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Abstract

MAlleability of an encryption concerns the ability of users to compute the encryption of

f(m) from the encryption of m for an arbitrary message m and a function f ∈ F . In this

context, we say that the encryption scheme is non-malleable if F is an empty set, and we say the

encryption scheme is fully malleable or fully homomorphic if F includes any arbitrary function.

In some applications the encryption scheme should be non-malleable to preserve the privacy of

data while in others malleability of the encryption facilitates the functionality or efficiency of the

application.

In this thesis we bring forth several general constructions of non-malleable encryption schemes

enjoying different levels of security. We also design a multi-party computation protocol that employs

a fully homomorphic encryption scheme to optimize the communication cost.
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Chapter 1

Introduction

THis thesis aims to study a quintessential cryptographic primitive for which many basic ques-

tions remain. This primitive is encryption which is the most widely used and oldest notion

in cryptography. Encryption schemes are used to ensure secure communication between parties

where the means of communication might be controlled by an untrusted party or the adversary.

Encryption is the process of transforming a piece of data that needs to be hidden or the plaintext

into a bit string or ciphertext that sounds meaningless unless one has access to data called the key.

The key can be used later to decrypt the ciphertexts. We first discuss the importance of encryption

schemes in Section 1.1. Then in Section 1.2, we discuss the security notions regarding encryption

schemes and pose four key research questions along with an overview of our approach to answering

each in Sections 1.2.2 to 1.2.4 .

1.1 Encryption in Practice

Encryption has become a day to day necessity for preserving privacy in systems ranging from small

companies to international businesses, and even to financial institututions such as banks and stock

markets. In fact, a report report by the Computer Security Institute [1] shows that the companies

surveyed encrypted 66.2% of data in transit and 59.8% of data in storage. Encryptions schemes

are essential to the operation of bank automatic teller machines, electronic commerce, Bluetooth

devices, digital rights management systems (that prevent unauthorized use of copy righted digital

material), and much more.

1



Chapter 1 Introduction 2

Data encryption increases time, space and cost overheads in any or all phases of design,

implementation and maintenance of a system, and one might reasonably ask if it is worth the added

effort. A brief review of the potential consequences of data breaches, however, makes clear that

the answer is yes. According to a report published by Privacy Rights Clearinghouse [2], in the

United States during 2011 alone 535 data breach incidents were perpetrated resulting in the theft

of over 30.4 million sensitive consumer records such as debit card, credit card and social security

numbers. This brings the total reported records breached in the United States since 2005 to the

alarming number of 543 million. Unfortunately, this is not even the total number of data breach

incidents. Beth Givens, the director of Privacy Rights Clearinghouse, says:

“This is a conservative number. We generally learn about breaches that garner media

attention. Unfortunately, many do not. And, because many states do not require

companies to report data breaches to a central clearinghouse, data breaches occur that

we never hear about. Our Chronology is only a sampling.”

The costs of a data breach can be staggering, amounting to millions or even billions of dollars. For

example, in April 2011 Sony experienced a data breach within their PlayStation Network leaking

the name, address and possibly credit card numbers of 77 million users and costing the company

an estimate of 13 billion dollars [3]. Unfortunately, malicious attackers are commonly the cause

of data breach incidents. According to 2010 Ponemon Institute benchmark study [4] malicious or

criminal attacks are the most expensive cause of data breaches and account for almost one third of

all incidents.

Cyber security, which commonly deploys encryption as a tool, plays a major role in today’s

economy and in both private and public security. President Obama has acknowledged that “the cyber

threat is one of the most serious economic and national security challenges we face as a nation,”

and that “America’s economic prosperity in the 21st century will depend on cyber security” [5].

1.2 Encryption in Theory

Encryption schemes can be divided into two broad categories: Private (or Symmetric) Key Encryp-

tion and Public (or Asymmetric) Key Encryption. As their names suggest, in the former case the
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same key is used to either encrypt or decrypt data, while in the latter case the key for encryption

(called public key) is different from the key for decryption (called private key). In general, Private

Key Encryption is more efficient than Public Key Encryption. However, in many applications it

is not feasible to give away the key that can decrypt ciphertexts. For example, consider a simple

auction application where users encrypt their bids and broadcast them to the public. After everyone

broadcasts the encryption of their bids, a trusted authority decrypts the bids and announces the

winner. Clearly the bidders’ privacy requires that their bids stay secret to the public. Hence the

encryption and decryption key may not be the same and we need to use a Public Key Encryption

Scheme. In this thesis we only focus on Public Key Encryption, and unless otherwise mentioned,

we refer to Public Key Encryption Schemes as Encryption Schemes.

The main goal of encryption is to guarantee the privacy of data meaning that a malicious user

(or the adversary) cannot learn any information about encrypted data by analyzing its corresponding

ciphertext (called the challenge ciphertext). The most basic security guarantee that encryption

may provide is semantic security (or CPA security) first introduced by Goldwasser and Micali

in [6]. Intuitively, this form of security states that whatever the advisory may learn by analyzing the

challenge ciphertext can be learned without access to the challenge ciphertext which roughly means

that ciphertexts do not leak any unwanted information.

However, an encryption scheme that satisfies CPA security might not necessarily preserve

the privacy of data in some applications because of the (possibly) unrealistic restrictions of the

adversary in the CPA security definition which do not necessarily match the restrictions of the

malicious users in real world applications. For example, the adversary does not have access to

the decryption oracle either before or after seeing the challenge ciphertext in the CPA security

definition while a malicious user might have access to the decryption oracle before knowing the

challenge ciphertext. In this case if the encryption scheme stays secure, we say the encryption

scheme satisfies a stronger notion of security called CCA1 security which was first introduced and

defined by Naor and Yung in [7] and intuitively implies that the decryption oracle does not leak the

secret key by answering decryption queries. The encryption schemes in [8] are a few examples of
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CCA1 encryption schemes.

Unfortunately, even CCA1 security does not prevent the adversary from “cheating” in many

applications. For example in our auction application, the adversary might meaningfully maul

everyone else’s ciphertexts to produce an encryption of one bid over the maximum bid of all other

participants. Neither CPA nor CCA1 security can prevent such cheating behavior because in both

the adversary wins only by guessing the encrypted data correctly rather than mauling ciphertexts. If

an encryption scheme is secure against this attack, we say the encryption scheme is non-malleable.

The seminal work of Dolev, Dwork, and Naor [9] introduced the area of non-malleable cryptographic

primitives. In short, non-malleability corresponds to inability of the adversary to maul a ciphertext

into a related ciphertext (i.e. a ciphertext that encrypts a related message).

In the following sections we discuss non-malleability in greater detail and pose four key research

question along with our approach to answering them. We define a parallel query to be an unbounded

number of queries all submitted to the decryption oracle at once (the adversary is never allowed to

ask the challenge ciphertext from the decryption oracle).

1.2.1 NM-CPA Encryption Schemes

In this type of security definition, the adversary has no access to the decryption oracle prior to

receiving the challenge ciphertext. However, after knowing the challenge ciphertext the adversary

can ask one parallel query from the decryption oracle. The adversary wins if she can guess the

encrypted message in the challenge ciphertext correctly after asking the parallel query. This

definition of non-malleability, called NM-CPA, is a strengthened form of the original definition

of non-malleability (that was presented in [9]) offered by Pass, shelat and Vaikuntanathan [10].

They also presented a construction from CPA to non-malleable CPA using non-blackbox use of the

original encryption scheme. Later, Choi et al. [11] showed how non-malleable CPA encryption can

be constructed from standard versions of CPA secure encryption in a black-box manner.
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1.2.2 NM-CCA1 Encryption Schemes

This security notion is a combination of CCA1 and NM-CPA security. In more detail, the adversary

has unconditional access to the decryption oracle before seeing the challenge ciphertext for an

unbounded number of times just like in the CCA1 security definition but can only ask one parallel

query after knowing the challenge ciphertext just like in the NM-CPA security definition. Although

there exist provably CCA1 encryption schemes in the literature (e.g. [8]), determining whether

there exists a NM-CCA1 that is not CCA2 secure (a stronger notion of security) remains an open

problem. This blemish on our understanding of the theory of encryption has remained despite

multiple advances including many novel techniques for constructing encryption schemes.

RQ 1. As with the case for CPA security, can a CCA1 encryption scheme be trans-

formed into an NM-CCA1 encryption scheme?

Although we do not fully resolve this quesiton, in Chapter 3 we identify a meaningful subset

of CCA1 schemes that imply NM-CCA1 security. This subset of CCA1 encryption schemes are

plaintext aware under multiple keys and weakly simulatable encryption schemes (we will formally

define these concepts later). Intuitively, an encryption scheme is plaintext aware (called sPA1 in [8])

if the “only” way that a ppt adversary can produce a valid ciphertext is to apply the (randomized)

encryption algorithm to the public key and a message [8]. Notice that this definition does not

imply non-malleability since there is no guarantee of what an adversary can do when given a valid

ciphertext. In fact, both encryption schemes from [8] are multiplicatively homomorphic. The weakly

simulatable property in our construction is required for technical reasons and roughly corresponds

to the ability to to sample ciphertexts and pseudo-ciphertexts with random coins used to generate

them.

(Informal Theorem) There exists a black-box construction of NM-CCA1 encryption

from plaintext awareness and weak simulatability.

Refer to Chapter 3 for more details.

Next we consider designing encryption schemes which security is strictly stronger than CCA1

security but weaker than CCA2 security (in the CCA2 security definition, the adversary has
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unbounded access to the decryption oracle both before and after seeing the challenge ciphertext).

Note that there exist encryption schemes that satisfy security notions that “sit between” standard

notions. One such example from Cramer et al. [12] consists of a black-box construction of a

q-bounded CCA2 encryption scheme which is not NM-CPA, but which satisfies a stronger security

notion than CPA. In particular, as a generalization of NM-CPA, Matsuda and Matsuura [13] put

forth the challenge of constructing encryption schemes that can handle more than one parallel query

after revealing the challenge ciphertext. They write:

“Since any (unbounded) CCA secure public key encryption construction from CPA

secure ones must first be secure against adversaries who make two or more parallel

decryption queries, we believe that overcoming this barrier of two parallel queries is

worth tackling.”

In this spirit, we define an extension over NM-CCA1, cNM-CCA1, that is defined identically

to NM-CCA1 except that the adversary can make c adaptive parallel decryption queries after seeing

the challenge ciphertext, where each parallel decryption query can request that a polynomial number

of ciphertexts be decrypted (excluding the challenge ciphertext). Then we show how to construct a

cNM-CCA1 secure encryption scheme for an arbitrary constant c.

(Informal Theorem) There exists a black-box construction of cNM-CCA1 encryption

in which the adversary may ask constant number of parallel queries after receiving the

challenge ciphertext from plaintext awareness and weak simulatability assumptions.

For more details, see Chapter 3.

1.2.3 NM-CCA2 Encryption Schemes (or CCA2 Encryption Schemes)

CCA2 security is stronger than all other mentioned security notions. As mentioned earlier, in this

type of security definition the adversary has access to the decryption oracle both before and after

seeing the challenge ciphertext for an unbounded number of times. As before, the adversary is

not allowed to ask the challenge ciphertext from the decryption oracle. Despite two decades of

rigorous study it remains unclear how to construct a non-malleable encryption scheme (CCA2

secure encryption scheme) from any semantically secure encryption scheme. In this regard, partial
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progress has been made by Gertner, Malkin and Myers [14] who showed there are no black-box

constructions in which the decryption algorithm of the proposed CCA2 encryption scheme does

not query the encryption algorithm of the semantically secure one.

The current state-of-the-art of construction of CCA2 encryption schemes from general assump-

tions is that of Wee [15] based on a primitive called the extractable hash proof system which is a

special kind of non-interactive zero-knowledge proof of knowledge system. It is the first practical

CCA2 encryption scheme from general assumptions that can be instantiated from both Computa-

tional Diffie-Hellman (CDH) and the factoring assumption. Given a hash proof system, the CCA2

encryption scheme can be constructed in a straightforward way. However the extractable hash proof

system is specifically tailored to fit in their framework with quite a complicated and non-intuitive

definition.

RQ 2. What are the weakest encryptions from which we can achieve CCA2 security in

a general and black-box manner?

In this thesis we take a step towards answering this question by building a provably CCA2

secure encryption scheme from encryptions that do not necessarily satisfy even CPA security. More

specifically, the basic needed encryption scheme in our constructions should satisfy two properties:

the encryption should be secure under a one-way plaintext-checking attack (i.e. OW-PCA-secure)

introduced in [16] and the scheme must support a “key malleability” property. We will formally

define each of these notions later, but intuitively an encryption scheme is OW-PCA secure if given

the public key and an encryption of a random message m, no ppt adversary can guess m correctly

except with a negligible probability even with access to an oracle that takes a ciphertext and a

message and verifies whether the ciphertext decrypts to the given message or not. This notion is

seemingly weak: the oracle only provides “yes/no” answers about whether a decryption is correct,

and the adversary must recover the entire message, and not just any single predicate as per semantic

security. The key malleability property is required for technical reasons and roughly corresponds

to the ability to finding keys that provably leak the same bits of plaintexts as a given key and

transforming ciphertexts between the two sets of keys.
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We use an encryption scheme that is OW-PCA secure and key malleable to construct an

encryption scheme that is one-bit CCA2 secure (i.e. the ciphertext encrypts a single bit).Since

Myers and shelat [17] showed that one-bit CCA2 security implies many-bit CCA2 security, we

conclude that many-bit CCA2 security may be achieved using an encryption scheme that is only

OW-PCA secure and key malleable.

(Informal Theorem) CCA2 security can be achieved from any OW-PCA secure

encryption scheme that is key malleable.

See Chapter 4 for more details.

1.2.4 Fully Homomorphic Encryption Schemes

Finally, we consider the opposite question. If an encryption scheme is the opposite of non-malleable,

i.e fully homomorphic (an encryption scheme that allows the user to do both addition and multipli-

cation on the ciphertexts), what novel applications become possible? Specifically we focused on the

application of fully homomorphic encryption schemes in the domain of multiparty computation

protocols (MPC). In an MPC protocol several parties gather to evaluate a public function on the set

of private data that each party holds with the goal being that each party would learn only her input

and the output of the evaluation.

RQ 3. Can fully homomorphic encryption schemes improve the efficiency of multiparty

computation protocols?

We show that using a fully homomorphic encryption scheme helps generate more efficient

designs of secure multiparty computation (MPC) protocols. Encryption schemes are commonly

used in the design of the MPC protocols to allow for secrecy of the data. There are overheads in

such protocols such as computation overhead, communication overhead, security assumptions or

round complexity, and our goal is to minimize each of these overheads in our design. Unfortunately

there is no single design that optimizes the overhead of MPC in all mentioned areas, but there are

designs that are optimal in reducing one or some of the mentioned overheads. Deciding which MPC

protocol to use depends on the application. In this thesis we propose a black-box MPC protocol to

optimize the communication complexity using fully homomorphic encryption schemes.
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(Informal Theorem) Using fully homomorphic encryption schemes, there exists black-

box multiparty computation protocols to evaluate an arbitrary function f with commu-

nication complexity independent of the size of f .

See Chapter 5 for more details.



Chapter 2

Basic Definitions and Notations

2.1 Notation

WE say a function ε : N→ R is negligible if for all polynomials p and all sufficiently large

k: ε(k) ≤ 1/p(k). Unless otherwise mentioned, ε(·) is a negligible function throughout

this thesis. We use [n] to denote the set {1, 2, . . . , n}. For a finite set X , we denote by x ← X

the experiment of choosing an element of X according to the uniform distribution over X . For

a distribution D over a set X , we denote by x ← D the experiment of choosing an element of

X according to the distribution D. Given finite distributions D0 and D1, we denote by D0 ≡ D1

the fact that the distributions are equal. In X and Y are random variables with clearly defined

underlying experiments, that have a shared finite support over their range, we abuse notation and use

X ≡ Y to denote that they have the same implied distribution. Given two families of distributions,

or random variables X = {Xi}i∈N and Y = {Yi}i∈N we denote by X ≈c Y the fact that X and

Y are computationally indistinguishable. Similarly, X ≈s Y denotes that they are statistically

indistinguishable.

2.2 Adversary Properties

Definition 2.2.1. (ppt) A machine is probabilistic polynomial time (ppt) if it has access to a random

tape that produces random bits upon access and if its running time is bounded by some polynomial

in the input size (or often a polynomial in a security parameter).

10
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Definition 2.2.2. (Non-uniform ppt Machine [18]). A non-uniform ppt machine A is a sequence

of probabilistic machines A = {A1,A2, . . .} for which there exists a polynomial d such that the

description size of |Ai| < d(i) and the running time of Ai is also less than d(i). We write A(x) to

denote the distribution obtained by running A|x|(x).

2.3 One-Way Functions

Definition 2.3.1. (Collection of One-Way Functions [18]). A collection of one-way functions is a

family F = {fi : Di → Ri}i∈I satisfying the following conditions:

1. It is easy to sample a function, i.e. there exists a ppt Gen such that Gen(1k) outputs some

i ∈ I .

2. It is easy to sample a given domain, i.e. there exists a ppt that on input i returns a uniformly

random element of Di.

3. It is easy to evaluate, i.e. there exists a ppt that on input i, x ∈ Di computes fi(x).

4. It is hard to invert, i.e. for any ppt A there exists a negligible function ε(.) such that for all

sufficiently large k ∈ N

Pr[i← Gen(1k);x← Di; y ← fi(x);x′ ← A(1k, i, y) : fi(x
′) = y] ≤ ε(k)

Definition 2.3.2. (Collection of One-Way Permutations [18]). A collection F = {fi : Di → Ri}i∈I

is a collection of one-way permutations if F is a collection of one-way funcitons and for all i ∈ I ,

we have that fi is a permutation.

Definition 2.3.3. (Collection of Trapdoor Permutations [18]). A collection of trapdoor permutations

is a family F = {fi : Di → Ri}i∈I satisfying the following properties:

1. ∀i ∈ I, fi is a permutation.

2. It is easy to sample a function, i.e. there exists a ppt Gen such that Gen(1k) outputs some

i ∈ I and the trapdoor information t.
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3. It is easy to sample a given domain, i.e. there exists a ppt that on input i ∈ I returns a

uniformly random element of Di.

4. It is easy to evaluate, i.e. there exists a ppt that on input i ∈ I, x ∈ Di computes fi(x).

5. fi is hard to invert, i.e. for any ppt A there exists a negligible function ε(.) such that for all

sufficiently large k ∈ N

Pr[(i, t)← Gen(1k);x← Di; y ← fi(x);x′ ← A(1k, i, y) : fi(x
′) = y] ≤ ε(k)

6. fi is easy to invert with trapdoor information, i.e. there exists a ppt machine that given input

(i, t) from Gen and y ∈ R, computes f−1
i (y).

Definition 2.3.4. (Hard-core Predicate [18]). A predicate h : {0, 1}∗ → {0, 1} is a hard-core

predicate for f(x) if h is efficiently computable given x, and for all nonuniform ppt adversaries A,

there exists a negligible function ε(.) so that for all sufficiently large k ∈ N

Pr[x← {0, 1}k : A(1k, f(x)) = h(x)] ≤ 1/2 + ε(k)

2.4 Indistinguishability

Definition 2.4.1. (Computational Indistinguishability) We say two distribution ensembles {C}k∈N

and {D}k∈N indexed by the security parameter k are computationally indistinguishable if for any

non-uniform ppt adversary A, the function δA(.), defined as follows, is a negligible function:

δA(k) = | Pr
α←Ck

[A(α) = 1]− Pr
α←Dk

[A(α) = 1]|

Definition 2.4.2. (Statistical Indistinguishability) We say two distribution ensembles {C}k∈N and

{D}k∈N indexed by the security parameter k are statistically indistinguishable if for any non-uniform

(not necessarily polynomial time) adversaryA, the function δA(.), defined as follows, is a negligible

function:
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δA(k) = | Pr
α←Ck

[A(α) = 1]− Pr
α←Dk

[A(α) = 1]|

2.5 Public Key Encryption Scheme

Definition 2.5.1. (Public Key Encryption Scheme [18]). A triple (Gen,Enc,Dec) is a public key

encryption scheme if

1. (PK, SK)← Gen(1k) is a ppt algorithm that produces a key pair PK (called the public key)

and SK (called the secret key)

2. c← EncPK(m) is a ppt algorithm that given the public key PK and the message m ∈ {0, 1}k

produces a ciphertext c

3. m← DecSK(c) is a ppt algorithm that produces a message m ∈ {0, 1}k given a ciphertext c

and the secret key SK

4. There exists a polynomial-time algorithmM that on input 1k and i outputs the ith message of

length k (if such a message exists)

5. ∀k,m ∈ {0, 1}k:

Pr[(PK, SK)← Gen(1k) : DecSK(EncPK(m)) = m] = 1

The decryption algorithm produces a special symbol ⊥ when the input ciphertext is “undeci-

pherable”. We define the security property for public-key encryption in Section 2.6.

2.6 CPA/CCA1/CCA2 Security

We recall the definitions for chosen plaintext attack (CPA), lunch time chosen ciphertext attack

(CCA1), and chosen ciphertext attack (CCA2) that originate from [6], [7] and [19] respectively.

We use the notation from [20].
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Definition 2.6.1. (AAA Security) For AAA ∈ {CPA, CCA1, CCA2}, E is said to be AAA secure

if for k ∈ N, AdvAAA(E,X, k) is negligible for every polynomial-time AAA-adversary X where

AdvAAA(E,X, k) = Pr[AAA1(E,X, k) = 1]− Pr[AAA0(E,X, k) = 1]

where AAA experiment is defined as follows:

AAAb(E,X, k)

1: (PK,SK)
$←− Gen(1k)

2: (M0,M1, St)
$←− XO1(.)(find,PK)

3: C
$←− EncPK(Mb)

4: d← XO2(.)(guess, C)
5: Return d

In the case of CPA security, O1(.) = λ and O2(.) = λ, in the case of CCA1 security, O1(.) =

DecSK(.) and O2(.) = λ, and in case of CCA2 security O1(.) = DecSK(.) and O2(.) = DecSK(.)

with the difference that O2(.) would return ⊥ if asked on the challenge ciphertext.

2.7 Strong One-Time Signature Scheme

A strong one-time signature scheme is defined as follows:

Definition 2.7.1. (Strong One-Time Signature Scheme [21]) A signature scheme Σ = (GenKey, Sign,Verify)

is a strong one-time signature scheme if the success probability of any ppt adversary A in the

following game is negligible in the security parameter k:

1. GenKey(1k) outputs (vkSig, skSig) and the adversary is given 1k and vkSig,

2. A(1k, vkSig) may do one of the following:

• A may output a pair (m∗, σ∗) and halt. In this case (m,σ) are undefined.

• A may output a message m, and is then given in return σ ← SignskSig(m). Following

this, A outputs (m∗, σ∗).
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We say the adversary succeeds if VerifyvkSig(m
∗, σ∗) = 1 but (m∗, σ∗) 6= (m,σ) (assuming

(m,σ) are defined). We stress that the adversary may succeed even if m∗ = m.

Note that public key encryption implies strong one-time signature. This follows by combining

the observations that public key encryption implies one-way functions, one-way functions imply

universal one-way hash functions [22], and universal one-way hash functions imply strong one-

time signature schemes [23, 24]. Thus, a strong one-time signature can be constructed given any

encryption scheme. In this thesis, whenever we need to assume the existence of both encryption

schemes and strong one-time signature schemes we only mention assuming the former since the

former implies the latter.



Chapter 3

Non-Malleable CCA1 Security and Beyond

3.1 Introduction

THe standard security definition of an encryption scheme does not prevent an adversary who

observes an encryption of the message m from producing an encryption of the message f(m)

for some function f (even though the value m remains private). The seminal work of Dolev, Dwork,

and Naor [9] addressed this security issue by introducing the area of non-malleable cryptographic

primitives such as encryption schemes, commitment schemes, and zero-knowledge. Later, Pass,

shelat and Vaikuntanathan [10] strengthened the DDN definition and presented a construction

from CPA to non-malleable CPA using non-blackbox use of the original encryption scheme.

There have been many follow-up works that propose more efficient constructions of non-malleable

primitives. A notable achievement in this line of research has been the construction of non-malleable

primitives using only black-box access to the standard version of the same primitive [11, 25, 15]. In

particular, [11] show how non-malleable CPA encryption can be constructed from standard versions

of encryption in a black-box manner.

However, the question of whether an NM-CCA1 encryption scheme can be constructed from

a CCA1 encryption scheme has remained open. This blemish on our understanding of the theory

of encryption has remained despite multiple advances including many novel techniques for con-

structing encryption schemes. In this work, we present a black-box construction of an NM-CCA1

encryption scheme for a subset of CCA1 encryption schemes, namely those which are also plaintext

16
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aware under multiple keys and weakly simulatable (we will formally define these concepts later).

Intuitively, an encryption scheme is plaintext aware (called sPA1 in [8]) if the only way that a ppt

adversary can produce a valid ciphertext is to apply the (randomized) encryption algorithm to the

public key and a message [8]. Notice that this definition does not imply non-malleability since

there is no guarantee of what an adversary can do when given a valid ciphertext. In fact, both

encryption schemes from [8] are multiplicatively homomorphic. The weakly simulatable property

in our construction is required for technical reasons and roughly corresponds to the ability to to

sample ciphertexts and pseudo-ciphertexts with random coins used to generate them.

Note that there exist encryption schemes that satisfy security notions that “sit between” standard

notions. One such example from Cramer et al. [12] consists of a black-box construction of a

q-bounded CCA2 encryption scheme which is not NM-CPA, but which satisfies a stronger security

notion than CPA. In particular, as a generalization of NM-CPA, Matsuda and Matsuura [13] put

forth the challenge of constructing encryption schemes that can handle more than one parallel query

after revealing the challenge ciphertext. They write:

“Since any (unbounded) CCA secure PKE construction from IND-CPA secure ones

must first be secure against adversaries who make two or more parallel decryption

queries, we believe that overcoming this barrier of two parallel queries is worth

tackling.”

In this spirit, we define an extension over NM-CCA1, cNM-CCA1, that is defined identically

to NM-CCA1 except that the adversary can make c adaptive parallel decryption queries after

seeing the challenge ciphertext, where each parallel decryption query can request that a polynomial

number of ciphertexts be decrypted (excluding the challenge ciphertext). (Note that NM-CCA1 is

cNM-CCA1 where the parameter c is set to be one.) Then we show how to construct a cNM-CCA1

secure encryption scheme for an arbitrary constant c. Unfortunately, the size of the ciphertext in

a cNM-CCA1 encryption scheme is polynomially bigger than the size of the ciphertext in a (c-

1)NM-CCA1 encryption scheme and thus the parameter c must be a constant to obtain an efficient

construction.
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About Knowledge Extraction Assumptions Our constructions rely on encryption schemes that

are plaintext aware (sPA1`) in the multi-key setup and are weakly simulatable. In Theorem 3.2.9,

we show that such encryption schemes exist under a suitable extension of the Diffie-Hellman

Knowledge (DHK) assumption that was originally proposed by Damgård, and modified to permit

interactive extractors by Bellare and Palacio [8]. Dent [26] has since shown that it is secure in the

generic group model. We understand that there are some critics of the DHK assumption, due to

its strength and the fact that it is not efficiently falsifiable. However, it is not our goal to argue

whether or not it is an assumption which should be used in deployable systems. Instead we note it is

seemingly a weaker assumption than the Random Oracle model (which is known to be incorrect in

full generality, cf. [27]), under which it is relatively easy to show that simple CPA secure encryption

schemes imply CCA2 secure ones. In contradistinction, there are no security definitions that seem

weaker or incomparable to NM-CCA1 that are known to imply schemes which are NM-CCA1.

Similarly, the gap between NM-CCA1 and CCA2 is poorly understood.

Techniques Similar to the nested encryption construction in [28], both our NM-CCA1 and

cNM-CCA1 constructions are based on the notion of double encryption. We first encrypt the

message under one key (we refer to this ciphertext as the “inner layer”), and encrypt the resulting

inner layer ciphertext repetitively under an additional k keys, where k is the security parameter (we

refer to these k keys as the “outer keys”, and the ciphertexts they produce as the “outer layer”).

During decryption, all the outer layer ciphertexts are decrypted, and it is verified they all encode

the same inner layer value. This is combined with the well studied notion of non-duplicatable

set selection (in this case of public-keys used to encrypt the outer-layer encryptions), such that

anyone attempting to maul a ciphertext has to perform their own independent outer layer encryption.

Intuitively, anyone that can encrypt to a consistent outer layer encryption under a new key must

have knowledge of the underlying inner-layer, and thus a valid ciphertext is not mauled.

On a more technical level, there are several challenges that need to be overcome. The traditional

technical difficulty in proving weaker public-key encryption security notions imply stronger security

notions is in showing how to simulate the decryption oracle. When beginning with a sPA1`-secure
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encryption primitive, we can easily simulate the initial decryption oracle in the NM-CCA1 security

definition, which is present before the challenge ciphertext is presented, by using the extractor

guaranteed by the sPA1` security definition. However, we cannot simply use the extractor to

simulate the decryption oracle after receiving the challenge ciphertext in the NM-CCA1 security

experiment. This is because the plaintext aware security does not guarantee that an extractor could

decrypt ciphertexts where the underlying randomness is not known to the party that created the

ciphertext. Generally, a party that mauls a ciphertext as in the case of non-malleability will not have

access to this underlying randomness. To overcome this problem, we make use of a weak notion of

simulatability.

To summarize, our contribution is twofold. Firstly, our work shows the first black-box construc-

tion of a non-malleable CCA1 encryption scheme in the standard model that is not CCA2 secure.

Secondly, for the first time, we show how to construct an encryption scheme that is not CCA2

secure but is secure against an adversary that can ask a bounded number of polynomial-parallel

queries after receiving the challenge ciphertext, satisfying a natural extension to the notion of

NM-CCA1 security. This might be of independent interest since the development of constructions

that satisfy stronger notions than non-malleable CCA1 security but do not satisfy CCA2 security

can provide insight in trying to understand the technical difficulties in understanding the larger

relationship between CCA1 and CCA2.

3.2 Notations and Definitions

Although non-malleability can be defined for any CPA, CCA1 or CCA2 encryption scheme (we

use the standard definition for CPA/CCA1/CCA2 security), we only use and hence only define

non-malleability for CCA1 encryption schemes. We use a definition similar to the non-malleability

definition for CPA encryption schemes in [10].

Definition 3.2.1 (NM-CCA1). We say that E = (nmg, nme, nmd) is non-malleable CCA1 secure

if for all ppt adversaries and ppt distinguishers A and D respectively and for all polynomials p(·),
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we have that {NME0(E,A,D, k, p(k))}k ≈c {NME1(E,A,D, k, p(k))}k where the experiment

NME is defined in Figure 3.1.

NMEb(E,A,D, k, p(k))
1: (NPK, NSK)← nmg(1k)
2: (m0,m1, S1)← AnmdNSK

1 (NPK) s.t. |m0| = |m1|
3: y ← nme(NPK,mb)
4: (~c, S2)← A2(y, S1) where |~c| = p(k)

5: Output D(~d, S2) where di ← nmd(NSK, ci) if ci 6= y and di ← ⊥ if ci = y

Figure 3.1: THE NME EXPERIMENT USED TO DEFINE NM-CCA1 SECURITY

3.2.1 Weakly Simulatable Encryption Scheme

Dent in [29] introduced the notion of simulatability for an encryption scheme. Intuitively, an

encryption scheme is simulatable if no attacker can distinguish valid ciphertexts from some family

of pseudo-ciphertexts (which will include both valid encryptions and invalid encryptions). This

family of pseudo-ciphertexts must be efficiently and publicly computable (i.e. without access to any

private knowledge, say related to the secret key), and somewhat invertible (given a pseudo-ciphertext,

one can find a random looking string that generates it). In Dent’s definition, the attacker also has

access to a decryption oracle to help it distinguish between pseudo-ciphertexts and legitimate ones,

but it cannot query the decryption oracle on the challenges that it is trying to distinguish.

For our purposes, consider a restricted notion of simulatability where the attacker is not given

access to the decryption oracle. If an encryption scheme satisfies this weaker notion of simulatability,

we say it is weakly simulatable.

Definition 3.2.2. (Weakly Simulatable Encryption Scheme) An asymmetric encryption scheme

(Gen,Enc,Dec) is weakly simulatable if there exist two poly-time algorithms (f, f−1), where f is

deterministic and f−1 is probabilistic, such that for all k ∈ N there exists the polynomial function

p(.) where l = p(k), we have the following correctness properties:



3.2 Notations and Definitions 21

1. f on inputs of public key PK (in the range of Gen) and a random string r ∈ {0, 1}l, returns

elements in C, where C is the set of all possible “ciphertext”-strings that can be submitted to

the decryption oracle (notice that members of C are both valid and invalid ciphertexts).

2. f−1 on input of a public key PK (in the range of Gen) and an element C ∈ C, outputs elements

of {0, 1}l.

3. f(PK, f−1(PK, C)) = C for all C ∈ C.

And the following security properties. No polynomial time attacker A has probability better than

1/2 + µ(k) of winning in the following experiment, where µ is some negligible function.

1. The challenger generates a random key pair (PK, SK) ← Gen(1k), and chooses randomly

b ∈ {0, 1}.

2. The attacker A executes on the input 1k and the public key PK outputs m ∈ M. The

challenger sends A the pair (f−1(PK, c = EncPK(m)), c) if b = 0, or (r, f(PK, r)) for some

randomly generated element r ∈ {0, 1}l if b = 1. The attacker A terminates by outputting a

guess b′ for b.

A wins if b = b′ and its advantage is defined in the usual way.

In a scheme where you cannot distinguish legitimate ciphertexts from pseudo-ciphertexts that

need not encode actual messages, CPA security is immediate. The converse need not hold, as

ciphertexts might be hard to generate, and invalid ciphertexts might be easily distinguishable from

illegitimate ones (for example, they might contain a zero-knowledge proof of validity). Notice that

the weak simulatability notion is not equivalent to the Invertible Sampling notion introduced in [30]

since the plaintext is not needed to compute the random looking string that generates the ciphertext.

Theorem 3.2.3. If E is a weakly simulatable encryption scheme, then E is CPA secure.

Proof. Let E be weakly simulatable on the pair of turing machines (f, f−1). Let A be a CPA

adversary. Let BA be an attacker against the weakly simulatability property of E that works as

follows:
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• The challenger generates a pair of public and secret keys (PK,SK) ← Gen(1k). The

challenger also chooses a random bit b ∈ {0, 1}.

• The attacker BA gets executed on the public key PK. BA runs A1 on the input PK until it

halts with messages m0 and m1 and the state information st.

• The attacker BA chooses a random bit d ∈ {0, 1}, and queries the challenger on md.

• The challenger chooses a random string r ∈ {0, 1}` and answers with (r = f−1(PK, c), c =

EncPK(md)) if b = 0, and (r, c = f(PK, r)) if b = 1.

• BA receives (r, c) from the challenger. BA then runsA2 on the input c and st untilA2 outputs

the bit d′ as a guess for d and halts. If d′ = d, BA outputs b′ = 0 otherwise it outputs b′ = 1.

Now we analyze the advantage of BA assuming E is not CPA secure. Note that

Pr[d′ = d|b = 0] > 1/2 + ε(k) (3.1)

for any negligible function ε(.) if E is not CPA secure (Pr[d′ = d|b = 0] is the probability that A

guesses the encrypted message correctly when it is given a valid ciphertext). We will show that this

inequality is in contradiction with the assumption that E is weakly simulatable.

E is weakly simulatable if and only if for some negligible function ε′(.)

|Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]| < ε′(k) (3.2)

Note that b′ = 0 if and only if d′ = d. Hence Pr[b′ = 0|b = 0] = Pr[d = d′|b = 0] and

Pr[b′ = 0|b = 1] = Pr[d = d′|b = 1]. We have that

Pr[d = d′|b = 1] = 1/2 (3.3)

because whenever b = 1, the given ciphertext to the adversary is independent of the bit d and hence

the advantage of the adversary in guessing the random bit d is exactly 1/2. Hence
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|Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]| =

|Pr[d = d′|b = 0]− Pr[d = d′|b = 1]|

substituting (3.1), (3.3), >1/2 + ε(k)− 1/2

>ε(k)

for any negligible function ε(.) which is in contradiction with the assumption that E is weakly

simulatable (Equation 3.2). Hence we conclude that E is CPA secure.

Algorithm 1: DEG
G(1k)

1: (p, q, g)← G(1k)
2: x1 ← Zq;X1 ← gx1 mod p
3: x2 ← Zq;X2 ← gx2 mod p
4: Return (pk = (p, q, g,X1, X2),

sk = (p, q, g, x1, x2))

E(pk,M)
1: y ← Zq;Y ← gy mod p
2: W ← Xy

1 ;V ← Xy
2 mod p

3: U ← V ·M mod p
4: Return C = (Y,W,U)

D(sk, C)
1: if W 6= Y x1 mod p then Return ⊥
2: Return M ← U · Y −x2 mod p

Algorithm 2: CS-Lite
G(1k)

1: (p, q, g1)← G(1k); g2 ← Gq\{1}
2: x1 ← Zq;x2 ← Zq; z ← Zq
3: X ← gx11 .g

x2
2 mod p;Z ← gz1 mod p

4: Return (PK = (p, q, g1, g2, X, Z),
SK = (p, q, g1, g2, x1, x2, z))

E(pk,M)
1: r ← Zq
2: R1 ← gr1 mod p;R2 ← gr2 mod p
3: E ← Zr ·M mod p;V ← Xr mod p
4: Return C = (R1, R2, E, V )

D(sk, C)
1: if V 6= Rx1

1 ·Rx2
2 mod p then Return ⊥

2: Return M ← E ·R−z1 mod p

Table 3.1: THE ENCRYPTION SCHEMES DEG AND CS-LITE

Following the ideas of Dent, in what follows we show how DEG and CS-lite schemes can both

be weakly simulatable when instantiated in proper groups. We argue that the Damgård ElGamal

(DEG) scheme is weakly simulatable using an argument parallel to that of Dent [29]. We remind

the reader that the definition for DEG is given on page 23.
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We use the notion of a simulatable group given by Dent [29].

Definition 3.2.4. (Simulatable Group) [29] A Group G is simulatable if there exist two polynomial

turing machines (f, f−1) such that:

• f is a deterministic turing machine that takes a random element r ∈ {0, 1}l as input, and

outputs elements of G.

• f−1 is a probabilistic turing machine that takes elements of h ∈ G as input, and outputs

elements of {0, 1}l.

• f(f−1(C)) = C for all h ∈ G.

• There exists no polynomial time attacker A that has a non-negligible advantage in winning

the following game:

1. The challenger randomly chooses a bit b ∈ {0, 1}.

2. The attacker A executes on the input 1k. The attacker has access to an oracle Of that

takes no input, generates a random element r ∈ {0, 1}l, and returns r if b = 0, and

f−1(f(r)) if b = 1. The attacker terminates by outputting a guess b′ for b.

The attacker wins if b = b′ and its advantage is defined in the usual way.

• There exists no polynomial-time attacker A that has a non-negligible advantage in winning

the following game:

1. The challenger randomly chooses b ∈ {0, 1}.

2. The attacker A executes on the input 1k. The attacker has access to an oracle Of that

takes no input. If b = 0, then the oracle generates a random r ∈ {0, 1}l and returns

f(r). Otherwise the oracle generates a random h ∈ G and returns h. The attacker

terminates by outputting a guess b′ for b.

The attacker wins if b = b′ and its advantage is defined in the usual way.
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Dent showed that groups in which the DDH assumptions are believed to hold are simulatable.

Lemma 3.2.5. [29] If q and p are primes such that p = 2q + 1, and G is the subgroup of Z∗p of

order q, then G is simulatable.

Using this fact we show that DEG is weakly simulatable.

Theorem 3.2.6. The DEG encryption scheme is weakly simulatable if it is instantiated on a

simulatable group G on which the DDH problem is hard.

Proof. Let (fG, f
−1
G ) be the efficiently computable functions that exist by the fact that the group

G is a simulatable group. For ease of notation in this proof, we assume all functions get the

required public parameters (e.g. the public key) as part of their input. We need to give the two

functions (f, f−1) for DEG required by the definition of weakly simulatable. The functions are

(f, f−1) where we let f(x = (x1, x2, x3)) = fG(x1), fG(x2), fG(x3), and f−1(c = (c1, c2, c3)) =

f−1
G (c1), f−1

G (c2), f−1
G (c3). From this construction and the corresponding properties in the definition

of a simulatable group, it is clear that (f, f−1) satisfy the requirements given in the definition of a

weakly simulatable encryption scheme.

We now need to argue the final property of a weakly simulatable encryption scheme: no ppt

adversary can distinguish between a valid ciphertext and a fake one. To meet this goal, we design a

series of games, to show the probability of an adversary being able to distinguish between legitimate

ciphertexts, and random outputs of f is negligible. Let Wi be the event that an attacker outputs 1 in

Game i.

Let Game 1 be the portion of the security definition where an attacker is given a randomly

generated public-key PK, and it then outputs a message. It is then given a random encryption of

that message, and then outputs 1 or 0 (as is explained in step 2 of the weakly simulatable encryption

scheme definition).

Let Game 2 be a game in which the returned ciphertext is made with the following algorithm that

always encrypts the message 1 instead of the true encryption algorithm as described in Figure 3.2.

Claim 1. Pr[W1] ≈c Pr[W2].
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E(pk,M)
1: Randomly select y ∈ Z∗q
2: Set Y = gy

3: Set W = Xy
1

4: Set U = Xy
2

5: Output (Y,W,U · 1)

Figure 3.2: THE ENCRYPTION ALGORITHM IN Game 2

Proof. Follows from CPA security of the DEG encryption scheme.

Let Game 3 be a game in which we modify Game 2 by modifying encryption so that W is

computed as follows:

Randomly select r′ ∈ Zq and set W = gr
′ .

Claim 2. Pr[W2] ≈c Pr[W3]

Proof. If there is any significant difference between Pr[W2] and Pr[W3] then the attacker can be

used to build a DDH distinguisher. In particular, given a tuple (g, gx1 , gy, gx1y) or (g, gx1 , gy, gr
′
).

We can choose a random x2, simulate a PK for the DEG scheme, and use x2 and the provided

information to provide an appropriate encryption, for a perfect simulation of the either Game 2 or

Game 3.

Let Game 4 be a game in which we modify Game 3 by modifying encryption so that U is

computed as follows:

Randomly select r′ ∈ Zq and set U = gr
′ .

Claim 3. Pr[W3] ≈c Pr[W4]

Proof. The proof this claim parallels that of the previous one. If there is any significant difference

between Pr[W2] and Pr[W3] then the attacker can be used to build a DDH distinguisher. In particular,

given a tuple (g, gx2 , gy, gx2y) or (g, gx2 , gy, gr
′
). We can choose a random x1, simulate a PK for
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the DEG scheme, and use x1 and the provided information to provide an appropriate encryption, for

a perfect simulation of the either Game 3 or Game 4.

In Game 4 each of the components of the ciphertext is now random group element. In Game 5

we replace these random group elements with random output from fG, which due to the simulatable

group properties are indistinguishable. Specifically, in Game 5 we return the elements specified in

Figure 3.3 for the encryption algorithm.

E(pk,M)
1: Randomly select r1 ∈ {0, 1}l and set Y = fG(r1)
2: Randomly select r2 ∈ {0, 1}l and set W = fG(r2)
3: Randomly select r3 ∈ {0, 1}l and set U = fG(r3)
4: Output (Y,W,U)

Figure 3.3: THE ENCRYPTION ALGORITHM IN Game 5

Claim 4. Pr[W4] ≈c Pr[W5]

Proof. Follows immediately from simulatable group properties of G and fG.

We note that the output of the encryption algorithm in Game 5 is the same as the output

f(r1, r2, r3) for randomly chosen r1, r2, r3. Therefore, since we can combine all the claims to show

that Pr[W1] ≈c Pr[W5] we conclude that DEG is weakly simulatable.

Theorem 3.2.7. The Cramer-Shoup lite encryption scheme is weakly simulatable if it is instantiated

on a simulatable group G on which the DDH problem is hard.

Proof. Similar to the proof of Theorem 3.2.6.

3.2.2 Plaintext Awareness For Multiple Key Setup

We present a slight generalization to the definition of sPA1 by [8] in which multiple keys are

permitted to be constructed and given to the ciphertext creator, and the extractor must be able to
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sPA1`(E,C,C∗, k)
1: Let R[C], R[C∗] be randomly chosen bit strings for C and C∗

2: ((PKi,SKi))i∈[`(k)] ← Gen(1k)

3: st←
(
(PKi)i∈[`(k)], R[C]

)
4: CC∗(st,.) ((PKi)i∈[`(k)]

)
5: Let Q = {(qi = (pkji , ci),mi)} be the set of queries C made to C∗ until it

halted and C∗’s responses to them. Return ∧|Q|i=1(mi = DecSKji
(ci))

Figure 3.4: THE sPA1` DEFINITION

decrypt relative to all of the keys. Notice that the sPA1 definition is a special case of sPA1` where

`(k) = 1.

In Figure 3.4, C is a ciphertext creator, and C∗ is a stateful ppt algorithm called the extractor

that takes as input the state information st and a ciphertext given by the ciphertext creator C, and

will return the decryption of that ciphertext and the updated state st. The state information st is

initially set to the public key PK and the adversary C’s random coins. It gets updated by C∗ as

C∗ answers each query that the adversary C submits. The above experiment returns 1 if all the

extractor’s answers to queries are the true decryption of those queries under SK. Otherwise, the

experiment returns 0.

Definition 3.2.8 (sPA1`). Let ` be a polynomial. Let E = (Gen,Enc,Dec) be an asymmetric

encryption scheme. Let the ciphertext-creator adversary C and the extractor C∗ be ppt algorithms.

For k ∈ N, the sPA1-advantage of C relative to C∗ is defined as:

AdvsPA1`(E,C,C∗, k) = Pr[sPA1`(E,C,C∗, k) = 0]

The extractor C∗ is a successful sPA1`-extractor for the ciphertext-creator adversary C if for all

k ∈ N, the function AdvsPA1`(E,C,C∗, k) is negligible. The encryption scheme E is called sPA1`

secure if for any ppt ciphertext creator there exists a successful sPA1`-extractor.

We argue that Cramer-Shoup Lite (CS-Lite) and Damgard’s ElGammal (DEG), described in
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Table 3.1, are sPA1` secure based on a suitable modification of the Diffie-Hellman Knowledge

definition originally proposed by Damgård and modified to permit interactive extractors by Bellare

and Palacio [8]. We present this modified version in Figure 3.5.

DHK`(k)
1: (pi, qi, gi ← G(1k); ai ← Zqi ; Ai ← gaii mod pi)i∈`(k)

2: Let R[H] and R[H∗] be randomly selected strings for H and H∗

3: st← ((pi, qi, gi, Ai)i∈[`(k)], R[H])
4: while Simulate H((pi, qi, gi, Ai)i∈[`(k)];R[H]) do
5: if H queries (i, B,W ) then
6: (b, st)← H∗((i, B,W ), st;R[H∗])
7: if W ≡ Bai mod pi and B 6≡ gbi mod pi then Return 1
8: else Return b
9: Return 0

Figure 3.5: DHK`: AN EXTENSION TO THE DHK DEFINITION

We note that in Figure 3.5, the change requires that the ciphertext creator be able to generate

ciphertexts relative to a polynomial number of randomly chosen public keys. It seems reasonable

to conjecture that any extractor that could extract exponents with respect to single value A = ga,

could do so efficiently for many Ai.

We now argue that DEG is sPA1` secure under the DHK` definition.

Theorem 3.2.9. For any polynomial `, The DEG scheme is sPA1` secure under the DHK` assump-

tion.

Proof. To show that DEG is sPA1` secure, we need to show that for any adversary C there exists an

extractor C∗ that can decrypt its queries flawlessly. C∗ receives (PKi =< pi, qi, gi, Ai, Âi >)i∈`(k)

and R[C] as state information. Then C∗ builds the DHK` adversary B that runs the sPA1` adversary

C internally and simulates the sPA1` experiment for it. B receives (pi, qi, gi, Ai)i∈`(k) and it random

coins from C∗ and parses its random coins as (f−1
G (Âi))i∈[`(k)]|R[C] (prepared by C∗ where Âi is a

random group element in G). Notice that since the group from which Âi is sampled is simulatable,

it is arguable that f−1
G (Âi) is indistinguishable from random bits and should have indistinguishable

effect on the output of the extraction. Because B is a DHK` adversary, therefore there exists



Chapter 3 Non-Malleable CCA1 Security and Beyond 30

an extractor for it B∗. For each i ∈ [`(k)], B sets PKi ← (pi, qi, gi, Ai, Âi). B then runs C on

(PKi)i∈[`(k)] and the random coins R[C] until C halts, answering to C’s queries as follows: upon

receiving the query C = (i, Y,W,U) from C, B submits (i, Y,W ) to the DHK` extractor B∗. The

DHK` extractor B∗ returns the value b. If Y 6≡ gbi mod pi or W 6≡ Abi mod pi then B returns ⊥

as the answer to this query, otherwise B computes M ← U · (Âi
b
)−1 mod pi and return the result

to C. Notice that since B is a DHK` adversary, the extractor B∗ should return the right answer to

the queries B submits. Since C∗ makes a mistake in answering C’s queries only when there is a

mistake in B∗’s answers to B’s queries, we conclude that C∗ also returns the right decryption to the

queries submitted by C and is an extractor for it.

Theorem 3.2.10. For any polynomial `, The CS-Lite scheme is sPA1` secure under the DHK`

assumption.

Proof. Similar to the proof of Theorem 3.2.9.

3.2.3 Why sPA1` does not follow from sPA1 security

At first glance it seems that the sPA1` definition should follow naturally from sPA1 by composing

extractors. However, there are significant technical issues with the original definition that does

not permit it to “naturally compose” with itself as one would expect. Specifically, issues emerge

when considering how a ciphertext creator C interacts with decryption oracles—with respect to

different keys—it might have at its disposal, and a corresponding extractor’s ability to respond to

these queries.

Consider an sPA1-secure primitive (g, e, d). We will modify it to a new encryption scheme,

which has two pairs of keys from the original encryption scheme, and chooses which to use

which to encrypt at random during the encryption process. Formally, (g′, e′, d′) acts as follows

g′(k) =
(
PK = (pkb)b∈{0,1}, SK = (skb)b∈{0,1}

)
, where (pkb, skb) are an output of the bth in-

vocation of g(k). For encryption, e′(PK,m) chooses a random coin z ∈ {0, 1} and outputs
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C = (z, e(PKz,m)); decryption is d′(SK,C = (z, c)) outputs d(skz, c). One would expect that the

resulting scheme is naturally sPA1 secure, but it is not clear that it is. In particular, one would think

that for any ciphertext creator for the modified scheme, one could just use two extractors for the

original scheme (one for each public-key) to simulate an extractor for the creator. However, this

argument does not work, and we are not aware of any other methods for proving the equivalence.

One issue is that if a creator switches between making encryptions under PKb and PK1−b, then

at each switch we must incorporate the extractor in to the original ciphertext creator in order to

achieve a new extractor, and the result is a potential super-polynomial blow-up in the running time

of the constructor after more than a constant number of such iterations. The extractors must be

continuously incorporated, because definitionally they have no ability to extract encryptions when

the ciphertext creator has access to a decryption oracle other than the one simulated by the extractor.

For example, consider a ciphertext creator C for the scheme (g′, e′, d′) we just described.

Let it switch between the public-key used to encrypt messages n times. Describe the creator

C = (C0, C1, .., Cn), where Ci denotes the execution after the ith switch.1 Assume it makes it

encrypts its even queries with PK0 and its odd queries with PK1. To make an extractor for C

(without including the oracles in the definition, as we have done), we would first create C ′0 using

the standard sPA1 definition and the extractor for PK0 that is guaranteed to exist for C0, call it C∗0 ,

by embedding the extractor as a subroutine into C0. The running time of C ′0 is clearly the additive

combination of the running time of C∗0 and C0. One would then compose C ′0 with C1 and use the

sPA1 definition to construct an extractor for C1 ◦ C ′0, called C∗1 , which only queries decryptions for

PK1. Intuitively, we would continue this inductively, but after a non-constant number of iterations

the running time would be super-polynomial.

Finally, we note that common additional definitional traits, like the notion of a history of

computation, do not port readily to these extractability definitions. In essence, one needs to consider

the possibility that a history string encodes a turing machine, which is then run by an extractor

acting as a Universal Turing machine. The semantic effect of such a notion in the definition is to

1We can assume the Ci outputs its state, which is then used as auxiliary information and passed as input to Ci+1.
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swap the order of quantifiers relating to the extractor, further strengthening the definition.

3.2.4 A Note On PA1+

Dent [29] also investigated an augmented notion of plaintext awareness in which he provides the

ciphertext creator access to an oracle that produces random bits, PA1+. The extractor receives

the answers to any queries generated by the creator, but only at the time these queries are issued.

The point of this oracle in the context of a plaintext awareness definition is to model the fact that

the extractor might not receive all of the random coins used by the creator at the beginning of

the experiment. Much in the spirit of “adaptive soundness” and “adaptive zero-knowledge”, this

oracle requires the extractor to work even when it receives the random coins at the same time as the

ciphertext creator. Therefore, the extractor potentially needs to be able to extract some ciphertexts

independent of future randomness. This modification has implications when the notion of plaintext

awareness is computational—as in the case of Dent’s work. However, in our case, we require

statistical plaintext awareness, and as we argue below, allowing access to such an oracle does not

affect the sPA1` security.

We claim that any encryption scheme that is sPA1` secure is also sPA1+
` secure.

Definition 3.2.11. Define the sPA1+
` experiment in a similar way to the sPA1` experiment. The

only difference between the two is that during the sPA1+
` experiment, the ciphertext creator has

access to a random oracle O that takes no input, but returns independent uniform random strings

upon each access. Any time the creator access the oracle, the oracle’s response is forwarded to

both the creator and extractor.

If an encryption scheme would be deemed sPA1` secure, when we replace the sPA1` experiment

in the definition with the modified sPA1+
` experiment, then the encryption scheme is said to be

sPA1+
` secure.

Lemma 3.2.12. If an encryption scheme Π is sPA1` secure, then it is sPA1+
` secure.

Proof. We prove for the case where the ciphertext creator accesses the oracle O only once and

for the case where `(k) = 1. Generalizing the proof for the case for where the ciphertext creator



3.3 The Construction 33

accesses O for polynomially many times is then straightforward. Also a very similar argument can

be made for sPA1+
` case where ` is an arbitrary polynomial.

Let Point i denote the point right after the extractor answers the ith query of the ciphertext

creator in the sPA1 experiment. Without loss of generality, assume the one time access (of O by the

ciphertext creator) occurs at Point a. We refer to the string that O returns at Point a as r.

To prove the Lemma, we need to show that for any sPA1+ adversary C, there exists an extractor

C∗ that can decrypt the queries correctly. Notice that if we knew the string returned at Point a,

then C would be an sPA1 adversary for which there exists an extractor C′ that returns the right

decryptions to its queries.

We build the extractor C∗ as follows. C∗ receives (PK, R[C]) from the outside and samples a

random string r′ where |r| = |r′|. C∗ ,then, embeds r′ in R[C] in a way that it gets accessed by C at

Point a (but not before then). We call the resulting random tape R′[C]. Then, C∗ runs C and C′

on the input (PK, R′[C]) up to Point a. At this point C∗ queries O and learns r. At this point, the

state information of C′ needs to be updated to be consistent with the value that O returns. Hence C∗

pauses the execution with C and repeats the mentioned execution (using the algorithm of C and

C′, the public key, the adversary’s random coins and r), this time with r as the string that will be

returned at Point a up to after Point a (note that in this run, C asks exactly the same queries as

in the previous run before Point a). Learning the right state information at this point, C∗ resumes

running C and C′ (with the corrected state information) until C terminates . Since r and r′ are

sampled randomly, in both executions C′ should return the right decryption to the queries. Therefore

C∗ can decrypt all of C’s queries and is an extractor for it.

3.3 The Construction

Let E = (Gen,Enc,Dec) be any encryption scheme that is weakly simulatable and sPA1` secure.

Then we construct the encryption scheme Π represented in Figure 3.6 that is a non-malleable CCA1

encryption scheme. Let Σ = (GenKey, Sign,Verify) be a strong one-time signature scheme such

that on security parameter k the verification keys that are constructed have length k.
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As a first step, we define an encryption scheme E ′ = (Gen′,Enc′,Dec′) in which one encrypts

the encryption of a message k times with k independently chosen public keys. More specifically:

— Gen′(1k): For i ∈ [0..k], run (PKi,SKi) ← Gen(1k). Set the public and secret keys as

PK def
= (PK0,PK1, . . . ,PKk) and SK def

= (SK0,SK1, . . . ,SKk)

— Enc′PK=PK0,..,PKk(m): Output [EncPK1(EncPK0(m; r0); r1), . . .EncPKk(Encpk0(m; r0); rk)] using

independently chosen coins ri.

— Dec′SK=SK0,...,SKk([c1, c2, . . . , ck]): Compute (c′i = DecSKi(ci))i∈[k]. If all c′i are not equal, output

⊥, else output DecSK0(c
′
1).

We are now ready to present our main construction Π defined in Figure 3.6.

NMGen(1k)
1: (PK0,SK0)← Gen(1k); (PKb

i ,SKb
i)← Gen(1k), ∀i ∈ [k] and b ∈ {0, 1}

2: Output NPK = {PK,PK0} and NSK = {SK,SK0} where PK = {(PK0
i ,PK1

i )}i∈[k]

and SK = {(SK0
i ,SK1

i )}i∈[k]

NMEnc(NPK = (PK,PK0),m)
1: (SigSK, SigVK)← GenKey(1k)
2: c← Enc′

PK0,PKSigVK1
1 ,...,PK

SigVKk
k

(m)

3: σ ← SignSigSK(c)
4: Output (c, SigVK, σ)

NMDec(NSK = (SK,SK0), C = (c, SigVK, σ))
1: if VerifySigVK(σ, c) = 0 then Output ⊥
2: Output Dec′

SK0,SKSigVK1
1 ,...,SK

SigVKk
k

(c1)

Figure 3.6: THE NON-MALLEABLE CCA1 ENCRYPTION SCHEME Π

Lemma 3.3.1. If E = (Gen,Enc,Dec) is weakly simulatable, then E′ = (Gen′,Enc′,Dec′) is

weakly simulatable as well.

Proof. We argue via a standard hybrid argument. We assume that there exists an adversary that

can distinguish between real ciphertexts and pseudo-ciphertexts for the encryption scheme E′ with
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advantage ε. Then we build an adversaryA that has advantage of at least ε/(k+ 1) in distinguishing

real ciphertexts and pseudo-ciphertexts for the encryption scheme E.

We define a series of hybrids {Hi}i∈[k+1]. In Hi for i ∈ [k], the pair of random coins and

ciphertexts (r, c) in the weakly simulatability experiment for message m is computed as follows:

c = (f(PK1, r1), f(PK2, r2), . . . , f(PKi−1, ri−1),EncPKi(EncPK0(m; r0); ri), . . . ,EncPKk(EncPK0(m; r0); rk))

and

r = (r1, r2, . . . , ri−1, f
−1(PKi, ci), . . . , f

−1(PKk, ck))

where {ri}i∈[0..k] are independent random coins. Notice that c inH1 is a real ciphertext and inHk is

a pseudo ciphertext for the encryption scheme E′. By hybrid lemma, if there exists the adversary B

that can distinguish betweenH1 andHk, then there exists i ∈ [k] such that B distinguishesHi and

Hi+1 with advantage at least ε/(k + 1). Then we build the adversary A that distinguishes real and

pseudo ciphertexts of encryption scheme E with advantage at least ε/(k + 1).

The reduction works as follows: A receives a public key, which we call PKi from the outside.

A generates another k public keys (PK1,PK2, . . . ,PKi−1,PKi+1, . . . ,PKk) and PK0 using the key

generation algorithm and sends (PK0,PK1, . . . ,PKk) to B. Then B outputs a message m′. A

computes m = EncPK0(m
′; r0) where r0 is random coins and outputs it to the outside. Then A

receives from the outside a pair of strings which we call (ri, ci). A then prepares the pair (r, c) for B

as directed inHi and replaces the ith element with (ri, ci). A then forwards (c, r) to B and receives

a guess bit b′ and forwards 1− b′ to the outside as its guess for the bit b (we should negate the bit b′

because of the way we defined the hybrids).

Theorem 3.3.2. If E = (Gen,Enc,Dec) is an encryption scheme that is weakly simulatable and

also sPA1`(k)=2k+1 secure where k is the security parameter, then the encryption scheme Π as

described in Figure 3.6 is a non-malleable CCA1 encryption scheme.



Chapter 3 Non-Malleable CCA1 Security and Beyond 36

Proof. Recall that Lemma 3.2.12 shows that if E is sPA1` secure, then it is also sPA1+
` secure.

In what follows, the sPA1+
` ciphertext creator adversaries always have access to an oracle O that

produces random strings upon access.

To prove that Π is a non-malleable CCA1 encryption scheme, we need to show that for any ppt

adversary A and ppt distinguisher D and for all polynomials p(k),

{NME0 (Π,A,D, k, p (k))}k∈N ≈c {NME1 (Π,A,D, k, p (k))}k∈N

We show this by a hybrid argument. Consider the following experiments:

Experiment NMEb
(1)(Π,A,D, k, p(k)) modifies NMEb in two ways. First, instead of selecting

vkSig∗ when the challenge ciphertext is encrypted, choose this value as the first step of the exper-

iment. Second, when processing decryption queries during the experiment, replace Verify with

Verify∗ as follows:

Verify∗ Let vkSig∗ be the verification key in the challenge ciphertext (c∗, σ∗, vkSig∗). Upon receiv-

ing a decryption query on (c, σ, vkSig), output⊥ if either vkSig = vkSig∗ or VerifyvkSig(c, σ) =

0.

Claim 5. For b ∈ {0, 1}, {NMEb (Π,A,D, k, p (k))}k∈N≈c{NMEb
(1) (Π,A,D, k, p (k))}k∈N

Proof. Follows using standard techniques from the security of the signature scheme.

Experiment NMEb
(2)(Π,A,D, k, p(k)) modifies NMEb

(1) to use an extractor to decrypt the inner

layer ciphertext for the decryptions in the final parallel decryption query. Specifically, in NMEb
(2)

the calls are submitted to NMDec∗ as described below. This is unlike NMEb
(1) where the final

ciphertexts d1, ..., dp(k) are presented by A2 for parallel decryption via calls to NMDec, :

NMDec∗(di = ~C, σ, vkSig) If Verify∗vkSig(~C, σ) = 0 output⊥. For i ∈ [k], doC ′i ← DecSKvkSigi
i

(Ci)

If ∃j, C ′1 6= C ′j , output ⊥. Use the extractor C∗A (defined in Lemma 3.3.3) to extract C ′i, where

i is the smallest value s.t. vkSigi 6= vkSig∗i , where vkSig∗ is the verification key of the
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challenge ciphertext. Return the extracted plaintext.

Lemma 3.3.3. For b ∈ {0, 1}, {NMEb
(1) (Π,A,D, k, p (k))}k∈N≈c{NMEb

(2) (Π,A,D, k, p (k))}k∈N

This lemma might, on first glance, seem to follow immediately because the whole purpose of

the extractor is that it be able to simulate a decryption oracle. However, since the adversary has (i)

seen the challenge ciphertext, (ii) it is not aware of the randomness used to produce this ciphertext,

and (iii) created final parallel decryption queries potentially based on the challenge ciphertext, there

is no a priori reason to believe the sPA1 extractor will “decrypt” properly. However, we are only

extracting on the inner layers of ciphertexts, and the inner layer of the challenge ciphertext has been

hidden by the encryptions on the outer layer. Further, the outer layer is weakly simulatable, so we

can argue that these new ciphertexts issued for parallel decryption, described in point (iii) above,

are not dependent on the randomness of the inner-layer of the challenge ciphertext. Therefore, the

extractor will function correctly.

Proof. The experiments differ only if the extractor returns a result that is different from the of

the decryption oracle. We define badExtract to capture this event, and show that it occurs with

negligible probability. Assume (for contradiction) that there exists an adversary A which induces

the event badExtract to occur with non-negligible probability. We show that E is not a weakly

simulatable encryption scheme.

Note that the public- and secret-keys for Π are composed of 2k+ 1 keys that are generated using

the key generation algorithm for encryption scheme E. To encrypt a message m, we first generate

a pair of signing keys, (vkSig, skSig), and then encrypt m with a fixed public key, PK0, in the set

of 2k + 1 public keys (we refer to this ciphertext as the inner layer). Then, we select a subset of

size k out of the 2k remaining keys determined by the bits of vkSig, and encrypt the inner layer

using fresh random coins for k times under those k keys (we refer to these k ciphertexts as the outer

layer). We refer to the key used to encrypt the inner layer as the inner key, and the remaining 2k

keys as the outer keys.
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The technical difficulty in showing that badExtract does not occur in the NMEb
(2) (Π,A,D, k, p (k))

experiment is that by providing the challenge ciphertext, we actually provide the adversary with

ciphertexts that are encrypted using k keys out of the 2k outer keys. We must argue that even in this

case, there should be a way to extract the plaintext of the queries submitted by the adversary on the

spots in the outer layer that are encrypted under a new key from the k keys used in the outer layer of

the challenge ciphertext.

To do so, we first construct an sPA1+
` ciphertext creator CA using the adversary A. Since

the encryption scheme E is sPA1+
` secure, there exists an extractor for CA which we call C∗A.

Then we define a series of hybrids using CA and C∗A, that are indistinguishable assuming E is

weakly simulatable. The last hybrid in that series perfectly simulates the NMEb
(2)(Π,A,D, k, p(k))

experiment for A up to the point when A returns the vector of the ciphertexts after receiving the

challenge ciphertext. Based on the indistinguishability of the hybrids, we will argue that there exists

an extractor that can decrypt the adversary’s queries on the first spot i where vkSigi 6= vkSig∗i with

overwhelming probability. Notice that the extractor cannot be used to decrypt the outer layer on the

spots where vkSigi = vkSig∗i , otherwise it could be argued that the encryption scheme E is indeed

PA2 secure (PA2 security is defined in [8]) and hence CCA2 secure.

First we construct an sPA1+
` ciphertext creator CA fromA where ` = 2k+ 1. CA interacts with

the sPA1+
` experiment in “the outside” as follows:

• CA receives 2k + 1 public keys
(
{PK′i}i∈[0...2k]

)
from the sPA1+

` experiment. It gener-

ates a pair of signing keys (vkSig∗, skSig∗) ← GenKey(1k) internally and sets PK =(
{PKα

i }i∈[0...2k],α∈{0,1}
)

as described (intuitively, CA arranges PK such that it can poten-

tially sign a vector of ciphertexts that are supposed to be encrypted under the last k keys in

~PK′,
(
PK′k+1, . . . ,PK′k+k

)
, to generate a valid ciphertext in the Π scheme):

for i ∈ [0 . . . k] & α ∈ {0, 1},PKα
i =


PK′0 if i = 0

PK′i else if vkSig∗i 6= α

PK′i+k otherwise
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CA runs A1 on the input of PK. Note that this rearrangement of keys is crucial to make

the view of the adversary A on the arrangement of the keys identical to its view in a real

NMEb
(2)(Π,A,D, k, p(k)) experiment. To see this, consider the following example. The ad-

versaryAmight abort whenever the keys used in the outer layer of the challenge ciphertext are

the last k keys in ~PK. Such a coincidence occurs in the simulated NMEb
(2)(Π,A,D, k, p(k))

experiment with probability 1 if CA sets ~PK to be the same as ~PK′, while this coincidence

occurs in a real NMEb
(2)(Π,A,D, k, p(k)) experiment with negligible probability due to the

security of the signature scheme.

• Whenever CA receives a query
(
{yi}i∈[k], σ, vkSig

)
from A1, it first checks if the signature is

valid. If not, it returns ⊥ as the answer to this query. Next, it checks whether vkSig = vkSig∗.

If so, it aborts. Otherwise, CA submits yi’s one by one to the extractor. If all of the queries do

not get decrypted to the same value, CA returns ⊥ to A1 as the answer to that query. But if

all of the queries get decrypted to the same value y0, CA then submits y0 (which is supposed

to be an encryption under PK0
0) to the extractor and returns the result to A1. Eventually A1

returns (m0,m1, St) and halts. CA outputs (m0,m1).

• CA accesses its oracle O and generates k blocks of random bits of length l, giving the

vector ~x = (x1, . . . , xk). Let ~y =
(
f(PK′k+1, x1), . . . , f(PK′k+k, xk)

)
. CA then computes

σ∗ = Sign(~y, skSig∗), and runs A2 on the input y∗ = (~y, σ∗, vkSig∗) and St.

• A2 returns a vector of ciphertexts ~Y and the state information S and halts. For all j ∈ [|~Y |],

CA does the following: on the query Yj = ({yi}i∈[k], σ, vkSig), it first checks if the signature

is valid. If not, it moves to the next query. Otherwise, it checks whether vkSig = vkSig∗. If

so, it aborts. Otherwise, CA finds the first index i where vkSigi 6= vkSig∗i , and submits yi to

its extractor to be “decrypted” under PKvkSigi
i . CA then submits the answer from the extractor

(which is supposed to be an encryption under PK0
0) again to the extractor to be “decrypted”

under PK0
0. Denote the result m′j .

CA returns {Yj,m′j}j∈[|~Y |] and the state information S, it halts.
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Since CA is a sPA1+
` ciphertext creator adversary, the sPA1+

` security of E implies there exists

an extractor C∗A whose answers to the decryption queries submitted by CA are indistinguishable

from their true decryptions. We call the above interaction Game 1. Let Pr[Wi] be the probability of

the adversary CA inducing the event badExtract in the Game i. The sPA1+
` security implies that

Pr[W1] is bounded by AdvsPA1+` (E,CA,C∗A, k) which is negligible in k. Hence:

Pr[W1] ≤ AdvsPA1+` (E,CA,C∗A, k) (3.4)

We will define another game, Game 2, which is identical to Game 1 with the difference that

instead of a fake ciphertext,A2 is fed with a real ciphertext as the challenge ciphertext. The aborting

probability of A2 in Game 1 and Game 2 is negligibly close otherwise it can be argued that E is

not weakly simulatable. In what follows, we only deal with the probability of inducing the event

badExtract. Also notice that Game 2 simulates NMEb
(2)(Π,A,D, k, p(k)) for the adversary A

up to the point when the adversary A returns a vector of ciphertexts after seeing the challenge

ciphertext. That is because CA only needs the vector of the ciphertext generated byA after revealing

the challenge ciphertext to induce the event badExtract to occur. After receiving such a vector

of ciphertexts, CA does not need to complete the simulation of the NMEb
(2)(Π,A,D, k, p(k))

experiment for A.

In Game 2 we modify the oracle O as follows: when CA accesses the oracle O for the ith time,

instead of r ∈ {0, 1}l, O returns f−1(PK′k+i,EncPK′k+i(md)) where md is picked randomly out of

the two messages returned by A. During Game 2, the random bit d is fixed. We argue that such

a change does not affect the advantage of CA in inducing the event badExtract as otherwise E is

not weakly simulatable countering our assumption. Using CA and C∗A, we build the attacker B that

distinguishes (r, f(., r)) and (f−1(., c = Enc(., .)), c) as follows:

1. The challenger samples k pairs of random keys (PKi,SKi)← Gen(1k) for 1 ≤ i ≤ k, and a

random bit b.
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2. The attacker B receives {PKi}i∈[k]. B then samples k + 1 other random keys (PK′i,SK′i)←

Gen(1k) for 0 ≤ i ≤ k. Let ~pk′′ = (PK′0,PK′1, . . . ,PK′k,PK1,PK2, . . . ,PKk). B samples

random coins for CA and C∗A and sets st← ( ~PK′′, R[CA]). B runs CA on the input ~pk′′, and

C∗A on the input st. Eventually CA outputs (m0,m1). B randomly chooses d ∈ {0, 1} and

outputs c′d = EncPK′0(md). The challenger samples ri ∈ {0, 1}l for 1 ≤ i ≤ k and returns

{(ri, f(PKi, ri))}i∈[k] if b = 0, and {(f−1(PKi, ci = EncPKi(c
′
d)), ci)}i∈[k] if b = 1. Call the

resulting vector (given by the challenger) ~y. B then forwards {f−1(PKi, yi)}i∈[k] to CA and

C∗A when CA queries O for the ith time. After CA halts, the attacker B checks if all the

queries made by CA to the extractor after outputting m0 and m1 were answered correctly.

This is done by using the extractor using ~SK′ (notice that CA was made in a way that after

returning m0 and m1, it always only asks the extractor on the ciphertexts encrypted under ~pk′

which are the first k + 1 keys in ~pk). If so it outputs b′ = 0 otherwise b′ = 1.

When b = 0, Game 1 is being simulated, and when b = 1, Game 2 is being simulated.

Therefore:

Pr[b′ = b] = Pr[b = 0] · Pr[b′ = b|b = 0] + Pr[b = 1] · Pr[b′ = b|b = 1]

=
1

2
· (1− Pr[W1]) +

1

2
· Pr[W2]

On the other hand, by Lemma 3.3.1, the advantage of the attacker B in guessing the bit b is

negligible in k, and hence there exists a negligible function ε1(.) such that Pr[b′ = b] ≤ 1
2

+ ε1(k).

Therefore:
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Pr[b′ = b] =
1

2
· (1− Pr[W1]) +

1

2
· Pr[W2] ≤ 1

2
+ ε1(k)

=⇒ Pr[W2] ≤ 2 · ε1(k) + Pr[W1] (3.5)

=⇒ Pr[W2] ≤ 2 · ε1(k) + AdvsPA1+` (E,CA,C∗A, k) (3.6)

Inequality (3.6) follows from Inequalities (3.4) and (3.5). Therefore Pr[W2] is negligible. Since

Pr[W2] is the probability that the event badExtract occurs, we conclude that there is a negligible

chance that badExtract occurs. Hence:

{NMEb
(1) (Π,A,D, k, p (k))}k∈N ≈c {NMEb

(2) (Π,A,D, k, p (k))}k∈N

Lemma 3.3.4. For every ppt adversary A = (A1,A2), there exists a ppt adversary B such that for

b ∈ {0, 1},

{NMEb
(2) (Π,A,D, k, p (k))}k∈N ≡ {CPAb (E,B, k)}k∈N

Proof. In the proof of Lemma 3.3.3, we showed how to construct the ciphertext creator CA that

runsA internally and proved that there exists an extractor C∗A that can decrypt the queries submitted

by CA with overwhelming probability.

We build the CPA adversaryB that interacts with the CPA experiment. Having the algorithms for

A, CA and C∗A, the CPA adversary B acts as follows: B receives the public key PK′ from the CPA

experiment, and generates 2k keys as (PK
′′

i ,SK
′′

i )← Gen(1k) for i ∈ [2k]. Let ~PK =
(

PK′, ~PK′′
)

.

B runs CA (that simulates A internally) on ~PK and its random coins. Whenever CA asks a query, B

runs C∗A to answer them (C∗A gets to know the random coins of CA and all of its input as described

in the proof of Lemma 3.3.3). Eventually CA outputs (m0,m1). B outputs m0 and m1 to the

CPA experiment, and receives a ciphertext y. Remember that CA now accesses the oracle O k

times. Using fresh random coins for each encryption, B computes Ci = EncPKk+i(y) and sends
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f−1(PKk+i, Ci) to CA (and C∗A) on the ith access to O. Eventually CA returns {Yi,m′i}i∈[|~Y |] and

the state information S and halts. The only step left in determining the decryption of Yi is to decrypt

all the ciphertexts in the outer layer, and check that they all decrypt to the same value. B has the 2k

secret keys for the outer layer, hence it can do the mentioned check. If the outer layer ciphertexts

of Yi do not decrypt to the same value, the decryption of Yi is ⊥, otherwise the decryption of Yi

is m′i. After B decrypts all the Yi, it submits the results along with the state information S to the

distinguisher D and forwards D’s output to the CPA experiment.

3.4 More Than Non-Malleable CCA1 Encryption Scheme

In the previous section, we showed how to build a non-malleable CCA1 encryption scheme from

any encryption scheme that is weakly simulatable and sPA1` secure. Define a parallel query as a

query consisting of unbounded number of ciphertexts, none of which will be decrypted until all

the ciphertexts in the query are submitted. In the NM-CCA1 game, the adversary is allowed to ask

an unbounded number of queries before seeing the challenge ciphertext, and one parallel query

afterwards. This compares with CCA2 secure encryption schemes, which are secure even if the

adversary asks an unbounded number of queries before and after seeing the challenge ciphertext.

The NM-CCA1 constructions seem to be much weaker primitives. However, between the extremes

of the NM-CCA1 security and the CCA2 security, a range of security notions can be defined

that distinguish themselves based on how many queries the adversary may ask after revealing the

challenge ciphertext without sacrificing indistinguishability of ciphertexts.

Define cNM-CCA1 security identically to NM-CCA1 security except that the adversary can

make c ≥ 1 parallel queries after seeing the challenge ciphertext. We show how to extend our result

to construct an encryption scheme that is cNM-CCA1 secure where c is a constant. The high level

idea for constructing a cNM-CCA1 scheme is to add another c layers of encryption on top of the

ciphertext from the previous section. Intuitively, with the first parallel query, the adversary can only



Chapter 3 Non-Malleable CCA1 Security and Beyond 44

ask queries that can help it to maul the first layer of encryption from the outside in the future. In

other words, with the first parallel query, the adversary can gain no information about all the inner

ciphertexts. Hence, to penetrate the innermost layer, the adversary has to ask at least c parallel

queries. Notice also that this type of construction can only allow a constant c since each layer of

encryption increases the key size, the encryption and decryption time and the ciphertext size by a

polynomial factor. Hence only when c is a constant, these factors would still be polynomial in the

security parameter.

We start with providing the definition for cNM-CCA1 security and then we show how an

cNM-CCA1 secure encryption can be constructed for the constant c.

Definition 3.4.1 (cNM-CCA1). We say that Π(c) = (NMGenc,NMEncc,NMDecc) is cNM-CCA1 or

(c)NME secure if for all ppt adversaries and distinguishersA andD respectively if
{

(c)NME0(Π(c),A,D, k, p(k))
}
k
≈c{

(c)NME1(Π(c),A,D, k, p(k))
}
k

where experiment (c)NME is defined in Figure 3.7.

(c)NMEb(Π
(c),A,D, k, p(k))

1: (CNPK, CNSK)← NMGen(c)(1k)

2: (m0,m1, S1)← A
NMDec(c)(CNSK,.)
0 (CNPK) s.t. |m0| = |m1|

3: y ← NMEnc(c)(CNPK,mb)

4: ~d1 ← ⊥
5: for i = 1 to c
6: (~c, Si+1)← Ai(y, Si, ~di) where |~c| = p(k)
7: di+1,j ← NMDec(c)(CNSK, cj) if cj 6= y o/w di+1,j ← ⊥; ∀j ∈ [|~c|]
8: Output D(~dc+1, Sc+1)

Figure 3.7: THE (c)NME EXPERIMENT

3.4.1 The Construction

Figure 3.8 shows a cNM-CCA1 construction that is based on the NM-CCA1 construction presented

in Figure 3.6.

Theorem 3.4.2. Given that E = (Gen,Enc,Dec) is weakly simulatable and sPA1` secure, the

construction Π(c) = (NMGen(c),NMEnc(c),NMDec(c)) shown in Figure 3.8 is cNM-CCA1 secure.
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We define cNM-CCA1 recursively. As for the base case, we define
(NMGen(0),NMEnc(0),NMDec(0)) equivalently to (Gen,Enc,Dec)

NMGen(c)(1k)
1: (NPK(c−1), NSK(c−1))← NMGen(c−1)(1k)
2: (PKb

i ,SKb
i)← Gen(1k), ∀i ∈ [k] and b ∈ {0, 1} where the length of the message

the PKb
i key can encrypt is the same as the size of a ciphertext in Π(c−1) without the

signature and the verification key
3: Output NPK(c) = {NPK(c−1), ~PK} and NSK(c) = {NSK(c−1), ~SK}

NMEnc(c)(NPK(c),m)
1: (SigSK, SigVK)← GenKey(1k)
2: c← NMEnc(c)(NPK(c),m, SigVK)
3: σ ← SignSigSK(c)
4: Output C = (c, SigVK, σ)

NMEnc(c)(NPK(c),m, SigVK)

1: Parse NPK(c) into (NPK(c−1), ~pk = {PKb
1, . . . ,PKb

k}b∈{0,1})
2: c′′0 ← NMEnc(c−1)(NPK(c−1),m, SigVK)
3: c′i ← EncPKSigVKi

i
(c′′0); ∀i ∈ [k]

4: Output c = ~c′

NMDec(c)(NSK(c), C = (c, SigVK, σ))
1: if VerifySigVK(σ,~c) = 0 then Output ⊥
2: Output NMDec(c)(NSK(c), c, SigVK)

NMDec(c)(NSK(c), c, SigVK)

1: Parse NSK(c) into (NSK(c−1), ~sk = {SKb
1, . . . ,SKb

k}b∈{0,1})
2: c′ ← DecSKSigVK1

1
(c1)

3: if ∃i ∈ [k] s.t. c′ 6= DecSKSigVKi
i

(ci) then Output ⊥
4: Output NMDec(c−1)(NSK(c−1), c′, SigVK)

Figure 3.8: THE CNM-CCA1 ENCRYPTION SCHEME Π(c)

Note that cNM-CCA1 security definition is equivalent to NM-CCA1 security definition when

c = 1. Also the encryption scheme Π(c) (presented in Figure 3.8) is equivalent to the encryption

scheme Π (presented in Figure 3.6) when c = 1. We will prove the cNM-CCA1 security for Π(c) by

induction. The base case is when c = 1 which we already proved. Then we prove the cNM-CCA1
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security for the cases c ≥ 2. As the inductive hypothesis, we assume the encryption scheme Π(c−1)

is (c− 1)NM-CCA1 secure in the proof of cNM-CCA1 security.

Proof. In Lemma 3.2.12, we showed that if E is sPA1` secure, then it is also sPA1+
` secure. As

before, the high level idea behind the proof is to show that the security of cNM-CCA1 game can

be reduced to the security of the primitives used in its construction. What makes our cNM-CCA1

construction unique is that there exists an extractor that can extract the plaintext of the ciphertexts

which are submitted before revealing the challenge ciphertext with overwhelming probability.

Therefore, using the extractor, there is no need to use the secret key to decrypt the ciphertexts

which do not depend on the challenge ciphertext. Also we can use the extractor in the proofs as

the substitution for the decryption oracle for the inner ciphertext of the first parallel query in the

hybrids.

To prove that Π(c) is a cNM-CCA1 encryption scheme, we need to show that for any ppt

adversary A and for all polynomials p(.) and ppt distinguisher D,

{
(c)NME0

(
Π(c),A,D, k, p (k)

)}
k∈N ≈c

{
(c)NME1

(
Π(c),A,D, k, p (k)

)}
k∈N

We show this by a hybrid argument. Consider the following experiments:

Experiment. cNMEb
(1)(Π(c),A,D, k, p(k)) acts exactly like cNMEb except for two changes. First,

instead of selecting vkSig∗ when the challenge ciphertext is encrypted, choose this value as the first

step of the experiment. Next, when processing decryption queries during the CCA1 phase and at

the last step of the experiment, replace Verify with Verify∗ as follows:

Verify∗ Let vkSig∗ be the verification key in the challenge ciphertext (c∗, σ∗, vkSig∗). Upon receiv-

ing a decryption query on (c, σ, vkSig), output⊥ if either vkSig = vkSig∗ or VerifyvkSig(c, σ) =

0.
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Experiment. cNMEb
(2)(Π(c),A,D, k, p(k)) proceeds similar to cNMEb

(1)(Π(c),A,D, k, p(k))

with the difference that the former experiment handles the decryption of the ciphertexts di’s

as follows (without loss of generality, assume that di = (~C, σ, vkSig)):

NMDec∗(~C, σ, vkSig) Check if 1 = Verify∗vkSig(~C, σ). For i ∈ [k], doC ′i ← DecSKvkSigi
i

(Ci) (where

SKi’s are the secret keys for the outer layer )

Check if ∀i, C ′1 = C ′i. If all checks pass, use extractor C∗A (defined below in Claim 7) to ex-

tract the plaintext of the inner ciphertext on Ci where i is the first spot where vkSigi 6= vkSig∗i

where vkSig∗ is the verification key of the challenge ciphertext. Return the extracted plaintext.

Claim 6. For b ∈ {0, 1},
{

(c)NMEb

(
Π(c),A,D, k, p (k)

)}
≈c
{

(c)NMEb
(1)
(
Π(c),A,D, k, p (k)

)}
Proof. Follows from the security of the signature scheme.

Claim 7. For b ∈ {0, 1},
{

(c)NMEb
(1)
(
Π(c),A,D, k, p (k)

)}
≈c
{

(c)NMEb
(2)
(
Π(c),A,D, k, p (k)

)}
Proof. The proof is very similar to the proof of Lemma 3.3.3 with the difference that here the inner

layer consists encryptions under (c− 1) · k + 1 public keys (generated by calling Gen algorithm)

compared to only 1 in the Π encryption scheme.

For completeness, we define CA and its corresponding extractor C∗A as in Lemma 3.3.3. In

particular, we construct CA from A as follows:

• CA takes as input 2·c·k+1 public keys
(
PK0, {PKb

i}i∈[0...ck],b∈{0,1}
)
. It generates a pair of sign-

ing keys (vkSig∗, skSig∗)← GenKey(1k) internally and sets PK = ReArrange( ~PK, vkSig∗)

where the function ReArrange is presented in Figure 3.9. Intuitively the function ReAr-

range rearranges the keys given as input to it in a way that all of the input public keys

{PK0
i }i∈[0...ck],b∈{0,1} are going to get into the positions consistent with the verification key

such that later CA can sign a ciphertext encrypted under such keys as directed in Π(c).

CA runs A1 on the input of PK. Note that this rearrangement of keys is crucial to make

the view of the adversary A on the arrangement of the keys perfectly close to its view
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ReArrange( ~PK, vkSig)
1: Parse ~PK as

(
PK0, {PKb

i}i∈[0...ck],b∈{0,1}
)

2: for i ∈ [0..c− 1]
3: for j ∈ [k]
4: if vkSigj = 1 then swap the values PK0

i·k+j and PK1
i·k+j

5: endFor
6: endFor
7: Return NPK(c) =

(
PK0, {PKb

i}i∈[0...ck],b∈{0,1}
)

Figure 3.9: THE DEFINITION FOR THE REARRANGE FUNCTION

in a real cNMEb
(2)(Π(c),A,D, k, p(k)) experiment. For example, the adversary A might

abort whenever the keys used in the outer layer of the challenge ciphertext have index

b = 0 in PK =
(
PK0, {PKb

i}i∈[0...ck],b∈{0,1}
)
. Such a coincidence occurs in the simulated

cNMEb
(2)(Π(c),A,D, k, p(k)) experiment with probability 1 if CA does not rearrange the

public keys, while this coincidence occurs in a real cNMEb
(2)(Π,A,D, k, p(k)) experiment

with negligible probability due to the security of the signature scheme.

• Parse PK as {NPK(c−1), {PKb
i}i∈[k],b∈{0,1}}. Whenever CA receives a query

(
{y′i}i∈[k], σ, vkSig

)
from A1, it first checks if the signature is valid. If not, it returns ⊥ as the answer to this query.

Otherwise, it checks whether vkSig = vkSig∗. If so, it aborts. Otherwise, CA submits y′i’s

one by one to the extractor to be extracted under PKvkSigi
i . If all of the queries do not get

decrypted to the same value, CA returns ⊥ to A1 as the answer to that query. Assuming all of

the queries get decrypted to the same value y0, CA then submits y0, which is supposedly a

ciphertext in the range of NMEnc(c−1)

NPK(c−1)(.), to the extractor to be extracted recursively. CA

then returns the result plaintext to A1. Eventually A1 returns (m0,m1, St) and halts.

• CA outputs (m0,m1), and accesses its oracleO for k times, getting in return ry = f−1(PKvkSig∗i
i , yi)

on the ith access. CA computes yi = f(PKvkSig∗i
i , ry). CA then computes σ∗ = Sign(~y, skSig∗),

and runs A2 on the input y∗ = (~y, σ∗, vkSig∗) and St.

• Eventually A2 returns a vector of ciphertexts ~Y and the state information S. For all j ∈ [|~Y |],

CA does the following: on the query Yj = ({yi}i∈[k], σ, vkSig): it first checks if the signature
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is valid. Otherwise, it checks whether vkSig = vkSig∗. If either of these two checks fail, the

answer to this query will be ⊥. Otherwise, CA finds the first index i where vkSigi 6= vkSig∗i ,

and submits yi to its extractor to be extracted under PKvkSigi
i . CA then recursively submits the

answer from the extractor (which is supposedly a ciphertext in the range of NMEnc(c−1)

NPKc−1(.))

again to the extractor to be decrypted. Call the answer from the extractor m′j .

Eventually CA returns {Yj,m′j}j∈[|~Y |] and the state information S and halts.

As in the proof of Lemma 3.3.3, it is arguable that there exists an extractor C∗A for the ciphertext

creator CA that can decrypt all the queries submitted by CA with overwhelming probability.

Notice that in the (c)NMEb
(2) experiment, the extractor can only help to decrypt the first round

of the adversary’s parallel queries. We still need to figure out a way to decrypt the next (c − 1)

rounds of the parallel queries. One candidate is to make an adversary B for the (c− 1)NMEb game

that runs A internally and simulate the cNMEb
(2) game for it. B would decrypt the first round

of queries using extractor, and ask the outside to decrypt the next (c − 1) round of the queries.

However there is a difficulty with this approach: in the beginning, it is not obvious which of the

2k keys will be chosen to encrypt the inner ciphertext in NMEb. However B has to specify the

arrangement of the keys in the beginning for A. Later when B receives the challenge ciphertext

(along with its signature) from the NMEb game, B will need to add another layer of encryption on

top of that challenge ciphertext which means that the signature of the challenge ciphertext needs to

be changed. This requires forging the signature scheme which is impossible. One way to resolve

this issue is to change the Π(c) scheme; instead of the outer layer, sign the inner layer and encrypt

the signature along with the inner ciphertext. This way B will only need to add another layer of

encryption to the challenge ciphertext (without knowing the signing key) and pass it to A. However

there are difficulties with this approach as well: the extractor works if it knows the signing keys,

and we cannot assume it will work without such knowledge.

To get around this issue, we observe that in the proof that Π is a non-malleable CCA1 encryption

scheme, we only used the signature scheme to ensure the set of keys in the outer layer of adversary’s
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queries are different from the set of keys of the outer layer in the challenge ciphertext. However, we

can design a second encryption scheme in which always in the challenge ciphertext, a pre-chosen

set of keys will be used, and the adversary cannot query the decryption oracle on that exact same set

of keys. Since the decryption oracle works slightly differently and more restricted from a normal

decryption oracle in (c)NMEb game, we refer to this version of the (c)NMEb experiment as the

(c)NMEb
∗ experiment, and the encryption scheme as Π∗(c) which we define in claim 8. We prove

that any adversary A has negligible advantage in distinguishing between (c)NME0
∗ and (c)NME1

∗.

Later we show that cNMEb
(c)(Π(c),A, k, p(k)) ≡ (c− 1)NMEb

∗(Π∗(c),B, k, p(k)).

Claim 8. If the encryption scheme E = (Gen,Enc,Dec) is weakly simulatable and sPA1` secure,

then for all ppt adversaries and distinguishers A and D respectively and for all constants c and

polynomials p(.):

{
(c)NME0

∗(Π∗(c),A,D, k, p(k))
}
k
≈c
{

(c)NME1
∗(Π∗(c),A,D, k, p(k))

}
k

where experiment (c)NME∗ is defined as follows:

(c)NMEb
∗(Π∗(c),A,D, k, p(k))

1: (NPK(c), CNSK(c))← NMGen∗(c)(1k)
2: (m0,m1, S1) ← A

NMDec∗(c)(NSK(c),.)
0 (CNPK) s.t. |m0| = |m1| and

NMDec∗(c)(NSK(c), Y = (y, α)) returns ⊥ if α = 0k

3: y ← NMEnc∗(c)(NPK(c),mb)

4: ~d1 ← ⊥
5: for i = 1 to c
6: (~C, Si+1)← Ai(y, Si, ~di) where |~c| = p(k)
7: di+1,j ← NMDec∗(c)(NSK(c), Cj = (cj, α)) if cj 6= y and α 6= 0 o.w. di+1,j ←

⊥; ∀j ∈ [|~C|]
8: Output D(~dc+1, Sc+1)

Figure 3.10: THE (c)NME∗ EXPERIMENT

Where the encryption scheme Π∗(c) = (NMGen∗(c),NMEnc∗(c),NMDec∗(c)) is defined as fol-

lows:

• NMGen∗(c)(1k) is defined as NMGen(c)(1k) in Figure 3.8,
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• NMEnc∗(c)(NPK(c),m, α ∈ {0, 1}k) is defined as NMEnc(c)((NPK(c),m, α)) Figure 3.8,

• NMDec∗(c)(NSK(c), Y = (y, α ∈ {0, 1}k)) is defined as NMDec(c)(NSK(c), y, α) Figure 3.8.

Proof. Instead of proving this claim directly, we only argue that Π∗(c−1) is (c− 1)NME∗ secure if

the encryption scheme Π(c−1) described in Figure 3.8 is (c− 1)NME secure. Notice that the latter

is true by the inductive hypothesis.

To do so, we note that in the (c− 1)NMEb
∗ experiment, the adversary cannot submit a query

with α = 0k. This means that the adversary always has to submit queries that are encrypted under

at least one new key compared to the challenge ciphertext. This is essentially posing the same

restriction on the adversary as when an adversary wants to attack the (c − 1)NME security of

the encryption scheme Πc−1 (using at least one new key in the encryption of the outer layer of a

ciphertext). In the latter case, because of unforgeability of the signature scheme, the adversary has to

use at least one new key in its queries compared to the keys used in the challenge ciphertext. Notice

that in the proof of Theorem 3.4.2 and Theorem 3.3.2 which claims that Π is a non-malleable CCA1

encryption scheme, we only use the signature scheme to enforce such a restriction. Therefore, very

similarly to the proof for Theorem 3.4.2, it can be proven that Π∗(c−1) is (c− 1)NME∗ secure.

Claim 9. For any ppt adversary A, polynomials p(.) and security parameter k, there exists an

adversary B s.t.

(c)NMEb
(2)(Π(c),A,D, k, p(k)) ≡ (c− 1)NMEb

∗(Π∗(c−1),B,D, k, p(k))

Proof. As discussed in claim 7, we can construct the ciphertext creator CA (that runs A inter-

nally) for which there exists an extractor C∗A that can decrypt the queries submitted by CA with

overwhelming probability.

We build the NMEb
∗ adversary B that interacts with the NMEb

∗ experiment (“the outside”).

Having the algorithm for A, CA and C∗A, the (c− 1)NMEb
∗ adversary B acts as follows: B receives

the public key NPK∗(c−1) = ( ~PK′ = {PK
′b
i }i∈[k],b∈{0,1},PK′0) from the outside. and generates 2k

keys as (PK
′′b
i ,SK

′′b
i ) ← Gen(1k) for i ∈ [k] and b ∈ {0, 1}. Let ~PK =

(
PK′0, ~PK′, ~PK′′

)
(this
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arrangement of keys is necessary to make sure the keys that will be in the challenge ciphertext are in

the right position). B runs CA (that simulates A internally) on ~PK and its random coins. Whenever

CA asks a query, B runs C∗A to answer them (C∗A gets to know the random coins of CA and all its

input as described in the proof of Lemma 3.3.3). Eventually CA outputs (m0,m1). B outputs m0

and m1 to the outside, and receives a ciphertext y. Remember that CA now accesses the oracle O

for k times. Using fresh random coins for each encryption, B computes Ci = EncPK′′0i
(y) and sends

f−1(PK
′′0
i , Ci) to CA (and C∗A) on the ith access toO. Eventually CA returns a vector of ciphertexts

and their potential decryptions {Yi,m′i}i∈[|~Y |] and the state information S and halts. The only step

left to do to determine the decryption of Yi is to decrypt all the ciphertexts in the outer layer, and

check that all of them get decrypted to the same value. B has all the 2k secret keys for the outer

layer, hence it can do such a check. If the ciphertexts in the outer layer of Yi do not decrypt to the

same value, the decryption of Yi would be ⊥, otherwise the decryption for Yi would be m′i. After

B decrypts all the Yi, it submits the results along with the state information S back to A (notice

that A is a (c)NMEb adversary and asks for c parallel queries). For another c− 1 times, A returns

a parallel query ~Y ′ and state information S ′. Each time, B does the following for each ciphertext

in ~Y ′: it checks all the outer layer ciphertexts are consistent using the secret keys for the outer

layer. If there is any inconsistency in the outer layer of any of the ciphertexts, the decryption to

that ciphertext would be ⊥ otherwise B sets y′i as the decryption of the first ciphertext in the outer

layer of Y ′i . B then submits ~y′ to the (c− 1)NMEb
∗ game in the outside and receives the decryption

to them. B then submits the decryptions along with the state information S ′ back to A in all the

rounds but the last one. For the cth query, B submits the decryption result and the state information

to the distinguisher D and forwards D’s output to the outside.



Chapter 4

Constructing CCA2-Secure Encryption from Weaker

Encryption

4.1 Introduction

THe standard security definition of an encryption scheme guarantees that the encryption of a

message does not leak any information about the message aside from its length. In practice,

this definition is too weak for network applications. Specifically, encryption schemes satisfying

this definition are not necessarily secure when the adversary has access to a restricted decryption

oracle. Depending on how restricted the decryption oracle is, different classes of security may be

defined. In the least restricted and still meaningful form of decryption oracle access, the adversary

may query the decryption oracle on anything but the challenge ciphertext. This notion of security is

called adaptive chosen ciphertext (CCA2) security.

History Here, we follow Wee [31] by summarizing the background history of CCA2 constructions

in the standard model. There have been two separate lines of work on the construction of CCA2

secure encryption schemes; one based on general assumptions starting from the work of Dolev,

Dwork, Naor and Yung [9, 7, 19, 32, 33, 34, 35, 36, 28, 37] and another based on specific number-

theoretic assumptions starting from the work of Cramer and Shoup [38, 39, 40, 41, 42, 43, 44, 45, 46].

The constructions based on specific assumption are generally more practical and efficient while the

53
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constructions based on general assumptions are more flexible and may be instantiated based on

different specific number-theoretic assumptions.

The CCA2 encryption schemes that are based on specific number-theoretic assumption may

be categorized into encryption schemes based on decisional assumptions, e.g. Decisional Diffie-

Hellman Assumption (DDH) or the quadratic residuosity assumption, and those based on computa-

tional assumptions, e.g. Computational Diffie-Hellman Assumption (CDH), finding shortest vectors

in lattices or the factoring assumption. Generally, decisional assumptions are a much stronger class

of assumptions than computational assumptions that are based on search problems. For instance,

there are elliptic curve groups with a bilinear map in which the CDH assumption is believed to be

hard, but the DDH assumption does not hold in them. As a result, the encryption schemes based on

computational assumptions may be more secure and hence preferable to those based on decisional

assumptions.

Canetti, Halevi and Katz [44] proposed the first practical CCA2 PKE based on a computational

assumption called the Bilinear DH assumption in bilinear groups (BDH). Since then, several

encryption schemes based on computational assumptions were proposed based on either CDH [45,

47, 48] or the factoring assumption [46]. However, none of these constructions provide a unifying

framework to instantiate an encryption scheme based on different computational assumptions.

The first black-box constructions of CCA2 encryption schemes from general assumptions

appeared in [36, 37] following the introduction of lossy trapdoor functions by Peikert and Waters

in [35]. Prior work that used general assumptions required NIZK statements that were not black-box.

The weakest general assumption in that line of work on which encryption schemes are based is

(tag-based) adaptive trapdoor functions of Kiltz, Mohassel and O’Neil [37]. Although there is a

black-box separation between adaptive trapdoor functions and lossy trapdoor functions [37, 49],

the standard assumptions from which we can realize either of these general assumptions are not

significantly different.

Another construction of a CCA2 encryption scheme based on general assumptions is that of

Cramer, Hofheinz and Kiltz [50] which is based on the smooth projective hash proof system frame-
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work introduced by Cramer and Shoup [40]. However, aside from CDH, the general assumptions on

which their construction is based (hash proof systems and weaker than CCA2 encryption schemes)

can only be instantiated from the RSA assumption which is presumably a stronger assumption than

the factoring assumption.

The current state-of-the-art of construction of CCA2 encryption schemes from general assump-

tions is that of Wee [31] based on a primitive called the extractable hash proof system which is a

special kind of non-interactive zero-knowledge proof of knowledge system. It is the first practical

CCA2 encryption scheme from general assumptions that can be instantiated from both CDH and the

factoring assumption. Given a hash proof system, the CCA2 encryption scheme can be constructed

in a straightforward way. However the extractable hash proof system is specifically tailored to fit in

their framework with quite a complicated and non-intuitive definition.

Our Result We build a provably CCA2 secure encryption scheme from any encryption scheme

with two properties: the encryption should be secure under a one-way plaintext-checking attack (i.e.

OW-PCA-secure) introduced in [16] and the scheme must support a ”key malleability” property.

We will formally define each of these notions later, but intuitively an encryption scheme is OW-PCA

secure if given the public key and an encryption of a random message m, no ppt adversary can guess

m correctly except with a negligible probability even with access to an oracle that takes a ciphertext

and a message and verifies whether the ciphertext decrypts to the given message or not. This notion

is seemingly weak: the oracle only provides ”yes/no” answers about whether a decryption is correct,

and the adversary must recover the entire message, and not just any single predicate as per semantic

security.

An encryption scheme is key malleable if given a randomly generated public key PK1 (which

has secret key SK1), there exists a ppt algorithm that can generate a new random looking public key

PK2 and trapdoor information s. Also, given SK1 and s, there exists a ppt algorithm to generate

a valid secret key SK2 for the public key PK2 such that (PK1,SK1,PK2,SK2) is indistinguishable

from a pair of freshly generated keys. Moreover, by using the trapdoor information s, there exists a

method to transform a ciphertext encrypted under one of the public keys to a ciphertext encrypted
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under the other, or vice-versa.

We use an encryption scheme that is OW-PCA secure and key malleable to construct an

encryption scheme that is one-bit CCA2 secure (i.e. the ciphertext encrypts a single bit) using

techniques similar to DDN-Lite with slight differences. Since Myers and shelat [17] showed that

one-bit CCA2 security implies many-bit CCA2 security, we conclude that many-bit CCA2 security

may be achieved using an encryption scheme that is only OW-PCA secure and key malleable.

The Main Technique Notice that because the OW-PCA scheme is essentially a one-way function,

therefore there exists a hard-core function such that any ppt adversary cannot guess the hard-core bit

of the encrypted message with advantage better than 1/2. We instantiate the DDN-Lite construction

with our OW-PCA scheme, and prove that an adversary that breaks the CCA2-security of the

scheme can be used to guess the hard-core bit of the OW-PCA scheme with a probability better

than 1/2. Now let us describe how we simulate the CCA2 game for an adversary. Given an

OW-PCA key pk0, we use the key malleability property to generate several other keys used in the

DDN-construction (and we save their trapdoor information for later). We choose a special signing

key skSig∗ and place the pk0 key at one of the spots in which that key will be used in skSig∗ and fill

for the rest of the spots in skSig∗ using public keys that were mauled from PK0. For the spots that

are not in skSig∗, we generate fresh pairs of public and secret keys.

Given the challenge ciphertext c∗ from the OW-PCA experiment which is encrypted under PK0,

we use the trapdoor information to maul it to ciphertexts for the other spots in skSig∗, sign all of

them and send them to the adversary.

In order to answer decryption queries from the adversary, we first argue that by the security of

the signature scheme, it is guaranteed that at least one key in the query was not used in the challenge

ciphertext if the signature is valid. Thus, we can decrypt ciphertexts in the query for which our

simulation knows the secret key for and verify that all of these ciphertexts decrypts to the same

value which we call m. For the spots that we do not have the secret key for, we have the trapdoor

information to maul those ciphertext into ciphertexts that are encrypted under PK0. Then we submit

all the mauled ciphertext and m one by one to the ”plaintext checking oracle” oracle. If any of
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the verifications so far failed, we return ⊥ as the response to the query, otherwise we return the

hard-core bit of m. Eventually the adversary returns a bit b and halts. We forward that bit to the

OW-PCA experiment as our guess of the hard-core bit of the message that was encrypted in c∗.

Contribution The approach that we put forward for constructing CCA2-secure encryption only

requires an encryption scheme as a starting primitive. In other words, we start from a trapdoor

predicate (albeit, with a few notable properties). As mentioned above, prior work on constructing

CCA2-secure encryption all require complexity assumptions that seem stronger than a predicate.

Namely, these prior works require either trapdoor permutations, lossy trapdoor functions, a more

complicated smooth projective hash system, or a more complicated extractable hash proof system.

In these latter two cases, the hash proof system requires discussion of various modes, and several

auxiliary functions.

Although our constructions use an adaptive complexity assumption (i.e, an assumption that itself

contains an oracle), we note that any construction of CCA2-secure encryption from say—CCA1-

secure encryption—would represent serious progress in this research area. Thus, the use of an oracle

in our assumption does not seem on face unreasonable. Another way to view our assumption is with

respective to the work of Myers and shelat who show that one-bit CCA2-secure encryption implies

many-bit CCA2-encryption. In analogue, we show that a scheme that is secure in the presence of

an oracle that only reveals one-bit about a ciphertext (namely, whether it is a proper encoding of a

given message) can be transformed into a scheme that is secure with a full CCA2 oracle. Although

we do not quite achieve this result (since our construction requires these additional key-malleability

properties), we view our work as introducing a new conceptual approach to CCA2 encryption.

To show the viability of our approach, we show that our security notion can be instantiated with

the standard number theoretic complexity assumptions. We conjecture that LWE-based complexity

assumptions can also be used to construct a scheme that will satisfy our two required properties

(indeed, LWE schemes seem to naturally support the key homomorphic properties).
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4.2 Preliminaries and Definitions

We consider the definition of one-way plaintext checking attack secure encryption schemes as given

by Okamote and Pointcheval [16].

Definition 4.2.1 (OW-PCA). [16] We say that E = (Gen,Enc,Dec) with the family of plaintext

spaces {Mk}k∈N where |Mk| ∈ ω(log k) is one-way plaintext checking attack secure (OW-PCA

secure) if for all ppt adversaries A and k ∈ N, we have that Pr[OW-PCA(E,A, k) = 1] < ε(k).

The OW-PCA experiment is defined as follows:

OW-PCA(E,A, k)
1: (PK,SK)← Gen(1k)
2: m←Mk

3: c← EncPK(m)
4: m′ ← AOSK(.,.)(PK, c)
5: Output m ?

= m′ where OSK(c,m) returns > if m = DecSK(c) and ⊥ otherwise.

Figure 4.1: THE OW-PCA EXPERIMENT

Observe that the adversary only wins the game if the entire message is recovered, and therefore

no particular bit of Enc is hidden. In this sense a OW-PCA secure resembles a strengthening of a

trapdoor function, more than an encryption scheme. We are interested in one of the hard-core bits of

the family of encryption functions {EncPK}(pk,sk)←g(1k), that is the same hard-core bit is shared over

all of the public-keys of the same security parameter. Such bits are known to exist inherently for

many hardness assumptions, or can be constructed through the Goldreich-Levin transformation [51].

Let the function h be a hard-core predicate function with respect to an encryption function EncPK for

the message spaceMk, for the OW-PCA secure encryption scheme E. We define the experiment

OW-PCAb as the predicate guessing version of OW-PCA. That is OW-PCAb(E,A, k) is the same

way as OW-PCA(E,A, k), but where i) m is chosen randomly conditioned on h(m) = b; and ii)

the adversary returns a bit b′ as its guess of h(m) and the experiment returns 1 iff b = b′. Clearly

Pr[OW-PCAb(E,A, k) = 1] < 1/2 + ε(k).
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4.3 Indistinguishable Key Generation, Inter-key Ciphertext Malleability and

Ciphertext Rerandomization

In this section we consider three required auxiliary properties of OW-PCA schemes. The first

property of the scheme is that given a public-key in the scheme we are able to generate alternate

public-keys for the scheme that come from a distribution that is indistinguishable from the original

key-generation algorithm. The second property is that when we generate an alternate public-key

PK′ based on an original public-key PK, it is possible to generate some state information so that

we can similarly transform encryptions c under PK into encryptions c′ under PK′, and vice-versa.

Finally, we require that the ciphertexts are re-randomizable. In Sections 4.5 and 4.6, we show

natural constructions of OW-PCA schemes which have these auxiliary properties.

Definition 4.3.1. [Alternate Keys and Inter-Key Ciphertext Malleable]

Consider E = (Gen,Enc,Dec) with the plaintext spaceM and the key space K = {Kn}n∈N

which is a family of finite sets of public and secret keys (PK, SK). For ease of notation we assume

that the secret key, the random coins and the message in the encryption scheme E is k where k is

the security parameter. We say E is key malleable if there exists probabilistic poly-time algorithms

~f = (f, f ′, f1, f2, fr) such that for all security parameter k ∈ N the following holds:

1. (Alternate Indistinguishable Keys) (a) We call the first distribution Dist and the second

distribution Dist’.

{(PK1, SK1)← Gen(1k), (PK2, SK2)← Gen(1k) :(PK1, SK1,PK2, SK2)}k∈N ≈c

{(PK1, SK1)← Gen(1k), (PK2, s2)← f(PK1), SK2 ← f ′(SK1, s2) :(PK1, SK1,PK2, SK2)}k∈N

(b) Also there is a negligible function ε such that the following holds:

Pr
[
(PK1, SK1)← Gen(1k), (PK2, s2)← f(PK1), SK2 ← f ′(SK1, s2) : (PK2, SK2) ∈ Kk

]
≥ 1−ε(k)
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2. (Inter-Key Ciphertext Malleability) For all sufficiently large k, for all m ∈Mk, there is a

negligible function ε it holds:

Pr

(PK, SK)← Gen(1k), (PK′, s)← f(pk) :

 EncPK(m) ≡s f1(s,EncPK′(m)) ∧

EncPK′(m) ≡s f2(s,EncPK(m))


 ≥ 1−ε(k)

3. (Ciphertext ReRandomization) We can rerandomize ciphertexts under a given public-key.

Namely, for every sequence of public- and private-key pairs, messages in corresponding mes-

sage spaces and corresponding ciphertexts: S = {(PK,m, c)}k∈N,(pk,SK)←g(1k),m∈Mk,c←EncPK(m) :

{fr(PK, c)}S ≈s {EncPK(m)}S.

4.4 CCA2 Security from Weaker Assumptions

In Figure 4.2 we give the construction of encryption scheme Π that is CCA2 secure if E is OW-PCA

secure and has the properties mentioned in the previous section (i.e., Alternate Indistinguishable

Public-Keys and Inter-Key Ciphertext Malleability). We present a brief intuitive description of

the security reduction. At a high level, any adversary A that breaks the CCA2 security of the

construction can be used to break the OW-PCA security of E. First, the construction uses multiple

redundant encryptions under redundant public-keys from the E scheme. The use of non-duplicatable

set selection is used (in the, by now, standard method proposed by Dolev et al.[9]) so that each

legitimate query to a decryption oracle must use a different subset of the public-keys to perform the

redundant encryptions. Now, if an adversary A breaks the CCA2 security, then we can construct

an adversary A′ for E that simulates A. This is done by simulating A, but giving it a public-key

in which the public-keys used to create the challenge ciphertext for A, are not legitimate keys, but

rather alternate indistinguishable keys, generated from A′’s OW-PCA public-key, A′ generates the

remainder of the public-keys appropriately, and knows the corresponding secret-keys. In order to

simulate A’s decryption oracle, we use the fact that due to the unduplicatable set selection, any
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decryption query will involve at least one public-key in the OW-PCA scheme to which A′ knows

the corresponding secret-key. A′ decrypts all the ciphertexts for which it has the corresponding

secret-keys, and ensures they all decrypt to a consistent value m. Similarly, it uses it owns validity

oracle in coordination with the inter-key ciphertext malleability for the ciphertexts that are encrypted

under public-keys for which A′ does not know the corresponding secret-key to ensure that all of

these ciphertexts are also encryptions of m.

We know give the formal statement of the theorem, and its proof.

Let E = (Gen,Enc,Dec) be any encryption scheme that is OW-PCA secure and Indis-
tinguishable Key Generation, and inter-key ciphertext malleable with the message space
{Mk}k∈N, where |Mk| ∈ ω(log k), and a corresponding hard-core predicate h(·). Let
Σ = (GenKey, Sign,Verify) be a strong one-time signature scheme.

gen(1k)
1: (PKb

i ,SKb
i)← Gen(1k), ∀i ∈ [k] and b ∈ {0, 1}

2: Output PK = {(PKb
i)}i∈[k],b∈{0,1} and SK = {(SKb

i)}i∈[k],b∈{0,1}

enc(PK, b)
1: m←Mk s.t. h(m) = b
2: (SigSK, SigVK)← GenKey(1k)
3: (ci ← EncPKSigVKi

i
(m))i∈[k]

4: σ ← SignSigSK(~c)
5: Output (~c, SigVK, σ)

dec(SK, C = (~c, SigVK, σ))
1: if VerifySigVK(σ,~c) = 0 then Output ⊥
2: (m′i ← DecSKSigVKi

i
(ci))i∈[k]

3: if ∃i s.t. (m′1 6= m′i)i∈[k] then Output ⊥
4: Output h(m′1)

Figure 4.2: THE PROPOSED CCA2 SECURE ENCRYPTION SCHEME Π

Theorem 4.4.1. The encryption scheme Π presented in Figure 4.2 is CCA2 secure if E is OW-PCA

secure and Indistinguishable Key Generation, and inter-key ciphertext malleable with the message

space {Mk}k∈N, where |Mk| ∈ ω(log k), and h is a corresponding hard-core predicate. Let

Σ = (GenKey, Sign,Verify) be a strong one-time signature scheme.
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Proof. To prove that Π is CCA2 secure, we need to show that for any ppt adversary A,

{CCA20(Π,A, k)}k∈N ≈c {CCA21(Π,A, k)}k∈N

We show this by a series of hybrid arguments. Consider the following experiments:

Experiment CCA2b
(1)(Π,A, k). It modifies CCA2b in two ways. First, instead of selecting vkSig∗

when the challenge ciphertext is encrypted, choose this value as the first step of the experiment.

Second, when processing decryption queries during the experiment, replace Verify with Verify∗ as

follows:

Verify∗ Let vkSig∗ be the verification key in the challenge ciphertext (~c∗, σ∗, vkSig∗). Upon receiv-

ing a decryption query on (~c, σ, vkSig), output⊥ if either vkSig = vkSig∗ or VerifyvkSig(~c, σ) =

0.

Claim 10. For b ∈ {0, 1}, {CCA2b (Π,A, k)}k∈N≈c{CCA2b
(1) (Π,A, k)}k∈N

Proof. Follows from the security of strongly secure signature scheme using standard techniques.

For the sake of simplicity of the presentation, in the rest of the proof we assume vkSig∗ = 0k.

Our proof generalizes in the normal ways to handle any particular signature string.

Experiment CCA2b
(2)(Π,A, ~f , k). We define k hybrids {Hi}i∈[k] where H1 is defined exactly as

CCA2b
(1) (Π,A, k). In each hybrid, we generate more of the public-key and challenge ciphertext

using the extra key and malleability properties of the OW-PCA secure scheme. Hybrid Hi, for

2 ≤ i ≤ k, modifies Hi−1 in the following ways:

1. Instead of calling Gen(k) to generate the key (PK0
i ), call the function (PK0

i , si) ← f(PK0
1)

using fresh and independent random coins.

2. Generate the ith element in ~c∗, representing an encryption of mb, in the challenge ciphertext

by calling f1(si, c
∗
1) where c∗1 = EncPK0

1
(mb) (instead of EncPK0

i
(m)).
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3. After revealing the challenge ciphertext, the adversary would ask queries of the form q =

(~c, SigVK, σ). Hi decrypts the query as in Hi−1 as before but with the difference that the

decryption of ci is computed as DecSK0
1
(f2(si, ci)) (instead of DecSK0

i
(ci)).

Define CCA2b
(2)(Π,A, ~f , k) equivalent to Hk.

Claim 11. Hi−1 ≈c Hi for 2 ≤ i ≤ k.

Proof. Notice that due to the Inter-Key Ciphertext Malleability property (see Definition 4.3.1),

with overwhelming probability, EncPK0
1
(m) ≡ f2(si,EncPK0

i
(m)) and EncPK0

i
(m) ≡ f1(si,EncPK0

1
(m)

for any message m ∈Mk.

Assume there exists an index 2 ≤ i ≤ k and ppt adversary A such that there exists a ppt

distinguisher D that can distinguish the two hybrids. Then we build a ppt distinguisher D′ for

distinguishing between Dist and Dist’ (see Definiton 4.3.1) with polynomial probability.

The distinguisher D′ receives (PK1,SK1,PK2,SK2) as input. It simulates A. D′ computes

(PK′j, s
′
j) ← f(PK1) for 2 ≤ j ≤ i − 1 and (PK′j,SK′j) ← Gen(k) for i + 1 ≤ j ≤ k and

(PK′′j ,SK′′j )← Gen(k) for j ∈ [k]. D′ then sets the public key PK given to its simulation of A as

follows:

for j ∈ [0 . . . k] & α ∈ {0, 1},PKα
i =



PK1 if j = 1 and α = 0

PK2 else if j = i and α = 0

PK′j else if α = 0

PK′′j otherwise

D′ then picks a random bit b and computes C∗ = enc(PK, b) (using SigSK∗) and sends PK

along with C∗ to the simulation of A when it requests the challenge ciphertext. Whenever A

asks a query C = (~c, SigVK, σ) to the decryption oracle, D′ computes the decryption exactly as

dec algorithm with the difference that on ciphertexts encrypted under the indistinguishable keys

generated from PK1, it uses the corresponding state information sj and computes the decryption as

DecSK0
1
(f2(sj, cj)) (instead of DecSK0

j
(cj)) which are guaranteed to result in the same values because



Chapter 4 Constructing CCA2-Secure Encryption from Weaker Encryption 64

of the Inter-Key Ciphertext Malleability property (see Definition 4.3.1) and that (PK2,SK2) are

valid keys according to the part (b) of the Alternate Indistinguishable Keys property. Eventually

A returns a bit b′ and halts. Notice that when (PK1,PK2) ∈ Dist, Hi−1 is simulated and when

(PK1,PK2) ∈ Dist’, Hi is simulated with overwhelming probability (due to the slight difference in

how D′ creates the challenge ciphertext and answers the queries which is guaranteed to produce

the same result because of the Inter-Key Ciphertext Malleability property and part (b) of the

Alternate Indistinguishable Keys property in Definition 4.3.1). D′ then runs D on the view of the

adversary, and returns 0 to the outside if D outputs Hi−1 and 1 otherwise.

Claim 12. For b ∈ {0, 1}, {CCA2b
(1) (Π,A, k)}k∈N≈c{CCA2b

(2)
(

Π,A, ~f , k
)
}k∈N

Proof. In Claim 11 we proved that Hi−1 ≈c Hi for 2 ≤ i ≤ k. Since H1 is CCA2b
(1)(Π,A, k)

and Hk is CCA2b
(2)(Π,A, ~f , k), the claim follows from the fact that there is a polynomial

chain of computationally indistinguishable distributions that separate CCA2b
(1)(Π,A, k) and

CCA2b
(2)(Π,A, ~f , k), implying they are themselves computationally indistinguishable.

Claim 13. For every ppt adversary A, there exists a ppt adversary B such that for b ∈ {0, 1},

{CCA2b
(2)(Π,A, ~f , k)}k∈N ≈s {OW-PCAb (E,B, k)}k∈N

Proof. We build the OW-PCAb adversary B that simulates the adversary A in the CCA2b
(2)

experiment. B receives as input public key PK1 and a ciphertext c1. B uses Σ to create a signing-

and verification-key (SigSK and SigVK) for the challenge ciphertext it will create in the CCA2b
(2)

simulation it performs. Again to ease presentation and notation, we assume the verification key

SigVK∗ = 0k. B computes (PK′j, s
′
j) ← f(PK1) for 2 ≤ j ≤ k and (PK′′j ,SK′′j ) ← Gen(k) for

j ∈ [k]. B then sets the public key PK given to A as follows:

for i ∈ [0 . . . k] & α ∈ {0, 1},PKα
i =


PK1 if i = 1 and α = 0

PK′i else if α = 0

PK′′i otherwise
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B prepares the challenge ciphertext C∗ using

~c∗ = (c1, fr(PK0
2, f1(s′2, c1)), fr(PK0

3, f1(s′3, c1)), . . . , fr(PK0
k, f1(s′k, c1))

and signs using SigSK∗. B simulates A on inputs PK and C∗. Note that the distribution on

the prepared ~c∗ is statistically close to the proper distribution due to the properties of f1 for

transforming encryptions under PK1 into encryptions under PKi and fr for its ability to rerandomize

the encryptions, and make the resulting ciphertexts uncorrelated to c1 (or each other). This is the only

part of the simulation that is not perfect. WheneverA asks a decryption query C = (~c, SigVK, σ), B

responds as follows, under the caveat that when a validity check fails during the simulation described,

B returns ⊥ as the answer to the corresponding query: B first checks that the verification-key is

not the same as that of the challenge ciphertext in the simulation: SigVK 6= SigVK∗ (remember that

for simplicity we assumed that SigVK∗ = 0k), and next that the signature is valid. Then for the

OW-PCA secure E ciphertexts embedded in C that B has the secret key for, it checks if they all

get decrypted to the same value mC . For each embedded ciphertext ci for which B does not have

the secret key, it computes c′ = f2(s′i, ci) and submits (c′,mC) to its PCA oracle to verify that c′

is a valid encryption of mC (notice that when i = 1, it just submits (ci,m) to the oracle because

it is encrypted under the same key as the outside). If it passes all checks, B forwards h(m) to A.

Eventually A returns a bit b′ and halts. B outputs b′ and halts.

Putting all the hybrid experiments together shows that the proposed encryption scheme Π is

CCA2 secure, as required by Theorem 4.4.1.

4.5 Encryption Based on the CDH Assumption

In this and the next section we present constructions of OW-PCA secure encryption schemes that

have the alternate-key generation properties and the inter-ciphertext malleability property. Thus
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these constructions can be applied directly to the previous section’s construction to achieve CCA2

security.

Consider a cyclic group G with the generator g and of prime order q, using multiplicative notation.

We define Computational Diffie-Hellman assumption, the Strong Diffie-Hellman assumption [52],

the Twin Diffie-Hellman assumption [45], and the Strong Twin Diffie-Hellman assumption [45]

as follows. The notation is mostly taken from [45]. All of these assumptions are known to be

computationally equivalent.

The Computational Diffie-Hellman Assumption. For X, Y, Z ∈ G, define

dh(X, Y ) = Z, where X = gx, Y = gy, Z = gxy

The Computational Diffie-Hellman (CDH) assumption holds for the group G if it is computationally

intractable for an adversary in probabilistic polynomial time to compute dh(X, Y ) for random

X, Y ∈ G.

The Strong Diffie-Hellman Assumption. [52] For X, Ŷ , Ẑ ∈ G, define

dhp(X, Ŷ , Ẑ) = dh(X, Ŷ )
?
= Ẑ

The Strong Diffie-Hellman assumption (SDH) augments the adversary in the CDH assumption with

an oracle that confirms, for a fixed x, if a triple is of the form (gx, gy, gxy). That is at states that it is

computationally intractable for an adversary to compute dh(X, Y ) for random X, Y ∈ G even with

access to the decision oracle dhp(X, ·, ·).

The Twin Diffie-Hellman Assumption. [45] For X1, X2, Y ∈ G, define

2dh(X1, X2, Y ) = (dh(X1, Y ), dh(X2, Y ))

The Twin Diffie-Hellman assumption states that it is computationally intractable to compute

2dh(X1, X2, Y ) for random X1, X2, Y ∈ G. In essence, one wants to compute two Diffie-Hellman



4.5 Encryption Based on the CDH Assumption 67

triples, which share the element gy in common.

The Strong Twin Diffie-Hellman Assumption. [45] For X1, X2, Ŷ , Ẑ1, Ẑ2 ∈ G, define

2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2) = 2dh(X1, X2, Ŷ )
?
= Ẑ1, Ẑ2

The Strong Twin Diffie-Hellman assumption states that it is computationally intractable to compute

2dh(X1, X2, Y ) for randomX1, X2, Y ∈ G even with access to a decision oracle 2dhp(X1, X2, ·, ·, ·).

The following lemma establishes the equivalence of all of these computational hardness assump-

tions.

Lemma 4.5.1 (Theorem 1 in [45]). The Computational DH assumption holds if and only if the

strong twin DH assumption holds.

We assume on inputs corresponding to security parameter k, there is a public parameter
PP = (G, g) denoting a cyclic group G with ≈ 2k elements in it, and generator g that all
algorithms have access to as input, but which is not denoted for clarity of description. The
plaintext spaceM is composed of pairs of group elements.

Gen(1k)
1: x1, x2 ← {0, 1, ..., |G| − 1}
2: Xi ← gxi for i ∈ {1, 2}
3: Output PK = (X1, X2, g),SK = (x1, x2)

Enc(PK = (X1, X2, g),m = (m1,m2))
1: r ← {0, 1, ..., |G| − 1}
2: Output (m1 ·Xr

1 ,m2 ·Xr
2 , g

r)

Dec(SK = (x1, x2), C = (c1, c2, R))
1: Yi ← Rxi for i ∈ {1, 2}
2: mi ← ci/Yi for i ∈ {1, 2}
3: Output m = (m1,m2)

Figure 4.3: THE ENCRYPTION SCHEME E = (Gen,Enc,Dec)

Claim 14. The encryption scheme presented in 4.3 is OW-PCA secure if the strong twin DH

assumption holds.
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Proof. For the sake of contradiction, assume there exists a ppt adversaryA that breaks the OW-PCA

security of E with the plaintext spaceM. We build a ppt adversary B that breaks the strong twin

DH assumption. The reduction works as follows. B simulates A. B receives the tuple (X1, X2, Ŷ )

(along with public parameters of G and the generator g) and should find the pair (Ẑ1, Ẑ2) such

that 2dh(X1, X2, Ŷ ) = (Ẑ1, Ẑ2); B has access to the decision oracle 2dhp(X1, X2, ., ., .). B creates

PK = (X1, X2, g). B generates a challenge ciphertext as follows: it generates two random group

members (R1, R2 ← G) and sets the challenge ciphertext c∗ = (R1, R2, Ŷ ), this represents an

encryption of a random string. B simulatesA(PK, c∗). Whenever the simulatedA asks a query (c =

(c1, c2, c3),m = (m1,m2)), B calls its own oracle with the query 2dhp(X1, X2, c3, c1/m1, c2/m2)

and forwards the response to A. The simulation of A outputs m = (m1,m2). B outputs (Ẑ1, Ẑ2) =

(R1/m1, R2/m2).

It is easy to check that the public-key generated in the simulation comes from the same distri-

bution as legitimate keys. Since the challenge ciphertext in the OW-PCA experiment is chosen at

random from the message space, which corresponds to a random pair of group elements, inspection

of the OW-PCA scheme’ encryption algorithm shows that the first two elements in the challenge

ciphertext are random group elements, due to the fact that the message essentially acts as a one-time

pad. Thus it is a quick check to see that again, the challenge ciphertext in the simulation comes from

the same distribution as in the OW-PCA experiment. Finally, the decryption validity oracle outputs

> on query (c1, c2, R = gy) if and only if (X1, X2, c3, c1/m1, c2/m2) = (gx1 , gx2 , gy, gx1y, gx2y),

which is easy to check for each position of the tuples.

Claim 15. The encryption scheme presented in Figure 4.3 is key malleable. The algorithms

(f, f ′, f1, f2, fr) for which Property 1, 2 and 3 in Definition 4.3.1 holds is:

Proof. For the encryption scheme E and the functions (f, f1, f2), we first prove in Claim 16 that

Property 1 holds, then in Claim 17 we show that Property 2 holds, and then in Claim 18 we show

that Property 3 holds.
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— f(PK1 = (X1, X2, g)):

1. x′1, x
′
2 ← {0, ..., |G| − 1}

2. X ′i ← Xi · gx
′
i for i ∈ {1, 2}

3. PK2 ← (X ′1, X
′
2, g)

4. s = (x′1, x
′
2)

5. Output (PK2, s)

— f ′(SK = (x1, x2), s = (x′1, x
′
2)):

1. Output (x1 + x′1, x2 + x′2)

— fr(PK = (X1, X2, g), c = (c1, c2, c3)):

1. r′ ← {0, 1, ..., |G| − 1}
2. Output (c1 ·Xr′

1 , c2 ·Xr′
2 , c3 ·gr

′
)

— f1(s = (x′1, x
′
2), c = (c1, c2, c3)):

1. c′i ← ci · c
x′i
3 for i ∈ {1, 2}

2. Output (c′1, c
′
2, c3)

— f2(s = (x′1, x
′
2), c = (c1, c2, c3)):

1. c′i ← ci · c
−x′i
3 for i ∈ {1, 2}

2. Output (c′1, c
′
2, c3)

Figure 4.4: THE ALGORITHMS (f, f ′, f1, f2, fr) For E

Claim 16 (Alternate Indistinguishable Keys). For a fixed group G with the generator g for which

the computational Diffie-Hellman assumption holds, we have that:

{(PK1, SK1)← Gen(1k), (PK2, SK2)← Gen(1k) :(PK1,PK2, SK1, sk2)} ≡

{(PK1, SK1)← Gen(1k), (PK2, s)← f(PK1), sk2 ← f ′(SK, s) :(PK1,PK2, SK1, SK2)}

where Gen is the algorithm defined in Figure 4.3, and f1 is defined in Claim 15.

Proof. Notice that if SK1 = (x1, x2) then SK2 = (x1 + x′1, x2 + x′2) for randomly generated x′1, x
′
2.

Hence the distribution of (PK1,SK1,PK2,SK2) is identical to that of a pair of freshly generated

public and secret keys.

Since these two distributions are identical, we conclude that with overwhelming probability

(PK2,SK2) are valid keys and hence the part (b) of the Alternate Indistinguishable Keys property
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in Definition 4.3.1 holds.

Claim 17 (Inter-Key Ciphertext Malleability). For a fixed group G with the generator g for which

the computational Diffie-Hellman assumption holds:

For all k, for all m ∈M:

Pr
[
(PK, SK)← Gen(1k), (PK′, s)← f(pk) :

(EncPK(m) ≡ f1 (s,EncPK′(m)))∧

(EncPK′(m) ≡ f2 (s,EncPK(m)))] = 1.

where Gen and Enc are the algorithms defined in Figure 4.3, and f1 and f2 are defined in

Claim 15.

Proof. Given that the keys generated in the Alternate Indistinguishable Keys property (Claim 16)

come from the same distribution as legitimate keys, inspection of f1 and f2 shows that there is a

one-to-one mapping between ciphertexts in the ranges of the two public-keys.

Claim 18 (Ciphertext ReRandomization). For a fixed group G with the generator g for which

the computational Diffie-Hellman assumption holds, we have that given (PK, SK) ← g(1k)

and a ciphertext c = EncPK(m), then over the distribution of S = (PK,m, c) we have that

{fr(PK, c)}S ≈s {EncPK(m)}S where fr is the algorithm defined in Figure 4.3.

Proof. Notice that if c is encrypted under the random coin r ← {0, 1, ..., |G| − 1}, then fr(PK, c)

is an encryption with random coin r + (r′ ← {0, 1, ..., |G| − 1}) which is statistically close to a

fresh encryption.
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4.6 Encryption Based on the Factoring Assumption

In this section, we provide an encryption scheme that is OW-PCA secure, and has the alternate-key

generation and the inter-ciphertext malleability properties assuming the factoring assumption is

intractable. The suggested encryption is similar to the encryption scheme secure against the chosen

plaintext attack offered by Wee in [31] that is based on the factoring assumption. The only difference

between the two is an additional consistency check in the decryption procedure.

Fix the Blum integer N = PQ for safe primes P,Q = 3 (mod 4) where P = 2p + 1 and

Q = 2q + 1 for primes p, q. As shown in [53], the cyclic group of signed quadratic residues given

by the quotient group QR+
N := QRN/ ± 1 is of order pq and is efficiently recognizable given

the modulus N . Assuming that factoring Blum integers are hard on average and that safe primes

are dense, then the map x 7→ x2 (indexed by N ) on the group QR+
N is one-way. In other words,

for all ppt adversaries A, Pr[F(A, k) = 1] is negligible in the security parameter k, where the F

experiment is defined as follows:

F(A, k)
1: Sample a Blum integer N with the security parameter k (i.e. blog pc = blog qc = k)
2: x← QR+

N

3: x′ ← A(N, x2)

4: Return x′ ?
= x

Claim 19. The encryption scheme E = (Gen,Enc,Dec) presented in Figure 4.5 is OW-PCA

secure if the factoring assumption holds.

Proof. To prove that E is OW-PCA secure, we need to show that for any ppt adversary A and

security parameter k ∈ N,

Pr[OW-PCA(E,A, k) = 1] ≤ ε(k)

We show this by a hybrid argument. Consider the following experiments:
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Let E = (Gen,Enc,Dec) be any encryption scheme that is OW-PCA secure and Indis-
tinguishable Key Generation, and inter-key ciphertext malleable with the message space
{Mk}k∈N, where |Mk| ∈ ω(log k), and a corresponding hard-core predicate h(·). Let
Σ = (GenKey, Sign,Verify) be a strong one-time signature scheme.

Gen(1k)
1: SK← [(N − 1)/4]
2: PK← g2SK

3: Output (PK,SK)

Enc(PK,m)
1: r ← [(N − 1)/4]
2: Output (g2r, (PK · g)r, gr ·m)

Dec(SK, C = (c1, c2, c3))
1: if c1, c2, c3 /∈ QR+

N then Output ⊥
2: R← c2 · c−SK

1

3: if R2 6= c1 then Output ⊥
4: Output c3/R)

Figure 4.5: THE ENCRYPTION SCHEME E = (Gen,Enc,Dec)

Experiment OW-PCA(1)(Π,A, k) modifies OW-PCA. It changes how decryption works in re-

sponse to the adversary’s queries. Fix the public and secret key (PK,SK) ← Gen(1k). In

OW-PCA(1)(Π,A, k), we answer the query (c = (c1, c2, c3),m) submitted by the adversary using

the following subroutine (instead of returning m ?
= DecSK(c)):

VerifySK(c = (c1, c2, c3),m)

1. if c1, c2, c3 /∈ QR+
N then Output ⊥

2. R← c3/m

3. if R2 6= c1 then Output ⊥

4. if c2/R 6= cSK
1 then Output ⊥ o.w Output >

Claim 20.

{OW-PCA(E,A, k)}k∈N ≡ {OW-PCA(1)(E,A, k)}k∈N
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Proof. Follows by inspection that one oracle outputs > if and only if the other does.

Experiment OW-PCA(2)(Π,A, k) modifies OW-PCA(1) in two ways. First, in the key generation

step, we compute the public key as g2SK−1 instead of g2SK. Second, we replace the checking

condition in the forth step in the algorithm Verify by c2 6= cSK
1 .

Claim 21.

{OW-PCA(1)(E,A, k)}k∈N ≈c {OW-PCA(2)(E,A, k)}k∈N

Proof. First, we consider the indistinguishability of the public-keys in the two experiments. First

imagine that the SK’s were drawn from {0, ..., φ(N)/4− 1 = pq − 1}. Remember that the order

of the group QR+
N is pq. It is simple, therefore, to see that g2SK and g2SK+1 both define uniform

distributions over all possible elements in QR+
N . The statistical distance between the uniform

distribution over {0, ..., φ(N)/4−1} and over {0, ..., (N −1)/4} is negligible in k ≈ log p ≈ log q,

and therefore the distributions in public-keys is indistinguishable.

To observe that modifying the Verify algorithm does not modify the experiment, note that when

we have modified the public-key, valid encryptions of m transform from

(c1 = g2r, c2 = (pk · g)r = g2SK·r + r, c3 = gr ·m)

to

(c1 = g2r, c2 = (pk · g)r = g2SK·r−r+r = g2SK, c3 = gr ·m).

Therefore, with the modified PK in a valid encryption it is now expected that cSK
1 = c2.

Claim 22. For all k ∈ N and ppt adversaries A, there exists a ppt adversary B such that:

{OW-PCA(2)(E,A, k)}k∈N ≡ {F(B, k)}k∈N

Proof. We build the ppt adversary B that interacts with the F experiment in the outside while

simulating the OW-PCA(2) experiment for the adversary A in the inside. B receives N and x2 from
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the outside. B chooses a random generator g and SK ← [(N − 1)/4]. B then sets PK ← g2SK−1.

B sets the challenge ciphertext c∗ = (x2, (x2)SK, y) where y is a random element. Notice that the

ciphertext c∗ is an encryption of a random and unknown element m. B runs A on the input (PK, c∗).

Whenever A asks a plaintext checking query, B answers as in the OW-PCA(2) experiment. Finally

A returns m′ and halts. B returns to the outside y/m′ and halts. Notice that if m = m′ then y/m′

equals x.

Claim 23. The encryption scheme E = (Gen,Enc,Dec) presented in Figure 4.5 satisfies Defini-

tion 4.3.1.

Proof. We first specify the algorithms (f, f ′, f1, f2, fr) required in Definition 4.3.1:

— f(PK1):

1. Pick x ∈ [N − 1/4]

2. Compute PK2 ← PK1 · g2x

3. Output (PK2, s = x)

—f ′(SK, s): Output (SK + s)

— fr(PK, c = (c1, c2, c3))

1. r′ ← [(N − 1)/4]

2. Output (g2r′ · c1, (PK · g)r
′ ·

c2, g
r′ · c3)

— f1(s = x, c = (c1, c2, c3)):

1. c′2 ← c2 · c−2x
1

2. Output (c1, c
′
2, c3)

— f2(s = x, c = (c1, c2, c3)):

1. c′2 ← c2 · c2x
1

2. Output (c1, c
′
2, c3)

Figure 4.6: THE ALGORITHMS (f, f ′, f1, f2, fr) For E

We now show that E satisfies the Alternate Key, Inter-key Malleable and Rerandomization

properties.
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Alternate Indistinguishable Keys For a randomly generated group with generator g, we have:

{(PK1,SK1)← Gen(1k), (PK2, s)← f(PK1), sk2 ← f ′(SK, s) :(PK1,PK2,SK1,SK2)}

≡ {. . .(PK1,PK1 · g2x,SK1,SK1 + x)}

≡ {. . .(PK1, g
2(SK1+x),SK1,SK1 + x)}

Since x is chosen randomly from [(N − 1)/4], and since the distribution {2(SK1 + x) mod

φ(N)/4} in which both SK1, x are uniform over [(N − 1)/4] is statistically close to the distri-

bution {2(SK1) mod φ(N)/4}, it follows that the distribution above is statistically close to

{(PK1,SK1)← Gen(1k), (PK2,SK2)← Gen(1k) : (PK1,PK2,SK1, sk2)}

which establishes the first property.

Since these two distributions are statistically close, we conclude that with overwhelming

probability in both mentioned distributions (PK2,SK2) are valid keys and hence the part (b) of the

Alternate Indistinguishable Keys property in Definition 4.3.1 holds.

Inter-Key Ciphertext Malleability For a randomly generated group G with the generator g, we

argued above that with very high probability, the elements PK2 and g2(SK1+x) are statistically close.

When this is true, then: (r is a random variable in this equation)

f1(s, (c1, c2, c3)) = (c1 = g2r, g(2(SK+x)+1)r · (g2r)−x, gr ·m)

= (c1, g
(2SK+1)r, gr ·m)

≡s EncPK1(m)

The statistical closeness in the last line follows because the random choice of x will cause some

keys to be chosen with negligibly smaller probablity than others due to the ”wrap-around” inducing
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difference between (N − 1)/4 and pq. The other direction involving f2 follows the same idea.

ReRandomization Let c = (c1, c2, c3) = (g2r, (PK · g)r, gr · m). Then, applying fr(PK, c)

we get (g2(r+r′), (PK · g)r+r
′
, gr+r

′ · m). Thus it suffices to show that the distribution on r + r′

mod φ(N) is statistically close to a r mod φ(N) for r ← [(N − 1)/4] as defined in the Enc

algorithm. Remember that QR+
N is a cyclic group of order φ(N)/4 = pq. Therefore, all that

is needed to show is that for all fixed r ∈ [pq] that the uniform distribution over [(N − 1)/4 =

((2p+1)(2q+1)−1)/4 = pq+p/2+q/2] mod pq is statistically close to the uniform distribution

over [(N − 1)/4] + r mod pq for any fixed r ∈ φ(N)/4. Thus in each experiment we have a

near uniform distribution over pq, where p/2 + q/2 elements occur with probability 8/(N − 1)

as opposed to 4/(N − 1). Therefore, in the worst case, for all but at most p + q of the values in

{1, ..., pq} the probability of the value in each experiment is 4/(N − 1) and so the difference in

probabilities is 0, for the remaining p+ q the difference is at most 4/(N − 1). Thus the statistical

difference is less than 2(p+ q)/pq ≈ 1/2k.



Chapter 5

Multiparty Computation with Low Communication

Overhead

5.1 Introduction

SEcure computation with an honest majority can be accomplished without any cryptographic

assumptions, but the best such protocol requires the parties to communicate |f | log |f |+ d2 ·

poly(n, log |f |) bits [54] and at least d rounds. Here |f | is the size of the function being computed

and d is the circuit depth of f , and thus the communication of the protocol is super-linearly related

to the number of gates in f . Until recently, even the use of cryptographic assumptions for secure

computation required polylog(λ) communication overhead per gate [54] where λ is a security

parameter.

Gentry[55] circumvents this per-gate overhead using fully homomorphic encryption schemes

(FHE) as follows: the honest-but-curious parities use secure multi-party computation to generate

an FHE key. Tthen each party encrypts its input and sends the resulting ciphertext and proof to

other parties. Once all parties have encryptions of everyone’s inputs, they compute the function of

interest locally using the evaluation procedure of the FHE. Finally, they use the resulting ciphertexts

as inputs to a secure multi-party computation to computes the decryption of the majority input. In

order to be secure against malicious adversaries, the Naor and Nissim compiler [56], which makes

heavy use of the PCP theorem, can be applied. The use of the PCP theorem in the SMC steps makes

77
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the approach impractical, even when presented with a practical FHE scheme.

The motivation behind this work is to remove any use of the PCP theorem (or any other

non-blackbox method such as generic ZK or NIZK) from the above framework for constructing

communication-efficient secure protocols. In other words, we seek a black-box transformation from

TFHE (Threshold Fully Homomorphic Encryption) to secure computation.

First Contribution The main technical hurdle in devising a black-box transformation from TFHE

to secure computation is to implement the requirement for each player to prove that they “know

the plaintext” corresponding to the encrypted input that they have broadcast. This step is essential

because it prevents one player from copying (or mauling via the homomorphism) the input of a

player who has acted earlier. To handle this step, we show how to construct a two-round black-

box proof of knowledge of an encrypted bit for any circuit private FHE scheme using only the

encryption scheme. Since our protocol is only two rounds, it is not zero-knowledge (cf. [57]) but

can provably keep the encrypted bit hidden. Our POK requires that the public-key contain a labeled

encryption of 0 and 1, which given all known FHE schemes seems to be a natural modification. 1

For traditional FHE schemes, the POK can be used completely black-box, without even the need for

the modification.

The basic idea of our proof of knowledge protocol is to first modify the encryption scheme so that

the message is encoded using an error-correcting code (ECC) based verifiable secret sharing (VSS)

scheme. To encrypt a message we first generate its secret shares, and encrypt them independently

using fresh randomness. A verifier now requests the Prover to reveal the randomness used to encrypt

a sub-threshold number of the shares. The verifier then does a consistency check, based on the

ECC underlying the scheme, to ensure that the shares were encoded properly. In particular, the

error-correcting code we choose offers a property that allows one to check whether local parts of

the codeword are error-free. The verifier accepts if everything appears to be properly coded. Since

the number of shares revealed is less than the threshold, it does not leak any information about the

1Since all current schemes contain bit-wise encryptions of their own secret-keys which are random bit strings, and a
natural extension of any protocol that provides encryptions of one’s own secret-key can be used to derive a labeled
encryption of 0 and 1 which we describe.
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original message. To show a proof of knowledge property, we argue that an extractor can rewind the

Prover and ask for another set of shares to be opened. With high probability, this second transcript

provides enough new shares to run the VSS recover algorithm and recover the original message.

The one issue with this approach is that the Prover must reveal the randomness used to encrypt some

of the shares. The semantic security of an encryption scheme does not guarantee any security when

these random bits are revealed—in particular, the security of the rest of the unopened encryptions

are not guaranteed. Instead, we require the encryption scheme to be secure against a selective

opening attack (SOA). Fortunately, a result of Hemenway et al. [58] can be generalized to show

that any circuit private homomorphic encryption scheme can be made into an SOA-secure one.

We point out that our proof of knowledge requires the encryption scheme to be homomorphic

and circuit-private. Recently, Damgård et al. [59] demonstrates a three-round Sigma-protocol for

knowledge of plaintext, but their protocol requires the underlying encryption scheme to also be

homomorphic on the random coins used to encrypt. Although many FHE schemes support this

property on their random coins, it is certainly not specified in the definition of FHE. In contrast,

circuit privacy has been independently defined and seems to be a naturally weaker property.2

Moreover, their scheme requires the message space for the FHE to be over ZN for N related to the

security parameter. While in general, single-bit FHE implies many-bit FHE, we are not aware of

any such transformation that also preserves the homomorphism over the random coins as required

by their protocol. Thus, the requirement for large message space and homomorphism over the

random coins seem to be extra assumption which our work can avoid (our protocol also works

on single-bit FHE). Finally, the Sigma protocol from [59] must eventually be compiled into a

full zero-knowledge protocol using standard techniques; these techniques add round complexity

and/or setup assumptions whereas we show that our two-round protocol with its hidden-bit property

suffices for our secure computation protocol.

2Even though current schemes achieve circuit privacy via randomness homomorphisms, it is certainly plausible for
future constructions to achieve circuit privacy in other ways. Moreover, there do not seem to be any natural ways to
transform a circuit private scheme to one with a randomness homomorphism, and thus we feel it is a weaker notion.



Chapter 5 Multiparty Computation with Low Communication Overhead 80

Second Contribution By combining our result above with almost any TFHE scheme, we then

present a secure multi-party protocol that avoids both per-gate communication complexity and PCP

theorems or any non-blackbox use of a cryptographic primitive. The communication complexity of

our protocol is O(λc · n2) where λ is a security parameter and c is a small constant for the TFHE

scheme and is thus independent of |f |. Our black-box transformation is particularly important

because if practical FHE (and TFHE) can be constructed, our transformations will result in practical

SFE, whereas Gentry’s scheme relying on PCP proofs and SMC will have significant overhead. Our

work is in the standard model and does not require extra trust assumptions such as the common

reference string, random oracle or the public key model.

Final Contribution For completeness, we also construct a threshold fully homomorphic public

key encryption scheme (TFHE) based on the Approximate GCD problem and the fully homomorphic

encryption scheme presented by van Dijk et al. [60], and our result was the first to demonstrate the

feasibility of directly achieving this threshold primitive for FHE.

We present our protocols in the information-theoretic model over secure point-to-point channels,

and thus our protocols are secure in the presence of an honest majority. Thus, when used with our

transformation, the resulting protocol is also only secure with an honest majority. By using another

TFHE that tolerates a dishonest majority, our transformation results in an secure computation

protocol that also tolerates the same.

The TFHE scheme provides a constant-round protocol for n players to generate a public key

and distribute private shares of the corresponding secret key of a fully homomorphic encryption

scheme. This step itself is non-trivial since the generation of the public key for an FHE scheme (that

is based on bootstrapping) requires encryption of the secret key. Later, a majority of players can

cooperatively decrypt a ciphertext by running a constant-round protocol on their private shares and

a public ciphertext. We also provide methods for distributed encryption and for proving knowledge

of an encrypted value.

We note that both our TFHE key generation and decryption protocols are more efficient than

generically applying secure function evaluation techniques to the key generation or decryption
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algorithms of an FHE scheme. For example, with the right set of the parameters, our decryption

protocol requires only a constant number of share multiplications, whereas generic techniques would

require O(poly(λ)) such multiplications. We heavily exploit the linear nature of the operations

involved in key generation, encryption and decryption for the particular FHE scheme of van Dijk

et al. For key generation and decryption, we develop specific multiparty computation protocols

that evaluates an arithmetic circuit using verifiable secret sharing techniques, that would be more

efficient than the application of generic techniques.

Comparison With Other FHE-based Secure Computation Protocols Gentry’s [55] secure

computation protocol was the first to achieve communication complexity that is independent of |f |

by using the PCP theorem in several steps.

Asharov, Jain and Wichs [61] and López-Alt, Tromer, and Vaikuntanathan [62] have constructed

more efficient TFHE schemes based on LWE and the closely related RLWE assumption, which

can be reduced to varying degrees to worst-case lattice problems. Their approaches rely on the

ability to construct an FHE that also has a homomorphism on the secret keys, and can also be

used to achieve secure computation with communication that is independent of |f |. Together, our

results demonstrate that the TFHE primitive can be developed from reductions to different classes

of hardness assumptions, and therefore TFHE is not simply a consequence of a specific hardness

properties.

To achieve security against malicious adversaries, López-Alt et al. rely on a common reference

string setup so that players can use a NIZK to prove to each other that their keys and their input

ciphertexts are well-formed. The use of such NIZK also requires additional hardness assumptions,

since (T)FHE is not known to imply NIZK. They can also instantiate their ideas in the standard

model by replacing these NIZK proofs with traditional interactive ZK proofs; but in either case, the

generic (NI)ZK techniques used will require non-blackbox use of the underlying TFHE scheme.3

By choosing the CRS model, the authors observed that by using a more expensive simulation-sound

3In other words, the encryption algorithm of the TFHE will need to be expressed in terms of a graph-coloring
instance (or Hamiltonicity or circuit-sat etc). As far as we know, this transformation requires a high-order polynomial
overhead.
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NIZK, their protocols can also achieve UC-security. Our protocols only claim standard security, but

as a reviewer has noted, it is likely that we can state some of ours results as UC in a TFHE-hybrid

model. We are actively pursuing this direction.

Asharov et al. use efficient Sigma Protocol constructions to prove well-formedness; these make

heavy use of the underlying mathematical structure of the LWE assumption. In order to have

efficient NIZK proofs, they must rely on the use of the Random Oracle model and the Fiat-Shamir

heuristic to transform the Σ-protocols into NIZK proofs. In any case, due to the black-box nature of

our SMC construction, with simple modifications to the public-key to include labeled ciphertexts

representing encryptions of 0 and 1, either of the López-Alt et al. or Asharov et al. TFHE schemes

can be plugged in to our construction to achieve security against an arbitrary number of malicious

adversaries, with abort. In contrast, with our scheme we are guaranteed output delivery, but need an

honest majority of players.

The protocols of Damgård et al. [59] and Bendlin et al. [63] use a different approach to

constructing secure computation protocols from traditional homomorphic encryption. Their schemes

rely on the idea from Beaver [64] for circuit randomization. First, they use an offline phase in which

the parties use a somewhat homomorphic encryption primitive to create shares of triples (a, b, c)

such that a · b = c. One triple is required for each multiplication gate in f that is to be evaluated

and requires approximately O(n/s) “heavy” cryptographic operations to generate. Next, after such

triples have been created, the parties use only information-theoretic methods to evaluate the circuit.

This approach results in admirable communication parameters for small circuits (as they have also

run practical examples); nonetheless, the approach requires linear communication for each gate in

|f |, and thus does not achieve our main aim of eliminating this relationship.

Finally, these prior results are all in a model in which n parties are computing, and the protocols

can tolerate up to n − 1 malicious parties. In contrast, our protocols require an honest majority.

The relative incomparability of these models is well understood. In particular, in the model that

tolerates up to n− 1 malicious adversaries, if any one party deviates form the protocol or fails, then

all parties output ⊥. Alternately, with an honest majority, all parties can output an effective output,
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as supported by our protocol. For a discussion of the relative merits of the two models, and the

impossibility of having protocols that achieve the best of both worlds for general functionalities, see

the work of Ishai et al. [65].

In summary, all of these recent works have advantages and disadvantages of their own; our

major contribution is the black-box transformation and the independent hardness assumption.

Related work The notion of threshold cryptography scheme was implicitly motivated by Shamir

in [66] and was formally introduced by Desmedt et al. [67]. Several extensions and schemes have

been considered in the literature for different public encryption and signature schemes. Cramer,

Damgård and Nielson [68] along with Jakobbsson and Juels [69] show how to use threshold

cryptography to construct secure multiparty computation protocols. In more detail, we use many

ideas from [68] which shows how a homomorphic threshold cryptosystem can be used to achieve

general multiparty computation protocols. We leave as an open question whether there exists a

black-box technique for generating a threshold FHE scheme from any FHE scheme.

5.2 Preliminaries and Notation

Basic Notations Let a be a string split into n shares held by n players, and let an adversary control

a set of players I ⊂ [n] We denote the shares of a held by adversary the adversary i as [?a]I .

Definition 5.2.1. (Threshold Fully Homomorphic Encryption Scheme) A 4-tuple of protocols

and algorithms (Gen,Enc,Dec,Eval) is a threshold fully homomorphic encryption scheme if

the following hold:

Key Generation An n-party protocol Gen that at each invocation returns a new public key PK and

the secret key (SK1, . . . , SKn), where SKi is the share of the secret key for Playeri.

Encryption A ppt algorithm EncPK(m, r) that returns the encryption of the plaintext m under the

public key PK with random coins r.
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Decryption There exists a ppt n-party protocol Dec(c, SK1, . . . , SKn), which returns the plaintext

m using the shares SKi held by honest party Playeri, where c = Enc(m, r) for some random

r.

fPK-homomorphic There exists a ppt algorithm Eval which given a polynomial f , ciphertexts

c1 ∈ EncPK(m1), . . . , ck ∈ EncPK(mk) for some k and a public key PK outputs c ∈

Enc(f(m1, . . . ,mk)).

Threshold Indistinguishability The natural notion of chosen plaintext attack indistinguishability

security needs to be modified in the venue of threshold cryptography to take into account the fact

that the adversary has access to shares of the secret-key, and we need to ensure these do not aid it.

We now give the definition of security for a threshold encryption scheme.

Definition 5.2.2 (Threshold Indistinguishability [68]). Let A be an efficient adversary that on input

1k, a public-key PK and any set C of the corresponding secret-key shares SK1, ..., SKn, where

(PK, SK1, . . . , SKn) are generated by the execution of the key generation protocol, outputs two

messages m0 and m1 and state information s. Hence (m0,m1, s) ← A(1k,PK, C, {SKc}c∈C).

Let (s, ci) ← Xi(k, C) denote the distribution over (s, ci) where ci ← Enc(PK,mi). Then Xi =

{Xi(k, C)}k∈N,C for i ∈ {0, 1} are ensembles, and we require that X0 ≈c X1 when |C| < n/2.

Standard security notions for secure multi-party computation protocols can be used to define the

security for the protocols Gen and Dec in any given instantiation of a TFHE (e.g., we can consider

security in the real/ideal standalone paradigm, the UC framework, etc..)

Circular Threshold Security Notice that the security definition for a threshold encryption scheme

is not defined for the case where the adversary has access to the encryption of the secret key. We

present a definition to capture the notion of security for this case, which we call circular threshold

security for a semantically secure encryption scheme. Our definition is based on the circular security

definition in [70], but we must take in to account the fact that the adversary has access to shares

of the secret-key, [?SK]I . The definition needs to ensure that these shares do not affect the circular

security.
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Definition 5.2.3 (Circular Threshold Security). Let Π = (Gen,Enc,Dec) to be a semantically

secure threshold encryption scheme. For algorithm A and set C ⊂ {1, . . . , n} and random k ∈ N,

let IND-CirThrCPAb(Π,A, C, k) to be the output of the experiment described in Figure 5.1.

IND-CirThrCPAb(Π,A, C, k)
1: (PK,SK1, . . . ,SKn)← Gen(k). Let SK be the secret key for PK.
2: m0 ← SK
3: m1 ← 0|SK|

4: c∗ ← Enc(PK,mb)
5: Output A([?SK]C ,PK, c∗)

Figure 5.1: THE CIRCULAR THRESHOLD SECURITY DEFINITION

Encryption scheme Π is circular threshold secure if for all ppt algorithmsA and any set C where

|C| < n/2, it holds that the following two ensembles are computationally indistinguishable:

{IND-CirThrCPA0(Π,A, C, k)}k ≈c {IND-CirThrCPA1(Π,A, C, k)}k

Selective Opening Security We present the definition for selective opening security. Intuitively,

a scheme that is secure against selective openings ensures that the release of randomness used to

encrypt some ciphertexts cannot be used to compromise the security of other encryptions with the

same public-key.

Definition 5.2.4 (IND-SO-SEC Encryption Security). A public-key encryption scheme Π = (G,E,D)

is Indistinguishable Selective Opening secure if, for any message sampler M that supports efficient

conditional resampling and any ppt adversary A = (A1,A2) and all sufficiently large k:

Ind-SO-Real(Π,A,M, k) ≈s Ind-SO-Ideal(Π,A,M, k)

A message sampler M is a ppt algorithm that outputs a vector ~m of n messages from a given

distribution. It is an efficient conditional resampler if, when given two auxiliary inputs a set of

indices I ⊆ [n] and a vector of messages ~m = (m1, . . . ,mn), M will sample another vector ~m′ =
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(m′1, · · · ,m′n) conditioned on mi = m′i for each i ∈ I . We define the experiments Ind-SO-Real and

Ind-SO-Ideal in Figure 5.2.

Ind-SO-Real(Π,A,M, k)
1: (PK,SK)← G(k)
2: ~m = (m1, . . . ,mn)←M
3: Generate random coins r1, . . . , rn
4: (I, σ)← A1(PK, EPK(m1, r1), . . . , EPK(mn, rn))
5: b = A2(σ, (mi, ri)i∈I , ~m)

Ind-SO-Ideal(Π,A,M, k)
1: (PK,SK)← G(k)
2: ~m = (m1, . . . ,mn)←M
3: Generate random coins r1, . . . , rn
4: (I, σ)← A1(PK, EPK(m1, r1), . . . , EPK(mn, rn))
5: ~m′ = (m′1, . . . ,m

′
n)←MI,~m[I]

6: b = A2(σ, (mi, ri)i∈I , ~m′)

Figure 5.2: REAL VS. IDEAL MODEL FOR SELECTIVE OPENING SECURITY

Bootstrapping a Ciphertext We introduce the notion of bootstrapping a ciphertext. Gentry

introduced the notion of Bootstrapping to reduce noise in a somewhat fully homomorphic encryption

scheme, in order to achieve a fully homomorphic scheme. In contrast, we assume the existence of

an FHE and simply use it to reduce noise produced in ciphertexts generated in our selective opening

attack secure scheme.

Definition 5.2.5. (Bootstrapping a Ciphertext) For a FHE scheme Π = (G,E,D,Eval) and the

security parameter k, let DΠ be Π’s decryption circuit, which takes a secret key and s ciphertext

as input. Given a ciphertext C encrypted with respect to a public-key PK and secret-key SK =

(SK1, .., SK`) we require that PK contains a bit-wise encryption of SK, denoted s1, ..., s` where

si = E(PK, SKi). Let (C1, .., Cn) denote the bits of C, and generate ci = E(PK, Ci). We say that

the value C† = Eval(PK, Dπ, s1, ..., s`, c1, .., cn) (which homomorphically evaluates D(SK, C)) is

the result of bootstrapping C.

Lossy Encryption We give the definition of a lossy encryption scheme below, which is a natural

modification of the notion of lossy functions. We can generate traditional keys which encrypt
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and decrypt properly, or we can generate lossy keys in which the distributions of encryptions

over all messages are statistically indistinguishable (and thus correct decryption can clearly not be

satisfied on average). Finally, we require that the distributions of traditional keys and lossy keys are

computationally indistinguishable.

Definition 5.2.6 (Lossy Encryption). A lossy public-key encryption scheme is a triple (G,E,D) of

ppt algorithms such that:

Correctness of Injective Keys: For all (PK, SK)← G(k, INJ), b ∈ {0, 1}, and random strings r,

it holds that D(SK, E(PK, b, r)) = b.

Lossiness of Lossy Keys: For all (PK, SK)← G(k, LOSSY): E(PK, 0) ≈s E(PK, 1).

Computational Indistinguishability of Lossy and Injective Keys: Define s : (x, y) 7→ x to

project pairs of public- and secret-keys to pulblic-keys.

{s(G(1k, INJ))}k ≈c {s(G(1k, LOSSY))}k

Openability: The following is implied by lossiness. There exists an algorithm (not necessarily

poly-time) Opener which when given a lossy public-key PK, (PK, SK)← G(k, LOSSY) and

a ciphertext c← E(PK, b), will with non-negligible probability (over the choice of PK, SK

and random bits used to generate c) output two strings r0 and r1, such that E(PK, 0, r0) = c

and E(PK, 1, r1) = c.

Circuit Privacy for a Homomorphic Encryption We give the definition for Circuit Privacy

below. Intuitively, a homomorphic encryption is circuit private if the distribution of evaluating a

circuit on a ciphertext is close to that of fresh ciphertexts.

Definition 5.2.7. ([Statistical] Circuit Private Homomorphic Encryption). A homomorphic en-

cryption scheme ε is circuit-private for circuits in a set Cε if, for any key pair (PK, SK) output by

Gen(λ), any circuit C ∈ Cε, and any fixed ciphertext ψ = 〈ψ1, . . . , ψt〉 that are in the image of
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Encε for plaintexts π1, . . . , πt, the following distributions (over the random coins in Encε, Evalε)

are [statistically] indistinguishable:

Encε(PK, C(π1, . . . , πt)) ≈ Evalε(PK, C, ψ)

In the original schemes first presented by both Dijk et al. [60] and Gentry [55], the initial

evaluation functions are deterministic and not circuit-private. In order to overcome this problem,

both works introduce a method for adding random noise to encryptions, whether they are output from

Eval or Enc, and thus in some sense rerandomizing them. This is done by adding an ‘encryption’ of

0 to the ciphertext in question, but where the ‘encryption’ has significantly more noise than would

be generated by either the legitimate encryption or evaluation process. Specifically, they introduce

ppt algorithms labeled CircuitPrivacy : Cb → C ′b, where Cb consists of all the ciphertexts that are

output from EncPK(b) or a call to Eval with an encrypted output bit of b. It is the case that for any b

and any cb,0 , cb,1 ∈ Cb where cb,0 is a ciphertext that is output from EncPK(b) and cb,1 is a ciphertext

that is output from call to Eval with an encrypted output bit of b :

CircuitPrivacy(cb,0) ≈s CircuitPrivacy(cb,1).

In the case of the construction based on approximate GCD, CircuitPrivacy(c) chooses a random

subset S ⊆ {1, . . . , τ}, and r ← [−2η−6, 2η−6] and output c′ ← [c+
∑

i∈S xi]x0 +2r (See Appendix

C of [60] for more details). Gentry describes a similar method for achieving circuit privacy on

lattice based encryptions [55].

Verifiable Secret-Sharing Scheme A
(

n
n/2+2

)
Verifiable Secret-Sharing scheme consists of a

sharing algorithm which takes as input a secret s and produces n-shares s1, ..., sn. These shares have

the property that for any T ⊂ {1, . . . n}, |T | < n/2 + 2 it is the case that {si}i∈T is information

theoretically independent from s. However, for any S ⊆ {1, . . . n} s.t. |S| ≥ n/2 + 2, it is the case

that the reveal algorithm, when given {si}i∈S , can reconstruct s. In a traditional interactive setting

we require that all non-cheating parties agree on the reconstructed secret.
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We use a modification of the Cramer et al. [71] verifiable secret sharing scheme. We note that in

our application, we do not need to deal with interactive adversaries, nor players, so the scheme is

significantly simplified. We present the sharing and revealing algorithms below. It is assumed that

all of the operations are in some finite-field F of appropriate size.

Protocol 1 . VSShare( n
n/2+2)

(s)

1: Choose a random degree n/2 + 1 bi-variate polynomial f such that f(0, 0) = s

2: Share si = (~a,~b) = (i, (f(i, 1), . . . , f(i, n)), (f(1, i), . . . , f(n, i)))
3: r1, . . . , rn ← R
4: Output s1, ..., sn

Protocol 2 . VSReveal( n
n/2+2)

(s1, ..., sn/2+2)

1: For each si = (i,~ai,~bi) ensure that ai and bi are n/2 + 2-consistent
2: If not output ⊥
3: For each i 6= j ensure sj, si are pairwise-consistent
4: If not output ⊥
5: Interpolate f , based on shares
6: Output f(0, 0)

Figure 5.3: THE PROTOCOLS VSShare( n
n/2+2)

AND VSReveal( n
n/2+2)

Definition 5.2.8. A vector (e1, ..., en) ∈ Fn is n/2 + 2−consistent if there exists a polynomial w of

degree at most n/2 + 1 such that w(i) = ei for 0 ≤ i < n.

Definition 5.2.9. Given two shares si = (i,~ai = (ai1, . . . , ain),~bi = (b1i, . . . , bni)) and sj =

(j,~aj(aj1, . . . , ajn),~bj = (b1j, . . . , bnj)), we say that they are pairwise consistent if aij = bij and

aji = bji.

Definition 5.2.10. For our purposes it is useful to note that given the n× n matrix



f(1, 1) f(1, 2) . . . f(1, n)

f(2, 1) f(2, 2) . . . f(2, n)

...
... . . . ...

f(n, 1) f(n, 2) . . . f(n, n)


,
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that a share si simply corresponds to the ith row and column of the matrix. We will call this

the matrix representation of the shares. Notice that when given in the matrix representation,

any two shares are necessarily pairwise consistent. Given a set of n pairwise consistent shares

~s = (s1, ..., sn), we define M~s as the n× n matrix representation of the shares.

5.3 Proof of Knowledge of an Encryption

As noted in the Introduction, the method of Cramer, Damgård, and Nielsen [68] requires an honest-

verifier zero-knowledge proof of knowledge of encrypted values for the threshold schemes that

they employ. We provide a weaker 2-round solution to that requirement, which alas, is not zero-

knowledge but also does not release any information about the bit being discussed (we formalize

this below). Moreover, our construction only makes black-box use of the underlying circuit-private

FHE scheme.

We construct this proof through a two-step process. At a high-level, instead of encrypting a bit b,

we will use a specific
(

n
n/2+2

)
verifiable secret sharing scheme to generate n shares of b and encrypt

those shares. 4 In order to give a proof of knowledge of the encryption of b, we will allow a verifier

to select n/2 + 1 of the encryptions of shares of b, and then direct the Prover to decommit them by

revealing the randomness used to encrypt them. To extract the bit, our extractor rewinds the proof

and selects an alternate n/2 + 1 shares, so that with high probability, it can use n/2 + 2 shares to

reconstruct b, and only b due to the verifiability of the secret sharing scheme. The problem with

this approach is that revealing the randomness for an encryption raises selective decommitment

issues. We use techniques from Hemenway et al. [58] to construct a bit-wise Indistinguishable

Selective-Opening Secure encryption scheme from our threshold fully-homomorphic scheme. We

can then use it to bitwise encrypt the VSS shares.

We note that the encryptions of the shares under the bit-wise Indistinguishable Selective-Opening

Secure scheme is not itself a homomorphic encryption scheme. For example, we cannot multiply

directly two sets of shares encoding b0 and b1 and expect the result to encode b0 · b1. However,

4We use a verifiable secret sharing scheme with a n/2 + 2 threshold to simplify the proof of the VSS, thus
|T | = n/2 + 1 is chosen to be right under the threshold of the VSS, as one might expect.
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the individual encrypted bits are still properly encoded ciphertexts under the FHE scheme, but

having had a circuit-privacy evaluation function applied to them. Intuitively, therefore, we can

homomorphically evaluate the reveal function of the secret sharing scheme to get a single encryption

representing the reconstituted bit. This encryption can then be used to homomorphically evaluate

the function as in Cramer et al. [68]. There is however a snag: in principle, once the circuit-privacy

function has been applied to a ciphertext, it may no longer be able to have homomorphic operations

applied to it, as this is not guaranteed by the definition.5 However, this problem is easily surmounted

by applying Gentry’s bootstrapping technique (cf. Definition 5.2.5) to re-encode the selective-

opening secure schemes in to ciphertexts which can have homomorphic operations applied to them,

and thus the VSS’s reveal algorithm can be applied to the individual bits of the shares, resulting in

ciphertext of the encoded bit, which is in the ciphertext space of the TFHE scheme.

5.3.1 Using FHE to construct a Selective Opening Encryption Scheme

Hemenway et al. [58] show how any re-randomizable encryption scheme can be used to construct

a natural lossy encryption scheme and thus, by the result of Bellare et al. [72], is secure against

indistinguishable selective opening attacks (IND-SO-SEC; see Definition 5.2.4).

Thus lossy encryption provides the ability to generate keys that produce “lossy” encryptions

in which the distribution of encryptions of 0 is statistically close to the distribution of encryptions

of 1. These keys are indistinguishable from regular injective keys. An alternate notion of security

for encryption relates to the selective opening problem (Definition 5.2.4). In this somewhat

counterintuitive notion, an adversary is given a sequence of ciphertexts corresponding to different

messages and can query for the random coins used to encrypt a subset of those ciphertexts. Upon

receiving these coins, the adversary then attempts to break the secrecy of the other ciphertexts.

In other words, a scheme that is secure against selective openings ensures that the release of

randomness used to encrypt some ciphertexts cannot be used to compromise the security of other

encryptions with the same public-key. We note that CPA security is implied by the definition of

5Further, in practice, with known schemes, these ciphertexts have too much noise in them to allow further homomor-
phic operations without sacrificing decryption correctness.
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Lossy encryption, see [58] for details.

Since the Hemenway and Ostrovsky construction relies on re-randomization, they suggest that

the distribution of a “fresh” encryption of a message should be statistically close to a rerandomization

of a fixed message. They point out that all homomorphic encryption schemes up to that point

achieved this property by adding an encryption of 0 to the current message. While this property was

true of all schemes at the time, it is not actually true of the known fully homomorphic encryption

schemes, because each time we add an encrypted message to another we increase the amount of

noise that is embedded in the ciphertexts, and thus fresh encryptions have less noise than encryptions

that have had operations (such as addition) applied to them. Fortunately, the property they state is

overly strong, and a simple observation shows that for their construction to go through they only

require that the distributions

{r ← R : E(pk, 0, r) � E(pk,m, r0)} ≈s {r ← R : E(pk, 0, r) � E(pk,m, r1)},

for all public-keys PK, messages m and random strings r0 and r1 where � is the homomorphic

addition operation. However, it is simple to see that even these two distributions are not statistically

close for the fully homomorphic encryption schemes that have been proposed. Fortunately, both

schemes under consideration have rerandomization functions built to ensure Circuit-Privacy, as is

defined in Definition 5.2.7.

5.3.2 Construction of a SOA from Lossy

The essential idea is to perform normal (non-lossy) encryption, we generate a public-key for the

Lossy scheme by generating a traditional public-key and secret-key for the TFHE, and then we

augment the public-key with two labeled ciphertexts c0 and c1, representing encryptions of 0 and 1.

Now, to actually encrypt a bit b, we take cb, and rerandomize it using the circuit-privacy function (In

comparison, Hemenway and Ostrovsky add an encryption of the bit 0). Decryption works as it does

in the FHE scheme. The lossy key generator simply has c1 represent an encryption of 0 instead of 1.

By the CPA security of the TFHE scheme, the keys are indistinguishable. The scheme is formally
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described below.

Key Generation G′(k, b), b ∈ {INJ, LOSSY}: Let (PK,SK) ← G(k), c0 ← E(PK, 0), c1 ←

E(PK, 1) and c′1 =← E(PK, 0). If b = INJ Output PK′ = (pk, c0, c1) and SK′ = SK,

else when b = LOSSY output PK′ = (PK, c0, c
′
1) and SK′ = SK.

Encryption E ′(PK′ = (PK, c0, c1), b): Output ReRand(cb).

Decryption D′(SK, c): Output D(SK, c).

Theorem 5.3.1. If (G,E,D) is a circuit-private FHE, then the blackbox construction (G′, E ′, D′)

described in Section 5.3.2 is an IND-SO-SEC secure encryption scheme.

Proof. Follows from [58] and [72].

5.3.3 Modifying the SOA-secure Encryption Scheme to Support POKs

Again, in order to be able to provide a proof of knowledge that the a party has knowledge of the

value encrypted, we need to provide a POK. We will show a 2-round public-coin proof of knowledge

of the encrypted bit based on any selective opening secure scheme. The protocol is neither zero-

knowledge nor witness indistinguishable but does maintain secrecy of the encrypted bit. First, we

encrypt bits using the following protocol. Let Π′ = (G′, E ′, D′) be the selective-opening attack

secure scheme described in Theorem 5.3.1. We construct a new encryption scheme Π̂ = (Ĝ, Ê, D̂)

to encode bits properly so we can give proofs of knowledge about them that keep the encrypted bit

hidden. We define Ĝ = G′, and give the algorithms for Ê and D̂ in Figure 5.4.

5.3.4 Hidden Bit POK

Given a ciphertext C = {ci,j}1≤i,j≤n output by our encryption algorithm Ê and the random strings

used to generate it, ~r, we show how to perform a two-round proof of knowledge of the encrypted bit

D̂(SK,C) in Figure 5.5. P will prove that it has knowledge of the underlying shares of the verifiable

secret-sharing scheme that have been encrypted, and thus the bit that has been encrypted. In order

to do this, the verifier sends a random challenge of indices T ⊂ {1, . . . , n}, where |T | = n/2 + 1.
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Ê(PK, b, r)
1: (s1, ..., sn)← VSShare( n

n/2+2)
(b)

2: Let M be the n× n matrix representation of shares (s1, . . . , sn)
3: ci,j = E ′(PK,Mi,j, ri,j) (These are bitwise encryptions of M )
4: Output C = {ci,j}1≤i,j≤n

D̂(SK,C)
1: M = {Mi,j}1≤i,j≤n ← D′(SK,C)
2: Let (s1, . . . , sn) be the shares corresponding to matrix M
3: T ′ = {t|1 ≤ t ≤ n share st is n/2 + 2 -consistent}
4: If |T ′| < n/2 + 2 output ⊥
5: Let T ⊆ T ′ s.t. |T | = n/2 + 2
6: Output VSReveal( n

n/2+2)
(st1 , ..., stn/2+2

)ti∈T

Figure 5.4: THE MODIFIED SOA-SECURE ENCRYPTION SCHEME TO SUPPORT POKS

The encryptor then decommits to these encryptions by providing the random-bits used to encrypt

each share of the bit. If each bit decommits successfully, and the result is n/2 + 1 valid shares to

the VSS, then the verifier accepts.

Prover(PK,C = {ci,j}1≤i,j≤n Verifier(PK,C = {ci,j}1≤i,j≤n)
= Ê(PK, b, r),M, r)

Let ci,j = E ′(PK,Mi,j, ri,j)
T←− T ← {S|S ⊂ {1, ..., n} ∧ |S| = n/2 + 1}

{Mi,x,ri,x,Mx,i,rx,i} i∈T
1≤x≤n−→ if ∃i, j s.t. cij 6= E ′(PK,Mi,j, ri,j),

output ⊥.
Output 1.

Figure 5.5: A TWO-ROUND PROOF OF KNOWLEDGE OF THE ENCRYPTED BIT D̂(SK,C)

Completeness

Follows by inspection.

Extractability (Soundness)

Soundness follows from an extractor.
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Extractor(C,PK, U1 = {Mi,x, ri,x,Mx,i, rx,i} i∈T1
1≤x≤n

, U2 = {Mi,x, ri,x,Mx,i, rx,i} i∈T2
1≤x≤n

)

1: Let T = T1 ∪ T2, U = U1 ∪ U2

2: If |T | < n/2 output ⊥
3: If ∃i ∈ T, x ∈ {1, . . . , n} s.t. E ′(PK,Mi,x, ri,x) 6= ci,x or E ′(PK,Mx,i, rx,i) 6= cx,i

output ⊥
4: For each i ∈ T reconstruct its corresponding share si
5: Output VSReveal( n

n/2+2)
(sr1 , ..., srn/2), where r1, . . . , rn/2 are the smallest n/2 in-

dices in T

Figure 5.6: THE Extractor TO PROVE THE SOUNDNESS FOR THE POK PROTOCOL

Theorem 5.3.2. For all sufficiently large n, for all d > 0, for all (SK,PK)← Ĝ, for all ‘ciphertext’

inputs C, and provers P ′, if (P ′, V )(C = {ci,j}1≤i,j≤n,PK) accepts with probability 1/nd, then

there exists a probabilistic polynomial time extractor that, with all but negligible probability, outputs

a set of decommitments to all ciphertexts for a given set of indices L = {`1, · · · , `n/2+2} ⊆ [n] that

constitute shares S = {s`1 , ..., s`n/2+2
} such that VSReveal( n

n/2+2)
(s`1 , ..., s`n/2+2

) = D̂(SK, C).

Definition 5.3.3. We say an n × n matrix representation of shares has t− consistent indices, if

there is a set S of size t such that for each i ∈ S, each row i and column i is n/2 + 2 consistent.

Proof. Given the ability to rewind the prover-verifier protocol, we can extract the encrypted bit by

recovering enough shares of the VSS scheme. We continue to execute the prover/verifier protocol

until we get two distinct separate accepting proofs. It is a simple observation that except with

exponentially small probability, we will succeed in O(nd+1) rewinds. Let (T1, U1) and (T2, U2) be

the flows in the first and second accepting proofs, respectively. By the security of the commitment

scheme (Here we are using our encryption scheme as a simple commitment scheme), the probability

that there is a ciphertext ci,j that is ever decommitted to in two distinct fashions is negligble.

We feed these inputs in to Extractor in Figure 5.6. If there is not a valid encryption of a bit

(fewer than n/2 + 2 committed and consistent shares), then by Lemma 5.3.4, the probability that

the verifier outputs anything other than ⊥ is less than 1

( n
n/2+2)

which grows exponentially small.

Given the decommitments of the shares {si}i∈Ti for different randomly chosen set of indices

T1 and T2, note these sets are not the same by selection, and therefore there is no chance that ⊥ is
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output by the extractor. Next the extractor executes a VSReveal( n
n/2+2)

command. However, this is

not necessarily over the same shares as would be revealed in a legitimate decryption. We need to

ensure that no matter which of the rewound and newly played legitimate traces we receive, we are

going to reveal the same encrypted bit, with all but negligible probability. That is, we need to ensure

that VSReveal( n
n/2+2)

(sr1 , ..., srn/2) = VSReveal( n
n/2+2)

(s1, ..., sn/2). This is the case, as shown in

Lemma 5.3.5 because of the verifiable properties of the secret sharing scheme ensures that even

in the case of a corrupted dealer (improper ciphertext encoding of shares) then all honest players

will reveal the same value, with all but negligible probability. Therefore, with all but negligible

probability we have that the extractor outputs the same value as D̂(SK,~c).

Lemma 5.3.4. Let M be an n× n matrix with at most n/2 + 1 consistent indices. The probability

that any n/2 + 1 randomly selected indices (without replacement) choose a set of n/2 + 1 consistent

indices is no more than

1/

(
n

n/2 + 1

)
.

Proof. There can be at most 1 set of size (n/2 + 1) that is (n/2 + 1) consistent in an n × n

matrix. The lemma follows by computing the probability of choosing this one set from a set of n

objects.

Lemma 5.3.5. Let M be n × n matrix representation of shares. Let S, T ⊆ {1, . . . , n}, |S| =

|T | = n/2 + 2, S 6= T , and the rows RS = {ri}i∈S , RT = {ri}i∈T and columns CS = {ci}i∈S ,

CT = {ci}i∈T are all n/2 + 2−consistent. Let s = (s1, ..., sn/2+2) and t = (t1, ..., tn/2+2)

be the shares drawn from M corresponding to the sets of indices S and T respectively. Then

VSReveal( n
n/2+2)

(s1, ..., sn/2+1) = VSReveal( n
n/2+2)

(t1, ..., tn/2+1).

Proof. Note that in VSReveal( n
n/2+2)

lines 1–4 will never output ⊥ under our conditions, so all that

we need do is show that f will interpolate to the same value in both cases.

We know that the rows RT = {ri}i∈T and columns CR = {ci}i∈T are all (n/2 + 2)−consistent.

Choose any j ∈ S \ T . Let T = {t1, . . . , tn/2+2}. Consider cj = (c1,j, c2,j, . . . , cn,j)
T . Since cj is

n/2 + 2−consistent, the points (ct1,j, t1), . . . , (ctn/2+1,j, tn/2+2), interpolate to a unique univariate
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degree n/2 + 1 polynomial (i.e. f(x, j)). This defines (c1,j, c2,j, . . . , cn,j)
T , so the column j must

be consistent with T . Since the jth column was an arbitrary column in S different from those in

T , all such columns must be consistent with the rows defined be T . A symmetric argument shows

that rows selected by S must be consistent with the columns selected by T . Therefore, both sets are

consistent in that they define the same polynomials. Therefore, interpolation in VSReveal( n
n/2+2)

will result in the same output.

Hidden Bit

We show that no efficient cheating verifier can predict the bit b, when given C = Ê(PK, b, r) as a

theorem for which we are engaging in a POK.

Theorem 5.3.6. For every ppt adversary A = (A1, A2), there exists a negligible function µ such

that Pr[HBA(1k) = 1] ≤ 1/2 + µ(k), where the experiment HB is defined in Figure 5.7.

HBA(1k)
1: (PK,SK)← Ĝ(1k)
2: b ∈ {0, 1}
3: C = {ci,j}1≤,i,j≤n = Ê(PK, b) where ci,j = E ′(PK,Mi,j, ri,j) are the SOA

encryptions
4: (T, σ)← A1(PK, C) where T ⊂ {1, . . . , n}, |T | = n/2 + 1
5: b′ ← A2(σ, (Mi,j, ri,j)i,j∈T )
6: Output 1 iff b = b′

Figure 5.7: THE HB EXPERIMENT

Proof. This follows directly from the IND-SO-SEC security of Π′ = (G′, E ′, D′). Suppose an

adversary A = (A1, A2) breaks the hidden bit security of the protocol. That is for some d > 0 and

infinitely many k: Pr[HBA(1k) = 1] ≥ 1/2 + 1/kd. We use it to build an adversary B = (B1, B2)

and message selector M that breaks the IND-SO-SEC security (cf. Def. 5.2.4, page 85) of Π′ =

(G′, E ′, D′). The message selector M chooses a random bit b, let (s1, ..., sn)← VSShare( n
n/2+2)

(b),

and let M be the n × n matrix that represents the shares (s1, . . . , sn) according to the ECC

representation of the VSS. Output M.
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The adversary B1

(
PK, (E(PK,Mi,j, ri,j))1≤i,j≤n

)
for the IND-SO-SEC experiment simulates

(T, σ) ← A1(PK, C = (E(PK,Mi,j, ri,j)), and outputs I = {(i, j)|1 ≤ i, j ≤ n, i ∈ T or j ∈ T}

and σ′ = (T, σ). Recall by the definition of A1, |T | = n/2 + 1.

The conditional message selector MI,~m[I] from the SOA security definition finds a random

bi-variate polynomial of degree n/2 + 1 in each variable over the field F such that f(0, 0) ∈ {0, 1}

and for each (i, j) ∈ I , it holds that f(i, j) = Mi,j . Since |T | = n/2 + 1, and thus we have

effectively release n/2 + 1 shares for a VSS scheme that requires n/2 + 2 for reconstruction, the

information secrecy property of the VSS guarantees there are exactly the same number of such

selections for the case f(0, 0) = 0 and f(0, 0) = 1. MI,~m[I] outputs {f(i, j)}1≤,i,j≤n.

The adversary B2(σ, (Mi,j, ri,j)(i,j)∈I ,M
∗) computes the shares (s∗1, ..., s

∗
n) that correspond to

M∗, and runs VSReveal( n
n/2+2)

(s∗1, .., s
∗
n) = b′, it then executes b ← A2(σ, (mi,j, ri,j)(i,j)∈I) and

outputs 1 iff b = b′.

Now consider Pr[BInd-SO-Real
Π (1k) = 1], this is a perfect simulation of HBA(1k), and there-

fore by the assumption that A breaks the hidden-bit security is at least 1/2 + ε, where ε ≥ 1/kc.

In contrast, consider Pr[BInd-SO-Ideal
Π (1k) = 1]. In the case that VSReveal( n

n/2+2)
(s∗, 1..., s

∗
n) =

VSReveal( n
n/2+2)

(s1, ..., sn), which occurs with probability exactly 1/2, it is again a perfect simula-

tion HBA(1k), and so outputs 1 with probability 1/2+ε. In contrast, when VSReveal( n
n/2+2)

(s∗, 1..., s
∗
n)) 6=

VSReveal( n
n/2+2)

(s1, ..., sn), then we know that A2 outputs VSReveal( n
n/2+2)

(s1, ..., sn) with prob-

ability 1/2 + ε, and so B2 must output 1 with probability 1 − (1/2 + ε) = 1/2 − ε. Therefore,

Pr[BInd-SO-Ideal
Π (1k) = 1] = (1/2)(1/2 + ε + 1/2 − ε) = 1/2. Therefore, Pr[BInd-SO-Real

Π (1k) =

1]− Pr[BInd-SO-Ideal
Π (1k) = 1] = 1/2 + ε− 1/2 ≥ 1/kc, breaking IND-SO-SEC security.

Using the SOA Ciphertexts in a Secure Multiparty Computation Protocol In our SMC con-

struction, we will encode all users’ inputs using the POK scheme above. The encrypted inputs are

sent to the other parties. After each party’s input has been confirmed with a proof of knowledge, the

parties homomorphically evaluate the different ciphertexts to get an appropriate encrypted output.

However, as explained before, the POK encryptions are not themselves homomorphic. To solve

this problem we use Gentry’s bootstrapping technique. Bootstrapping lets us take a ciphertext in
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an FHE scheme with any amount of noise that still allows for proper decryption (specially, this is

potentially more noise than is permissible to perform any extra homomorphic operations without

destroying the correctness of the ciphertext), and output a new ciphertext in the FHE scheme, of

the same value, but with a small enough amount of noise that it can be properly computed on

through the use of the FHE’s evaluation function. Given a ciphertext C = {ci,j}1≤i,j≤n in the POK

scheme, each ci,j is a ciphertext from a lossy encryption scheme. To convert C into a corresponding

encryption C† in the TFHE scheme we do the following: We bootstrap each ci,j which is simply a

TFHE ciphertext that has had the circuit-privacy function applied to it—thus containing potentially

too much noise to apply further homomorphic operations to, but not so much that it decrypts

improperly— to receive the corresponding lower-noiseTFHE ciphertext c′i,j . The c′ ciphertexts can

now be evaluated in the THFE eval function, and in particular we can use the TFHE eval function,

to evaluate VSReveal( n
n/2+2)

. The result of this evaluation is the ciphertext C† corresponding to the

output.

Protocols vs. Algorithms We note that there is one technical issue that needs to be resolved,

which is that in this section we have described the key generation and decryption algorithms as

stand-alone algorithms, rather than protocols. For our purposes, we need a joint protocol for key

generation and decryption. For this reason, we need to modify our key generation algorithm in the

TFHE scheme to include an encryption of the bits 0 and 1 in the public-key. These values allow the

parties to encrypt under the SOA secure encryption scheme Π̂. The SOA secure scheme does not

modify the decryption algorithm, so there is no need for modification to the decryption protocol.

5.4 Threshold FHE for the Integers

We briefly summarize the FHE scheme Π = (G,E,D,Eval) based on the Approximate-GCD

problem described by [60]. The scheme relies on the boot-strapping principle and is based on a

somewhat homomorphic scheme parameterized by the following variables:

γ is the bit-length of the integers in all the somewhat homomorphic scheme’s public key,

τ is the number of integers in the somewhat homomorphic scheme’s public key,
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η is the bit-length of the secret key in somewhat homomorphic scheme (which is the hidden

approximate-gcd of the integers in the public-key),

ρ is the bit-length of the noise.

For the security parameter λ, vanDijk [60] suggests the following relationships:

• ρ = ω(log λ), to protect against brute-force attacks on the noise

• η ≥ ρ ·Θ(λ log2 λ), in order to support homomorphism for deep enough circuits to evaluate

the “squashed decryption circuit”

• γ = ω(η2 log λ), to thwart various lattice-based attacks on the underlying approximate-gcd

problem

• τ ≥ γ+ω(log λ), in order to use the leftover hash lemma in the reduction to approximate gcd

• ρ′ = ρ+ ω(log λ)

Now the parameters are set as following: ρ = λ, ρ′ = 2λ, η = Õ(λ2), γ = Õ(λ5) and τ = γ + λ.

For z ∈ R, define rp(z) = z − bz/pe · p, i.e. it is the remainder in the range (−p/2, p/2). For a

specific (ρ-bit) odd positive integer p, let the distribution Dγ,ρ(p) over γ bit integers be:

Dγ,ρ(p) = {choose q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) : output x = pq + r}

5.4.1 Public Key Homomorphic Encryption Scheme

The somewhat homomorphic encryption scheme Π′ = (G′, E ′, D′,Eval′) works as follows:

G′(λ) The secret key is an odd η-bit integer: p← (2Z + 1) ∩ [2η−1, 2η).

For the public key, sample xi ← Dγ,ρ(p) for i = 0, . . . , τ . Relabel the vector ~x so that

x0 is the largest integer. Restart unless x0 is odd and rp(x0) is even. The public key is

pk = 〈x0, x1, . . . , xτ 〉.



5.4 Threshold FHE for the Integers 101

E ′(pk,m ∈ {0, 1}) Choose a random subset S ⊆ {1, 2, ..., τ} and a random integer r in (−2ρ
′
, 2ρ

′
).

Output c∗ ← [m+ 2r + 2
∑

i∈S xi]x0 .

Eval′(pk, Cε, c1, ..., ct) Given an (arithmetic) admissible circuit Cε with t inputs, and t ciphertexts

ci, apply the (integer) addition and multiplication gates of Cε to the ciphertexts, performing

all the operations over the integers, and return the resulting integer.

If f(x1, . . . , xt) is the multivariate polynomial representation of the circuit Cε, and f is of

degree d, then we say that Cε is admissible if:

d ≤ η − 4− log |f |
ρ′ + 2

where |f | is the l1 norm of the coefficient vector of f .

D′(sk, c) Output m′ ← (c mod p) mod 2.

The scheme can be transformed into a fully homomorphic one by applying the bootstrapping

transformations described in [60]. We call the new evaluate procedure Eval. In particular, the

decryption depth of the circuit must be squashed by adding extra information to the public key and

modifying the encryption procedure. Towards this goal, set the additional parameters κ = γη/ρ′,

Θ = ω(κ log λ), and θ = λ. Define the scheme Π = (G,E,D,Eval) as follows:

G(λ) Generate sk∗ = p and pk∗ as before. Set xp ← b2κ/pe. Choose at random a Θ-bit vector

~s = 〈s1, . . . , sΘ〉 with Hamming weight θ, and let S = {i : si = 1}. Choose at random

integers ui ∈ Z ∩ [0, 2κ+1) for i = 1, . . . ,Θ, subject to the condition that
∑

i∈S ui = xp

( mod 2κ+1). Set yi = ui/2
κ (it is a real number with dlog θ + 3e bits of precision) and

~y = 〈y1, . . . , yΘ〉. Output the secret key SK = (~s) and public key PK = (pk∗, ~y) (Notice that

p is no longer needed in the secret key).

E(m,PK) Generate a ciphertext c∗ as before in E ′ (i.e., an integer). Then for i ∈ [Θ], set

zi ← [c∗ · yi]2, keeping only dlog θe + 3 bits of precision after the binary point for each zi.

Output both c∗ and ~z = 〈z1, . . . , zΘ〉.
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D(c = 〈c∗, ~z〉,SK) Output m′ ← [c∗ − b
∑

i sizie]2.

Theorem 5.4.1 (Implicit from [60]). Fix the parameters (ρ, ρ′, η, γ, τ) and (κ,Θ, θ) as noted above.

Under the assumption that the (ρ, η, τ) approximate-GCD problem and the (θ,Θ)-sparse subset

sum problem are hard, Π is a semantically-secure compact bootstrappable fully homomorphic

encryption scheme.

In the rest of this section we discuss the construction of a TFHE scheme Π̃ = (G̃, Ẽ, D̃, ˜Eval)

from this particular FHE scheme. We point out that in any such transformation Ẽ = E and

˜Eval = Eval, and thus we only need to describe protocols for computing G̃ and D̃.

5.4.2 Secret Sharing Primitives

Let Fq denote the finite field Z/qZ with q being a prime. Let [?a] denote a secret-sharing of a ∈ Fq

and a ← REVEAL([?a]) denote the execution of the reconstruction protocol for a in which the

parties use their shares of [?a] as input to reconstruct the shared secret a. We refer to the simulator for

REVEAL protocol as SREVEAL([?a]I , a′), which takes as input the shares of a known by adversary

(denoted [?a]I), and reveal the value a′. This is done in a manner that is indistinguishable from the

real world execution. Throughout the chapter, in algorithmic descriptions we do not specify the field

that secrets are shared in. The field order must be large enough to handle the integers encountered

in the fully homomorphic computations without causing wrap-around but is otherwise arbitrary.

One can determine the field order needed by computing the maximum of the required orders for

each FHE algorithm. Therefore in all secret sharing instances, we refer to the field order as an ` bit

prime.

Let [?a]B denote a shared value which is bit-decomposed. That is, every player holds a share of

each bit of a. Also [?a]i..j denotes the bit-by-bit share of the the substring of a from the index i to

the index j.

We assume that the secret sharing scheme is linear. Hence parties that hold the shares [?a] and

[?b] can compute shares for [?a+ b] and for [?ac] for a public constant c without interacting. We also

assume that there is an unconditionally secure protocol MULT to compute [?ab] from the shares [?a]
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and [?b]. Such a linear secret sharing scheme and a corresponding constant round multiplication

protocol MULT that can be instantiated with protocols described in [66] and [73]. We refer to

the simulator for this protocol as SMULT([?a]I , [?b]I , res) which takes as input the shares of a

and b held by the adversary and reveal the value res as the result of executing the protocol in

an indistinguishable way from the real world execution for the adversary. Since we assume the

existence of the multiplication protocol as an abstract primitive, we express the round complexity as

the number of sequential multiplication calls that are necessary during the protocol. We also express

the communication complexity as the number of the total multiplication calls during the protocol.

Some Known Primitives We first describe some known primitives from previous works on secret

sharing. The protocols are used as building blocks to construct our shared key-generation and

decryption protocols for the threshold decryption scheme. These protocols are all secure against

static dishonest minority and make use of atomic broadcast channels. We also describe slight

modification to some of them to fit our applications.

RAN2() Damgård et al. [74] give an n-party protocol RAN2 in which the players get no input and

receive as output shares of a uniformly distributed random bit a ∈ {0, 1}. The protocol

requires 2 sequential multiplication rounds. The simulator for this protocol is SRAN2
(b). At

the end of running the simulator, each party holds a share of b.

COMP([?a]B, [
?b]B) [74], [75], and [76] introduced a method to compare the bit-wise values [?a]B

and [?b]B in a multiparty setup.The returned value is 1 if a ≥ b, and 0 otherwise. The

protocol runs in 8 rounds (two of which are preprocessing rounds) and invokes 13` + 6
√
`

multiplications where ` is the bit length of the order of field in which a and b are shared. By

adding another `+
√
` multiplications, as mentioned in [76], the comparison can be extended

to return two bits that determine the case when a = b as follows:
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COMP([?a]B, [
?b]B) =


([1], [0]) if [a]B > [b]B

([0], [0]) if [a]B = [b]B

([0], [1]) if [a]B < [b]B

BITS([?a]) This protocol provides a method for taking [?a] and computing shares for each of

the bits in the bit-wise representation of a. The protocol returns ` = dlog ae shares of

bits ([?a0], . . . , [?a`−1]), where a =
∑

i ai2
i. The protocol takes 23 rounds (7 of which

are preprocessing rounds) and invokes 31` log ` + 71` + 30
√
` multiplications (` is the

bit length of the field order a is shared in). The simulator for this protocol is denoted

SBITS([?a]I , a`−1, . . . , a0). Each party would hold a share of values a0, ..., a`−1 at the end of

the simulation. This algorithm was presented in [76].

SOLVED-BITS(k) This protocol returns shares of each bit of the bit-wise representation of a value

chosen uniformly at random in the range [0, k]. The protocol takes seven rounds (two of

which are preprocessing rounds) and 52` + 24
√
` multiplications. The simulator for this

protocol is SSOLVEDBITS(a), where a is the simulated random output. This algorithm was

presented in [76].

power([?x], k) This algorithm returns shares of xk in the case that x is an invertible field element.

The simulator for this protocol is SPOWER([?x]I , k, y). The simulator should give the shares

of y to represent the shares of xk to all parties during the simulation. This protocol is a simple

modification of a protocol based on the works of [77] and [74] which given as input shares

[?x1], . . . , [?xk] returns in constant rounds shares for all of the values 1 ≤ i < j ≤ k,
∏j

k=i xk.

The protocols takes 5 rounds and incurs 5`+ k − 1 multiplications.

MULT∗([?x1], . . . [?xk]) For the case all xi’s are invertible field members, [77] and [74] suggests

a protocol to compute the xi · xi+1 · . . . · xj for all 1 ≤ i < j ≤ k in constant rounds. The

round complexity would be 5 with 5` + k − 1 invocation of MULT. The simulator for this

protocol would be S∗MULT([?x1]I , . . . [?xk]
I , x). At the end of simulation, each party should
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hold a shares of x as the multiplication of x1, . . . , xk. For the case all xi are the same and we

need xi for i ∈ [k], we write it as MULT∗([?x], k) and we define the simulator accordingly.

MOD([?x],m) This protocol computes shares of x mod m, where m is a public value. The

simulator for this protocol is SMOD([?x],m, a), where the simulator produces shares of a,

with the intention that a = x mod m. The protocol takes up to 40 rounds, and 31`2 log `+

31` log `+84`2+71`+36`
√
`+30

√
`multiplications. This protocol is a natural augmentation

of a protocol presented in [74] which results from using techniques in [76] to improve

efficiency.

5.4.3 Sharing the Public and Secret Key

In this section, we describe a constant-round n-party protocol to generate both a public key and

shares of the secret key for the fully homomorphic encryption scheme Π (For technical reasons, the

public key will also contain encryptions of 0 and 1 for use in our POK). Our schemes rely on the

secret sharing sub-protocols described in Section 5.4.2.

Recall that the secret-key for Π consists of a Θ-bit vector ~s with Hamming weight θ. Our first

modification to Π is to note that instead of θ, it suffices to select a vector with Hamming weight in

the interval θ ± θ/4. This observation allows us to pick a SK by independently flipping coins that

are 1 with probability θ/Θ.

Generating the public key is more complicated. The public key consists of the vectors ~x and

~u. There are several steps in generating the public key. In order to generate ~u, we first compute

the shares of ~s and the shares of p which is an odd integer in the interval [2η−1, 2η). Second, we

compute xp = b2κ/pe. Using ~s and xp, we compute the vector ~u using the formula ~u =
∑

i si · ui

mod 2κ+1. Third, using bits of 1/p computed in previous steps, we generate the xi’s. Forth, we

generate encryptions of the secret key ~s. In the next sections, we provide more details on each of

these steps.



Chapter 5 Multiparty Computation with Low Communication Overhead 106

Producing the SK ~s

The secret key for the squashed scheme consists of a random Θ-bit vector ~s = (s1, . . . , sΘ) with

Hamming weight θ. We argue that setting the Hamming weight of ~s to be any value in the range

θ ± θ/4 does not affect the security or correctness of the scheme. To verify this, note that the

sparse subset-sum problem is assumed to be hard for θ = Θε for 0 < ε < 1; our change does not

violate this condition. Also, our new range of settings for θ does not increase the total degree of the

decryption circuit by more than a factor of 2 and thus the condition that the decryption protocol is

admissible is maintained (and thus the scheme is bootstrappable. See the computation on p.18 [60]).

Our approach for producing ~s is to securely generate a random number ri in the range [0,Θ] for

each si and setting si = 1 if ri ≤ θ and 0 otherwise.

Claim 24. If each si is set to 1 with probability θ/Θ, then

Pr

[∣∣∣∣∣∑
i

si − θ

∣∣∣∣∣ > θ/4

]
≤ 2−O(λ)

Proof. Via the Chernoff bound.

We also assume that the circular threshold security of the framework still holds with this

modification. We believe that any natural proof in showing this modification still results in circular

security would modify the original circular security argument for the base system. However,

remember that the circular security of the original scheme is assumed, and therefore we cannot

modify such a proof.

We set the parameter Θ to be a power of two to facilitate generating secret random elements

smaller than Θ. In this case, generating secret random numbers smaller than Θ only requires

concatenation of log Θ secret random bits without any secret comparison. However in the general

case, we would call the COMP protocol which is a relatively expensive operation. Therefore the

algorithm to compute ~s, presented in Figure 5.8, is as follows: For each si, the players produce

shares of log Θ random bits in step 1 (notice that the concatenation of these bits would be guaranteed

to be in the interval [0,Θ]). After local computation in step 2, the players securely compare the
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result against θ to generate shares of si (i.e., si would be 1 with probability θ/Θ, and 0 otherwise).

Also we set the last bit of the ~s to be 1. There reason is that it would simplify the next steps in the

key generation protocol. Notice that setting the last bit to 1 would not change the security properties

of the scheme. That is intuitively because there is polynomial chance that the last bit of the vector ~s

was going to be set to 1, and also the adversary has polynomial chance of guessing it. Therefore any

adversary that would break the modified scheme can be used to make an adversary that has also

non-negligible chance in breaking the original scheme.

Protocol 3 . [?~s], θ′ ← ComputeS(θ,Θ)
1: For i = [Θ] and j = [log Θ], run [?ai,j]← RAN2()
2: For i = [Θ], let [?ai]B be ([?ai,log Θ], . . . , [?ai,1])
3: For i = [Θ], run Θ parallel executions of protocol [?si]← COMP([?ai]B, θ)
4: set sΘ to 1
5: Locally compute [?θ′]←

∑
i[
?si]

6: Run the protocol θ′ ← REVEAL([?θ′])
7: Output [?~s], θ′

Figure 5.8: A PROTOCOL TO SHARE ~s

Complexity Analysis The algorithm produces Θ log Θ random bits in parallel, and performs another

Θ comparisons in parallel (since ai’s length is at most log Θ bits, therefore the produced value does

not have to be compare against all ` bits, and hence the complexity is lower). Therefore it needs

2Θ log Θ + Θ(13 log(Θ) + 6
√

log(Θ)) invocations of the multiplication protocol and 7 rounds of

interaction.

Simulation. The simulator SS(θ,Θ) for the protocol ComputeS works as follows:

1. Run the sub-simulator SRAN2
(0) for each call of RAN2 protocol and obtain the adversary’s

share. Next, do the local computation in step 2 and obtain [?~a]IB.

2. For all i ∈ [Θ] run the sub-simulator SCOMP([?ai]
I
B, θ, 0), and obtain the adversary’s share

[?~s′]I .

3. Locally compute [?θ′]I =
∑

i[
?s′i]

I .
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4. Generate a random value θ′′ with the same distribution as θ′ in an honest execution.

5. Run SREVEAL([?θ′]I , θ′′).

6. Output [?~s′]I and θ′′.

Computing xp and b2κ

p
e

The secret key p for the “somewhat homomorphic encryption scheme” is an odd η-bit integer. To

sample p, we notice that the bits p0 and pη−1 should be 1 whereas the rest of the bits p1, . . . , pη−2

should be generated by having the players execute RAN2(). Therefore, the secret key would be

2η−1 +
∑η−2

i=1 pi2
i + 1 (which can be computed locally by players from shares of the bits). At the

end, each player holds a share of p. The computation complexity involves 2(η − 2) multiplication

invocations and 2 rounds of interaction. The simulator for this subprotocol, named SMOD(p′), is

defined by calling SRAN2
(p′i) for i ∈ [η − 1]. The simulator outputs [?p′]I .

In [78], the authors present a method for two honest-but-curious parties to compute the average

of their inputs. We extend their technique to allow multiple parties who hold shares of p to compute

shares of 1/p, and address the malicious model.We generalize [78]’s approach to calculate b2κ/pe

by computing the first κ bits of 1/p and then rounding.

The approach works by calculating the first κ terms of the Taylor series of 1/p. We can then

bit-decompose the result and compute the desired result. Next, we determine the order of the field

used for secret sharing and present the protocol and analysis.

Recall that p is subject to the constraint 2η−1 ≤ p < 2η; set ε ∈ [0, 1/2] such that p = 2η(1− ε).

Thus:

p−1 = 2−η · 1

(1− ε)
= 2−η

∞∑
i=0

εi = 2−η

(
d∑
i=0

εi

)
+ 2−ηRd

where 0 ≤ Rd < 2−d. Multiplying both sides by 2η(d+1) yields

2η(d+1)p−1 =

(
d∑
i=0

(2ηε)i2η(d−i)

)
+
(
2ηdRd

)
(5.1)
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Notice that 2ηε is an integer (since p = 2η(1− ε) is an integer).

Let Z denote the first summand in 5.1 (i.e.,
∑

i(2
ηε)i2η(d−i)). Having shares of p, players

compute 2ηε collaboratively using the formula 2ηε = 2η − p. Holding shares of 2ηε and using the

protocol power for exponentiation, the players can now compute shares of Z.

Because the exact integer value of Z is desirable, we need to choose the field Zl used in the

secret sharing scheme to be large enough to ensure correctness. In order to determine the bit-length

of the field we first determine the maximum value Z =
∑d

i=0(2ηε)i2η(d− i) can take. By 5.1 we

have:

d∑
i=0

(2ηε)i2η(d−i) = 2η(d+1)p−1 − 2ηdRd

Our constraints ensure that 2ηd < 2η(d+1)p−1 ≤ 2ηd+1 which immediately implies Z ≤ 2ηd+1.

The constraints 0 ≤ Rd < 2−d imply that log(2ηdRd) < ηd− d. But earlier we showed:

ηd < log(2η(d+1)p−1) ≤ ηd+ 1

These two facts ensure that the error term 2ηdRd will only change the least significant ηd− d

bits in 2η(d+1)p−1. The difference of the two bit lengths, ηd− (ηd− d) = d, is the number of bits

that the error term does not change (assuming a carry will not happen). For our purposes, it suffices

to compute the first κ bits of 1/p to yield 2κ/p. Therefore, we set d = κ.

Note that [?Z]κd...κd−κ or [?Z]κd...κd−κ + 1 is the integer value of b2κ

p
c. However, we do not deal

with rounding the result to the nearest integer. Instead, we can save the shares of the bit Zκd−κ−1

(which will determine if xp should be added by 1 or not to have the desirable result ) for later, and

add it to dif in step 5 of the protocol in Figure 5.10. to make up the difference. This extra step

would not affect the complexity of the protocol. In our protocol, we do not include this step for

having simpler notation.

In the following protocol we formalize the above reasoning. We also set xγ as the first γ bits of

[?Z]ηκ..ηκ−κ. It is an output of the function. This value is needed later for generating the public key
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〈x0, . . . , xτ 〉.

Protocol 4. [?xp]← ComputeXP([?p], κ, η)
1: Locally compute shares [?e]← [?2η]− [?p]
2: Run the protocol ([?e], [?e2], . . . , [?eκ])← MULT∗([?e], κ)
3: Locally compute shares [?Z]←

∑κ
i=0[?ei] · 2η(κ−i)

4: Run the protocol [?Z]B ← BITS([?Z])
5: Locally compute [?xp] = [?Z]ηκ..ηκ−κ by using [?Z]B
6: Locally set [?xγ]B = [?Z]ηκ..ηκ−γ
7: Output [?xp], [?xγ]B

Figure 5.9: A PROTOCOL TO SHARE xp

Complexity Analysis In this protocol, the size of the field for secret sharing should be at least

2ηκ+1. The above protocol invokes the MULT∗ subprotocol on line 2 and the BITS subprotocol on

line 4 . Therefore these all multiplication invocation numbers adds up to: 31` log `+71`+30
√
`+6κ.

Round complexity analysis is as follows: line 2 takes 5 rounds and the line 4 takes 21 rounds (we

can run the 2 preprocessing rounds in advance). The result is a total of 5 + 21 = 26 rounds.

Simulation. The simulator for protocol 4, SXP([?p]I , κ, η) is described as follows:

1. The first step of the protocol is a local computation.

2. For step 2, the simulator calls S∗MULT([?e]I , κ, 0). At the end of this step, each player holds

shares of 0 for each ei and the simulator learns all the shares held by the adversary, [?ei]
I .

3. For Step 3 is local computation. The simulator maintains knowledge of the shares of [?Z]I .

4. For Step 4, the simulator calls SBITS([?Z]I ,~0) and learns [?Z]IB.

5. Output [?xp]
I and [?xγ]

I
B.

Producing ~y and ~u

In [60], the vector ~y is generated as follows: 1) Sample integers ui ∈ Z ∩ [0, 2κ+1), i ∈ [Θ] such

that
∑

i ui · si = xp mod 2κ+1, and 2) For i ∈ [Θ], set yi = ui/2
κ (using κ bits of precision). Next,
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we present a protocol ComputeY in Figure 5.10. for computing ~y and ~u. This step requires a few

relaxations to the FHE scheme to allow for more efficient implementation.

Since ~u reveals all information in ~y and nothing more, it suffices to compute and reveal ~u. To

compute ~u, we generate random numbers in the interval [0, 2κ+1) for each ui in lines 1 − 3 (no

information is revealed since the generated values are random integers). Next, we need to modify

the vector ~u to satisfy the constraint:

∑
i

ui · si = xp mod 2κ+1

Remember that we set the vector ~s so that sΘ would be one. Therefore, we can produce all

elements in ~u randomly, secretly multiply them by ~s, and reveal the result. Based on this result, we

can modify the value of uΘ to satisfy the constraint. In more details, we replace the uΘ with 2κ+1−1

(to make sure the result of subtraction in step 5 would not be negative), compute dif = xp−
∑

i ui ·si

mod 2κ+1, and reveal the result. The users, then, can locally replace uΘ with uk − dif mod 2κ+1

in step 7 which guarantees that
∑

i ui · si = xp mod 2κ+1.

Protocol 5. ~y ← ComputeY([?xp], [
?~s])

1: For i ∈ [Θ], run protocol [?ui]← RANp() in parallel
2: For i ∈ [Θ], run protocol ui ← REVEAL([?ui])
3: For i ∈ [Θ], locally set ui ← ui mod 2κ+1

4: Locally set uΘ ← 2κ+1

5: [?dif ]← (
∑

i ui · [?si]− [?xp])
6: Run protocol dif ← REVEAL([?dif ])
7: Locally compute uΘ ← uΘ − (dif mod 2κ+1)
8: Output ~u/2κ.

Figure 5.10: A PROTOCOL TO SHARE ~y

Complexity Analysis. ComputeY only calls RANp Θ times in line 1. Hence the protocol needs 1

round of multiplication interactions, and Θ number of multiplication invocation. The largest value

computed is upper bounded by θ · (2κ+1) in line 5, therefore ` needs to have a bit-length of at least

log θ · (κ+ 1).
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Simulation. The simulator SY([?xp]
I , [?~s]I , ~y′) acts as follows:

1. Let ~u′ = ~y′ · 2κ,

2. For the first step, the simulator calls the simulator SRANp
(0) for i ∈ [Θ] and learns [?ui]

I ,

3. The simulator calls SREVEAL([?ui]
I , u′i) for i ∈ [Θ − 1]. Generate a random u′′Θ ∈ [p] and

call SREVEAL([?uΘ]I , u′′Θ).

4. The simulator follows steps 3 to 5,

5. Set dif ′ to (2κ+1 − u′Θ). The simulator calls SREVEAL([?dif ]I , dif ′),

6. The simulator follows steps 7 to 8.

Computing 〈x0, . . . , xτ 〉

Recall from the original public-key generation algorithm that we need to sample xi ← Dγ,ρ(p) for

i = 0, . . . , τ . Intuitively, these xi represent random encryptions of 0 that get added to our base

encryption in the homomorphic scheme. Further, recall that

Dγ,ρ(p) = {choose q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) : output x← pq + r}.

After sampling, the list should be relabeled so that x0 is the largest. The key-generation process

requires that the process is restarted if either x0 is even or x0−bx0/pe · p is odd. Since x0 = pq+ r

is generated as directed for some random q and r and since p is an odd number, the requirement that

x0 is odd can be checked by inspecting the least significant bits of the q and r: If q0 + r0 = 1, then

x0 satisfies the first condition.

To check the second condition, that x0 − bx0/pe · p is an odd number, we observe that because

of the constraints −2ρ < r < 2ρ and 2η−1 ≤ p < 2η, it follows that

−2ρ−η+1 < r/p < 2ρ−η+1
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Since ρ = λ and η = Õ(λ2), therefore for all sufficiently large λ (if η = λ2, then for λ > 2),

br/pe = 0 and as a result r can be ignored. That is bx0/qe = bpq + r/qe = q + br/qe = q. So

x0 − bx0/pe · p = x0 − q · p. Because x0 and p are both odd, q must be odd to make the term

x0 − bx0/pe · p even. These constraints imply that for x0 to be odd and x0 − bx0/pe · p to be even,

then q must be even and r must be odd.

To sample q ∈ [0, 2γ/p), we first compute b2γ/pc. The bit decomposition of b2κ/pc (or

potentially the bit decomposition of b2κ/pc − 1, but it does not matter since it makes negligible

difference) from the protocol ComputeXP as [xγ]B can be used to compute b2γ/pc. We modify the

SOLVED-BITS algorithm to return the least significant bit of the the value at no extra cost. Also

since the least significant bits for both q and r associated with x0 are random values, the chance of

the algorithm not aborting is 1/4. Therefore, if we need a constant round algorithm we need to run

the algorithm λ times in parallel to ensure that the chance of aborting in all runs negligible.

The algorithm for producing PK is presented in Figure 5.11 (within, we refer to b2γ/pc as

[xγ]B).

Protocol 6 . 〈x0, . . . , xτ 〉 ← ComputeX([?xγ]B, [
?p], τ, ρ)

1: For i ∈ [τ ] run protocol [?qi], [
?qi,0]← SOLVED-BITS([?xγ]B) in parallel

2: For i ∈ [τ ] and for j = 0..ρ, run protocol [?ri,j]← RAN2() in parallel
3: For i ∈ [τ ], locally compute [?ri]← (

∑ρ−1
j=0[?ri,j]2

j) · (2 · [?ri,ρ]− [?1])
4: For i ∈ [τ ], run [?xi]← [?p] · [?qi] + [?ri] in parallel
5: For i ∈ [τ ], run protocol xi ← REVEAL([?xi]) in parallel
6: x0 ← biggest of the revealed xi’s
7: Reveal the least significant bits from q and r in computing x0. If either the former is

not even, or the latter is not odd, abort
8: Output 〈x0, . . . , xτ 〉

Figure 5.11: A PROTOCOL TO SHARE ~x

Complexity Analysis Lines 1 and 2 can be run in parallel, and require 8 rounds and τ(52γ +

24
√
γ + 2ρ) multiplications (since xγ is a shared value, the complexity is slightly higher. Also note

that [xγ]B’s length is γ bits, therefore the produced value does not have to be compare against all

` bits, and hence the complexity is lower). We need 2 multiplications in lines 3 and 4, but these

can be done in parallel. Hence, the total round complexity would be 9, and the total number of
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multiplication invocations would be τ(52γ + 24
√
γ + 2ρ + 2). The largest number used in this

protocol has at most γ bits, so the field order needs at least γ bits.

Simulation. For simplicity, we only show one execution of the simulator for the ComputeX protocol.

Recall that if the least significant bits of q and r are not respectively even and odd, the algorithm

should abort. Obviously these values for each run are public, and hence can be given as input to the

simulator for as many times as it takes to get the final ~x. For simplicity, we omit these values from

the input of the simulator. The simulator SX([?e]I , [?p]I , ~x′, τ, ρ)acts as follows:

1. The simulator calls SSOLVEDBITS([?e]I , 0) and learns [?qi]
I ,

2. The simulator calls SRAN2
(0) for step 2 and learns [?ri]

I ,

3. The simulator calls SMULT([?p]I , [?q]I , 0). Knowing [?ri]
I , the simulator learns [?xi]

I ,

4. The simulator calls SREVEAL([?xi]
I , x′i),

5. The simulator follows the step 6,

6. The simulator runs SREVEAL([?q0]I , q0) and SREVEAL([?r0]I , r0),

7. Output ~x′.

Computing encryptions of ~s

One step in Gentry’s paradigm for FHE construction requires the public key to contain an encryption

of the secret key. We assume circular security of the underlying encryption scheme, as do van Dijk

et al. [60] and Gentry [79]. Towards this goal, we design a protocol that enables players who hold

private shares of the secret key (as well as the entire public key) to compute an encryption of the

secret key under the public key. Note this cannot be done trivially with homomorphic evaluation

because the encrypted secret-key is in fact necessary to homomorphically evaluate circuits of an

arbitrary depth, resulting in a circular requirement. Similar issues arise when trying to produce a

public-key for a leveled fully homomorphic encryption scheme.
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Recall that in Dijk et al. [60], the encryption of m under the public key 〈x0, . . . , xτ 〉 computes

as [m + 2r + 2
∑

i∈S xi]x0 , where r ∈ (−2ρ
′
, 2ρ

′
) and S ⊆ {1, . . . , τ} is a random subset. Since

both the xi’s and r can take negative values (as integers) whereas the computation is in a finite

field, we need to somehow make sure the computation in the finite field result in the same integer

value of the encryption of m. To resolve this issue, we compute the value min which is a unique

value that satisfies the following two properties: 1) min = 0 mod x0, and 2) for an arbitrary S and

for our set of xi’s and any value of r, it would make the summation m+ 2r + 2
∑

i∈S xi positive.

Because the range of values that r can take is public, all users can compute min locally and agree

on respective shares. Next, to encrypt the secret key, all users generate shares for a set S and the

shares for a value r. All users then add their shares of r, use shares in S to add in appropriate xi’s,

and add min.

The players run the protocol presented in Figure 5.12 for each of the si’s to obtain its encryption.

Protocol 7 . (ck)← EncryptS([?sk], 〈x0, . . . , xτ 〉)
1: Locally compute min as directed
2: For i = 0..ρ′ run the protocol [?ri]← RAN2() in parallel
3: For i ∈ [τ ] run the protocol [?Si]← RAN2() in parallel
4: Locally compute [?r]←

∑ρ′−1
i=0 [?ri]2

i

5: Run the protocol [?r]← [?r] · (2 · [?rρ′ ]− [?1])
6: Locally compute [?c′k]← [?sk] + [?r] + 2

∑
i[
?Si] · xi + [?min]

7: Run the protocol c′k ← REVEAL([?c′k])
8: Locally compute ck ← c′k mod x0

9: Output ck

Figure 5.12: A PROTOCOL TO COMPUTE THE ENCRYPTION OF ~s

Complexity Analysis The protocol produces bits in lines 2 and 3 which take 2 rounds of interaction

(they can be run in parallel) and a total of 2(ρ′ + τ + 1) multiplication invocations. We perform

another multiplication in line 5. Therefore, the protocol needs 3 rounds of interaction and invokes

the multiplication protocol (2(ρ′+ τ + 1) + 1)Θ times (the whole term gets multiplied by Θ because

we need to encrypt all si’s).

Simulation. For i ∈ [Θ], the simulator SENCS([?si]
I , ~x, c′i) acts as follows:
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1. For steps 2 and 3, the simulator calls SRAN2
(0), and learns [?ri]

I and [?Si]
I ,

2. For step 5, the simulator calls SMULT([?r]I , (2 · [?rρ′ ]− [?1])I , 0), and learns [?r]I ,

3. Having shares of [?sk]
I , and [?r]I , the simulator locally computes [?c′k]

I ,

4. For step 7, the simulator calls SREVEAL([?c′k]
I , c′i),

5. For step 8, locally compute ci = c′i mod x0,

6. Output ci.

Computing encryptions of 0 and 1 for PK

The same techniques from the previous step can be used to produce encryptions of random bits.

These encryptions can then be collaboratively decrypted until both an encryption of 0 and an

encryption of 1 are identified. These two ciphertexts can then be adjoined to the public key—they

are guaranteed to be well-formed and thus have the right amount of noise.

p ~s

xp

~x

~y ~Enc(si)

Figure 5.13: THE COMPLETE KEY GENERATION PROTOCOL HIERARCHY

Complete key generation protocol

We now put all of the pieces together and describe the entire key generation protocol. As we

mentioned earlier, the public key consists of 〈x0, . . . , xτ 〉, ~y, and ∀i ~Enc(si) which can be instantiated

by calling the protocols ComputeX, ComputeY, and EncryptS. The secret key is the vector ~s which

can be instantiated by calling the protocol ComputeS. To compute these values, we introduced two

other helper protocols to generate the values p and xp. For these two, we need to call protocols
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rounds mult field
p 2 O(η) η
~s 7 O(Θ log Θ) log Θ + 1
xp 26 O(` log `) ηκ+ 2
~x 9 O(τγ) γ
~y 1 O(Θ) dlog θ(κ+ 1)e+ 1
Enc(si) 3 O(Θτ) 2(log τ)γ

Table 5.1: COMPLEXITY ANALYSIS OF KEY GENERATION SUB-PROTOCOLS

ComputeP and ComputeXP. Figure 5.13 shows the calling sequence for these protocols. The

resulting protocol to generate (PK,SK1, . . . ,SKn) (where n is the number of players) is presented

in Figure 5.14.

Protocol 8 . (PK,SK1, . . . ,SKn)← G̃(η, τ, ρ, θ,Θ, κ)
1: Call protocol [?p]← ComputeP(η).
2: Call protocol [?~s], θ′ ← ComputeS(θ,Θ)
3: Call protocol [?xp], [

?xγ]B ← ComputeXP([?p], κ, η)
4: Call protocol ~x← ComputeX([?xγ]B, [

?p], τ, ρ)
5: Call protocol ~y ← ComputeY([?xp], [

?~s])
6: For i ∈ [Θ], call protocol ci ← EncryptS([?si], ~x)
7: Generate public ciphertexts c0, c1 corresponding to 0 and 1
8: Output PK = (〈x0, . . . , xτ 〉, ~y,~c, c0, c1), and SK1, . . . ,SKn where SKi is player i’s

share of ~s

Figure 5.14: THE COMPLETE KEY GENERATION PROTOCOL

Complexity Analysis Table 5.1 gives a summary of the round and multiplication complexity of

each of the subprotocols. If we run non-sequential protocols in parallel, the total number of rounds

G̃ needs is 40.

Also the last column in Table 5.1 represents the minimum bit-length of ` (the field order) for

each of the sub-protocols. The maximum of all these values is ηκ+ 2, which we can substitute as `

in all equations. Knowing `, the multiplication invocation number would be the summation of the

second column.

Simulation The simulator SG̃(PK = (〈~x′〉, ~y′, ~c′), η, τ, ρ, θ,Θ, κ):
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1. The simulator chooses a random p′ which is an odd η-bit integer, and runs SP(p′, η) to learn

[?p′]I ,

2. The simulator runs SS(θ,Θ) and learns [?~s′]I and θ′,

3. The simulator runs SXP([?p′]I , κ, η) and learns [?xp]
I and [?xγ]

I ,

4. The simulator runs SX([?xγ]
I , [?p′]I , ~x′, τ, ρ),

5. The simulator runs SY([?xp]
I , [?~s′]I , ~y′),

6. For each i ∈ [Θ], the simulator calls SENCS([?~s′]I , ~x′, c′i),

7. Output (PK, [?~s′]I).

5.4.4 Constant Round Decryption

In this section, the notation [a]2 means (a mod 2) and a means (1− a). We assume the field order

in which secrets are shared is an integer p. Now recall the encryption algorithm.

Enc(PK,m) Generate a ciphertext c∗ as before in Enc′ (see below). Then for i ∈ 1, . . . ,Θ, set

zi ← [c∗ · yi]2, keeping only dlog θe + 3 bits of precision after the binary point for each zi.

Output both c∗ and ~z = 〈z1, . . . , zΘ〉.

Enc′(PK,m ∈ {0, 1}) Choose a random subset S ⊆ {1, 2, . . . , τ} and a random integer r in

(−2ρ
′
, 2ρ

′
). Output c∗ ← [m+ 2r + 2

∑
i∈S xi]x0 .

We observe that for an arbitrary ζ = 2−z for some integer z, there is a specific set of the

FHE scheme’s parameters that make
∑

i sizi within ζ < 1 of an integer (in our setting, ζ is 1/4).

Therefore, by basic properties of addition mod 2, we have:

[
c∗ −

⌊∑
i

sizi

⌉]
2

=

[
[c∗]2 −

[⌊∑
i

sizi

⌉]
2

]
2

=

[
[c∗]2 −

[⌊∑
i

sizi + ζ

⌋]
2

]
2

Since c∗ is public, the decryption can be determined by revealing the first bit after binary point

(i.e., the decimal point in a binary number) in
∑

i sizi + ζ. Assuming each party Pj has shares of
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[?si], the value
∑

i sizi + ζ can be computed locally and revealed. But revealing bits other than the

first bit after binary point in
∑

i sizi + ζ might leak information about the secret key. Hence we

need to distort all bits that are not relevant to the final answer.

In order to re-randomize all of the other bits that happen to be revealed, we add a random value

r to x = (
∑

i sizi + ζ)2k−1, where k = log θ + 3 (the multiplication by 2k−1 removes the binary

point). We choose the field order p that we secret share in such that 0 ≤ xmax < p− 2|p|−1 (xmax is

the maximum value x can take and is equal to 2 · θ · 2dlog θ+3e). The reason for choosing p in this

way is to determine if a wrap-around happens in x + r for some random number r based on the

most significant bit of r and the result. More precisely, if the result of summation’s most significant

bit is 0 and if the most significant bit of r is one, then a modular reduction (i.e., wrap-around)

occurred, and the result should be added to p. In step 7 we decide if such event occurred or not and

we determine the integer value of the summation of x+ r in step 8.

Given the integer value of x+ r and knowing that the (k − 1)thbit of the result is 0, the kthbit

can be calculated as
[
R′′k − rk − rk−1R′′k−1

]
2
. Steps 9 to 12 calculate this value securely.

Let |zi| = log θ + 4 = k. The protocol for multiparty decryption of a ciphertext is presented in

Figure 5.15.

Protocol 9 . m′ ← D̃(c∗, [?s1], . . . , [?sn])
1: Players locally compute ~z as directed. Let ~z′ = 2k−1 · ~z
2: Run protocol([?r]B, [?r])←SOLVED-BITS()
3: Locally compute [?x]←

∑
i[
?si] · z′i

4: Locally compute [?R]← [?x] + [?r]
5: Run protocol R← REVEAL([?R])
6: Locally compute R′ ← R + p
7: Locally compute [?c]← [?r`−1] ·R`−1

8: For i = 0, ..., k locally compute [?R′′i ]← [?c] ·R′i + ([?1]− [?c]) ·Ri in parallel
9: Locally compute [?a]← [?R′′k]− [?rk]
10: Run protocol [?a′]← [?a2]
11: Locally compute [?a′′]← [?a′]− [?rk−1] ·R′′k−1

12: Run protocol [?a′′′]← [?a′′2]
13: Run protocol a′′′ ← REVEAL[?a′′′]
14: Output m′ ← [c∗ − a′′′]2

Figure 5.15: THE DECRYPTION PROTOCOL
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Notice that setting p as a Mersenne Prime decreases the round complexity. This is because the

binary digits of such a prime are all 1. In step 2, the players collaborate on producing a random

number in field p. The most expensive part of this step is to check if r < p which takes 7 rounds. If

p is Mersenne, we do not need such a check because the only case the produced r is not less than p

is when r is equal to p.

Claim 25. Dec(sk, c∗) = [c∗ − a′′′]2.

Proof. By the assumed setup, each player pi holds the shares of [?si]’s for all 0 ≤ i ≤ Θ. Recall

that

Dec(c∗, z) =

[
c∗ −

⌊∑
i

sizi

⌉]
2

and that k = log θ + 3 and x = b
∑

i sizie 2k. All we need to prove is that xk+1 = a′′′. Since c∗ is

public, revealing either xk+1 or m′ would result in determining the other one.

By definition we have:

x ≤ θ · 2k+2,

and we have

0 ≤ x < p− 2|p|−1

by the selection of parameter p. Instruction 2 defines a value r ∈ [0, p] that is shared among the n

players and instruction 4 defines R← x+ r mod p. Therefore, we have:

R′′ = (x+ r) =


R′ = R + p if r > 2|p|−1 and R < 2|p|−1

R o.w

When r > 2|p|−1 and R < 2|p|−1, it follows that r|p| = 1 and R|p| = 0 (i.e. the high-order bits of the

values of r and R are 1 and 0 respectively). We conclude:

[?R′′]B = [?r|p|] ·R|p| ·R′ +
[
?r|p|

]
·R|p| ·R
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We have shown that R′′ is the integer value of x+ r. It is left to determine if a carry occurs between

the bits k and k + 1 in the addition x + r. If no carry happens, a′′′ is
[
?R′′k+1 − rk+1

]
2
. If a carry

between the mentioned bits happens, a′′′ is
[
?R′′k+1 − rk+1 + 1

]
2
. Let ab−0 denote the substring

ab...a0. To determine if a carry happens between the bits k and k + 1, we consider the following

cases:

1. Case 1: [?r]k,0 < 2k. As we mentioned earlier, 0 ≤ [?x]k,0 < 2k. Therefore if x+ r < 2k+1 ,

then no carry occurs.

2. Case 2: 2k ≤ rk−0 < 2k+1. So:

2k < xk−0 + rk−0 < 2k+1 + 2k

The upper limit in the above equation means that both k+1th and kth bits of integer summation

xk−0 + rk−0 cannot be 1 at the same time. On the other hand, the lower limit guarantees that

at least one of these bits is 1. Therefore, in this case a carry happens if and only if R′′k = 0.

Combining these results we conclude that rkR′′k is 1 if a carry happens, and is 0 otherwise. Therefore:

a′′′0 =
[[
?R′′k+1

]
− [?rk+1]− [?rk] ·

[
?R′′k
]]

2

Instructions 9 to 12 computes the following value:

a′′′ =
((
R′′k+1 − rk+1

)2 − rkR′′k
)2

Finally, we need to prove a′′′0 = a′′′. A truth table verifies the equality. Also using truth tables it

is easy to see that a′′′ reveals either 0 or 1 and no other value, (otherwise it might leak information

regarding the variables rk+1, R′′k, R′′k+1, or rk).

Complexity Analysis The protocol calls the SOLVED-BITS subprotocol in line 2 and calls multi-

plication in lines 10 and 12. Therefore, the protocol takes 9 rounds and requires (52|p|+ 24
√
p+ 2)
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multiplications. From the key generation section above, recall that the field order needs to be ηκ+ 2.

This constraint is still sufficient, as the only constraint needed here is that 0 ≤ xmax < p− 2|p|−1.

Simulation To prove security, we describe the required simulator S (ideal model adversary) that

generates the view of real-life adversary. As usual, the simulator works by running an internal

copy of the real-life adversary and an internal copy of the honest players. At a high level, the

simulator extracts the shares of the real-life adversary, feeds this share to an ideal functionality

which implements the k-th bit extractor function, and using the answer received, produces a view

for the adversary which is consistent with the answer.

For adversary A, the simulator SD̃(c∗, [?s1]I , . . . , [?sΘ]I , b∗) on input the security parameter,

the ciphertext c∗, the shares of secret s known by adversary, and b∗ = Dec(c∗, z) does the

following:

1. For Step 2 of the protocol, the simulator SD̃ runs the sub-simulator SSOLVEDBITS() to

produce the output r and its resolved bits. The simulator also learns [?ri]
I and [?r]I .

2. For steps 3- 4 of the protocol, the simulator follows the protocol on behalf of the honest

players that it simulates.

3. The simulator picks a random x̂ which satisfies the following constraints: x̂ should be a

random number in the range of 0 and M , x̂/2k−1 − 1/4 should be within 1/4thof an integer,

and x̂k = b∗ (i.e., the kthbit of x̂ should be b∗).

4. Using ~z, [?si]
I , and [?ri]

I , simulator computes the shares that the adversary would hold as the

shares of R, ~[?Ri]I . The simulator then run the SREVEAL( ~[?Ri]I , (x̂+ r)) sub-simulator to

reveal x̂+ r to the adversary.

5. The simulator follows the steps 6- 14 of the protocol.

Correctness of Simulation The simulator and the real execution of the protocol only differ in

steps 3 and 5 of the D̃ protocol. Since SOLVED-BITS and REVEAL protocols are secure protocols
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their simulations are indistinguishable from the real world executions. In step four, instead of

outputting the real x+ r, we reveal x̂+ r. Since r is a totally random number, therefore the output

will be a random number as well and indistinguishable. Since x̂ is taken from the same domain as x

would be taken, therefore the result has the same correctness properties as x+ r. The rest of the

protocol is identical in both scenarios. As a result, the view of the adversary in a real execution is

identical to view of the adversary in simulated execution.

Outputs of All Players. It is left to show that the output computed by all players in a real

execution and in an ideal execution with an ideal adversary are identically distributed. The output

of the simulation is identical to the output of the real execution, since the D̃ protocol reveals the

log +4thbit of x. As a result if this bit being set to be the same as the expected decrypted value, the

output would be identical. Since the simulator has full control over setting the value of x the output

will be identical to that of the real execution.

Theorem 5.4.2. (Informal) The threshold scheme Π = (G̃, Ẽ, D̃, ˜Eval) described above satisfies

the Threshold Indistinguishability Security notion as per Definition 5.2.2 and the Circular Threshold

Security notion as per Definition 5.2.3.

Proof. (Proof Sketch) The indistinguishability and circular security for our scheme Π follows from

the simulatability of the key generation procedure. We show how to transform an adversary A

that has advantage ε in the Threshold indistinguishability game into an adversary A′ for the FHE

semantic security that also has advantage ε. The reduction is straightforward. Adversary A′(1k, pk),

upon receiving a public key, runs the simulator for the keygen protocol with adversary A to begin an

internal execution of the threshold security game. Adversary A eventually receives a set of C shares

of a secret key (that are statistically independent of sk), and then produces a pair of messages. A′

forwards these messages and then forwards the challenge ciphertext c∗ to A, and finally echoes A’s

response as output. Notice thatA′ produces a statistical simulation of the threshold semantic security

game owing to statistical security of the simulator for the threshold key generation procedure. Thus,

the advantage of A′ is also ε, and the security of the FHE scheme implies that ε must therefore
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be negligible in the security parameter k. Next, observe that the circular threshold security of the

scheme can be argued in the same fashion.

5.5 Secure Multiparty Computation

We follow the Cramer et al. [68] approach for constructing a multi-party computation protocol based

on threshold cryptography. Our biggest changes are that we do not need a protocol for multiplication,

we use a different approach for proving knowledge of encryption, and we explicitly describe a key

generation phase whereas it is assumed as an external setup in [68]. Since our solution requires less

interaction among the parties, our simulation argument is simpler than the argument from [68].

We use the standard simulation-based definition of stand-alone secure multi-party computation.

We assume the existence of a standard n-party CoinFlipping protocol which guarantees soundness

in the presence of < n/2 adversaries: namely, for any minority set of adversaries, the protocol

guarantees that the distribution is still statistically close to uniform. Such a protocol can be easily

constructed based on the existence of hiding commitments. (Unlike CDN, we do not need this

coin flipping protocol to be simulatable.). See §5.5.2 for a definition of the real/ideal paradigm

for secure multi-party computation from [68] and [65]. In this section the TFHE scheme used is

denoted Π̃ = (G̃, Ẽ, D̃,Eval).

5.5.1 MPC Using Fully Homomorphic Encryption Scheme

In this section we present our protocol for evaluating an arbitrary circuit f in the presence of a

minority of malicious adversaries. We assume that the players can communicate via an authenticated

broadcast channel and via point-to-point private and authenticated channels (which may in turn be

implemented using signatures, public key encryption, etc.)

5.5.2 Security

In this section we adopt a standard security definition for secure multi-party computation proposed

by Canetti [80] and as used in [68] and [65]. This definitional approach compares the real-world

execution of a protocol for computing a function with an ideal-world evaluation of the function

by a trusted party. Security is then defined by requiring that for every adversary A attacking the
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Protocol 10 . Each party holds private input xi; the parties jointly compute f(x1, . . . , xn)
1: Party Pi receives as input (1k, n, xi). (We assume the adversary receives as input

1k, n, a set of corrupted parties C and the inputs {xc}c∈X for the corrupted parties, and
auxiliary information.)

2: Players run the key generation subprotocol G̃(η, τ, ρ, θ,Θ, κ) to generate a public
key P̃K and shares of the secret for the threshold scheme Π̃. At the end of this step, player
pi holds share [si]. If the sub-protocol halts prematurely, then players halt and output ⊥.

3: The players take sequential turns sharing their input using the encryption scheme Π̂
that is constructed from Π (see §5.3.4). More specifically, for i ∈ [n], player Pi broadcasts
ci,j ← Ê(P̃K, xi,j). Then all of the players run a standard CoinFlipping protocol to generate
a random string ri. Player Pi now interprets ri as n strings ri,1, . . . , ri,n and uses coins ri,j
as the random coins to run Verifier(PK,ci,j) (see §5.3.4) of the Hidden Bit POK protocol
on input ci,j for each bit j ∈ [n] of input xi. Player Pi runs the corresponding Prover
algorithm on ci,j using the random coins used to generate ci,j as the witness, and broadcasts
the Prover message. The remaining players also execute the Verifier algorithm using the
same random coins and verify that the first message is consistent and the second message
is accepted. If player Pi fails the POK protocol, then Pi is excluded from the rest of the
protocol, and the remaining players that have not been excluded use a canonical encryption
of 0 as the input for Pi (e.g., they use Ẽ(P̃K, 0; 0) as each input bit).

4: The players that have not been excluded locally run Eval(P̃K, c1,1, . . . , cn,n, f̃)

where the function f̃ first transforms the input ciphertexts encrypted under Π̂ into ones
for scheme Π̃. This is done by homomorphically evaluating the decryption procedure
described in §5.3.3 (i.e. bootstrapping, see Definition 5.2.5).(Note: All of the ciphertexts
in ci,j have a large degree of noise in them due to the circuit-privacy call that was used to
rerandomize the ciphertexts. Therefore, the first thing that is done is that the ciphertexts
are re-encoded with less noise using the same procedure as FHE bootstrapping.) Next,
compute ciphertext zi of the result f(x1, . . . , xn). Note that each player can complete
this step using only local information (since the public key for the FHE includes all the
information needed for bootstrapping etc).

5: Each player Pi that has not been excluded broadcasts the ciphertext zi computed
in the previous step. Each player then locally computes the majority of the broadcasts
as ciphertext z′. A majority is guaranteed to exist since the malicious players form a
minority and Eval is deterministic. Any player whose broadcast differs from the majority
is excluded from the remaining portion of the protocol.

6: Players pi that have not been excluded run the distributed subprotocol
D̃(z′, [?s1], . . . , [?sn]) using input z′ and their local share [?si]. The output of the pro-
tocol is taken as the output.

Figure 5.16: THE MULTIPARTY COMPUTATION PROTOCOL

real execution of the protocol there exists an ideal-world adversary A′, sometimes referred to as a

simulator, which “achieves the same effect” in the ideal world. This is made more precise in what
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follows.

The real model.

Let π be a multi-party protocol computing a circuit f . We consider an execution of π on an open

broadcast network with rushing in the presence of a statically-corrupting adversary A coordinated

by a non-uniform environment Z = {Zk}. At the outset of the execution, Z gives I and z to A,

where I ⊂ [n] represents the set of corrupted parties and z denotes an auxiliary input. Then the

environment gives input xi to each party Pi and gives {xi}i∈I toA. The parties then run the protocol

π with A providing the messages sent on behalf of any corrupted party. At the end of the execution,

A gives to Z an output which is an arbitrary function of A’s view thus far, and Z is additionally

given the outputs of the honest parties. If the adversary aborts the protocol at some step (formally,

if the output of some honest party at the end of the phase is ⊥), execution is halted; otherwise,

execution continues until the protocol is finished. Once the execution terminates, Z outputs a bit;

we let REALπ,A,Z(k) be a random variable denoting the value of this bit.

The ideal model.

In the ideal model, there is a trusted party who computes f on behalf of the parties. This definition

of ideal model corresponds to a notion of security where fairness and output delivery are guaranteed.

Once again, we have an environment Z which provides inputs x1, . . . , xn to the parties, and provides

I, {xi}i∈I , and z to A′. At the outset, Z gives I and z to A′ and provides input xi to party Pi and

gives {xi}i∈I to A′. Each honest party sends their input to the trusted party; adversary A′ sends

inputs on behalf of players in I and can also send the special symbol ⊥ to the trusted party. The

trusted party computes y ← f(x1, . . . , xn) using the inputs it receives from the players. For each

player that submits ⊥, the trusted party uses input 0. Finally, the trusted party delivers output y to

each player who submits an input that is not ⊥.

At the end of this phase, A′ gives to Z an output which is an arbitrary function of its view

thus far, and Z is additionally given the outputs of the honest parties. After all phases have been

completed, Z outputs a bit. Once again, we let IDEALπ,A′,Z(k) be a random variable denoting the
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value of this bit. With the above in place, we can now define our notions of security.

Definition 5.5.1. (Security) Let π be a multi-party protocol for computing a circuit f , and fix

s ∈ {1, . . . , n}. Then we say that π securely computes f in the presence of malicious adversaries

corrupting s parties if for any ppt adversary A there exists a ppt adversary A′ such that for every

polynomial-size circuit family Z = Zk corrupting at most s parties the following is negligible:

|Pr [REALπ,A,Z(k) = 1]− Pr [IDEALf,A′,Z(k) = 1]| .

The Simulation

We present a simulator A′ for an adversary A that coordinates a group of corrupted players C. The

steps of the simulation are as follows:

1. Begin an execution of the protocol for the adversary A(1k, n, C, {xc}c∈C) in which the state

for the honest players Pi is initialized with input (1k, n, xi = 0) and is thereafter maintained

internally by the simulator.

2. Run (PK,SK1, . . . ,SKn)← G̃(η, τ, ρ, θ,Θ, κ) described in §5.4.3 to generate a public and se-

cret key for the threshold FHE scheme. Run the simulator SG̃(PK = (〈~x′〉, ~y′, ~c′), η, τ, ρ, θ,Θ, κ)

described in §5.4.3 for the G̃ key generation protocol with input PK using the adversary A

and using the internal copies of the honest players. The states of the adversary A and the

internal copies of the honest player are maintained at the end of the simulation.

3. For each honest player, use a randomly generated ciphertext under the public-key PK corre-

sponding to 0 as its input, and follow the remaining procedure for running the coinflipping

and hidden-bits POK protocol honestly. When it is time for a corrupted player pc ∈ C to

run the POK, if the first execution succeeds, then invoke algorithm Extractor for the POK to

recover the input xc. If the first execution fails, then exclude the user from future simulated

steps of the protocol. If the extractor fails, then abort the simulation.



Chapter 5 Multiparty Computation with Low Communication Overhead 128

4. Feed the inputs {xc}c∈C for the corrupted players to the external trusted party and wait for a

response output y.

5. Follow steps 4 and 5 of the Protocol on behalf of the honest players based on the broadcast

input ciphertexts. After step 4, each internal copy of the honest player has computed a value

zi that they broadcast. In step 5, each internal honest copy broadcasts zi; each corrupted

player that does not broadcast zi is excluded from the rest of the internal simulation. Compute

z′ for these honest players as per the protocol.

6. Run the simulator SD̃ (see §5.4.4) on the input z′, the shares of [?si]’s for the malicious parties

and the value y to simulate the decryption protocol for A.

7. Output whatever the adversary A outputs.

Theorem 5.5.2. Let π be the protocol described in Figure 5.16 for a function f , and fix s ∈

{1, . . . , n/2}. Under the appropriate Approximate-GCD and sparse subset sum assumptions,

it holds that for for any ppt adversary A, there exists a ppt adversary A′ such that for every

polynomial-size circuit family Z = Zk corrupting a minority of parties the following is negligible:

|Pr [REALπ,A,Z(k) = 1]− Pr [IDEALf,A′,Z(k) = 1]| .

Proof. (High level Idea) We present a high-level summary of the changes needed in the security

proof from [68]. Our proof summary consists of a series of hybrid experiments that relate REAL and

IDEAL and a brief description on why two consecutive hybrid experiments are indistinguishable.

Hybrid1(1k,A, Z): This hybrid experiment is the same as the real experiment REAL except that

the experiment first generates (SK,PK) ← G̃(η, τ, ρ, θ,Θ, κ) and then runs the simulator

SG̃(PK = (〈~x′〉, ~y′, ~c′)) interacting with the adversary A.

We claim that REAL and Hybrid1 are identical because SG̃ is information theoretically-secure.
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Hybrid2(1k,A, Z): This hybrid experiment is the same as the previous one, except that the

extractor for the Hidden Bit POK is used on each broadcast ciphertext from the adversary A.

If any extraction fails, then the experiment aborts.

We claim that the Hybrid2 and Hybrid1 distributions are statistically close. The only dif-

ference occurs when the extraction fails in the second hybrid for one instance of the Hidden Bit

POK protocol. By the proof of knowledge extraction error property from the Hidden POK protocol

proven in Theorem 5.3.2 and the union bound, it follows that these events occur with a negligibly

small probability, and therefore the distributions are statistically close.

Hybrid3(1k,A, Z): This hybrid experiment is the same as the previous, except that the experiment

sends the extracted input values for the malicious parties to the trusted party and receives

output y = f(x1, . . . , xn) in return. The experiment then uses the simulator SD̃ (see §5.4.4)

for the decryption on input z, the shares of [?si]’s for the malicious parties and the value y

to force the players to output y. (Notice that at this point, z corresponds to an encryption of

y, but that the simulator is used to feed messages to the adversary instead of the threshold

decryption protocol.)

We claim that Hybrid2 and Hybrid3 are computationally indistinguishable by the simulation

property for the threshold decryption protocol and the unique decoding property of the POK

protocol. In particular, the decoding property in Theorem 5.3.2 states that the inputs extracted from

the adversaries will be the same as the inputs decrypted using SK (i.e., the inputs used in the real

protocol computation). Thus, conditioned on this event that all inputs are consistent between the

two experiments, the value y returned from the trusted party corresponds to the ciphertext z. Finally,

the simulation property of SD̃ guarantees that the transcripts between the two hybrids are identical.

Hybrid4(1k,A, Z): This hybrid experiment is the same as the previous, except that the input 0 is

used to produce a ciphertext and run the Hidden Bit POK for each of the honest parties.

We claim that Hybrid4 and Hybrid3 are computationally indistinguishable based on the

soundness of the hidden POK and the hidden bit property from Theorem 5.3.6. In particular,
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suppose that these two distributions were distinguishable with advantage ε. We define more

hybrid experiments Hybrid3,i,j in which all of the input bits up until the j thbit of player i are

formed using the 0 input, whereas the rest of the input bits use the honest player inputs. Note that

Hybrid3,1,0 = Hybrid3 and Hybrid3,n,n = Hybrid4. Thus, there exists a pair of consecutive

experiments Hybrid3,i,j and Hybrid3,i,j+1 (without loss of generality, we assume this boundary

occurs between j and j + 1 instead of across the last bit of one player and the first bit of the next

player and that the difference is between 0 and 1 in these positions) with advantage ε/n2. For

convenience, we denote this pair of hybrid experiments Hybrida and Hybridb. We will now use

this pair to violate the soundness of the POK, or the simulation properties.

We first claim that inputs {xc}a extracted from the parties in C in Hybrida and the ones

{xc}b will be the same with all but negligible probability (If extraction fails, we use ⊥ to denote

the extracted input. As argued earlier, the probability of extracting ⊥ in Hybrid3 is negligible).

Suppose this is not true: i.e. Pr[Hybridb(A) extracts {xc}b 6= {xc}a] > µ(k). Then there exists

a vector of inputs x = (x1, . . . , xn) for which the probability that these two sets are different is

greatest (inverse polynomial probability of success); let this vector, the position j, and the sets {xc}a

and {xc}b be given as non-uniform advice for the following adversary A′ that breaks the hidden

POK property. The adversary A′ runs the hybrid Hybrida using the inputs x while participating in

the Hidden POK game. It receives a PK externally from the Hidden POK game and uses this PK

with the simulator SG̃ in the first step of Hybrida. It then receives a ciphertext under PK from the

external game and uses it (along with its decryption opening query in the HB game) to run the (i, j)

instance of the input bit protocol in Hybrida. Finally, it runs the extractor for all of the malicious

parties to recover a set of inputs I = {xc}c∈C . If I = {xc}a, then the adversary output 0, and

otherwise outputs 1. Notice that if the input ciphertext is 0, then the adversary has run experiment
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Hybrida, whereas if the input is 1, the adversary runs Hybridb and so:

Pr[HBA′(1
k) = 1] = Pr[b = 0] Pr[A′ outputs 0 |b = 0] + Pr[b = 1] Pr[A′ outputs 1 |b = 1]

1

2
Pr[Hybrida(A) extracts {xc}a] +

1

2
Pr[Hybridb(A) extracts {xc}b 6= {xc}a]

≥ 1

2
+ µ(k)/2

Thus, our claim that the extracted outputs must be the same w.h.p holds. Conditioned on this event

that both extracted sets are equal, it follows that the value y recovered in Hybrid4 and the decryption

of z from Hybrid3 will be the same. However, in Hybrid4, the ciphertext z corresponds to a

different plaintext, namely f({xc}a, 0, . . . , 0) where 0 is used for the honest players. We now

claim that this difference is indistinguishable by introducing another hybrid experiment Hybrid3z

in which the same ciphertext from Hybrid3 is given to the experiment and used in place of the

encryption generated in Hybrid4. We claim—through a standard argument—that Hybrid3z and

Hybrid4 must be indistinguishable based on the semantic security of the threshold encryption

scheme. The only remaining difference to account for is the use of the simulator SD̃ for decryption.

The stand-alone security of this simulator implies our claim.
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[97] Zuzana Beerliová-Trubı́niová and Martin Hirt. Efficient multi-party computation with
dispute control. In TCC, pages 305–328, 2006.

[98] Martin Hirt and Jesper Buus Nielsen. Robust multiparty computation with linear communi-
cation complexity. In CRYPTO, pages 463–482, 2006.

[99] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous multi-party
computation with quadratic communication. In ICALP (2), pages 473–485, 2008.

[100] Matthias Fitzi, Martin Hirt, Thomas Holenstein, and Jürg Wullschleger. Two-threshold
broadcast and detectable multi-party computation. In EUROCRYPT, pages 51–67, 2003.

[101] Martin Hirt and Ueli M. Maurer. Robustness for free in unconditional multi-party compu-
tation. In CRYPTO, pages 101–118, 2001.

[102] Martin Hirt, Ueli M. Maurer, and Bartosz Przydatek. Efficient secure multi-party computa-
tion. In ASIACRYPT, pages 143–161, 2000.

[103] Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. Trading correctness for privacy in un-
conditional multi-party computation (extended abstract). In CRYPTO, pages 121–136,
1998.

[104] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic asynchronous
multi-party computation with optimal resilience (extended abstract). In EUROCRYPT, pages
322–340, 2005.

[105] Martin Hirt and Jesper Buus Nielsen. Upper bounds on the communication complexity of
optimally resilient cryptographic multiparty computation. In ASIACRYPT, pages 79–99,
2005.

[106] Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and secure
multi-party computations over small fields. In CRYPTO, pages 521–536, 2006.

[107] Ronald Cramer, Vanesa Daza, Ignacio Gracia, Jorge Jiménez Urroz, Gregor Leander,
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