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Abstract

The energy efficiency of information processing in the human brain is astonishingly superior

to that of any machine yet designed by mankind. It is estimated that the 1011 neurons

composing the human brain consume on average 20 watts of power, whereas the recent

“real-time” simulation of some 10 million neurons in the cat visual cortex (headed by IBM

Almaden Research Center) was 109 times more energy costly per neuron. Brains have evolved

to prodigiously compute and communicate information with remarkable efficiency. Since

neurons are expressly designed to exchange information with one another, it is fundamental to

understand information processing and energy expenditure at the nodal level of the network.

Furthermore, a steadily increasing fraction of neuroscientists subscribe to the view that each

neuron’s design should maximize the ratio between the rate at which it conveys information

and the rate at which it expends energy. For all of the above stated reasons, my doctoral

research explores the single-neuron modeling of information processing and energy efficiency

from both theoretical and experimental perspectives.

The overall goal of this thesis is to analyze the performance of a single neuron, the smallest

working unit of the brain, from an information-energy efficiency perspective. In particular,

using information theory, random Poisson measures, Laplace transforms, and calculation

of variations, we propose a mathematical framework for the stochastic processing and

transmission of information performed at the neuronal level. We find the optimum distribution

that characterizes the afferent excitatory/inhibitory postsynaptic potential (EPSP/IPSP)

intensity by maximizing the Shannon mutual information rate given a constraint on the
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Abstract vi

total energy that a neuron expends for metabolism, postsynaptic potential generation, and

action potential propagation during one interspike interval (ISI). This optimum distribution

of the incoming EPSP/IPSP intensity serves as a bridge that specifies how an energy efficient

brain needs to match the long-term statistics of each of its neuron’s inputs to that neuron’s

particular design. Note that bits per Joule (bpJ) measures the performance of a neuron when

viewed as a communication channel, since bits vs joule = bits/sec vs joule/sec = information

rate vs power is the standard tradeoff considered by information theorists when studying

a channel’s capacity. We treat this tradeoff both analytically and through computational

simulations for a series of increasingly sophisticated models.

In collaboration with the Salk Institute, we have tested the validity of this information-

energy optimizing hypothesis using in vivo recordings of the visual thalamus from the cat. The

experimentally-obtained statistical histograms are a close fit with the theoretically-derived

optimum distributions. Imposing a bpJ-maximizing condition on single neuron function

not only allows us to obtain key analytical conclusions that are in good agreement with

experimental observations but also yields an intriguing bridge between single neuron theory

and the theory of real neural networks, perhaps paving the way to wider applications in

neuroscience and engineering. Overall, this research is a step further in the endeavor of

reverse engineering of the brain.
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Chapter 1

Introduction

Reality is merely an illusion, albeit a very persistent one.

-Albert Einstein

1.1 Research Motivation and Literature Overview

Neuronal information processing is energetically costly. The energy efficiency of information

processing in the human brain is astonishingly superior to that of any machine yet designed

by mankind to address similar problems. It is estimated that the 1011 neurons composing

the human brain consume on average 20 watts of power [1] [2], whereas the recent “real-time”

simulation of some 10 million neurons in the cat visual cortex headed by IBM Almaden

Research Center was 109 times more costly per neuron [3]. Energy supply restrictions on

information processing have driven brains to evolve towards computing and communicating

information with remarkable efficiency. Indeed, energy minimization subject to functional

constraints is widely believed to be a potential unifying principle in understanding neuronal

function [4]. Since neurons are evolutionarily designed to exchange information with one

another, it is fundamental to understand information processing and energy expenditure at

the nodal level of neuronal networks. Furthermore, it is essential to understand how each

neuron regulates its information-processing efficiency by maintaining an adequate supply

1



of adenosine triphosphate (ATP), the molecular currency for energy transfer. Moreover, a

steadily increasing fraction of neuroscientists are subscribing to the view that a neuron’s

optimal design should maximize the ratio between the rate of its information processing

and the rate of its energy expenditure. For all of the above reasons, my doctoral research

aims to explore single neuron modeling of information and energy processing from both

theoretical and experimental perspectives. To better comprehend neuronal information

processing and communication from an information-energy standpoint, we proposed to study

mathematical models of single neurons as engines of computation and communication based

on the homogeneous Poisson process [5] [6] [7], the Wiener process [8] and a more general

Lévy diffusion process [9] [10] [11].

Information theory has often been applied to neuroscientific data analysis and biological

systems modeling [12] [13] [14] [15]. However, energy-efficient neural codes have been studied

for less than thirty years [16] [17] [18]. Evidence supporting energy efficiency principles has

been reported for ion channels [4], action potentials [19], synapses [20], photoreceptors [21],

in the retina [22] [23], grey matter [24], white matter [25] and in cortex [26]. In their

highly regarded tutorial paper, Laughlin and Sejnowski discussed communication in cortical

networks from an energy-efficiency point of view and emphasized the importance of energy

efficiency [27].

1.2 Information Transmission between Neurons

A neuron in the brain receives information in the form of individual spike trains from its

neighboring neurons and/or from peripheral sensory ganglia called the neuron’s afferent cohort.

Each of these spikes, also known as action potentials (AP’s), arrives at a unique connection

between the axonal terminals of an afferent (presynaptic) neuron and the dendritic tree or

the soma of the neuron we seek to analyze. These AP’s propagate through presynaptic axons

and trigger the release of neurotransmitters that cross the synapses to elicit a postsynaptic

2



Figure 1.1: Illustration of neuronal signaling. [28]

potential in the postsynaptic cell. Once the accumulation of excitatory postsynaptic potential

(EPSPs) exceeds a given threshold of membrane voltage, a new action potential is triggered

in the postsynaptic neuron and the relay of information continues. The durations of the

interspike intervals (ISI’s) between a neuron’s successive AP’s constitute a random sequence

which can be denoted by {Tk, k = 0, 1, 2, . . . }. We henceforth call that neuron “neuron j”, or

just “j” when that is unambiguous.

3



Figure 1.2: Illustration of single synapse. [29]

Neuron j’s external excitation comprises a collection of neural spike trains generated by

the members of j’s afferent cohort. When a presynaptic spike arrives at one of j’s presynaptic

terminals, it elicits a transient membrane depolarization that opens voltage-gated calcium

channels in the presynaptic bouton and drives a rapid influx of calcium. In response to the

increase in calcium, vesicles containing neurotransmitters then fuse with the presynaptic

membrane and release the neurotransmitters into the synapse. Those neurotransmitters

diffuse across the synaptic cleft and bind to the postsynaptic receptors, which in turn trigger

4



the opening of ion channels and subsequent ionic influx resulting in a change of voltage across

the postsynaptic membrane, e.g. an excitatory postsynaptic potential (EPSP). Each time the

change in membrane potential exceeds a time-varying threshold value, j generates another

output spike that propagates along its axon to the set of neurons referred to as j’s efferent

cohort or its targets. A typical neuron in the primate sensory cortex possesses circa 10, 000

inputs and circa 10, 000 outputs.

Each time j emits an efferent spike, there ensues a refractory period during which j cannot

produce another spike. Neuroscientists distinguish two types of refractory periods - absolute

and relative. Limiting attention to absolute refractoriness permits us to assume with negligible

error that j’s refractory periods all have the same duration, denoted by ∆. During each

refractory period j strives to replenish the supply of chemicals in its various compartments

in anticipation of producing a subsequent spike in response to the ongoing afferent excitation.

However, j’s state (i.e., the chemical concentrations in all of its subcompartments) does not

always return to the same value at the end of each refractory period. In particular, in the not

infrequent case of j experiencing several successive ISI’s whose durations are only slightly

larger than ∆, diminished supplies may prevent full restoration of the concentration of certain

chemical species in some of j’s subcompartments before the refractory period ends.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows:

In Chapter 2, a mathematical framework is formulated, based on homogeneous Poisson

processes, for describing how a single neuron stochastically processes and communicates

information. The neuron possesses both excitatory and inhibitory synapses with differing

weights. Moreover, input and output distributions of the modeled neuron and long-term

mutual information rate are derived.

5



In Chapter 3, a mathematical framework, based on inverse Gaussian processes, for how a

single neuron stochastically processes and conveys information is studied. Again, input and

output distributions of the modeled neuron are presented.

In Chapter 4, a mathematical framework, based on generalized inverse Gaussian processes,

for how a single neuron stochastically computes and communicates information is presented.

Once more, mutual information rate and energy consumption are calculated and analyzed.

In Chapter 5, we apply our energy efficient neuroscientific framework to analyze experi-

mental in vivo recordings of the visual thalamus of the cat and resolve the paradoxical energy

efficiency of retinothalamic transmission.

In Chapter 6, we recapitulate the major conclusions of this dissertation and provide some

directions for future research.

The major results have been documented and published in conference proceedings and

peer-reviewed journal papers.

6



Chapter 2

Theoretical and Computational

Neuron Modeling: Unequal Synaptic

Weight Model

Everything should be made as simple as possible, but not simpler.

-Albert Einstein

How neurons in the cerebral cortex process and transmit information is a long-standing

question in systems neuroscience. To understand the neural mechanism from an information-

energy efficiency standpoint, Berger and Levy calculated the maximum Shannon mutual

information transfer per unit of energy expenditure of an idealized integrate-and-fire (IIF)

neuron whose excitatory synapses all possess the same weight. In this chapter their IIF

model is extended to a biophysically more realistic one in which synaptic weights not only

are no longer assumed equal but also can be inhibitory. Using information theory, random

Poisson measures, Laplace transforms and the maximum entropy principle, it is established

that the probability density function (pdf) of interspike interval (ISI) duration induced by

the bits per joule (bpJ) maximizing pdf fΛ(λ) of the combined excitatory and inhibitory

postsynaptic potential (EPSP/IPSP) intensity remains a delayed gamma distribution as

7



in the IIF model. It is also shown that, in the case of unequal weights, fΛ(·) satisfies an

inhomogeneous Cauchy-Euler equation with variable coefficients for which the general solution

form is provided.

2.1 Overview

The human brain, only two percent of the body’s weight, accounts for twenty percent of the

body’s energy consumption [1] [2]. It is estimated that the circa 1011 neurons composing the

human brain expend on average 20 watts of power, whereas the “real-time” simulation of

some 10 million neurons in cat visual cortex headed by IBM Almaden Research Center in

2009 expended 109 times more energy per neuron than the cat does [3]. Brains have evolved

that prodigiously compute and communicate information with remarkable efficiency. Energy

minimization subject to functional constraints may be a unifying principle [4] [5]. Since

neurons are expressly designed to exchange information with one another, understanding how

information processing and energy expenditure are performed at the nodal level of the network

is fundamental for acquiring insights into the limits of energy efficiency in computation and

communication.

Information theory has been widely employed in neuroscientific data interpretation and

system modeling during the last fifty years [12] [13] [14] [15]. However, energy efficient neural

codes have been studied for less than two decades [16] [17] [18]. Evidence for energy efficiency

has been reported for ion channels [4], photoreceptors [21], retina [22] [23], and cortex [24] [26].

Laughlin and Sejnowski discussed the cortex as a communicating network from an energy

efficiency perspective [27]; Mitchison et al. and Chklovskii et al. applied energy efficiency to

analyze cortical wiring and brain mapping [30] [31]; Berger and Levy proposed an energy

efficient mathematical model for information transmission by a single neuron [5].

We seek to analyze the performance of a single neuron, the smallest working unit of the

brain, from an information-energy efficiency perspective. By maximizing the Shannon mutual

8
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Figure 2.1: Single interspike interval (ISI) schematic with the illustration of all physical
parameters.

information rate subject to a constraint on the total energy cost that a neuron expends for

metabolism, postsynaptic potential generation, and action potential propagation during one

interspike interval (ISI), Berger and Levy found that the reciprocal of afferent excitatory

postsynaptic potential (EPSP) intensity, 1/Λ, and interspike interval, T , follow a beta and a

gamma distributions, respectively [5]. The primary goal of this Chapter is to extend this

energy efficient model such that synapses can have unequal weights and can be inhibitory.

Our main and most striking result is that ISI durations continue to be gamma distributed

even when synaptic weights need not be equal and may have either algebraic sign. Also,

we show that the energy-constrained capacity-achieving combined excitatory/inhibitory

postsynaptic potential (EPSP/IPSP) intensity for the case of unequal synaptic weights is

no longer beta distributed as its fixed-weight counterpart, but instead is the solution of an

inhomogeneous Cauchy-Euler equation with variable coefficients.
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2.2 Problem Formulation and Preliminaries

We first introduce a mathematical framework for how a single neuron stochastically processes

and communicates information. We consider a neuron in the primary sensory cortex that

we refer to as “neuron j” or simply j for short. Let W k = (W1,W2, . . . ,WMk
), where Wl is

the weight of lth excitatory/inhibitory synapse of j to receive a spike during the kth ISI and

produce an EPSP/IPSP in response thereto. We time-order the EPSP’s & IPSP’s according

to the times at which they arrive at the somatic membrane (more specifically, at j’s axon

initial segment that connects its soma to its axon) and hence contribute to j’s postsynaptic

potential (PSP) accumulation. Mk is the integer-valued random cardinality of W k.

We assume that the components of W k are chosen independent and identically distributed

(i.i.d.) according to a certain cumulative distribution function (cdf) FW (w) = P [W ≤ w], w ∈

(−∞,+∞). We model the lth contribution to j’s PSP accumulation to be Wl · u(t− tl); here,

Wl is a random variable (r.v.) with the aforementioned cdf FW (w) and u(t− tl) equals 1 for

t ≥ tl and equals 0 for t < tl.
1 We continue to assume as in [5] that:

• The PSP spiking threshold is constant at the value θ.

• Synaptic events that occur during any of the refractory periods that immediately follow

j’s spiking instants make no contribution to j’s PSP.

• Each of j’s refractory periods has the same duration, ∆.

Although we permit negative weights, we nonetheless require E[W ] > 0 in order to ensure

that the threshold eventually is reached.

We model the EPSP/IPSP’s production times in response to spikes from j’s afferent

cohort as an inhomogeneous Poisson measure with instantaneous rate function, A(t), defined

by

A(t) := lim
dt→0

P [one EPSP/IPSP arrival in(t, t+ dt)]

dt
. (2.1)

1Real neurons do not exhibit ideal step function EPSP/IPSP responses to afferent synaptic events.
However, their responses are sharply rising/decaying functions that usually complete more than 90% of their
rise/decay during less than 0.1 ms, so an idealized step function response is not far off the mark.

10



Then as in [5] we take a time average operation over the rate function A(t) and obtain

Λk :=
1

Tk −∆

∫ Sk

Sk−1+∆

A(u)du, (2.2)

where ∆ is the duration of j’s refractory period, Tk is the kth ISI duration of j and

Sk = T1 + T2 + · · ·+ Tk.

Henceforth, we suppress the ISI index k and just write W , M , T and Λ, and assume that

when Λ = λ, EPSP/IPSP’s are generated during the ISI according to a homogeneous Poisson

point process with intensity λ.

Here we are interested in the Shannon mutual information, I(Λ;T ). Although this has

been defined for a single pair of r.v.’s Λ and T , it is shown in Section 2.4 that it is a good

first-order approximation to the long-term average mutual information rate in bits per spike,

namely

I := lim
n→∞

1

n
I(Λ1,Λ2, . . . ,Λn;T1, T2, . . . , Tn), (2.3)

lacking only an information decrement that addresses correlation among successive Λi’s [5] [7].

Define T− := T −∆. Since T− is a one-to-one function of T , we have I(Λ;T ) = I(Λ;T−),

which in turn is defined [32] [33] [34] as

I(Λ;T−) = E log

[
fT−|Λ(T−|Λ)

fT−(T−)

]
, (2.4)

where the expectation is taken with respect to the joint distribution of Λ and T−.

Toward determining I(Λ;T−), we proceed to analyze fT−|Λ(t|λ) and fT−(t) with unequal

synaptic weights.

2.3 Nature of the Randomness of Weight Vectors

Even if the excitatory synaptic weights of neuron j were known, W = (W1,W2, . . . ,WM)

would still be random because the time-ordered vector R of synapses excited during an ISI is
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random. However, for purposes of mathematical analysis of neuron behavior it is not fruitful

to restrict attention to a particular neuron with a known particular set of synaptic weights.

Rather, it is more useful to think in terms of the histogram of the synaptic weight distributions

of neurons in whatever neural region is being investigated. When many such histograms have

been ascertained, if their shapes almost all resemble one another closely, then they can be

arithmetically averaged to obtain a population histogram with fine resolution in the weights

of its synaptic bins. This, in turn, would permit one to approximate this fine histogram

by a continuous amplitude probability distribution of synaptic weights. (Then the analysis

becomes more widely applicable than if one were to have used the exact weights of a particular

neuron, especially considering that even that neuron will have a different set of weights in

the future because of ongoing synaptic modification.) Moreover, the strong similarity of

synaptic weight distributions has been observed through experiments [35]. Therefore, in the

analysis that follows we take the view that the components of W are selected randomly from

this continuous amplitude probability distribution. Said random distribution of synaptic

weights also incorporates the random number of neurotransmitter-containing vesicles that are

released when a spike is afferent to the synapse, the random number of excitatory/inhibitory

neurotransmitter molecules in these vesicles, how many of those cross the synaptic cleft, bind

to receptors and thereby generate EPSP’s/ISPS’s.

This model of random selection of weights comprising W is applicable both to ISI’s in

which the afferent firing rate Λ is large and to those in which it is small. When the value

λ assumed by Λ is large, W ’s components just get selected more rapidly than when λ is

small, but they continue to come from the same distribution. This implies that the expected

number of them in a single ISI remains the same. Hence, from now on, we assume that the

weight vector components (W1,W2, . . . ,WM) are jointly independent of Λ.

Neurons vary their synaptic weights in order to learn and adapt to changing environments.

The synaptic plasticity of weights is widely considered essential to learning and memory [35].

Long term applicability of our model can be achieved by adjusting the weight distribution
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FW (·). When synaptic plasticity changes the overall weight distribution substantially, then

FW (·) should be changed accordingly. In this manner our theoretical model can connect

neural plasticity to the communication of information by the neuron, thereby broadening its

applicability.

2.4 Information Rate Calculation

We assume that information is only subadditive over disjoint ISIs [5], i.e., the inputs Λk’s

are not i.i.d.; in particular when Λk is considerably greater than E[Λ], then it is highly likely

that the same is true for Λk+1. Therefore, the long-term mutual information rate per ISI,

I, at which j’s efferent spiking times {Tk} provide information about j’s random excitation

over an ongoing sequence of ISI’s, upon our having adopted the “mean value assumption” in

Eq. (2.2), is defined as below:

I = lim
n→∞

1

n
I(Λ;T ) (2.5)

= lim
n→∞

1

n
I(Λ1,Λ2, . . . ,Λn;T1, T2, . . . , Tn) (2.6)

= lim
n→∞

1

n
[I(Λ1,Λ2, . . . ,Λn;T1, T2, . . . , Tn−1) + I(Λ1,Λ2, . . . ,Λn;Tn|T1, T2, . . . , Tn−1)].

(2.7)

Next, we can reduce the first term in Eq. (2.7), sans the limit and average over n, as

follows:

I(Λ1,Λ2, . . . ,Λn;T1, T2, . . . , Tn−1)

=I(Λ1,Λ2, . . . ,Λn−1;T1, T2, . . . , Tn−1) + I(Λn;T1, T2, . . . , Tn−1|Λ1,Λ2, . . . ,Λn−1). (2.8)

Due to the fact that given (Λ1,Λ2, . . . ,Λn−1), current average spiking intensity Λn is

independent of historical ISI sequence (T1, T2, . . . , Tn−1), which implies the second term in
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Eq. (2.8) equals zero.

Meanwhile, the second term inside the limit in Eq. (2.7) can be written as [5]:

I(Λ1,Λ2, . . . ,Λn;Tn|T1, T2, . . . , Tn−1)

=I(Λn;Tn|T1, T2, . . . , Tn−1) + I(Λ1,Λ2, . . . ,Λn−1;Tn|Λn, T1, T2, . . . , Tn−1). (2.9)

Assuming as in [5] that the communication channel from {Λk} to {Tk} is memoryless

with causal feedback, when Λn is given, Tn is independent of both (Λ1,Λ2, . . . ,Λn−1) and

(T1, T2, . . . , Tn−1), which implies that the second term in Eq. (2.9) is zero and accordingly

the first term in Eq. (2.9) can be derived as following:

I(Λn;Tn|T1, T2, . . . , Tn−1) =h(Tn|T1, T2, . . . , Tn−1)− h(Tn|Λn, T1, T2, . . . , Tn−1) (2.10)

=h(Tn|T1, T2, . . . , Tn−1)− h(Tn|Λn) (2.11)

=I(Λn;Tn)− I(Tn;T1, T2, . . . , Tn−1) (2.12)

Combining Eqs. (2.7), (2.8), (2.9) and (2.12), we have

I = lim
n→∞

1

n
I(Λ1,Λ2, . . . ,Λn;T1, T2, . . . , Tn)

= lim
n→∞

1

n
[I(Λn;Tn)− I(Tn;T1, T2, . . . , Tn−1) + I(Λ1,Λ2, . . . ,Λn−1;T1, T2, . . . , Tn−1)].

(2.13)

By mathematical induction, it is easy to rewrite Eq. (2.13) as
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I = lim
n→∞

1

n

[
n∑
k=1

I(Λk;Tk)−
n−1∑
k=1

I(Tk+1;T1, T2, . . . , Tk)

]
. (2.14)

Based on the definition of relative entropy [33], i.e., Kullback-Leibler distance, we have

I = lim
n→∞

1

n

[
n∑
k=1

I(Λk;Tk)−
n−1∑
k=1

I(Tk+1;T1, T2, . . . , Tk)

]

= lim
n→∞

1

n

[
n∑
k=1

I(Λk;Tk)−D(fT1,T2,...,Tn||fT1 · fT2 · · · fTn)

]
(2.15)

= lim
n→∞

1

n

[
n∑
k=1

I(Λk;Tk)−

(
n∑
k=1

h(Tk)− h(T1, T2, . . . , Tn)

)]
. (2.16)

Since both the random process {Tk} and the joint process {(Λk, Tk)} are strictly stationary,

we may replace I(Λk;Tk) with I(Λ1;T1), make h(Tk) = h(T1) and then suppress the index to

yield that

I =I(Λ;T )−
(
h(T1)− lim

n→∞

1

n
h(T1, T2, . . . , Tn)

)
(2.17)

:=I(Λ;T )− Idecr. (2.18)

Note that the third term in Eq. (2.17) is the differential entropy rate of the strictly

stationary continuous amplitude r.v.’s Tk’s extended from Theorem 3.5.1 in [34].

The results of the differential entropy rate, mathematically speaking, involve the assump-

tion that all the finite dimensional joint distribution of the {Tk} process has to be jointly

absolutely continuous even though, physically speaking, this assumption is trivial to be

satisfied. It is our strong opinion that the channel always has a joint density f(Tk|Λk) with

no atoms conditioned on any subset of Λk’s, that is, for Λ ∈ (0,∞) and T ∈ (0,∞) it is

sufficient to say that the {Tk} process is absolutely continuous.
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h({T}) = lim
n→∞

1

n
h(T1, T2, . . . , Tn) (2.19)

= lim
n→∞

1

n

[
n∑
k=1

h(Tk|Tk+1, . . . , Tn)

]
(2.20)

a
= lim

n→∞

1

n

[ n∑
k=1

h(T1|T2, . . . , Tn−k+1)

]
(2.21)

b
= lim

n→∞

1

n

[ n∑
k=1

h(T1|T2, . . . , Tk)

]
, (2.22)

where equality (a) and equality (b) are based on the following statements, due to the strict

stationarity of {Tk}, that ∀ k ≤ n <∞,

I(Tn−1;Tn) = I(T1;T2) (2.23)

h(Tk|Tk+1, . . . , Tn) = h(T1|T2, . . . , Tn−k+1). (2.24)

Therefore, the information decrement term, Idecr, can be written as

Idecr = h(T1)− h({T}) (2.25)

= I(T1;T2) +

(
h(T1|T2)− h({T})

)
(2.26)

We can see I(T1;T2) as the first order approximation of the second term in Eq. (2.15), the

second term in Eq. (2.26) being the dependency/memory measurement.

In order to achieve the highest energy efficiency, neuron j likely strives to reduce the degree

of dependence among the ISI durations it transmits. However, it is not possible to eliminate

the dependence between T1 and T2. This is because j’s inputs Λ1 and Λ2 are dependent in a

manner that j is unable to control. Since the channel model from Λ’s to T ’s is memoryless,

T1 and T2 are dependent as well, so I(T1;T2) > 0. The only way that j could generate

independent r.v.’s to transmit to its targets would be to encode T1, T2, · · · , Tn into a vector,
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the components of which are independent. However this is an inefficient tradeoff because

it both increases the computational and storage requirements in the neuron and introduces

undesirable latency. Equation (2.26) shows that if the T process were first-order Markov,

then I(T1;T2) would be the entire information decrement. Even this less stringent first order

Markov requirement is computationally demanding and injects latency. It is probably the

case that neurons are structured so as to produce {Tk}’s that are well approximated by low

order Markov processes so that the second term in Eq. (2.26) has a much smaller magnitude

than that of the first one.

Note that the first order approximation, I(T1;T2), in Eq. (2.26) can be approximated by

max{0,−κE log T−}+ C as in Appendix C of [5], where T− = T −∆.

2.5 Finding fT−|Λ(t|λ): Mixtures of Gamma Distribu-

tions

The contribution to j’s PSP accumulation attributable to the lth afferent spike during an ISI

will be assumed to be a randomly weighted step function Wl · u(t− tl), where tl is the time

at which it arrives at the postsynaptic membrane. 2

It follows that the probability Pm := P (M = m) that exactly m PSP’s are afferent to j

during an ISI is

Pm = P (max
m
{W1 +W2 + · · ·+Wm−1} < θ, W1 +W2 + · · ·+Wm ≥ θ). (2.27)

2In practice, u(t− tl) needs to be replaced by a g(t− tl), where g(·) looks like u(·) for the first 15 or so ms
but then begins to decay. This has no effect when λ is large because the threshold is reached before this
decay ensues. For small-to-medium λ’s, it does have an effect but that could be neutralized by allowing
the threshold to fall with time in an appropriate fashion. There are several ways to effectively decay the
threshold, one being to decrease the membrane conductance.
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Next, we write

P (t ≤ T− ≤ t+ dt|Λ = λ)

=
∞∑
m=1

P (t ≤ T− ≤ t+ dt,M = m|Λ = λ)

=
∞∑
m=1

Pm · P (t ≤ T− ≤ t+ dt|Λ = λ,M = m), (2.28)

where Eq. (2.28) holds because of the assumption that the weight vectorW = (W1,W2, . . . ,WM )

is independent of Λ, which implies its random cardinality, M , is independent of Λ.

It follows as in [5] [6] [7] that, given M = m and Λ = λ, T− is the sum of m i.i.d.

exponential r.v.’s with parameter λ, i.e., a gamma pdf with parameters m and λ. Summing

over all the possibilities of M and letting dt become infinitesimally small, we obtain

fT−|Λ(t|λ) =
∞∑
m=1

Pm ·
λmtm−1e−λt

(m− 1)!
u(t). (2.29)

It is impossible to determine Pm in the general case. However, we have been able to compute

it exactly in Cases A and B discussed below.

2.5.1 Case A: Excitatory Synaptic Weights with Exponential Dis-

tribution

Suppose the components of the weight vector are i.i.d. and have the exponential pdf

αe−αwi ,∀ wi ≥ 0 with α > 0. Then we know that Ym := W1 +W2 + · · ·+Wm has the gamma

pdf

fYm(ym) =
αmym−1e−αy

(m− 1)!
u(y).
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Since there are only positive weights, Eq. (2.27) can be reduced to

Pm =P (Ym−1 < θ, Wm ≥ θ − Ym−1)

=

∫ θ

0

fYm−1(u)du

∫ ∞
θ−u

fWm(v)dv

=
(αθ)m−1

(m− 1)!
e−αθ. (2.30)

Therefore, it follows from Eq. (2.29) that

fT−|Λ(t|λ) =
∞∑
m=1

(αθ)m−1

(m− 1)!
e−αθ · λ

mtm−1e−λt

(m− 1)!
u(t)

=λe−(αθ+λt)

∞∑
k=0

(αθλt)k

(k!)2 u(t). (2.31)

The summation in Eq. (2.31) equals I0(2
√
αθλt) where I0 is the modified Bessel function of

the first kind with order 0 [36]. Note that, if the threshold is made to vary inversely with

time, i.e., if θ = C/λt, where C is a constant, then the density assumes the form

fT−|Λ(t|λ) = λC0e
−
(
C1
λt

+λt
)
u(t), (2.32)

where C0 is I0(2
√
αC) and C1 is a positive constant αC.

2.5.2 Case B: Excitatory and Inhibitory Synaptic Weights with

Gaussian Distribution

When taking inhibitory synaptic weights into account, by defining Ym :=
∑m

i=1 Wi and

fW (w) := dFW (w)
dw

and based on Eq. (2.27), we may write
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Pm= Pr(max
m
{Ym−1} < θ, Ym ≥ θ) (2.33)

= Pr

(
W1 < θ,

2∑
i=1

Wi < θ, · · · ,
m−1∑
i=1

Wi < θ,

m∑
i=1

Wi ≥ θ

)

=

∫ θ

−∞
dw1fW (w1) ·

∫ θ−w1

−∞
dw2fW (w2) · · ·

∫ θ−
∑m−2
i=1 wi

−∞
dwm−1fW (wm−1) ·

∫ ∞
θ−

∑m−1
i=1 wi

dwmfW (wm).

(2.34)

Suppose the components of the weight vector are i.i.d. and normally distributed, i.e.,

fW (wi) =
1

σ
√

2π
e−

(wi−µ)2

2σ2 , wi ∈ (−∞,+∞), (2.35)

where µ > 0 and σ are the mean and the standard deviation of the Gaussian weight r.v. W .

Therefore, armed with Eqs. (2.34) and (2.35), we can always recursively calculate

Pm,∀m = 1, 2, 3, · · · and then, using Eq. (2.29), to fT−|Λ(t|λ).

2.6 T− is Gamma Distributed

For the conditional pdf fT−|Λ(t|λ) as in Eq. (2.29), letting X = λ · T−, we have the following

equality in which x = λt:

|fX|Λ(x|λ)dx| = |fT−|Λ(t|λ)dt|.

It follows, in view of Eq. (2.29), that

fX|Λ(x|λ) =
∞∑
m=1

Pm ·
xm−1e−x

(m− 1)!
, ∀ x ≥ 0. (2.36)

Note that λ not only doesn’t explicitly appear on the right-hand side of Eq. (2.36) but

also does not appear there implicitly within any of the Pm’s; this is because, as noted earlier,

M is independent of Λ, so Pm cannot be λ-dependent. Accordingly,
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fX|Λ(x|λ) = fX(x) =
∞∑
m=1

Pm ·
xm−1e−x

(m− 1)!
, ∀ x ≥ 0. (2.37)

Hence, although X equals Λ·T−, X nonetheless is independent of Λ. 3 We can rewrite

the relationship as

T− =
1

Λ
·X, (2.38)

where X is marginally distributed according to Eq. (2.37).

Then by taking logarithms in Eq. (2.38), we have

log T− = − log Λ + logX, (2.39)

We see that Eq. (2.39) describes a channel with additive noise that is independent of the

channel input. Specifically, the output is log T−, the input is − log Λ, and the additive noise

is N := logX, which is independent of Λ (and therefore independent of − log Λ) because X

and Λ are independent of one another.

The mutual information between Λ and T− thus is

I(Λ;T−) = I(log Λ; log T−)

= h(log T−)− h(log T−| log Λ)

= h(log T−)− h(N). (2.40)

3A simple example in which X = AB is independent of A may be enlightening here. Let P (A = −1) =
P (A = 1) = 1/2, P (B = −2) = P (B = −1) = P (B = 1) = P (B = 2) = 1/4, and assume A and B are
independent. Note that, given either A = −1 or A = 1, X is distributed uniformly over {−2,−1, 1, 2}, so X
is independent of A. X is not independent of B in this example because |B| = 2 implies |X| = 2, whereas
|B| = 1 implies |X| = 1. In our neuron model the two factors of X, namely Λ and T −∆, are not independent
of one another but rather are strongly negatively correlated.
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Letting Z = log T−, we have

h(log T−) = h(Z) = −E log fZ(Z).

Since fZ(z) = fT−(t) · |dt/dz| = fT−(t) · t, it finally follows that

h(log T−) = −E[log(fT−(T−) · T−)]

E = h(T−)− E log T−. (2.41)

Thus, after substituting Eq. (2.41) into Eq. (2.40) and adding the information decrement

term as in [5] [6] [7], the long-term average mutual information rate, I, we seek to maximize

over the choice of fΛ(·) is

I = h(T−) + (κ− 1)E log T− − h(N)− C. (2.42)

From Equations (14-16) in [5], we see that the total expected energy expended is e =

C1ET + C2EM + C3. Since ET = ET− + ∆, ET can be converted to ET− by adding C1∆ to

C3, that is C ′3 := C3 + C1∆. Hence, the optimization problem becomes

maximize
fΛ(λ)

I = h(T−) + (κ− 1)E log T− − h(N)− C

subject to e = C1ET− + C2EM + C ′3.

(2.43)

Since N and M are independent of Λ, the choice of fΛ(·) affects I and e in Eq. (2.43) only

through fT−(·) via the following equation

∫ ∞
0

dλfΛ(λ)fT−|Λ(t|λ) = fT−(t), ∀ 0 ≤ t <∞. (2.44)

Therefore, our bpJ maximizing task has been reduced to maximizing the entropy rate

h(T−) subject to Lagrange multiplier constraints on information decrement, E log T−, and
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energy constraint, ET−. It is known [37] that the entropy h(T−) is maximized subject to

constraints on E log T− and ET− when T− is a gamma distribution with two parameters

denoted by κ and b, i.e.,

fT−(t) =

[
bκtκ−1e−bt

Γ(κ)

]
u(t), (2.45)

which is the bpJ-maximizing distribution of neuron j’s ISI duration, T , sans its refractory

period which always has duration ∆.

We emphasize that the result in Eq. (2.45) holds even when some of the weights are

negative, provided E[W ] > 0. This allows the model to capture to some extent the phenomena

of inhibition and leakage, both of which are extant in the real scenario, thereby enhancing

the model’s breadth of applicability.

2.7 From the Integral Equation to the Differential Equa-

tion

The integral equation (2.46) below relates the following three quantities:

1. The to-be-optimized pdf fΛ(λ) of the arithmetic mean of the net afferent excitation

and inhibition of neuron j during an interspike interval (ISI).

2. The conditional pdf fT−|Λ(t|λ) of j’s encoding of Λ into the duration T of said ISI.

3. The long-term pdf fT−(t) of j’s ISI durations.∫ ∞
0

dλfΛ(λ)fT−|Λ(t|λ) = fT−(t), ∀ 0 ≤ t <∞. (2.46)

Moreover, we have

fT−|Λ(t|λ) =
∞∑
m=1

Pm ·
λmtm−1e−λt

(m− 1)!
. (2.47)

That is, the conditional pdf in question is a mixture of gamma pdf’s with integer shape

parameters m = 1, 2, . . . and common scale parameter λ. The mth weight in this mixture is
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the probability that exactly m excitatory/inhibitory synaptic events occur during the ISI,

namely

Pm = P (W1 +W2 + · · ·+Wm−1 < θ and W1 +W2 + · · ·+Wm ≥ θ), (2.48)

where W1,W2, . . . ,Wm are i.i.d. with cumulative distribution function (cdf) FW (·). We have

derived formulas for Pm for some reasonable choices of the pdf fW (·) in Section 2.5. Let’s

first consider a case in which Pm is nonzero only for two consecutive values of m, say n and

n+ 1 with respective probabilities Pn = p and Pn+1 = 1− p := q.4 In such a case

∫ ∞
0

dλfΛ(λ)

(
pλntn−1

(n− 1)!
+
qλn+1tn

n!

)
e−λt = fT−(t). (2.49)

In [5] it was shown that, if fΛ(·) is chosen so that bits communicated per joule expended is

maximized, then fT−(·) must be a gamma pdf, i.e., there must exist parameters κ > 0 and

b > 0 such that

fT−(t) =

[
bκtκ−1e−bt

Γ(κ)

]
u(t). (2.50)

In Section 2.6 we showed that, even in cases with unequal synaptic weights including both

excitatory and inhibitory synapses, the fΛ(·) that maximizes bits conveyed per joule expended

still must induce a Gamma-distributed T−; i.e., Eq. (2.50) continues to be satisfied. When (i)

Eq. (2.50) is substituted into the right-hand side of Eq. (2.49), (ii) t is changed throughout

to s, and (iii) both sides are multiplied by (n− 1)!s1−n, the result is

∫ ∞
0

dλfΛ(λ)λn
(
p+

qλs

n

)
e−λs = (n− 1)! · b

κsκ−ne−bs

Γ(κ)
. (2.51)

4This occurs, for example, when θ = 19 and each W is a binary r.v. that equals 6 with probability p6 and
equals 8 with probability p8 = 1− p6. Then P4 = p36, P3 = 1− p36, and all other Pn’s are zero; hence, m = 3
and q = p36.
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Next, we use the fact that

qλs

n
e−λs = −qλ

n
· d(e−λs)

dλ
, (2.52)

which we shall refer to as “the q-term.” The portion of the left hand side of Eq. (2.51) that

corresponds to the q-term is

−
∫ ∞

0

dλfΛ(λ)λn+1 q

n
· d(e−λs)

dλ
. (2.53)

Since the dλ in the numerator of the integrand in Eq. (2.53) cancels that in the denominator,

Eq. (2.53) is of the form −
∫
UdV where

U(λ) = λn+1fΛ(λ)
q

n
(2.54)

and

V (λ) = e−λs. (2.55)

This permits us to evaluate the q-term by means of the formula for integration by parts,

namely −
∫
UdV = −UV +

∫
V dU . Note that for U and V as above, we have U(0) = 0 and

V (∞) = 0 so U(0)V (0) and U(∞)V (∞) both equal zero. It follows that the q-term equals

∫ ∞
0

V dU =

∫ ∞
0

e−λs
[
(n+ 1)λnfΛ(λ)

q

n
+ λn+1f ′Λ(λ)

q

n

]
dλ. (2.56)

Inserting this representation of the q-term into Eq. (2.51) yields

∫ ∞
0

dλ

[
λnfΛ(λ)

(
p+ (n+ 1)

q

n

)
+ λn+1f ′Λ(λ)

q

n

]
e−λs = (n− 1)! · b

κsκ−ne−bs

Γ(κ)
. (2.57)

Observe that the left hand side of Eq. (2.57) is the Laplace transform from the λ-domain

into the s-domain of the function of λ that appears within the square brackets. It follows
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that, if we apply the inverse Laplace transform operator, L−1, to both sides of Eq. (2.57),

the left hand side of the result will be the function of λ that currently resides within that

square bracket, so

λnfΛ(λ)

(
p+ (n+ 1)

q

n

)
+ λn+1f ′Λ(λ)

q

n
= L−1

{
(n− 1)! · b

κsκ−ne−bs

Γ(κ)

}
. (2.58)

One can readily verify that the Laplace transform of Γ(n)
Γ(κ)Γ(n−κ)

(λ−b)n−κ−1u(λ−b) is precisely

the function being operated upon by L−1 on the right hand side of Eq. (2.58). It follows

from these observations and from the identity p+ (n+ 1) q
n

= 1 + q
n

that

fΛ(λ)

(
1 +

q

n

)
+ λf ′Λ(λ)

q

n
= λ−n

Γ(n)

Γ(κ)Γ(n− κ)
(λ− b)n−κ−1u(λ− b). (2.59)

Eq. (2.59) is a powerful result in that it constitutes a conversion of the integral equation

(2.49) for the maximum-bpJ excitation/inhibition intensity fΛ(λ), ∀ b ≤ λ <∞, into a first

order linear differential equation for this same function. The differential equation has a

λ-varying coefficient on its f ′ term - namely, a constant times λ itself. Nonetheless, it has

an explicit analytical solution because there exists a general solution to any inhomogeneous

first order linear differential equation with variable coefficients. In light of the above it is

reasonable to conjecture that if there are exactly k consecutive values of m for which Pm > 0,

then the corresponding integral equation for fΛ(·) can be converted to a linear differential

equation of order k − 1 with variable coefficients. In general, for k consecutive values of m

for positive Pm’s, Eq. (2.51) will become

∫ ∞
0

dλfΛ(λ)

( k−1∑
j=0

Pj+1λ
j+1sj

Γ(j + 1)

)
e−λs = (n− 1)! · b

κsκ−ne−bs

Γ(κ)
. (2.60)
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After applying integration by parts and Laplace transform repeatedly, Eq.(2.60) finally turns

out to be an inhomogeneous Cauchy-Euler equation with variable coefficients as below

k−1∑
j=0

j∑
i=0

Pj+1
(j + 1)!

(j − i+ 1)!

1

i!(j − i)!
λ(j−i)f

(j−i)
Λ (λ) =

bκ

Γ(κ)Γ(1− κ)
λ−1(λ− b)−κu(λ− b).

(2.61)

Eq.(2.61) also has an analytical closed-form solution, which serves as the bpJ-maximizing

pdf of neuron j’s averaged afferent excitation/inhibition intensity Λ.

2.8 Summary

We have shown that, when neuron j is designed to maximize bits conveyed per joule expended,

even though j’s synapses no longer are being required to all have the same weight or be

excitatory only, the pdf of the ISI durations continues to be a delayed gamma distribution

as it was in [5] wherein all the weights were assumed to be equal. This happens despite the

fact that the conditional distribution for T given Λ is now a mixture of gamma distributions

instead of the pure gamma distribution that characterizes the special case of equal weights.

Additionally, we have implicitly determined the optimal distribution fΛ(λ) that charac-

terizes the afferent excitation/inhibition intensity by (1) maximizing the Shannon mutual

information rate given a constraint on the total energy cost that a cortical neuron expends

for metabolism, postsynaptic potential accumulation, and action potential generation and

propagation during one ISI; (2) converting the integral equation to a differential equation

with a closed-form solution.

The energy efficiency of the human brain in terms of information processing is astonishingly

superior to that of man-made machines. By extending the information-energy efficient neuron

model to a more general framework including both unequal synaptic weights and inhibitory

synapses, the theory comes into closer correspondence with the actual neurophysiology of
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cortical networks, which might pave the way to wider applications in neuroscience and

engineering.
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Chapter 3

Theoretical and Computational

Neuron Modeling: Gaussian Diffusion

Model

Scientific discovery consists in the interpretation for our own convenience of a

system of existence which has been made with no eye to our convenience at all.

One of the chief duties of a mathematician in acting as an advisor to scientists is

to discourage them from expecting too much of mathematicians.

-Norbert Wiener

We develop a linkage between the mathematical analysis of a single neuron and the statistical

connection of that neuron to the rest of the brain. The core of a stochastic neuron model is

the selection of a conditional probability density, fT |Λ(·|λ), for the random time T that it

takes the neuron’s postsynaptic potential to cross a possibly varying threshold given that the

neuron’s random excitation intensity Λ has assumed a particular value λ. For reasons we

develop in detail, we have selected a certain subfamily of inverse Gaussian (IG) probability

densities to serve in this capacity. We assume the neuron is energy efficient in the sense that

it maximizes the Shannon mutual information it conveys to its targets per Joule of energy
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it expends to generate and propagate its train of neural spikes. Using information theory,

calculus of variations and Laplace transforms, we derive and solve a pair of coupled integral

equations that describe how Λ must be distributed in order for the neuron to maximize

bits transmitted per Joule expended (bpJ). The first equation’s solution establishes that the

at-this-point unknown bpJ-maximizing probability density fΛ(λ) must induce via fT |Λ(·|λ)

a random ISI duration whose probability density fT (t) belongs to the generalized inverse

Gaussian (GIG) family. The algebraic shape factor of this fT (t) has the form t−( 3
2

+D) where

D > 0, as compared with the standard IG density’s shape factor t−
3
2 . This result agrees with

work on best matching of experimentally observed ISI durations reported in the literature.

The solution of the second integral equation yields the exact form of the bpJ-maximizing fΛ(λ).

This formula for fΛ(λ) is our principal result in that Λ is created not by the neuron being

modeled but by those of the brain’s neurons whose spike trains are afferent to one or more of

the modeled neuron’s excitatory synapses. Accordingly, fΛ(λ) serves as the abovementioned

bridge that specifies how an energy efficient brain needs to match the long-term statistics of

each of its neuron’s inputs to that neuron’s particular design.

3.1 Problem Statement and Preliminaries

3.1.1 Neuron Outputs and Inputs

As in [5] [6] [7] we call the neuron under study “neuron j”, or just j for short. The output

of j is a train of effectively identically shaped narrow voltage spikes, also known as action

potentials (AP’s). The durations of the interspike intervals (ISI’s) between j’s AP’s constitute

a random sequence which we denote by {Tk, k = 0, 1, 2, . . . }.

Neuron j’s external excitation/inhibition comprises a collection of neural spike trains

generated by the afferent presynaptic neurons, called j’s afferent cohort. j’s afferent synapses

are connections between these neurons and j by means of which each such spike train becomes

afferent to j. When a presynaptic spike arrives at one of j’s presynaptic terminals, the
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depolarization it provides opens calcium channels in the presynaptic bouton. A vesicle

containing neurotransmitters fuses with the presynaptic membrane and releases an amount of

neurotransmitters based on the size of the vesicle. Those neurotransmitters diffuse within the

synaptic cleft. Some escape, but most bind to the postsynaptic receptors, which will cause

the opening of the ion channels resulting in a net gain of positive/negative voltage across

the postsynaptic membrane, an EPSP/IPSP. Each time the membrane potential crosses a

possibly time-varying threshold value, j generates another output spike that propagates along

its axon to the efferent neurons, referred to as j’s efferent cohort or targets. A typical neuron

in primate sensory cortex possesses circa 10, 000 inputs and circa 10, 000 outputs.

Each time j emits an efferent spike, there ensues a refractory period during which j cannot

produce another spike. Neuroscientists distinguish two types of refractory periods - absolute

and relative. Limiting attention to absolute refractoriness, by far the most common type

under natural conditions, permits us to assume with negligible error that j’s refractory periods

all have the same duration, call it ∆. During each refractory period j strives to replenish

supplies of chemicals in various of its compartments in anticipation of producing a subsequent

spike in response to the ongoing afferent excitation. However, j’s state (i.e., the chemical

concentrations in all its subcompartments) does not always return to the same value at the

end of each refractory period. In particular, in the not infrequent case in which j experiences

several successive ISI’s whose durations are only slightly larger than ∆, diminished supplies

may prevent full restoration of the concentration of certain chemical species in some of j’s

subcompartments before the refractory period ends.

3.1.2 The Definition of Λ

The arrival of AP’s at the presynaptic terminals of j’s afferent excitatory synapses, often

referred to as j’s “bombardment,” can be measured in units of spikes/s. Neuroscientists

sometimes consider this arrival to be j’s afferent excitatory intensity, usually denoted by

λ; indeed, we did this in our earlier work [5] [6] [7]. Here, however, we prefer to define λ
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at a finer level of electrochemical arrivals. One way of doing this is to define it to be the

sum over all of j’s excitatory synapses of the rate at which neurotransmitter molecules are

traversing from the presynaptic to the postsynaptic side and binding to receptors located

on j. A further refined definition would be that λ is the net algebraic rate at which ionic

charges are accruing on j’s cell membrane via diffusion and thereby are contributing to the

PSP accumulation, taking into account that some of the charges deposited subsequently

leak off through conductances to ground. Although this further refined definition has the

perhaps disadvantageous property of not being wholly afferent in spirit, it corresponds to the

effective λ that j itself is capable of measuring since. That’s because, as an ISI progresses,

its PSP accumulation is j’s only summative response to the spikes afferent to its afferent

excitatory synapses. Accordingly, we shall assume that at every time instant t there is an

instantaneous random intensity at which contributions to j’s PSP accumulation are arriving,

which intensity we denote by Λ(t). Once these contributions accrue to the extent that the

PSP accumulation at j’s axon hillock reaches a possibly time-varying threshold, j generates

a new AP, propagates it along its axon to all its targets, and simultaneously begins a new ISI

the first ∆ seconds of which constitute a refractory period.

In order for the PSP accumulation to reach threshold, j must assemble a huge number

of ions from a plethora of afferent postsynapses that are bombarded rather asynchronously

and are located at widely differing relative distances from the axon hillock. Accordingly,

Stein-Chen theory [38] implies that the random times at which said ionic contributions accrue

are well-modeled by an inhomogeneous Poisson the intensity function of which is a realization

{λ(t)} of the aforementioned random process {Λ(t)}. That the statistics of {Λ(t)} remain

time-inhomogeneous is essential because j’s raison d’etre is to report to all its targets about

how the realization {λ(t)} unfolds versus time. The highly refined definition of λ that we have

adopted herein obviates the need to be concerned with the probability distributions governing

such quantities as the weights of j’s synapses or the number of molecules of neurotransmitter

that reside in a randomly chosen presynaptic vesicle. With the basic building block of

32



excitation intensity set at the ion level, distributions such as these already have been averaged

over in the process of defining {Λ(t)}.

3.2 Mutual Information and Energy Consumption

The astonishing capabilities of mammalian brains are in large measure attributable to their

exceptional energy efficiency. Most neurons expend energy at an average rate that lies between

half a nanowatt and two nanowatts. Since the human brain contains circa 3× 1010 neurons,

the whole brain expends less energy per second than does a 100 watt light bulb, the current

estimate being circa 20 watts. 1 Since neurons are expressly designed to exchange information

with one another, it has long seemed to us [5] [6] [7] [16] [17] [39] that each neuron’s design

should maximize the ratio of the rate at which it conveys information to the rate at which

it expends energy. Hence, we shall impose below the performance criterion that a neuron

addresses its tasks in a fashion that maximizes the bits it conveys to its efferent cohort per

Joule it expends to calculate and propagate said bits. Simply put, we assume that neurons

maximize bits per joule (bpJ). In this regard Laughlin and Sejnowski report in their survey

article [27] that the belief that neuronal networks are constructed to be maximally energy

efficient is attracting an increasing number of adherents in the neuroscience community. In

what follows it will be seen that imposing a max-bpJ condition on single neuron function

not only allows us to obtain key analytical conclusions that are in good agreement with

experimental observations but also yields an intriguing bridge between single neuron theory

and the theory of real neural networks.

1Recently, a team of neuroscientists, mathematicians, electrical engineers, and computer scientists (among
others) generated a successful simulation of some 10 million neurons in cat visual cortex. The connectivity
matrix of the neurons was precise in that it was based on painstaking tracking of the neurons’ axons through
thousands of tomographic sections of a real cat brain. Powerful computers were parallel programmed such
that the simulation processed its inputs as fast as a cat does, albeit arguably (and it was fiercely and publicly
argued) not to the same effect achievable by a real cat. Upon conducting an energy audit of this simulation,
we estimated that it consumed some 108 times as many Joules per neuron than would the cat. Emailing our
estimate to the project leader, Dharmendra Modha of IBM Almaden, brought his crisp and forthright reply,
“No, 109!”
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3.2.1 Information Rate

The mathematical instantiation of neuron j’s rate of information production is Shannon’s

average mutual information rate between j’s random excitation {Λ(t)} and j’s output {Tk}.

Although information theory has been generalized to deal with abstract random objects

such as the uncountable infinity of random variables that constitute {Λ(t)} [40], it is highly

challenging to evaluate such abstractions. Accordingly, as we did in [5] [6] [7], we approximate

{Λ(t)} by a random sequence {Λk} defined as follows. Choose t = 0 to correspond to an

instant randomly chosen from all those at which j has fired a spike. Then let T1 denote the

random time at which j fires its next spike, T1 + T2 denote the least time strictly greater

than T1 at which j fires another spike, and so on. Thus, Tk is the duration of j’s kth ISI

henceforth called ISIk. For each k ∈ {1, 2, . . . }, define

Λk =
1

Tk −∆

∫ Sk

Sk−1+∆

Λ(t)dt, (3.1)

where S0 = 0 and for each k ≥ 1, Sk = T1 + T2 + · · · + Tk. In words, throughout the

post-refractory portion of ISIk we replace the random process Λ(t) by a constant intensity Λk

that equals the time average of Λ(t) over that portion of ISIk. For further discussion of and

partial justification for this so-called Mean Value Assumption, the reader is referred to [5].

Using it, the mutual information rate between j’s input and output, measured in bits/ISI,

becomes

I := lim
n→∞

n−1I(Λ1,Λ2, . . . ,Λn;T1, T2, . . . , Tn), (3.2)

where I(X;Y ) equals Shannon’s mutual information between the random objects X and Y .

(See any of [32], [33], [34], [40], or [41].) In [5] [7] we showed that, with considerable generality,

the dominant behavior of the limit in Eq.(3.2) is the average mutual information between

a single r.v. Λk and its associated r.v. Tk. Since our initial ISI has been chosen purely at

random from all of j’s ISI’s, I(Λk;Tk) does not depend on k. Therefore, we write simply

I(Λ;T ), where T is the random duration of an ISI and the random variable Λ is the time
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average of Λ(t) over the post-refractory portion of that ISI.

3.2.2 Energy Expenditure

We now identify five energy expenditures gi(λ, t), 1 ≤ i ≤ 5, that neuron j incurs during an

ISI in which the random 2-vector (Λ, T −∆) assumes the value (λ, t). Later, we associate

these gi’s with terms in the exponent of our stochastically modeled neuron channel fT |Λ(t|λ).

• g1(λ, t) = A, a positive constant. An example of this is the energy j must expend in

order to propagate the neural spike it generates at the end of the ISI to all its target

neurons. This and other fixed costs per ISI sum to A.

• g2(λ, t) = Bt, where B is a positive constant. An example of this is the metabolic

energy the neuron expends keeping itself healthy and nourished during an ISI. This

grows linearly with the duration of the ISI whether j is processing relatively intensely

during it or not.

• g3(λ, t) = Cλt, C a positive constant. This term addresses the energy j devotes to

generating contributions to the PSP accumulation by processing all the spikes afferent

to it during the ISI. 2

• g4(λ, t) = G/t, G being a positive constant. g4 charges a high energy costs for small

values, t, of the random variable T − ∆. That such a small-t penalty must exist is

apparent from the definition of ∆ as the least amount of time after one AP that another

can be produced in response to natural afferent excitation. Although an experimenter

can evoke AP’s separated by less than ∆ by injecting a large current into the axon

hillock, this requires supplying power far exceeding what the neuron can expend on

2In order for Cλt not to be an oversimplification, there needs to be, regardless of the value of λ, enough
separate contributions to PSP during an ISI that the coefficient of variation (standard deviation divided by
mean) of the number of them and that of the weights of the synapses that generate them both are smaller
than, say, 0.1. Primary cortical neurons, among others, conform to these conditions.
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its own. It stands to reason that the closer to t = 0 the neuron produces an AP in

response to natural stimulation, the more energy it takes to do so. 3

• g5(λ, t) = D log t. If D > 0, then this logarithmic term charges an energy penalty

whenever t > 1 and “rewards” t-values smaller than the time unit, and conversely, if

D < 0. Note that this logarithmic term is dominated by g2 = Bt when t is large and

by g4 = G/t when t is small, provided D is not many times larger than either B or G,

respectively. Hence g5 serves as a fine tuning adjustment to g2 and/or g4. It is widely

felt that most real neurons are finely tuned. In Section 3.6 we find it necessary to

assume that D > 0 in order to get closed-form analytical results.

3.3 The GIG and IG Probability Densities

A nonnegative random variable (r.v.) that has a probability density of the form

f(t) = Ctα−1 exp

(
− γt− β

t

)
, 0 < t <∞; β > 0, γ > 0, (3.3)

is an instance of a generalized inverse Gaussian r.v., henceforth a GIG r.v. The value of the

reciprocal of the normalizing constant C is (see [36], Eq. 3.471.9) C−1 = 2(β/γ)
α
2Kα(2

√
βγ),

where Kα(·) is the modified Bessel function of the second kind with index α. The GIG pdf

generalizes the key special case α = −1
2
, known as the inverse Gaussian (IG) pdf, in which

the power of t is α− 1 = −1
2
− 1 = −3

2
and C−1 =

√
π/β exp(−2

√
βγ), where we have used

the fact (see [36], Eq. 8.469.3) that K± 1
2
(z) =

√
π/(2z)e−z. Without loss of generality, we

henceforth set γ = 1, this being tantamount to selection of the t-unit.

3At present, the neuroscience community’s understanding of the functional form of the t-dependence of
this energy expenditure is insufficient to guarantee that it is proportional to the reciprocal of t as opposed to,
say, some other negative power of t. Therefore, our use of G/t, though mathematically compelling in the
sequel, amounts to a convenient educated guess.
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3.3.1 IG and GIG in the Neuroscience Literature

Several investigators have used the GIG pdf to model a neuron viewed as a communication

channel, the input of which is what we have called Λ and the output of which is what we have

called T . Perhaps the first to do so were Gerstein and Mandelbrot [42]. Barndorff-Nielsen et

al., put the GIG pdf on a firm mathematical foundation by showing it characterizes the random

time it takes certain diffusions with drift to hit a fixed-height boundary [43] [44]. Specifically,

GIG pdf’s with α < −1/2 (respectively, α > −1/2) are associated with models in which

the boundary attracts (repels) the diffusing entity. The IG case α = −1/2 yields a neutral

boundary that neither attracts nor repels. Recently, some statisticians and neuroscientists

have argued that GIG pdf’s provide better fits to the empirical distribution of ISI durations

than do gamma pdf’s and lognormal pdf’s that often have been so used [45] [46].

3.3.2 The IG Neuron Channel Model

In a classic paper Schrödinger [47] showed that the time it takes what now is generally called

a Wiener process with negative drift to fall from an initial height to zero is IG distributed.

Wiener processes have infinitesimal Gaussian increments, whereas we have argued that the

process we call {Λ(t)} has fine-grained positive increments that occur in accordance with an

inhomogeneous Poisson process. Within a given ISI, however, we have agreed in Section 3.2

to adopt a homogeneous Poisson model with a random intensity Λ that equals the arithmetic

average of Λ(t) over that ISI. Under this Mean Value Assumption the PSP accumulation

behaves as a homogeneous filtered Poisson process during said ISI the increments of which

arrive at a fixed rate λ that is a realization of the r.v. Λ. These increments are not Gaussian,

however. Rather, they are a multitude of ionic charges with a positive mean, denoted by

m. 4 Also, their standard deviations are small because most of the ions have a charge of

magnitude 1 or 2, with + more likely than − and ++ more likely than −−. Since λt is of

4Some of the increments may be negative, corresponding to ion charges leaking off the PSP membrane to
ground, but the mean amplitude is positive.
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the order of 106 (likely more) at the time t at which threshold is crossed, we expect that the

PSP accumulation then, call it V (t), will be nearly Gaussian with mean mλt and variance

near m2λt, hence standard deviation near m
√
λt. It therefore has a coefficient of variation

close to 1/
√
λt ' 10−3, indicating high accuracy and hence capable information transfer.

The third central moment of a Poisson r.v. with intensity ν is equal to ν. In this case under

consideration ν ' m3λt, with the proportionality constant positive and less than 1. This is

because positive and negative displacements from the mean mλt have opposite signs when

cubed and are close to evenly balanced with a slight edge toward positivity. The principal

distinction between the actual pdf of V (t) and the Gaussian approximation thereto that

uses V (t)’s own mean and variance resides in this third central moment, since a Gaussian

symmetry around the mean forces all odd-order central moments to be 0. In the current

context, however, we see that the nonzero central moment shifts V (t) for t near the threshold

crossing time by a fractional amount that is O(
3
√
m3λt)/(mλt) = O((λt)−2/3) = O(10−4).

This implies that the Gaussian approximation is almost perfect near its mean, which implies

that we may safely use Schrödinger’s IG distribution as our stochastic neuron channel model.

Accordingly, in what follows we write

fT |Λ(t|λ) = Cλt
−3/2 exp

(
− γλt− β

λt

)
, (3.4)

2γ = (m/σ)2, 2β = (θ/σ)2, m and σ2 are the mean and variance of the charges of the ionic

contributions to and leakages from the membrane potential, and θ is the AP threshold voltage.

Again, we fix the time unit by setting γ = 1, whereupon we obtain the IG pdf

fT |Λ(t|λ) = Cλt
−3/2 exp

[
− λt− (θ/m)2

λt

]
. (3.5)
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3.3.3 Λ-Dependent Thresholds

We stress that θ may depend on the value λ upon which we are conditioning in Eq.(3.5).

Despite decades of neuroscientific experimentation, little is known about the behavior of

the threshold during an ISI. The membrane potential V (t) can be measured, but there is

no way of measuring how much above V (t) the threshold lies at time t; the only time an

experimenter knows the level of the threshold is the instant at which it is crossed. 5 However,

in our ionic model mλ(t) is the rate at which the PSP accumulation is increasing in the

immediate vicinity of time t. This permits computation of the realization λ of the r.v. Λ at

the moment the threshold is crossed as follows. At any elapsed time since j’s last AP, call it

s, the only summative pieces of information j has at its disposal about the net excitation it

has received during (0, s] are s itself (which is known everywhere throughout j) and V (s), the

current value of the membrane potential at the axon hillock from which j’s AP’s are emitted.

These, however, suffice for j to produce an estimate of the arithmetic average of Λ(r) over

0 < r ≤ s that becomes increasingly accurate as s grows. j has several means at its disposal

to adjust the AP threshold based on said estimate, among which are to genuinely raise or

lower the voltage threshold and/or to adjust the conductance from the PSP membrane to

ground to hasten or to delay the instant at which the threshold will be crossed. Although

it may have appeared impossible for the threshold to depend upon λ because, as we have

defined it, λ is not determined until the threshold is crossed, the preceding discussion reveals

that it is well within j’s ability to do effectively that very thing.

Let us assume for simplicity that the threshold’s dependence on λ is of the form

θ(λ) = cλµ, c > 0. (3.6)

For µ > 1 the threshold eventually grows asymptotically faster in λ than does the linearly

5Also, the instantaneous excitatory intensity Λ(t) is a non-observable abstraction, as is its arithmetic
average Λ over the post-refractory portion of the ISI. Even realizations λ of the r.v. Λ are not directly
observable at present because we have no way of simultaneously observing all the spike trains that are afferent
to j’s circa 10,000 postsynaptic terminals which are densely packed in 3D along its dendrites and soma.
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growing expected value of the PSP, so before long there would be an ISI that never ends.

Moreover, we cannot have µ < 0 because that would crush the T −∆’s of all the ISI’s into

a small range just above 0, thereby precluding accurate estimation of λ based on t, which

is inconsistent with our goal of energy efficient information transfer. Therefore, we need

consider only 0 ≤ µ ≤ 1. µ = 0 is the classical constant threshold for which we obtain

E[T |Λ = λ] =
const.

λ
, (3.7)

which has long and widely been felt to be the true nature of the inverse relationship between

ET and λ. However, that inference is unjustified because it is based on the misconception

that someone has physically measured λ, which we have noted is not a quantity that currently

can be measured. The “λ” that appears in the denominator of Eq.(3.7) might be any of

many monotonic functions of the “true” λ. In particular, if θ′s dependence on the “true” λ

is bλµ for some µ ∈ [0, 1), then E[T |Λ = λ] will be const./λ1−µ, hence monotonic decreasing

in λ as required to be in conformance with neuroscientific observations.

We henceforth set µ = 1/2, right in the center of the allowable range. The compelling

motivation for this choice is not its centrality; rather, it’s that when µ = 1/2 we are able to

solve exactly for the sought-after bpJ-maximizing fΛ(λ), as described below.

3.4 Mathematical Analysis of the IG Neuron Channel

with µ = 1/2

For any choice of fΛ(λ), the corresponding pdf of T −∆ is given by the integral equation

fT−∆(t) =

∫ ∞
0

fT−∆|Λ(t|λ)fΛ(λ)dλ, t ≥ 0. (3.8)

40



From Appendix A of [5] [6] [7], we know that fΛ(·) is bpJ-maximizing if and only if the

fT−∆(·) that it generates via equation (4.7) satisfies

∫ ∞
0

dtfT−∆|Λ(t|λ)

[
log(

fT−∆|Λ(t|λ)

fT−∆(t)
)−

m∑
i

gi(λ, t)

]
= 0 ∀ λ ≥ 0, (3.9)

where the gi, 1 ≤ i ≤ 5, are the energy terms itemized in Section 3.2.

3.4.1 Finding fT−∆(t) when α = −1/2 and µ = 1/2

With µ = 1/2, the θ2 in the numerator of the 1/t term in the exponent of Eq.(3.5) becomes

proportional to λ, thereby canceling the λ in the denominator and reducing the coefficient of

1/t in the exponent to a positive constant which we denote by b. Setting α = −1/2 to obtain

an IG neuron channel and substituting the functional forms of the gi’s into Eq.(4.8) gives

∫ ∞
0

dtCλe
−λt− b

t
− 3

2
log t

[
logCλ − λt−

b

t
− 3

2
log t− A−Bt− Cλt−D log t− G

t

]
=

∫ ∞
0

dtCλe
−λt− b

t
− 3

2
log t log fT−∆(t). (3.10)

Because the term logCλ in the square bracket in Eq.(3.10) does not depend on t and

Cλe
−λt− b

t
− 3

2
log t is the conditional pdf fT−∆|Λ(t|λ), the left-hand side of Eq.(3.10) equals

logCλ plus a revised version of said left-hand side in which logCλ no longer is present in the

square bracket. Making that change and then dividing by Cλ yields the next equation in

which we also have substituted s for λ throughout in anticipation of solving the equation via

Laplace transforms.

−A
∫ ∞

0

dte−ste−
b
t t−

3
2 − (G+ b)

∫ ∞
0

dte−ste−
b
t t−

5
2 −B

∫ ∞
0

dte−ste−
b
t t−

1
2

−(C + 1)s

∫ ∞
0

dte−ste−
b
t t−

1
2 −

(
3

2
+D

)∫ ∞
0

dte−ste−
b
t t−

3
2 log t− C−1

s logC−1
s

=

∫ ∞
0

dte−ste−
b
t t−

3
2 log fT−∆(t). (3.11)
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Note that the right-hand side of Eq.(3.11) is the Laplace transform of e−
b
t t−

3
2 log fT−∆(t).

Also, each term on the left-hand side in which the only place s appears is in a factor e−st in

the integrand of an integral over t from 0 to ∞ is the Laplace transform of the function of t

that constitutes the other factor of said integrand. There are only two terms on the left-hand

side that do not have that form, namely −C−1
s logC−1

s , and −(C + 1)s
∫∞

0
dte−ste−

b
t t−

1
2 . The

latter of these is recognized as the Laplace transform of −(C + 1) d
dt

(e−
b
t t−

1
2 ). Therefore,

applying the inverse Laplace transform operator L−1 to both sides of Eq.(3.11) yields

e−
b
t t−

3
2

[
− A− (G+ b)t−1 −Bt−

(
3

2
+D

)
log t

]
− (C + 1)

d

dt
(e−

b
t t−

1
2 )− L−1(C−1

s logC−1
s )

=e−
b
t t−

3
2 log fT−∆(t). (3.12)

It follows that, if we can evaluate the inverse Laplace transform from the s-domain to the

t-domain of the function −C−1
s logC−1

s on the left-hand side of Eq.(3.12), then exponentiation

of the resulting equation provides an explicit formula for fT−∆(t), 0 ≤ t <∞, the pdf of the

ISI duration (sans refractory period) that is induced by the bpJ-maximizing fΛ(λ). Once in

possession of said fT−∆(t), we proceed in Section 3.5 to solve Eq.(4.7) for the bpJ-maximizing

fΛ(λ).

3.5 Evaluating the Needed Inverse Laplace Transform

In the subfamily of IG distributions with γ = 1 and µ = 1/2, we have

C−1
s = 2(b/s)−

1
4

√
π/4
√
bse−2

√
bs =

√
π/be−2

√
bs

and therefore

−C−1
s logC−1

s = 2
√
πse−2

√
bs −

√
π/b log(

√
π/b)e−2

√
bs.
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Fortunately, both e−k
√
s and

√
se−k

√
s, where k is a positive constant, have known inverse

Laplace transforms given respectively by Eqs. (29.3.82) and (29.3.87) in [48]. When these

are inserted and the algebra is carried through, we obtain

fT−∆(t) = Kt−
3
2
−De−Bt−

Q
t , (3.13)

where K > 0 is a normalizing constant, Q = G+ bC, and both D and Q are positive. Note

that fT−∆(t) is a GIG pdf with a shape factor exponent −3
2
−D. Because D > 0, this GIG

density’s shape factor is more negative than that of an IG density. This agrees with fits to in

vitro experimental data re ISI durations of certain goldfish retinal ganglion cells reported

in [46], where each cell’s ISI pdf was best fit by GIG pdf’s as opposed to lognormals. Also,

the α values were negative for all these cells and more negative than -1/2 for some of them.

Given that these cells were not in behaving animals at the time and hence not receiving their

normal excitation patterns over an extensive time interval, these results lend credence to the

fact that goldfish RG cells may operate in the bpJ sensitive fashion we have postulated.

3.6 The Bits/Joule Maximizing fΛ(λ)

In this section we find fΛ(λ), the bpJ-maximizing pdf of the time average of the afferent

intensity over a randomly chosen ISI. We continue to assume that α = −1/2 and µ = 1/2

and to fix the time unit by setting γ = 1. The integral equation we need to solve for fΛ(λ) is

Kt−
3
2
−De−Bt−

Q
t =

∫ ∞
0

dλfΛ(λ)Cλt
− 3

2 e−
b
t e−λt, ∀ 0 ≤ t <∞. (3.14)

A factor of t−
3
2 is common to both sides of Eq. (3.14) so we cancel it. Multiplying both sides

by e
b
t and then temporarily replacing t by s throughout yields

∫ ∞
0

dλe−sλfΛ(λ)Cλ = Ks−De−Bse−
Q−b
s . (3.15)
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The left-hand side of this equation is recognized as the Laplace transform from the λ-domain

to the s-domain of the function CλfΛ(λ), so

CλfΛ(λ) = KL−1
s→λ (s−De−Bse−

Q−b
s ). (3.16)

Since all that a factor e−sB contributes to an inverse Laplace transform is a delay by B, we

may write

fΛ(λ) = KC−1
λ · L

−1
s→λ−B (s−De

b−Q
s ). (3.17)

Determination of fΛ(λ) therefore has been reduced to finding the inverse Laplace transform

of the function s−De
b−Q
s . Omitting unwieldy calculations in order to save space, we find with

the help of Eqs. (29.3.81) and (29.3.80) of the Laplace transform table in [48] that the result

we have been seeking is

fΛ(λ) = KC−1
λ (

λ−B
b−Q

)
D−1

2 ID−1(2
√

(b−Q)(λ−B))u(λ−B), (3.18)

where K > 0 is a positive normalizing constant, u(·) is the unit step function and ID−1 is a

modified Bessel function of the first kind with index D − 1, which function is positive and

integrable over its domain of definition for all D > 0. This result echoes a finding in [5] [6] [7],

wherein a more simplistic gamma pdf was used for fT |Λ(t|λ), that there is a range of low

values of λ to which the bpJ-maximizing afferent intensity with which the rest of the brain

excites an energy efficient neuron assigns zero probability. In the case of our IG channel

model and with µ = 1/2, that interval is 0 ≤ λ ≤ B. A major contrast between our earlier

gamma channel model and our current IG one is that all but a few low-order moments of

the bpJ-maximizing fΛ(λ) were infinite in the gamma model, whereas all moments of the

bpJ-maximizing fΛ(λ) given by Eq. (3.18) for the IG case with µ = 1/2 are finite.
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Chapter 4

Theoretical and Computational

Neuron Modeling: Non-Gaussian

Diffusion Model

With four parameters I can fit an elephant, and with five I can make him wiggle

his trunk.

-Enrico Fermi

Neuronal information processing is energetically costly. Energy supply restrictions on infor-

mation processing have caused brains to evolve to compute and communicate information

with remarkable efficiency. Indeed, energy minimization subject to functional constraints

is a unifying principle. Toward better comprehension of neuronal information processing

and communication from an information-energy standpoint, we consider a continuous time

continuous state-space neuron model with a generalized inverse Gaussian (GIG) conditional

density. This GIG model arises from a Lévy diffusion process that is more general than

that of a Wiener process with drift. We show that, when the GIG neuron operates so as to

maximize bits per joule (bpJ), the output interspike interval (ISI) distribution is a related

GIG marginal distribution. Also, we specify how to obtain the associated input distribution
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fΛ(λ) numerically. Then we analyze how to maximize I(Λ;T ) per joule of energy the neuron

expends when the energy cost function belongs to the family apropos of the GIG model. By

generalizing from the Gamma and inverse Gaussian (IG) families to the GIG family, the

derived results contain both the homogeneous Poisson and Wiener processes as special cases.

The results allow us to readily compute the tradeoff between information rate (bits/second)

and average power (Joules/second) in the GIG class, reminiscent of Shannon’s celebrated

formula for such curves for the additive Gaussian family.

4.1 Problem Statement and Preliminaries

4.1.1 Introduction

Neuronal information processing is energetically costly. The approximately 86 billion neurons

composing the human brain, despite comprising only 2% of the body weight, consume on

average 20% of the energy provided to the whole body when physically at rest [1] [2]. Energy

supply restrictions on information processing have caused brains to evolve so as to compute

and communicate information with remarkable efficiency. Indeed, energy minimization subject

to functional constraints is a unifying principle [4]. There is reason to believe that neurons

operate within a factor of 2 of the fundamental limit of kT log2(e) Joules per binary write-

read-erase cycle, k being Boltzmann’s constant and, here only, T being body temperature

in degrees Kelvin. Since neurons are expressly designed to exchange information with one

another, We are led to believe that understanding the relationship between information

processing and energy expenditure at the neuronal level is fundamental to understanding

brain networks. This has led an increasing fraction of neuroscientists to subscribe to the

view that each neuron’s design should maximize the ratio of the rate at which it conveys

information (in the sense of the aforementioned write-read-erase cycle) to the rate at which

it expends energy. Hence we need to understand how an adequate supply of adenosine
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triphosphate (ATP), the molecular unit of currency for energy transfer, is ensured for each

neuron’s information processing.

Information theory has often been applied in neuroscientific data analysis and biological

systems modeling [12] [13] [15]. However, energy-efficient neural codes have only been

studied for less than thirty years [16] [17] [18]. Evidence supporting energy efficiency has

been reported for ion channel [4], action potential [19], synapse [20], photoreceptor [21],

retina [22] [23], grey matter [24], white matter [25] and cortex [26]. Laughlin and Sejnowski

discussed communication in cortical networks from an energy-efficiency point of view [27].

Toward better comprehension of neuronal information processing and communication from

an information-energy standpoint, we earlier proposed and studied mathematical models of

single neurons as engines of computation and communication based on both the homogeneous

Poisson process [5] [6] and the Wiener process [8].

In this Chapter the goal is to extend the analysis to a model supported by a more general

Lévy diffusion process. This results in a fixed threshold hitting time the probability density

function (pdf) of which belongs to the three-parameter generalized inverse Gaussian (GIG)

family. The GIG class subsumes many key two-parameter first passage time distribution

families including the Gamma and inverse Gaussian (IG) distributions. By virtue of the

infinitely divisible property of the GIG family, the associated GIG neuron channel model

represents the random excitation and inhibition intensity at the axon initial segment in

a manner that appeals both to neuroscientists and to mathematical statisticians, thereby

promising to deepen our understanding of how information processing is performed at the

ionic level, at the neuronal level, and perhaps eventually at the network level.

4.2 Neuronal Stimulation

A neuron in the brain receives stimulation in the form of individual spike trains from each

member of a set of other neurons and/or sensory ganglia called the neuron’s afferent cohort.
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These spike trains each arrive at a unique synapse between the axon of a member of the

afferent cohort and the dendrite tree or soma of the neuron we seek to analyze. We henceforth

call that neuron “neuron j”, or just “j” when that is unambiguous. In this Chapter we

define the intensity of j’s stimulation in a way that significantly differs mathematically from

how we have in our earlier work. Neuronal stimulation usually is defined presynaptically

by postulating a mathematical model of the totality of the afferent spike trains. Having to

postulate a model is an unavoidable consequence of the following facts.

1. The average cardinality of the afferent cohorts of neurons in primary sensory cortex is

circa 10, 000; certain neurons in the vestibular sensory modality (balance) are bombarded

simultaneously by more than 100, 000 afferent spike trains.

2. It is not currently possible to make in vivo experimental measurements of the activity of

all of these afferent spike trains at once; in fact, it has only recently become possible to

measure the arrival of the spikes of even a single such train directly at the presynaptic

terminal to which it is afferent.

3. Many synapses are excitatory and many others are inhibitory.

4. Controversy abounds as to whether spike trains from different members of the afferent

cohort are effectively asynchronous or whether they often exhibit statistically significant

synchrony. The argument against such synchrony is strong as regards the individual

spike times in different afferent spike trains. On the other hand there is strong evidence

of statistically significant correlation of spiking rates on the part of different members

of the afferent cohort when said rates are calculated over time intervals comparable to

the mean long-term interspike interval (ISI) duration.

Accordingly, to date and probably for some years or decades to come, analytical theorists

have the combined advantage and challenge of characterizing afferent stimulation in a manner

that is both physically reasonable and mathematically tractable.
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The time at which j emits its next spike is determined not presynaptically but postsynapti-

cally at j’s axon hillock where j’s “spike generator” is located. In response to the net afferent

stimulation since the last time j generated a spike, a time-varying potential is produced on the

postsynaptic cell membrane. The value of this membrane potential in the immediate vicinity

of the spike generator is called the postsynaptic potential (PSP). When the PSP reaches a

predetermined threshold value, j emits its next spike. Changes in the PSP over infinitesimally

short intervals are effected by the depositing of ions onto the postsynaptic membrane and by

the departing of ions that either leak to ground or are attracted elsewhere. Some of these

ions are positively charged and others negatively. This suggests that despite the inherently

presynaptic nature of j’s afferent stimulation, its pragmatic effect resolves postsynaptically to

the behavior versus time of the PSP comprising the diffusion of a multitude of ions. Modeling

j’s spiking behavior via this ionic diffusion has the desirable effects of allowing for both

excitatory and inhibitory synapses and for PSP leakage, two crucial phenomena that are

difficult to incorporate when one models j’s stimulation presynpatically. Accordingly, we

model the interspike interval (ISI) random variable T as the time it takes a certain diffusion

of ionic particles that possesses an average positive drift rate of charge during the ISI to reach

the spiking threshold. Although said average drift rate, which we denote by the random

variable, Λ, must be positive in order to reach a positive threshold starting from an initial

level we define to be 0, the PSP will exhibit both positive and negative fluctuations during

the ISI.

4.2.1 GIG Hitting Times

The work of Barndorff-Nielsen et al. [43] [44] describes a time-homogeneous Markovian

diffusion that, for a given value λ of a positive drift rate random variable (r.v.) Λ, creates a

random first passage time (hitting time) to a fixed threshold level that possesses the GIG

conditional pdf

fT̃ |Λ(t|λ) = Cαλ
αtα−1 exp

(
− γλt− β

λt

)
, (4.1)
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Figure 4.1: GIG densities for four choices of parameters (a, b, c) in Eq. (4.10).

where the normalizing constant’s reciprocal is

C−1
α = 2

(
β

γ

)α
2

Kα(2
√
βγ). (4.2)

Here α is real, β is real and nonnegative, γ is real and positive, Kα(·) is a modified Bessel

function of the second kind of order α and T̃ := T − ∆, where ∆ is the duration of the

modeled neuron’s refractory period. fT̃ |Λ(t|λ) is called a GIG conditional pdf with parameters

α, β and γ. Setting λ = 1 in Eq. (4.1) yields the unconditional GIG pdf several examples of

which are shown in Figure 2.1.

In 1915 Schrödinger [47] considered a particle released at time 0 at height h above the

ground whose altitude diffuses according to a Brownian motion in the earth’s gravitational

field, taking into account that in the steady-state the density of particles increases as one

approaches the ground. Such a particle’s mean negative drift rate is constant. If the magnitude

of this drift rate is denoted by λ, then the pdf of the time at which the particle first hits the

ground is given by the special case of Eq. (4.1) in which α = −1/2, with β proportional to
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h2. The α = −1/2 case is known as the IG pdf. In the context of neuronal PSP, the IG pdf

governs the time it takes the PSP to hit a fixed positive threshold level θ if it starts at zero at

the end of the neuron’s refractory period and diffuses according to what modern parlance calls

a Wiener process with positive drift rate λ; β is proportional to θ2. That model of neuronal

spiking, first introduced by Gerstein and Mandelbrot [42], clearly is the drift-reversed version

of Schrödinger’s problem with θ in the role of h. It is possible to extend the IG pdf to cases in

which the threshold varies with the time t and/or is adapted in accordance with a time-varying

estimate of the empirical drift rate that equals t−1 times the PSP level at time t [49]. We

have several good reasons to generalize from the IG model to the GIG model. Here are three

of them.

• The IG model lacks certain closure properties. The most crucial of these for our

purposes is that, if the conditional pdf of T̃ given Λ = λ is IG and the neuron is

designed to maximize bits transmitted per Joule expended (bpJ), then the marginal pdf

of T̃ will be GIG. This is a consequence of recent work of ours in which we have shown

that, if the conditional pdf of T̃ given Λ = λ is GIG(α, β, γ) and bpJ maximization

prevails, then the marginal of T̃ is GIG(a, b, c). The parameter vector (a, b, c) differs

from (α, β, γ). So, closure holds in this sense for the GIG family but not for the IG

family (see Section 4.4).

• Allowing α to vary is crucial to achieving the rich variety of pdf shapes as partially

illustrated in Figure 4.1. This is highly important to our current view that neuron

j can adapt its parameters (α, β, γ), albeit rather slowly and over limited ranges.

We conjecture in Section 4.3 that this plays a critical role in how j maintains bpJ

maximization despite slow but continual changes over time in the probability distribution

of the environmental stimulation that j receives from its afferent coherent.

• The strength of a model increases with the number n of its parameters for n ≤ 3, but

it decreases for n > 3. To bolster this arguable claim, we both refer and defer to the
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Figure 4.2: Outline of an elephant with the wiggling trunk. [51]

(in)famous remark of John von Neumann re “overmodeling” as quoted to Freeman

Dyson by Enrico Fermi [50]:

“With four parameters I can fit an elephant, and with five I can make him

wiggle his trunk.”

Although subsequent attempts at fitting an elephant needed dozens of parameters,

a good 4-parameter fit was achieved in 2009 [51]; see Figure 4.2. However, the 4

parameters are complex, so this fit really uses 8 parameters; adding a ninth supports

wiggling the trunk.

4.2.2 Modeling Neural Inputs and Outputs

We first introduce a mathematical framework for how our single neuron, j, stochastically

processes and communicates information. The output of j is a temporal sequence of effectively
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identically shaped narrow voltage spikes, also known as action potentials (AP’s). The

durations of the interspike intervals (ISI’s) between j’s AP’s constitute a random sequence

which we denote by {Tk, k = 1, 2, · · · }.

Neuron j’s external excitation and inhibition comprises a collection of neural spike trains

generated by the afferent presynaptic neurons, called j’s afferent cohort. j’s afferent synapses

are connections between these neurons and j. When a spike arrives at the presynaptic

terminal of a member of j’s afferent cohort, the depolarization it provides opens the calcium

channels in the presynaptic bouton, producing a calcium influx. Calcium elevations in the

cytoplasm permit vesicles containing neurotransmitters to fuse quickly with the presynaptic

membrane and to release an amount of neurotransmitters based on the size of the vesicle.

Those neurotransmitters diffuse within the synaptic cleft. Although some escape, many bind

to the postsynaptic receptors. That, in turn, causes the opening of the ion channels, eventually

resulting in a net gain of positive or negative voltage across the postsynaptic membrane,

either via an excitatory postsynaptic potential (EPSP) or an inhibitory postsynaptic potential

(IPSP), respectively. Both EPSP’s and IPSP’s combine to produce the postsynaptic potential

(PSP) at the axon hillock. Once the PSP exceeds a triggering threshold, j generates another

output spike that propagates along its axon to each member of a family of neurons referred

to as j’s efferent cohort. A typical neuron in primate sensory cortex has afferent and efferent

cohorts each of which is composed of circa 10, 000 neurons.

As in [6], we allow the weights of the synapses to differ from one another. Now we also

admit inhibitory synapses. Furthermore, we model the excitation intensity not presynaptically

as in [5] but postsynaptically as the PSP at the axon hillock generated by the arrival thereto

and the leakage therefrom of both positively and negatively charged ions. We continue to

assume that each of j’s refractory periods has the same duration, ∆. This theoretical extension

embraces the plasticity of a neuron’s synaptic weights, widely considered essential to learning

and memory, thereby increasing the chances that the model has practical significance [6] [35].
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We model the PSP as a random measure with a continuous-time instantaneous rate

function, Λ(t), defined by

Λ(t) := lim
dt→0

±Q · Pr[arrival/departure of ion in(t, t+ dt)]

dt
, (4.3)

where Q is the magnitude of the charge of the ion and “+” applies if the ion is either positively

charged and is arriving or negatively charged and is departing; otherwise “−” applies. As

in [5] [6] [8], we take a time average operation over the rate function Λ(t) and obtain

Λk =
1

Tk −∆

∫ Sk

Sk−1+∆

Λ(u)du, (4.4)

where Tk is the kth ISI duration of j and Sk = T1 + · · ·+ Tk.

Henceforth, we suppress the ISI index k and just write T and Λ. Thus, when Λ = λ,

the PSP is being assumed to build up according to a diffusion process with a time-averaged

intensity λ which must be positive in order for the threshold to be reached.

4.2.3 Information Rate

Here we are interested in the Shannon mutual information, I(Λ;T ). Although this has been

defined for a single pair of r.v.’s Λ and T , it has been shown that it is a good first-order

approximation to the long-term information rate in bits per spike, namely

I := lim
N→∞

1

N
I(Λ1, . . . ,ΛN ;T1, . . . , TN), (4.5)

lacking only an information decrement that addresses correlation among successive Λi’s,

which is approximated to the first order in [5] [6] [7]. Since T̃ is a one-to-one function of T ,

we have I(Λ;T ) = I(Λ; T̃ ), which in turn is defined as

I(Λ; T̃ ) = E

[
log

(
fT̃ |Λ(T̃ |Λ)

fT̃ (T̃ )

)]
, (4.6)
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where the expectation is taken with respect to the joint pdf (jpdf) of Λ and T̃ . Henceforth, we

contract notation from T̃ to T . Toward determining I(Λ;T ), we proceed to analyze fT |Λ(t|λ)

and fT (t) in the GIG case.

4.3 What is being optimized inside the neuron?

Neuron j has the ability to slowly adapt parameters in fT |Λ(t|λ) by changing synaptic weights

via the size and number of presynaptic active zones, the number of vesicles and postsynaptic

receptors, among many other properties. In the case of the GIG channel of Eq. (4.1) above,

it is able to change the three parameters α, β and γ in the conditional pdf fT |Λ(t|λ). It is

reasonable to postulate that, if the input distribution fΛ(λ) changes slowly over time, j will

adjust these parameters in an attempt to preserve its bits per joule (bpJ) optimization. From

the information theory point of view, it is the joint distribution of Λ and T that determines

I(Λ;T ). Moreover, fΛ,T (·, ·) also determines the average energy that j expends, which we

model in terms of functions of Λ and T .

Neuron j has a modicum of control over the marginal distribution of Λ, which we measure

at the ion level at the axon hillock. For example, j can do this by the aforementioned synaptic

plasticity including Long-term potentiation (LTP) and Long-term depression (LTD). However,

the bulk of the variations of fΛ(·) is effected by phenomena external to j.

We consider that j’s internal modifications to fΛ(·) are in the spirit of a one-to-one

transformation of the afferent excitation/inhibition intensity statistics that, in conjunction

with a GIG fT |Λ(·|·) with appropriately modified values of α, β and γ, facilitates the overall

joint bpJ optimization. This formulation differs sharply and significant from our earlier work

in which we considered the neuron channel model fT |Λ(·|·) to be fixed and solved for which

afferent pdf fΛ(·) maximizes bpJ for this fixed channel. That amounted to an assumption

that the rest of the brain somehow sees to it that each neuron is stimulated afferently by

the fΛ(·) that maximizes its bpJ performance. Now, for each choice of (α, β, γ) we get the
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same optimum fΛ(·) we would have the old way (albeit now physically situated at the axon

hillock) and hence the same optimized bpJ. The essence of the distinction is that now we

are envisioning that there is indeed a “choice” of (α, β, γ) in which j is actively involved.

In other words, in response to statistical changes in its external stimulation, j adaptively

adjusts both the statistics of the associated fΛ(·) that it produces at the axon hillock and

its (α, β, γ) parameters to effect joint bpJ maximization. Mathematically, for each choice of

(α, β, γ) there is exactly one fΛ(·) that genuinely maximizes bpJ. Neuron j will not succeed

in producing precisely that fΛ(·). However, doing so would not make practical sense because

j’s fΛ(·) never stays fixed long enough that its precise long-term statistics get the chance to

fully exhibit themselves the way a fixed choice of fΛ(·) would for an unadaptable fT |Λ(·|·).

4.4 Bits per Joule Optimality Condition

For any choice of fΛ(λ), the corresponding pdf of T is given by the integral equation

fT (t) =

∫ ∞
0

dλfT |Λ(t|λ)fΛ(λ), ∀t ≥ 0. (4.7)

From Appendix A of [5], we know that fΛ,T (·, ·) = fΛ(·)fT |Λ(·|·) is bpJ-maximizing if and

only if the fT (·) that it generates via Eq. (4.7) satisfies

∫ ∞
0

dtfT |Λ(t|λ)

[
log

(
fT |Λ(t|λ)

fT (t)

)
−

6∑
i=1

gi(λ, t)

]
= 0, ∀λ ≥ 0, (4.8)

where gi, 1 ≤ i ≤ 6, are the energy terms itemized as below:

• g1(λ, t) = A, a positive constant. An example of this is the energy j must expend in

order to propagate the spike it generates at the end of the ISI to all its target neurons.

This and other fixed costs per ISI sum to A.

• g2(λ, t) = Bt, where B is a positive constant. The metabolic energy the neuron expends

keeping itself healthy and nourished during an ISI would be an example. This grows
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linearly with the duration of the ISI no matter whether j is processing relatively

intensely during it or not.

• g3(λ, t) = Cλt, C a positive constant. This term addresses the energy j devotes to

generating contributions to the PSP accumulation by processing all the spikes afferent

to it during the ISI. 1

• g4(λ, t) = L
t
, L being a positive constant. g4 charges a high energy cost for small values,

t, of the r.v. T . That such a small-t penalty must exist is apparent from the definition

of ∆ as the least amount of time after one AP that another can be produced in response

to natural afferent excitation. Although an experimenter can evoke AP’s separated by

less than ∆ by injecting a large current into the axon hillock, this requires supplying

power far exceeding what the neuron can expend on its own. It stands to reason that

the closer to t = ∆ the neuron produces an AP in response to natural stimulation, the

more energy it takes to do so.

• g5(λ, t) = G
λt

, G being a positive constant. Although E[T |Λ = λ] is of the form Const./λ,

so that E[ΛT ] = Const., it is still true that no matter how small (large) any λ is, it will

occasionally produce a t that also is small (large). g5 associates an energy expenditure

that “corrects” for departures of ΛT from E[ΛT ].

• g6(λ, t) = −D log t. If D > 0, then this logarithmic term charges an energy penalty

whenever t < 1 and “rewards” t-values smaller than the time unit, and conversely, if

D < 0. Note that this logarithmic term is dominated by g2(λ, t) = Bt when t is large

and by g4(λ, t) = L/t when t is small, provided D is not many times larger than B

or L, respectively. Hence g6 serves as a fine tuning adjustment to g2 and/or g4. It is

widely felt that most neurons are finely tuned.

1In order for Cλt not to be an oversimplification, there needs to be, regardless of the value of λ, enough
separate contributions to PSP during an ISI that the coefficient of variation of the number of them and that
of the weights of the synapses that generate them both are smaller than, say, 0.1. Primary cortical neurons,
among others, conform to these conditions.
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Thus, equation (4.8) becomes the following:

∫ ∞
0

dtfT |Λ(t|λ)

[
log

(
fT |Λ(t|λ)

fT (t)

)
−
(
A+Bt+ Cλt+

G

λt
+
L

t

)
+D log t

]
= 0, ∀λ ≥ 0,

(4.9)

where the conditional pdf fT |Λ(t|λ) follows a GIG conditional pdf Eq. (4.1).

4.5 Marginal Output ISI Distribution fT (t) is a GIG

distribution

Temporarily assume that when bpJ is maximized by virtue of satisfaction of Eq. (4.9), the

marginal ISI pdf fT (t) follows a GIG distribution

fT (t) = Cat
a−1 exp

(
− ct− b

t

)
, (4.10)

where

C−1
a = 2

(
b

c

)a
2

Ka(2
√
bc). (4.11)

After substituting Eq. (4.1) and Eq. (4.10) into Eq. (4.9), it follows that

∫ ∞
0

dtfT |Λ(t|λ)

[
logCα + α log λ− A+ (α− 1 +D) log t−Bt− (γ + C)λt− (β +G)/λ+ L

t

]
=

∫ ∞
0

dtfT |Λ(t|λ)

[
logCa + (a− 1) log t− ct− b

t

]
, ∀λ ≥ 0. (4.12)
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Next, note the following expectation equalities:

E[T |λ] =

∫ ∞
0

dt tfT |Λ(t|λ)

=

∫ ∞
0

dt Cαλ
αtα exp

(
− γλt− β

λt

)
=

√
β

γ

Kα+1(2
√
βγ)

Kα(2
√
βγ)

1

λ
; (4.13)

E
[

1

T

∣∣∣∣λ] =

∫ ∞
0

dt
1

t
fT |Λ(t|λ)

=

∫ ∞
0

dt Cαλ
αtα−2 exp

(
− γλt− β

λt

)
=

√
γ

β

Kα−1(2
√
βγ)

Kα(2
√
βγ)

λ; (4.14)

E[log T |λ] =E[log λT |λ]− log λ

a
=

∫ ∞
0

dx Cαx
α−1 exp

(
− γx− β

x

)
log x− log λ

=
1

2
log

β

γ
+

∂
∂α

[Kα(2
√
βγ)]

Kα(2
√
βγ)

− log λ. (4.15)

Equality (a) is due to the replacement of λt with x.

Rewriting Eq. (4.12) as

logCα + α log λ− logCa − A+ (α+D − a)E[log T |λ]− (B − c+ (γ + C)λ)E[T |λ]

−
(
L− b+

β +G

λ

)
E
[

1

T

∣∣∣∣λ] = 0,∀λ ≥ 0, (4.16)
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and substituting Eqs. (4.13), (4.14) and (4.15) into Eq. (4.16) yields

logCα + α log λ− logCa − A+ (α +D − a)

(
1

2
log

β

γ
+

∂
∂α

[Kα(2
√
βγ)]

Kα(2
√
βγ)

− log λ

)
− (B − c+ (γ + C)λ)×

(√
β

γ

Kα+1(2
√
βγ)

Kα(2
√
βγ)

1

λ

)
−
(
L− b+

β +G

λ

)(√
γ

β

Kα−1(2
√
βγ)

Kα(2
√
βγ)

λ

)
= 0, ∀λ ≥ 0.

(4.17)

Upon defining

Cconst := logCα − logCa − A

=
a

2
log

b

c
− α

2
log

β

γ
+ log

Ka(2
√
bc)

Kα(2
√
βγ)
− A. (4.18)

We may recast Eq. (4.17) in the form

Cconst+α log λ+ (α +D − a)

(
1

2
log

β

γ
+

∂
∂α

[Kα(2
√
βγ)]

Kα(2
√
βγ)

− log λ

)
− (B − c+ (γ + C)λ)

×
(√

β

γ

Kα+1(2
√
βγ)

Kα(2
√
βγ)

1

λ

)
−
(
L− b+

β +G

λ

)(√
γ

β

Kα−1(2
√
βγ)

Kα(2
√
βγ)

λ

)
= 0, ∀λ ≥ 0.

(4.19)

By letting a = D, b = L and c = B, all λ’s disappear entirely from Eq. (4.19), yielding

C ′const + α
∂
∂α
Kα(2

√
βγ)

Kα(2
√
βγ)

− (γ + C)

√
β

γ

Kα+1(2
√
βγ)

Kα(2
√
βγ)

− (β +G)

√
γ

β

Kα−1(2
√
βγ)

Kα(2
√
βγ)

= 0, ∀λ ≥ 0,

(4.20)

where

C ′const =
a

2
log

b

c
+ log

Ka(2
√
bc)

Kα(2
√
βγ)
− A.
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Therefore, our temporary assumption that the bpJ-maximizing marginal output ISI distribu-

tion is GIG is validated because the bpJ-maximizing fT (t) is the GIG pdf

fT (t) = Cat
a−1 exp

(
− ct− b

t

)
(4.21)

with Ca defined as in Eq. (4.11) and with a = D, b = L and c = B.

4.6 Shannon Mutual Information I(Λ;T ) Calculation

In order to calculate the Shannon mutual information I(Λ;T ), we first need a lemma.

Lemma 1 Channel 1 and Channel 2 described below are equivalent in the sense of proba-

bilistically generating the same output r.v. T given the identical input distribution fΛ(λ).

Channel 1: The r.v.’s Λ and T are related by

T
d
=

1

Λ
· U, (4.22)

where U is independent of Λ and has the pdf

fU(u) = Cαu
α−1 exp

(
− γu− β

u

)
, 0 < u <∞, (4.23)

which is the special case of the conditional pdf fT |Λ(t|λ) in which λ = 1 and u plays the role of

t. Eq. (4.22) is equality in distribution, which implies that T and U
Λ

are identically distributed

r.v.’s.

Channel 2: The property characterizing this channel is the conditional pdf

fT |Λ(t|λ) = Cαλ
αtα−1 exp

(
− γλt− β

λt

)
, (4.24)
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Figure 4.3: GIG Channel 1.

Figure 4.4: GIG Channel 2.

where Cα is defined as in Eq. (4.2).
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Proof: Channel 1 ⇒ Channel 2.

For Channel 1, suppose Λ = λ, then T = U
λ

. Hence we have the following

|fT |Λ(t|λ)dt| =
∣∣∣∣fU

Λ

∣∣Λ
(
u

λ

∣∣∣∣λ)dt

∣∣∣∣, (4.25)

fT |Λ(t|λ)
a
=fU

λ

(
u

λ

)
. (4.26)

Equality (a) holds due to the independency between U and Λ and the nonnegativity of the

pdf’s.

Since r.v. U follows a GIG distribution with pdf Eq. (4.23), it yields that

∣∣fU
λ

(x)dx
∣∣ =|fU(u)du| = |λfU(λx)dx|, (4.27)

fU
λ

(x)
b
=λfU(λx). (4.28)

Equality (b) holds because of the nonnegativity of the pdf’s.

Thus, based on Eqs. (4.26), (4.28) and (4.23), we finally have

fT |Λ(t|λ) = λ · Cα(λt)α−1 exp

(
− γλt− β

λt

)
. (4.29)

Channel 2 ⇒ Channel 1.

For Channel 2, we have as the conditional pdf describing the nature of the channel noise

fT |Λ(t|λ) = λ · Cα(λt)α−1 exp

(
− γλt− β

λt

)
. (4.30)

Let U = λ · T (i.e., u = λt); then

|fT |Λ(t|λ)dt| =|fU |Λ(u|λ)du|

=|fU |Λ(u|λ)λdt|. (4.31)
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Furthermore, if we assume U is independent of Λ, we have

fU(u) =fU |Λ(u|λ) =
1

λ
· fT |Λ(t|λ) (4.32)

=Cαu
α−1 exp

(
− γu− β

u

)
. (4.33)

Therefore, Channel 1 and Channel 2 are equivalent because they share the same condional

pdf of T given Λ. �

According to Lemma 1, by defining W = logU , V = log T and Z = − log Λ, we obtain

V = W + Z, (4.34)

where W and Z are independent.

Henceforth, it follows

I(Λ;T ) = I(Z;V )

= h(V )− h(V |Z)

= h(log T )− h(logU). (4.35)

Since

h(log T ) = −E[log fV (V )] = −E[log (fT (T ) · T )]

= −E[log fT (T )]− E[log T ]

= h(T )− E[log T ], (4.36)
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the mutual information I(Λ;T ) then can be written as

I(Λ;T ) = [h(T )− E log T ]− [h(U)− E logU ]

= −
∫ ∞

0

dtfT (t) log (t · fT (t)) +

∫ ∞
0

dufU(u) log (u · fU(u)). (4.37)

Due to the following integral equalities:

∫ ∞
0

du Cαu
α−1 exp

(
− γu− β

u

)
· α log u = α

[ ∂
∂α
Kα(2

√
βγ)

Kα(2
√
βγ)

+
1

2
ln
β

γ

]
; (4.38)

∫ ∞
0

du Cαu
α−1 exp

(
− γu− β

u

)
· γu = γ

√
β

γ

Kα+1(2
√
βγ)

Kα(2
√
βγ)

; (4.39)

∫ ∞
0

du Cαu
α−1 exp

(
− γu− β

u

)
· β
u

= β

√
γ

β

Kα−1(2
√
βγ)

Kα(2
√
βγ)

, (4.40)

by substituting Eqs. (4.38) (4.39) (4.40) into Eq. (4.37) we can eventually obtain

I(Λ;T ) = log
Ka(2

√
bc)

Kα(2
√
βγ)

+
√
bc

[
Ka+1(2

√
bc) +Ka−1(2

√
bc)

Ka(2
√
bc)

]
−
√
βγ

[
Kα+1(2

√
βγ) +Kα−1(2

√
βγ)

Kα(2
√
βγ)

]
+ α

∂
∂α
Kα(2

√
βγ)

Kα(2
√
βγ)

− a
∂
∂a
Ka(2

√
bc)

Ka(2
√
bc)

. (4.41)
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4.7 Energy Expenditure e(Λ, T ) Calculation

For the expected energy expenditure, we have

e(Λ, T ) = E
[ 6∑
i=1

Gi(Λ, T )

]
(4.42)

= A+BE[T ] + LE
[

1

T

]
+ CE[ΛT ] +GE

[
1

ΛT

]
−DE[log T ]. (4.43)

Since

E[T ] =

√
b

c

Ka+1(2
√
bc)

Ka(2
√
bc)

; (4.44)

E
[

1

T

]
=

√
c

b

Ka−1(2
√
bc)

Ka(2
√
bc)

; (4.45)

E[log T ] =
∂
∂a
Ka(2

√
bc)

Ka(2
√
bc)

+
1

2
ln
b

c
; (4.46)

E[ΛT ] =

√
β

γ

Kα+1(2
√
βγ)

Kα(2
√
βγ)

; (4.47)

E
[

1

ΛT

]
=

√
γ

β

Kα−1(2
√
βγ)

Kα(2
√
βγ)

, (4.48)
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Figure 4.5: Information vs energy plot.

the expected energy consumption can be written as

e(Λ, T ) =A+
√
bc

[
Ka+1(2

√
bc) +Ka−1(2

√
bc)

Ka(2
√
bc)

]
+ C

√
β

γ

Kα+1(2
√
βγ)

Kα(2
√
βγ)

+G

√
γ

β

Kα−1(2
√
βγ)

Kα(2
√
βγ)

− a
[ ∂
∂a
Ka(2

√
bc)

Ka(2
√
bc)

+
1

2
ln
b

c

]
. (4.49)

Substituting Eq. (4.20) into Eq. (4.49), we can surprisingly find

I(Λ;T ) = e(Λ, T ). (4.50)

4.8 Possible Explanations for I(Λ;T ) = e(Λ, T )

Equation (4.50) establishes the perhaps surprising result that, under the assumptions employed

to derive it, the curve of the optimum number of bits per second transmitted versus the

average power the GIG neuron expends in order to send them actually doesn’t curve at all; it

67



is a straight line! (It appears to have slope 1, but its numerical slope actually depends on the

units used for bits and for energy.) Although such a straight line does not violate information

theory’s dictate that an average power constrained channel’s capacity in bits per second must

be concave, it certainly is unintuitive that said curve actually would be a straight line in

practice. In the following paragraphs, we give some reasons for why the capacity curve for a

GIG neuron channel actually is strictly concave.

Our GIG diffusion model assumes the existence of a probability density solution to the

optimization problem of maximizing bits per Joule. If this assumption is invalid, then such

a Lagrangian formulation of the problem is inappropriate. If the optimum occurs on the

constraint boundary rather than in the interior, it becomes necessary to use Karush-Kuhn-

Tucker (KKT) theory to solve the problem via convex mathematical programming. In that

event the information, I, versus energy, e, curve likely will bend eventually as bits and energy

increase instead of remaining a straight line. Another reason why the physical I versus e

curves likely will bend eventually is that the GIG diffusion model we have analyzed does not

take thermal noise into account, whereas real neuron channels always harbor it. Furthermore,

the Berger-Levy (BL) model [5] does not have a 1
T

term in the exponent the way the GIG

model does. Accordingly, the BL model scarcely discourages high values of the frequency

variable λ, whereas the GIG diffusion channel imposes a rapid decay of fΛ(λ) for large λ’s.

Real neurons can and do open up their bandwidth in order to process rapidly varying signals

(i.e., high-λ signals). Because of this adaptive bandwidth variation, thermal noise power goes

up whenever the neuron is obliged to process high frequency excitations because thermal noise

fills the entire broad bandwidth associated with high frequency signal processing. Accordingly,

for white thermal noise of power spectral density N0, the signal-to-noise ratio, SNR= S
N0·λ ,

decreases as λ increases because the average energy, S, does not increase when λ increases.

Not only is the energy cost of propagating a spike to all of the neuron’s targets the same

whether the ISI at whose end the spike is generated is a short ISI typical of a high λ or a

long one characteristic of a low λ, but also the average amount of energy expended to process
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afferent signals until the PSP crosses the threshold does not depend on λ either for a GIG

neuron. This is because that energy is proportional to the λt product, so by the smoothing

property of conditional expectation its expected value is E[ΛT ] = E[ΛE[T |Λ]]; however, for

a GIG model E[T |Λ] is proportional to 1/Λ, so the overall value of E[ΛT ] is a constant.

Accordingly, we conjecture that in order for a neural network to be able to perform close

to the thermodynamic limit, it needs to excite its neurons so that each of them operates

principally in the (low bits, low energy) regime most of the time and is driven into the (high

bits, high energy) regime relatively rarely, thus allowing the brain to operate as a totality in

an energy-efficient manner.

However, the relatively rare but often important instances during which a neuron’s input

rate λ is well above its mean value are characterized by the following two scenarios. First,

when low SNR occurs, the percentage accuracy of the bits received during such instances

(not the number of bits received, but their percentage accuracy) will decrease due to the fact

that such low-SNR events suffer from reduced bits transmitted successfully per unit of energy

expended, thereby probably resulting in an energy-constrained capacity curve that exhibits

strict concavity. Alternatively, if one wants to maintain the accuracy to recover the received

bits, it needs extra energy to amplify the signal in order to increase the SNR, which will

eventually cause the curve to bend.

4.9 Bits per Joule Optimizing Input Probability Dis-

tribution fΛ(λ)

According to Lemma 1, by defining W = logU , V = log T and Z = − log Λ, we obtain

V = W + Z. (4.51)
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Figure 4.6: fΛ(λ) plots for two sets of (α, β, γ, a, b, c).

According to Equation 7 on page 959 of [36],

Kν(xz) =
z2

2

∫ ∞
0

dt exp

[
− 1

2

(
xt+

xz2

t

)]
t−ν−1, (4.52)

the characteristic functions of V and W can be obtained as

ψV (x) =

(
b

c

) jx
2 K−a−jx(2

√
bc)

Ka(2
√
bc)

; (4.53)

ψW (x) =

(
β

γ

) jx
2 K−α−jx(2

√
βγ)

Kα(2
√
βγ)

. (4.54)

Therefore, due to the independence between V and W , the characteristic function of Z can

be written as:

ψZ(x) =
ψV (x)

ψW (x)

=

(
γb

βc

) jx
2 Kα(2

√
βγ)

Ka(2
√
bc)

K−a−jx(2
√
bc)

K−α−jx(2
√
βγ)

, (4.55)

which can be Fourier inverted allowing us to eventually obtain fΛ(λ) as
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fΛ(λ) =
1

2πλ

∫ ∞
−∞

dx

(
λ

√
γb

βc

)jx
K−a−jx(2

√
bc)

K−α−jx(2
√
βγ)

(4.56)

Through numerical calculations, two instances of fΛ(λ) are illustrated in Figure 4.6.

For certain combinations of (α, β, γ, a, b, c), the integral in Eq. (4.56) does not converge.

Then KKT analysis (see Section 4.8) must be employed and may lead to probability density

functions (pdf’s) having to be displaced by cumulative density functions (cdf’s) that possess

atoms in the high-λ region.

4.10 Summary

We have shown that, when neuron j employs a GIG conditional distribution as the channel

density function and bpJ-maximizing is achieved, the output ISI distribution is a related

GIG marginal distribution. This has allowed us to compute the tradeoff between information

rate and average power in the GIG class in a markedly simpler way requiring only a one

dimensional integral instead of several multidimensional integrals. Also, we show how to

numerically obtain the associated input distribution fΛ(λ). By generalizing from the Gamma

and IG families to the GIG family, the derived results contain [5] [6] [7] [8] as special cases in

which the three parameters are set to specific values.
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Chapter 5

Experimental and Biophysical Neuron

Modeling: The Paradoxical Energy

Efficiency of Retinothalamic

Transmission

All science is either physics or stamp collecting.

-Ernest Rutherford

5.1 Problem Statement

In the early visual processing pathways of mammalian brains, action potential (AP) generated

by a retinal ganglion cell (RGC) must first activate thalamic relay cells in the lateral

geniculate nucleus (LGN) in order for the RGC to influence the primary visual cortex (V1).

However, during active vision, only a fraction of the spikes traveling along the optic nerve

can successfully activate a given downstream LGN cell, leading to a 2- to 4-fold reduction

in the total number of spikes across the retinothalamic synaptic connection [55]. According

to Barlow’s principles of efficient coding [52], a minimum number of impulses should be
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Figure 5.1: Retinothalamic transmission.

used to encode an information source, which implies that the retinal and thalamic neural

codes cannot be equally efficient. The retinothalamic synapse selectively relays only the most

informative retinal spikes, thereby preserving the most important information [53] [54] [55].
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It is unclear why RGCs generate redundant and apparently unnecessary spikes, as this

entails an inefficient use of energy in the brain. Here, we resolve this apparent paradox by

analyzing simultaneous RGC and LGN recordings [55] with the Berger-Levy energy efficiency

theory of neural computation and communication [5] [6]. Our analysis suggests that the

retinal spike code, despite its relative inefficiency compared to the thalamic spike code, is an

energy-efficient substrate for generating the thalamic code since it maximizes the information

transmitted to the cortex per unit of expended energy.

Signaling by the all-or-none spikes used by neurons to transmit information over a long

distance and the subsequent release of neurotransmitter at synapses is expensive [23] [27] [4].

In every second 1015 synaptic signals are transmitted in the human brain and a single message

at a chemical synapse consumes 105 ATP molecules [20]. Although some neurons minimize

the energy they need to function [4], there appears to be an exception at an early stage of

visual processing.

In the mammalian visual pathway, spike trains from the retina traverse the optic nerves

and are then relayed into the lateral geniculate nucleus (LGN), from which information

subsequently projects to the primary visual cortex (V1). The LGN is called a relay station

because the spikes coming from the retinal ganglion cells (RGCs) obligatorily activate the

thalamic relay cells in order to activate downstream V1 neurons (Fig. 5.1a). Each LGN cell

receives inputs from only a few RGCs with one that is dominant, a near-one-to-one mapping

(Fig. 5.1b), and there are 2 to 4 times more retinal input spikes than output LGN spikes (Fig.

5.1c). This leads to a paradox: If the retinal code is optimally efficient, then the LGN would

be losing a significant amount of information by relaying only a small fraction of retinal

spikes; on the other hand, if the thalamic code is efficient, then the retina would be wastefully

generating many redundant spikes that convey little information.
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5.2 Berger-Levy Energy Efficient Theory of Neural Com-

putation and Communication

In communicating information, it is important to consider the energy expenditure as well as

the information transmitted. That is, in order to transmit information in an energy efficient

manner, it is necessary to maximize bits communicated per joule of energy expended. From

this viewpoint the objective function to be optimized is information (I) transmitted per

energy (e) expended:

Maximize Ij =
I

e

bits

joule
. (5.1)

To study the retinothalamic synaptic transmission quantitatively, we used the Berger-

Levy (B-L) theory of neural computation and communication, which was originally based on

an integrate-and-fire model [5] and subsequently generalized to variable EPSP amplitudes

and decay [6] (Fig. 5.2). The B-L theory predicts optimal input and output probability

distributions that maximize the bits of information a neuron conveys to its efferent targets per

joule of energy it expends for action potential (AP) generation, postsynaptic accumulation

and basal metabolism. The theory implies (1) that the intervals between consecutive output

spikes must be distributed according to a gamma distribution with shape and scale parameters

denoted by κ and b, respectively, and (2) the scaled reciprocal of the input intensity must be

distributed according to a beta distribution with three free parameters, two of them being

the aforementioned κ and b and the third being a threshold-related parameter, m. In order

to quantitatively compare the B-L theory with experimental observations, the spike train

statistics from simultaneous recordings of synaptically-connected RGCs and LGN cells [55]

were analyzed here using statistical fitting methods (see Section 5.4).
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Figure 5.2: LGN neuron model.

76



5.3 Statistical Analysis

Figure 5.1 illustrates the experimental setup with electrophysiological recordings simultane-

ously measuring the spikes coming from the retina and the LGN while stimulating ganglion

cells with retinal inputs [55]. Figure 3a provides an example of a single thalamic relay cell

that has been reasonably well fitted with parameters κ = 0.6703 and b = 13.4601 using

maximum-likelihood (ML) estimation. After performing a ML data fitting for a few dozen

thalamic relay cells, we consistently observed a cloud of values for the parameters, κ and b,

with median centered on κ = 0.72 and b = 7.00 (Fig. 3b). The concentration of κ between 0.6

and 0.8 suggests non-Poisson statistics, making small interspike interval (ISI) more probable

compared to a Poisson case with κ = 1, excluding the refractory period.

Fitting spiking data of a typical retinal cell with statistical ML estimation of the threshold

parameter (mML) is illustrated for a particular ganglion cell (Fig. 5.3c). We then compared

the values of mML with the experimental spiking ratio of RGC over LGN (mE) across the

recorded retinal cell population (Fig. 5.3d), and observed that the two estimates are well

correlated but differ systematically, possibly due to the fact that a simple integrate-and-fire

neuron model was utilized. The median of the population distribution (Fig. 5.3d, red cross)

indicates that the estimated number of inputs within one ISI lies between 2 and 4. This

quantitatively reveals how the thalamic relay cell is processing incoming retinal spikes on

average. When 2 to 4 spikes occur close to each other in time, the threshold is reached and

the information is relayed to the cortex. This suggests that the LGN is not merely a passive

relay but rather that it exhibits characteristics of a temporal filter for selectively transmitting

information from RGC to V1.

Our model specifically predicts conditions on energy costs in neurons for optimal Ij when

the number of retinal spikes is 2- to 4-fold greater than the number of thalamic spikes, as

observed experimentally. The expected unit energy cost, e, within a single output ISI has
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Figure 5.3: Thalamic interspike interval (ISI) parameter estimation and retinal averaged
firing rate parameter estimation.

three parts:

e = 1 + ρm+ σ, (5.2)

where 1 is the normalized energy cost of one LGN spike; m is the average number of retinal

inputs needed for the LGN cell to cross the threshold; ρ represents the energy cost ratio
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between the processing of a single input at an LGN synapse and the producing of an LGN

spike; and ρ represents the energy cost ratio between the metabolism during one LGN ISI

and the producing of a LGN spike. Although ρ and σ are not known empirically, BL theory

predicts combinations that achieve the optimal ratio m with respect to the maximized bits

per joule, Ij (see Fig. S4). A particular case in which between 2 and 4 RGC spikes within a

short time interval are required to produce an LGN spike is illustrated in Figure 5.4 when

ρ = 1 and σ = 0. For this case, Ij is optimal when the amount of energy expended in an LGN

spike is roughly equal to the amount of energy in processing an input at an LGN synapse

(ρ = 1). In another possible optimal case (ρ = 2 and σ = 2) (See Fig. S4), the amount of

energy in processing an input at an LGN synapse is the same as the metabolic energy during

one ISI and both are twice the cost of an LGN spike. These predictions could be tested by

measuring the energy cost for each step in transferring information from a RGC to an LGN

cell.

Feedback inhibition from V1 could further contribute to the drop in LGN spiking rate

through inhibition from the reticular nucleus of the thalamus, thereby reducing temporal

redundancy and saving energy. It would be helpful to measure both feedforward and feedback

inhibitory signaling in the LGN [59] [60]. Cortical regions might have their own time-varying

viewpoint regarding which information entering the LGN might be most needed and which

information can be ignored from moment to moment. The B-L theory should apply to

these cases as well. However we must proceed cautiously in attempting to generalize these

RGC-LGN findings to other cortical areas, since the tens of thousands of inputs afferent to

cortical neurons are correlated and intertwined with one another.

Optimizing bits per joule rather than pure information transfer, which accounts for the

2- to 4-fold greater number of retinal spikes than of thalamic spikes, resolves the apparent

paradox of retinothalamic synaptic transmission and could be a general principle for studying

information transmission elsewhere in the brain.
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Figure 5.4: Best fit parameters of model to data for optimizing information/energy.

5.4 Methods Summary

• Electrophysiology. In vivo patch recordings, in cell-attached or whole-cell mode, were

made from adult cats anesthetized with propofol and sufenta [55] [56] [57] [58] and were

digitized at 10 or 25 kHz.

• Theoretical analysis. Based on the same assumptions used in the Berger-Levy energy

efficient neuron model [5] [6], the optimal input and output probability density functions

have been redefined for synaptic transmission. The closed-form solutions for mutual

information and energy expenditure have been derived analytically.
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• Fitting. Parameters of the bits-per-joule optimal input and output distributions of

the Berger-Levy model were fitted to the statistics of RGC and LGN spike trains

obtained from recordings [55]. The postsynaptic thalamic ISI distribution contains a

scale parameter b and a shape parameter κ. The presynaptic retinal EPSP averaged

excitation intensity distribution features three parameters, b, κ and m. Parameters

for the Berger Levy model were fitted by a maximum likelihood (ML) estimation and

average spiking ratio between RGC and LGN. The confidence interval was set at 95%.

5.4.1 Theoretical Analysis

To quantify the information transferred and energy expended during retinothalamic trans-

mission, we applied the Berger-Levy energy efficient neuron model to a single input case.

Four assumptions are adopted from the model: (1) The number of spike arrivals is governed

by an inhomogeneous Poisson process; (2) Integrate-and-fire neuron with a threshold m is

used as the basic computational model; (3) Mean value assumption; (4) Afferent inputs are

excitatory and have equal synaptic weights.

For synaptic transmission, in order to achieve maximized information transferred per unit

energy expended, (1) The postsynaptic ISI has a gamma distribution with parameters κ and

b,

fT (t) =
bκtκ−1e−bt

Γ(κ)
(5.3)

(2) The scaled reciprocal of presynaptic averaged firing rate is beta distributed with

parameters κ, b, and m,

fΛ(λ) =


Γ(m)

Γ(κ)Γ(m−κ)
· b

κ(λ−b)m−1−κ

λm
, λ ≥ b

0, λ < b
(5.4)

Then the information and energy terms are defined as:
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(3) The Shannon mutual information between averaged input firing rate Λ and output

ISI duration T ,

I(Λ;T ) =

∫ ∞
0

dλfΛ(λ)

∫ ∞
0

dtfT |Λ(t|λ) log
fT |Λ(t|λ)

fT (t)
= O(logm). (5.5)

Omitting unwieldy mathematical derivations, the mutual information finally follows

I(Λ;T ) = (log Γ(κ)− κψ(κ) + κ)− (log Γ(m)−mψ(m) +m), (5.6)

where Γ(κ) denotes the gamma function and Ψ(κ) represents the digamma function.

(4) The energy expenditure Z is defined as a sum of AP generation cost C0, postsynaptic

accumulation cost C1M and basal metabolic cost C2T ,

Z = C0 + C1M + C2T

.

Henceforth, after taking expectation of Z over both M and T it follows that

E[Z] = C0 + C1E[M ] + C2E[T ] (5.7)

= C0 + C1m+ C2κ/b, (5.8)

where the expected value of random EPSP arrivals M is defined as m and the expected value

of random ISI length T equals κ/b due to the fact that even when the synaptic weights are

not required to be equal to one another, if the performance criterion remains maximization

of bits per joule, then the output ISI durations remain gamma distributed with the same

parameters κ and b as in the special case in which all synapses are assumed to have the same
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weight.

Therefore after defining ρ as C1/C0, σ as κC2

bC0
, C0 as a normalizing factor C and dividing

C on both sides, the expected unit energy cost e can be written as

e = E[Z]/C = 1 + ρm+ σ = O(m). (5.9)

A more refined version of B-L theory has been developed in which membrane potential

within each ISI accumulates like a Wiener process with drift. In that version the gamma

distribution is replaced by a generalized inverse Gaussian probability density function.

5.4.2 LGN Neuron Model

The Berger-Levy theory of energy efficiency was based on an integrate-and-fire model neuron,

which did not include variable amplitudes or decay of the excitatory postsynaptic potential

(EPSP). Although this model neuron fits experimental data in the medium and large firing

rate domain, it does not perform well for low average firing rates (Fig. 5.5). In order to

address this discrepancy, we modified the neuron model to account for the phenomenon of

membrane potential decay in LGN cells during EPSP accumulation. The goal of this model

is to measure and estimate the EPSP accumulation process with higher precision, enabling

comparison between estimated spike timing statistics and experimental data.

The EPSP accumulating process for the leaky integrate-and-fire model neuron is illustrated

in Figure 5.4b. The model neuron had four parameters:

• β: the exponential decay rate

• θ: the action potential (AP) firing threshold

• h: the resting membrane potential reset

• µ: the amplitude of the incoming EPSP.

83



10
1

10
2

10
30

0.002

0.004

0.006

0.008

0.01

0.012

0.014

 

 

Data
ML estimation

10
2

10
30

0.002

0.004

0.006

0.008

0.01

0.012

0.014

 

 

Data
ML estimation

10
0

10
1

10
2

10
30

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

 

 

Data
ML estimation

10
1

10
2

10
30

1

2

3

4

5

6 x 10
−3

 

 

Data
ML estimation

[s]

[s] [s]

[s]

[s ]   -1[s ]   -1

[s ]   -1 [s ]   -1

λ λ

λλ

f(λ) 
Λ

f(λ) 
Λ

f(λ) 
Λ

f(λ) 
Λ

Figure 5.5: Retinal averaged firing rate parameter estimation from four typical data sets.

First, after each interspike interval (ISI) the membrane potential is reset to h after an

absolute refractory period ∆. When each EPSP arrives at the spike initiating zone, it will

immediately make a contribution by a unit step function with amplitude µ and then decay

exponentially at rate β. Hence, after receiving the first EPSP arrival during the kth LGN

ISI, the membrane potential becomes

VEPSP1 = he
−β∆tEPSP1 + µ, (5.10)
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where ∆tEPSP1
:= tEPSP1 − (tSpike + ∆).

Likewise, VEPSP2 turns out to be

VEPSP2 = VEPSP1e
−β∆tEPSP2 + µ, (5.11)

where ∆tEPSP2
:= tEPSP2 − tEPSP1 . Therefore, when m EPSPs arrive during the kth ISI, the

accumulated membrane potential VEPSPm is

VEPSPm = VEPSPm−1e
−β∆tEPSPm + µ, ∀m ≥ 2, (5.12)

where ∆tEPSPm
:= tEPSPm − tEPSPm−1 . Hence, we must have both VEPSPk < θ for k =

1, · · · ,m− 1 and VEPSPm ≥ θ in order to trigger an AP.

A flow chart of the computational procedure used to fit the spike timing data is shown in

Figure 5.6. The histogram of the accumulated membrane potential after selecting certain

typical values for the parameters in Figure 5.6b is asymmetric when the decay rate β is

small. We set the threshold θ to best capture the experimental data so that the total of

the magnitudes of the differences between the true LGN neuron’s actual spiking time and

the model’s estimate thereof is minimized. The magnitude difference is easy to calculate in

those ISI’s in which the model spikes at an earlier time than when the actual LGN neuron

does. However, when the model fails to reach the threshold before the data does, there is no

more EPSP data for the terminated ISI. Hence it is not directly possible to determine how

late the model would have fired a spike. We could, of course, take the EPSP arrivals in the

subsequent ISI(s) until the model spikes, but then we would be double-using some EPSP’s

arrival times. Instead of doing that, whenever the model was late in spiking relative to the

data, we generated exponential random variables using the long-term statistics of the input

EPSP train until the model crossed the threshold (Fig. 5.6a).

This procedure optimizes the timing error instead of the voltage error. The algorithm

for computational thresholding (Fig. 5.6a) converts the voltage error into an approximate
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Figure 5.6: Detailed thresholding algorithm and computational simulation results.

timing error. After considering all feasible combinations of the parameters, we found for

each data set a value (or values) of the (β, θ, h, µ) quadruple that minimized the absolute

value of the estimated timing error. The values of the parameters for one typical data set are:

(β, θ, h, µ) = (220, 1, 0.43, 0.57). The mean of the minimized timing error is 0.928 ms and the

standard deviation (SD) of the minimized timing error is 9.1 ms. Not surprisingly, a few

outliers are responsible for much of this big absolute error SD. If one is willing to disregard

0.16% of the 8916 ISIs in this data set, then the SD is reduced by more than 40%. Figure

5.6c shows the histogram of the estimated timing error. Figure 5.6d compares the estimated

timing error with the AP timing statistics in the experimental data. Moreover, gamma
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Figure 5.7: Thalamic spike timing estimated from four typical data sets. The histograms of
spike timing (blue) are compared with the predicted ones from the LGN neuron model (red).

distributed output LGN ISI statistics are obtained when the input EPSP timings are fed into

the computational LGN neuron model as is predicted by the information-energy optimization

inherent in Berger-Levy theory. The result of applying this procedure to recordings from 4

typical retinal neurons is shown in Figure 5.7.

5.4.3 Two-to-four Fold Reasoning

The B-L theory predicts input and output probability distributions that maximize the

bits of information a neuron conveys to its efferent targets per joule of energy it expends

for postsynaptic accumulation, action potential (AP) propagation and vesicle restoration,
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clocking, and basal metabolism. The theory implies that (1) the intervals between consecutive

output spikes must be distributed according to a gamma distribution with shape and scale

parameters denoted by κ and b, respectively, and (2) the normalized probability density of

the scaled reciprocal of the neuron’s net afferent excitatory and inhibitory intensity must be

distributed according to a beta distribution with three free parameters, two of them being

the aforementioned κ and b and the third being a threshold-related parameter, m. In this

Chapter, m has been extended to be the ML estimate of a parameter thereby resulting in m

usually being a non-integer.

In the data analysis, specific values for κ and b have been obtained by matching the

empirically obtained output interspike interval (ISI) distribution with the theoretically derived

gamma distribution according to the maximum likelihood (ML) method. Then, given fixed κ

and b, m is chosen to make the empirical distribution of the scaled reciprocal input intensity

best match a (κ, b,m) beta distribution.

In order to obtain the resulting bits per joule performance predicted by the B-L theory,

one not only needs marginal distributions of input and output that conform well to the B-L

theory, but also needs the channel kernel (that is, the conditional distribution f(T |λ)(t|λ)) to

conform to the mathematical prescription specified in B-L theory, extended by letting m be

any positive real number no longer required to be an integer. In theory, the information rate

is a functional of the joint distribution of T and Λ, which turns out to be a function of only

κ and m. The energy expenditure, however, is defined as a function of m, ρ and σ. Here, ρ

represents the normalized energy cost ratio between processing a retinal spike and producing

a LGN spike, and σ represents the normalized metabolic energy cost during one ISI.

The optimization of information rate subject to energy constraints can be reduced to a

concave maximization problem with respect to the single parameter m provided the channel

kernel matches well with the neural data and that the parameters κ is chosen appropriately.

That is, there is always an optimal value for m that maximizes information transmitted per

joule expended. Moreover, with specific values of ρ and σ chosen, the information-energy
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optimized value of m can be tuned into a 2- to 4- regime.

Unfortunately, the recorded data are too sparse to estimate the conditional distribution

accurately. Hence, we have to assume that the analytical form of the channel kernel specified

by extended BL theory would be well-matched by more extensive recordings from the LGN

neuron.

Figure 5.8 indicates parametric spaces of bits per joule optimized average number of

arrivals per ISI (mmax), mutual information estimation (I), information per energy (Ij), and
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information per second (Is). A particular case for specific ρ and σ values is illustrated in

Figure 5.4, where m is between 2 to 4. In order to conclude that the BL theory is a good

explanation for the RGC-LGN spike ratio, one needs to have additional information about

the values of the energy ratio ρ and the metabolic cost σ. Exploring the data sets, we have

observed that the average number of RGC spikes per ISI, m, ranges from 2 to 4. Before one

can assess the goodness of the fit and hence the degree of validity of the BL theory prediction,

one has to obtain measurements of ρ and σ. In order to determine the energy expended

by the LGN neuron, one needs to count both (1) the energy expended to process not only

RGC spikes but also spikes afferent to other synapses of the LGN neuron with neurons in the

visual hierarchy, and (2) the energy expended to propagate the LGN neuron’s spikes to all

its targets and to restore the neurotransmitter vesicles inside the presynaptic terminals at

said targets. Unfortunately, current neuroscience technology does not permit the acquisition

of such measurements.

5.4.4 Mutual Information Estimation of the Spike Trains

The direct binning method is employed in order to estimate the mutual information from

the experimental spike train. We first derive the formula for mutual information using finite

linear bins. According to the definition of mutual information,

I(Λ;T ) =
∑
λ

∑
t

Pr(λ, t) log2

Pr(λ, t)

Pr(λ) Pr(t)
(5.13)

=
∑
λ

∑
t

fΛ,T (λ, t)∆λ∆t log2

fΛ,T (λ, t)

fΛ(λ)fT (t)
(5.14)

Based on the sampling frequency in the experimental recordings, the mutual information

can be calculated as 2.72 bits when picking the resolutions ∆λ = 10 spikes/s and ∆t = 50 ms.
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Figure 5.9: In vivo and in silico optimal and suboptimal spike trains demonstration.

5.4.5 Optimal and Suboptimal Spike Trains Demonstration

By maximizing the average mutual information rate over a constraint on the total energy

cost that a neuron expends for metabolism, postsynaptic potential generation, and action

potential propagation during one ISI, Berger-Levy theory obtain the rescaled reciprocal

of the average firing rate as a beta distribution functional with parameters, m, b and κ.

Sub-optimality can be achieved by changing the spike train pattern such that the average
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Figure 5.10: Histogram of the number of RGC arrivals in each LGN ISI from one typical
data set.

mutual information rate is held fixed but average energy expenditure is increased, or vice

versa. In other words, in order to be suboptimal one can either change the distribution form

of the optimized functional or adjusting the corresponding parameters, m, b and κ. In vivo

and in silico optimal and suboptimal spike trains have been demonstrated in Figure 5.9 with

information/energy values calculated (red).
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Figure 5.11: Demonstration of arriving EPSPs in consecutive ISIs.

5.4.6 Power Law Distributed RGC Arrival Numbers in Each LGN

ISI

We obtain the histogram of the EPSP arriving numbers for each LGN ISI from a particular

RGC/LGN data set (Fig. 5.10). As shown in Figure 5.11, there can be up to 16 arrivals for

this typical data set even though the average value is around 2.65, which agrees with our

expectation of 2 to 4. Moreover, the histogram exhibits a power law distribution, which has

been verified from other data sets as well. According to Figure 5.10, in more than half of the

LGN ISIs a spike is fired before a third input can arrive. However, if it doesn’t fire from the

first or the first/second or the first/second/third combined inputs, then occasionally two but
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usually three or more arrivals close together are required in order to make the accumulated

postsynaptic potential cross the threshold. Our leaky LGN neuron model covers all these

modes of firing. These firings on the first/second incoming spikes are the mechanism that

LGN uses to convey to its targets that its inputs are arriving at a rate that is considerably

above average.

5.4.7 Comparison between Two Point Estimators of Parameter m

For a parameter of interest in a model, such as m in the B-L energy efficient theory, the

objective of point estimation is to use a sample to compute a number that represents a good

guess for the true value of the parameter. Generally speaking, there are two methods of

obtaining point estimates for m: the method of moments, mE, and the method of maximum

likelihood, mML. For the method of moments, the basic idea is to equate certain sample

characteristics, such as the mean, to the corresponding physical parameter in the model in

order to yield the estimator. For the maximum likelihood estimator, let the random variables

X1, X2, · · · , Xn have joint pmf or pdf f(X1, X2, , Xn; θ1, θ2, · · · , θl), where the parameters

θ1, θ2, · · · , θl have unknown values. When x1, x2, · · · , xn are observed data sample values,

f(x1, x2, · · · , xn; θ1, θ2, · · · , θl) is regarded as a function of θ1, θ2, · · · , θl and becomes the

likelihood function. The maximum likelihood estimates (mle’s) θ1, θ2, · · · , θl are those values

of the θi’s that maximize the likelihood function so that f(x1, x2, · · · , xn; θ1, θ2, · · · , θl) ≥

f(x1, x2, · · · , xn; θ1, θ2, · · · , θl) for all θ1, θ2, · · · , θl. When the sample size n is large, the

maximum likelihood estimator of any parameter θi is approximately unbiased and has

variance that is nearly as small as can be achieved by any estimator, i.e., the mle (θi) is

approximately the minimum variance unbiased estimator (MVUE) of θi. In this specific

analysis, l = 3 with θ1 = b, θ2 = κ, θ3 = m. b and κ have already been set at ML estimate

of the parameters of the gamma distribution for the pdf of T . So m is the only remaining

parameter that remains for which the ML estimate has not yet been determined for the pdf

of Λ.
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For a typical data set, we are able to calculate three different values for the average

number of RGC arrivals within each LGN ISI duration.

• Experimental data: the average number of arrivals in each ISI is mE = 2.65.

• B-L energy efficient integrate-and-fire (IF) neuron model: mML = 3.01 for b = 13.46

and κ = 0.67.

• Computational leaky integrate-and-fire (LIF) LGN neuron model: mLeaky = 3.43.

The main reason why mLeaky is larger than mML and mE is that on those occasions where the

data fired before the leaky model did, the subsequent RGC arrival times were independently

and identically selected as opposed to the fact that the data shows that an RGC ISI that is

considerably shorter than average tends to be followed by another such ISI, thereby allowing

less leakage and hence usually reaching the threshold with fewer RGC arrivals.

Since a point estimate by itself provides no information about the precision and reliability

of the parameter estimation, a 95% large-sample confidence interval (CI) has been calculated

for m as:

(2.65− 1.96× 1.83/
√

8916, 2.65 + 1.96× 1.83/
√

8916) ≈ (2.61, 2.68).

5.4.8 Detailed Figure Captions

• Figure 5.1: Retinothalamic transmission. a, Schematic diagram of retinal ganglion cell

(blue) synapsing on a thalamic relay cell in the LGN (red), which in turn projects to

the cat visual cortex. b, In vivo “cell-attached” recording from LGN relay cells. c,

Recordings of retinal (blue) and thalamic (red) spike trains.

• Figure 5.2: LGN neuron model. a, The afferent inputs (blue) generate EPSPs in

the LGN neuron while the efferent outputs (red) correspond to the generated APs.

The LGN neuron model used to fit the ISI distribution is a leaky integrate-and-fire
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neuron with four parameters (β, θ, h, µ), where θ is the firing threshold, h is the level to

which the membrane potential is reset after an absolute refractory period ∆ after each

spike, and µ is the amplitude of an EPSP which decays exponentially at rate β (see

supplementary information). b, the sequence {Ti} is a random process representing

the output ISI durations while the sequence {Λi} is a random process featuring the

averaged firing rate of the input EPSPs and i represents the ISI index. Vm stands

for the postsynaptically accumulated potential. M is the number of arrivals needed

within one ISI to cross the threshold. c, Illustration of an instance in which five EPSPs

accumulate within one ISI. The membrane potential Vm integrates the postsynaptically

integrated EPSPs.

• Figure 5.3: Thalamic interspike interval (ISI) parameter estimation and retinal averaged

firing rate parameter estimation. a, Histogram of a typical postsynaptic thalamic cell’s

ISI (black), and probability density function of a gamma distribution with a typical

parameter set, κ and b, (red). b, Parametric space, κ and b, for the population results

of X-cells (purple), Y-cells (green), and unidentified cells (black) with median value

(red). c, Histogram of a typical presynaptic retinal ganglion cell’s averaged firing rate

(black), and probability density function of a scaled reciprocal of beta distribution with

the same parameters, κ, b, and ML estimated m (red). d, Parametric space, mML

and mE, for the population results of presynaptic X-cells (purple), Y-cells (green), and

unidentified cells (black) with median value (red).

• Figure 5.4: Best fit parameters of model to data for optimizing information/energy.

a, Information (I) plotted as a function of m when κ = 0.7. b, Energy (e) plot as a

function of m when κ = 0.7, b = 7, ρ = 1 and σ = 0. c, Bits per joule (Ij) plot as a

function of m when κ = 0.7, b = 7, ρ = 1 and σ = 0, with the maximal value indicated

by an open circle. d, Bits per second (Is) plot as a function of m when κ = 0.7, b = 7,

ρ = 1 and σ = 0.

96



• Figure 5.6: Detailed thresholding algorithm and computational simulation results. a,

Computational thresholding algorithm. b, Accumulated EPSP value, VEPSPm , in each

ISI with a fixed threshold. c, Estimated timing error histogram. d, Output ISI duration

comparison between the model (Blue) and the data (Red).

• Figure 5.8: Parametric spaces of bits per joule optimized average number of arrivals

per ISI (mmax), mutual information estimation (I), information per energy (Ij), and

information per second (Is). a, Parametric space, σ and ρ, for the energy expenditure

per ISI showing the 95% confidence intervals for maximum likelihood value of mML (blue)

and expected value mE (red) that optimizes information/energy gives mmax = 2− 4

(color bar). b, Mutual information, I, estimation with respect to varying resolution

in terms of ISI duration, ∆t, and averaged firing rate, ∆λ. c, Parametric space of bits

per joule, Ij, with respect to κ and b. d, Parametric space of bits per second, Ij, with

respect to κ and b.

• Figure 5.9: In vivo and in silico optimal and suboptimal spike trains demonstration.

Experimental data is shown in (a). Theoretical predictions under the optimal condition

are illustrated in (b). The suboptimal scenarios are demonstrated in (c). Panels on the

left represent the averaged firing rate statistics per ISI; Panels on the right represent

the recorded (a) with five snippets and simulated (b, c) spike trains with five trials.
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Chapter 6

Conclusions and Future Work

Everything but our understanding is flawless.

-Archie Randolph Ammons

6.1 Conclusions

In this thesis, we have shown that, when neuron j is designed to maximize bits conveyed per

joule expended and employs a mixture of Gamma distribution as the channel density function,

even though j’s synapses are no longer being required to all have the same weight or to be

excitatory only, the pdf of the ISI durations continues to be a delayed gamma distribution

as it was in [5] wherein all the weights were assumed to be equal. This happens despite the

fact that the conditional distribution for T given Λ is now a mixture of gamma distributions

instead of the pure gamma distribution that characterizes the special case of equal weights.

Additionally, we have implicitly determined the optimal distribution fΛ(λ) that charac-

terizes the afferent excitation/inhibition intensity by (1) maximizing the Shannon mutual

information rate given a constraint on the total energy cost (a cortical neuron’s energy expen-

diture for metabolism, postsynaptic potential accumulation, and action potential generation

and propagation during one ISI); (2) converting the integral equation to a differential equation

with a closed-form solution.
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Figure 6.1: Illustration of neurons learning mathematical statistics and information theory.

Moreover, we have also shown that, when neuron j employs a IG/GIG conditional

distribution as the channel density function and when the bpJ-maximization is achieved,

the output ISI distribution is a related GIG marginal distribution. This has allowed us to

compute the tradeoff between the information rate and the average power in the IG/GIG

class in a markedly simpler way requiring only a one dimensional integral instead of several

multidimensional integrals. Furthermore, we have obtained the associated input distribution

fΛ(λ) in the IG case and shown how to numerically obtain the associated input distribution

fΛ(λ) in the GIG case. By generalizing from the Gamma and IG families to the GIG family,

the derived results contain [5] [6] [7] [8] as special cases in which the three parameters are set
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to specific values.

Last but not least, we have employed our energy efficient theory to resolve the paradoxical

energy efficiency of retinothalamic neural transmission. By imposing an energy function that

combines metabolism, PSP accumulation and LGN spiking costs during each ISI, the theory

predicts that, in order to achieve the highest amount of transmitted information per unit

energy expenditure, the number of presynaptic spikes should be approximately 2 to 4 times

greater than the number of thalamic spikes, consistent with our experimental observations

from anesthetized cats. This is the first time that a quantitative experimental and theoretical

analysis has been performed on information transmission subject to an energy constraint in

an isolated nucleus. Our finding suggests that the brain does not optimize information flow

only, but rather energy-efficient information flow.

The energy efficiency of the human brain in terms of information processing in problems

of pattern recognition and optimized adaptive decision making is astonishingly superior to

that of man-made machines. By extending the information-energy efficient neuron model to a

more general framework including both unequal synaptic weights and inhibitory synapses, our

theory closely corresponds with the actual neurophysiology of cortical networks, potentially

leading to wider applications in neuroscience and engineering.

6.2 Future Work

6.2.1 KKT instead of Lagrange Multipliers

Equation (4.56) specifies the exact expression for the bpJ-maximizing probability density of

the random excitation intensity, Λ. There are two significant aspects of this equation. One is

that it extends the solution for the bpJ-maximizing afferent intensity’s pdf from the idealized

IIF neuron model treated by Berger and Levy in 2010 to the far more neuroscientifically

relevant family of GIG neuron channel models. The other is that it shows that such a

probablilty density exists only when the parameter vectors (α, β, γ) and (a, b, c) are properly
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related. Specifically, if the integral in this equation is finite for all values of λ > 0, then

λ is an absolutely continuous random variable the pdf of which is given by said equation.

However, it is easy to see that if the arithmetic values of the two vectors are exchanged

(i.e., if α↔ a, β ↔ b and γ ↔ c), then if the integral converges before these exchanges are

made, then it will not converge after these exchanges. This means that sometimes Λ has a

pdf and sometimes it doesn’t, depending on the values of the two parameter vectors. When

the integral does not converge, our Lagrangian solution is not correct and the optimizing

distribution for Λ does not possess a pdf. This is why it is necessary to study how KKT

theory could be used to treat these situations in which Λ is not absolutely continuous. We

believe that these situations correspond to cases in which the energy constraints are too

stringent for the neuron’s current design and conjecture that this situation occurs only rarely

in practice. However, the most significant instances of natural selection usually take place

when such imbalances occur. Therefore, it is important to try to apply KKT theory to get a

more robust solution.

6.2.2 What Do Neurons Do and Not Do Highly Energy Efficiently?

Our current belief is that neurons pinpoint highly energy efficiently the exact times at which

an AP occurs and the exact times at which an AP arrives at a synapse. This is done in the

first case by means of fast sodium channels that reside at the initial segment of the axon and

in the second case by fast calcium channels located at the presynaptic terminals. Our present

conjecture is that these two operations occur with close to kT log 2 Joules being expended per

bit of information encoded in the first case and decoded in the second case. We also believe

at present that the dendro-somatic processing of EPSP’s and IPSP’s does not occur nearly

that close to the thermodynamic limit but more like a factor of 10 or possibly even 20 times

said limit. What the brain gains for this thermodynamic non-optimality is the ability to have

a sophisticated network of billions of neurons that need to expend energy communicating

with one another, something that is hard to do energy efficiently because of its intrinsically
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large spatial extent. Apparently, the capabilities that advanced organisms gain from this

network must justify the reduction in energy efficiency. For example, humans have found out

many things by means of the enormous in-degrees and out-degrees of connectivity among the

neurons in their brains, including the fact that a vast amount of the Earth’s energy is stored

way underground! No other animal knows that. This has proved to be “energy efficient” in a

certain sense, although it is becoming increasingly clear that we are abusing this knowledge

from the viewpoint of efficient use of that energy.

6.2.3 Network Coding

Network coding research has convincingly shown that store-and-forward message passing can

be highly inefficient. Instead of just storing and forwarding packets as is presently done in

the Internet, it sometimes can be much more efficient to implement clever coding at each

node. The brain appears to do this in spades, doubled and redoubled, when one considers

that each cortical neuron simultaneously receives thousands of spike train inputs from other

cortical neurons but puts out only a single spike train of its own; however, it delivers that

spike train to thousands of other neurons. Thus, it appears that brains do network coding

in the extreme. We hope to find a way to quantify why this is a good way to behave even

though it may not be as energy efficient as what small animals with few neurons are capable

of achieving by virtue of not having to spend lots of energy on intra-organism communication.
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