swap

experiment [9]. The simulated visibility has been compared to the experimental visibility

11
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for a single-swap experiment [12]. The former lies within one standard error of the

latter [9]. However, we find that the parameters entered for that simulation need to be

corrected. We now provide the corrected parameters here.

We provide the simulated configuration of the single-swap experiment in Fig. 3.1. As

given in the figure, two of the four intermediate PSO detectors are liquid-nitrogen-

cooled GeAPD (NEC) single-photon detectors with efficiency around 10% for 40 kHz

dark counts rate [12]. Another two detectors are InxGa1-xAs APDs (id Quantique) single-

photon detectors with efficiency around 30% for a dark count probability of around 10−4

per ns [12]. The time for which the detectors are active is around 300 ps [12]. Thus, the

dark count probability of the former type of detector is approximately 10−5 and that of

the latter type is approximately 3× 10−5.

The distances traveled from the two PDC sources to the PSO station (b and c) are

negligible in km. Therefore, we assume that the transmission loss from the sources to

the PSO station can be ignored. The coupling loss is around 30% in this experiment [12].

As a result, the “effective efficiencies” of the intermediate PSO detectors are

η(1)e = {7%, 7%, 21%, 21%}, (3.1)

respectively. The dark count probabilities of the intermediate PSO detectors are

%(1) = {10−5, 10−5, 3× 10−5, 3× 10−5}, (3.2)

respectively.

The outer arms a and d both have length equal to 1.1 km. The loss coefficient is

α = 0.25 dB/km for photons at 1550 nm in this experiment [12]. According to the

exponential rule, we know that

ηt = 10−0.25×1.1/10 ≈ 94.9%. (3.3)

Alice’s and Bob’s detectors are InxGa1−xAs APDs (id Quantique) single-photon detec-

tors, with efficiency of 30% and dark count probabilities around 3 × 10−5. As a result,

the “effective efficiencies” of Alice’s and Bob’s detectors are

η(2)e = {20%, 20%, 20%, 20%}, (3.4)

respectively. The dark count probabilities of Alice’s and Bob’s detectors are

%(2) = {3× 10−5, 3× 10−5, 3× 10−5, 3× 10−5}, (3.5)
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respectively.

The photon-pair production rate χ2 of the PDC source is around 6% here, which corre-

sponds to the nonlinearity of the PDC source χ ≈ 0.245 [12]. These are the corrected

simulated parameters based on situation of the single-swap experimental.

By entering the above parameters and setting both polarization angles to be π/4, we

compute the maximum four-photon coincidence rate Q1010
1010 +Q1010

0101 to be around 2.51%

and the minimum four-photon coincidence rate Q1010
1001 +Q1010

0110 to be around 0.38%. The

former is 6.6 times the latter, while in the single-swap experiment, the maximum four-

photon coincidence rate is nearly 8 times the minimum four-photon coincidence rate [12].

The simulated visibility is around 74% compared to 77.7% computed earlier [9]. The ex-

perimental result is 80%±4% [12]. Thus, we find that the theory does not make as good

a prediction as appeared in the previous paper. Nevertheless, the simulated result of

visibility lies within 2 standard errors of the experimental result and we consider the the-

ory has generated good simulated results that can be useful to predict the experimental

results.

Having corrected the parameters for the simulation of single-swap experiment, which

provides a clearer vision of how well the prediction of visibility based on the theory is,

we now show how to apply our sampling method to compute the visibilities of various

swaps based on the theory and how to verify it by doing various simulations.



Chapter 4

Approach

In this Chapter we present the approach of how to apply our sampling method to com-

pute visibilities for various numbers of swaps and how to verify our sampling method.

In Chapter. 4.1 we introduce the basic concept of our sampling method based on Monte

Carlo simulation. In Chapter. 4.2 we show the detailed procedure of how we apply our

sampling method to compute the visibilities for various numbers of swaps. In Chap-

ter. 4.3 we show how we verify our sampling method in various simulations.

4.1 Basic concept

The simulation of Qqrst
q′r′s′t′ is based on repeated computation through Eq. (2.2) over dif-

ferent combinations of the four-tuple indices (ijkl) and (i′j′k′l′), which are the numbers

of photons in spatial modes. If we treat (ijkl) and (i′j′k′l′) as inputs, and Eq. (2.2) to

be the formula of the algorithm, then Monte Carlo simulation can be applied here to

compute Qqrst
q′r′s′t′ .

As Eq. (2.2) requires us to take all the possible values of (ijkl) and (i′j′k′l′) with each

index ranging from 0 to infinity, which is infeasible, we set the upper bound of the

number of photons in each mode to be nmax = 3 [11]. As a result, the domain D of

each index of (ijkl) and (i′j′k′l′) is [0, 3]. As the domain of each index of (ijkl) and

(i′j′k′l′) of N ≥ 4 swaps is the same as that of N = 2 swaps and N = 3 swaps, the

probability distribution P of the inputs (ijkl) of N ≥ 4 simulation can be generated

through one-time computation of Qqrst
q′r′s′t′ from achievable N = 2 and N = 3 simulations

and recorded in the N = 2 and N = 3 prior lists, respectively.

For each trial of the new simulation, we apply pseudo-random number sampling tech-

nique to generate the input (ijkl) from the prior lists, whereas we takes all the possible

14
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values of (i′j′k′l′) with each index ranging from 0 to 3. The algorithm of Eq. (2.2) then

takes the input and generates an output. The final results of Qqrst
q′r′s′t′ can then be gained

by aggregating all the outputs generated by the algorithm for large number of trials. Fi-

nally, the visibility can be calculated through Eq. (2.1) based on those simulated results

of Qqrst
q′r′s′t′ . We now provide the detailed procedure.

4.2 Procedure

Our sampling method is accomplished via the following seven steps.

1. We generate two prior lists that select the most significant combinations of (ijkl)

to the computational results of conditional probabilities through Eq. (2.2), from N = 2

and N = 3 simulations respectively. Then we order each of the lists from the most

significant combination to the least significant combination among them. For each row

of the list we record a combination of (ijkl) and its CDF value F .

2. For each new simulation of N swaps, we determine which and how many prior lists

we want to use. For example, for N = 4 swaps we need two N = 2 prior lists; for N = 5

swaps we need one N = 2 prior list and one N = 3 prior list, etc. The choice is flexible

as long as the addition of the numbers of N of the prior lists is equal to the number of

swaps N we are simulating for. Up to now we only have the N = 2 and N = 3 prior lists.

3. We pick the number of combinations we want to use for simulation from each prior

list, i.e., n1, n2 . . ..

4. For each trial:

a) We apply pseudo-random number sampling based on the binary-search method to

generate an index of row m from the first prior list. Then we set the inputs based on

m from all the prior lists we use (details in Chapter. 5), which we denote as (ijkl(m)).

There are in total n2n3 . . . nf possible combinations of (ijkl(m)) for each trial, where nf

is the number of samples we pick from the last prior list.
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b) We compute the conditional probabilities Q
qrst,block(m)
q′r′s′t′ for each (ijkl(m)) we gain in

step 4(a), which is calculated through the equation

Q
qrst,block(m)
q′r′s′t′ =

3∑
i′j′k′l′=0

p
(
q′r′s′t′|i′j′k′l′

)
W ijkl(m)

i′j′k′l′ P
qrst

ijkl(m) , (4.1)

and record them in the memory of computer.

c) We delete the mth row from the first prior list, which has already been used for

calculating Q
qrst,block(m)
q′r′s′t′ , to avoid duplicate computations.

5. We repeat step 4 for n1 times.

6. We aggregate all the recorded Q
qrst,block(m)
q′r′s′t′ together to get the simulated conditional

probabilities Qqrst
q′r′s′t′ , i.e.,

Qqrst
q′r′s′t′ =

∑
m

Q
qrst,block(m)
q′r′s′t′ . (4.2)

7. We calculate the two-photon visibility based on the simulated conditional probabili-

ties through Eq. (2.1).

The main algorithm of our sampling method can be found in Appendix B.2. We now

show how we verify our sampling method in various simulations.

4.3 Verify sampling method

Having introduced the detailed procedure of our sampling method, we now show how

we verify it in various simulations.

4.3.1 N = 3 simulation

The first verification we do is to verify our sampling method for N = 3 simulation.

The direct computational visibilities of N = 3 swaps have been gained with parameters

ηe = 0.04 and % = 10−5 for all single-photon detectors [11]. We verify our sampling

method for N = 3 simulation by comparing the sampled visibilities based on N = 2 and



Chapter 4. Approach 17

N = 3 prior lists to the direct computational visibilities of N = 3 swaps, respectively,

and see how big the discrepancies are for various values of χ.

4.3.2 N = 4 simulation

The second verification we do is to verify our sampling method for N = 4 simulation. As

we discussed in Chapter. 2.3, the direct computational visibility of N = 4 swaps cannot

be gained by using a single node on our desktop computer due to excessive computational

time. However, we apply parallel computing technique on a supercomputer cluster

using 256 cores with each CPU being Intel(R) Xeon(R) CPU E5530 @ 2.40GHz and

successfully gain the visibility of N = 4 swaps with parameters χ = 0.1, ηe = 0.04 and

% = 10−5 for all single-photon detectors, which cost more than 7 days’ wall-clock time.

The visibility is found to be 0.403. We then gain the sampled visibility of N = 4 by

entering the same parameters and compare it to the direct computational visibility to

verify our sampling method for N = 4 simulation.

4.3.3 N = 3, 4, 5, 6 simulations in semi-ideal case of using single-photon

sources

As we have only tested our sampling method for N = 4 simulation for χ = 0.1, the

verification of sampling method for N ≥ 4 simulations is incomplete. The reason why

we cannot finish the direct computation of visibilities for N ≥ 4 in reasonalble time using

a single node on a desktop computer is because of the hugeness of the Hibert space of

numbers of photons, which is due to the multipair nature of PDC sources. Therefore,

we can reduce the computational time by replacing PDC sources with single-photon

sources. The single-photon source will generate exactly one entangled photon pair at

a time and that will largely shrink the dimension of Hibert space. Although an ideal

single-photon source does not exist yet, it does not prevent us from using it and verifying

our sampling method in a theoretical way. As a result, the third verification we do is

to verify our sampling method for N = 3, 4, 5, 6 simulations in the semi-ideal case when

using single-photon sources.

As we only change the sources and leave everything else the same, the only modifica-

tion we need to do is to derive the new W ijkl
i′j′k′l′ in Eq. (2.2), which can be calculated

through [9],

W ijkl
i′j′k′l′ =

∣∣∣Aijkl
i′j′k′l′

∣∣∣2 , (4.3)

where the new Aijkl
i′j′k′l′ is found to be the one derived in Appendix A.
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To check the veracity of the new formula, we simulate the conditional probabilities in

the ideal-world scenario, i.e, ideal photon-number discriminating detectors, zero trans-

mission loss and zero coupling loss. By setting both of the polarization angles to

be π/4 (correspondingly α̃ = δ̃ = π/2) [11], we obtain Q1010
1010 = Q0101

1010 = 0.5 and

Q1001
1010 = Q0110

1010 = 0, which perfectly satisfy our prediction. As in an ideal-world

scenario, after all the intermediate PSO stations have been projected onto the state

|φ−〉 = 1√
2
(|1010〉 − |0101〉), the outermost two modes will 100% be projected onto the

same state. Therefore the conditional probability for Alice and Bob to observe the four-

tuple click event (1010) is 0.5 and that to observe (0101) is 0.5, while it is impossible

for them to observe the four-tuple click event (1001) or (0110).

By changing PDC sources to single-photon sources, we are able to directly compute

the visibilities up to N = 6 swaps in reasonable time, even without truncating (ijkl)

and (i′j′k′l′). We then apply our sampling method to compute the sampled visibilities

up to N = 6 swaps. We compare the sampled visibilities to the corresponding direct

computational visibilities to verify our sampling method in the semi-ideal case when

using single-photon sources.

Those are the simulations that we do to verify our sampling method. The results of

verification are shown in Chapter. 5. We now introduce how we set the inputs from the

prior lists for each trial of simulations in the following Chapter.



Chapter 5

Method of setting the inputs

In this chapter we show how we set the inputs (ijkl(m)) based on N = 2 and N = 3 prior

lists for each trial of the simulation for N ≤ 6 swaps, which corresponds to step 4(a) in

our procedure of sampling method that listed in Chapter. 4.2.

5.1 N = 2 simulation

By sampling N = 2 swaps we only need one N = 2 prior list. We directly set the

(ijkl(m)) based on those combinations picked from N = 2 prior list as they represent

��

���

� �

Figure 5.1: N = 3 swaps viewed as a combination of an imaginary N = 2 swaps and
an imaginary N = 1 swap. a, b, c, d, e correspond to the 1st, 2nd, 3rd, 4th and 5th
PSO stations of N = 3 swaps, respectively. At the same time, a, b, d correspond to the

1st, 2nd and 3rd PSO stations of the imaginary N = 2 swaps, respectively.

19
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the numbers of photons in the same modes, i.e., for each trial, we set the (ijkl(m)) in a

way like

(i1j1k1l1)
(m)
N=2 = (i1j1k1l1)

(m)
N=2,prior ,

(i2j2k2l2)
(m)
N=2 = (i2j2k2l2)

(m)
N=2,prior ,

(i3j3k3l3)
(m)
N=2 = (i3j3k3l3)

(m)
N=2,prior .

This is how we set (ijkl(m)) for N = 2 simulation based on N = 2 prior list.

5.2 N = 3 simulation

Similarly, by sampling N = 3 swaps we only need one N = 3 prior list. We take the

values of (ijkl(m)) to be the same as the corresponding ones in the N = 3 prior list.

This is how we set (ijkl(m)) for N = 3 simulation based on N = 3 prior list.

Besides, we find that there is another way to put settings of (ijkl(m)) for N = 3

simulation, i,e., by using the N = 2 prior list. The reason is that we can view the N = 3

swaps as a combination of one N = 2 swaps and one N = 1 swap, with the N = 2 swaps

on the left and the N = 1 swap on the right, joined by a PSO station in the middle, as

shown in Fig. 5.1. As given in Fig. 5.1, the 1st, 2nd and 4th PSO stations of the N = 3

swaps correspond to the 1st, 2nd and 3rd PSO stations of the imaginary N = 2 swaps,

respectively. Therefore, for each trial, we set the (ijkl(m)) in a way like

(i1j1k1l1)
(m)
N=3 = (i1j1k1l1)

(m)
N=2,prior ,

(i2j2k2l2)
(m)
N=3 = (i2j2k2l2)

(m)
N=2,prior ,

(i4j4k4l4)
(m)
N=3 = (i3j3k3l3)

(m)
N=2,prior ,

as they represent the numbers of photons in the same modes and take all the possible

values of (i3j3k3l3)
(m)
N=3 and (i5j5k5l5)

(m)
N=3 with each index ranging from 0 to 3. This is

how we set (ijkl(m)) for N = 3 simulation based on N = 2 prior list.

5.3 N = 4 and N ≥ 5 simulations

For N = 4 simulation, there are seven sets of (ijkl(m)). As given in the Fig. 5.2, we can

view the N = 4 swaps as a combination of two imaginary N = 2 swaps, joined by a PSO

station in between. The 1st, 2nd and 3rd PSO stations of the first imaginary N = 2

swaps correspond to the 1st, 2nd and 5th PSO stations of the N = 4 swaps, respectively.

The 1st, 2nd and 3rd PSO stations of the second imaginary N = 2 swaps correspond to
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Figure 5.2: N = 4 swaps viewed as a combination of two N = 2 swaps. a, b, c, d,
e, f , g correspond to the 1st, 2nd, 3rd, 4th, 5th, 6th and 7th PSO stations of N = 4
swaps, respectively. At the same time, a, b, e correspond to the 1st, 2nd and 3rd PSO
stations of the first imaginary N = 2 swaps, respectively. c, d, g correspond to the 1st,

2nd and 3rd PSO stations of the second imaginary N = 2 swaps, respectively.

the 3rd, 4th and 7th PSO stations of the N = 4 swaps, respectively. Therefore, for each

trial, we set the first part of (ijkl(m)) according to the combinations we pick from the

first N = 2 prior list, in a way like

(i1j1k1l1)
(m)
N=4 = (i1j1k1l1)

(m)
N=2,1st prior ,

(i2j2k2l2)
(m)
N=4 = (i2j2k2l2)

(m)
N=2,1st prior ,

(i5j5k5l5)
(m)
N=4 = (i3j3k3l3)

(m)
N=2,1st prior .

For each of the setting we put above, we set the second part of (ijkl(m)) from the second

N = 2 prior list, started from the 1st combination to the n2th combination. If we denote

the index of combination we pick from the second prior list to be k, then the way we set

the second part of (ijkl(m)) in the kth run is

(i3j3k3l3)
(m)
N=4 = (i1j1k1l1)

(k)
N=2,2nd prior ,

(i4j4k4l4)
(m)
N=4 = (i2j2k2l2)

(k)
N=2,2nd prior ,

(i7j7k7l7)
(m)
N=4 = (i3j3k3l3)

(k)
N=2,2nd prior .
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After that we take all the possible values of (i6j6k6l6)
(m)
N=4 with each index varying from

0 to 3. This is how we set (ijkl(m)) for N = 4 simulation based on two N = 2 prior

lists.

Similarly, we can view the N = 5 swaps as a combination of one imaginary N = 2 swaps

and one imaginary N = 3 swaps; N = 6 swaps as a combination of two imaginary N = 3

swaps, with a joined PSO station connecting them, respectively. Therefore, we can set

the inputs (ijkl) of N = 5 and N = 6 simulations in a similar way as we set those for

N = 4 simulation.

Having introduced the details of how we apply our sampling method to compute visibil-

ities of N ≤ 6 swaps and set the inputs, we now show the results of verification in the

following chapter.



Chapter 6

Results of verification

In this chapter we show the results of simulations that are done for verification of our

sampling method as introduced in Chapter. 4.3. In Chapter. 6.1 we compare the sam-

pled visibilities of N = 3 swaps based on N = 2 and N = 3 prior lists to the direct

computational visibilities of N = 3 swaps, respectively. In Chapter. 6.2 we show the

sampled visibilities of N = 4 swaps based on N = 2 prior list and compare them to the

direct computational visibilities. In Chapter. 6.3 we show the sampled vs direct com-

putational visibilities for N ≤ 6 swaps in the semi-ideal case when using single-photon

sources.

6.1 N = 3 simulation

We obtain the sampled vs direct computational visibilities of N = 3 swaps by using all

the combinations from N = 2 prior list (a) and N = 3 prior list (b) in Fig. 6.1. There

is only a small gap between the two curves in each figure. The maximum difference

between the sampled and direct computational visibility for (a) is 0.026449 and for

(b) is 0.006192, which shows the success of applying our sampling method to compute

visibilities for N = 3 swaps.

6.2 N = 4 simulation

The direct computational visibility of N = 4 swaps with parameters listed in Chap-

ter. 4.3.2 is 0.403, whereas the sampled visibility is 0.466 by using 1000 combinations

from each N = 2 prior list. There is a 0.063 difference between the sampled visibility

and the direct computational visibility.

23
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Figure 6.1: Sampling results of visibilities of N = 3 swaps versus χ compared to the
direct computational results of visibilities versus χ, using all the combinations from (a)
N = 2 prior list and (b) N = 3 prior list, respectively. χ ∈ {0.02, 0.40}, ηe = 0.04,
% = 0.00001 for all detectors. The red-dashed curve represents the sampling results,

while the black-solid curve represents the direct computational results.
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Figure 6.2: (Color online) Sampling results compared to direct computational visibil-
ities for N = 1, 2, 3, 4, 5, 6 swaps using single-photon sources, by using 100 combinations
from each N = 2 prior list and 1000 combinations from each N = 3 prior list. The
parameters entered are ηe = 0.2 and % = 0.01 for all the single-photon detectors. The
(big-red) dots are sampled visibilities of N = 3, 4, 5, 6 swaps. The (small-black) dots
are the direct computational visibilities of N = 1, 2, 3, 4, 5, 6 swaps. The big-red dots

basically overlap with their corresponding small-black dots.

As shown in Fig. 2.1(a), the maximum difference between sampled and direct compu-

tational visibility lies within the interval χ ∈ [0.1, 0.2] for N = 3 simulation. Similar

pattern is expected for N = 4 simulation. Therefore, the difference 0.063 observed for

χ = 0.1 is considered to be near the maximum difference between the sampled and direct

computational visibilities of N = 4 swaps. As a result, our sampling method produces

good upper bounds of true theoretical visibilities of N = 4 swaps.

6.3 N ≤ 6 simulations using single-photon sources

The sampled visibilities vs the direct computational visibilities of N ≤ 6 swaps using

single-photon sources are shown in Fig. 6.2. As given in Fig. 6.2, the sampled visibil-

ities are nearly the same as their corresponding direct computational visibilities, with

maximum difference being 0.005665, which proves that our sampling method works well

in the semi-ideal case of using ideal single-photon sources. This gives us confidence to

apply it for the real-world case of using imperfect PDC sources.
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The discrepancy between sampled and direct computational visibilities can be ignored

for other sets of parameters as the most significant combinations of (ijkl) recorded

in the prior lists are always computed first, regardless of what parameters are entered

for simulations. As a result, our sampling method is verified completely for N = 3

simulations and partially for 4 ≤ N ≤ 6 simulations (only in semi-ideal case). Armed

with that, we now show the results of simulated visibilities of N ≤ 6 swaps using

imperfect PDC sources.



Chapter 7

Results and discussion

In this chapter we provide the simulated visibilities of N ≤ 6 swaps using imperfect

PDC sources. By entering the parameters based on current technologies as introduced

in Chapter. 2.2, we gain the simulated visibilities vs χ up to N = 6 swaps in Fig. 7.1. As

shown in Fig. 7.1, all sampled visibilities lie within the predicted range. The expected

0.1 0.2 0.3 0.4
Χ0

0.2

0.4

0.6

0.8

1
V

CHSH

Peres

Figure 7.1: Simulated results of visibility of N = 1 swap (red), N = 2 swaps (or-
ange), N = 3 swaps (grey), N = 4 swaps (green), N = 5 swaps (blue) and N = 6
swaps (purple), with topmost for N = 1 swap to bottommost for N = 6 swaps. The
simulated results of N = 1 and N = 2 are gained from direct computation, whereas
those of N ≥ 3 are gained by applying sampling method. For N = 3 simulation we
use 10802 combinations from the N = 3 prior list. For N = 4, 5, 6 simulations we
use 200 combinations from each of the two prior lists (corresponds to 40000 different

combinations totally).
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ranges of χ to break CHSH inequality [16] (dashed line) and Peres critetia [17] (dot-

dashed line) for different numbers of swaps can be clearly seen from the figure.

The simulated visibilities of various numbers of swaps in Fig. 7.1 provide us a clear

vision of what are the upper bounds of experimental results of visibility in real-world

experiments. As given in Fig. 7.1, the visibilities fall rapidy as χ increases for higher

number of swaps. Therefore, in order to achieve high-enough visibility for the purpose

of LDQC, the brightness of the PDC sources, which is proportional to χ2, should be

controlled in a range of small values.

However, too-small χ will lead to too-low 4N -photon-coincidence rates as considerable

vacuum component will be generated in the mixed states coming out of the PDC sources,

which will result in overly-long experimental run time. Additionally, the 4N -photon-

coincidence rates decrease as the number of swaps increases. Indeed, even in the ideal

case of perfect detectors with unit efficiency and zero dark counts, the maximum secret

key-generation rate (SKGR) of N = 3 swaps, which can achieve 850 km, is three million

centuries per bit for optimal choice χ = 0.07 [18]. This result shows the infeasibility

of real-world long-distnce quantum key distribution (QKD) using this quantum-relay

protocol.

When the same setup is used in QKD protocol [18], visibility is directly related to the

error rate Q as Q = (1 − V )/2, thus for large number of concatenations , very low V

would yield a high Q. One way to attain high V is to keep χ very small as can be seen

from Fig. 7.1, but this has adverse effect on the key bits lost in the sifting process for

analysis done for concatenations up to N = 3 [18]. Our analysis suggests the continual

decrease in SKGR for concatenations N > 3 as well. Thus increasing the concatenated

swapping would not be feasible for practical QKD and quantum memories are vital to

achieve a reasonable SKGR.



Chapter 8

Conclusion

We have corrected the parameters entered for the simulation of single-swap experiment

that was done earlier [9]. The corrected simulated visibility lies within two standard er-

rors of the experimental result, which provides a clearer vision of how well the theoretical

prediction is.

We have developed a Monte-Carlo-based sampling method, equipped with pseudo-random

number sampling based on the binary-search method to compute the visibilities for

N ≥ 4 swaps using PDC sources. We have shown the approach of applying our sam-

pling method to compute visibilities for various numbers of swaps and corresponding

algorithms. We have verified our sampling method by comparing sampling visibilities

to direct computational visibilities in various simulations.

We have provided the simulated results of visibilities of N ≤ 6 swaps using PDC sources

by using our sampling method. The simulated visibilities are good upper bounds of

the future experimental results and therefore, good guidance for experimentalists who

want to perform a real-world experiments of LDQC through N ≥ 2 entanglement-

swapping operations in a quantum-relay configuration. Our results show that to achieve

high-enough visibilities for the purpose of LDQC for N ≥ 3 swaps based on current

technologies, χ should be less than 0.1. However, this range of χ will lead to too-low

4N -photon-coincidence rates and thus, excessive experimental run time.

We have addressed the feasibility of real-world QKD for N ≥ 3 swaps using this

quantum-relay configuration because key rates are atrociously low for χ that can gen-

erate high-enough visibility. As a result, new technologies such as optical quantum

memories are needed to solve this problem [18].

There are some potential developments. The simulated visibilities of N ≥ 7 swaps can

be gained by applying sampling method with more than two prior lists. Besides, as long

29
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as we generate the N ≥ 4 prior lists, the simulations for higher number of swaps can be

easily achieved. For example, we can apply our sampling method based on three N = 4

prior lists to compute the visibilities of N = 12 swaps.



Appendix A

Formulas

In this appendix we provide all the formulas that are needed in calculating conditional

probabilities Qqrst
q′r′s′t′ through Eq. (2.2).

In each single-swap element, given the theoretical hypothesis that the four-ideal-photon-

number-discriminating-detectors without any loss would have yielded the readouts (ijkl),

the conditional probability to observe the readouts (qrst) from four-imperfect-single-

photon-detectors including losses is [9]

p(qrst|ijkl) = p(q|i)p(r|j)p(s|k)p(t|l), (A.1)

with

p(q = 0|i) = (1− %)[1− ηe(1− %)]i,

p(q = 1|i) = 1− (1− %)[1− ηe(1− %)]i,
(A.2)

where ηe is defined in Eq. (2.3).

Relatively, in each single-swap element, given the readouts (qrst) of the four-imperfect-

single-photon-detectors including losses, we infer the hypothetical readouts of four-ideal-

photon-number-discriminating-detectors without any loss to be (ijkl), with probability

P qrstijkl ≡ p(ijkl|qrst). By applying Bayes’ theorem, this probability is found to be [9]

P qrstijkl =
p(qrst|ijkl)p(ijkl)

∞∑
i′j′k′l′=0

p(qrst|i′j′k′l′)p(i′j′k′l′)
, (A.3)

where p(ijkl) is the prior probability for the resultant state of the outermost two modes

to be projected onto |φijkl〉, i,e., p(ijkl) ≡ 〈φijkl|φijkl〉. The probability P qrst
ijkl for all
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PSO stations can then be calculated through

P qrst
ijkl = P q1r1s1t1i1j1k1l1

P q2r2s2t2i2j2k2l2
P q3r3s3t3i3j3k3l3

. . . . (A.4)

The transitional probability W ijkl
i′j′k′l′ is the norm of the complex transitional probability

amplitude Aijkl
i′j′k′l′ as given in Eq. (4.3), where the explicit form of the formula of Aijkl

i′j′k′l′

in PDC source case is [11]

Aijkl
i′j′k′l′ =

N∏
p=1

1√
2ip+jp+kp+lpip!jp!kp!lp!

(tanhχ)ip+jp+kp+lp

cosh4N χ

ip∑
µp=0

jp∑
νp=0

kp∑
κp=0

lp∑
λp=0

× (−1)µp+νp
(
ip
µp

)(
jp
νp

)(
kp
κp

)(
lp
λp

)
×
N−1∏
n=1

Ω(µn, λn, iN+n, lN+n)Ω(νn, κn, jN+n, kN+n)

√
iN+n!jN+n!kN+n!lN+n!

(
√

2)iN+n+jN+n+kN+n+lN+n

× δiN+n+lN+n,µn+λn+in+1+ln+1−µn+1−λn+1δjN+n+kN+n,νn+κn+jn+1+kn+1−νn+1−κn+1

× (νN + κN )!(j1 + k1 − ν1 − κ1)!
√
j′!k′!

i′!l′!

Min[j′,νN+κN ]∑
na=0

Min[k′,j1+k1−ν1−κ1]∑
nd=0

×
(

i tan
α̃

2

)νN+κN+j′−2na

×
(

cos
α̃

2

)i′+j′−2na
(
i tan

δ̃

2

)k′+j1+k1−ν1−κ1−2nd

×

(
cos

δ̃

2

)l′+k′−2nd
(i′ + j′ − na)!(l′ + k′ − nd)!

na!nd!(j′ − na)!(k′ − nd)!(νN + κN − na)!(j1 + k1 − ν1 − κ1 − nd)!

× δi′+j′,µN+νN+κN+λN δk′+l′,i1+j1+k1+l1−µ1−ν1−κ1−λ1 . (A.5)

Up to now we have given all the formulas that are needed for Eq. (2.2).
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Algorithm

In this appendix we provide the details of our algorithms that correspond to various steps

in Chapter. 4. In Appendix B.1 we introduce our algorithm of pseudo-random number

sampling. In Appendix B.2 we inroduce the main algorithm of using our sampling

method to calculate visibility.

B.1 Algorithm of pseudo-random number sampling

As the number of samples we pick from each prior list is limited, we prefer to pick those

most significant combinations for calculating Q
qrst,block(m)
q′r′s′t′ through Eq. (4.1). At the

same time, we give some chance for the less significant ones to be picked to remain

the randomness. To achive this goal, we design our prior lists to have the property

that the interval between the cumulative function values Fk−1 and Fk becomes smaller

and smaller as k increases, where k is the index of row. As the random number R for

pseudo-random number sampling is uniformly generated from [0, 1), the combination

recorded at the row with smaller index will always have greater chance to be picked,

which satisfies our goal. We design our own version of pseudo-random number sampling

based on the general procedure of that, which is listed in Chapter. 2.5. We introduce the

inputs, outputs and pseudo-codes of our own version of pseudo-random number sampling

in Algorithm 1.

33
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Algorithm 1 Pseudo-random number sampling

Input:

{F}: a monotonically increased l × 1 array of CDF value F

il: lowest inclusive index of the subarray that are searched, whose minimum value is

0

iu: highest inclusive index of the subarray that are searched, whose maximum value

is l

R: a random number uniformly generated from [0, 1)

Output:

i: index of row which satisfies the condition Fi-1 ≤ R < Fi

1: procedure pseudoF({F}, il, iu, R)

2: if il > iu then

3: i← −1

4: else

5: imid ← il + iu . find the middle index

6: if imid = 0 then

7: preProb← 0 . record the previous probability

8: else

9: preProb← Fimid−1

10: if preProb ≤ R < Fimid
then

11: i← imid

12: else . recursive call of the function itself to find the index

13: if R < Fimid−1 then

14: i← pseudoF({F}, il, imid − 1, R)

15: else

16: i← pseudoF({F}, imid + 1, iu, R)

17: end if

18: end if

19: end if

20: end if

21: return i.

22: end procedure

B.2 Main algorithm of sampling method

We now introduce the detailed algorithm of applying our sampling method to calculate

visibilities for N ≤ 6 swaps. Notice that for simulations of N ≤ 6 swaps we only need
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two prior lists, as introduced in Chapter. 5. We now provide the inputs, outputs and

pseudo-codes of our sampling method in Algorithm 2.
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Algorithm 2 Main algorithm of sampling method

Input:

N : the number of swaps we are simulating

{χ}: the nonlinearities of all the PDC sources

{ηe}: the “effective efficiencies” of all the detectors

α: the polarization angle of Alice’s polarization rotators

δ: the polarization angle of Bob’s polarization rotators

nmax: the photon-number truncation in every mode

P1: first prior list

P2: second prior list

L1: length of the first prior list

L2: length of the second prior list

n1: the total number of combinations picked from the first prior list, with its maximum

value to be L1

n2: the total number of combinations picked from the second prior list, with its

maximum value to be L2

pseudoF({F}, il, iu, R): algorithm of pseudo-random number sampling

Output:

V : simulated visibility of N swaps based on the parameters we enter

1: procedure main(N , {χ}, {ηe}, α, δ, nmax, P1, P2, L1, L2, n1, n2, pseudoF)

2: for i← 1, n1 do

3: R1 ← [0, 1) . generate a random number

4: m← pseudoF(P1, 0, L1 − 1, R1) . apply pseudo-random number sampling to

find the index of row from the first prior list

5: (ijkl(m))← (P1)m . use the combination located at the mth row of the first

prior list to set the first part of (ijkl(m))

6: for j ← 1, n2 do

7: (ijkl(m))← (P2)j . use the combination located at the jth row of the

second prior list to set the second part of (ijkl(m))

8: Q1010
1010 += Q

1010,block(m)
1010 ({χ},{ηe},α,δ,nmax,(ijkl(m)))

9: Q1010
0101 += Q

1010,block(m)
0101 ({χ},{ηe},α,δ,nmax,(ijkl(m)))

10: Q1010
1001 += Q

1010,block(m)
1001 ({χ},{ηe},α,δ,nmax,(ijkl(m)))

11: Q1010
0110 += Q

1010,block(m)
0110 ({χ},{ηe},α,δ,nmax,(ijkl(m)))

12: end for

13: end for

14: V ← Eq. (2.1) . calculate the visibility

15: return V

16: end procedure



Appendix B. Algorithm 37

Up to now we have introduced all the significant algorithms of our sampling method.



Appendix C

Theory of LDQC through any

number of

entanglement-swapping

operations in a quantum-relay

configuration using single-photon

sources

In this appendix we show the details of how we develop the theory of LDQC through

any number of entanglement-swapping operations in a quantum-relay configuration using

single-photon sources.

We know the unnormalized joined state coming out of the two single-photon sources is

the tensor product of each individual state, i.e.,

|ψ〉 = |ψab〉 ⊗ |ψcd〉 =
1

2

(
â†Hb̂

†
V − â

†
Vb̂
†
H

)(
ĉ†Hd̂

†
V − ĉ

†
Vd̂
†
H

)
|vac〉

=
1

2

(
â†Hb̂

†
Vĉ
†
Hd̂
†
V − â

†
Hb̂
†
Vĉ
†
Vd̂
†
H − â

†
Vb̂
†
Hĉ
†
Hd̂
†
V + â†Vb̂

†
Hĉ
†
Vd̂
†
H

)
|vac〉 .

(C.1)
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After passing through the beamsplitter, the unnormalized state becomes

ÛB |ψ〉 =
1

4

[
â†Hb̂

†′
Vb̂
†′
Hd̂
†
V + â†Hb̂

†′
Vĉ
†′
Hd̂
†
V − â

†
Hĉ
†′
Vb̂
†′
Hd̂
†
V − â

†
Hĉ
†′
Vĉ
†′
Hd̂
†
V

− â†Hb̂
†′
Vb̂
†′
Vd̂
†
H − â

†
Hb̂
†′
Vĉ
†′
Vd̂
†
H + â†Hĉ

†′
Vb̂
†′
Vd̂
†
H + â†Hĉ

†′
Vĉ
†′
Vd̂
†
H

− â†Vb̂
†′
Hb̂
†′
Hd̂
†
V − â

†
Vb̂
†′
Hĉ
†′
Hd̂
†
V + â†Vĉ

†′
Hb̂
†′
Hd̂
†
V + â†Vĉ

†′
Hĉ
†′
Hd̂
†
V

+â†Vb̂
†′
Hb̂
†′
Vd̂
†
H + â†Vb̂

†′
Hĉ
†′
Vd̂
†
H − â

†
Vĉ
†′
Hb̂
†′
Vd̂
†
H − â

†
Vĉ
†′
Hĉ
†′
Vd̂
†
H

]
|vac〉 .

(C.2)

The two PBSs will then reflect the vertical polarization and transit the horizontal po-

larization. After that the detectors will perform measurements. The post-measurement

unnormalized state will then be

Π̂ÛB |ψ〉 =
1

4

(
â†Hd̂

†
Vδi0δj0δk1δl1 + â†Hd̂

†
Vδi1δj0δk1δl0 − â

†
Hd̂
†
Vδi0δj1δk0δl1 − â

†
Hd̂
†
Vδi1δj1δk0δl0

− â†Hd̂
†
Hδi0δj0δk2δl0 − â

†
Hd̂
†
Hδi0δj1δk1δl0 + â†Hd̂

†
Hδi0δj1δk1δl0 + â†Hd̂

†
Hδi0δj2δk0δl0

− â†Vd̂
†
Vδi0δj0δk0δl2 − â

†
Vd̂
†
Vδi1δj0δk0δl1 + â†Vd̂

†
Vδi1δj0δk0δl1 + â†Vd̂

†
Vδi2δj0δk0δl0

+â†Vd̂
†
Hδi0δj0δk1δl1 + â†Vd̂

†
Hδi0δj1δk0δl1 − â

†
Vd̂
†
Hδi1δj0δk1δl0 − â

†
Vd̂
†
Hδi1δj1δk0δl0

)
⊗ |vac〉 .

(C.3)

We normalize the state in Eq. (C.3) and simplify it to be

|Φ〉 =
1√
2

[
C1â

†
Hd̂
†
V + C2â

†
Hd̂
†
H + C3â

†
Vd̂
†
V + C4â

†
Vd̂
†
H

]
|vac〉 , (C.4)

where the coefficients are defined as

C1 = δi0δj0δk1δl1 + δi1δj0δk1δl0 − δi0δj1δk0δl1 − δi1δj1δk0δl0,

C2 = δi0δj2δk0δl0 − δi0δj0δk2δl0,

C3 = δi2δj0δk0δl0 − δi0δj0δk0δl2,

C4 = δi0δj0δk1δl1 + δi0δj1δk0δl1 − δi1δj0δk1δl0 − δi1δj1δk0δl0.

(C.5)

Here δab means that if a = b then it is 1, otherwise it is 0.

Eq. (C.4) is the normalized state for each single-swap element after PSO. The resultant

state of N swaps after all the intermediate PSO measurements is obtained by applying

intermediate measurements projectors on the tensor product of N individual states of

single-swap elements. We find it to be

|Φ〉N =
1√
2

[
CswapN,1â

†
1Hd̂
†
NV + CswapN,2â

†
1Hd̂
†
NH + CswapN,3â

†
1Vd̂
†
NV + CswapN,4â

†
1Vd̂
†
NH

]
|vac〉 ,

(C.6)
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where â†1H and â†1V are the creation operators on the horizontal and vertical components

of spatial mode in the arm towards Alice. d̂†NH and d̂†NV are the creation operators on

the horizontal and vertical components of spatial mode in the arm towards Bob. The

coefficients CswapN,1 CswapN,2 CswapN,3 CswapN,4 can be calculated through the recursive

algorithm, started from M = 2 to M = N :

CswapM,1 = Cswap(M−1),1CM1C(M+(M−1))1 − Cswap(M−1),1CM3C(M+(M−1))2

− Cswap(M−1),2CM1C(M+(M−1))3 + Cswap(M−1),2CM3C(M+(M−1))4,

CswapM,2 = Cswap(M−1),1CM2C(M+(M−1))1 − Cswap(M−1),1CM4C(M+(M−1))2

− Cswap(M−1),2CM2C(M+(M−1))3 + Cswap(M−1),2CM4C(M+(M−1))4,

CswapM,3 = Cswap(M−1),3CM1C(M+(M−1))1 − Cswap(M−1),3CM3C(M+(M−1))2

− Cswap(M−1),4CM1C(M+(M−1))3 + Cswap(M−1),4CM3C(M+(M−1))4,

CswapM,4 = Cswap(M−1),3CM2C(M+(M−1))1 − Cswap(M−1),3CM4C(M+(M−1))2

− Cswap(M−1),4CM2C(M+(M−1))3 + Cswap(M−1),4CM4C(M+(M−1))4.

(C.7)

Here the coefficients CM1, CM2, CM3, CM4 are defined as

CM1 = δiM0δjM0δkM1δlM1 + δiM1δjM0δkM1δlM0 − δiM0δjM1δkM0δlM1 − δiM1δjM1δkM0δlM0,

CM2 = δiM0δjM2δkM0δlM0 − δiM0δjM0δkM2δlM0,

CM3 = δiM2δjM0δkM0δlM0 − δiM0δjM0δkM0δlM2,

CM4 = δiM0δjM0δkM1δlM1 + δiM0δjM1δkM0δlM1 − δiM1δjM0δkM1δlM0 − δiM1δjM1δkM0δlM0

(C.8)

and Cswap2,1, Cswap2,2, Cswap2,3, Cswap2,4 are defined as

Cswap2,1 = C11C21C31 − C11C23C32 − C12C21C33 + C12C23C34,

Cswap2,2 = C11C22C31 − C11C24C32 − C12C22C33 + C12C24C34,

Cswap2,3 = C13C21C31 − C13C23C32 − C14C21C33 + C14C23C34,

Cswap2,4 = C13C22C31 − C13C24C32 − C14C22C33 + C14C24C34.

(C.9)

Now we apply unit operations of the rotators to the state in Eq. (C.6). The unit

operations of the rotators can be mathematically written as [9]

Ûâ(α̃) =
∞∑

n1=0

∞∑
n2=0

in1
[
tan

(
α̃
2

)]n1
(
â†1V

)n1

(â1H)n1

n1!

×
[
cos

(
α̃

2

)]â†1Hâ1H−â†1Vâ1V in2
[
tan

(
α̃
2

)]n2 (â1V)n2

(
â†1H

)n2

n2!
.

(C.10)
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Ûd̂(δ̃) =
∞∑

n3=0

∞∑
n4=0

in3

[
tan

(
δ̃
2

)]n3
(
d̂†NV

)n3
(
d̂NH

)n3

n3!

×

[
cos

(
δ̃

2

)]d̂†NHd̂NH−d̂†NVd̂NV in4

[
tan

(
δ̃
2

)]n4
(
d̂NV

)n4
(
d̂†NH

)n4

n4!
.

(C.11)

The state of the N swaps after passing through the rotators is then found to be

Ûâ(α̃)⊗ Ûd̂(δ̃) |Φ〉N =
1∑

n1=0

1∑
n2=0

1∑
n3=0

1∑
n4=0

1√
2

in1+n2+n3+n4
[
tan

(
α̃
2

)]n1+n2
[
tan

(
δ̃
2

)]n3+n4

n1!n2!n3!n4!

×

CswapN,1

[
cos

(
α̃

2

)][
cos

(
δ̃

2

)]2n4−1

δn3≤n4δn2=0 |1− n1, n1, 1 + n3 − n4, n4 − n3〉

+ CswapN,2

[
cos

(
α̃

2

)][
cos

(
δ̃

2

)]
δn4=0δn2=0 |1− n1, n1, n3, 1− n3〉

+ CswapN,3

[
cos

(
α̃

2

)]2n2−1
[

cos

(
δ̃

2

)]2n4−1

δn3≤n4δn1≤n2 |n2 − n1, 1 + n1 − n2, 1 + n3 − n4, n4 − n3〉

+CswapN,4

[
cos

(
α̃

2

)]2n2−1
[

cos

(
δ̃

2

)]
δn4=0δn1≤n2 |n2 − n1, 1 + n1 − n2, n3, 1− n3〉

]
,

(C.12)

where δa≤b means that if a ≤ b then it is 1, otherwise it is 0. Here we remain our

convention of notation of Fock state |aH, aV, dV, dH〉.
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The new Aijkli′j′k′l′ is obtained by appling measurements projectors on the above state,

which is found to be

Aijkli′j′k′l′ =
〈
i′j′k′l′

∣∣ Ûâ(α̃)⊗ Ûd̂(δ̃) |Φ〉N

=
1∑

n1=0

1∑
n2=0

1∑
n3=0

1∑
n4=0

1√
2

in1+n2+n3+n4
[
tan

(
α̃
2

)]n1+n2
[
tan

(
δ̃
2

)]n3+n4

n1!n2!n3!n4!

×

CswapN,1

[
cos

(
α̃

2

)][
cos

(
δ̃

2

)]2n4−1

δn3≤n4δn2=0δi′=1−n1δj′=n1δk′=1+n3−n4δl′=n4−n3

+ CswapN,2

[
cos

(
α̃

2

)][
cos

(
δ̃

2

)]
δn4=0δn2=0δi′=1−n1δj′=n1δk′=n3δl′=1−n3

+ CswapN,3

[
cos

(
α̃

2

)]2n2−1
[

cos

(
δ̃

2

)]2n4−1

δn3≤n4δn1≤n2δi′=n2−n1δj′=1+n1−n2δk′=1+n3−n4δl′=n4−n3

+CswapN,4

[
cos

(
α̃

2

)]2n2−1
[

cos

(
δ̃

2

)]
δn4=0δn1≤n2δi′=n2−n1δj′=1+n1−n2δk′=n3δl′=1−n3

]
.

(C.13)

Here δa=b means that if a = b then it is 1, otherwise it is 0. δa≤b means that if a ≤ b

then it is 1, otherwise it is 0.

The p(q′r′s′t′|i′j′k′l′) and P qrst
ijkl functions are the same as those in PDC source case [11]

as we do not change the detectors. Finally, we calculate the conditional probabilities

Qqrst
q′r′s′t′ through Eq. (2.2) and corresponding visibility based on them through Eq. (2.1).
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